WO2010090257A1 - Solvent supply apparatus for liquid chromatography mass spectrometer, reagent bottle, solvent and method for supplying solvent - Google Patents

Solvent supply apparatus for liquid chromatography mass spectrometer, reagent bottle, solvent and method for supplying solvent Download PDF

Info

Publication number
WO2010090257A1
WO2010090257A1 PCT/JP2010/051609 JP2010051609W WO2010090257A1 WO 2010090257 A1 WO2010090257 A1 WO 2010090257A1 JP 2010051609 W JP2010051609 W JP 2010051609W WO 2010090257 A1 WO2010090257 A1 WO 2010090257A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
reagent bottle
metal foil
suction nozzle
mouth
Prior art date
Application number
PCT/JP2010/051609
Other languages
French (fr)
Japanese (ja)
Inventor
徹 夏目
洋 中山
輝康 新井
Original Assignee
独立行政法人産業技術総合研究所
独立行政法人理化学研究所
日京テクノス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 独立行政法人理化学研究所, 日京テクノス株式会社 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2010090257A1 publication Critical patent/WO2010090257A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph

Definitions

  • the present invention relates to a solvent supply device, a reagent bottle and a solvent, and a solvent supply method for a liquid chromatograph mass spectrometer. More specifically, the present invention relates to a solvent supply device for a liquid chromatograph mass spectrometer that can prevent a decrease in analysis sensitivity due to chemical noise.
  • LC-MS liquid chromatograph mass spectrometer
  • LC-MS In LC-MS, first, detection target substances such as proteins, peptides, sugar chains, and various metabolites contained in a sample solution are separated by LC. The separated detection target substance is ionized and then introduced into the MS, and the ion mass, dissociated ion mass, and ion intensity are measured. Based on the obtained mass spectrum (mass spectrum), the detection target substance is identified and the structure is determined.
  • detection target substances such as proteins, peptides, sugar chains, and various metabolites contained in a sample solution are separated by LC.
  • the separated detection target substance is ionized and then introduced into the MS, and the ion mass, dissociated ion mass, and ion intensity are measured. Based on the obtained mass spectrum (mass spectrum), the detection target substance is identified and the structure is determined.
  • the analysis sensitivity of the LC-MS decreases due to a decrease in N (signal noise ratio) or a decrease in the ionization efficiency of the detection target substance.
  • N signal noise ratio
  • Such a decrease in analysis sensitivity due to contamination by foreign substances can be a problem particularly when analyzing an extremely small amount of a detection target substance.
  • Patent Document 1 discloses, as a technique for reducing chemical noise due to contamination by foreign substances, “mixed metal ions present as a background in the eluent in the analysis of metal ions by ion chromatography.
  • An ion chromatograph eluent characterized by having a small amount of contaminating ions to enable analysis of trace ions that are difficult to measure due to background interference by removing the " .
  • a trace substance mixed in a solvent used as a mobile phase of LC-MS for example, a trace substance mixed in a laboratory environment, and the like can be considered.
  • the trace substances mixed in the solvent first, foreign substances mixed in the solvent manufacturing process are assumed. This includes aerosol particles in the environment where the solvent production apparatus is placed, and dust generated by wear of the production apparatus.
  • a substance that comes from the reagent bottle and is mixed into the solvent after the solvent is accommodated in the reagent bottle can be considered.
  • a plastic container is used for the reagent bottle
  • a plasticizer or unpolymerized monomer contained in the plastic may be eluted and mixed in the solvent.
  • plastic containers are often used for the lid of the reagent bottle, elution of the plasticizer and unpolymerized monomer may occur.
  • contamination of trace substances in the laboratory environment may be caused by aerosol particles in the air or dust adhering to the reagent bottle inside the reagent bottle when the reagent bottle is replaced when the solvent is supplied to the LC-MS. This may be caused by mixing or adhering to the LC-MS nozzle.
  • aerosol particles in the air or dust adhering to the reagent bottle inside the reagent bottle when the reagent bottle is replaced when the solvent is supplied to the LC-MS.
  • This may be caused by mixing or adhering to the LC-MS nozzle.
  • the present invention prevents a decrease in analysis sensitivity caused by a chemical noise or a decrease in ionization efficiency due to a trace substance mixed in a solvent or a trace substance in a laboratory environment in analysis of a protein or the like using LC-MS.
  • the main purpose is to provide technology that can be used.
  • the present invention contains a solvent used as a mobile phase of a liquid chromatograph mass spectrometer, and is inserted through the metal foil into a reagent bottle whose mouth is sealed with the metal foil.
  • a suction nozzle that sucks the solvent
  • a vacuum cap that contacts and covers the mouth of the reagent bottle, and has a hole through which the suction nozzle inserted into the reagent bottle is inserted, and is connected to this vacuum cap
  • a vacuum pump for sucking air in a space formed between the vacuum cap covering the mouth of the reagent bottle and the metal foil and a solvent supply device for a liquid chromatograph mass spectrometer.
  • the substance that generates dust from the metal foil when the suction nozzle penetrates the metal foil is sucked by the vacuum pump to prevent the substance from being mixed into the solvent.
  • the suction nozzle is made of a corrosion-resistant metal. Thereby, it can prevent that a metal ion elutes in a solvent from a suction nozzle.
  • the suction nozzle and the vacuum cap are supplied with an air supply port for supplying outside air, and a filter unit provided in a flow path of outside air supplied from the air supply port. It is desirable to dispose in an enclosure provided with an exhaust port for exhausting air and an openable / closable door.
  • the solvent supply device moves the suction nozzle and the vacuum cap with respect to the reagent bottle arranged at a predetermined position in the casing so that the vacuum cap comes into contact with the mouth of the reagent bottle, and the suction nozzle is
  • a driving means is provided that is inserted into a reagent bottle through a metal foil that seals the mouth.
  • the solvent supply apparatus may further include a first detection unit that detects a reagent bottle disposed at a predetermined position in the housing.
  • the vacuum pump can be configured to start or stop suction based on a detection signal from the first detection means.
  • the solvent supply apparatus may include a second detection unit that detects opening and closing of the door body.
  • the drive means is configured to control the movement of the suction nozzle and the vacuum cap based on the detection signal from the second detection means and the detection signal from the first detection means.
  • the present invention provides a liquid chromatograph mass spectrometer equipped with this solvent supply device.
  • the present invention relates to a reagent bottle for containing a solvent used as a mobile phase of a liquid chromatograph mass spectrometer, which comprises a metal foil that seals the mouth portion, and the mouth portion that is covered from the outside of the metal foil.
  • a glass reagent bottle having a lid, and a lid having a hole inserted through a suction nozzle that is inserted through a metal foil and sucks a solvent.
  • This reagent bottle is preferably used together with the solvent supply apparatus according to the present invention.
  • the metal foil is preferably formed of a corrosion-resistant metal. Thereby, it can prevent that a metal ion elutes in a solvent from metal foil.
  • the present invention also provides a solvent used as a mobile phase of a liquid chromatograph mass spectrometer, which is prepared in a clean environment capable of preventing contamination of substances that cause chemical noise.
  • This solvent is housed in the reagent bottle according to the present invention and is preferably used together with the solvent supply apparatus according to the present invention.
  • a solvent used as a mobile phase contained in a reagent bottle whose mouth is sealed with a metal foil is sucked with a suction nozzle inserted into the reagent bottle through the metal foil, and subjected to liquid chromatography.
  • a solvent supply method for a liquid chromatograph mass spectrometer which includes a step of feeding the liquid to a graph mass spectrometer.
  • the solvent supply method further includes a step of sucking a substance that generates dust from the metal foil with a vacuum pump when the suction nozzle penetrates the metal foil, and preventing the substance from being mixed into the solvent; And a step of preparing the solvent in a clean environment capable of preventing mixing of substances causing chemical noise and storing the solvent in the reagent bottle made of glass.
  • This solvent is a solvent used as a mobile phase for LC-MS (generally also called “eluent”), and is characterized by being prepared in a clean environment that can prevent contamination of substances that cause chemical noise. It is what.
  • This solvent can be prepared in a clean environment created by a so-called “clean room” or “clean box”.
  • clean rooms and clean boxes are used to create a clean environment in which manufacturing equipment is placed in the manufacture of precision machines and semiconductors.
  • outside air that has passed through a high-performance air filter called “HEPA filter” or “ULPA filter” with a very fine filter is sent to the inside, and the supplied air is circulated or By discharging to the outside, aerosol particles and dust in the internal environment are removed, creating a clean environment.
  • the internal pressure is set to be positive with respect to the external pressure.
  • the solvent according to the present invention is also prepared in a clean environment using a clean room or the like or equipment equivalent thereto.
  • HEPA filters are listed in the Japanese Industrial Standards (JIS standard) as “Air with a particle collection rate of 99.97% or more for particles with a rated air volume of 0.3 ⁇ m and an initial pressure loss of 245 Pa or less. “Filter”.
  • the ULPA filter is the same standard as “an air filter with a particle collection rate of 99.9995% or more for particles with a rated air volume of 0.15 ⁇ m and an initial pressure loss of 245 Pa or less”. It is prescribed.
  • the solvent according to the present invention a wide variety of solvents used as mobile phases for LC-MS can be mentioned. Specifically, water and organic solvents such as acetonitrile, methanol and isopropyl alcohol are widely used.
  • the solvent according to the present invention may include formic acid, acetic acid, trifluoroacetic acid, triethylamine, hexafluoroisopropanol (HEIP), ammonium acetate, etc. used by adding to water or an organic solvent.
  • the solvent according to the present invention is a solvent that does not contain trace substances in the solvent production process. However, when supplying this solvent, it prevents the trace substances from the reagent bottles from entering the solvent. Therefore, it is desirable that the reagent bottle is supplied in a reagent bottle according to the present invention described below.
  • FIG. 1 is a schematic diagram for explaining the operation of the solvent supply apparatus according to the present invention to be described later. As the operation of the solvent supply device will be described in detail later, the configuration of the reagent bottle indicated by reference numeral 2 in FIG. 1 will be described here.
  • the reagent bottle denoted by reference numeral 2 is a reagent bottle for containing a solvent (reference numeral S in the figure) used as a mobile phase of LC-MS, and is made of glass and has a metal mouth portion. It is characterized by being sealed with a foil (reference numeral 21).
  • the reagent bottle is made of a glass container to eliminate elution of the plasticizer and unpolymerized monomer into the solvent, which is a problem when a plastic container is used. Further, by sealing the mouth portion of the reagent bottle 2 with a metal foil 21 having a diameter substantially the same as the opening diameter of the mouth portion, elution of a plasticizer or the like which becomes a problem when a plastic lid is used is also possible. Exclude. Therefore, by accommodating the solvent according to the present invention described above in the reagent bottle 2 and supplying it, it is possible to provide a solvent free from the mixing of plasticizers and unpolymerized monomers that cause chemical noise and ionization efficiency reduction.
  • the metal foil 21 is formed of a corrosion-resistant metal, that is, a metal or an alloy that is hardly corroded.
  • the metal foil 21 seals the mouth of the reagent bottle 2 to prevent foreign substances from entering the inside.
  • the metal foil 21 is desirably formed of a corrosion-resistant metal, specifically, titanium, chromium, zirconia, stainless steel, gold, or the like.
  • Titanium, chromium, zirconia, and stainless steel oxides are very stable and hardly corroded, and form an oxide film (so-called “passive film”) on the metal surface in the air.
  • This passive film formed by the combination of metal with oxygen is a thin and dense film, which protects the inside of the metal from acid corrosion and oxidation, and exhibits strong corrosion resistance.
  • Titanium, etc. in the pool bear diagram (potential-pH diagram) is a “passive zone” where the progress of corrosion stops due to the formation of a passive film compared to the “corrosion zone” where corrosion progresses, and very stable and corrosive. There is a wide “dead zone (stable zone)” that is difficult to do.
  • Titanium, chromium, and zirconia can be alloys with aluminum, copper, iron, manganese, molybdenum, and the like, respectively, and the ratio of chromium, nickel, and the like contained in stainless steel can be set as appropriate.
  • the metal foil 21 can be formed of gold other than titanium, chromium, zirconia, and stainless steel. Gold creates an immunity that is the dead zone of the pool bear diagram, and is very stable and resistant to corrosion. For this reason, by forming the metal foil 21 with gold, elution of metal ions into the solvent due to corrosion of the metal foil 21 can be prevented.
  • a corrosion-resistant metal can be widely used as the material of the metal foil 21, a corrosion-resistant metal can be widely used. For example, Hastelloy (registered trademark) containing nickel as a main component and molybdenum or chromium can be used.
  • the metal foil 21 has an opening diameter at the mouth of the reagent bottle 2 and a diameter substantially the same as the diameter of the metal foil 21, and a lid 22 that covers the mouth of the reagent bottle 2 from the outside of the metal foil 21;
  • the mouth portion is sealed so as to be pressed against the mouth portion of the reagent bottle 2 by an annular packing 23 interposed between the lid 22 and the metal foil 21. That is, when the reagent bottle 2 containing the solvent is sealed, the metal foil 21 is put on the mouth portion, and the lid 22 is screwed into the mouth portion with the annular packing 23 placed on the mouth portion.
  • the reagent bottle 2 is sealed by bringing 21 into close contact with the mouth.
  • the annular packing 23 may be integrally provided inside the lid 22.
  • the lid 22 has a function of preventing the metal foil 21 from being damaged due to accidental contact with the surface of the metal foil 21 or the solvent leakage due to the damage during the transportation and storage of the reagent bottle 2 after containing the solvent. 21 also functions to prevent dust from adhering to the surface.
  • cover 22 and the annular packing 23 is not specifically limited, The plastic resin used normally may be sufficient.
  • a hole 221 through which the suction nozzle 13 provided in the solvent supply device described below is inserted is formed in the upper surface of the lid 22.
  • the diameter of the hole 221 is substantially the same as or slightly larger than the diameter of the suction nozzle 13 so that the suction nozzle 13 can be inserted.
  • the lid 22 is referred to as a “hole cap 22”.
  • the hole 221 of the perforated cap 22 is temporarily closed. A protective seal may be provided.
  • FIG. 1 is a side view of the solvent supply apparatus
  • FIG. 2B is a front view.
  • the solvent supply device has a function of preventing chemical noise and ionization efficiency from being reduced due to the prevention of mixing of aerosol particles or the like into the reagent bottle and adhesion to the nozzle.
  • each structure of a solvent supply apparatus is demonstrated in order.
  • the solvent supply device denoted by reference numeral 1 is a device that is connected to the LC-MS and supplies mobile phase solvent thereto, and is in contact with the suction nozzle 13 and the mouth of the reagent bottle 2. And a vacuum cap 14 (not shown) connected to the vacuum cap 14.
  • the suction nozzle 13 is inserted into the mouth of the reagent bottle 2 (see FIG. 1) according to the present invention containing a solvent, and functions to suck the internal solvent and send it to the LC-MS.
  • reference numeral 131 denotes a tube (tube) for sending the solvent sucked by the suction nozzle 13 to the LC-MS.
  • the suction nozzle 13 is formed of a corrosion-resistant metal like the metal foil 21 of the reagent bottle 2 described above. This is because if the suction nozzle 13 is corroded by the solvent, formic acid or the like added to the solvent, metal ions are eluted from the corroded suction nozzle 13 into the solvent, causing chemical noise.
  • the vacuum cap 14 is in contact with and covers the mouth of the reagent bottle 2 (here, the perforated cap 22), and a space K is formed between the vacuum cap 14 and the metal foil 21.
  • a braking piece 144 that contacts the mouth of the reagent bottle 2 is provided around the inner peripheral surface of the vacuum cap 14, and the vacuum cap 14 is brought into contact with the mouth of the reagent bottle 2 by the braking piece 144.
  • a space K is formed between the metal foil 21 and the metal foil 21.
  • reference numeral 143 denotes a tube connected to the vacuum pump at one end and connected to the vacuum cap 14 at the other end.
  • the tube 143 has a suction port 142 that communicates with the space K at the connection to the vacuum cap 14, and the vacuum pump sucks air in the space K from the suction port 142.
  • the upper surface of the vacuum cap 14 is provided with a hole 141 through which the suction nozzle 13 is inserted, like the hole cap 22 of the reagent bottle 2 described above.
  • the diameter of the hole 141 is substantially the same as or slightly larger than the diameter of the suction nozzle 13 so that the suction nozzle 13 can be inserted.
  • the material of the vacuum cap 14 may be a commonly used plastic resin.
  • the solvent supply device 1 has a drive unit (not shown) for moving the suction nozzle 13 and the vacuum cap 14 with respect to the reagent bottle 2.
  • This driving means makes the vacuum cap 14 contact the mouth of the reagent bottle 2 as shown in FIG. 1 (B), and the metal foil that seals the mouth of the suction nozzle as shown in FIG. 1 (C). It functions to penetrate through 21 and to be inserted into the reagent bottle 2.
  • the liquid feeding pump, vacuum pump, and driving means for sucking and feeding the solvent by the suction nozzle 13 are provided in the electrical space 112 of the housing 11 constituting the main body of the solvent supply device 1.
  • the suction nozzle 13 and the vacuum cap 14 are disposed in the internal space 111 of the housing 11.
  • the housing 11 is the clean box described above, and the solvent supply device 1 includes a cleaning mechanism for maintaining the internal space 111 in a clean environment.
  • the cleaning mechanism can have the same configuration as a normally used clean box.
  • the cleaning mechanism is disposed in the electrical space 112 of the main body 11 and is provided, for example, in an air supply port that supplies the outside air of the housing 11 to the internal space 111 and a flow path of the outside air supplied from the air supply port. And an exhaust port for exhausting the supplied air to the outside of the housing 11.
  • the air discharged from the exhaust port may be re-introduced into the internal space 111 from the intake port and circulated.
  • illustration of the air supply port, the filter unit, and the exhaust port is omitted.
  • the filter unit is configured by combining the above-described HEPA filter or the like and one or more air filters having a coarser grain and lower performance as necessary.
  • a HEPA filter or the like By arranging a HEPA filter or the like in the flow path of the outside air supplied from the air supply port, it is possible to remove the aerosol particles and dust in the outside air and maintain the internal space 111 of the housing 11 in a clean environment. .
  • the air supply port is provided above the housing 11, preferably on the top surface of the internal space 111. Further, it is preferable that the exhaust port is provided below the back surface portion (electrical space 112 side) of the housing 11. By providing the intake port and the exhaust port at these positions, it is possible to form an airflow flowing from the upper side to the downstream side in the internal space 111 of the housing 11. This airflow functions to prevent outside air including aerosol particles and dust from flowing into the internal space 111 when the door 12 described below is opened and closed (details will be described later).
  • An openable / closable door 12 for taking in and out the reagent bottle 2 in and out of the internal space 111 is provided on the front surface of the housing 11.
  • the casing 11 has an airtight structure in which air does not enter and exit other than the above-described intake and exhaust ports when the door body 12 is closed.
  • the door body 12 is configured as a slide cover that opens and closes by sliding in the vertical direction on the front portion of the housing 11 will be described as an example.
  • the door body 12 is not limited to a slide cover, and may be, for example, a right-opening or left-opening door that is opened and closed by a hinge (hinge), or a double door. It is preferable to provide a packing for maintaining airtightness at a portion where the door body 12 and the housing 11 are in contact with each other.
  • the “door body 12” is referred to as a “slide cover 12”.
  • the solvent supply device 1 includes a reagent bottle sensor 15 for detecting the reagent bottle 2 arranged at a predetermined position in the internal space 111 and a liquid level sensor for detecting the remaining amount of the solvent in the reagent bottle 2. 16 is provided.
  • the reagent bottle sensor 15 is also referred to as “first detection means”
  • the open / close sensor is also referred to as “second detection means”.
  • the above-described vacuum pump starts or stops suction based on the detection signal of the reagent bottle 2 from the reagent bottle sensor 15.
  • the above-described driving means controls the movement of the suction nozzle 13 and the vacuum cap 14 based on detection signals from the reagent bottle sensor 15 and the open / close sensor.
  • FIG. 3 shows a side view of the solvent supply apparatus.
  • the slide cover 12 is slid upward to open and the reagent bottle 2 is inserted into the opened internal space 111. , Arranged at a predetermined position.
  • the air flow flowing from the upper side to the lower side is formed in the internal space 111 by the above-described cleaning mechanism, so that the outside air containing aerosol particles and dust flows back into the internal space 111 that has been opened. Can be prevented. Further, the cleaning mechanism can more reliably prevent the atmospheric pressure of the internal space 111 from being set to a positive pressure with respect to the outside and the inflow of aerosol particles and the like.
  • the reagent bottle 2 arranged at a predetermined position in the internal space 111 is detected by the reagent bottle sensor 15, and a detection signal is output to the vacuum pump. In response to this output, the vacuum pump starts suction.
  • the slide cover 12 is slid down and closed to make the internal space 111 airtight.
  • a detection signal from the open / close sensor is output to the driving means.
  • the driving means receives the output from the open / close sensor and the output of the detection signal of the reagent bottle 2 from the reagent bottle sensor 15, and lowers the suction nozzle 13 and the vacuum cap 14 with respect to the arranged reagent bottle 2 (FIG. Middle, see arrow F).
  • the brake piece 144 of the lowered vacuum cap 14 comes into contact with the mouth of the reagent bottle 2 (here, the perforated cap 22), and the vacuum cap 14 A space K is formed between the metal foil 21 and the metal foil 21.
  • the air in the space K is sucked by the vacuum pump that has started sucking, and is discharged out of the space K from the suction port 142 of the pipe 143 connected to the vacuum cap 14.
  • the lowered suction nozzle 13 is inserted through the holes 141 and 221 formed in the upper surfaces of the vacuum cap 14 and the perforated cap 22, respectively.
  • the metal foil 21 that seals the mouth portion passes through and is inserted into the reagent bottle 2.
  • the thickness of the metal foil 21 is desirably about 1 to 100 ⁇ m, preferably about 1 to 20 ⁇ m.
  • symbol D indicates a substance (dust generation substance) that generates dust from the metal foil 21 when the suction nozzle 23 penetrates the metal foil 21.
  • the dusting substance D mixed into the reagent bottle 2 or adhering to the suction nozzle 13 may cause chemical noise or a decrease in ionization efficiency.
  • the dust generation material D is removed together with the air in the space K by the vacuum pump that has started the suction. Since it can be sucked out and quickly discharged out of the space K and removed, it is possible to prevent the dusting substance D from mixing into the reagent bottle 2 or adhering to the suction nozzle 13.
  • the solvent S in the reagent bottle 2 may be sucked into the space K and the tube 143.
  • the diameter of the hole 141 of the vacuum cap 14 is formed to be slightly larger than the diameter of the suction nozzle 13, and a gap is generated between the vacuum cap 14 and the suction nozzle 13 when the suction nozzle 13 is inserted. It is desirable to prevent the pressure in the space K from dropping too much.
  • the suction of the solvent is started, and the solution is sent to the LC-MS through the tube 131.
  • the solvent is fed in response to a signal from the LC-MS, and at any timing until the remaining amount of the solvent in the reagent bottle 2 detected by the liquid level sensor 16 becomes less than a predetermined value. Can be done.
  • the reagent bottle 2 and the suction nozzle 13 are disposed in the internal space 111 from which aerosol particles and dust are removed, and are attached to the metal foil 21 of the reagent bottle 2.
  • Chemical dust and ionization efficiency due to aerosol particles and dust mixed into the reagent bottle 2 and attached to the suction nozzle 13 during the reagent bottle replacement operation by sucking and removing even a small amount of dust with a vacuum pump Decline can be prevented. Therefore, by using the solvent and reagent bottle 2 according to the present invention described above in combination with the solvent supply device 1, a solvent free from chemical noise and contamination of substances that cause a reduction in ionization efficiency is supplied to the LC-MS. It becomes possible to perform highly sensitive analysis.
  • the solvent supply device 1 is configured as a separate unit from the LC-MS, and is described as a device that supplies the solvent connected to the LC-MS.
  • the solvent supply device 1 is integrated with the LC-MS. It may be a configured device.
  • the solvent supply device for a liquid chromatograph mass spectrometer can analyze proteins, peptides, sugar chains, various metabolites, etc. with high sensitivity, biotechnology, medicine, drug discovery, foods, etc. In the field, it can contribute to analysis in particular for trace substances.

Abstract

Disclosed is a technique whereby, in analyzing proteins and the like by using a liquid chromatography mass spectrometer (LC-MS), a lowering in analysis sensitivity, which is caused by a chemical noise or a lowering in ionization efficiency due to a trace substance contained in a solvent or a trace substance present in the laboratory environment, can be prevented. A solvent supply apparatus (1) for an LC-MS which comprises, for a reagent bottle (2) in which a solvent to be used as a mobile phase in the LC-MS is stored and the opening of which is sealed with a metal foil, an aspiration nozzle (13) which is penetrated through the metal foil and inserted into the reagent bottle so as to suck up the solvent; a vacuum cap (14) which is in contact with the opening of the reagent bottle (2) and cover the same and in which a through hole for penetrating the aspiration nozzle (13) to be inserted into the reagent bottle (2) is formed; and a vacuum pump which is connected to the vacuum cap (14) and sucks up air in the space formed between the vacuum cap (14) covering the opening of the reagent bottle (2) and the metal foil.

Description

液体クロマトグラフ質量分析装置用の溶媒供給装置、試薬瓶及び溶媒、並びに溶媒供給方法Solvent supply device, reagent bottle and solvent for liquid chromatograph mass spectrometer, and solvent supply method
 本発明は、液体クロマトグラフ質量分析装置用の溶媒供給装置、試薬瓶及び溶媒、並びに溶媒供給方法に関する。より詳しくは、化学ノイズに起因した解析感度の低下を防止することができる液体クロマトグラフ質量分析装置用の溶媒供給装置等に関する。 The present invention relates to a solvent supply device, a reagent bottle and a solvent, and a solvent supply method for a liquid chromatograph mass spectrometer. More specifically, the present invention relates to a solvent supply device for a liquid chromatograph mass spectrometer that can prevent a decrease in analysis sensitivity due to chemical noise.
 バイオテクノロジーや医療、創薬、食品等の分野において、タンパク質やペプチド、糖鎖、各種代謝産物等を網羅的に解析するプロテオーム解析やペプチドーム解析、グライコーム解析、メタボローム解析が行われるようになっている。これらの解析には、液体クロマトグラフ(以下、「LC」と称する)と質量分析装置(「MS」と称する)とを結合した液体クロマトグラフ質量分析装置(「LC-MS」と称する)が汎用されており、サンプルボリュームの微量化や解析のハイスループット化に伴って一層高感度なLC-MSが求められるようになっている。 In the fields of biotechnology, medicine, drug discovery, food, etc., proteome analysis, peptome analysis, glycome analysis, metabolome analysis that comprehensively analyzes proteins, peptides, sugar chains, various metabolites, etc. are now being performed . For these analyses, a liquid chromatograph mass spectrometer (referred to as “LC-MS”) that combines a liquid chromatograph (hereinafter referred to as “LC”) and a mass spectrometer (referred to as “MS”) is widely used. As the sample volume becomes smaller and the analysis throughput becomes higher, LC-MS with higher sensitivity has been demanded.
 LC-MSでは、まず、LCによってサンプル溶液に含まれるタンパク質やペプチド、糖鎖、各種代謝産物等の検出対象物質が分離される。分離された検出対象物質は、イオン化された後MSに導入され、イオン質量や解離イオン質量及びイオン強度が測定される。そして、得られる質量スペクトル(マススペクトル)に基づいて、検出対象物質の同定や構造決定が行われる。 In LC-MS, first, detection target substances such as proteins, peptides, sugar chains, and various metabolites contained in a sample solution are separated by LC. The separated detection target substance is ionized and then introduced into the MS, and the ion mass, dissociated ion mass, and ion intensity are measured. Based on the obtained mass spectrum (mass spectrum), the detection target substance is identified and the structure is determined.
 このとき、検出対象物質がMSに導入されるまでの過程で、検出対象物質以外の物質(以下、「異物」という)の混入が生じると、異物に起因して生じる化学ノイズのためにS/N(シグナルノイズ比)が低下したり、検出対象物質のイオン化効率が低下したりして、LC-MSの解析感度が低下してしまうことが考えられる。このような異物混入による解析感度の低下は、特に、超微量な検出対象物質を分析する場合に問題となり得る。 At this time, if a substance other than the detection target substance (hereinafter referred to as “foreign substance”) is introduced in the process until the detection target substance is introduced into the MS, S / It is conceivable that the analysis sensitivity of the LC-MS decreases due to a decrease in N (signal noise ratio) or a decrease in the ionization efficiency of the detection target substance. Such a decrease in analysis sensitivity due to contamination by foreign substances can be a problem particularly when analyzing an extremely small amount of a detection target substance.
 本発明に関連して、特許文献1には、異物混入による化学ノイズを低減するための技術として、「イオンクロマトグラフ法による金属イオンの分析において、溶離液中にバックグランドとして存在する混入金属イオンを予め除去することで、バックグランドに妨害された測定が困難である微量イオンの分析を可能とするための、汚染イオンが少ないことを特徴とするイオンクロマトグラフ用溶離液」が開示されている。 In relation to the present invention, Patent Document 1 discloses, as a technique for reducing chemical noise due to contamination by foreign substances, “mixed metal ions present as a background in the eluent in the analysis of metal ions by ion chromatography. An ion chromatograph eluent characterized by having a small amount of contaminating ions to enable analysis of trace ions that are difficult to measure due to background interference by removing the " .
特開平7-5159号公報Japanese Patent Laid-Open No. 7-5159
 LC-MSの解析感度を低下させる要因となる異物としては、例えば、LC-MSの移動相として用いられる溶媒に混入した微量物質や、実験室環境中の微量物質などが考えられる。 As a foreign substance that causes a decrease in the analytical sensitivity of LC-MS, for example, a trace substance mixed in a solvent used as a mobile phase of LC-MS, a trace substance in a laboratory environment, and the like can be considered.
 溶媒に混入する微量物質としては、まず、溶媒の製造工程で混入する異物が想定される。これには、溶媒の製造装置がおかれる環境中のエアロゾル粒子や、製造装置の磨耗等によって生じる塵埃が含まれる。この他、溶媒に混入する微量物質としては、溶媒を試薬瓶に収容した後に、試薬瓶に由来して溶媒中に混入してくる物質が考えられる。例えば、試薬瓶にプラスチック製容器を用いる場合には、プラスチックに含まれる可塑剤や未重合のモノマーが溶媒中に溶出し、混入する場合がある。また、試薬瓶にガラス製容器を用いる場合であっても、試薬瓶の蓋にはプラスチック製のものが用いられることが多いため、やはり可塑剤や未重合のモノマーの溶出が起こり得る。 As the trace substances mixed in the solvent, first, foreign substances mixed in the solvent manufacturing process are assumed. This includes aerosol particles in the environment where the solvent production apparatus is placed, and dust generated by wear of the production apparatus. In addition, as the trace substance mixed in the solvent, a substance that comes from the reagent bottle and is mixed into the solvent after the solvent is accommodated in the reagent bottle can be considered. For example, when a plastic container is used for the reagent bottle, a plasticizer or unpolymerized monomer contained in the plastic may be eluted and mixed in the solvent. Further, even when a glass container is used for the reagent bottle, since plastic containers are often used for the lid of the reagent bottle, elution of the plasticizer and unpolymerized monomer may occur.
 また、実験室環境中の微量物質の混入は、LC-MSへの溶媒補給時の試薬瓶交換作業の際に、空気中のエアロゾル粒子や試薬瓶に付着した塵埃等が、試薬瓶の内部に混入したり、LC-MSのノズルに付着したりすることが原因と考えられる。実験室環境中の微量物質の混入を防止するためには、LC-MSをクリーンルーム等の清浄環境に置いて解析を行うことも考えられるが、このためには研究室ごとにクリーンルーム等の大規模な設備を設けることが必要となる。 In addition, contamination of trace substances in the laboratory environment may be caused by aerosol particles in the air or dust adhering to the reagent bottle inside the reagent bottle when the reagent bottle is replaced when the solvent is supplied to the LC-MS. This may be caused by mixing or adhering to the LC-MS nozzle. In order to prevent the entry of trace substances in the laboratory environment, it is conceivable to perform the analysis with the LC-MS placed in a clean environment such as a clean room. It is necessary to provide a proper facility.
 そこで、本発明は、LC-MSを用いたタンパク質等の解析において、溶媒に混入した微量物質や実験室環境中の微量物質による化学ノイズやイオン化効率の低下に起因した解析感度の低下を防止することが可能な技術を提供することを主な目的とする。 Therefore, the present invention prevents a decrease in analysis sensitivity caused by a chemical noise or a decrease in ionization efficiency due to a trace substance mixed in a solvent or a trace substance in a laboratory environment in analysis of a protein or the like using LC-MS. The main purpose is to provide technology that can be used.
 上記課題解決のため、本発明は、液体クロマトグラフ質量分析装置の移動相として用いられる溶媒を収容し、口部を金属箔で封止した試薬瓶に対し、金属箔を貫通して挿入されて溶媒の吸引を行う吸引ノズルと、試薬瓶の口部に当接されてこれを被覆し、試薬瓶に挿入される吸引ノズルが挿通する孔が穿設されたバキュームキャップと、このバキュームキャップに接続され、試薬瓶の口部を被覆したバキュームキャップと金属箔との間に形成される空間内の空気を吸引する真空ポンプと、を備える液体クロマトグラフ質量分析装置用の溶媒供給装置を提供する。この溶媒供給装置によれば、前記吸引ノズルを前記金属箔に貫通させる際に金属箔上から発塵する物質を、前記真空ポンプによって吸引することで、該物質の溶媒への混入を防止することができる。
 この溶媒供給装置において、前記吸引ノズルは、耐蝕性金属によって形成されていることが好ましい。これにより、吸引ノズルから溶媒中に金属イオンが溶出することを防止できる。
 この溶媒供給装置において、前記吸引ノズル及び前記バキュームキャップは、外気を給気する給気口と、この給気口から給気される外気の流路に設けられたフィルタユニットと、給気された空気を排気するための排気口と、開閉可能な扉体と、が設けられた筐体の内部に配設することが望ましい。これにより、溶媒補給時の試薬瓶交換作業の際に、エアロゾル粒子や塵埃が試薬瓶の内部に混入したり、吸引ノズルに付着したりすることを防止できる。
 この溶媒供給装置は、前記筐体内の所定位置に配置された試薬瓶に対し、前記吸引ノズル及び前記バキュームキャップを移動させて、バキュームキャップを試薬瓶の口部に当接させるとともに、吸引ノズルを口部を封止する金属箔に貫通させて試薬瓶に挿入する、駆動手段を備える。
 また、この溶媒供給装置は、前記筐体内の所定位置に配置された試薬瓶を検知する第一の検出手段を備えていてもよい。この場合、前記真空ポンプは、この第一の検出手段からの検知信号に基づいて、吸引を開始又は停止するように構成することができる。さらに、この溶媒供給装置は、前記扉体の開閉を検知する第二の検出手段を備えていてもよい。この場合、前記駆動手段は、この第二の検出手段からの検知信号と前記第一の検出手段からの検知信号に基づいて、前記吸引ノズル及び前記バキュームキャップの移動を制御するように構成することができる。
 併せて、本発明は、この溶媒供給装置を備える液体クロマトグラフ質量分析装置を提供する。
In order to solve the above problems, the present invention contains a solvent used as a mobile phase of a liquid chromatograph mass spectrometer, and is inserted through the metal foil into a reagent bottle whose mouth is sealed with the metal foil. A suction nozzle that sucks the solvent, a vacuum cap that contacts and covers the mouth of the reagent bottle, and has a hole through which the suction nozzle inserted into the reagent bottle is inserted, and is connected to this vacuum cap And a vacuum pump for sucking air in a space formed between the vacuum cap covering the mouth of the reagent bottle and the metal foil, and a solvent supply device for a liquid chromatograph mass spectrometer. According to this solvent supply device, the substance that generates dust from the metal foil when the suction nozzle penetrates the metal foil is sucked by the vacuum pump to prevent the substance from being mixed into the solvent. Can do.
In this solvent supply apparatus, it is preferable that the suction nozzle is made of a corrosion-resistant metal. Thereby, it can prevent that a metal ion elutes in a solvent from a suction nozzle.
In this solvent supply device, the suction nozzle and the vacuum cap are supplied with an air supply port for supplying outside air, and a filter unit provided in a flow path of outside air supplied from the air supply port. It is desirable to dispose in an enclosure provided with an exhaust port for exhausting air and an openable / closable door. Thereby, it is possible to prevent aerosol particles and dust from being mixed inside the reagent bottle or adhering to the suction nozzle during the reagent bottle replacement operation when the solvent is replenished.
The solvent supply device moves the suction nozzle and the vacuum cap with respect to the reagent bottle arranged at a predetermined position in the casing so that the vacuum cap comes into contact with the mouth of the reagent bottle, and the suction nozzle is A driving means is provided that is inserted into a reagent bottle through a metal foil that seals the mouth.
The solvent supply apparatus may further include a first detection unit that detects a reagent bottle disposed at a predetermined position in the housing. In this case, the vacuum pump can be configured to start or stop suction based on a detection signal from the first detection means. Furthermore, the solvent supply apparatus may include a second detection unit that detects opening and closing of the door body. In this case, the drive means is configured to control the movement of the suction nozzle and the vacuum cap based on the detection signal from the second detection means and the detection signal from the first detection means. Can do.
In addition, the present invention provides a liquid chromatograph mass spectrometer equipped with this solvent supply device.
 次に、本発明は、液体クロマトグラフ質量分析装置の移動相として用いられる溶媒を収容するための試薬瓶であって、口部を封止する金属箔と、口部を金属箔の外側から被蓋し、金属箔を貫通して挿入されて溶媒の吸引を行う吸引ノズルが挿通する孔が穿設された蓋と、を有するガラス製の試薬瓶を提供する。この試薬瓶は、上記の本発明に係る溶媒供給装置とともに好適に用いられるものである。
 この試薬瓶において、前記金属箔は、耐蝕性金属によって形成されることが好ましい。これにより、金属箔から溶媒中に金属イオンが溶出することを防止できる。
Next, the present invention relates to a reagent bottle for containing a solvent used as a mobile phase of a liquid chromatograph mass spectrometer, which comprises a metal foil that seals the mouth portion, and the mouth portion that is covered from the outside of the metal foil. There is provided a glass reagent bottle having a lid, and a lid having a hole inserted through a suction nozzle that is inserted through a metal foil and sucks a solvent. This reagent bottle is preferably used together with the solvent supply apparatus according to the present invention.
In this reagent bottle, the metal foil is preferably formed of a corrosion-resistant metal. Thereby, it can prevent that a metal ion elutes in a solvent from metal foil.
 さらに、本発明は、液体クロマトグラフ質量分析装置の移動相として用いられる溶媒であって、化学ノイズの原因となる物質の混入を防止可能な清浄環境において調製された溶媒をも提供する。この溶媒は、上記の本発明に係る試薬瓶に収容されて、本発明に係る溶媒供給装置とともに好適に用いられるものである。 Furthermore, the present invention also provides a solvent used as a mobile phase of a liquid chromatograph mass spectrometer, which is prepared in a clean environment capable of preventing contamination of substances that cause chemical noise. This solvent is housed in the reagent bottle according to the present invention and is preferably used together with the solvent supply apparatus according to the present invention.
 最後に、本発明は、口部を金属箔で封止した試薬瓶に収容された移動相として用いられる溶媒を、金属箔を貫通させて試薬瓶に挿入した吸引ノズルにより吸引して、液体クロマトグラフ質量分析装置に送液する工程を含む、液体クロマトグラフ質量分析装置の溶媒供給方法を提供する。
 この溶媒供給方法は、さらに、前記吸引ノズルを前記金属箔に貫通させる際に、金属箔上から発塵する物質を真空ポンプによって吸引し、該物質の溶媒への混入を防止する工程と、前記溶媒を、化学ノイズの原因となる物質の混入を防止可能な清浄環境において調製し、ガラス製とした前記試薬瓶に収容する工程と、を含むことができる。
Finally, according to the present invention, a solvent used as a mobile phase contained in a reagent bottle whose mouth is sealed with a metal foil is sucked with a suction nozzle inserted into the reagent bottle through the metal foil, and subjected to liquid chromatography. Provided is a solvent supply method for a liquid chromatograph mass spectrometer, which includes a step of feeding the liquid to a graph mass spectrometer.
The solvent supply method further includes a step of sucking a substance that generates dust from the metal foil with a vacuum pump when the suction nozzle penetrates the metal foil, and preventing the substance from being mixed into the solvent; And a step of preparing the solvent in a clean environment capable of preventing mixing of substances causing chemical noise and storing the solvent in the reagent bottle made of glass.
 本発明により、LC-MSを用いたタンパク質等の解析において、溶媒に混入した微量物質や実験室環境中の微量物質による化学ノイズやイオン化効率の低下に起因した解析感度の低下を防止することが可能な技術が提供される。 According to the present invention, in analysis of proteins and the like using LC-MS, it is possible to prevent a decrease in analysis sensitivity due to a chemical substance noise or a decrease in ionization efficiency due to a trace substance mixed in a solvent or a trace substance in a laboratory environment. Possible technology is provided.
本発明に係る溶媒供給装置1の動作及び本発明に係る試薬瓶2の構成を説明する模式図である。It is a schematic diagram explaining operation | movement of the solvent supply apparatus 1 which concerns on this invention, and the structure of the reagent bottle 2 which concerns on this invention. 本発明に係る溶媒供給装置1の構成を説明する模式図である。(A)は側面図、(B)は正面図を示す。It is a schematic diagram explaining the structure of the solvent supply apparatus 1 which concerns on this invention. (A) shows a side view and (B) shows a front view. 本発明に係る溶媒給装置1の動作を説明する模式図である。It is a schematic diagram explaining operation | movement of the solvent supply apparatus 1 which concerns on this invention.
 以下、本発明を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. In addition, embodiment described below shows an example of typical embodiment of this invention, and, thereby, the range of this invention is not interpreted narrowly.
1.溶媒
 はじめに、本発明に係る溶媒について説明する。この溶媒は、LC-MSの移動相として用いられる溶媒(一般に「溶離液」とも呼ばれる)であって、化学ノイズの原因となる物質の混入を防止可能な清浄環境において調製されていることを特徴とするものである。
1. Solvent First, the solvent according to the present invention will be described. This solvent is a solvent used as a mobile phase for LC-MS (generally also called “eluent”), and is characterized by being prepared in a clean environment that can prevent contamination of substances that cause chemical noise. It is what.
 上述したように、LC-MSの解析感度を低下させる要因の一つに、溶媒の製造工程で混入したエアロゾル粒子や塵埃が挙げられる。そこで、エアロゾル粒子や塵埃が除去された清浄環境において溶媒を調製することにより、化学ノイズやイオン化効率低下の原因となる微量物質の混入がない溶媒を提供する。 As described above, one of the factors that lower the analytical sensitivity of LC-MS is aerosol particles and dust mixed in the solvent manufacturing process. Thus, by preparing a solvent in a clean environment from which aerosol particles and dust have been removed, a solvent free from chemical substances and contamination of trace substances that cause a reduction in ionization efficiency is provided.
 この溶媒は、いわゆる「クリーンルーム」や「クリーンボックス」により作り出される清浄環境において調製することができる。クリーンルームやクリーンボックスは、工業分野では精密機械や半導体などの製造において、製造装置が置かれる清浄環境を作り出すために用いられている。一般に、これらのクリーンルーム等では、「HEPAフィルタ」や「ULPAフィルタ」などと称される非常にフィルタの目が細かい高性能エアフィルタを通した外気を内部に送り込み、送り込んだ空気を循環させたり又は外部へ排出させたりすることで、内部環境中のエアロゾル粒子や塵埃を除去し、清浄環境を作り出している。さらに、外部から内部環境へのエアロゾル粒子や塵埃の流入を防止するため、内部気圧を外部気圧に対して陽圧となるように設定している。 This solvent can be prepared in a clean environment created by a so-called “clean room” or “clean box”. In the industrial field, clean rooms and clean boxes are used to create a clean environment in which manufacturing equipment is placed in the manufacture of precision machines and semiconductors. In general, in these clean rooms, etc., outside air that has passed through a high-performance air filter called “HEPA filter” or “ULPA filter” with a very fine filter is sent to the inside, and the supplied air is circulated or By discharging to the outside, aerosol particles and dust in the internal environment are removed, creating a clean environment. Furthermore, in order to prevent the inflow of aerosol particles and dust from the outside to the internal environment, the internal pressure is set to be positive with respect to the external pressure.
 本発明に係る溶媒も、クリーンルーム等又はこれらと同等の設備による清浄環境下において調製される。HEPAフィルタは、日本工業規格(JIS規格)において、「定格風量で粒径が0.3μmの粒子に対して99.97%以上の粒子捕集率をもち、かつ初期圧力損失が245Pa以下の性能を持つエアフィルタ」と規定されている。また、ULPAフィルタは、同規格において、「定格風量で粒径が0.15μmの粒子に対して99.9995%以上の粒子捕集率をもち、かつ初期圧力損失が245Pa以下の性能を持つエアフィルタ」と規定されている。これらHEPAフィルタ又はULPAフィルタ等による清浄環境において溶媒の調製を行うことで、LC-MS解析において化学ノイズやイオン化効率の低下を引き起こす微量物質の混入がない溶媒を得ることができる。 The solvent according to the present invention is also prepared in a clean environment using a clean room or the like or equipment equivalent thereto. HEPA filters are listed in the Japanese Industrial Standards (JIS standard) as “Air with a particle collection rate of 99.97% or more for particles with a rated air volume of 0.3 μm and an initial pressure loss of 245 Pa or less. “Filter”. In addition, the ULPA filter is the same standard as “an air filter with a particle collection rate of 99.9995% or more for particles with a rated air volume of 0.15 μm and an initial pressure loss of 245 Pa or less”. It is prescribed. By preparing the solvent in a clean environment such as these HEPA filter or ULPA filter, it is possible to obtain a solvent free from contamination by trace substances that cause a reduction in chemical noise and ionization efficiency in LC-MS analysis.
 本発明に係る溶媒としては、LC-MSの移動相として用いられる溶媒を広く挙げることができる。具体的には、水や、アセトニトリル、メタノール、イソプロピルアルコール等の有機溶媒が汎用されている。また、本発明に係る溶媒には、水や有機溶媒に添加して使用されるギ酸や酢酸、トリフルオロ酢酸、トリエチルアミン、ヘキサフルオロイソプロパノール(HEIP)、酢酸アンモニウム等も包含され得るものとする。 As the solvent according to the present invention, a wide variety of solvents used as mobile phases for LC-MS can be mentioned. Specifically, water and organic solvents such as acetonitrile, methanol and isopropyl alcohol are widely used. In addition, the solvent according to the present invention may include formic acid, acetic acid, trifluoroacetic acid, triethylamine, hexafluoroisopropanol (HEIP), ammonium acetate, etc. used by adding to water or an organic solvent.
 本発明に係る溶媒は、以上のように溶媒の製造工程における微量物質の混入がない溶媒であるが、この溶媒を供給するに際しては、試薬瓶に由来する微量物質の溶媒中への混入を防止するため、次に説明する本発明に係る試薬瓶に収容して供給されることが望ましい。 As described above, the solvent according to the present invention is a solvent that does not contain trace substances in the solvent production process. However, when supplying this solvent, it prevents the trace substances from the reagent bottles from entering the solvent. Therefore, it is desirable that the reagent bottle is supplied in a reagent bottle according to the present invention described below.
2.試薬瓶
 図1を参照して、本発明に係る試薬瓶について説明する。図1は、後述する本発明に係る溶媒供給装置の動作を説明する模式図である。溶媒供給装置の動作については詳しく後述するものとして、ここでは図1中符号2によって示される試薬瓶について、その構成を説明する。
2. Reagent Bottle A reagent bottle according to the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram for explaining the operation of the solvent supply apparatus according to the present invention to be described later. As the operation of the solvent supply device will be described in detail later, the configuration of the reagent bottle indicated by reference numeral 2 in FIG. 1 will be described here.
 図中、符号2で示す試薬瓶は、LC-MSの移動相として用いられる溶媒(図中、符号S)を収容するための試薬瓶であって、ガラス製であることと、口部が金属箔(符号21)で封止されることを特徴としている。 In the figure, the reagent bottle denoted by reference numeral 2 is a reagent bottle for containing a solvent (reference numeral S in the figure) used as a mobile phase of LC-MS, and is made of glass and has a metal mouth portion. It is characterized by being sealed with a foil (reference numeral 21).
 上述したように、LC-MSの解析感度を低下させる要因の一つに、試薬瓶に由来して混入した可塑剤や未重合モノマーが挙げられる。そこで、まず、試薬瓶をガラス製の容器とすることにより、プラスチック製容器を用いた場合に問題となる可塑剤や未重合モノマーの溶媒中への溶出を排除する。また、試薬瓶2の口部を、口部の開口径と略同一の径を有する金属箔21で封止することにより、プラスチック製の蓋を用いた場合に問題となる可塑剤等の溶出も排除する。従って、上述した本発明に係る溶媒をこの試薬瓶2に収容して供給することで、化学ノイズやイオン化効率低下の原因となる可塑剤や未重合モノマーの混入がない溶媒を提供できる。 As described above, one of the factors that lowers the analytical sensitivity of LC-MS is a plasticizer or an unpolymerized monomer mixed from a reagent bottle. Therefore, first, the reagent bottle is made of a glass container to eliminate elution of the plasticizer and unpolymerized monomer into the solvent, which is a problem when a plastic container is used. Further, by sealing the mouth portion of the reagent bottle 2 with a metal foil 21 having a diameter substantially the same as the opening diameter of the mouth portion, elution of a plasticizer or the like which becomes a problem when a plastic lid is used is also possible. Exclude. Therefore, by accommodating the solvent according to the present invention described above in the reagent bottle 2 and supplying it, it is possible to provide a solvent free from the mixing of plasticizers and unpolymerized monomers that cause chemical noise and ionization efficiency reduction.
 金属箔21は、耐蝕性金属、すなわち腐食され難い金属又は合金によって形成される。金属箔21は試薬瓶2の口部を封止して内部への異物の混入を防止するが、この金属箔21自体が溶媒や溶媒に添加されたギ酸等によって腐食されると、腐食された金属箔21から金属イオンが溶媒中に溶出して化学ノイズの原因となる。これを防止するため、金属箔21は、耐蝕性金属、具体的にはチタン、クロム、ジルコニア、ステンレス又は金等によって形成することが望ましい。 The metal foil 21 is formed of a corrosion-resistant metal, that is, a metal or an alloy that is hardly corroded. The metal foil 21 seals the mouth of the reagent bottle 2 to prevent foreign substances from entering the inside. However, when the metal foil 21 itself is corroded by a solvent, formic acid or the like added to the solvent, the metal foil 21 was corroded. Metal ions are eluted from the metal foil 21 into the solvent and cause chemical noise. In order to prevent this, the metal foil 21 is desirably formed of a corrosion-resistant metal, specifically, titanium, chromium, zirconia, stainless steel, gold, or the like.
 チタン、クロム、ジルコニア、ステンレスの酸化物は、非常に安定で腐食され難く、空気中では金属表面に酸化物の被膜(いわゆる「不動態膜」)を形成する。金属が酸素と結びついて形成するこの不動態膜は、薄く緻密な膜であり、金属内部を酸による腐食や酸化などから保護し、強い耐蝕性を発揮する。チタン等は、プールベアダイアグラム(電位-pH図)において、腐食が進行する「腐食域」に対して、不動態膜の形成により腐食の進行が停止する「不動態域」や非常に安定で腐食され難い「不感域(安定域)」が広い。このため、チタン等により金属箔21を形成することで、金属箔21の腐食による溶媒中への金属イオンの溶出を防止することができる。なお、チタン、クロム、ジルコニアは、それぞれアルミニウムや銅、鉄、マンガン、モリブデンなどとの合金とすることができ、ステンレスに含まれるクロムやニッケルなどの比率も適宜設定され得るものとする。 Titanium, chromium, zirconia, and stainless steel oxides are very stable and hardly corroded, and form an oxide film (so-called “passive film”) on the metal surface in the air. This passive film formed by the combination of metal with oxygen is a thin and dense film, which protects the inside of the metal from acid corrosion and oxidation, and exhibits strong corrosion resistance. Titanium, etc. in the pool bear diagram (potential-pH diagram) is a “passive zone” where the progress of corrosion stops due to the formation of a passive film compared to the “corrosion zone” where corrosion progresses, and very stable and corrosive. There is a wide "dead zone (stable zone)" that is difficult to do. For this reason, by forming the metal foil 21 with titanium or the like, the elution of metal ions into the solvent due to the corrosion of the metal foil 21 can be prevented. Titanium, chromium, and zirconia can be alloys with aluminum, copper, iron, manganese, molybdenum, and the like, respectively, and the ratio of chromium, nickel, and the like contained in stainless steel can be set as appropriate.
 金属箔21は、チタン、クロム、ジルコニア、ステンレス以外に、金によって形成することもできる。金は、プールベアダイアグラムの不感域にあたる不感態(immunity)を作り、非常に安定で腐食され難い。このため、金により金属箔21を形成することによって、金属箔21の腐食による溶媒中への金属イオンの溶出を防止することができる。この他、金属箔21の材質には、耐蝕性金属を広く採用し得るが、例えば、ニッケルを主成分としモリブデンやクロムを配合したハステロイ(登録商標)を採用できる。 The metal foil 21 can be formed of gold other than titanium, chromium, zirconia, and stainless steel. Gold creates an immunity that is the dead zone of the pool bear diagram, and is very stable and resistant to corrosion. For this reason, by forming the metal foil 21 with gold, elution of metal ions into the solvent due to corrosion of the metal foil 21 can be prevented. In addition, as the material of the metal foil 21, a corrosion-resistant metal can be widely used. For example, Hastelloy (registered trademark) containing nickel as a main component and molybdenum or chromium can be used.
 金属箔21は、試薬瓶2の口部の開口径及び金属箔21の径と略同一の径を有し、かつ、試薬瓶2の口部を金属箔21の外側から被覆する蓋22と、この蓋22と金属箔21との間に介在する環状パッキング23とによって、試薬瓶2の口部に対して押さえ付けられるようにして口部を封止している。すなわち、溶媒を収容した試薬瓶2を封止する場合には、口部に金属箔21を被せ、その上に環状パッキング23を載せた状態で、蓋22を口部にねじ込むことにより、金属箔21を口部に密着させて試薬瓶2を密閉する。なお、このとき、環状パッキング23は、蓋22の内部に一体に設けられていてもよいものとする。 The metal foil 21 has an opening diameter at the mouth of the reagent bottle 2 and a diameter substantially the same as the diameter of the metal foil 21, and a lid 22 that covers the mouth of the reagent bottle 2 from the outside of the metal foil 21; The mouth portion is sealed so as to be pressed against the mouth portion of the reagent bottle 2 by an annular packing 23 interposed between the lid 22 and the metal foil 21. That is, when the reagent bottle 2 containing the solvent is sealed, the metal foil 21 is put on the mouth portion, and the lid 22 is screwed into the mouth portion with the annular packing 23 placed on the mouth portion. The reagent bottle 2 is sealed by bringing 21 into close contact with the mouth. At this time, the annular packing 23 may be integrally provided inside the lid 22.
 金属箔21を蓋22と環状パッキング23によって口部に密着させて試薬瓶2を封止することで、接着剤等を用いて金属箔21を口部に接着して封止する場合に問題となる接着剤成分の溶媒中への溶出をなくすことができる。 When the metal foil 21 is adhered to the mouth by the lid 22 and the annular packing 23 and the reagent bottle 2 is sealed, there is a problem when the metal foil 21 is adhered and sealed to the mouth using an adhesive or the like. It is possible to eliminate the dissolution of the adhesive component in the solvent.
 また、蓋22は、溶媒収容後の試薬瓶2の輸送・保管時において、金属箔21表面への不慮の接触による金属箔21の破損や、破損に伴う溶媒漏出を防止する機能や、金属箔21表面への塵埃の付着を防止する機能も果たす。なお、蓋22及び環状パッキング23の材質は、特に限定されず、通常使用されるプラスチック樹脂であってよい。 Further, the lid 22 has a function of preventing the metal foil 21 from being damaged due to accidental contact with the surface of the metal foil 21 or the solvent leakage due to the damage during the transportation and storage of the reagent bottle 2 after containing the solvent. 21 also functions to prevent dust from adhering to the surface. In addition, the material of the lid | cover 22 and the annular packing 23 is not specifically limited, The plastic resin used normally may be sufficient.
 蓋22の上面には、次に説明する溶媒供給装置が備える吸引ノズル13が挿通する孔221が穿設されている。孔221の径は、吸引ノズル13の挿通を可能にするため、吸引ノズル13の径と略同一ないしはこれよりもやや大きく形成されている。以下、蓋22を「穴開きキャップ22」というものとする。なお、輸送・保管時における金属箔21の破損や金属箔21表面への塵埃の付着を一層確実に防止するため、穴開きキャップ22の孔221には、これを一時的に塞いでおくための保護シールを設けてもよい。 A hole 221 through which the suction nozzle 13 provided in the solvent supply device described below is inserted is formed in the upper surface of the lid 22. The diameter of the hole 221 is substantially the same as or slightly larger than the diameter of the suction nozzle 13 so that the suction nozzle 13 can be inserted. Hereinafter, the lid 22 is referred to as a “hole cap 22”. In order to prevent damage to the metal foil 21 and adhesion of dust to the surface of the metal foil 21 during transportation and storage, the hole 221 of the perforated cap 22 is temporarily closed. A protective seal may be provided.
3.溶媒供給装置
(3-1)装置構成
 続いて、図1及び図2を参照して、本発明に係るLC-MS用の溶媒供給装置の構成を説明する。図2(A)は溶媒供給装置の側面図、(B)は正面図を示す。
3. Configuration of Solvent Supply Device (3-1) Subsequently, the configuration of the solvent supply device for LC-MS according to the present invention will be described with reference to FIG. 1 and FIG. 2A is a side view of the solvent supply apparatus, and FIG. 2B is a front view.
 上述したように、LC-MSの解析感度を低下させる要因の一つに、LC-MSへの溶媒補給時の試薬瓶交換作業の際に試薬瓶の内部に混入したり、LC-MSのノズルに付着したりしたエアロゾル粒子や塵埃が挙げられる。本発明に係る溶媒供給装置は、エアロゾル粒子等の試薬瓶内部への混入やノズルへの付着を防止することで、これらに起因した化学ノイズやイオン化効率低下を防止する機能を有する。以下、溶媒供給装置の各構成について順に説明する。 As mentioned above, one of the factors that lowers the analytical sensitivity of LC-MS is that it can be mixed into the reagent bottle during the replacement of the reagent bottle when the solvent is supplied to the LC-MS, or the nozzle of the LC-MS Aerosol particles and dust adhered to the surface. The solvent supply device according to the present invention has a function of preventing chemical noise and ionization efficiency from being reduced due to the prevention of mixing of aerosol particles or the like into the reagent bottle and adhesion to the nozzle. Hereafter, each structure of a solvent supply apparatus is demonstrated in order.
 図2中、符号1で示す溶媒供給装置は、LC-MSに連設されてこれに移動相溶媒を供給するための装置であり、吸引ノズル13と、試薬瓶2の口部に当接されてこれを被覆し得るバキュームキャップ14と、このバキュームキャップ14に接続された不図示の真空ポンプとを備える。 In FIG. 2, the solvent supply device denoted by reference numeral 1 is a device that is connected to the LC-MS and supplies mobile phase solvent thereto, and is in contact with the suction nozzle 13 and the mouth of the reagent bottle 2. And a vacuum cap 14 (not shown) connected to the vacuum cap 14.
 吸引ノズル13は、溶媒を収容した本発明に係る試薬瓶2(図1参照)の口部に挿入されて内部の溶媒を吸引し、LC-MSに送液するために機能する。図中、符号131は、吸引ノズル13によって吸引された溶媒をLC-MSに送液するための管(チューブ)を示している。 The suction nozzle 13 is inserted into the mouth of the reagent bottle 2 (see FIG. 1) according to the present invention containing a solvent, and functions to suck the internal solvent and send it to the LC-MS. In the figure, reference numeral 131 denotes a tube (tube) for sending the solvent sucked by the suction nozzle 13 to the LC-MS.
 吸引ノズル13は、先に説明した試薬瓶2の金属箔21と同様に、耐蝕性金属によって形成される。吸引ノズル13が溶媒や溶媒に添加されたギ酸等によって腐食されると、腐食された吸引ノズル13から溶媒中に金属イオンが溶出し、化学ノイズの原因となるためである。 The suction nozzle 13 is formed of a corrosion-resistant metal like the metal foil 21 of the reagent bottle 2 described above. This is because if the suction nozzle 13 is corroded by the solvent, formic acid or the like added to the solvent, metal ions are eluted from the corroded suction nozzle 13 into the solvent, causing chemical noise.
 バキュームキャップ14は、図1(B)に示すように、試薬瓶2の口部(ここでは、穴開きキャップ22)に当接されてこれを被覆し、金属箔21との間に空間Kを形成する。バキュームキャップ14の内側周面には、試薬瓶2の口部に接触する制動片144が周設されており、バキュームキャップ14は、この制動片144によって試薬瓶2の口部に当接することによって金属箔21との間に空間Kを形成する。 As shown in FIG. 1B, the vacuum cap 14 is in contact with and covers the mouth of the reagent bottle 2 (here, the perforated cap 22), and a space K is formed between the vacuum cap 14 and the metal foil 21. Form. A braking piece 144 that contacts the mouth of the reagent bottle 2 is provided around the inner peripheral surface of the vacuum cap 14, and the vacuum cap 14 is brought into contact with the mouth of the reagent bottle 2 by the braking piece 144. A space K is formed between the metal foil 21 and the metal foil 21.
 図中、符号143は、一端において真空ポンプに接続され、他端においてバキュームキャップ14に接続された管(チューブ)を示す。管143は、バキュームキャップ14への接続部において空間Kに連通する吸引口142を有し、真空ポンプは、この吸引口142から空間K内の空気を吸引する。 In the drawing, reference numeral 143 denotes a tube connected to the vacuum pump at one end and connected to the vacuum cap 14 at the other end. The tube 143 has a suction port 142 that communicates with the space K at the connection to the vacuum cap 14, and the vacuum pump sucks air in the space K from the suction port 142.
 バキュームキャップ14の上面には、先に説明した試薬瓶2の穴開きキャップ22と同様に、吸引ノズル13が挿通する孔141が穿設されている。孔141の径は、吸引ノズル13の挿通を可能にするため、吸引ノズル13の径と略同一ないしはこれよりもやや大きく形成されている。なお、バキュームキャップ14の材質は、通常使用されるプラスチック樹脂であってよい。 The upper surface of the vacuum cap 14 is provided with a hole 141 through which the suction nozzle 13 is inserted, like the hole cap 22 of the reagent bottle 2 described above. The diameter of the hole 141 is substantially the same as or slightly larger than the diameter of the suction nozzle 13 so that the suction nozzle 13 can be inserted. The material of the vacuum cap 14 may be a commonly used plastic resin.
 さらに、溶媒供給装置1は、試薬瓶2に対して吸引ノズル13とバキュームキャップ14を移動させる駆動手段を有している(不図示)。この駆動手段は、図1(B)に示すようにバキュームキャップ14を試薬瓶2の口部に当接させるとともに、図1(C)に示すように吸引ノズルを口部を封止する金属箔21に貫通させて試薬瓶2に挿入するために機能する。 Furthermore, the solvent supply device 1 has a drive unit (not shown) for moving the suction nozzle 13 and the vacuum cap 14 with respect to the reagent bottle 2. This driving means makes the vacuum cap 14 contact the mouth of the reagent bottle 2 as shown in FIG. 1 (B), and the metal foil that seals the mouth of the suction nozzle as shown in FIG. 1 (C). It functions to penetrate through 21 and to be inserted into the reagent bottle 2.
 吸引ノズル13による溶媒吸引や送液のための送液ポンプ及び真空ポンプ、駆動手段は、溶媒供給装置1本体を構成する筐体11の電装スペース112に設けられる。一方、吸引ノズル13及びバキュームキャップ14は、筐体11の内部空間111に配設される。この筐体11は、先に説明したクリーンボックスであって、溶媒供給装置1は内部空間111を清浄環境に維持するための清浄機構を備えるものである。 The liquid feeding pump, vacuum pump, and driving means for sucking and feeding the solvent by the suction nozzle 13 are provided in the electrical space 112 of the housing 11 constituting the main body of the solvent supply device 1. On the other hand, the suction nozzle 13 and the vacuum cap 14 are disposed in the internal space 111 of the housing 11. The housing 11 is the clean box described above, and the solvent supply device 1 includes a cleaning mechanism for maintaining the internal space 111 in a clean environment.
 清浄機構は、通常用いられるクリーンボックスと同様の構成とできる。清浄機構は、本体11の電装スペース112に配設され、例えば、筐体11の外気を内部空間111に給気する給気口と、この給気口から給気される外気の流路に設けられたフィルタユニットと、給気された空気を筐体11の外部に排気するための排気口と、から構成される。排気口から排出された空気は、再度吸気口から内部空間111に導入され、循環されてもよい。なお、図2では、給気口及びフィルタユニット、排気口の図示を省略した。 The cleaning mechanism can have the same configuration as a normally used clean box. The cleaning mechanism is disposed in the electrical space 112 of the main body 11 and is provided, for example, in an air supply port that supplies the outside air of the housing 11 to the internal space 111 and a flow path of the outside air supplied from the air supply port. And an exhaust port for exhausting the supplied air to the outside of the housing 11. The air discharged from the exhaust port may be re-introduced into the internal space 111 from the intake port and circulated. In FIG. 2, illustration of the air supply port, the filter unit, and the exhaust port is omitted.
 フィルタユニットは、上述したHEPAフィルタ等と、必要に応じてこれよりも目が粗く性能が低い1つ又は2以上のエアフィルタと、が組み合わされて構成される。HEPAフィルタ等を給気口から給気される外気の流路に配設することで、外気中のエアロゾル粒子や塵埃を取り除いて、筐体11の内部空間111を清浄環境に維持することができる。 The filter unit is configured by combining the above-described HEPA filter or the like and one or more air filters having a coarser grain and lower performance as necessary. By arranging a HEPA filter or the like in the flow path of the outside air supplied from the air supply port, it is possible to remove the aerosol particles and dust in the outside air and maintain the internal space 111 of the housing 11 in a clean environment. .
 給気口は、筐体11の上方、好ましくは内部空間111の天面に設けられる。また、排気口は、筐体11の背面部(電装スペース112側)下方に設けられることが好適となる。吸気口及び排気口をこれらの位置に設けることで、筐体11の内部空間111に上方から下流に流れる気流を形成することができる。この気流は、次に説明する扉体12の開閉時において、エアロゾル粒子や塵埃を含む外気が内部空間111へ流入することを防止する機能を果たす(詳しくは後述する)。 The air supply port is provided above the housing 11, preferably on the top surface of the internal space 111. Further, it is preferable that the exhaust port is provided below the back surface portion (electrical space 112 side) of the housing 11. By providing the intake port and the exhaust port at these positions, it is possible to form an airflow flowing from the upper side to the downstream side in the internal space 111 of the housing 11. This airflow functions to prevent outside air including aerosol particles and dust from flowing into the internal space 111 when the door 12 described below is opened and closed (details will be described later).
 筐体11の正面には、内部空間111内に試薬瓶2を出し入れするための開閉可能な扉体12が設けられている。筐体11は、扉体12を閉じた状態では、上述の吸気口及び排気口以外に空気の出入りがない気密構造とされている。ここでは、扉体12を筐体11の正面部において上下方向にスライドされて開閉するスライドカバーとして構成した場合を例に説明する。ただし、扉体12は、スライドカバーに限られず、例えば蝶番(ヒンジ)によって開閉する右開き又は左開き、観音開きの扉等であってもよい。扉体12と筐体11が接する部位には、気密性を維持するためのパッキングを設けることが好ましい。以下、「扉体12」を「スライドカバー12」というものとする。 An openable / closable door 12 for taking in and out the reagent bottle 2 in and out of the internal space 111 is provided on the front surface of the housing 11. The casing 11 has an airtight structure in which air does not enter and exit other than the above-described intake and exhaust ports when the door body 12 is closed. Here, a case where the door body 12 is configured as a slide cover that opens and closes by sliding in the vertical direction on the front portion of the housing 11 will be described as an example. However, the door body 12 is not limited to a slide cover, and may be, for example, a right-opening or left-opening door that is opened and closed by a hinge (hinge), or a double door. It is preferable to provide a packing for maintaining airtightness at a portion where the door body 12 and the housing 11 are in contact with each other. Hereinafter, the “door body 12” is referred to as a “slide cover 12”.
 スライドカバー12の開閉は、図示しない開閉センサによって検知される。この他、溶媒供給装置1は、内部空間111内の所定位置に配置された試薬瓶2を検知するための試薬瓶センサ15や、試薬瓶2内の溶媒残量を検知するための液面センサ16を備えている。本発明においては、試薬瓶センサ15を「第一の検出手段」、開閉センサを「第二の検出手段」ともいうものとする。 Open / close of the slide cover 12 is detected by an open / close sensor (not shown). In addition, the solvent supply device 1 includes a reagent bottle sensor 15 for detecting the reagent bottle 2 arranged at a predetermined position in the internal space 111 and a liquid level sensor for detecting the remaining amount of the solvent in the reagent bottle 2. 16 is provided. In the present invention, the reagent bottle sensor 15 is also referred to as “first detection means”, and the open / close sensor is also referred to as “second detection means”.
 上述の真空ポンプは、試薬瓶センサ15からの試薬瓶2の検知信号に基づいて、吸引を開始又は停止するものである。また、上述の駆動手段は、試薬瓶センサ15及び開閉センサからの検知信号に基づいて、吸引ノズル13及びバキュームキャップ14の移動を制御する。 The above-described vacuum pump starts or stops suction based on the detection signal of the reagent bottle 2 from the reagent bottle sensor 15. The above-described driving means controls the movement of the suction nozzle 13 and the vacuum cap 14 based on detection signals from the reagent bottle sensor 15 and the open / close sensor.
(3-2)装置動作
 次に、図1~3を参照して、溶媒供給装置1の動作を説明する。図3は、溶媒供給装置の側面図を示す。
(3-2) Apparatus Operation Next, the operation of the solvent supply apparatus 1 will be described with reference to FIGS. FIG. 3 shows a side view of the solvent supply apparatus.
 まず、図2に示すように、溶媒を収容した試薬瓶2を溶媒供給装置1にセットするため、スライドカバー12を上方にスライドさせて開き、開放状態とした内部空間111に試薬瓶2を差し入れ、所定の位置に配置する。 First, as shown in FIG. 2, in order to set the reagent bottle 2 containing the solvent in the solvent supply device 1, the slide cover 12 is slid upward to open and the reagent bottle 2 is inserted into the opened internal space 111. , Arranged at a predetermined position.
 このとき、上述の清浄機構によって内部空間111に上方から下流に流れる気流が形成されていることで、開放状態となった内部空間111にエアロゾル粒子や塵埃を含む外気が逆流して流入することを防止できる。さらに、清浄機構によって、内部空間111の気圧が外部に対して陽圧に設定されていること、エアロゾル粒子等の流入を一層確実に防止できる。 At this time, the air flow flowing from the upper side to the lower side is formed in the internal space 111 by the above-described cleaning mechanism, so that the outside air containing aerosol particles and dust flows back into the internal space 111 that has been opened. Can be prevented. Further, the cleaning mechanism can more reliably prevent the atmospheric pressure of the internal space 111 from being set to a positive pressure with respect to the outside and the inflow of aerosol particles and the like.
 内部空間111内の所定位置に配置された試薬瓶2は、試薬瓶センサ15によって検知され、検知信号が真空ポンプに出力される。真空ポンプは、この出力を受けて、吸引を開始する。 The reagent bottle 2 arranged at a predetermined position in the internal space 111 is detected by the reagent bottle sensor 15, and a detection signal is output to the vacuum pump. In response to this output, the vacuum pump starts suction.
 試薬瓶2をセットした後、図3に示すように、スライドカバー12を下方にスライドさせて閉じ、内部空間111を気密状態とする。スライドカバー12が閉じられると、開閉センサからの検知信号が駆動手段に出力される。駆動手段は、この開閉センサからの出力と試薬瓶センサ15からの試薬瓶2の検知信号の出力を受けて、配置された試薬瓶2に対して吸引ノズル13とバキュームキャップ14を降下させる(図中、矢印F参照)。 After the reagent bottle 2 is set, as shown in FIG. 3, the slide cover 12 is slid down and closed to make the internal space 111 airtight. When the slide cover 12 is closed, a detection signal from the open / close sensor is output to the driving means. The driving means receives the output from the open / close sensor and the output of the detection signal of the reagent bottle 2 from the reagent bottle sensor 15, and lowers the suction nozzle 13 and the vacuum cap 14 with respect to the arranged reagent bottle 2 (FIG. Middle, see arrow F).
 これによって、まず、図1(B)に示すように、下降したバキュームキャップ14の制動片144が試薬瓶2の口部(ここでは、穴開きキャップ22)に当接した状態となり、バキュームキャップ14と金属箔21との間に空間Kが形成される。この空間K内の空気は、先に吸引を開始した真空ポンプによって吸引され、バキュームキャップ14に接続された管143の吸引口142から空間K外へ排出される。 As a result, first, as shown in FIG. 1 (B), the brake piece 144 of the lowered vacuum cap 14 comes into contact with the mouth of the reagent bottle 2 (here, the perforated cap 22), and the vacuum cap 14 A space K is formed between the metal foil 21 and the metal foil 21. The air in the space K is sucked by the vacuum pump that has started sucking, and is discharged out of the space K from the suction port 142 of the pipe 143 connected to the vacuum cap 14.
 続いて、図1(C)に示すように、下降した吸引ノズル13が、バキュームキャップ14及び穴開きキャップ22の上面にそれぞれ穿設された孔141及び孔221を挿通して、試薬瓶2の口部を封止する金属箔21を貫通し、試薬瓶2に挿入される。このとき、吸引ノズル13が金属箔21を貫通することを容易にするため、金属箔21の厚さは1~100μm、好適には1~20μm程度であることが望ましい。 Subsequently, as shown in FIG. 1C, the lowered suction nozzle 13 is inserted through the holes 141 and 221 formed in the upper surfaces of the vacuum cap 14 and the perforated cap 22, respectively. The metal foil 21 that seals the mouth portion passes through and is inserted into the reagent bottle 2. At this time, in order to make it easy for the suction nozzle 13 to penetrate the metal foil 21, the thickness of the metal foil 21 is desirably about 1 to 100 μm, preferably about 1 to 20 μm.
 吸引ノズル13が貫通する際、金属箔21に塵埃が付着していると、吸引ノズル23が金属箔21を貫通する際に発生する振動や衝撃によって、金属箔21に付着した塵埃が空間K中に浮遊し、試薬瓶2内部へ混入したり、吸引ノズル13へ付着したりする場合がある。図1(C)中、符号Dは、吸引ノズル23が金属箔21を貫通する際に、金属箔21上から発塵する物質(発塵物質)を示している。 When dust is attached to the metal foil 21 when the suction nozzle 13 penetrates, the dust attached to the metal foil 21 in the space K is caused by vibration or impact generated when the suction nozzle 23 penetrates the metal foil 21. In the reagent bottle 2 and may adhere to the suction nozzle 13. In FIG. 1C, symbol D indicates a substance (dust generation substance) that generates dust from the metal foil 21 when the suction nozzle 23 penetrates the metal foil 21.
 試薬瓶2内部へ混入したり、吸引ノズル13へ付着したりした発塵物質Dは、化学ノイズやイオン化効率低下の原因となり得る。溶媒供給装置1では、吸引ノズル23が金属箔21を貫通する際に発塵物質Dが発生した場合にも、先に吸引を開始した真空ポンプにより、空間K内の空気とともに発塵物質Dを吸引し迅速に空間K外へ排出して取り除くことができるため、発塵物質Dが試薬瓶2内部へ混入したり、吸引ノズル13へ付着したりすることを防止できる。 The dusting substance D mixed into the reagent bottle 2 or adhering to the suction nozzle 13 may cause chemical noise or a decrease in ionization efficiency. In the solvent supply device 1, even when the dust generation material D is generated when the suction nozzle 23 penetrates the metal foil 21, the dust generation material D is removed together with the air in the space K by the vacuum pump that has started the suction. Since it can be sucked out and quickly discharged out of the space K and removed, it is possible to prevent the dusting substance D from mixing into the reagent bottle 2 or adhering to the suction nozzle 13.
 ここで、真空ポンプによる吸引によって空間K内の圧が下がり過ぎると、試薬瓶2内の溶媒Sが、空間K内及び管143内へ吸い込まれてしまう場合がある。これを回避するため、バキュームキャップ14の孔141の径は吸引ノズル13の径よりもやや大きく形成し、吸引ノズル13が挿通した状態において、バキュームキャップ14と吸引ノズル13との間に間隙が生じるようにし、空間K内の圧が下がり過ぎないようにすることが望ましい。 Here, if the pressure in the space K is too low due to suction by the vacuum pump, the solvent S in the reagent bottle 2 may be sucked into the space K and the tube 143. In order to avoid this, the diameter of the hole 141 of the vacuum cap 14 is formed to be slightly larger than the diameter of the suction nozzle 13, and a gap is generated between the vacuum cap 14 and the suction nozzle 13 when the suction nozzle 13 is inserted. It is desirable to prevent the pressure in the space K from dropping too much.
 吸引ノズル13は、その先端が試薬瓶2の底面近くまで挿入されると溶媒の吸引を開始して、管131によってLC-MSに送液する。溶媒の送液は、例えば、LC-MSからの信号に応じて行われるものであり、液面センサ16により検出される試薬瓶2内の溶媒残量が所定値未満となるまで任意のタイミングで行われ得る。 When the tip of the suction nozzle 13 is inserted to the vicinity of the bottom surface of the reagent bottle 2, the suction of the solvent is started, and the solution is sent to the LC-MS through the tube 131. For example, the solvent is fed in response to a signal from the LC-MS, and at any timing until the remaining amount of the solvent in the reagent bottle 2 detected by the liquid level sensor 16 becomes less than a predetermined value. Can be done.
 以上のように、溶媒供給装置1では、試薬瓶2及び吸引ノズル13をエアロゾル粒子や塵埃が取り除かれた内部空間111内に配設し、また、試薬瓶2の金属箔21に付着するような僅かな塵埃についても真空ポンプによって吸引して取り除くことによって、試薬瓶交換作業の際に試薬瓶2の内部に混入したり、吸引ノズル13に付着したりしたエアロゾル粒子や塵埃による化学ノイズやイオン化効率低下を防止できる。従って、上述した本発明に係る溶媒及び試薬瓶2と溶媒供給装置1を組み合わせて用いることで、化学ノイズやイオン化効率低下の原因となる物質の混入がない溶媒をLC-MSに供給して、高感度な分析を行うことが可能となる。 As described above, in the solvent supply device 1, the reagent bottle 2 and the suction nozzle 13 are disposed in the internal space 111 from which aerosol particles and dust are removed, and are attached to the metal foil 21 of the reagent bottle 2. Chemical dust and ionization efficiency due to aerosol particles and dust mixed into the reagent bottle 2 and attached to the suction nozzle 13 during the reagent bottle replacement operation by sucking and removing even a small amount of dust with a vacuum pump Decline can be prevented. Therefore, by using the solvent and reagent bottle 2 according to the present invention described above in combination with the solvent supply device 1, a solvent free from chemical noise and contamination of substances that cause a reduction in ionization efficiency is supplied to the LC-MS. It becomes possible to perform highly sensitive analysis.
 なお、本実施形態においては、溶媒供給装置1をLC-MSと別体に構成され、これに連設されて溶媒を供給する装置として説明したが、溶媒供給装置1はLC-MSと一体に構成される装置であってもよいものである。 In the present embodiment, the solvent supply device 1 is configured as a separate unit from the LC-MS, and is described as a device that supplies the solvent connected to the LC-MS. However, the solvent supply device 1 is integrated with the LC-MS. It may be a configured device.
 本発明に係る液体クロマトグラフ質量分析装置用の溶媒供給装置は、タンパク質やペプチド、糖鎖、各種代謝産物等を高感度に解析することができるため、バイオテクノロジーや医療、創薬、食品等の分野において、特に微量物質を検出対象とした解析に寄与し得る。 Since the solvent supply device for a liquid chromatograph mass spectrometer according to the present invention can analyze proteins, peptides, sugar chains, various metabolites, etc. with high sensitivity, biotechnology, medicine, drug discovery, foods, etc. In the field, it can contribute to analysis in particular for trace substances.
1 溶媒供給装置
11 筐体
12 扉体
13 吸引ノズル
14 バキュームキャップ
142 吸引口
144 制動片
15 試薬瓶センサ
16 液面センサ
111 内部空間
112 電装スペース
2 試薬瓶
21 金属箔
22 蓋(穴開きキャップ)
D 発塵物質
K 空間
S 溶媒
DESCRIPTION OF SYMBOLS 1 Solvent supply apparatus 11 Housing | casing 12 Door body 13 Suction nozzle 14 Vacuum cap 142 Suction port 144 Brake piece 15 Reagent bottle sensor 16 Liquid level sensor 111 Internal space 112 Electrical space 2 Reagent bottle 21 Metal foil 22 Lid (hole opening cap)
D Dust generating material K Space S Solvent

Claims (14)

  1.  液体クロマトグラフ質量分析装置の移動相として用いられる溶媒を収容し、口部を金属箔で封止した試薬瓶に対し、金属箔を貫通して挿入されて溶媒の吸引を行う吸引ノズルと、
    試薬瓶の口部に当接されてこれを被覆し、試薬瓶に挿入される吸引ノズルが挿通する孔が穿設されたバキュームキャップと、
    このバキュームキャップに接続され、試薬瓶の口部を被覆したバキュームキャップと金属箔との間に形成される空間内の空気を吸引する真空ポンプと、を備える液体クロマトグラフ質量分析装置用の溶媒供給装置。
    A suction nozzle that contains a solvent used as a mobile phase of a liquid chromatograph mass spectrometer and has a mouth sealed with a metal foil, and is inserted through the metal foil and sucks the solvent.
    A vacuum cap that is in contact with and covers the mouth of the reagent bottle and has a hole through which a suction nozzle inserted into the reagent bottle is inserted;
    A solvent supply for a liquid chromatograph mass spectrometer, comprising: a vacuum pump connected to the vacuum cap and sucking air in a space formed between the vacuum cap covering the mouth of the reagent bottle and the metal foil apparatus.
  2.  前記吸引ノズルは、耐蝕性金属によって形成されている請求項1記載の溶媒供給装置。 The solvent supply device according to claim 1, wherein the suction nozzle is made of a corrosion-resistant metal.
  3.  外気を給気する給気口と、この給気口から給気される外気の流路に設けられたフィルタユニットと、給気された空気を排気するための排気口と、開閉可能な扉体と、が設けられた筐体の内部に、前記吸引ノズル及び前記バキュームキャップが配設された請求項2記載の溶媒供給装置。 An air supply port for supplying outside air, a filter unit provided in a flow path of outside air supplied from the air supply port, an exhaust port for exhausting the supplied air, and a door body that can be opened and closed The solvent supply device according to claim 2, wherein the suction nozzle and the vacuum cap are disposed in a housing provided with the above.
  4.  前記筐体内の所定位置に配置された試薬瓶に対し、前記吸引ノズル及び前記バキュームキャップを移動させて、バキュームキャップを試薬瓶の口部に当接させるとともに、吸引ノズルを口部を封止する金属箔に貫通させて試薬瓶に挿入する、駆動手段を備える請求項3記載の溶媒供給装置。 The suction nozzle and the vacuum cap are moved with respect to the reagent bottle arranged at a predetermined position in the housing, the vacuum cap is brought into contact with the mouth of the reagent bottle, and the mouth of the suction nozzle is sealed. The solvent supply apparatus according to claim 3, further comprising a driving unit that is inserted into the reagent bottle through the metal foil.
  5.  前記筐体内の所定位置に配置された試薬瓶を検知する第一の検出手段を備え、前記真空ポンプは、この第一の検出手段からの検知信号に基づいて、吸引を開始又は停止する請求項4記載の溶媒供給装置。 A first detection means for detecting a reagent bottle arranged at a predetermined position in the housing is provided, and the vacuum pump starts or stops aspiration based on a detection signal from the first detection means. 4. The solvent supply apparatus according to 4.
  6.  前記扉体の開閉を検知する第二の検出手段を備え、
    前記駆動手段は、この第二の検出手段からの検知信号と前記第一の検出手段からの検知信号に基づいて、前記吸引ノズル及び前記バキュームキャップの移動を制御する請求項5記載の溶媒供給装置。
    Comprising a second detection means for detecting opening and closing of the door body;
    6. The solvent supply apparatus according to claim 5, wherein the driving unit controls movement of the suction nozzle and the vacuum cap based on a detection signal from the second detection unit and a detection signal from the first detection unit. .
  7.  請求項1~6のいずれか一項に記載の溶媒供給装置を備える液体クロマトグラフ質量分析装置。 A liquid chromatograph mass spectrometer equipped with the solvent supply device according to any one of claims 1 to 6.
  8.  液体クロマトグラフ質量分析装置の移動相として用いられる溶媒を収容するための試薬瓶であって、
    口部を封止する金属箔と、
    口部を金属箔の外側から被蓋し、金属箔を貫通して挿入されて溶媒の吸引を行う吸引ノズルが挿通する孔が穿設された蓋と、を有するガラス製の試薬瓶。
    A reagent bottle for containing a solvent used as a mobile phase of a liquid chromatograph mass spectrometer,
    A metal foil that seals the mouth,
    A glass reagent bottle having a lid covered with an opening from the outside of a metal foil and having a hole inserted through a metal foil and through which a suction nozzle for sucking a solvent is inserted.
  9.  前記金属箔は、耐蝕性金属によって形成されている請求項8記載の試薬瓶。 The reagent bottle according to claim 8, wherein the metal foil is formed of a corrosion-resistant metal.
  10.  液体クロマトグラフ質量分析装置の移動相として用いられる溶媒であって、化学ノイズの原因となる物質の混入を防止可能な清浄環境において調製された溶媒。 Solvent used as a mobile phase in a liquid chromatograph mass spectrometer, and prepared in a clean environment capable of preventing contamination of substances that cause chemical noise.
  11.  口部を封止する金属箔と、
    口部を金属箔の外側から被蓋し、金属箔を貫通して挿入されて溶媒の吸引を行う吸引ノズルが挿通する孔が穿設された蓋と、を有するガラス製の試薬瓶に収容された請求項10記載の溶媒。
    A metal foil that seals the mouth,
    The mouth portion is covered from the outside of the metal foil, and is received in a glass reagent bottle having a lid that is inserted through the metal foil and has a hole through which a suction nozzle that sucks the solvent is inserted. The solvent according to claim 10.
  12.  口部を金属箔で封止した試薬瓶に収容された移動相として用いられる溶媒を、
    金属箔を貫通させて試薬瓶に挿入した吸引ノズルにより吸引して、液体クロマトグラフ質量分析装置に送液する工程を含む、液体クロマトグラフ質量分析装置の溶媒供給方法。
    A solvent used as a mobile phase contained in a reagent bottle whose mouth is sealed with a metal foil,
    A solvent supply method for a liquid chromatograph mass spectrometer, comprising a step of sucking with a suction nozzle inserted through a metal bottle and penetrating the metal foil, and feeding the liquid to a liquid chromatograph mass spectrometer.
  13.  前記吸引ノズルを前記金属箔に貫通させる際に、金属箔上から発塵する物質を真空ポンプによって吸引し、該物質の溶媒への混入を防止する工程を含む、請求項12記載の溶媒供給方法。 The solvent supply method according to claim 12, further comprising: sucking a substance that generates dust from the metal foil with a vacuum pump when the suction nozzle penetrates the metal foil to prevent the substance from being mixed into the solvent. .
  14.  前記溶媒を、化学ノイズの原因となる物質の混入を防止可能な清浄環境において調製し、ガラス製とした前記試薬瓶に収容する工程を含む、請求項13記載の溶媒供給方法。 14. The solvent supply method according to claim 13, further comprising a step of preparing the solvent in a clean environment capable of preventing mixing of substances causing chemical noise and storing the solvent in the reagent bottle made of glass.
PCT/JP2010/051609 2009-02-05 2010-02-04 Solvent supply apparatus for liquid chromatography mass spectrometer, reagent bottle, solvent and method for supplying solvent WO2010090257A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009025026A JP5526346B2 (en) 2009-02-05 2009-02-05 Solvent supply device, reagent bottle and solvent for liquid chromatograph mass spectrometer, and solvent supply method
JP2009-025026 2009-02-05

Publications (1)

Publication Number Publication Date
WO2010090257A1 true WO2010090257A1 (en) 2010-08-12

Family

ID=42542149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051609 WO2010090257A1 (en) 2009-02-05 2010-02-04 Solvent supply apparatus for liquid chromatography mass spectrometer, reagent bottle, solvent and method for supplying solvent

Country Status (2)

Country Link
JP (1) JP5526346B2 (en)
WO (1) WO2010090257A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069271A (en) * 2010-09-17 2013-04-24 株式会社日立高新技术 Chromatography device
CN107340349A (en) * 2017-07-31 2017-11-10 湖南德米特仪器有限公司 A kind of solvent inversor and a kind of method for suppressing mobile phase mildew
CN113075341A (en) * 2021-03-23 2021-07-06 宁夏计量质量检验检测研究院 Method and device for continuous liquid supply of liquid chromatograph
CN115078333A (en) * 2022-08-19 2022-09-20 中国气象科学研究院 Simulation device, detection system and detection method for gas-liquid heterogeneous reaction in atmosphere
CN115634726A (en) * 2022-12-23 2023-01-24 天津铭瑞医药科技有限公司 Pathological tissue manufacturing equipment
CN116190195A (en) * 2023-04-26 2023-05-30 四川质谱生物科技有限公司 Mass spectrometer detection reagent business turn over device and mass spectrometer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074967B2 (en) * 2012-12-20 2015-07-07 General Electric Company Apparatus and system for sampling and supplying a fluid to an analyzer
US11761933B2 (en) 2018-05-16 2023-09-19 Shimadzu Corporation Fluid supply device for fluid chromatograph
GB2593542A (en) * 2020-03-27 2021-09-29 Agilent Technologies Inc Chromatography solvent supply with tubing arm for positioning a tubing end

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010105A (en) * 1996-06-21 1998-01-16 Sekisui Chem Co Ltd Reagent container for liquid chromatography
WO2005047884A1 (en) * 2003-10-24 2005-05-26 Wako Pure Chemical Industries, Ltd. Solvent for highly sensitive analysis and method for storing same
JP2007155646A (en) * 2005-12-08 2007-06-21 Toppan Printing Co Ltd Reagent container
JP2008020360A (en) * 2006-07-13 2008-01-31 Olympus Corp Autoanalyzer and reagent container
JP2008196868A (en) * 2007-02-08 2008-08-28 Nippon Soda Co Ltd Contamination prevention liquid supplying tube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG46491A1 (en) * 1991-03-19 1998-02-20 Hoffmann La Roche Closure for reagent container
US5230427A (en) * 1991-06-12 1993-07-27 Ppg Industries, Inc. Sterilizable hermetically-sealed substantially glass container
US7100460B2 (en) * 2004-04-08 2006-09-05 Biotrove, Inc. Concentric tube microplate autosample interface
JP2007003351A (en) * 2005-06-23 2007-01-11 Fujifilm Holdings Corp Dispensing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010105A (en) * 1996-06-21 1998-01-16 Sekisui Chem Co Ltd Reagent container for liquid chromatography
WO2005047884A1 (en) * 2003-10-24 2005-05-26 Wako Pure Chemical Industries, Ltd. Solvent for highly sensitive analysis and method for storing same
JP2007155646A (en) * 2005-12-08 2007-06-21 Toppan Printing Co Ltd Reagent container
JP2008020360A (en) * 2006-07-13 2008-01-31 Olympus Corp Autoanalyzer and reagent container
JP2008196868A (en) * 2007-02-08 2008-08-28 Nippon Soda Co Ltd Contamination prevention liquid supplying tube

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069271A (en) * 2010-09-17 2013-04-24 株式会社日立高新技术 Chromatography device
CN103069271B (en) * 2010-09-17 2014-10-22 株式会社日立高新技术 Chromatography device
CN107340349A (en) * 2017-07-31 2017-11-10 湖南德米特仪器有限公司 A kind of solvent inversor and a kind of method for suppressing mobile phase mildew
CN107340349B (en) * 2017-07-31 2023-11-21 湖南德米特仪器有限公司 Solvent inversion device and method for inhibiting mobile phase growth mould
CN113075341A (en) * 2021-03-23 2021-07-06 宁夏计量质量检验检测研究院 Method and device for continuous liquid supply of liquid chromatograph
CN113075341B (en) * 2021-03-23 2023-06-27 宁夏计量质量检验检测研究院 Method and device for continuous liquid supply of liquid chromatograph
CN115078333A (en) * 2022-08-19 2022-09-20 中国气象科学研究院 Simulation device, detection system and detection method for gas-liquid heterogeneous reaction in atmosphere
CN115078333B (en) * 2022-08-19 2022-10-25 中国气象科学研究院 Simulation device, detection system and detection method for gas-liquid heterogeneous reaction in atmosphere
CN115634726A (en) * 2022-12-23 2023-01-24 天津铭瑞医药科技有限公司 Pathological tissue manufacturing equipment
CN115634726B (en) * 2022-12-23 2023-10-31 天津铭瑞医药科技有限公司 Pathological tissue making equipment
CN116190195A (en) * 2023-04-26 2023-05-30 四川质谱生物科技有限公司 Mass spectrometer detection reagent business turn over device and mass spectrometer
CN116190195B (en) * 2023-04-26 2023-06-27 四川质谱生物科技有限公司 Mass spectrometer detection reagent business turn over device and mass spectrometer

Also Published As

Publication number Publication date
JP2010181271A (en) 2010-08-19
JP5526346B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5526346B2 (en) Solvent supply device, reagent bottle and solvent for liquid chromatograph mass spectrometer, and solvent supply method
CN112444555B (en) Sampling probe, automatic sampling device and container detection system
JP7330478B2 (en) System for integrated disassembly and scanning of semiconductor wafers
JP6264620B2 (en) Apparatus and system for sampling fluid and supplying it to an analyzer
CN104813461A (en) Station and method for measuring particulate contamination of a transport chamber for conveying and atmospherically storing semiconductor substrates
US20230366789A1 (en) System and method for trapping fluid at a valve
CN208432441U (en) A kind of self feed back seal chamber gas sampling device
JP2007273697A (en) Substrate transfer vessel and gas replacing method for space inside the same
JP6321671B2 (en) Measuring station and measuring method for measuring particle contamination in transport carriers that transport and store semiconductor substrates at atmospheric pressure
JP2009156821A (en) Leak measuring technique and leak measuring device
JP2019132749A (en) Pretreatment method of specimen held in microchannel, pretreatment device for executing pretreatment method, and analysis system equipped with pretreatment device
CN211109203U (en) Gas chromatography detects with abandonment reagent bottle collecting box
JP2008139229A (en) Sample supply device, and total organic carbon meter using the sample supply device
JP4840409B2 (en) Gas chromatograph
CN213423083U (en) Dustproof liquid chromatograph
JP4988541B2 (en) Nozzle device and liquid sample analyzer
KR20110100264A (en) Apparatus and method for analyzing out-gassing of molecular contaminants from a sample
JP2013104769A (en) Lid body for container used for analyzer
JP4996991B2 (en) Sample introduction method and apparatus for chromatographic apparatus
TWM561793U (en) All-in-one VOCs measurement instrument
JP2006098193A (en) Gas leak inspection method for gas barrier type container and gas leak inspection apparatus
US20110123400A1 (en) Apparatus for detecting metal concentration in an atmosphere
CN211553998U (en) Remove aldehyde coating remove aldehyde performance detection device
JP6025239B2 (en) Transport container and seal member for transport container door
US20230266062A1 (en) Drying process, drying device and vacuum conveyor with drying

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738588

Country of ref document: EP

Kind code of ref document: A1