WO2010090015A1 - 測定装置及び穿刺装置 - Google Patents

測定装置及び穿刺装置 Download PDF

Info

Publication number
WO2010090015A1
WO2010090015A1 PCT/JP2010/000657 JP2010000657W WO2010090015A1 WO 2010090015 A1 WO2010090015 A1 WO 2010090015A1 JP 2010000657 W JP2010000657 W JP 2010000657W WO 2010090015 A1 WO2010090015 A1 WO 2010090015A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens barrel
support member
laser
glass tube
hard glass
Prior art date
Application number
PCT/JP2010/000657
Other languages
English (en)
French (fr)
Inventor
堀川清弘
西田毅
天野良則
高島哲也
松村圭介
北川雅裕
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/147,255 priority Critical patent/US8764682B2/en
Priority to JP2010549400A priority patent/JP5307161B2/ja
Publication of WO2010090015A1 publication Critical patent/WO2010090015A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150099Means for enhancing collection by negative pressure, other than vacuum extraction into a syringe by pulling on the piston rod or into pre-evacuated tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150358Strips for collecting blood, e.g. absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15103Piercing procedure
    • A61B5/15107Piercing being assisted by a triggering mechanism
    • A61B5/15113Manually triggered, i.e. the triggering requires a deliberate action by the user such as pressing a drive button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15134Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15134Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids
    • A61B5/15136Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids by use of radiation, e.g. laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement

Definitions

  • the present invention relates to a measurement device and a puncture device equipped with a laser puncture type puncture function.
  • Patent Document 1 describes a blood glucose level measuring device including a laser unit provided in a main body case and a laser unit composed of a laser rod and a flash lamp arranged to face each other in a lens barrel.
  • the flash lamp has a configuration in which an inert gas is sealed in a glass tube.
  • the flash lamp uses a quartz tube as a glass tube. The quartz tube is supported on the laser unit case by heat resistant rubber.
  • An object of the present invention is to provide a measurement device and a puncture device that can prevent thermal damage of a laser unit and can reduce the cost.
  • the measuring device of the present invention is a measuring device including a puncturing laser unit, and the laser unit is opposed to the laser rod in the lens barrel, a laser rod installed in the lens barrel, and A flash lamp disposed and sealed with an inert gas in a hard glass tube; and at least a part of the flash lamp installed outside the lens barrel, and supporting the outer peripheral surface of the hard glass tube on a unit case, having a thermal conductivity of 100 W / ( m ⁇ K) and a support member made of a material equal to or greater than the above.
  • the puncture device of the present invention is a puncture device that punctures the skin by irradiating laser with a laser unit
  • the laser unit includes a lens barrel, a laser rod installed in the lens barrel, and the lens barrel.
  • a flash lamp disposed opposite to the laser rod in which an inert gas is sealed in a hard glass tube, and at least a part of the flash lamp outside the lens barrel, and supporting the outer peripheral surface of the hard glass tube to a unit case
  • a support member made of a material having a conductivity of 100 W / (m ⁇ K) or more.
  • the present invention it is possible to prevent thermal damage to the laser unit by dissipating heat with a support member made of a material having a thermal conductivity of 100 W / (m ⁇ K) or more.
  • Glass tubes can be used. Since the hard glass tube is extremely cheap compared to the quartz glass tube, it is possible to realize a significant cost reduction of the measuring device and the puncture device using the laser unit.
  • FIG. 1 The perspective view which shows the measuring apparatus which concerns on Embodiment 1 of this invention.
  • FIG. The front view which looked at the measuring apparatus which concerns on the said Embodiment 1 from the front The perspective view explaining the use condition of the measuring apparatus which concerns on the said Embodiment 1.
  • FIG. The perspective view explaining the use condition of the measuring apparatus which concerns on the said Embodiment 1.
  • FIG. Side surface sectional drawing explaining the use condition of the measuring apparatus which concerns on the said Embodiment 1 The perspective view which shows the structure of the laser unit of the measuring apparatus which concerns on the said Embodiment 1.
  • Exploded perspective view of the laser unit of the measuring apparatus according to the first embodiment Exploded perspective view of the laser unit of the measuring apparatus according to the first embodiment. Exploded perspective view of the laser unit of the measuring apparatus according to the first embodiment. Exploded perspective view of the laser unit of the measuring apparatus according to the first embodiment. Exploded perspective view of the laser unit of the measuring apparatus according to the first embodiment. Exploded perspective view of the laser unit of the measuring apparatus according to the first embodiment. Exploded perspective view of the laser unit of the measuring apparatus according to the first embodiment.
  • FIG. Sectional drawing of the principal part of the laser unit explaining the positional relationship between the flash lamp and the support of the laser unit of the measuring apparatus according to the first embodiment The disassembled perspective view of the laser unit of the measuring apparatus which concerns on Embodiment 2 of this invention.
  • the present embodiment is a measurement device and a puncture device characterized by a laser unit.
  • a measuring apparatus to which the laser unit is applied will be described. Note that this laser unit can be similarly applied to a puncture apparatus.
  • FIGS. 5 and 6 are perspective views showing a measuring apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a front view of the measuring device as viewed from the front
  • FIGS. 5 and 6 are perspective views for explaining the usage state of the measuring device.
  • This embodiment is an example in which the laser unit is applied to a blood sugar level measuring apparatus that measures blood sugar levels.
  • the measuring apparatus 100 includes a main body case 1 made of a rectangular tube-shaped frame having upper and lower surfaces.
  • the frame constituting the main body case 1 has a front surface 1A on the left side, a rear surface 1B on the right side, and side surfaces 1C and 1D on the front and rear sides. In this state, the flat shape between the front and rear surfaces 1A and 1B is wider than between the side surfaces 1C and 1D.
  • a laser irradiation port 2 is formed on the front surface 1 ⁇ / b> A side of the main body case 1.
  • the laser irradiation port 2 is provided at the left and right central portion of the front surface 1A and below the vertical center portion of the front surface 1A.
  • a laser unit 200 (see FIGS. 8 to 14; the same applies hereinafter) is arranged in the main body case 1 on the rear side of the laser irradiation port 2.
  • a liquid crystal type display unit 8 is arranged on the upper surface 1 ⁇ / b> F of the main body case 1.
  • An activation switch 9 of the laser unit 200 is disposed above the rear surface 1B.
  • An operation switch 10 is provided above the side surface 1C.
  • the operation switch 10 adjusts the laser output. In addition, the operation switch 10 performs an operation of confirming the history of the detected blood sugar level on the display unit 8.
  • a cover 11 is disposed in front of the laser irradiation port 2.
  • the lower part of the cover 11 has an integrated support part 11A.
  • 11 A of support parts are each slidably supported by the sliding groove
  • the cover 11 has a function of a protective cover for the laser light emitted from the laser irradiation port 2.
  • the cover 11 is in a closed state close to the front surface 1A side of the main body case 1 as shown in FIG. 1 when not measured, and is pulled out further forward of the front surface 1A as shown in FIG. To do. Since the cover 11 exists in front of the laser irradiation port 2 at any time of non-measurement / measurement, the function as a protective cover is exhibited.
  • the laser irradiation port 2 is formed above the finger pad 13.
  • the lower part of the finger pad 13 is pivotally supported with respect to the main body case 1 so as to be rotatable.
  • the measurement sensor 14 for measuring the blood sugar level is exposed.
  • the measurement sensor 14 is detachably mounted in a state where the upper part of the finger pad 13 is rotated forward. In this embodiment, the measurement sensor 14 measures a blood glucose level.
  • the measurement sensor 14 has a through hole 14 ⁇ / b> A formed in a portion facing the laser irradiation port 2.
  • Laser light emitted from the tip of the laser rod 220 (left end of FIG. 9 described later) through the condenser lens 207 (see FIG. 9) passes through the through hole 14A and the laser irradiation port 2 and is applied to the finger 15 shown in FIG. Irradiates inside the fingertip.
  • FIG. 5 shows a state in which the blood glucose level is measured with the right hand. As shown in FIG. 1 to FIG. 3, the upper part of the finger pad 13 is raised rearward, and in this state, the main body case 1 is held with the right hand as shown in FIG. Press and measure.
  • a holding portion that is held by a palm and a fingertip includes a front surface 1A, a rear surface 1B, and side surfaces 1C and 1D.
  • one finger 15 is pressed against the laser irradiation port 2 and the start switch 9 is operated. Thereby, the laser beam is irradiated to the inner surface side of the finger 15, and blood flows out from the irradiated portion.
  • the blood flows out to the through hole 14A side of the measurement sensor 14 by the suction force from the inside of the main body case 1.
  • the measurement sensor 14 is a blood collecting means having a reagent in the vicinity of the through hole 14A.
  • the measurement sensor 14 sends a detection signal indicating the conduction state of the reagent to the measurement apparatus 100.
  • the measuring apparatus 100 measures the blood glucose level based on the detection signal, and displays the measured blood glucose level on the display unit 8.
  • the blood flowed out by laser light irradiation is supplied to the through hole 14A side by suction force.
  • the pressurizing means provided on the laser irradiation port 2 side of the cover 11 is used.
  • the blood may be supplied to the through hole 14A by pressing the finger 15 against the laser irradiation port 2 side (not shown) or pressing the finger 15 against the laser irradiation port 2 side with the force of the finger 15 itself.
  • the measuring apparatus 100 removes the measurement sensor 14 for replacement.
  • the upper part of the finger pad 13 is tilted forward, and the exposed upper part of the measurement sensor 14 is pinched with a finger and pulled out.
  • the measurement sensor 14 is picked up or the measurement sensor 14 shown in FIG. 3 is attached to the space above the cover 11 (support part 11A).
  • a recess 1N is formed in the upper portion of the front surface 1A of the main body case 1 above the laser irradiation port 2.
  • FIG. 7 is a side cross-sectional view for explaining the usage state of the measuring apparatus 100.
  • a laser unit 200 is arranged in the main body case 1 on the rear side of the laser irradiation port 2.
  • the electric circuit 20 is disposed at the upper part of the laser unit 200, and the battery 21 is disposed at the lower part of the laser unit 200.
  • the electric circuit 20 includes a high voltage generation circuit (not shown) that generates a high voltage for causing the flash lamp to emit light.
  • the laser unit 200 is attached to the upper portion of the attachment unit 18 by, for example, screwing by an attachment portion 204A integrated on the front side of the condenser lens 207 (see FIG. 9).
  • This attachment is provided with anti-vibration measures by interposing an unillustrated elastic member.
  • a finger pad 13 is rotatably attached to the lower part of the attachment unit 18. As shown in FIGS. 2 and 6, the finger pad 13 is openable and closable.
  • An opening 18A is formed in a portion of the mounting unit 18 that faces the laser irradiation port 2, and has a configuration that does not prevent the laser light from passing therethrough.
  • the condenser lens 207 is integrated with the laser unit 200 (the lower case 202 constituting the laser unit 200 shown in FIG. 10). Thereby, the positional relationship with the laser rod 220 provided in the laser unit 200 (the lower case 202 constituting the laser unit 200 shown in FIG. 10) is stabilized.
  • the measurement apparatus 100 that mounts the laser unit 200, attaches the blood sensor 14, and measures blood components after skin puncture has been described, but is not limited thereto.
  • the blood sensor 14 when it is not attached, it can be used as a laser puncture device equipped with a laser unit 200 that punctures skin with a laser. That is, any apparatus using the laser unit 200 may be applied.
  • This embodiment is characterized by the configuration of the laser unit 200.
  • FIG. 8 is a perspective view showing the configuration of the laser unit 200
  • FIG. 9 is a cross-sectional view taken along the line AA in FIG. 10 to 14 are exploded perspective views of the laser unit 200.
  • the laser unit 200 includes a unit main body 201, a lens barrel 210 disposed in the unit main body 201, and a laser rod 220 and a flash lamp 230 disposed to face each other in the lens barrel 210.
  • a unit main body 201 the unit main body 201
  • a lens barrel 210 disposed in the unit main body 201
  • a laser rod 220 and a flash lamp 230 disposed to face each other in the lens barrel 210.
  • the unit main body 201 includes a lower case 202 that forms the lower part of the housing, and an upper case 203 that is attached to the lower case 202 and forms the upper part of the housing.
  • the lower case 202 is formed with attachment portions 204A and 204B for attaching the unit main body 201 to the attachment unit 18 in the main body case 1.
  • the attachment portion 204A extends from the bottom portion of the lower case 202 to the front surface, and the attachment portion 204B extends from the bottom portion of the lower case 202 to the side surface.
  • a slit-like vent hole 205 that radiates heat in the unit main body 201 is provided on the lower surface of the lower case 202, and a slit-like vent hole 206 that radiates heat in the unit main body 201 is provided on the upper surface of the upper case 202. Is provided.
  • vent holes 205 and 206 are provided in order to more effectively dissipate heat by the supports 241, 242, 243, and 244 described later.
  • the lens barrel 210 has an elliptical shape as shown in FIGS. 10 to 14, and reflects the light emitted from the flash lamp 230 to be condensed on the laser rod 220.
  • the lens barrel 210 is manufactured by processing a high-luminance aluminum material sheet.
  • the lens barrel 210 is longer in the vertical direction (upper surface 1F, lower surface 1E direction of the main body case 1 in FIG. 1) than in the horizontal direction (directions of the side surfaces 1C and 1D of the main body case).
  • the oval cylinders are arranged in the horizontal direction (the front surface 1A and the rear surface 1B of the main body case 1 in FIG. 1).
  • the flash lamp 230 is arranged in the horizontal direction below and the laser rod 220 is arranged in the horizontal direction facing upward in the elliptical cylinder.
  • the flash lamp 230 is close to the lower surface 1E of the main body case 1, and it is easy to take measures for heat dissipation.
  • the lens barrel 210 includes a dome-shaped upper lens barrel 211 and a dome-shaped lower lens barrel 212 which are divided into upper and lower parts.
  • the upper lens barrel 211 and the lower lens barrel 212 have legs 211A and 212A, respectively.
  • the upper lens barrel 211 and the lower lens barrel 212 are integrated with each other by bringing the opposing leg portions 211A and 212A into contact with each other. Thereby, an elliptical barrel 210 is formed.
  • the upper barrel 211 and the upper barrel 212 are made of a high-luminance aluminum material, and at least the inner peripheral surface is mirror-finished, and the inner surfaces of the upper barrel 211 and the lower barrel 212 are in a highly reflective state. ing. Therefore, the light emitted from the flash lamp 230 is effectively supplied to the laser rod 220.
  • the laser rod 220 has reflecting mirrors (not shown) on both end surfaces of the rod, receives light emitted from the flash lamp 230 on the outer peripheral surface of the laser rod 220, and amplifies the energy in the laser rod 220.
  • the laser rod 220 irradiates a laser beam from the tip of the laser rod 220 after energy accumulation of a predetermined amount or more.
  • the laser rod 220 faces the laser irradiation port 2 through the condenser lens 207 at the tip end side (left end side in FIGS. 9 and 10).
  • the reflectance of the reflection film on the end face of the laser rod 220 is shown as an example below.
  • Flash lamp 230 For the flash lamp 230, a hard glass tube 231 (see FIG. 15, the same applies below) is used instead of the conventional quartz tube.
  • the flash lamp 230 encloses an inert gas in an elongated cylindrical hard glass tube 231 and applies a high voltage to the positive electrode 232 and the negative electrode 233 (see FIG. 15; the same applies hereinafter) at both ends in the hard glass tube. Make it emit light.
  • the hard glass tube 231 has a linear expansion coefficient of 30 ⁇ 10 ⁇ 7 when it rises 1 ° C. per meter, whereas the quartz tube has a linear expansion coefficient of 4 ⁇ 10 ⁇ 7 when it rises 1 ° C. per meter. .
  • the hard glass tube 231 has an extremely large linear expansion coefficient compared to the quartz tube. For this reason, unless the heat radiation of the hard glass tube 231 is effectively performed, the hard glass tube will be damaged by heat.
  • the hard glass tube and the quartz tube have the following differences when compared in terms of materials.
  • the hard glass tube is melted by mixing boric acid with silicon, which is the main component of the glass, to raise the softening temperature and hardness, whereas the quartz tube is basically made of only silicon.
  • the life of the number of times of light emission of a general small flash lamp is tens of thousands of times for a quartz tube, whereas it is 3,000 to 10,000 times for a hard glass tube.
  • the hard glass tube is less resistant to heat than the quartz tube, and the life of the flash lamp is less than that of the quartz tube.
  • the flash lamp 230 is preferably a general-purpose member from the viewpoint of cost reduction.
  • the flash lamp 230 can be used as it is for a strobe of a camera.
  • the strobe of the camera is provided with a reflecting mirror on the back side, but the front side is a heat radiating surface, and since the temperature rise is small, there is no thermal damage.
  • the laser unit 200 covers the entire outer periphery of the flash lamp 230 with the lens barrel 210. For this reason, the temperature rise in the lens barrel 210 is extremely large, and if the flash lamp used as a strobe for a camera is used as it is, thermal damage will occur.
  • this heat radiation countermeasure is taken by the supports 241, 242, 243, and 244 that support the flash lamp 230 on the unit main body 201.
  • the flash lamp 230 is supported on the unit main body 201 by plate-like supports 241, 242, 243, and 244 disposed outside the lens barrel 210.
  • Support members 241, 242, 243, and 244 support members support the laser rod 220 and the flash lamp 230, and position the laser rod 220 and the flash lamp 230 in the lens barrel 210 in the radial direction.
  • the supports 241, 242, 243, and 244 are made of a member having good thermal conductivity such as metal, and are made of, for example, aluminum.
  • good heat conductivity means that the material has a thermal conductivity of 100 W / (m ⁇ K) or more.
  • material having high thermal conductivity refers to a substance having a thermal conductivity of 100 W / (m ⁇ K) or more.
  • the supports 241, 242, 243, and 244 are characterized by being made of a material having a thermal conductivity of 100 W / (m ⁇ K) or more.
  • Aluminum 236W / (m ⁇ K)
  • Aluminum alloy 109 to 225 W / (m ⁇ K)
  • Copper 398W / (m ⁇ K)
  • Brass 106W / (m ⁇ K)
  • aluminum is used for the supports 241, 242, 243, and 244 in terms of good workability and light weight.
  • the supports 241, 242, 243, and 244 have both a function of supporting the flash lamp 230 on the unit main body 201 and a function of dissipating heat from the flash lamp 230 formed of a hard glass tube having poor heat resistance.
  • the supports 241, 242, 243, and 244 are formed of the hard glass tube 231 (see FIG. 15) on the positive electrode 232 and the negative electrode 233 (see FIG. 15) on both ends of the flash lamp 230. It was set as the structure made to contact outer periphery.
  • the outer peripheral position of the hard glass tube 231 on the positive electrode 232 and the negative electrode 233 at both ends of the flash lamp 230 is where the heat generation by the positive electrode 232 and the negative electrode 233 is the largest, and thus the heat radiation effect may be great.
  • the outer peripheral position of the hard glass tube 231 with which the supports 241, 242, 243, and 244 are in contact is the portion of the positive electrode 232 and the negative electrode 233, no light emission occurs.
  • the supports 241, 242, 243, and 244 are made of a material having high thermal conductivity such as aluminum. For this reason, the heat of the outer peripheral surface of the hard glass tube 231 (see FIG. 15) constituting the flash lamp 230 can be positively released to the outside of the lens barrel 210 via the support members 241, 242, 243, and 244. .
  • the supports 241, 242, 243, and 244 are in close contact with the upper lens barrel 211 and the lower lens barrel 212. Thereby, the heat transmitted to the supports 241, 242, 243 and 244 can be radiated to the vent hole 205 via the upper barrel 211 and the lower barrel 212.
  • the surfaces of the supports 241, 242, 243, and 244 facing the inner surface of the lens barrel 210 are mirror-finished to serve as reflecting surfaces.
  • the surface of the support 241, 242, 243, 244 that faces the inner surface of the lens barrel 210 is used as a reflecting surface, so that the lamp light is reflected in the lens barrel 210 and the light reflection effect in the lens barrel 210 is enhanced. Can do.
  • the inside of the lens barrel 210 is sealed so that dust does not enter from the outside of the laser unit 200 housing. That is, the upper lens barrel 211 and the lower lens barrel 212 are brought into close contact with each other to complete the lens barrel 210, and the supports 241, 242, 243, 244 are brought into contact with the lens barrel 210, and the housing (the lower case 202 and the upper case
  • the lens barrel 210 is hermetically sealed by being pressed by a housing 203.
  • a spring may be used for the holding portion of the housing.
  • the gap between the lead-out portion of the wire connected to the flash lamp 230 and the housing is closed with silicon resin to secure a sealed space.
  • the space surrounded by the housing, the support members 241 and 243 (support members) and the condenser lens 207 is sealed as a sealed space 208 so that dust does not enter from outside the housing of the laser unit 210. . That is, as shown in FIG. 8, the tip surface (the left side surface in FIG. 9) of the laser rod 220 is exposed to the condenser lens 207 side from the supports 241 and 243, so that dust adheres to the tip surface. Then, burn-in occurs.
  • a space between the supports 241 and 243 of the lower case 202 and the condenser lens 207 is a sealed space 208 in which the upper surface opening of the lower case 202 is covered with the upper case 203.
  • the ventilation hole 206 of the upper case 203 and the sealed space 208 are blocked from ventilation by using the support 243.
  • the sealed space 208 can prevent the reflection film of the laser rod 220 from being damaged.
  • the laser beam is not emitted on the rear side of the laser rod 220, a problem due to the adhesion of dust is allowed more than the front side, and a slight gap is allowed. Therefore, it is possible to increase the thickness of the rear support member (here, the supports 242 and 244).
  • the unit main body 201 is a rectangular parallelepiped having a width of 14 mm, a height of 14 mm, and a depth of 43 mm.
  • the laser rod 220 has a cylindrical shape with a diameter of 1.5 mm to 3 mm and a length of 20 mm to 30 mm.
  • the hard glass tube 231 (see FIG. 15) of the flash lamp 230 has a cylindrical shape with an outer diameter of 2.5 mm to 3.5 mm and a length of 30 mm.
  • the length (arc length) between the positive electrode 232 and the negative electrode 233 (see FIG. 15) of the flash lamp 230, which is the portion where the flash lamp 230 emits light, is 20 mm to 21 mm.
  • the length of the lens barrel 210 is 20 to 21 mm.
  • the thicknesses of the supports 241, 242, 243, and 244 are 0.5 mm to 2 mm.
  • the support bodies 241 and 242 are attached to the front and rear surfaces of the lower barrel 212 in the lower case 202, respectively.
  • the lower barrel 212 is pushed between the supports 241 and 242, and the lower barrel 212 is stored in the lower case 202.
  • the support bodies 241 and 242 are formed with rectangular recesses 241A and 241B and 242A and 242B.
  • the lower portions of the outer peripheral surfaces of the flash lamp 230 and the laser rod 220 are placed in the recesses 241A and 241B and 242A and 242B of the supports 241 and 242, respectively.
  • the outer periphery of the hard glass tube corresponding to the positions of the positive electrode 232 and the negative electrode 233 (see FIG. 15) at both ends of the flash lamp 230 is disposed in the concave portion 241A of the support 241 and the concave portion 242A of the support 242. .
  • the rectangular notch part is easy to obtain processing accuracy when processing a metal (aluminum) member. Moreover, since there is a flat surface, assembly errors can be suppressed. It is difficult to obtain processing accuracy as high as the outer dimensions of the laser rod 220 and the flash lamp 230 in the round notch. If the processing accuracy cannot be obtained, the positional accuracy between the flash lamp 230 and the laser rod 220 cannot be maintained, and the laser output decreases. From the viewpoint of ease of implementation and cost reduction, a square cutout is used. However, it is needless to say that it may be a round notch.
  • the prisms formed on the supports 243 and 244 are formed on the outer peripheral surfaces of the flash lamp 230 and the laser rod 220 placed in the recesses 241A and 241B and 242A and 242B of the supports 241 and 242.
  • the recesses 243A and 243B and 244A and 244B are attached so as to cover them.
  • the upper barrel 211 is pushed between the supports 243 and 244 so that the upper barrel 211 is brought into contact with the lower barrel 212 without any gap.
  • the upper barrel 211 and the lower barrel 212 are integrated vertically to complete the elliptical barrel 210 (state shown in FIG. 14).
  • the upper case 203 is attached to the upper surface opening of the lower case 202, and the assembly of the laser unit 200 is completed (state of FIG. 8).
  • the laser unit 200 can be assembled only by stacking the members in order from FIG. 10 to FIG. 14 and further to FIG.
  • the configuration of the laser unit 200 is advantageous in that assembly is easy and productivity is good.
  • a lens barrel 210 is formed by the upper lens barrel 211 and the lower lens barrel 212.
  • the supports 241, 242, 243, and 244 are pressed and disposed in the front and rear openings of the lens barrel 210.
  • the front and rear openings of the lens barrel 210 are sealed by the support members 241 and 243 and the support members 242 and 244 which are paired vertically.
  • the flash lamp 230 and the laser rod 220 are opposed to each other in the sealed lens barrel 210 at a predetermined interval by the supports 241 and 243 and the supports 242 and 244.
  • the lower case 202 is provided with urging portions (not shown) for urging the support members 241, 242, 243, and 244 at both end openings of the lens barrel 210. For this reason, the airtightness is high, and the intrusion of dust into the lens barrel 210 can be prevented. It is possible to prevent dust from sticking to the flash lamp 230 and to prevent a decrease in laser generation efficiency.
  • the structure of the flash lamp 230 will be described in more detail.
  • FIG. 15 is a diagram schematically showing the structure of the flash lamp 230.
  • the flash lamp 230 has a cylindrical glass-shaped hard glass tube 231; a positive electrode 232 having a positive electrode tip 232A protruding into the tube; and a negative electrode having a negative electrode tip 233A protruding into the tube.
  • Both end portions of the hard glass tube 231 are filled with hard glass, and a solid line in the tube represents a boundary line between the hard glass and the space.
  • the negative electrode 233 is connected to a 0 V potential, and a high voltage of 250 V to 350 V is applied to the positive electrode 232.
  • a transparent conductive film 234 made of tin oxide or titanium oxide is deposited on the surface around the outer wall of the hard glass tube between the positive electrode 232 and the negative electrode 233.
  • the tips of the positive electrode 232 and the negative electrode 233 are arranged so as to exist in the hard glass tube 231, and flash between the positive electrode tip 232 A of the positive electrode 232 and the negative electrode tip 233 A of the negative electrode 233.
  • the lamp 230 emits light.
  • FIG. 16 is a cross-sectional view of the main part of the laser unit 200 for explaining the positional relationship between the flash lamp 230 and the supports 241, 242, 243, 244.
  • the laser rod 220 and the flash lamp 230 are supported by supports 241 and 242 attached to the front and rear outer sides of the lower barrel 212.
  • supports 241 and 242 attached to the front and rear outer sides of the lower barrel 212.
  • the supports 243 and 244 not shown in FIG. 16 will be described together with the supports 241 and 242.
  • the surface 241B of the support 241 facing the inner surface of the lens barrel 210 and the surface 242B of the support 242 facing the inner surface of the lens barrel 210 are opposed to each other in the lens barrel 210. Further, a positive electrode 232 protrudes from a surface 241C opposite to the surface 241B facing the inner surface of the lens barrel 210 of the support 241, and from a surface 242C opposite to the surface 242B facing the inner surface of the lens barrel 210 of the support 242.
  • the negative electrode 233 protrudes. A boundary portion 232B between the positive electrode 232 and the hard glass tube 231 is formed, and a boundary portion 233B between the negative electrode 233 and the hard glass tube 231 is formed.
  • a surface 242B of the support 242 facing the inner surface of the lens barrel 210 is located at the tip 233A of the negative electrode 233, and a surface 241B of the support 241 facing the inner surface of the lens barrel 210 is a surface of the tip 232A of the positive electrode 232.
  • the flash lamp 230 emits light between the front end 232A of the positive electrode 232 and the front end 233A of the negative electrode 233, the light emitted from the flash lamp 230 is supported by the supports 241, 242, 243, and 244 (supports).
  • the laser rod 220 is effectively supplied without being blocked by the member.
  • the lens barrel 210 is in contact with the supports 241, 242, 243, and 244 before and after that, and is electrically connected. Further, the supports 241, 242, 243, 244 support the flash lamp 230 while being in contact with the hard glass tube 231.
  • the transparent conductive coating 234 and the support 242 on the surface of the hard glass tube 231 are electrically connected.
  • a trigger voltage serving as a trigger for causing the flash lamp 230 to emit light is applied to the lens barrel 210 from a high voltage generation circuit (not shown). Then, the trigger voltage is applied to the transparent conductive film 234 through the supports 241, 242, 243, and 244 that are conducted to the lens barrel 210.
  • the support 241 and the support Due to the potential difference between the body 243 (not shown) and the positive electrode 232, discharge occurs between the positive electrode 232, the support 241 and the support 243, and the flash lamp 230 does not emit light normally.
  • the support Due to the potential difference between the 242 and the support 244 and the negative electrode 233, a discharge occurs between the positive electrode 232, the support 242 and the support 244, and the flash lamp 230 does not emit light normally.
  • the surface 242C opposite to the surface 242B facing the inner surface of the lens barrel 210 of the support 242 is positioned at a position 3 to 4 mm or more away from the boundary portion 233B between the negative electrode 233 and the hard glass tube 231.
  • unnecessary discharge is prevented from occurring.
  • the surface 241C opposite to the surface 241B facing the inner surface of the lens barrel 210 of the support 241 is located at a position 3 to 4 mm or more away from the boundary 232B between the positive electrode 232 and the hard glass tube 231. , So that unnecessary discharge does not occur.
  • the laser unit 200 of the measuring apparatus 100 includes the lens barrel 210, the laser rod 220 installed in the lens barrel 210, and the laser rod in the lens barrel 210. 220 is arranged oppositely.
  • the laser unit 200 includes a flash lamp 230 in which an inert gas is sealed in a hard glass tube 231, and at least a part installed outside the lens barrel 210, and supports the outer peripheral surface of the hard glass tube 231 on a housing.
  • supports 241, 242, 243, and 244 made of a material having a conductivity of 100 W / (m ⁇ K) or more.
  • the heat of the hard glass tube 231 can be actively radiated to the outside of the lens barrel 210 via the supports 241, 242, 243, and 244, and the hard glass tube 231 is prevented from being damaged by heat. be able to.
  • the inventors of the present invention have repeatedly confirmed that the flash lamp 230 emits light and conducts an endurance test against heat to confirm the effect.
  • the hard glass tube 231 that is extremely cheap compared to the quartz glass tube can be used for the flash lamp 230 of the laser unit 200, the cost of the measuring device and the puncture device using the laser unit can be greatly reduced. .
  • FIG. 17 is an exploded perspective view of the laser unit 300 of the measuring apparatus according to the second embodiment of the present invention.
  • the laser unit 300 is provided with a heat transfer member 310 that connects the support 243 and the support 244 above the upper barrel 211.
  • the heat transfer member 310 is, for example, a copper foil tape.
  • the flash lamp 230 is supported by supports 241, 242, 243, and 244 (support members) having good thermal conductivity, and the supports 241, 242, 243, and 244 are in contact with the lens barrel 210. Further, the heat transfer member 310 connects the support bodies 243 and 244 and the support bodies 243 and 244 and the upper lens barrel 211.
  • the heat generated from the flash lamp 230 is transferred to the supports 241, 242, 243, and 244 in contact with the flash lamp 230, and the heat of the supports 243 and 244 is further radiated by the heat transfer member 310.
  • the heat radiation via the supports 243 and 244 can be dissipated on the wider surface and in the vicinity of the vent hole 206 via the heat transfer member 310. Thereby, thermal conductivity can be raised and heat dissipation performance can be improved. As a result, the effect of preventing thermal damage of the hard glass tube 231 (see FIG. 15) constituting the flash lamp 230 can be further enhanced.
  • FIGS. 10 to 14 are exploded perspective views of the laser unit 400 of the measuring apparatus according to Embodiment 3 of the present invention.
  • the same components as those in FIGS. 10 to 14 are denoted by the same reference numerals, and description of overlapping portions is omitted.
  • the laser unit 400 includes a support body 444 having a heat diffusing portion 444A instead of the support body 244 of the laser unit 200 of FIG.
  • FIG. 20 is a perspective view showing the structure of the support 444.
  • the support body 444 is an L-shape in which the support body 244 of FIG. 10 is integrally formed with a heat radiation diffusion portion 444A extending in the direction of the outer peripheral surface of the lens barrel 210.
  • the heat dissipating and diffusing portion 444A is extended toward the outer peripheral surface of the lens barrel 210 close to the position of the vent hole 206 of the upper case 203.
  • the laser beam is not emitted to the rear side of the laser rod 220, the problem due to the adhesion of dust is allowed more than the front side, and some gaps are allowed. Therefore, there is no problem even if there is a slight gap when the heat dissipation diffusion portion 444A is formed by extending the support 444 in an L shape.
  • the heat dissipation through the support body 444 can be dissipated on a wider surface and in the vicinity of the vent hole 206 via the heat dissipation diffusion portion 444A.
  • heat can be directly radiated from the support 444 (support member), and the heat dissipation performance can be further improved.
  • the thermal damage prevention effect of the hard glass tube 231 (see FIG. 15) constituting the flash lamp 230 can be further enhanced.
  • heat radiation diffusion portion 444A may have any external dimensions and shape.
  • a slit or the like may be formed.
  • the above-described heat transfer member 310 and / or the heat radiating / diffusing portion 444A may be formed of the same material as the supports 241, 242, 243, 244 (support members).
  • any apparatus that uses a laser emitting apparatus as the puncturing means may be used.
  • the name “measuring device” is used. However, this is for convenience of explanation, and it goes without saying that it may be a blood glucose level measuring device, a puncture unit, or the like.
  • each part constituting the measuring apparatus for example, the kind of display part, the number thereof, the connection method, etc. may be any.
  • the measurement device and puncture device according to the present invention are very important and essential techniques for realizing a blood glucose measurement device and a laser puncture device equipped with a laser puncture function. Widespread use is expected in various measuring devices or puncture devices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Hematology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Pain & Pain Management (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 レーザユニットの熱損傷を防ぎ、かつコストダウンを図ることのできる測定装置及び穿刺装置を提供すること。測定装置(100)のレーザユニット(200)は、鏡筒(210)と、鏡筒(210)内に設置されたレーザロッド(220)と、鏡筒(210)内においてレーザロッド(220)と対向配置され、硬質ガラス管(231)内に不活性ガスを封入したフラッシュランプ(230)と、鏡筒(210)外に少なくとも一部が設置され、硬質ガラス管(231)の外周面をハウジングに支持する、熱伝導率が100W/(m・K)以上の材料からなる支持体(241,242,243,244)とを備えている。

Description

測定装置及び穿刺装置
 本発明は、レーザ穿刺方式の穿刺機能を搭載した測定装置及び穿刺装置に関する。
 穿刺機能として、レーザユニットを使用する測定装置がある。
 特許文献1には、本体ケース内に設けたレーザユニットと、鏡筒内で対向配置したレーザロッド及びフラッシュランプからなるレーザユニットとを備える血糖値測定装置が記載されている。フラッシュランプは、ガラス管内に不活性ガスを封入した構成となっている。フラッシュランプは、ガラス管に石英管を使用している。また、この石英管は、耐熱性ゴムによりレーザユニットケースに支持される。
WO2008/087982号パンフレット
 しかしながら、従来のレーザユニットのフラッシュランプは、発光により高温となるため、耐熱性を考慮すると、ガラス管に石英管を使用せざるを得なかった。石英管は、非常に高価であり、レーザユニット及びレーザユニットを用いる測定装置が高価になる欠点があった。
 本発明の目的は、レーザユニットの熱損傷を防ぎ、かつコストダウンを図ることのできる測定装置及び穿刺装置を提供することである。
 本発明の測定装置は、穿刺用レーザユニットを備える測定装置であって、前記レーザユニットは、鏡筒と、前記鏡筒内に設置されたレーザロッドと、前記鏡筒内において前記レーザロッドと対向配置され、硬質ガラス管内に不活性ガスを封入したフラッシュランプと、前記鏡筒外に少なくとも一部が設置され、前記硬質ガラス管の外周面をユニットケースに支持する、熱伝導率が100W/(m・K)以上の材料からなる支持部材と、を備える構成を採る。
 本発明の穿刺装置は、レーザユニットによりレーザを照射して皮膚を穿刺する穿刺装置であって、前記レーザユニットは、鏡筒と、前記鏡筒内に設置されたレーザロッドと、前記鏡筒内において前記レーザロッドと対向配置され、硬質ガラス管内に不活性ガスを封入したフラッシュランプと、前記鏡筒外に少なくとも一部が設置され、前記硬質ガラス管の外周面をユニットケースに支持する、熱伝導率が100W/(m・K)以上の材料からなる支持部材と、を備える構成を採る。
 本発明によれば、熱伝導率が100W/(m・K)以上の材料からなる支持部材で放熱することにより、レーザユニットの熱損傷を防ぐことができるので、レーザユニットのフラッシュランプに、硬質ガラス管を使用することができる。硬質ガラス管は、石英ガラス管に比べて極めて安価であるため、レーザユニットを用いる測定装置及び穿刺装置の大幅なコストダウンを実現することができる。
本発明の実施の形態1に係る測定装置を示す斜視図 上記実施の形態1に係る測定装置を示す斜視図 上記実施の形態1に係る測定装置を示す斜視図 上記実施の形態1に係る測定装置を前面からみた正面図 上記実施の形態1に係る測定装置の使用状態を説明する斜視図 上記実施の形態1に係る測定装置の使用状態を説明する斜視図 上記実施の形態1に係る測定装置の使用状態を説明する側面断面図 上記実施の形態1に係る測定装置のレーザユニットの構成を示す斜視図 図8のA-A矢視断面図 上記実施の形態1に係る測定装置のレーザユニットの分解斜視図 上記実施の形態1に係る測定装置のレーザユニットの分解斜視図 上記実施の形態1に係る測定装置のレーザユニットの分解斜視図 上記実施の形態1に係る測定装置のレーザユニットの分解斜視図 上記実施の形態1に係る測定装置のレーザユニットの分解斜視図 上記実施の形態1に係る測定装置のレーザユニットのフラッシュランプの構造を模式的に示す図 上記実施の形態1に係る測定装置のレーザユニットのフラッシュランプと支持体の位置関係を説明するレーザユニットの要部断面図 本発明の実施の形態2に係る測定装置のレーザユニットの分解斜視図 本発明の実施の形態3に係る測定装置のレーザユニットの分解斜視図 上記実施の形態3に係る測定装置のレーザユニットの分解斜視図 上記実施の形態3に係る測定装置のレーザユニットの支持体の構造を示す斜視図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (実施の形態1)
 本実施の形態は、レーザユニットに特徴がある測定装置及び穿刺装置である。まず、レーザユニットが適用される測定装置について説明する。なお、本レーザユニットは、穿刺装置にも同様に適用することができる。
 図1乃至図3は、本発明の実施の形態1に係る測定装置を示す斜視図である。図4は、上記測定装置を前面からみた正面図、図5及び図6は、上記測定装置の使用状態を説明する斜視図である。
 本実施の形態は、レーザユニットを、血糖値を測定する血糖値測定装置に適用した例である。
 図1乃至図4に示すように、測定装置100は、上下面を有する角筒状の枠体からなる本体ケース1を備える。本体ケース1を構成する枠体は、図1及び図2に示すように、左側が前面1A、右側が後面1B、前側と後側が側面1Cと1Dとなる。この状態では、前後面1Aと1B間の方が、両側面1Cと1D間よりも広い扁平形状となっている。
 図2乃至図4に示すように、本体ケース1の前面1A側には、レーザ照射口2が形成される。レーザ照射口2は、前面1Aの左右中央部で、前面1Aの上下中央部より下方に設ける。レーザ照射口2の後方側の本体ケース1内には、レーザユニット200(図8乃至図14参照。以下同様。)が配置されている。
 図1乃至図3に示すように、本体ケース1の上面1Fには、液晶タイプの表示部8が配置されている。後面1Bの上方側には、レーザユニット200の起動スイッチ9が配置されている。側面1Cの上方には、操作スイッチ10が設けられている。
 操作スイッチ10は、レーザの出力を調整する。また、操作スイッチ10は、検出した血糖値の履歴を表示部8で確認する操作を行う。
 図2及び図3に示すように、レーザ照射口2の前方には、カバー11が配置される。カバー11の両下部には、一体化した支持部11Aを有する。支持部11Aは、それぞれ本体ケース1を構成する両側面1C、1Dに形成した摺動溝12に、摺動自在に支持されている。
 カバー11は、レーザ照射口2から照射されたレーザ光に対する保護カバーの機能を持っている。カバー11は、非測定時には図1に示すように本体ケース1の前面1A側に近接させて閉じた状態とし、測定時には図2に示すように前面1Aのさらに前方へと引き出し、開放した状態とする。非測定時/測定時のいずれの場合でもレーザ照射口2の前方にカバー11が存在しているので、保護カバーとしての機能が発揮される。
 図3及び図4に示すように、レーザ照射口2は、指当て部13の上方に形成されている。指当て部13の下方は、本体ケース1に対して、回動自在に軸支されている。図3に示すように、指当て部13の上方を、前方側に回動させると、血糖値を測定する測定センサ14が露出する。指当て部13の上方を、前方側に回動させた状態で、測定センサ14が着脱自在に装着される。測定センサ14は、本実施形態では、血糖値を測定する。
 図3に示すように、測定センサ14は、レーザ照射口2に対向する部分には、貫通孔14Aが形成されている。レーザロッド220の先端(後述する図9の左端)から集光レンズ207(図9参照)を介して出射したレーザ光は貫通孔14A、レーザ照射口2を介して、図5に示す指15の指先内側に照射される。
 図5は、右手で血糖値を測定する状態を示している。図1乃至図3に示すように、指当て部13の上方を後方側に起こし、この状態で、右手で本体ケース1を、図5に示すように保持し、指15を指当て部13に押し当て、測定を行う。
 本体ケース1は、手のひらと指先で保持される保持部が、前面1A、後面1B、側面1C,1Dにより構成されている。図5に示すように、一本の指15を、レーザ照射口2の前に押し当てて、起動スイッチ9を操作する。これにより、指15の内面側にレーザ光が照射され、照射部分から、血液が流出する。
 血液は、本体ケース1内側からの吸引力により測定センサ14の貫通孔14A側に流出する。測定センサ14は、貫通孔14A近傍に試薬を有する採血手段である。測定センサ14は、この試薬の導通状態を示す検知信号を測定装置100に送る。測定装置100は、検知信号を基に血糖値を測定し、測定した血糖値を表示部8に表示する。
 なお、本実施の形態では、レーザ光照射により、流出させた血液を吸引力により貫通孔14A側へと供給する構成としたが、例えば、カバー11のレーザ照射口2側に設けた加圧手段(図示せず)により、指15をレーザ照射口2側に押し付ける、あるいは指15自身の力でレーザ照射口2側に押し付けることで、血液を貫通孔14Aに供給する構成としてもよい。
 図6に示すように、測定装置100は、血糖値の測定を行った後に、測定センサ14を交換のために取り外す。指当て部13の上方を前方側へと倒し、露出した測定センサ14の上部を指でつまんで引き出す。この時、カバー11の下部は、支持部11Aと一体化しているので、測定センサ14のつまみ出し、あるいは図3に示す測定センサ14の装着は、カバー11の上方に開けた空間(支持部11Aの不存在により形成された空間)を介して容易に行うことができる。
 また、空間(支持部11Aの不存在により形成された空間)を大きくするために、本体ケース1の前面1Aのレーザ照射口2の上方部分には、窪み部1Nを形成している。
 図7は、上記測定装置100の使用状態を説明する側面断面図である。
 図7に示すように、レーザ照射口2の後方側の本体ケース1内には、レーザユニット200が配置されている。また、レーザユニット200の上部には、電気回路20が配置され、レーザユニット200の下部には、電池21が配置される。なお、電気回路20は、フラッシュランプを発光させる高電圧を発生する高電圧発生回路(図示略)を備えている。
 レーザユニット200は、集光レンズ207(図9参照)の前方側方に一体化した取付部204Aにより取付ユニット18の上部に、例えばねじ止めにより取り付けられる。この取り付けは、図示しない弾性部材を介在させることで防振対策が施されている。取付ユニット18の下部には、指当て部13が回動自在に取り付けられる。指当て部13は、図2及び図6に示すように、開閉自在となっている。取付ユニット18のレーザ照射口2に対向する部分には、開口部18Aが形成され、レーザ光が通過するのを妨げない構成となっている。
 また、集光レンズ207は、後述する図9に示すように、レーザユニット200(図10に示すレーザユニット200を構成する下ケース202)に一体化されている。これにより、レーザユニット200(図10に示すレーザユニット200を構成する下ケース202)内に設けたレーザロッド220との位置関係が安定する。
 以上の説明では、レーザユニット200を搭載し、血液センサ14を装着して、皮膚穿刺後血液成分を測定する測定装置100について述べたが、これに限られることはない。例えば、血液センサ14を装着しない場合は、皮膚をレーザにより穿刺するレーザユニット200を搭載したレーザ穿刺装置として使用することができる。すなわち、レーザユニット200を用いる装置であれば、どのような装置に適用してもよい。
 本実施の形態は、レーザユニット200の構成に特徴がある。
 以下、レーザユニット200について詳細に説明する。
 図8は、上記レーザユニット200の構成を示す斜視図、図9は、図8のA-A矢視断面図である。図10乃至図14は、上記レーザユニット200の分解斜視図である。
 図9及び図10に示すように、レーザユニット200は、ユニット本体201と、ユニット本体201内に配置された鏡筒210と、鏡筒210内において対向配置したレーザロッド220及びフラッシュランプ230とを有する。
 〔ユニット本体201〕
 ユニット本体201は、図8に示すように、ハウジングの下部を形成する下ケース202と、下ケース202に装着され、ハウジングの上部を形成する上ケース203とから構成される。
 下ケース202には、ユニット本体201を本体ケース1内の取付ユニット18に取り付ける取付部204A,204Bが形成されている。取付部204Aは、下ケース202の底部から前面に延出し、取付部204Bは、下ケース202の底部から側面に延出する。
 下ケース202の下面には、ユニット本体201内の熱を放熱するスリット状の通気孔205が設けられ、上ケース202の上面には、ユニット本体201内の熱を放熱するスリット状の通気孔206が設けられている。
 通気孔205,206は、後述する支持体241,242,243,244による放熱をより効果的に行うために設けられる。
 〔鏡筒210〕
 鏡筒210は、図10乃至図14に示すように、楕円形状をしており、フラッシュランプ230から発光された光を反射してレーザロッド220に集光する。鏡筒210は、高輝度アルミ材シートを加工して作製する。
 鏡筒210は、図9及び図10に示すように、上下方向(図1の本体ケース1の上面1F、下面1E方向)が、横方向(本体ケースの側面1C,1D方向)よりも長くなった楕円筒を、水平方向(図1の本体ケース1の前面1A、後面1B)に配置する。
 鏡筒210は、楕円筒内において、フラッシュランプ230を下方で水平方向に配置し、レーザロッド220を上方で水平方向に対向して配置する。フラッシュランプ230を、レーザロッド220よりも下方に配置することで、本体ケース1の下面1Eにフラッシュランプ230が近接し、放熱対策を講じやすい。
 鏡筒210は、上下に分割されたドーム状の上側鏡筒211とドーム状の下側鏡筒212とからなる。上側鏡筒211と下側鏡筒212は、それぞれ脚部211Aと212Aを有する。上側鏡筒211と下側鏡筒212は、対向する脚部211Aと212Aを当接させ、上下で一体化させる。これにより、楕円の鏡筒210が形成される。
 上側鏡筒211及び上側鏡筒212は、高輝度アルミ材からなり、少なくとも内周面は鏡面仕上げされ、上側鏡筒211及び下側鏡筒212の内面側は、きわめて反射率の高い状態となっている。したがって、フラッシュランプ230から照射された光は、レーザロッド220に効果的に供給される。
 〔レーザロッド220〕
 レーザロッド220は、ロッド両端面に反射鏡(図示略)を有し、フラッシュランプ230から照射された光をレーザロッド220外周面で受光してレーザロッド220内でエネルギ増幅する。レーザロッド220は、所定以上のエネルギ蓄積後、レーザロッド220の先端からレーザ光を照射する。レーザロッド220は、先端側(図9及び図10の左端側)が集光レンズ207を介して、レーザ照射口2に対向している。
 なお、レーザロッド220端面の反射膜の反射率は、一例として以下に示す。
 後側:99.5%以上
 出射側:85%~95%
 〔フラッシュランプ230〕
 フラッシュランプ230には、従来の石英管に代えて、硬質ガラス管231(図15参照。以下同様。)が使用される。フラッシュランプ230は、細長い円柱形状の硬質ガラス管231に不活性ガスを封入し、硬質ガラス管内の両端の陽電極232と陰電極233(図15参照。以下同様。)に高電圧を印加して発光させる。
 (1)硬質ガラス管は、石英管に比べて耐熱性が劣ることについて説明する。
 硬質ガラス管231は、1メートル当たり1℃上がると30×10-7延びる線膨張係数を有するのに対し、石英管は、1メートル当たり1℃上がると4×10-7延びる線膨張係数を有する。硬質ガラス管231は、石英管に比べると、線膨張係数が極めて大きい。このため、硬質ガラス管231の放熱を効果的に行わなければ、硬質ガラス管は、熱により損傷してしまうことになる。この他、硬質ガラス管と石英管は、材料面から比較した場合、以下の差異がある。硬質ガラス管は、ガラスの主成分であるケイ素に硼酸を混ぜて熔融し、軟化する温度や硬度を高めたのに対し、石英管は基本的にはケイ素だけで形成されている。また、一般的な小型フラッシュランプの発光回数の寿命は、石英管では数万回であるのに対して、硬質ガラス管では3千回~1万回である。硬質ガラス管は、石英管よりも熱による耐性が弱く、フラッシュランプの発光回数の寿命についても石英管に比べて劣る。
 (2)フラッシュランプ230が鏡筒210内に配置されることも放熱を難しくする。
 フラッシュランプ230は、コストダウンの観点から汎用部材を使用することが好ましい。例えば、フラッシュランプ230は、カメラのストロボ用をそのまま流用することが考えられる。カメラのストロボは、背面側に反射鏡が設けられているが前方側は放熱面となっており、温度上昇が少ないので熱損傷することはない。これに対し、レーザユニット200は、フラッシュランプ230の外周全面を鏡筒210で覆っている。このため、鏡筒210内の温度上昇がきわめて大きく、カメラ用のストロボとして活用されていたフラッシュランプをそのまま用いる態様を採ると熱損傷してしまう。
 上記(1)(2)で述べたように、フラッシュランプ230のガラス管として、硬質ガラス管を使用する場合には、硬質ガラス管に対して有効な放熱対策を採る必要がある。本実施の形態では、この放熱対策を、フラッシュランプ230をユニット本体201に支持する支持体241,242,243,244が担う。
 フラッシュランプ230の構造の詳細については、図15により後述する。また、フラッシュランプ230の構造と支持体241,242,243,244(支持部材)との関係の詳細については、図16により後述する。
 〔支持体241,242,243,244〕
 フラッシュランプ230は、鏡筒210外に配置された板状の支持体241,242,243,244によりユニット本体201に支持される。
 支持体241,242,243,244(支持部材)は、レーザロッド220及びフラッシュランプ230を支持し、鏡筒210内におけるレーザロッド220とフラッシュランプ230の径方向の位置決めを行う。
 支持体241,242,243,244は、金属など熱伝導性の良い部材からなり、例えば、アルミニウムにより構成される。
 ここで、本明細書中において、「熱伝導性の良い」とは、熱伝導率が100W/(m・K)以上である物質からなることをいう。また、「熱伝導性の高い材料」とは、熱伝導率が100W/(m・K)以上である物質をいう。支持体241,242,243,244は、熱伝導率が100W/(m・K)以上である物質からなることを特徴とする。
 具体的な支持体241,242,243,244(支持部材)の材料を例示すると以下の通りである。
 アルミニウム=236W/(m・K)
 アルミ合金=109~225W/(m・K)
 銅=398W/(m・K)
 真鍮=106W/(m・K)
 本実施の形態では、加工性が良く、軽量である点からアルミニウムを、支持体241,242,243,244に使用する。
 支持体241,242,243,244は、フラッシュランプ230をユニット本体201に支持する機能と、熱耐性に劣る硬質ガラス管により構成されたフラッシュランプ230から熱を放熱する機能とを併せ持つ。その一方で、フラッシュランプ230の発光面をできるだけ覆わない構成を採ることが好ましい。すなわち、放熱の観点からは、支持体241,242,243,244とフラッシュランプ230の外周面との接触面積を広く取ればよいが、単に接触面積を広く取ると、フラッシュランプ230の発光面を減少させることになる。
 そこで、本実施の形態では、支持体241,242,243,244は、フラッシュランプ230の両端の陽電極232と陰電極233(図15参照)上の、硬質ガラス管231(図15参照)の外周に接触させる構成とした。フラッシュランプ230の両端の陽電極232と陰電極233上の硬質ガラス管231の外周位置は、陽電極232と陰電極233による発熱が最も大きいところであり、従って放熱効果が大きいことがある。また、支持体241,242,243,244が接触している硬質ガラス管231の外周位置は、陽電極232と陰電極233の部分であるため、発光せず、従って発光面の減少は最小限で済む利点がある。
 上述したように、支持体241,242,243,244は、アルミニウムなどの熱伝導性の高い材料により形成されている。このため、フラッシュランプ230を構成する硬質ガラス管231(図15参照)の外周面の熱を、支持体241,242,243,244を介して鏡筒210外に積極的に放出することができる。
 また、支持体241,242,243,244は、上側鏡筒211及び下側鏡筒212に密着している。これにより、支持体241,242,243,244に伝わった熱を、上側鏡筒211及び下側鏡筒212を介して通気孔205へと放熱させることができる。
 支持体241,242,243,244は、鏡筒210内面に臨む面は鏡面仕上げされ、反射面としている。支持体241,242,243,244の鏡筒210内面に臨む面を、反射面として利用することで、鏡筒210内でランプ光を反射させ、鏡筒210内における光の反射効果を高めることができる。
 再び図8及び図9を参照して、レーザユニット200の他の特徴について説明する。
 図9に示すように、鏡筒210内は、レーザユニット200筐体外から塵埃が入らないように密閉されている。すなわち、上側鏡筒211と下側鏡筒212とを密着させて鏡筒210を完成し、鏡筒210に支持体241,242,243,244を接触させて、ハウジング(下ケース202と上ケース203とからなるハウジング)により押さえることにより、鏡筒210内を密閉にしている。前記ハウジングの押さえ部にバネを用いてもよい。また、フラッシュランプ230に繋がる線材の引出し部分と前記ハウジングの隙間はシリコン樹脂で塞いで密閉空間を確保する。このように、鏡筒210内が密封されることで、鏡筒210表面に塵埃が付着した状態でランプ発光するとゴミが焼けて鏡筒表面が損傷してしまうことを防止することができる。
 また、塵埃がレーザロッド220端面に付着した状態でレーザ出射すると、ロッド表面に蒸着された反射膜が損傷してしまう。本実施の形態では、前記ハウジングと支持体241,243(支持部材)と集光レンズ207から囲まれた空間を、密閉空間208としてレーザユニット210筐体外から塵埃が入らないように密閉している。すなわち、図8に示すように、レーザロッド220の先端面(図9の左側面)は、支持体241,243よりも集光レンズ207側へと露出しているので、先端面に塵埃が付着するとそこで、焼きつきが発生してしまう。そこで、下ケース202の支持体241,243と集光レンズ207間は、下ケース202の上面開口を、上ケース203で覆った密閉空間208としている。そして、上ケース203の通気孔206と、密閉空間208とは支持体243を利用して通気状態を遮断している。密閉空間208により、レーザロッド220の反射膜の損傷を防止することができる。
 これに対しレーザロッド220の後側は、レーザ光が出射されないため、塵埃の付着による問題は前側よりも許容され、多少の隙間は許容できる。よって、後側支持部材(ここでは支持体242,244)の厚み等拡大することも可能である。
 [実施例]
 レーザユニット200の外形寸法の一例を例示する。
 ユニット本体201は、横幅14mm、高さ14mm、奥行き43mmの直方体である。レーザロッド220は、直径1.5mm~3mm、長さ20mm~30mmの円柱形状である。フラッシュランプ230の硬質ガラス管231(図15参照)は、外径2.5mm~3.5mm、長さ30mmの円柱形状である。フラッシュランプ230が発光する部分であるフラッシュランプ230の陽電極232と陰電極233(図15参照)間の長さ(アーク長)は、20mm~21mmである。鏡筒210の長さは、20~21mmである。支持体241,242,243,244の厚みは、0.5mm~2mmである。
 次に、レーザユニット200の組み立て方法について説明する。
 図10に示す状態から、図11乃至図14を経て、図8の組み立て完了までを説明する。
 図11に示すように、下ケース202内の下側鏡筒212の前後面に、支持体241,242をそれぞれ取り付ける。支持体241,242間に下側鏡筒212を押し込んで、下ケース202内に、下側鏡筒212を収納する。
 図12に示すように、支持体241,242には、角型の凹部241Aと241B,242Aと242Bが形成されている。支持体241,242の凹部241Aと241B,242Aと242Bに、フラッシュランプ230とレーザロッド220の外周面下部をそれぞれ載置する。特に、支持体241の凹部241Aと支持体242の凹部242Aには、フラッシュランプ230の両端の陽電極232と陰電極233(図15参照)の位置に対応する硬質ガラス管の外周が配置される。
 なお、角型の凹部241Aと241B,242Aと242Bを形成するのは、以下の理由による。角型の切欠部は、金属(アルミニウム)製の部材を加工する際の加工精度を出し易い。また、フラットな面があるため組み立て誤差を抑えることができる。丸型の切欠部では、レーザロッド220及びフラッシュランプ230の外形寸法ほどの加工精度を得るのは困難である。加工精度が得られないとフラッシュランプ230とレーザロッド220との位置精度が保てなくなり、レーザ出力が低下する。実施の容易性及びコストダウンの観点から角型の切欠部としている。但し丸型の切欠部であってもよいことは勿論である。
 図13に示すように、支持体241,242の凹部241Aと241B,242Aと242Bに載置されたフラッシュランプ230とレーザロッド220の外周面上部に、支持体243,244に形成された角型の凹部243Aと243B,244Aと244Bを、それぞれ被せるように取り付ける。
 支持体243,244間に、上側鏡筒211を押し込んで、上側鏡筒211を下側鏡筒212に隙間なく当接させる。上側鏡筒211と下側鏡筒212を上下で一体化することにより、楕円の鏡筒210が完成する(図14の状態)。
 図14に示すように、下ケース202の上面開口に上ケース203を装着し、レーザユニット200の組み立てが完成する(図8の状態)。
 このように、図10乃至図14、さらに図8へと順に、各部材を積み立てるだけで、レーザユニット200を組み立てることができる。本レーザユニット200の構成は、組み立てが容易で、生産性が良い利点がある。
 本実施の形態では、上側鏡筒211と下側鏡筒212により鏡筒210が形成される。また、鏡筒210の前後の開口部に支持体241,242,243,244が、押圧されて配置された状態となっている。上下で一対となった支持体241,243と支持体242,244とにより、鏡筒210の前後の開口部が密閉される。支持体241,243と支持体242,244により、密閉された鏡筒210内にフラッシュランプ230とレーザロッド220が所定間隔で対向配置される。
 また、下ケース202には、鏡筒210の両端開口部に、支持体241,242,243,244を付勢する付勢部(図示略)を設けている。このため、密閉性が高く、鏡筒210内への塵埃の浸入を防止することができる。フラッシュランプ230への埃の焼き付きを防止して、レーザ発生効率の低下を防止することができる。
 フラッシュランプ230の構造について更に詳細に説明する。
 図15は、フラッシュランプ230の構造を模式的に示す図である。
 図15に示すように、フラッシュランプ230は、円筒チューブ形状の硬質ガラス管231と、管内に突出する陽電極先端部232Aを有する陽電極232と、管内に突出する陰電極先端部233Aを有する陰電極233と、電極232,233間の硬質ガラス管外壁周囲の表面を被覆する透明導電性被膜234(網掛け参照)とを備え、管内に不活性ガスが封入される。
 硬質ガラス管231の両端部分は、硬質ガラスで満たされており、管内の実線はこの硬質ガラスと空間の境界線を表している。
 陰電極233は、0V電位に接続され、陽電極232には、250V~350Vの高電圧が印加される。陽電極232と陰電極233間の硬質ガラス管外壁周囲の表面には、酸化錫や酸化チタンからなる透明導電性被膜234が蒸着されている。
 陽電極232及び陰電極233の先端は、硬質ガラス管231の中に存在するように配置されており、陽電極232の陽電極先端部232Aと陰電極233の陰電極先端部233Aの間でフラッシュランプ230は発光する。
 すなわち、透明導電性被膜234に、3~4kVの高電圧(トリガ電圧)が印加されることにより、これがトリガとなり、フラッシュランプ230が発光する。
 次に、フラッシュランプ230の構造と支持体241,242,243,244との関係について説明する。
 図16は、フラッシュランプ230と支持体241,242,243,244の位置関係を説明するレーザユニット200の要部断面図である。
 図16に示すように、レーザロッド220とフラッシュランプ230は、下側鏡筒212の前後外側に取り付けた支持体241,242により支持される。図示は省略するが、上側鏡筒211と支持体243,244との関係についても同様である。以下、説明の便宜上、図16には図示されていない支持体243,244についても支持体241,242と併せて説明する。
 支持体241の鏡筒210の内面に臨む面241Bと、支持体242の鏡筒210の内面に臨む面242Bとは、鏡筒210内において対向している。また、支持体241の鏡筒210の内面に臨む面241Bと反対側の面241Cからは陽電極232が突出し、支持体242の鏡筒210の内面に臨む面242Bと反対側の面242Cからは陰電極233が突出している。陽電極232と硬質ガラス管231との境界部232Bが形成され、陰電極233と硬質ガラス管231との境界部233Bが形成されている。
 支持体242の鏡筒210の内面に臨む面242Bは、陰電極233の先端部233Aの位置にあり、支持体241の鏡筒210の内面に臨む面241Bは、陽電極232の先端部232Aの位置にある。このことと、フラッシュランプ230が、陽電極232の先端部232Aと陰電極233の先端部233Aの間で発光することからフラッシュランプ230から発光した光が支持体241,242,243,244(支持部材)に遮られることなく、有効にレーザロッド220に供給される。
 図16を参照して、フラッシュランプ230と支持体支持体241,242,243,244の位置関係について説明する。
 鏡筒210は、その前後で支持体241,242,243,244と接触しており、電気的に導通している。また、支持体241,242,243,244は、硬質ガラス管231と接触した状態でフラッシュランプ230を支持している。硬質ガラス管231の表面にある透明導電性被膜234と支持体242は電気的に導通している。
 フラッシュランプ230を発光させるトリガとなるトリガ電圧は、高電圧発生回路(図示略)から鏡筒210に印加される。そして、そのトリガ電圧は、鏡筒210に導通している支持体241,242,243,244を通じて、透明導電性被膜234に印加される。
 陽電極232と硬質ガラス管231との境界部232Bと、支持体241及び支持体243(図示略)までの距離が近い(1kVの電位差に対して1mm以下の割合)場合、支持体241及び支持体243(図示略)と陽電極232間の電位差により、陽電極232と支持体241及び支持体243間で放電が発生して、フラッシュランプ230の発光が正常に行われなくなる。同様に、陰電極233と硬質ガラス管231との境界部233Bと、支持体242及び支持体244(図示略)までの距離が近い(1kVの電位差に対して1mm以下の割合)場合、支持体242及び支持体244と陰電極233間との電位差により、陽電極232と支持体242及び支持体244間で放電が発生して、フラッシュランプ230の発光が正常に行われなくなる。
 このことから、支持体242の鏡筒210の内面に臨む面242Bと反対側の面242Cは、陰電極233と硬質ガラス管231との境界部233Bから、3~4mm以上離れた位置になるようにして、不要な放電が発生しないようにしている。また、支持体241の鏡筒210の内面に臨む面241Bと反対側の面241Cは、陽電極232と硬質ガラス管231との境界部232Bから、3~4mm以上離れた位置になるようにして、不要な放電が発生しないようにしている。
 以上詳細に説明したように、本実施の形態によれば、測定装置100のレーザユニット200は、鏡筒210と、鏡筒210内に設置されたレーザロッド220と、鏡筒210内においてレーザロッド220と対向配置される。そして、レーザユニット200は、硬質ガラス管231内に不活性ガスを封入したフラッシュランプ230と、鏡筒210外に少なくとも一部が設置され、硬質ガラス管231の外周面をハウジングに支持する、熱伝導率が100W/(m・K)以上の材料からなる支持体241,242,243,244とを備えている。
 これにより、硬質ガラス管231の熱を支持体241,242,243,244を介して、鏡筒210外に積極的に放熱することができ、硬質ガラス管231が熱による損傷を受けるのを防ぐことができる。本発明者らは、フラッシュランプ230を繰り返し発光させて熱に対しての耐久試験を実施し、効果があることを確認している。
 レーザユニット200のフラッシュランプ230に、石英ガラス管に比べて極めて安価な硬質ガラス管231を使用することができるので、レーザユニットを用いる測定装置及び穿刺装置の大幅なコストダウンを実現することができる。
 (実施の形態2)
 図17は、本発明の実施の形態2に係る測定装置のレーザユニット300の分解斜視図である。本実施の形態の説明に当たり、図10乃至図14と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図17に示すように、レーザユニット300は、上側鏡筒211の上方に支持体243と支持体244間を接続する伝熱部材310を取り付ける。
 伝熱部材310は、例えば銅箔テープである。銅箔テープは、幅が広い方が熱伝導性能に対して有利である。
 フラッシュランプ230は、熱伝導性の良い支持体241,242,243,244(支持部材)により支持され、支持体241,242,243,244は、鏡筒210に接触している。さらに、伝熱部材310が、支持体243と支持体244間及び、支持体243,244と上側鏡筒211を接続している。
 フラッシュランプ230から発生した熱は、フラッシュランプ230に接触している支持体241,242,243,244に伝わり、さらに支持体243,244の熱は、伝熱部材310により放熱される。
 支持体243,244を介しての放熱は、伝熱部材310を介して、より広い面で、かつ通気孔206の近傍で放熱させることができる。これにより、熱伝導性を上げることができ、放熱性能を高めることができる。その結果、フラッシュランプ230を構成する硬質ガラス管231(図15参照)の熱損傷防止効果をさらに高めることができる。
 (実施の形態3)
 図18及び図19は、本発明の実施の形態3に係る測定装置のレーザユニット400の分解斜視図である。本実施の形態の説明に当たり、図10乃至図14と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図18及び図19に示すように、レーザユニット400は、図10のレーザユニット200の支持体244に代えて、放熱拡散部444Aを有する支持体444を備える。
 図20は、支持体444の構造を示す斜視図である。
 図20に示すように、支持体444は、図10の支持体244に、鏡筒210の外周面方向へ延びる放熱拡散部444Aが一体形成されたL字型である。
 放熱拡散部444Aは、上ケース203の通気孔206の位置に近づけて、鏡筒210の外周面方向へ延ばされる。
 前述したように、レーザロッド220の後側は、レーザ光が出射されないため、塵埃の付着による問題は、前側よりも許容され、多少の隙間は許容できる。よって、支持体444を、L字型に延ばした放熱拡散部444Aを形成した時に、隙間が多少空くことがあっても問題ない。
 支持体444を介しての放熱は、放熱拡散部444Aを介して、より広い面で、かつ通気孔206の近傍で放熱させることができる。特に、支持体444(支持部材)から直接放熱させることができ、放熱性能をさらに上げることができる。これにより、フラッシュランプ230を構成する硬質ガラス管231(図15参照)の熱損傷防止効果をさらに高めることができる。
 なお、放熱拡散部444A外形寸法・形状は、どのようなものでもよい。スリット等を形成してもよい。
 また、上述の伝熱部材310及び/又は放熱拡散部444Aは、支持体241,242,243,244(支持部材)と同一の材料から形成されていても良い。
 以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。
 例えば、穿刺手段としてレーザ発射装置を用いるものであればどのような装置に適用してもよい。
 上記各実施の形態では測定装置という名称を用いたが、これは説明の便宜上であり、血糖値測定装置、穿刺ユニット等であってもよいことは勿論である。
 また、上記測定装置を構成する各部、例えば表示部の種類、その数及び接続方法などはどのようなものでもよい。
 2009年2月4日出願の特願2009-023460の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明に係る測定装置及び穿刺装置は、レーザ穿刺方式の穿刺機能を搭載した血糖測定装置及びレーザ穿刺装置を実現するためには、非常に重要な必須となる技術である。各種測定装置又は穿刺装置において、広く普及が期待される。
 100 測定装置
 200,300,400 レーザユニット
 202 下ケース
 203 上ケース
 204A,204B 取付部
 201 ユニット本体
 205,206 通気口
 210 鏡筒
 211 上側鏡筒
 211A,212A 脚部
 212 下側鏡筒
 220 レーザロッド
 230 フラッシュランプ
 231 硬質ガラス管
 232 陽電極
 233 陰電極
 241,242,243,244,444 支持体(支持部材)
 310 伝熱部材
 444A 放熱拡散部
 

Claims (22)

  1.  穿刺用レーザユニットを備える測定装置であって、
     前記レーザユニットは、鏡筒と、
     前記鏡筒内に設置されたレーザロッドと、
     前記鏡筒内において前記レーザロッドと対向配置され、硬質ガラス管内に不活性ガスを封入したフラッシュランプと、
     前記鏡筒外に少なくとも一部が設置され、前記硬質ガラス管の外周面をユニットケースに支持する、熱伝導率が100W/(m・K)以上の材料からなる支持部材と、
     を備える測定装置。
  2.  前記支持部材は、前記硬質ガラス管内の電極の外周方向の、該硬質ガラス管の外周面を支持する請求項1記載の測定装置。
  3.  前記支持部材は、前記鏡筒の開口部を塞ぐように設置される請求項1記載の測定装置。
  4.  前記支持部材は、前記鏡筒の両端開口部を塞ぐように設置された一対の支持体である請求項1記載の測定装置。
  5.  前記支持部材は、前記鏡筒の開口部に付勢される請求項1記載の測定装置。
  6.  前記支持部材は、前記鏡筒の外周面方向へ延びる熱拡散部を有する請求項1記載の測定装置。
  7.  前記支持部材は、前記鏡筒に熱を逃がす伝熱部材を備える請求項1記載の測定装置。
  8.  前記ユニットケースは、前記鏡筒の外周方向に通気孔を設ける請求項1記載の測定装置。
  9.  前記支持部材は、前記鏡筒の開口部に臨む面が鏡面仕上げされる請求項1記載の測定装置。
  10. 前記支持部材は、金属系材料で形成されている請求項1記載の測定装置。
  11.  前記支持部材は、アルミニウム又はアルミ合金である請求項1記載の測定装置。
  12.  レーザユニットによりレーザを照射して皮膚を穿刺する穿刺装置であって、
     前記レーザユニットは、鏡筒と、
     前記鏡筒内に設置されたレーザロッドと、
     前記鏡筒内において前記レーザロッドと対向配置され、硬質ガラス管内に不活性ガスを封入したフラッシュランプと、
     前記鏡筒外に少なくとも一部が設置され、前記硬質ガラス管の外周面をユニットケースに支持する、熱伝導率が100W/(m・K)以上の材料からなる支持部材と、
     を備える穿刺装置。
  13.  前記支持部材は、前記硬質ガラス管内の電極の外周方向の、該硬質ガラス管の外周面を支持する請求項12記載の穿刺装置。
  14.  前記支持部材は、前記鏡筒の開口部を塞ぐように設置される請求項12記載の穿刺装置。
  15.  前記支持部材は、前記鏡筒の両端開口部を塞ぐように設置された一対の支持体である請求項12記載の穿刺装置。
  16.  前記支持部材は、前記鏡筒の開口部に付勢される請求項12記載の穿刺装置。
  17.  前記支持部材は、前記鏡筒の外周面方向へ延びる熱拡散部を有する請求項12記載の穿刺装置。
  18.  前記支持部材は、前記鏡筒に熱を逃がす伝熱部材を備える請求項12記載の穿刺装置。
  19.  前記ユニットケースは、前記鏡筒の外周方向に通気孔を設ける請求項12記載の穿刺装置。
  20.  前記支持部材は、前記鏡筒の開口部に臨む面が鏡面仕上げされる請求項12記載の穿刺装置。
  21. 前記支持部材は、金属系材料で形成されている請求項12記載の穿刺装置。
  22.  前記支持部材は、アルミニウム又はアルミ合金である請求項12記載の測定装置。
     
     
PCT/JP2010/000657 2009-02-04 2010-02-03 測定装置及び穿刺装置 WO2010090015A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/147,255 US8764682B2 (en) 2009-02-04 2010-02-03 Measurement device and puncture device
JP2010549400A JP5307161B2 (ja) 2009-02-04 2010-02-03 測定装置及び穿刺装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009023460 2009-02-04
JP2009-023460 2009-02-04

Publications (1)

Publication Number Publication Date
WO2010090015A1 true WO2010090015A1 (ja) 2010-08-12

Family

ID=42541924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000657 WO2010090015A1 (ja) 2009-02-04 2010-02-03 測定装置及び穿刺装置

Country Status (3)

Country Link
US (1) US8764682B2 (ja)
JP (1) JP5307161B2 (ja)
WO (1) WO2010090015A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10258270B2 (en) 2012-01-10 2019-04-16 Sanofi-Aventis Deutschland Gmbh Apparatus for eliciting a blood sample
CN107689539B (zh) * 2017-09-11 2019-08-20 成都沃达惠康科技股份有限公司 内嵌反射体激光发生器
US20230116679A1 (en) * 2020-03-05 2023-04-13 Nsv, Inc. Vision Sensor Apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587369U (ja) * 1981-07-08 1983-01-18 株式会社東芝 レ−ザ装置
JPH03235384A (ja) * 1990-02-09 1991-10-21 Fuji Electric Co Ltd レーザ用集光器
JPH048459U (ja) * 1990-05-10 1992-01-27
JPH0626273U (ja) * 1992-08-31 1994-04-08 ホーヤ株式会社 固体レーザ装置
JP2003226547A (ja) * 2002-02-01 2003-08-12 Carl Zeiss:Fa ランプバルブ用アルカリ土類アルミノケイ酸塩ガラス
WO2008087982A1 (ja) * 2007-01-17 2008-07-24 Panasonic Corporation 血液検査装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587369A (ja) 1981-07-07 1983-01-17 Oki Electric Ind Co Ltd インパクト式ドツトプリンタ
JPH048459A (ja) 1990-04-20 1992-01-13 Sekisui Chem Co Ltd 作業指示表示システム
US5177751A (en) 1990-05-10 1993-01-05 Leonix Corporation Laser apparatus
JPH0626273A (ja) 1992-06-25 1994-02-01 Mitsui Mokuzai Kogyo Kk 扉枠の取付方法及びその取付用金具
US5993439A (en) * 1994-08-29 1999-11-30 Cell Robotics, Inc. Lens shield for laser skin perforation
US6733493B2 (en) * 2000-11-16 2004-05-11 Innotech Usa, Inc. Laser skin perforator
EP1997434B1 (en) * 2006-03-22 2013-05-15 Panasonic Corporation Blood inspection device
EP1997433B1 (en) * 2006-03-22 2013-05-15 Panasonic Corporation Laser perforation device and laser perforation method
KR20080095299A (ko) * 2006-03-22 2008-10-28 파나소닉 주식회사 혈액 검사 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587369U (ja) * 1981-07-08 1983-01-18 株式会社東芝 レ−ザ装置
JPH03235384A (ja) * 1990-02-09 1991-10-21 Fuji Electric Co Ltd レーザ用集光器
JPH048459U (ja) * 1990-05-10 1992-01-27
JPH0626273U (ja) * 1992-08-31 1994-04-08 ホーヤ株式会社 固体レーザ装置
JP2003226547A (ja) * 2002-02-01 2003-08-12 Carl Zeiss:Fa ランプバルブ用アルカリ土類アルミノケイ酸塩ガラス
WO2008087982A1 (ja) * 2007-01-17 2008-07-24 Panasonic Corporation 血液検査装置

Also Published As

Publication number Publication date
US20110288439A1 (en) 2011-11-24
JP5307161B2 (ja) 2013-10-02
JPWO2010090015A1 (ja) 2012-08-09
US8764682B2 (en) 2014-07-01

Similar Documents

Publication Publication Date Title
JP5307161B2 (ja) 測定装置及び穿刺装置
US20170316911A1 (en) X-ray generating apparatus and radiography system using the same
KR20140103865A (ko) 방사선관 및 그것을 사용한 방사선 촬영 시스템
JP5895138B2 (ja) ストロボ装置
US8072533B2 (en) Conductive holder for flash and flash assembly having same
US20100232163A1 (en) Lighting device with reflector and metal housing
JP2007012471A (ja) ガス放電管、光源装置及び液体クロマトグラフ
WO2016167024A1 (ja) 蛍光光源装置
JP4119329B2 (ja) 光照射装置
JP5898891B2 (ja) 発光装置
EP1970937A1 (en) Illumination device and metal vapor discharge lamp
JP2010097699A (ja) ショートアークランプ
KR20090038816A (ko) 발광 장치
JP4640215B2 (ja) 光源装置
JP4345447B2 (ja) 光源装置
JP2003043557A (ja) ストロボ装置
JP4539579B2 (ja) ランプ装置の光軸調整方法
JP4824832B2 (ja) 発光装置及び放電管
KR20070099452A (ko) 조명 유닛
JP2011179872A (ja) 光素子検査治具
JP2000306402A (ja) 光源ユニット
JP2605061Y2 (ja) 光源装置
JPH10207406A (ja) バックライト装置
JP2024081879A (ja) 閃光照射装置、閃光放電ランプ
JP4231360B2 (ja) 放電ランプの集光ミラー装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738356

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549400

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13147255

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738356

Country of ref document: EP

Kind code of ref document: A1