WO2010090198A1 - 1-(4-ピペリジニル)ベンゾイミダゾロン誘導体の製造方法 - Google Patents

1-(4-ピペリジニル)ベンゾイミダゾロン誘導体の製造方法 Download PDF

Info

Publication number
WO2010090198A1
WO2010090198A1 PCT/JP2010/051465 JP2010051465W WO2010090198A1 WO 2010090198 A1 WO2010090198 A1 WO 2010090198A1 JP 2010051465 W JP2010051465 W JP 2010051465W WO 2010090198 A1 WO2010090198 A1 WO 2010090198A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
formula
compound
substituted
acid
Prior art date
Application number
PCT/JP2010/051465
Other languages
English (en)
French (fr)
Inventor
寛 岩村
義浩 多羅尾
Original Assignee
田辺三菱製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田辺三菱製薬株式会社 filed Critical 田辺三菱製薬株式会社
Priority to JP2010549481A priority Critical patent/JP5236019B2/ja
Priority to US13/147,698 priority patent/US20110295013A1/en
Priority to EP10738529A priority patent/EP2394997A4/en
Publication of WO2010090198A1 publication Critical patent/WO2010090198A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/56Nitrogen atoms
    • C07D211/58Nitrogen atoms attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to a method for producing a 1- (4-piperidinyl) benzimidazolone derivative useful as a pharmaceutical synthesis intermediate or the like.
  • ORL-1 opioid receptor-like 1 receptor agonist activity and are used to treat mental disorders, neurological disorders and physiological disorders, in particular anxiety and stress disorders, Remission of drug withdrawal symptoms, including depression, traumatic disorders, memory loss due to Alzheimer's disease or other dementia, symptoms of epilepsy and convulsions, acute and / or chronic pain symptoms, and withdrawal symptoms occurring during withdrawal of abused drugs, alcohol It is useful in the improvement of abuse, control of water balance, Na + excretion, arterial blood pressure disorders, eating disorders such as obesity and anorexia, and circadian rhythm sleep disorders (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 describe various methods for producing 1- (4-piperidinyl) benzimidazolone derivatives, for example, production of 1- (4-piperidinyl) benzimidazolone derivatives having a substituted alkyl group at the 3-position. Describes a method in which a piperidone compound is subjected to a reductive amination reaction with phenylenediamine, reacted with carbodiimidazole, alkylated, and further a substituent on the alkyl is converted. However, all of them have a large number of steps and are not industrially advantageous.
  • optically active amines (In the formula, * indicates an asymmetric carbon.)
  • Several methods have been reported as manufacturing methods.
  • an optically active amine is produced by reducing a ketone by borane reduction to an optically active alcohol in the presence of an asymmetric catalyst, followed by azidation and reduction.
  • acenaphthene is asymmetrically hydroborated, converted to dialkylboron, and converted to amino to produce an optically active amine.
  • these production methods use a large amount of expensive asymmetric catalysts, dangerous reagents and the like, and are difficult to use industrially.
  • An object of the present invention is to provide an industrial production method with a high yield and low cost, with a small number of steps for the 1- (4-piperidinyl) benzimidazolone derivative.
  • the present invention is as follows.
  • a process for producing a 1- (4-piperidinyl) benzimidazolone derivative of formula 1 or a salt thereof according to the following steps.
  • Step 1 Step of subjecting the piperidone compound of Formula 2 and the aniline compound of Formula 3 to a reductive amination reaction to obtain the compound of Formula 4
  • Step 2 Converting the compound of Formula 4 to di-t-alkyldicarbo
  • R 2 represents alkyl which may be substituted, alkenyl which may be substituted or aryl which may be substituted. )
  • R 1 is represented by the following formulas (a) to (c): (In the formula, m and n are the same or different and each represents an integer of 1 to 3. R a and R b are the same or different and each represents hydrogen, alkyl, halogen, alkoxy, trifluoromethyl, trifluoromethoxy, hydroxyl, nitro, amino, alkanoylamino or cyano. Y represents CH 2, C (CH 3) 2, O, S, SO or SO 2.
  • R 2 is alkyl, alkenyl, alkyl-carboxyl, alkyl-C (O) O-alkyl, alkenyl-C (O) O-alkyl, alkyl-O-alkyl, alkyl-C (O) -NR 3 R 4 , Alkyl-S-alkyl, alkyl-S (O) -alkyl, alkyl-S (O) 2 -alkyl, alkyl-S (O) —NR 3 R 4 , alkyl-NR 3 R 4 , alkyl-NR 5 -C (O) -alkyl, phenyl (phenyl may be substituted with alkyl, halogen, alkoxy, phenoxy or benzyloxy), or benzyl (the benzene ring in benzyl is substituted with alkyl, halogen, alkoxy, phenoxy or benzyloxy) May be)
  • R 3 and R 4 are
  • R 5 represents hydrogen, alkyl or alkenyl.
  • an acid selected from an optionally substituted aryl carboxylic acid, an optionally substituted alkyl sulfonic acid and an optionally substituted aryl sulfonic acid is used.
  • Step 2 is a step in which a compound of formula 4 is reacted with di-t-butyldicarbonate to produce a 1- (4-piperidinyl) benzimidazolone derivative of formula 1.
  • [6] The production method according to any one of [1] to [5], wherein a base selected from pyridine, dimethylaminopyridine and N-methylimidazole is used in Step 2.
  • a base selected from pyridine, dimethylaminopyridine and N-methylimidazole is used in Step 2.
  • Step 2 The production method according to any one of [1] to [6], wherein the reaction of step 2 is performed in a carbon dioxide atmosphere.
  • Formula: (In the formula, R 1 and R 2 have the same meaning as in [2].) Or a salt thereof.
  • R represents an optionally substituted C 3 -C 10 alkyl, an optionally substituted phenyl or an optionally substituted benzyl. * Indicates an asymmetric carbon.
  • R 2 , R a and R b have the same meaning as in [2]. )
  • alkyl examples include linear or branched C 1 -C 6 alkyl, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, tertiary butyl, pentyl, hexyl and the like. . Preferred examples include linear or branched C 1 -C 4 alkyl, and more preferred are methyl, ethyl, propyl and isopropyl.
  • alkenyl examples include linear or branched C 2 -C 6 alkenyl, such as vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl and the like.
  • Preferred examples include linear or branched C 2 -C 4 alkenyl.
  • Halogen includes chlorine, iodine, fluorine and bromine. Preferred are chlorine, fluorine and bromine, and particularly preferred is fluorine.
  • Alkoxy includes linear or branched C 1 -C 6 alkoxy, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, secondary butoxy, tertiary butoxy, pentyloxy, hexyloxy, etc. Means.
  • Preferred examples include linear or branched C 1 -C 4 alkoxy, and particularly preferred is methoxy.
  • alkanoyl examples include C 2 -C 6 alkanoyl, such as acetyl, propionyl, butyryl, pentanoyl and the like, with acetyl being preferred.
  • Cycloalkyl includes C 3 -C 7 cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like, with cyclopropyl being preferred.
  • Aryl includes C 6 -C 10 aryl, for example, phenyl, 1-naphthyl, 2-naphthyl and the like, and phenyl is preferred.
  • Examples of the cyclic group include hydrocarbon ring groups or heterocyclic groups having 3 to 17 ring members and saturated or unsaturated, monocyclic or condensed ring.
  • Examples of the monocyclic hydrocarbon ring group include C 3 -C 7 cycloalkyl and C 6 -C 10 aryl.
  • the monocyclic heterocyclic group is selected from a nitrogen atom, an oxygen atom and a sulfur atom in addition to a carbon atom as a ring-constituting atom (the carbon atom and sulfur atom constituting the ring may be oxidized) 1 4 to 7-membered monocyclic saturated heterocyclic groups having ⁇ 4 heteroatoms (eg, pyrrolidinyl, tetrahydrofuryl, tetrahydropyranyl, oxepanyl, tetrahydrothienyl, tetrahydrothiopyranyl, thiepanyl Group, oxazolidinyl group, isoxazolidinyl group, thiazolidinyl group, isothiazolidinyl group, imidazolidinyl group, pyrazolidinyl group, piperidyl group, morpholinyl group, thiomorpholinyl group, piperazinyl group, azepanyl
  • the condensed hydrocarbon ring group or heterocyclic group is a condensed ring group formed from two or three rings selected from the above-mentioned “monocyclic hydrocarbon ring group” and “monocyclic heterocyclic group”. Etc.
  • the number of substituents that the group described as “may be substituted” may have is not limited as long as substitution is possible, and is preferably 1 to 3. When two or more substituents are present, they may be the same as or different from each other.
  • substituents of “alkyl” in “optionally substituted alkyl” represented by R 1 include hydroxyl, alkoxy, halogen, alkanoyl, optionally substituted amino, nitro, cyano, aryl, cyclic group and the like. And one or more can be substituted.
  • the substituent of the “cyclic group” in the “optionally substituted cyclic group” represented by R 1 is monovalent by hydroxyl, alkoxy optionally substituted with 1 to 3 halogens, halogen, alkanoyl, alkanoyl.
  • R 1 preferably includes the group of the above formula (a) (provided that Y is CH 2 and n is 2) and the group of the formula (c).
  • the saturated nitrogen-containing heterocyclic ring formed by combining R 3 and R 4 together with the adjacent nitrogen atom has at least one nitrogen atom, and further includes a nitrogen atom, an oxygen atom, and a sulfur atom (carbon atoms constituting the ring) And a sulfur atom may be oxidized).
  • 5- or 6-membered ring which may contain 1 to 3 heteroatoms selected from, for example, piperidine, pyrrolidine, morpholine, thiomorpholine, piperazine, thiazolidine, 2, 4-dioxothiazolidine and the like can be mentioned.
  • Preferred are piperazine, morpholine, pyrrolidine and 2,4-dioxothiazolidine, and particularly preferred are pyrrolidine and 2,4-dioxothiazolidine.
  • the salt of 1- (4-piperidinyl) benzimidazolone derivative (1) is not particularly limited as long as it is a pharmaceutically acceptable salt, and includes inorganic acids (hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, etc. ) Or organic acids (acetic acid, propionic acid, succinic acid, glycolic acid, lactic acid, malic acid, tartaric acid, citric acid, maleic acid, fumaric acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, And salts with ascorbic acid and the like).
  • the 1- (4-piperidinyl) benzimidazolone derivative (1) and salts thereof may be solvates with water or an organic solvent.
  • the 1- (4-piperidinyl) benzimidazolone derivative (1) or a salt thereof can be produced by the following steps.
  • Step 1 Step of subjecting piperidone compound (2) and aniline compound (3) to a reductive amination reaction to obtain compound (4)
  • Step 2 Compound (4) is converted into di-t-alkyldicarbo- hydrate.
  • a protective group may be introduced into a functional group, and efficient production may be carried out by devising such as deprotecting in a subsequent step.
  • post-reaction treatment may be performed by a commonly performed method, and isolation and purification may be performed as necessary by crystallization, recrystallization, distillation, liquid separation, silica gel chromatography, preparative HPLC, etc. These commonly used methods may be appropriately selected and combined.
  • step 1 compound (4) can be produced by subjecting piperidone compound (2) and aniline compound (3) to a reductive amination reaction.
  • the piperidone compound (2) may have a structure in which the ketone moiety is hydrated by the compound, but can be used in the reaction in the same manner.
  • Any generally known method can be used for the reductive amination reaction. For example, it can be carried out by using a specific reducing agent in the presence of an acid.
  • Examples of the acid include formic acid, alkanoic acid (eg, acetic acid, propionic acid, butanoic acid, pentanoic acid, heptanoic acid, etc.), halogenated alkanoic acid (eg, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, fluoroacetic acid, Difluoroacetic acid, etc.), arylalkanoic acid, optionally substituted arylcarboxylic acid (eg, benzoic acid), optionally substituted alkylsulfonic acid (eg, methanesulfonic acid, etc.), optionally substituted aryl Examples thereof include organic acids such as sulfonic acid (eg, p-toluenesulfonic acid, benzenesulfonic acid, etc.) and inorganic acids such as titanium tetraisopropoxide.
  • alkanoic acid eg, acetic
  • the acid can be used, for example, in an amount of 0.1 to 100 mol, preferably 0.8 to 20 mol, per 1 mol of piperidone compound (2).
  • Specific reducing agents include alkali borohydrides (eg, sodium borohydride, etc.), triacyloxy alkali borohydrides (eg, sodium triacetoxyborohydride, etc.), borane amine complexes (eg, dimethylamine borane, triethylamine borane). Trimethylamine borane, t-butylamine borane, N, N-diethylaniline borane, 2-picoline borane, etc.).
  • the reducing agent is usually used in an amount of 0.8 to 100 mol, preferably 0.8 to 2 mol, per 1 mol of piperidone compound (2).
  • the amount of the aniline compound (3) used is appropriately selected.
  • 0.8 to 2 moles can be used per 1 mole of the piperidone compound (2).
  • the reaction solvent include dichloromethane, 1,2-dichloroethane, methanol, ethanol, tetrahydrofuran (THF), acetonitrile, 2-propanol, toluene, dimethylformamide (DMF), 1,3-dimethylimidazolidinone, and the like. Can be used.
  • the reaction temperature can usually be arbitrarily selected from ⁇ 20 to 100 ° C., and the reaction time is usually about 10 minutes to 1 day.
  • the aniline compound (3) can be produced in the same manner as described in J. Med. Chem. 1994, 37, 758, for example, by reducing a 1-substituted amino-2-nitrobenzene derivative.
  • step 2 1- (4-piperidinyl) benzimidazolone derivative (1) is produced by reacting compound (4) with di-t-alkyldicarbonate or N, N′-disuccinimidyl carbonate.
  • Di-t-alkyl dicarbonates are preferably used.
  • Preferred examples of the di-t-alkyl dicarbonate include di-t-butyl dicarbonate.
  • Di-t-alkyldicarbonate or N, N′-disuccinimidyl carbonate is used in an amount of 0.8 to 100 mol, preferably 0.8 to 5 mol, for example, per 1 mol of compound (4). Can do. In this reaction, it is also preferable to add a base.
  • the progress of the reaction can be accelerated by adding a base.
  • the base include pyridine, N, N-dimethyl-4-aminopyridine, N-methylimidazole, imidazole and the like, and preferably pyridine, N, N-dimethyl-4-aminopyridine, N-methylimidazole. More preferably, it is 1-methylimidazole.
  • the use amount of the base for example, 0.05 to 10 mol, preferably 0.2 to 2 mol, can be used per 1 mol of compound (4).
  • reaction solvent examples include dichloromethane, 1,2-dichloroethane, methanol, ethanol, THF, acetonitrile, isopropanol, toluene, DMF, dimethylimidazolinone and the like.
  • the reaction temperature can usually be arbitrarily selected from ⁇ 20 to 100 ° C., and the reaction time is usually about 10 minutes to 1 day. In addition, it is preferable to perform this step in a carbon dioxide atmosphere because the yield is stable.
  • the piperidone compound (2) as a raw material is a known compound or can be easily produced according to a generally known method.
  • the piperidone compound (2a) in which R 1 is an optically active group of the formula (c) can be derived from, for example, an optically active amine (5).
  • R a and R b are as defined above. * Indicates an asymmetric carbon.
  • the piperidone compound (2a) can be produced by treating the optically active amine (5) with N-ethyl-N-methyl-4-oxopiperidinium iodide.
  • the amount of N-ethyl-N-methyl-4-oxopiperidinium iodide to be used is, for example, 0.9 to 1.1 mol, preferably about equimolar to 1 mol of piperidone compound (2a). be able to.
  • As the reaction solvent water, alcohol (ethanol or the like), acetonitrile or the like can be used alone or in combination. It is also preferable to use 0.5 to 2 molar equivalents of a base such as potassium carbonate or sodium hydroxide.
  • the reaction temperature is 0 ° C. to 100 ° C., preferably 40 ° C. to 90 ° C., and the reaction time is usually about 10 minutes to 1 day.
  • the optically active amine (5) can be produced in high yield and high optical purity from, for example, the ketone (6) via the following production method or intermediate.
  • Production Method A-1 A method for producing an optically active amine (5), comprising the following steps.
  • Step 1 Step of producing compound (8) by reacting ketone (6) with optically active amino alcohol compound (7) to reduce imine while producing imine in the reaction system
  • Step 2 Compound A step of producing an optically active amine (5) by reacting (8) with an oxidizing agent.
  • [Production Method A-2] The production method according to [Production Method A-1], wherein R is isopropyl, isobutyl or tertiary butyl.
  • [Production Method A-3] The production method according to [Production Method A-1] or [Production Method A-2], wherein an alkali triacetoxyborohydride or amine borane is used as the imine reducing agent in Step 1.
  • [Production Method A-4] The method according to any one of [Production Method A-1] to [Production Method A-3] using orthoperiodic acid, metaperiodic acid, or periodate as an oxidizing agent in Step 2. Production method.
  • Step 1 of Production Method A-1 high asymmetric induction occurs by reducing imine while reacting ketone (6) with optically active amino alcohol compound (7) to produce imine in the reaction system.
  • the compound (8) can be produced in a high yield.
  • the reaction proceeds even in the absence of an acid catalyst, but it is preferable to add an acid catalyst.
  • the acid catalyst examples include formic acid, acetic acid, propionic acid, isobutyric acid, hexanoic acid, tosylic acid, benzoic acid and the like, and 0 to 10 molar equivalents can be used with respect to ketone (6).
  • 0.5 to 1.5 molar equivalents are preferable in the case of formic acid, and 2 to 8 molar equivalents are preferable in the case of acetic acid.
  • the substituent of the "C 3 -C 10 alkyl” in the “optionally substituted C 3 -C 10 alkyl” represented by R, hydroxyl and the like R Examples of the substituent of “phenyl” in the “optionally substituted phenyl” represented by the above include hydroxyl, alkyl, halogen and the like, and the “benzyl” in the “optionally substituted benzyl” represented by R Examples of the substituent include hydroxyl and halogen.
  • the number of these substituents is not limited as long as substitution is possible, and is preferably 1 to 3. When two or more substituents are present, they may be the same as or different from each other.
  • optically active amino alcohol compound (7) include optically active substances such as 2-phenylglycinol, valinol, leucinol, isoleucinol, t-leucinol, 2-amino-1-hexanol, and more preferably , Valinol, leucinol, and optically active tert-leucinol, and can be added in an amount of 1 to 4 molar equivalents relative to ketone (6).
  • optically active substances such as 2-phenylglycinol, valinol, leucinol, isoleucinol, t-leucinol, 2-amino-1-hexanol, and more preferably , Valinol, leucinol, and optically active tert-leucinol, and can be added in an amount of 1 to 4 molar equivalents relative to ketone (6).
  • optically active substances such as 2-phenylglycinol, valinol, leucinol, isole
  • amine borane As a reducing agent for imine, alkali triacetoxyborohydride, various amine boranes (2-picoline borane, 5-ethyl-2-methylpyridine borane, pyridine borane, t-butylamine borane, diethyl isopropylamine borane, etc.) ketone (6 ) To 1 to 5 molar equivalents.
  • amine borane include 2-picoline borane, 5-ethyl-2-methylpyridine borane, and pyridine borane.
  • reaction solvent for example, THF, t-butyl methyl ether, heptane, toluene, methanol, ethanol, 2-propanol, N-methyl piperidone, 1,3-dimethyl-2-imidazolidinone and the like can be used. It is preferable to use about 2 to 10 mL / g for 6).
  • the reaction temperature can be, for example, 20 ° C. to 80 ° C., preferably 30 ° C. to 70 ° C.
  • the reaction time is usually about 10 minutes to 1 day.
  • Molecular sieve, magnesium sulfate, sodium sulfate, sodium acetate and the like can be added as a dehydrating agent.
  • the optically active amine (5) can be produced by reacting Compound (8) with an oxidizing agent.
  • an oxidizing agent orthoperiodic acid, metaperiodic acid, periodate, lead tetraacetate and the like can be used, and preferred examples include orthoperiodic acid and periodate.
  • the oxidizing agent is preferably used in 1 to 3 molar equivalents relative to compound (8).
  • the reaction solvent water or a mixed solvent of water and an organic solvent (methanol, acetonitrile, toluene, etc.) can be used, and it is preferably used in an amount of about 5 to 30 mL / g based on the compound (8).
  • the reaction can be carried out at a temperature of ⁇ 10 ° C. to 30 ° C., preferably 0 ° C. to 20 ° C., and the reaction time is usually about 10 minutes to 1 day.
  • a primary amine such as methylamine can be present in an amount of, for example, 2 to 15 molar equivalents relative to the compound (8).
  • the optically active amine (5) is derived from, for example, an N- (acenaphthen-1-yl)-(1-phenylethyl) amine derivative or the like, undesirable elimination / saturation proceeds and the optically active amine (5) cannot be produced with good yield.
  • the elimination reaction can be carried out very gently with an oxidizing agent such as orthoperiodic acid via the compound (8) having a 2-hydroxylethylamine structure, with a high yield.
  • An optically active amine (5) can be obtained.
  • reaction solution was added dropwise to a mixed solution of 20% sodium hydroxide (477 g) and water (142 g) at 16 to 19 ° C., and the mixture was separated after stirring and standing.
  • Activated carbon 41.94 g was added to the organic layer, filtered through a 1.0 ⁇ m membrane filter, acetonitrile (330 g) was added, and the solvent was distilled off under reduced pressure to about 370 g (HPLC determination from compound (C)) Yield 85.9%).
  • toluene (10 ml), THF (5 ml), and aqueous sodium hydroxide solution (prepared from about 10 g NaOH and about 45 ml water) were added for liquid separation.
  • the aqueous layer was extracted with toluene (15 ml), the organic layers were combined and washed with 25% brine, and concentrated hydrochloric acid (1.4 ml) was added.
  • 2-Propanol (15 ml) was added to the obtained suspension, and about half of the solvent was distilled off at 60 ° C., then 2-propanol (4 ml) was added, and the mixture was stirred for about 1 hour under ice cooling.
  • orthoperiodic acid aqueous solution (prepared by dissolving H 5 IO 6 (957 mg, 4.20 mmol) in water (5 ml)) was added dropwise over 15 minutes and washed with water (1 ml). It was crowded. After gradually returning to room temperature and allowing to stand overnight, water (2 ml) was added to the reaction mixture, and the mixture was extracted with toluene (8 ml). The aqueous layer was extracted twice with toluene (2 ml), and the organic layers were combined and concentrated under reduced pressure to about 5 ml. To this were added 6M hydrochloric acid (4 ml) and methanol (about 8 ml), and the mixture was stirred at 30 to 40 ° C.
  • Example 3 Preparation of Compound (C) A suspension of (R)-(acenaphthen-1-yl) amine acetate (50 g, 218 mmol) in acetonitrile (350 g) derived from Compound (G) prepared in Example 2 The solution was adjusted to 70 ° C., and 30% aqueous sodium hydroxide solution (28.5 g, 43 mmol) was added. After stirring at the same temperature for 30 minutes, an aqueous solution (148 mL) of N-ethyl-N-methyl-4-oxopiperidinium iodide (16.43 g, 214 mmol) was added dropwise. After stirring at the same temperature for 2 hours, the reaction solution was cooled to 30 ° C.
  • Example 4 In the same manner as in Example 2, the following compounds F1 to F6 and F (reference) were prepared using acenaphthenone (about 500 mg) and the corresponding amine.
  • the diastereomer ratio was analyzed using HPLC (column: Inertsil ODS-3V 5 ⁇ m 4.6 ⁇ 250 mm / elution solvent: 0.2% trifluoroacetic acid aqueous solution and 0.2% trifluoroacetic acid acetonitrile solution gradient).
  • HPLC column: Inertsil ODS-3V 5 ⁇ m 4.6 ⁇ 250 mm / elution solvent: 0.2% trifluoroacetic acid aqueous solution and 0.2% trifluoroacetic acid acetonitrile solution gradient.
  • hydrogenation reaction was performed to the compound (F) in order to derive
  • Example 5 In the same manner as in Example 2, compound F7 having the opposite stereology was prepared using acenaphthenone (about 500 mg) and the corresponding amine.
  • a 1- (4-piperidinyl) benzimidazolone derivative or a salt thereof can be industrially produced at a high yield and at a low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrogenated Pyridines (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 1-(4-ピペリジニル)ベンゾイミダゾロン誘導体の高収率で安価で工業的な製造方法の提供。 下記工程による1-(4-ピペリジニル)ベンゾイミダゾロン誘導体(1)又はその塩の製造方法。 [工程1]ピペリドン化合物(2)とアニリン化合物(3)とを還元的アミノ化反応を行って化合物(4)を得る工程 [工程2]化合物(4)を、ジ-t-アルキルジカルボナート又は炭酸N,N'-ジスクシンイミジルと反応させて1-(4-ピペリジニル)ベンゾイミダゾロン誘導体(1)を製造する工程 (式〔Ⅰ〕中、Rは、置換されていてもよいアルキル又は置換されていてもよい環状基を表す。 Rは、置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換されていてもよいアリールを表す。)

Description

1-(4-ピペリジニル)ベンゾイミダゾロン誘導体の製造方法
 本発明は、医薬合成中間体等として有用な1-(4-ピペリジニル)ベンゾイミダゾロン誘導体の製造方法に関する。
 1-(4-ピペリジニル)ベンゾイミダゾロン誘導体は、例えばORL-1(opioid receptor-like 1)受容体アゴニスト活性を示し、精神障害、神経障害及び生理学的障害の治療、特に、不安及びストレス障害、抑鬱、外傷性障害、アルツハイマー病又は他の痴呆症による記憶喪失、癲癇及び痙攣の症候、急性及び/又は慢性疼痛症状、並びに乱用医薬品中止中に生起する禁断症状を含む薬物離脱症状の緩解、アルコール乱用、水分バランスの制御、Na排泄、動脈血圧障害及び肥満症や拒食症のような摂食障害、並びに概日リズム睡眠障害の改善において有用である(特許文献1、2)。
 特許文献1、2には、1-(4-ピペリジニル)ベンゾイミダゾロン誘導体の製造方法が種々記載され、例えば、3位に置換アルキル基を有する1-(4-ピペリジニル)ベンゾイミダゾロン誘導体の製造については、ピペリドン化合物にフェニレンジアミンで還元アミノ化反応を施し、カルボジイミダゾールで反応させ、アルキル化させ、さらにアルキル上の置換基を変換する方法が記載されている。しかし、いずれも工程数が長く工業的には有利ではない。これらの製造方法の工程数を減らすため、フェニレンジアミンを先にN-アルキル化して反応させる収束型の製造方法が考えられるが、N-アルキルフェニレンジアミンの還元的アミノ化が2つの窒素原子のいずれで反応するか、またその選択性があるかが不明であった。また、続くウレア化反応は報告例が少なく、実際に炭酸ジエチル、炭酸ジフェニル、ジエチルジカルボナート、カルボジイミダゾール、クロロ炭酸フェニルを用いて反応を試みたが、反応が進行しないか、又は副反応が起こった。
 下記の光学活性アミン:
Figure JPOXMLDOC01-appb-I000005

(式中、*は不斉炭素であることを示す。)
の製造方法として、いくつかの方法が報告されている。
 特許文献1の実施例11では、ケトンを不斉触媒存在下、ボラン還元して光学活性のアルコールに導き、アジ化して還元することで光学活性アミンを製造している。また、非特許文献1では、アセナフテンを不斉ヒドロホウ素化し、ジアルキルホウ素に変換し、アミノへ変換することで光学活性アミンを製造している。しかし、これらの製造方法は、高価な不斉触媒、危険な試薬等を大量に使用し、工業的には使用しがたい。
 また、非特許文献2のScheme 3には、光学活性1-アリールエチルアミン誘導体をケトンと縮合させて得られるイミンを水素化ホウ素ナトリウムで還元することで高い不斉誘導が生じたこと、また光学活性フェニルグリシノールを用いた場合、過ヨウ素酸ナトリウムで処理することで2-ヒドロキシ-1-フェニルエチルが脱離して光学活性アミンが製造できたことが記載されている。しかし、本方法をアセナフテノンに適用してみたところ、中間体のイミンを単離しようとするとケトンが自己縮合した二量体が大量に副生してイミンを得ることが困難であり、そのまま適用することはできなかった。
WO2003/082333 WO2008/105497
Chem. Eur. J. 2006, 10, 1840 Org. Process. Res. Dev. 2007, 11, 539
 本発明は、1-(4-ピペリジニル)ベンゾイミダゾロン誘導体の工程数が少なく、高収率で安価な工業的製造方法を提供することを目的とする。
 本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、1-(4-ピペリジニル)ベンゾイミダゾロン誘導体(1)のRの置換基を先にフェニレンジアミンに導入した化合物(3)を化合物(2)と還元的アミノ化したところ、意外にも選択性よく1級アミノ基でのみ反応が起こって化合物(4)を製造することができ、さらにジ-t-アルキルジカルボナート又は炭酸N,N’-ジスクシンイミジルの特定カルボニル化試薬を使用することで極めて収率よく1-(4-ピペリジニル)ベンゾイミダゾロン誘導体(1)又はその塩を製造することができることを見出し、本発明を完成するに至った。
Figure JPOXMLDOC01-appb-I000006

(式中、Rは、置換されていてもよいアルキル又は置換されていてもよい環状基を表す。
 Rは、置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換されていてもよいアリールを表す。)
 即ち、本発明は、以下の通りである。
[1]下記工程による式1の1-(4-ピペリジニル)ベンゾイミダゾロン誘導体又はその塩の製造方法。
[工程1]式2のピペリドン化合物と式3のアニリン化合物とを還元的アミノ化反応に付して式4の化合物を得る工程
[工程2]式4の化合物を、ジ-t-アルキルジカルボナート又は炭酸N,N’-ジスクシンイミジルと反応させて式1の1-(4-ピペリジニル)ベンゾイミダゾロン誘導体を製造する工程
Figure JPOXMLDOC01-appb-I000007

(式中、Rは、置換されていてもよいアルキル又は置換されていてもよい環状基を表す。
 Rは、置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換されていてもよいアリールを表す。)
[2]Rが、下記式(a)~(c):
Figure JPOXMLDOC01-appb-I000008

(式中、m及びnは、同一又は異なって1~3の整数を表す。
 R及びRは、同一又は異なって、水素、アルキル、ハロゲン、アルコキシ、トリフルオロメチル、トリフルオロメトキシ、ヒドロキシル、ニトロ、アミノ、アルカノイルアミノ又はシアノを表す。
 Yは、CH、C(CH、O、S、SO又はSOを表す。)
のいずれかの基であり、
 Rが、アルキル、アルケニル、アルキル-カルボキシル、アルキル-C(O)O-アルキル、アルケニル-C(O)O-アルキル、アルキル-O-アルキル、アルキル-C(O)-NR、アルキル-S-アルキル、アルキル-S(O)-アルキル、アルキル-S(O)-アルキル、アルキル-S(O)-NR、アルキル-NR、アルキル-NR-C(O)-アルキル、フェニル(フェニルはアルキル、ハロゲン、アルコキシ、フェノキシ又はベンジルオキシで置換されていてもよい)、又はベンジル(ベンジルにおけるベンゼン環はアルキル、ハロゲン、アルコキシ、フェノキシ又はベンジルオキシで置換されていてもよい)
[式中、R及びRは、同一又は異なって、水素、アルキル(アルキルはC-Cシクロアルキルで置換されていてもよい)、シクロアルキル若しくはアルケニルを表すか、又はR及びRが結合して隣接する窒素原子と共に飽和含窒素複素環(飽和含窒素複素環はアルキル、ハロゲン、アルコキシ、フェノキシ又はベンジルオキシで置換されていてもよい)を形成してもよい。
 Rは水素、アルキル又はアルケニルを表す。]
である、[1]記載の製造方法。
[3]Rがアセナフテン-1-イルであり、RがN-メチルカルバモイルメチルである、[1]記載の製造方法。
[4]工程1の還元的アミノ化反応において、水素化ホウ素アルカリ、トリアシロキシ水素化ホウ素アルカリ及びボランアミン錯体から選択される還元剤、並びに、ギ酸、アルカン酸、ハロゲン化アルカン酸、アリールアルカン酸、置換されていてもよいアリールカルボン酸、置換されていてもよいアルキルスルホン酸及び置換されていてもよいアリールスルホン酸から選択される酸を使用する[1]~[3]のいずれか記載の製造方法。
[5]工程2が、式4の化合物をジ-t-ブチルジカルボナートと反応させて式1の1-(4-ピペリジニル)ベンゾイミダゾロン誘導体を製造する工程である、[1]~[4]のいずれか記載の製造方法。
[6]工程2において、ピリジン、ジメチルアミノピリジン及びN-メチルイミダゾールから選択される塩基を用いる[1]~[5]のいずれか記載の製造方法。
[7]二酸化炭素雰囲気にて工程2の反応を行う、[1]~[6]のいずれか記載の製造方法。
[8]式:
Figure JPOXMLDOC01-appb-I000009

(式中、R及びRは[2]における意義と同義である。)
で表される化合物又はその塩。
[9]Rがアセナフテン-1-イルであり、RがN-メチルカルバモイルメチルである[8]記載の化合物又はその塩。
[10]下記工程による式1aの1-(4-ピペリジニル)ベンゾイミダゾロン誘導体又はその塩の製造方法。
[工程1]式6のケトンと式7の光学活性アミノアルコール化合物とを反応させてイミンを反応系で生成させながら、イミンを還元することで式8の化合物を製造する工程
[工程2]式8の化合物に酸化剤を反応させることで、式5の光学活性アミンを製造する工程
[工程3]式5の光学活性アミンをN-エチル-N-メチル-4-オキソピペリジニウム ヨージドで処理することで、式2aのピペリドン化合物を製造する工程
[工程4]式2aのピペリドン化合物と式3のアニリン化合物とを還元的アミノ化反応に付して式4aの化合物を得る工程
[工程5]式4aの化合物を、ジ-t-アルキルジカルボナート又は炭酸N,N’-ジスクシンイミジルと反応させて式1aの1-(4-ピペリジニル)ベンゾイミダゾロン誘導体を製造する工程
Figure JPOXMLDOC01-appb-I000010

(式中、Rは置換されていてもよいC-C10アルキル、置換されていてもよいフェニル又は置換されていてもよいベンジルを示す。
 *は不斉炭素であることを示す。
 R、R及びRは[2]における意義と同義である。)
 アルキルとしては、直鎖又は分岐鎖のC-Cアルキルが挙げられ、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、第2級ブチル、第3級ブチル、ペンチル、ヘキシル等が挙げられる。好ましくは直鎖又は分岐鎖のC-Cアルキルが挙げられ、より好ましくは、メチル、エチル、プロピル、イソプロピルである。
 アルケニルとしては、直鎖又は分岐鎖のC-Cアルケニルが挙げられ、例えばビニル、1-プロペニル、2-プロペニル、イソプロペニル、1-ブテニル、2-ブテニル、3-ブテニル等が挙げられる。好ましくは直鎖又は分岐鎖のC-Cアルケニルが挙げられる。
 ハロゲンとしては、塩素、ヨウ素、フッ素および臭素が挙げられる。好ましくは塩素、フッ素および臭素が挙げられ、特に好ましくはフッ素である。
 アルコキシとしては、直鎖又は分岐鎖のC-Cアルコキシが挙げられ、例えばメトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、第2級ブトキシ、第3級ブトキシ、ペンチルオキシ、ヘキシルオキシ等を意味する。好ましくは直鎖又は分岐鎖のC-Cアルコキシが挙げられ、特に好ましくはメトキシである。
 アルカノイルとしては、C-Cアルカノイルが挙げられ、例えばアセチル、プロピオニル、ブチリル、ペンタノイル等が挙げられ、アセチルが好ましい。
 シクロアルキルとしては、C-Cシクロアルキルが挙げられ、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロへキシル、シクロヘプチル等が挙げられ、シクロプロピルが好ましい。
 アリールとしては、C-C10アリールが挙げられ、例えばフェニル、1-ナフチル、2-ナフチル等が挙げられ、フェニルが好ましい。
 環状基としては、環構成原子が3~17員であり、飽和若しくは不飽和の、単環若しくは縮合環の炭化水素環基又は複素環基が挙げられる。
 ここで単環の炭化水素環基としては、C-Cシクロアルキル、C-C10アリール等が挙げられる。
 ここで単環の複素環基としては、環構成原子として炭素原子以外に窒素原子、酸素原子及び硫黄原子(環を構成する炭素原子及び硫黄原子は酸化されていてもよい)から選択される1~4個のヘテロ原子を有する4~7員の単環の、飽和複素環基(例えば、ピロリジニル基、テトラヒドロフリル基、テトラヒドロピラニル基、オキセパニル基、テトラヒドロチエニル基、テトラヒドロチオピラニル基、チエパニル基、オキサゾリジニル基、イソオキサゾリジニル基、チアゾリジニル基、イソチアゾリジニル基、イミダゾリジニル基、ピラゾリジニル基、ピペリジル基、モルホリニル基、チオモルホリニル基、ピペラジニル基、アゼパニル基、アゾカニル基等);不飽和又は部分不飽和の複素環基(例えば、フリル基、チエニル基、ピロリル基、オキサゾリル基、オキサゾリニル基、イソオキサゾリル基、イソオキサゾリニル基、チアゾリル基、チアゾリニル基、イソチアゾリル基、イソチアゾリニル基、イミダゾリル基、イミダゾリニル基、ピラゾリル基、ピラゾリニル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、トリアジニル基、ジヒドロピリジル基等)等が挙げられる。
 ここで縮合環の炭化水素環基又は複素環基としては、上記「単環の炭化水素環基」および「単環の複素環基」から選択される2又は3環より形成される縮合環基等が挙げられる。
 本明細書において、「置換されていてもよい」と記載される基が有していてもよい置換基の数は、置換可能な限り制限はなく、好ましくは1~3個である。該置換基が2個以上存在する場合、それらは互いに同一でも異なっていてもよい。
 Rで示される「置換されていてもよいアルキル」における「アルキル」の置換基としては、ヒドロキシル、アルコキシ、ハロゲン、アルカノイル、置換されていてもよいアミノ、ニトロ、シアノ、アリール、環状基等が挙げられ、1つ又は複数、置換することができる。
 Rで示される「置換されていてもよい環状基」における「環状基」の置換基としては、ヒドロキシル、1~3個のハロゲンで置換されていてもよいアルコキシ、ハロゲン、アルカノイル、アルカノイルでモノまたはジ置換されていてもよいアミノ、ニトロ、シアノ、アリール、1~3個のハロゲンで置換されていてもよいアルキル、環状基等が挙げられ、1つ又は複数、置換することができる。
 Rとしては、好ましくは、前記の式(a)の基(ただし、YがCHであり、nが2であるもの)及び式(c)の基が挙げられる。
 RとRが結合して隣接する窒素原子とともに形成する飽和含窒素複素環としては、少なくとも1個の窒素原子を有し、さらに窒素原子、酸素原子および硫黄原子(環を構成する炭素原子及び硫黄原子は酸化されていてもよい)から選択されるヘテロ原子を1~3個含んでもよい5または6員環が挙げられ、例えばピペリジン、ピロリジン、モルホリン、チオモルホリン、ピペラジン、チアゾリジン、2,4-ジオキソチアゾリジン等が挙げられる。好ましくは、ピペラジン、モルホリン、ピロリジン、2,4-ジオキソチアゾリジンが挙げられ、特に好ましくは、ピロリジン、2,4-ジオキソチアゾリジンである。
 1-(4-ピペリジニル)ベンゾイミダゾロン誘導体(1)の塩としては、医薬上許容される塩であれば特に制限されず、無機酸(塩酸、臭化水素酸、硫酸、リン酸、硝酸等)または有機酸(酢酸、プロピオン酸、コハク酸、グリコール酸、乳酸、リンゴ酸、酒石酸、クエン酸、マレイン酸、フマル酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、カンファースルホン酸、アスコルビン酸等)との塩が挙げられる。また、1-(4-ピペリジニル)ベンゾイミダゾロン誘導体(1)及びこれらの塩は、水、有機溶媒との溶媒和物であっても良い。
 下記工程によって、1-(4-ピペリジニル)ベンゾイミダゾロン誘導体(1)又はその塩を製造することができる。
[工程1]ピペリドン化合物(2)とアニリン化合物(3)とを還元的アミノ化反応に付して化合物(4)を得る工程
[工程2]化合物(4)を、ジ-t-アルキルジカルボナート又は炭酸N,N’-ジスクシンイミジルと反応させて1-(4-ピペリジニル)ベンゾイミダゾロン誘導体(1)を製造する工程
Figure JPOXMLDOC01-appb-I000011

(式中、R及びRは前記と同義である。)
 本発明の製造方法においては、必要に応じて官能基に保護基を導入し、後工程で脱保護を行うなどの工夫により効率よい製造を実施してもよい。
 また、各工程において、反応後の処理は、通常行われる方法で行えばよく、単離精製は、必要に応じて、結晶化、再結晶、蒸留、分液、シリカゲルクロマトグラフィー、分取HPLC等の慣用される方法を適宜選択し、また組み合わせて行えばよい。
 工程1では、ピペリドン化合物(2)とアニリン化合物(3)とを還元的アミノ化反応に付すことで、化合物(4)を製造することができる。なお、ピペリドン化合物(2)は、化合物によってケトン部分が水和された構造を取る場合もあるが、同様に反応に使用することができる。
 還元的アミノ化反応は、通常公知の方法はいずれも使用しうる。例えば、酸存在下に特定の還元剤を用いることで実施できる。
 酸としては、ギ酸、アルカン酸(例、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘプタン酸等)、ハロゲン化アルカン酸(例、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、フルオロ酢酸、ジフルオロ酢酸等)、アリールアルカン酸、置換されていてもよいアリールカルボン酸(例、安息香酸)、置換されていてもよいアルキルスルホン酸(例、メタンスルホン酸等)、置換されていてもよいアリールスルホン酸(例、パラトルエンスルホン酸、ベンゼンスルホン酸等)等の有機酸、チタンテトライソプロポキサイド等の無機酸が挙げられる。酸は、ピペリドン化合物(2)1モルに対して例えば0.1~100モル、好ましくは0.8~20モルを使用することができる。
 特定の還元剤としては、水素化ホウ素アルカリ(例、水素化ホウ素ナトリウム等)、トリアシロキシ水素化ホウ素アルカリ(例、トリアセトキシ水素化ホウ素ナトリウム等)、ボランアミン錯体(例、ジメチルアミンボラン、トリエチルアミンボラン、トリメチルアミンボラン、t-ブチルアミンボラン、N,N-ジエチルアニリンボラン、2-ピコリンボラン等)等が挙げられる。還元剤は、ピペリドン化合物(2)1モルに対して、通常0.8~100モル、好ましくは0.8~2モルを使用することができる。
 アニリン化合物(3)の使用量は適宜選択されるが、例えばピペリドン化合物(2)1モルに対して0.8~2モルを使用することができる。また、反応溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、メタノール、エタノール、テトラヒドロフラン(THF)、アセトニトリル、2-プロパノール、トルエン、ジメチルホルムアミド(DMF)、1,3-ジメチルイミダゾリジノン等を使用することができる。
 反応温度としては、通常、-20~100℃から任意に選択することができ、反応時間は、通常10分~1日間程度である。
 アニリン化合物(3)は、J. Med. Chem. 1994, 37, 758に記載の方法と同様にして製造することができ、例えば1-置換アミノ-2-ニトロベンゼン誘導体を還元することで製造できる。
 工程2では、化合物(4)をジ-t-アルキルジカルボナート又は炭酸N,N’-ジスクシンイミジルと反応させることで1-(4-ピペリジニル)ベンゾイミダゾロン誘導体(1)を製造することができ、ジ-t-アルキルジカルボナートが好ましく用いられる。
 ジ-t-アルキルジカルボナートとしては、例えばジ-t-ブチルジカルボナートを好適に挙げることができる。ジ-t-アルキルジカルボナート又は炭酸N,N’-ジスクシンイミジルは、例えば化合物(4)1モルに対して0.8~100モル、好ましくは0.8~5モルを使用することができる。
 本反応においては、塩基を加えることも好ましく、例えばジ-t-アルキルジカルボナートの場合は、塩基を加えることで反応の進行を早めることができる。塩基としては、例えば、ピリジン、N,N-ジメチル-4-アミノピリジン、N-メチルイミダゾール、イミダゾール等が挙げられ、好ましくは、ピリジン、N,N-ジメチル-4-アミノピリジン、N-メチルイミダゾールであり、より好ましくは1-メチルイミダゾールである。塩基の使用量としては、例えば、化合物(4)1モルに対して0.05~10モル、好ましくは0.2~2モルを使用することができる。
 反応溶媒としては、ジクロロメタン、1,2-ジクロロエタン、メタノール、エタノール、THF、アセトニトリル、イソプロパノール、トルエン、DMF、ジメチルイミダゾリノン等が挙げられる。
 反応温度としては、通常、-20~100℃から任意に選択することができ、反応時間は、通常10分~1日間程度である。
 また、本工程は、二酸化炭素雰囲気にて行うことが、収率が安定するため好ましい。
 原料たるピペリドン化合物(2)は公知化合物であるか、あるいは通常公知の方法に従って、容易に製造できる。また、Rが光学活性な式(c)の基であるピペリドン化合物(2a)は、例えば光学活性アミン(5)から誘導することができる。
Figure JPOXMLDOC01-appb-I000012

(式中、R及びRは前記と同義である。*は不斉炭素であることを示す。)
 ピペリドン化合物(2a)は、光学活性アミン(5)をN-エチル-N-メチル-4-オキソピペリジニウム ヨージドで処理することで、製造することができる。N-エチル-N-メチル-4-オキソピペリジニウム ヨージドの使用量としては、例えば、ピペリドン化合物(2a)1モルに対して0.9~1.1モル、好ましくは当モル程度を使用することができる。
 反応溶媒としては、水、アルコール(エタノール等)、アセトニトリル等を単独もしくは混合して用いることができる。炭酸カリウム、水酸化ナトリウム等の塩基を0.5~2モル当量用いることも好ましい。反応温度としては、0℃~100℃、好ましくは40℃~90℃であり、反応時間は、通常10分~1日間程度である。
 その光学活性アミン(5)は、例えばケトン(6)から下記の製造方法又は中間体を経由して高収率で高光学純度に製造することができる。
  [製造方法A-1] 下記工程を含む、光学活性アミン(5)の製造方法。
[工程1]ケトン(6)と光学活性アミノアルコール化合物(7)とを反応させてイミンを反応系で生成させながら、イミンを還元することで化合物(8)を製造する工程
[工程2]化合物(8)に酸化剤を反応させることで、光学活性アミン(5)を製造する工程
Figure JPOXMLDOC01-appb-I000013

(式中、R、R、R及び*は前記と同義である。)
  [製造方法A-2] Rがイソプロピル、イソブチル又は第3級ブチルである[製造方法A-1]記載の製造方法。
  [製造方法A-3] 工程1においてトリアセトキシ水素化ホウ素アルカリ又はアミンボランをイミンの還元剤として用いる[製造方法A-1]又は[製造方法A-2]記載の製造方法。
  [製造方法A-4] 工程2においてオルト過ヨウ素酸、メタ過ヨウ素酸、又は過ヨウ素酸塩を酸化剤として用いる[製造方法A-1]~[製造方法A-3]のいずれか記載の製造方法。
  [中間体B-1] 式8:
Figure JPOXMLDOC01-appb-I000014

(式中、R、R、R及び*は前記と同義である。)
で表される化合物又はその塩。
  [中間体B-2] 以下のいずれかの化合物又はその塩。
2-{(1R)-(アセナフテン-1-イル)アミノ}-(2S)-4-メチルペンタン-1-オール
2-{(1R)-(アセナフテン-1-イル)アミノ}-(2S)-3-メチルブタン-1-オール
2-{(1R)-(アセナフテン-1-イル)アミノ}-(2S)-3,3-ジメチルブタン-1-オール
 製造方法A-1の工程1では、ケトン(6)と光学活性アミノアルコール化合物(7)とを反応させてイミンを反応系で生成させながら、イミンを還元することで、高い不斉誘導が起こり、高収率で化合物(8)を製造することができる。イミンを生成させながら、単離することなく次の還元反応を行うことで、ケトン(6)の自己縮合による二量体副生を防ぎ、初めて高収率を実現することが可能となっている。
 イミンの生成においては、酸触媒不存在下でも反応は進行するが、酸触媒を加えることが好ましい。酸触媒としては、例えばギ酸、酢酸、プロピオン酸、イソ酪酸、ヘキサン酸、トシル酸、安息香酸等が挙げられ、ケトン(6)に対して0~10モル当量を使用することができる。例えば、ギ酸の場合には0.5~1.5モル当量が好ましく、酢酸の場合には2~8モル当量が好ましい。
 光学活性アミノアルコール化合物(7)において、Rで示される「置換されていてもよいC-C10アルキル」における「C-C10アルキル」の置換基としては、ヒドロキシル等が挙げられ、Rで示される「置換されていてもよいフェニル」における「フェニル」の置換基としては、ヒドロキシル、アルキル、ハロゲン等が挙げられ、Rで示される「置換されていてもよいベンジル」における「ベンジル」の置換基としては、ヒドロキシル、ハロゲン等が挙げられる。これら置換基の数は、置換可能な限り制限はなく、好ましくは1~3個である。該置換基が2個以上存在する場合、それらは互いに同一でも異なっていてもよい。光学活性アミノアルコール化合物(7)の好ましい例としては、例えば2-フェニルグリシノール、バリノール、ロイシノール、イソロイシノール、t-ロイシノール、2-アミノ-1-ヘキサノール等の光学活性体が挙げられ、さらに好ましくは、バリノール、ロイシノール、t-ロイシノールの光学活性体が挙げられ、ケトン(6)に対して1~4モル当量加えることができる。なお、例えば、光学活性アミン(5)として(R)-(アセナフテン-1-イル)アミンを製造する場合には、(S)-バリノール、(S)-ロイシノール等の(S)-体を用いる。
 イミンの還元剤としては、トリアセトキシ水素化ホウ素アルカリ、各種アミンボラン(2-ピコリンボラン、5-エチル-2-メチルピリジンボラン、ピリジンボラン、t-ブチルアミンボラン、ジエチルイソプロピルアミンボラン等)をケトン(6)に対して1~5モル当量用いることができる。アミンボランの好ましい例としては、2-ピコリンボラン、5-エチル-2-メチルピリジンボラン、ピリジンボランが挙げられる。
 反応溶媒としては、例えばTHF、t-ブチルメチルエーテル、ヘプタン、トルエン、メタノール、エタノール、2-プロパノール、N-メチルピペリドン、1,3-ジメチル-2-イミダゾリジノン等を用いることができ、ケトン(6)に対して2~10mL/g程度用いるのが好ましい。反応温度としては、例えば20℃~80℃、好ましくは30℃~70℃で行うことができ、反応時間は、通常10分~1日間程度である。モレキュラーシーブ、硫酸マグネシウム、硫酸ナトリウム、酢酸ナトリウム等を脱水剤として添加することもできる。
 製造方法A-1の工程2では、化合物(8)に酸化剤を反応させることで、光学活性アミン(5)を製造することができる。酸化剤としては、オルト過ヨウ素酸、メタ過ヨウ素酸、過ヨウ素酸塩、四酢酸鉛等を用いることができ、好ましい例としてオルト過ヨウ素酸、過ヨウ素酸塩が挙げられる。酸化剤は、化合物(8)に対して1~3モル当量用いるのが好ましい。
 反応溶媒としては、水又は水と有機溶媒(メタノール、アセトニトリル、トルエン等)との混合溶媒を用いることができ、化合物(8)に対して5~30mL/g程度用いるのが好ましい。反応温度としては、-10℃~30℃、好ましくは0℃~20℃で実施でき、反応時間は、通常10分~1日間程度である。また、反応においてメチルアミン等の1級アミンを化合物(8)に対して例えば2~15モル当量共存させることができる。
 光学活性アミン(5)を、例えば、N-(アセナフテン-1-イル)-(1-フェニルエチル)アミン誘導体等から誘導する場合、望ましくない脱離・飽和化等が進行して、光学活性アミン(5)を収率良く製造することができない。本発明の製造方法では、2-ヒドロキシルエチルアミン構造を有する化合物(8)を経由することで、オルト過ヨウ素酸等の酸化剤により極めて穏やかに脱離反応を行うことを可能とし、高収率で光学活性アミン(5)を得ることが可能となる。
 以下、本発明を実施例等を挙げてより具体的に詳細に説明するが、本発明の範囲はこれらの実施例により限定されるものではない。
実施例1
Figure JPOXMLDOC01-appb-I000015
化合物(A)の製造
 グリシンエチルエステル塩酸塩(140 g, 1.00 mol)の水溶液(125 mL)に、40%メチルアミン水溶液(206 g, 2.65 mol)を室温にて10分間かけて加え、室温にて1時間攪拌した。反応液に25%水酸化ナトリウム水溶液(170 g)を加え、溶液を減圧下留去した。残渣にエタノール(553 g)を加え、ろ過した後、溶液を減圧下留去し、残渣に1,3-ジメチル-2-イミダゾリジノン(795 g)および炭酸カリウム(138 g, 0.999 mol)を加えた。溶液に2-フルオロニトロベンゼン(114.1 g, 0.809 mol)の1,3-ジメチル-2-イミダゾリジノン(371 g)の溶液を室温にて10分間かけて滴下した後、80℃まで昇温し、5時間攪拌した。反応液を冷却し、水(1100 mL)を加え、10~15℃にて1時間攪拌した。生じた沈殿物をろ過し、エタノール-水の1/1(w/w)溶液(900 g)にて洗浄し、乾燥して2-(2-ニトロフェニルアミノ)-N-メチルアセタミド[化合物(A)](138.5 g, 2-フルオロニトロベンゼンからの収率82%)を取得した。
1H NMR (CD3OD) ; 2.78 (3H, s), 4.03 (2H, s), 6.74 (2H, m), 7.50 (1H, m), 8.16 (1H, m)
化合物(B)の製造
 化合物(A)(12 g, 57.4 mmol)とエタノール(118 g)の懸濁液に5%Pd-C 50%含水品(2.4 g)を加えて、反応容器を窒素で置換した。水素置換を行った後、50℃まで昇温し、水素雰囲気下5時間攪拌した。反応液を冷却後、ろ過し、エタノール(118 g)にて洗浄した。ろ液を減圧下濃縮し、ジクロロメタン(135 g)を加えて、さらに減圧下濃縮し、2-(2-アミノフェニルアミノ)-N-メチルアセタミド[化合物(B)](10.8 g)を得た(定量的)。
1H NMR (CDCl3) ; 2.80 (3H, s), 3.81 (2H, s), 6.55 (1H, m), 6.70 (1H, m), 6.77 (2H, m), 6.85 (1H, m)
化合物(D)の製造
 化合物(B)(33.5 g, 187 mmol)のジクロロメタン(520 g)溶液に、実施例3にて製造した化合物(C)(52 g, 170 mmol)を加え、20~24℃にて攪拌後、酢酸(107.22 g, 1785 mmol)を滴下し、同温下、1時間攪拌した。ここで調製した液体を、t-ブチルアミンボラン(14.81 g, 170 mmol)のジクロロメタン(500 g)溶液に、10~20℃にて滴下し、同温下、3時間攪拌した。反応液を20%水酸化ナトリウム(477 g)と水(142 g)の混合液に16~19℃にて滴下し、攪拌および静置後に分液した。有機層に活性炭(41.94 g)を加え、1.0μmメンブランフィルターにてろ過し、アセトニトリル(330 g)を加えて、溶媒を約370 g程度まで減圧留去した(化合物(C)からのHPLC定量収率85.9%)。なお、反応液を一部採取し、シリカゲルカラムクロマトグラフィーにて精製し、2-(2-(1-((R)-アセナフテン-1-イル)ピペリジン-4-イルアミノ)フェニルアミノ)-N-メチルアセタミド[化合物(D)]を取得し、分析データを取得した。
1H NMR (CDCl3) ; 1.55 (2H, m), 2.00 (2H, m), 2.35 (1H, m), 2.51 (1H, m), 2.70 (1H, m), 2.80 (3H, s), 2.90 (1H, m), 3.20 (1H, m), 3.45 (2H, m), 3.78 (2H, s), 4.20 (1H, m), 4.98 (1H, m), 6.60 (2H, m), 6.78 (3H, m), 7.30 (2H, m), 7.50 (3H, m), 7.60 (1H, d, J = 8.0 Hz), 7.70 (1H, d, J = 8.0 Hz)
化合物(E)の製造
 化合物(D)(60.53 g, 146 mmol)のアセトニトリル(約 300 mL)の溶液にN-メチルイミダゾール(3.60 g, 43.8 mmol)を加えた。ジ-t-ブチルジカルボナート(44.61 g, 204 mmol)のアセトニトリル(121 g)溶液を29~31℃にて加え、同温下、4時間攪拌した。反応液を2~5℃まで冷却後、1時間懸濁液を熟成し、結晶をろ過し、アセトニトリル(400 g)にて洗浄した。45~55℃にて結晶を乾燥し、(R)-2-{3-[1-(アセナフテン-1-イル)ピペリジン-4-イル]-2,3-ジヒドロ-2-オキソベンゾイミダゾール-1-イル}-N-メチルアセトアミド[化合物(E)](42.47 g)を得た(化合物(C)からの収率56.7%)。
1H NMR (CDCl3) ; 1.75 (2H, m), 2.50 (4H, m), 2.80 (4H, m), 3.05 (1H, m), 3.41 (2H, m), 4.40 (1H, m), 4.49 (2H, s), 4.99 (1H, m), 6.11 (1H, m), 7.11 (3H, m), 7.31 (2H, m), 7.52 (3H, m), 7.63 (1H, m), 7.71 (1H, m)
実施例2
Figure JPOXMLDOC01-appb-I000016

化合物(F)の製造
 アセナフテノン(2.06 g, 12.2 mmol)、L-ロイシノール(1.97 g, 16.8 mmol)、2-ピコリンボラン(2.18 g, 20.4 mmol)、酢酸(4.4 ml, 77.3 mmol)、THF(12 ml)の混合液を約50℃にて10時間撹拌した。反応溶液を冷却し、6M塩酸(14 ml)をゆっくりと滴下した。滴下が終了しガス発生が止まった後、トルエン(10 ml)、THF(5 ml)、水酸化ナトリウム水溶液(NaOH約10 g及び水約45mlから調製)を加え、分液した。水層をトルエン(15ml)で抽出し、有機層を合わせて25%食塩水で洗浄した後、濃塩酸(1.4ml)を加えた。得られた懸濁液に2-プロパノール(15ml)を加え、60℃にて溶媒約半量を留去した後、2-プロパノール(4ml)を加えて、氷冷下、約1時間撹拌した。ろ過、トルエン洗浄し、真空乾燥することで目的物(2.37 g, 収率63%)が得られた(ジアステレオマー比 99.7:0.3)。さらにろ液を濃縮した後に結晶化させ、2-{(1R)-(アセナフテン-1-イル)アミノ}-(2S)-4-メチルペンタン-1-オール 1塩酸塩[化合物(F)](0.61 g, 収率16%)を得た(ジアステレオマー比 98.4:1.6)。
1H-NMR (DMSO-d6) ; 0.78(3H, d), 0.88(3H, d), 1.3-1.6(1H, m), 1.6-1.8(2H, d), 3.5-4.0(4H, m), 5.4-5.6(2H, m), 7.3-8.1(6H, m), 9.2-9.4(1H, brs), 9.4-9.7(1H, brs)
LC-MS: M+1 = 270
化合物(G)の製造
 化合物(F)(500 mg, 1.64 mmol)、メタノール(1.5 ml)の懸濁液に40%メチルアミン-メタノール溶液(1.1 ml)を加えた。これに氷冷下、オルト過ヨウ素酸水溶液(HIO (957 mg, 4.20 mmol)を水(5 ml)に溶解して調製)を15分間かけて滴下し、水(1 ml)で洗い込んだ。徐々に室温に戻し、終夜放置した後、反応液に水(2 ml)を加え、トルエン(8 ml)で抽出した。水層をトルエン(2 ml)で2回抽出し、有機層を合わせて約5 mlになるまで減圧濃縮した。これに6M塩酸(4 ml)及びメタノール(約8 ml)を加え、30~40℃にて約10分間撹拌した。得られた二層の溶液の下層を分液して取得し、上層を水/メタノール=1/1(4 ml)及び6M塩酸/メタノール=1/1(2 ml)で抽出した。下層を合わせて大部分のメタノールを減圧留去した。水(10 ml)、水酸化ナトリウム、トルエン(7 ml)を加えたアルカリ性混合液を分液し、水層をトルエン(約2 ml)で2回抽出した。トルエン層に2-プロパノール(2 ml)を加えて濃塩酸(0.2 ml)を加えて撹拌すると固体が析出した。2-プロパノールの大部分を減圧濃縮した後、2-プロパノール(約0.2 ml)を加え、氷冷下、約40分間撹拌した。固体をろ取し、80℃で約1時間減圧乾燥することにより目的物(253 mg, 収率75%、R/S = 98.8/1.2)を得た。これに2-プロパノール(7.5 ml)、水(0.75 ml)を加え、加熱還流させて溶解させた後、減圧下50℃にて約5 mlを留去した。さらに2-プロパノール(約5 ml)を加え、減圧下50℃にて約5 mlを留去する操作を3回繰り返した後、室温に徐冷した。氷冷下30分間撹拌後、析出している固体をろ取し、2-プロパノールで洗浄後、減圧乾燥することで、(R)-(アセナフテン-1-イル)アミン 1塩酸塩[化合物(G)](219 mg, 再結晶収率 87%、99.88%ee)を固体として得た。
1H-NMR (DMSO-d6) ; 3.3-3.5 (1H, m), 3.8-4.0(1H, m), 5.1-5.3(1H, m), 7.3-7.5 (1H, m), 7.5-7.7 (2H, m), 7.7-7.8 (1H, m), 7.8-8.0 (2H, m), 8.7-9.2(3H, brs)
実施例3
Figure JPOXMLDOC01-appb-I000017

化合物(C)の製造
 実施例2で製造された化合物(G)から誘導された(R)-(アセナフテン-1-イル)アミン 酢酸塩(50 g, 218 mmol)のアセトニトリル(350 g)懸濁液を70℃に調温し、30%水酸化ナトリウム水溶液(28.5 g, 43 mmol)を加えた。同温下30分間攪拌後、N-エチル-N-メチル-4-オキソピペリジニウム ヨージド(16.43 g, 214 mmol)の水溶液(148 mL)を滴下した。同温下2時間攪拌した後、30℃まで反応液を冷却し分液した。水層に食塩(20 g)を加えて分液し、あわせた有機層を約150g 程度まで減圧下留去した。35%塩酸水溶液(22.7 g, 217 mmol)を15℃にて添加し、析出した結晶をろ過した。アセトニトリル(100 g)にて洗浄し、減圧下45℃にて乾燥して1-((R)-アセナフテン-1-イル)-4,4-ジヒドロキシピペリジン 塩酸塩[化合物(C)](53.09 g, 収率79.3%)を得た。
1H NMR (CDCl3) ; 2.44 (2H, m), 2.78 (1H, m), 3.41 (1H, m), 3.65 (4H, m), 3.93 (2H, m), 5.55 (1H, m), 7.41 (1H, m), 7.58 (2H, m), 7.74 (1H, m), 7.89 (1H, m), 8.04 (1H, m)
実施例4
 実施例2と同様にして、アセナフテノン(約500 mg)及び対応するアミンを用いて下記の化合物F1~6及びF(参考)を製造した。
Figure JPOXMLDOC01-appb-T000018
 上記ジアステレオマー比は、HPLC(カラム:Inertsil ODS-3V 5μm 4.6×250mm/溶出溶媒:0.2%トリフルオロ酢酸水溶液と0.2%トリフルオロ酢酸アセトニトリル溶液のグラジエント)を用いて分析した。
 なお、化合物(G)に誘導するために化合物(F)に水素添加反応を施したが、多数の副生成物が生成し、化合物(G)を得ることができなかった。
実施例5
 実施例2と同様にして、アセナフテノン(約500 mg)及び対応するアミンを用いて、逆の立体を有する化合物F7を製造した。
Figure JPOXMLDOC01-appb-T000019
 本発明の製造方法によれば、1-(4-ピペリジニル)ベンゾイミダゾロン誘導体又はその塩を、高収率で安価に工業的に製造することができる。

Claims (10)

  1.  下記工程による式1の1-(4-ピペリジニル)ベンゾイミダゾロン誘導体又はその塩の製造方法。
    [工程1]式2のピペリドン化合物と式3のアニリン化合物とを還元的アミノ化反応に付して式4の化合物を得る工程
    [工程2]式4の化合物を、ジ-t-アルキルジカルボナート又は炭酸N,N’-ジスクシンイミジルと反応させて式1の1-(4-ピペリジニル)ベンゾイミダゾロン誘導体を製造する工程
    Figure JPOXMLDOC01-appb-I000001

    (式中、Rは、置換されていてもよいアルキル又は置換されていてもよい環状基を表す。
     Rは、置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換されていてもよいアリールを表す。)
  2.  Rが、下記式(a)~(c):
    Figure JPOXMLDOC01-appb-I000002

    (式中、m及びnは、同一又は異なって1~3の整数を表す。
     R及びRは、同一又は異なって、水素、アルキル、ハロゲン、アルコキシ、トリフルオロメチル、トリフルオロメトキシ、ヒドロキシル、ニトロ、アミノ、アルカノイルアミノ又はシアノを表す。
     Yは、CH、C(CH、O、S、SO又はSOを表す。)
    のいずれかの基であり、
     Rが、アルキル、アルケニル、アルキル-カルボキシル、アルキル-C(O)O-アルキル、アルケニル-C(O)O-アルキル、アルキル-O-アルキル、アルキル-C(O)-NR、アルキル-S-アルキル、アルキル-S(O)-アルキル、アルキル-S(O)-アルキル、アルキル-S(O)-NR、アルキル-NR、アルキル-NR-C(O)-アルキル、フェニル(フェニルはアルキル、ハロゲン、アルコキシ、フェノキシ又はベンジルオキシで置換されていてもよい)、又はベンジル(ベンジルにおけるベンゼン環はアルキル、ハロゲン、アルコキシ、フェノキシ又はベンジルオキシで置換されていてもよい)
    [式中、R及びRは、同一又は異なって、水素、アルキル(アルキルはC-Cシクロアルキルで置換されていてもよい)、シクロアルキル若しくはアルケニルを表すか、又はR及びRが結合して隣接する窒素原子と共に飽和含窒素複素環(飽和含窒素複素環はアルキル、ハロゲン、アルコキシ、フェノキシ又はベンジルオキシで置換されていてもよい)を形成してもよい。
     Rは水素、アルキル又はアルケニルを表す。]
    である、請求項1記載の製造方法。
  3.  Rがアセナフテン-1-イルであり、RがN-メチルカルバモイルメチルである、請求項1記載の製造方法。
  4.  工程1の還元的アミノ化反応において、水素化ホウ素アルカリ、トリアキシ水素化ホウ素アリカリ及びボランアミン錯体から選択される還元剤、並びに、ギ酸、アルカン酸、ハロゲン化アルカン酸、アリールアルカン酸、置換されていてもよいアリールカルボン酸、置換されていてもよいアルキルスルホン酸及び置換されていてもよいアリールスルホン酸から選択される酸を使用する、請求項1~3のいずれか記載の製造方法。
  5.  工程2が、式(4)の化合物をジ-t-ブチルジカルボナートと反応させて式1の1-(4-ピペリジニル)ベンゾイミダゾロン誘導体を製造する工程である、請求項1~4のいずれか記載の製造方法。
  6.  工程2において、ピリジン、ジメチルアミノピリジン及びN-メチルイミダゾールから選択される塩基を用いる、請求項1~5のいずれか記載の製造方法。
  7.  二酸化炭素雰囲気にて工程2の反応を行う、請求項1~6のいずれか記載の製造方法。
  8.  式:
    Figure JPOXMLDOC01-appb-I000003

    (式中、R及びRは請求項2における意義と同義である。)
    で表される化合物又はその塩。
  9.  Rがアセナフテン-1-イルであり、RがN-メチルカルバモイルメチルである、請求項8記載の化合物又はその塩。
  10.  下記工程による式1aの1-(4-ピペリジニル)ベンゾイミダゾロン誘導体又はその塩の製造方法。
    [工程1]式6のケトンと式7の光学活性アミノアルコール化合物とを反応させてイミンを反応系で生成させながら、イミンを還元することで式8の化合物を製造する工程
    [工程2]式8の化合物に酸化剤を反応させることで、式5の光学活性アミンを製造する工程
    [工程3]式5の光学活性アミンをN-エチル-N-メチル-4-オキソピペリジニウム ヨージドで処理することで、式2aのピペリドン化合物を製造する工程
    [工程4]式2aのピペリドン化合物と式3のアニリン化合物とを還元的アミノ化反応に付して式4aの化合物を得る工程
    [工程5]式4aの化合物を、ジアルキルジカルボナート又は炭酸N,N’-ジスクシンイミジルと反応させて式1aの1-(4-ピペリジニル)ベンゾイミダゾロン誘導体を製造する工程
    Figure JPOXMLDOC01-appb-I000004

    (式中、Rは置換されていてもよいC10アルキル、置換されていてもよいフェニル又は置換されていてもよいベンジルを示す。
     *は不斉炭素であることを示す。
     R、R及びRは請求項2における意義と同義である。)
PCT/JP2010/051465 2009-02-03 2010-02-03 1-(4-ピペリジニル)ベンゾイミダゾロン誘導体の製造方法 WO2010090198A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010549481A JP5236019B2 (ja) 2009-02-03 2010-02-03 1−(4−ピペリジニル)ベンゾイミダゾロン誘導体の製造方法
US13/147,698 US20110295013A1 (en) 2009-02-03 2010-02-03 Process for preparing 1-(4-piperidinyl)benzimidazolone derivatives
EP10738529A EP2394997A4 (en) 2009-02-03 2010-02-03 PROCESS FOR PREPARING 1- (4-PIPERIDINYL) BENZIMIDAZOLONE DERIVATIVES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-022834 2009-02-03
JP2009022834 2009-02-03

Publications (1)

Publication Number Publication Date
WO2010090198A1 true WO2010090198A1 (ja) 2010-08-12

Family

ID=42542091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051465 WO2010090198A1 (ja) 2009-02-03 2010-02-03 1-(4-ピペリジニル)ベンゾイミダゾロン誘導体の製造方法

Country Status (4)

Country Link
US (1) US20110295013A1 (ja)
EP (1) EP2394997A4 (ja)
JP (1) JP5236019B2 (ja)
WO (1) WO2010090198A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130281702A1 (en) * 2012-04-24 2013-10-24 Jonathan P. Pease Methods For Preparing Fentanyl And Fentanyl Intermediates
CN105777615A (zh) * 2016-04-07 2016-07-20 戊言医药科技(上海)有限公司 4-吗啉代哌啶的制备方法
CN107739342B (zh) * 2017-11-29 2020-01-10 华南理工大学 一种一步合成5-二芳氨基苯并咪唑酮衍生物的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003082333A1 (fr) 2002-03-29 2003-10-09 Mitsubishi Pharma Corporation Remede contre les troubles du sommeil
JP2007506709A (ja) * 2003-09-25 2007-03-22 ソルベイ・フアーマシユーチカルズ・ベー・ブイ ヒトorl1受容体に対するアゴニストとしてのベンズイミダゾロン及びキナゾリノン誘導体
WO2008105497A1 (ja) 2007-03-01 2008-09-04 Mitsubishi Tanabe Pharma Corporation ベンゾイミダゾール化合物およびその医薬用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101227072B1 (ko) * 2007-01-16 2013-01-29 시오노기세이야쿠가부시키가이샤 Orl-1 리간드로서의 헤테로시클릭-치환 피페리딘
MX2010002449A (es) * 2007-08-31 2010-09-07 Purdue Pharma Lp Compuestos de piperidina tipo quinoxalina sustituida y uso de los mismsos.
US20090221642A1 (en) * 2008-03-03 2009-09-03 Astrazeneca Ab Muscarinic receptor agonists, compositions, methods of treatment thereof, and processes for preparation thereof-176

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003082333A1 (fr) 2002-03-29 2003-10-09 Mitsubishi Pharma Corporation Remede contre les troubles du sommeil
JP2007506709A (ja) * 2003-09-25 2007-03-22 ソルベイ・フアーマシユーチカルズ・ベー・ブイ ヒトorl1受容体に対するアゴニストとしてのベンズイミダゾロン及びキナゾリノン誘導体
WO2008105497A1 (ja) 2007-03-01 2008-09-04 Mitsubishi Tanabe Pharma Corporation ベンゾイミダゾール化合物およびその医薬用途

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BOGGS, S. D. ET AL.: "Efficient Asymmetric Synthesis of N-[(lR)-6-Chloro-2,3,4,9- tetrahydro-1H-carbazol-1-yl]-2- pyridinecarboxamide for Treatment of Human Papillomavirus Infections", ORGANIC PROCESS RESEARCH & DEVELOPMENT, vol. 11, 2007, pages 539 - 545, XP008162036 *
CHEM. EUR. J., vol. 10, 2006, pages 1840
IEMURA, R. ET AL.: "Syntheses of the Metabolites of 1-(2-Ethoxyethyl)-2-(hexahydro-4-methyl-1H-1, 4-diazepin-1-yl)-1H-benzimidazole Difumarate (KG-2413) and Ralated Compounds", CHEM. PHARM. BULL., vol. 37, no. 4, 1989, pages 962 - 966, XP008162035 *
J. MED. CHEM., vol. 37, 1994, pages 758
MEANWELL, N. A. ET AL.: "N-BENZYLATED BENZIMIDAZOL-2-ONE DERIVATIVES: ACTIVATORS OF LARGE-CONDUCTANCE Ca2+-DEPENDENT K+ CHANNELS", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 6, no. 14, 1996, pages 1641 - 1646, XP004134913 *
ORG. PROCESS. RES. DEV., vol. 11, 2007, pages 539
PAN, P. ET AL.: "Liquid Phase Synthesis of Arylamines and its application to the Benzimidazolone via Nucleophilic Aryl Substitution", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 9, 1999, pages 1537 - 1540, XP004169634 *
See also references of EP2394997A4 *
SREEKUMAR, R. ET AL.: "Asymmetric Synthesis of Amines by the Reductive Amination of Ketones Using (+) and (-) Norephedrine Followed by Periodate Oxidation.", TETRAHEDRON: ASYMMETRY, vol. 4, no. 9, 1993, pages 2095 - 2100, XP002972338 *

Also Published As

Publication number Publication date
JP5236019B2 (ja) 2013-07-17
US20110295013A1 (en) 2011-12-01
EP2394997A4 (en) 2012-07-18
EP2394997A1 (en) 2011-12-14
JPWO2010090198A1 (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
WO2007058304A1 (ja) シンナミド化合物の塩またはそれらの溶媒和物
CA2823088A1 (en) Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione compounds
EA012911B1 (ru) Способ получения высокочистого полиморфа (i) донепезила гидрохлорида
WO2004013101A2 (fr) Derives de n-[phenyl(piperidin-2-yl)methyl]benzamide, leur preparation et leur application en therapeutique
WO2004013100A2 (fr) Derives de n-[phenyl(piperidin-2-yl)methyl]benzamide, leur preparation et leur application en therapeutique
EP2346850A1 (en) A method for the preparation of dabigatran and its intermediates
JP2021535934A (ja) 4−メトキシピロール誘導体の製造方法
JP2011503122A (ja) 4,5−ジメトキシ−1−(メチルアミノメチル)−ベンゾシクロブタンの分離
AU2006300492B2 (en) Process for producing 1-benzyl-4-[(5,6-dimethoxy-1indanon)-2-yl]methylpiperidine or hydrochloride thereof
JP5236019B2 (ja) 1−(4−ピペリジニル)ベンゾイミダゾロン誘導体の製造方法
KR100691735B1 (ko) 4-아미노메틸-3-알콕시이미노피롤리딘 메탄설폰산염의신규한 제조 방법
WO2008157658A1 (en) Deuterium-enriched montelukast
AU765194B2 (en) Processes and intermediates for preparing 2-substituted piperidine stereoisomers
MX2012009413A (es) Procedimiento para la preparacion de 2-(ciclohexilmetil)-n-{2[(2s) -1-metilpirrolidin-2-il]etil}-1,2,3,4-tetrahidroisoquinolina-7-su lfonamida.
KR20230021075A (ko) 베타 아드레날린성 작용제의 형태 및 조성물
JP5952748B2 (ja) フタロイルアムロジピンの新規結晶形態およびそれを用いる高純度なアムロジピンベシル酸塩の製造方法
US20060100438A1 (en) Process of making fentanyl intermediates
CN108329282B (zh) 一种苯基哌嗪类衍生物及其制备方法和应用
JPWO2006080519A1 (ja) ジアミン誘導体
JPWO2007043440A1 (ja) 1−ベンジル−4−[(5,6−ジメトキシ−1−インダノン)−2−イル]メチルピペリジンまたはその塩酸塩の製造法
WO2022186362A1 (ja) ピラゾール化合物の製造方法
JP2021520382A (ja) 2,2−ジメチルピペラジンの調製方法
KR20110023887A (ko) CBı-길항 활성을 갖는 플루오로-치환된 3,4-디아릴-4,5-디하이드로-1H-피라졸-1-카복스아미딘 유도체
KR20070121991A (ko) 결정상 시부트라민 프리베이스의 제조방법
EP2177221A1 (en) Process for the preparation of substantially optically pure Repaglinide and precursors thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549481

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13147698

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010738529

Country of ref document: EP