WO2010087353A1 - 赤外線検出素子 - Google Patents

赤外線検出素子 Download PDF

Info

Publication number
WO2010087353A1
WO2010087353A1 PCT/JP2010/051007 JP2010051007W WO2010087353A1 WO 2010087353 A1 WO2010087353 A1 WO 2010087353A1 JP 2010051007 W JP2010051007 W JP 2010051007W WO 2010087353 A1 WO2010087353 A1 WO 2010087353A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light absorption
absorption layer
semiconductor substrate
inas
Prior art date
Application number
PCT/JP2010/051007
Other languages
English (en)
French (fr)
Inventor
大介 須村
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2010087353A1 publication Critical patent/WO2010087353A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP

Definitions

  • the present invention relates to an infrared detection element using a semiconductor.
  • Infrared light has a longer wavelength than red, and is classified into, for example, near infrared, middle infrared, and far infrared depending on the wavelength band.
  • an infrared detecting element for detecting mid-infrared light an element using a material such as MCT (HgCdTe) or PbSe is known.
  • MCT HgCdTe
  • PbSe PbSe
  • the conventional semiconductor infrared detection element is processed into a mesa type (mesa-type), the PN junction at the processed part is exposed, and there is room for improvement in reliability.
  • This invention is made
  • the infrared detector according to the first invention comprises a semiconductor substrate made of InAs of the first conductivity type, the buffer layer comprising InAs X1 Sb 1-X1 formed on a semiconductor substrate (buffer layer), a light absorption layer made of InAs X2 Sb 1-X2 formed on the buffer layer, and a cap layer made of InPSb formed on the light absorption layer, and a composition ratio in the buffer layer X1 is larger than the composition ratio X2 in the light absorption layer, and the composition ratio X1 of the buffer layer gradually decreases from the semiconductor substrate toward the light absorption layer, and the light absorption layer starts from the surface of the cap layer. It is characterized in that impurities of the second conductivity type are added therein.
  • the second conductivity type semiconductor region is formed by adding the second conductivity type impurity, and the epitaxial growth and mesa etching are performed. Since they are not formed in combination, the interface between the semiconductor region of the second conductivity type and the light absorption layer is not exposed on the side surface, and a planar structure with excellent reliability is formed. Further, InPSb is used for the cap layer in order to transmit incident light to the light absorption layer while maintaining a good interface state with the light absorption layer, and the structure is excellent in reliability.
  • the buffer layer and the semiconductor substrate are provided at physically different positions with respect to the light absorption layer.
  • the composition ratio of the material having sensitivity to infrared rays is set as described above. For light with a wavelength near the absorption edge of the layer, there is no carrier detected by the buffer layer and the semiconductor substrate, and the spatial spread of the carrier read from the infrared detection element is reduced, and this element has high-speed response. It will be excellent.
  • carriers are also detected by the buffer layer and the semiconductor substrate, so that the infrared detection element is excellent in photoelectric conversion efficiency.
  • the infrared detecting element according to the second invention is formed on the buffer layer, a semiconductor substrate made of InSb of the first conductivity type, a buffer layer including InAs Y1 Sb 1-Y1 formed on the semiconductor substrate.
  • the second conductivity type semiconductor region is formed by adding the second conductivity type impurity, and the second conductivity type semiconductor region and the light absorption layer are formed.
  • the interface is not exposed on the side surface, and a planar structure with excellent reliability is formed.
  • InPSb is used for the cap layer in order to transmit incident light to the light absorption layer while maintaining a good interface state with the light absorption layer, and the structure is excellent in reliability.
  • the composition ratio of the material having sensitivity to infrared rays is set as described above, there is no carrier detected by the buffer layer and the semiconductor substrate, particularly for light having a wavelength near the absorption edge of the light absorption layer.
  • the spatial spread of carriers read from the infrared detection element is reduced, and this element is excellent in high-speed response.
  • carriers are also detected by the buffer layer and the semiconductor substrate, so that the infrared detection element is excellent in photoelectric conversion efficiency.
  • the infrared detection element of the present invention is excellent in reliability.
  • FIG. 1 is a longitudinal sectional view of an infrared detection element.
  • This infrared detection element can be used for an infrared gas analyzer, an FT-IR (Fourier transform infrared spectroscopy) apparatus, and the like.
  • the detectable wavelength is, for example, about 3.5 to 10 ⁇ m.
  • the infrared detection element includes an N-type semiconductor substrate 1, buffer layers 2, 3, and 4 formed on the semiconductor substrate 1, a light absorption layer 5 formed on the buffer layers 2, 3, and 4, And a cap layer 6 formed on the absorption layer 5. From the surface of the cap layer 6, P-type impurities (Zn) are diffused and added into the cap layer 6 and the light absorption layer 5, thereby constituting the P-type semiconductor region 7. Since the P-type impurities are also slightly diffused in the light absorption layer 5, the interface between the P-type and I-type junctions is located in the light absorption layer 5 and is not exposed on the side surfaces, so this interface is stable. , Reliability has been improved.
  • the P-type semiconductor region 7 is formed by adding impurities and is not formed by a combination of epitaxial growth and mesa etching, the interface between the P-type semiconductor region 7 and the light absorption layer 5 is not exposed to the side surface.
  • a planar structure with excellent reliability is formed.
  • An insulating layer 8 is formed on the cap layer 6, a first electrode E ⁇ b> 1 is formed on the insulating layer 8, and the first electrode E ⁇ b> 1 is formed in the semiconductor region 7 through a contact hole provided in the insulating layer 8. In contact and electrically connected to it.
  • a second electrode E2 is formed on the back side of the semiconductor substrate 1.
  • (1) 1st form element for infrared detection of 5 micrometer band
  • the material (thickness) which comprises each element in a 1st form is as follows.
  • First electrode E1 Ti / Pt / Au Insulating layer 8: SiN (0.1 ⁇ m)
  • Second electrode E2 AuGe / Ni / Au
  • the As composition ratios X11, X12, and X13 in the buffer layers 2, 3, and 4 are collectively expressed as X1
  • the light absorption layer 5 does not have a superlattice structure, and its composition ratio X2 is constant.
  • the energy band gap Eg can be reduced and the wavelength ⁇ of the detection sensitivity can be increased by changing the composition ratio.
  • the lattice constant a increases as the ratio of elements having a large atomic radius r increases.
  • the composition ratio of Sb in the light absorption layer 5 is 25% and infrared rays in the 5 ⁇ m band can be detected.
  • the composition ratio of Sb is increased to 65% as in the second mode, the 10 ⁇ m band Infrared rays can be detected.
  • Eg1 to Eg6 of each layer in the first form are defined as follows.
  • Eg5 light absorption layer 5: InAs 0.75 Sb 0.25
  • Eg4 buffer layer 4: InAs 0.8 Sb 0.2
  • Eg3U Buffer layer 3 (upper layer): InAs 0.85 Sb 0.15
  • Eg3M Buffer layer 3 (middle layer): InAs 0.90 Sb 0.10
  • Eg3L Buffer layer 3 (lower layer): InAs 0.95 Sb 0.05
  • the energy band gap decreases from the semiconductor substrate 1 toward the light absorption layer 5 side. In other words, the energy band gap increases from the light absorption layer 5 toward the semiconductor substrate 1.
  • the cap layer 6 has an energy band gap larger than that of the light absorption layer, and is transparent to infrared rays to be absorbed by the light absorption layer 5.
  • a short wavelength component equal to or shorter than the wavelength corresponding to the light absorption layer 5 is absorbed by the light absorption layer 5, and a longer wavelength component is absorbed by the light absorption layer 5.
  • Energy cannot be given, and the light absorption layer 5 is transmitted.
  • the transmitted long wavelength component sequentially enters the buffer layers 2, 3, 4 and the semiconductor substrate 1, but these semiconductor layers have an energy band gap larger than that of the light absorption layer 5 (absorbing wavelength is short).
  • the long wavelength component thus transmitted is not absorbed by the buffer layers 2, 3, 4 and the semiconductor substrate 1, but passes through them.
  • the buffer layers 2, 3, 4 and the semiconductor substrate 1 are provided at physically different positions with respect to the light absorption layer 5. Is not detected by the buffer layers 2, 3, 4 and the semiconductor substrate 1, the spatial spread of carriers read from the infrared detection element is reduced, and this element has excellent high-speed response. In addition, for light having a short wavelength away from the absorption edge of the light absorption layer, carriers are also detected by the buffer layer and the semiconductor substrate, so that the infrared detection element is excellent in photoelectric conversion efficiency. When the photoelectric conversion efficiency is excellent, the infrared detection element can be used for measuring weak light.
  • the infrared detection element having the above-described structure, when an insulating film is laminated directly on the light absorption layer 5, a defect that traps carriers generated by light at the interface between the light absorption layer 5 and the insulating film occurs. Therefore, a cap layer 6 lattice-matched with the light absorption layer 5 using a material having an energy band gap larger than that of the light absorption layer 5 is generated on the light absorption layer 5, so that light with a desired wavelength can be obtained. It is transparent and traps are not generated at the interface with the light absorption layer 5. Specifically, InPSb is used for the cap layer 6 in order to transmit incident light to the light absorption layer 5 while maintaining a good interface state with the light absorption layer 5, and the structure is excellent in reliability. ing.
  • the thickness of each of the three layers having different composition ratios of the buffer layer 2 and the buffer layer 3 is , Each preferably 0.5 ⁇ m or more.
  • Second embodiment 10 ⁇ m band infrared detecting element
  • the material (thickness) constituting each element in the second embodiment is as follows.
  • First electrode E1 Ti / Pt / Au Insulating layer 8: SiN (0.1 ⁇ m)
  • the As composition ratios Y11, Y12, and Y13 in the buffer layers 2, 3, and 4 are collectively expressed as Y1
  • the light absorption layer 5 does not have a superlattice structure, and its composition ratio Y2 is constant.
  • Eg1 to Eg6 of each layer in the second embodiment are defined as follows.
  • Eg3M Buffer layer 3 (middle layer): InAs 0.15 Sb 0.85
  • the energy band gap decreases from the semiconductor substrate 1 toward the light absorption layer 5 side. In other words, the energy band gap increases from the light absorption layer 5 toward the semiconductor substrate 1.
  • the cap layer 6 has an energy band gap larger than that of the light absorption layer, and is transparent to infrared rays to be absorbed by the light absorption layer 5.
  • a short wavelength component equal to or shorter than the wavelength corresponding to the light absorption layer 5 is absorbed by the light absorption layer 5, and a component having a longer wavelength than this is not absorbed by the light absorption layer 5.
  • the light absorption layer 5 is transmitted.
  • the transmitted long wavelength component sequentially enters the buffer layer and the semiconductor substrate. Since these semiconductor layers have a larger energy band gap (shorter wavelength to be absorbed) than the light absorption layer 5, the incident long wavelength component is The buffer layers 2, 3, 4 and the semiconductor substrate 1 are not absorbed but pass through them.
  • the buffer layers 2, 3, 4 and the semiconductor substrate 1 are provided at physically different positions with respect to the light absorption layer 5. Is not detected by the buffer layers 2, 3, 4 and the semiconductor substrate 1, the spatial spread of carriers read from the infrared detection element is reduced, and this element has excellent high-speed response. In addition, for light having a short wavelength away from the absorption edge of the light absorption layer, carriers are also detected by the buffer layer and the semiconductor substrate, so that the infrared detection element is excellent in photoelectric conversion efficiency. When the photoelectric conversion efficiency is excellent, the infrared detection element can be used for measuring weak light.
  • the total thickness (T2 + T3) of the buffer layers 2 and 3 is 3 ⁇ m, which is smaller than the thickness T5 of the light absorption layer 5.
  • the thickness of each of the five layers having different composition ratios of the buffer layer 2 and the buffer layer 3 is: Each of them is preferably 0.5 ⁇ m or more.
  • the above-described compound semiconductor layer can be manufactured using an MOCVD (metal organic vapor phase epitaxy) apparatus or an MBE (molecular beam epitaxy) apparatus, and the electrode can be formed using an evaporation method or a sputtering method.
  • MOCVD metal organic vapor phase epitaxy
  • MBE molecular beam epitaxy
  • the electrode can be formed using an evaporation method or a sputtering method.
  • a method for adding impurities a thermal diffusion method or an ion implantation method can be used, and heat treatment is performed after the ion implantation.
  • the first conductivity type is N type and the second conductivity type is P type.
  • these conductivity types may be reversed.
  • the present invention can be used for an infrared detection element used in an infrared gas analyzer, an FT-IR (Fourier transform infrared spectroscopy) apparatus, or the like.
  • FT-IR Fastier transform infrared spectroscopy
  • SYMBOLS 1 Semiconductor substrate, 2, 3, 4 ... Buffer layer, 5 ... Light absorption layer, 6 ... Cap layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 この赤外線検出素子は、N型のInAsからなる半導体基板1と、半導体基板1上に形成されたInAsX1Sb1-X1を含むバッファ層2,3,4と、バッファ層2,3,4上に形成されたInAsX2Sb1-X2からなる光吸収層5と、光吸収層5上に形成されたInPSbからなるキャップ層6とを備えている。組成比X1は、組成比X2よりも大きく、組成比X1は、半導体基板1から光吸収層5に近づくに従って段階的に減少しており、キャップ層6の表面から光吸収層5内にP型不純物が添加されてなる。なお、半導体基板1としてInSbを用いた場合には、組成比の関係は逆となる。

Description

赤外線検出素子
 本発明は、半導体を用いた赤外線検出素子に関するものである。
 赤外線は赤色よりも長い波長の光であり、波長帯域によって例えば近赤外線、中赤外線、遠赤外線に分類される。従来、中赤外線検出用の赤外線検出素子として、MCT(HgCdTe)やPbSe等の材料を用いたものが知られている。しかしながら、これらの材料はHgやPbなどの環境に対して有害な重金属を含んでいる。
 そこで、これらの物質を含有しない赤外線検出素子の光吸収層として、GaAs/AlGaAs超格子構造のサブバンド(subband)間での遷移を用いたもの、InAsSb/InSb歪超格子のバンド間での空間的な間接遷移を用いたものが開発されている(下記特許文献1参照)。
特開平05-160429号公報
 しかしながら、従来の半導体赤外線検出素子は、メサ型(mesa-type)に加工されているため、加工された箇所のPN接合部が露出しており、信頼性に改善の余地がある。
 本発明は、このような課題に鑑みてなされたものであり、信頼性に優れた赤外線検出素子を提供することを目的とする。
 上述の課題を解決するため、第1の発明に係る赤外線検出素子は、第1導電型のInAsからなる半導体基板と、半導体基板上に形成されたInAsX1Sb1-X1を含むバッファ層(buffer layer)と、バッファ層上に形成されたInAsX2Sb1-X2からなる光吸収層と、光吸収層上に形成されたInPSbからなるキャップ層(cap layer)とを備え、バッファ層における組成比X1は、光吸収層における組成比X2よりも大きく、且つ、バッファ層の組成比X1は、半導体基板から光吸収層に近づくに従って段階的に減少しており、キャップ層の表面から前記光吸収層内に第2導電型の不純物が添加されてなることを特徴とする。
 第1の発明に係る赤外線検出素子よれば、第2導電型の不純物が添加されることで第2導電型の半導体領域が形成されており、エピタキシャル(epitaxial)成長とメサエッチング(mesa etching)の組み合わせで形成されているわけではないため、第2導電型の半導体領域と光吸収層との界面が側面に露出せず、信頼性に優れたプレーナー構造が形成されている。また、光吸収層との界面状態を良好に保持しつつ、光吸収層に入射光を透過させるため、キャップ層にはInPSbを用いており、信頼性に優れる構造となっている。
 また、バッファ層及び半導体基板は、光吸収層に対して物理的に異なる位置に設けられているが、赤外線に感度を有する上記材料の組成比が上述の如く設定されているため、特に光吸収層の吸収端近辺の波長の光に関しては、バッファ層及び半導体基板によって検出されるキャリア(carrier)がなくなり、赤外線検出素子から読み出されるキャリアの空間的な広がりが小さくなり、この素子は高速応答性に優れることとなる。また、光吸収層の吸収端より離れた短い波長の光に関しては、バッファ層及び半導体基板によってもキャリアが検出されるため、この赤外線検出素子は光電変換効率に優れることとなる。
 また、第2の発明に係る赤外線検出素子は、第1導電型のInSbからなる半導体基板と、半導体基板上に形成されたInAsY1Sb1-Y1を含むバッファ層と、バッファ層上に形成されたInAsY2Sb1-Y2からなる光吸収層と、光吸収層上に形成されたInPSbからなるキャップ層とを備え、バッファ層における組成比Y1は、光吸収層における組成比Y2よりも小さく、且つ、バッファ層の組成比Y1は、半導体基板から前記光吸収層に近づくに従って段階的に増加しており、キャップ層の表面から光吸収層内に第2導電型の不純物が添加されてなることを特徴とする。
 第2の発明に係る赤外線検出素子においても、第2導電型の不純物が添加されることで第2導電型の半導体領域が形成されており、第2導電型の半導体領域と光吸収層との界面が側面に露出せず、信頼性に優れたプレーナー構造(planar structure)が形成されている。また、光吸収層との界面状態を良好に保持しつつ、光吸収層に入射光を透過させるため、キャップ層にはInPSbを用いており、信頼性に優れる構造となっている。
 また、赤外線に感度を有する上記材料の組成比が上記の如く設定されていることにより、特に光吸収層の吸収端近辺の波長の光に関しては、バッファ層及び半導体基板によって検出されるキャリアがなくなり、赤外線検出素子から読み出されるキャリアの空間的な広がりが小さくなり、この素子は高速応答性に優れることとなる。また、光吸収層の吸収端より離れた短い波長の光に関しては、バッファ層及び半導体基板によってもキャリアが検出されるため、この赤外線検出素子は光電変換効率に優れることとなる。
 本発明の赤外線検出素子は、信頼性に優れることとなる。
実施の形態に係る赤外線検出素子の縦断面図である。
 以下、実施の形態に係る赤外線検出素子について説明する。
 図1は、赤外線検出素子の縦断面図である。
 この赤外線検出素子は、赤外線ガス分析装置やFT-IR(フーリエ変換型赤外分光)装置などに用いることができる。検出できる波長は例えば3.5~10μm程度である。
 この赤外線検出素子は、N型の半導体基板1と、半導体基板1上に形成されたバッファ層2,3,4と、バッファ層2,3,4上に形成された光吸収層5と、光吸収層5上に形成されたキャップ層6とを備えている。キャップ層6の表面からは、キャップ層6内及び光吸収層5内にP型不純物(Zn)が拡散して添加されており、P型半導体領域7を構成している。P型不純物は、光吸収層5内にも若干拡散しているため、P型とI型の接合界面が光吸収層5内に位置し、側面に露出していないため、この界面が安定し、信頼性が向上している。
 P型半導体領域7は不純物の添加によって形成されており、エピタキシャル成長とメサエッチングの組み合わせで形成されているわけではないため、P型半導体領域7と光吸収層5との界面が側面に露出せず、信頼性に優れたプレーナー構造が形成されている。キャップ層6上には絶縁層8が形成されており、絶縁層8上には第1電極E1が形成され、第1電極E1は絶縁層8に設けられたコンタクトホールを介して半導体領域7に接触し、これに電気的に接続されている。半導体基板1の裏面側には、第2電極E2が形成されている。この赤外線検出素子においては、光吸収層5には不純物が添加されておらず、これをI型とするPINフォトダイオード(photodiode)が構成されている。バッファ層2,3,4には不純物としてシリコン(Si)が添加されており、その導電型はN型である。各化合物半導体層の組成を制御することで、検出感度を有する波長帯を変更することができる。
 以下、詳説する。
(1)第1形態:5μm帯の赤外線検出用の素子
 第1形態における各要素を構成する材料(厚み)は以下の通りである。
・第1電極E1:Ti/Pt/Au
・絶縁層8:SiN(0.1μm)
・キャップ層6:InPZ1Sb1-Z1(厚みT6=1.0μm)
・光吸収層5:InAsX2Sb1-X2(厚みT5=8.0μm)
・バッファ層4:InAsX13Sb1-X13(厚みT4=1.0μm)
・バッファ層3:InAsX12Sb1-X12(厚みT3=1.5μm)
・バッファ層2:InAsX11Sb1-X11(厚みT2=0.5μm)
・半導体基板1:InAs(厚みT1=250μm)
・第2電極E2:AuGe/Ni/Au
 また、組成比の具体的な一例は、以下の通りである。
・Z1=0.48
・X2=0.75
・X13=0.8
・X12=0.85~0.95
・X11=1
 なお、バッファ層3は、各層の厚みが0.5μmの化合物半導体層からなる3層構造を有しており、各化合物半導体層の半導体基板1側からの組成比が、それぞれ、X12=0.95、X12=0.9、X12=0.85となっており、すなわち、徐々に減少している。バッファ層2,3,4におけるAsの組成比X11、X12、X13を総括してX1として表記すると、バッファ層2,3,4におけるAsの組成比X1(=1~0.8)は、光吸収層5におけるAsの組成比X2(=0.75)よりも大きく、且つ、バッファ層2,3,4の組成比X1は、半導体基板1から光吸収層5に近づくに従って段階的に減少している。なお、光吸収層5は超格子構造ではなく、その組成比X2は一定である。
 化合物半導体では組成比を変えることにより、エネルギーバンドギャップEgを小さくでき、検出感度の波長λが長くすることができる。格子定数aは、原子半径rが大きい元素の比率が増加すると、増加する。第1形態では、光吸収層5におけるSbの組成比は25%であって5μm帯の赤外線を検出できるが、このSbの組成比を第2形態のように65%まで増加させると、10μm帯の赤外線を検出することができるようになる。
 第1形態における各層のエネルギーバンドギャップEg1~Eg6を以下のように定義する。
・Eg6:キャップ層6:InP0.48Sb0.52
・Eg5:光吸収層5:InAs0.75Sb0.25
・Eg4:バッファ層4:InAs0.8Sb0.2
・Eg3U:バッファ層3(上層):InAs0.85Sb0.15
・Eg3M:バッファ層3(中層):InAs0.90Sb0.10
・Eg3L:バッファ層3(下層):InAs0.95Sb0.05
・Eg2:バッファ層2:InAs
・Eg1:半導体基板1:InAs
 この場合、各層のエネルギーバンドギャップEg1~Eg6の関係は以下の通りとなる。
・Eg5<Eg4<Eg3U<Eg3M<Eg3L<Eg2<Eg1
・Eg5<Eg6
 半導体に入射した光(エネルギー)によって、その価電子帯から伝導帯に電子が遷移するには、エネルギーバンドギャップ以上のエネルギーを吸収する必要がある。Eg∝1/λであるため、Egが大きい場合には、これに対応する波長よりも短波長の成分が吸収され、残りの長波長の成分は透過する。
 上記の如く、半導体基板1がInAsである場合、半導体基板1から光吸収層5側に向かうにしたがってエネルギーバンドギャップが小さくなる。逆に言えば、光吸収層5から半導体基板1に向かうに従って、エネルギーバンドギャップは大きくなる。キャップ層6は光吸収層よりもエネルギーバンドギャップは大きく、光吸収層5で吸収されるべき赤外線に対しては透明である。
 キャップ層6側から入射した光のうち、光吸収層5に対応する波長以下の短波長成分は、光吸収層5において吸収され、これよりも長波長の成分は光吸収層5に吸収されるエネルギーを与えることができず、光吸収層5を透過する。透過した長波長成分は、バッファ層2,3,4及び半導体基板1に順次入射するが、これらの半導体層は光吸収層5よりもエネルギーバンドギャップが大きい(吸収する波長が短い)ので、入射した長波長成分は、バッファ層2,3,4及び半導体基板1に吸収されず、これらを透過する。
 したがって、バッファ層2,3,4及び半導体基板1は、光吸収層5に対して物理的に異なる位置に設けられているが、上記理由により、特に光吸収層の吸収端近辺の波長の光に関しては、これらのバッファ層2,3,4及び半導体基板1によって検出されなくなるため、赤外線検出素子から読み出されるキャリアの空間的な広がりが小さくなり、この素子は高速応答性に優れることとなる。また、光吸収層の吸収端より離れた短い波長の光に関しては、バッファ層及び半導体基板によってもキャリアが検出されるため、この赤外線検出素子は光電変換効率に優れることとなる。光電変換効率に優れる場合には、この赤外線検出素子は微弱光の計測に用いることができる。
 また、上述の構造を有する赤外線検出素子は、光吸収層5の上に直接絶縁膜を積層すると、光吸収層5と絶縁膜の界面にて光によって発生したキャリアをトラップするような欠陥が生じてしまうので、光吸収層5よりもエネルギーバンドギャップの大きい材料を用いて光吸収層5と格子整合させたキャップ層6を光吸収層5上に生成して、所望の波長の光に対して透明で、かつ、光吸収層5との界面でトラップ等を生じないようにしている。具体的には、光吸収層5との界面状態を良好に保持しつつ、光吸収層5に入射光を透過させるため、キャップ層6にはInPSbを用いており、信頼性に優れる構造となっている。
 なお、バッファ層2,3の合計の厚み(T2+T3)は2μmであるが、これは光吸収層5の厚みT5よりも小さい。良好な結晶性を有する光吸収層5を形成するためには、バッファ層2と、バッファ層3の組成比の異なる三層のそれぞれの層の厚み(T2、T3の内の各層の厚み)は、それぞれ0.5μm以上であることが好ましい。
(2)第2形態:10μm帯の赤外線検出用の素子 第2形態における各要素を構成する材料(厚み)は以下の通りである。
・第1電極E1:Ti/Pt/Au
・絶縁層8:SiN(0.1μm)
・キャップ層6:InPZ2Sb1-Z2(厚みT6=1.0μm)
・光吸収層5:InAsY2Sb1-Y2(厚みT5=8.0μm)
・バッファ層4:InAsY13Sb1-Y13(厚みT4=1.0μm)
・バッファ層3:InAsY12Sb1-Y12(厚みT3=2.5μm)
・バッファ層2:InAsY11Sb1-Y11(厚みT2=0.5μm)
・半導体基板1:InSb(厚みT1=250μm)
・第2電極E2:AuGe/Ni/Au
 また、組成比の具体的な一例は、以下の通りである。
・Z2=0.24
・Y2=0.35
・Y13=0.3
・Y12=0.05~0.25
・Y11=0
 なお、第1形態では、バッファ層3は、各層の厚みが0.5μmの化合物半導体層からなる3層構造を有しており、各化合物半導体層の半導体基板1側からの組成比が、それぞれ、Y12=0.05、Y12=0.10、Y12=0.15、Y12=0.20、Y12=0.25となっており、すなわち、徐々に増加している。バッファ層2,3,4におけるAsの組成比Y11、Y12、Y13を総括してY1として表記すると、バッファ層2,3,4におけるAsの組成比Y1(=0~0.3)は、光吸収層5におけるAsの組成比Y2(=0.35)よりも小さく、且つ、バッファ層2,3,4の組成比Y1は、半導体基板1から光吸収層5に近づくに従って段階的に増加している。なお、光吸収層5は超格子構造ではなく、その組成比Y2は一定である。
 第2形態における各層のエネルギーバンドギャップEg1~Eg6を以下のように定義する。
・Eg6:キャップ層6:InP0.24Sb0.76
・Eg5:光吸収層5:InAs0.35Sb0.65
・Eg4:バッファ層4:InAs0.3Sb0.7
・Eg3U:バッファ層3(上層):InAs0.25Sb0.75
・Eg3MU:バッファ層3(中上層):InAs0.20Sb0.80
・Eg3M:バッファ層3(中層):InAs0.15Sb0.85
・Eg3ML:バッファ層3(中下層):InAs0.10Sb0.90
・Eg3L:バッファ層3(下層):InAs0.05Sb0.95
・Eg2:バッファ層2:InSb
・Eg1:半導体基板1:InSb
 この場合、各層のエネルギーバンドギャップEg1~Eg6の関係は以下の通りとなる。
・Eg5<Eg4<Eg3U<Eg3MU<Eg3M<Eg3ML<Eg3L<Eg2<Eg1
・Eg5<Eg6
 上記の如く、半導体基板1がInSbである場合、半導体基板1から光吸収層5側に向かうにしたがってエネルギーバンドギャップが小さくなる。逆に言えば、光吸収層5から半導体基板1に向かうに従って、エネルギーバンドギャップは大きくなる。キャップ層6は光吸収層よりもエネルギーバンドギャップは大きく、光吸収層5で吸収されるべき赤外線に対しては透明である。
 キャップ層6側から入射した光のうち、光吸収層5に対応する波長以下の短波長成分は、光吸収層5において吸収され、これよりも長波長の成分は光吸収層5に吸収されず、光吸収層5を透過する。透過した長波長成分は、バッファ層及び半導体基板に順次入射するが、これらの半導体層は光吸収層5よりもエネルギーバンドギャップが大きい(吸収する波長が短い)ので、入射した長波長成分は、バッファ層2,3,4及び半導体基板1に吸収されず、これらを透過する。
 したがって、バッファ層2,3,4及び半導体基板1は、光吸収層5に対して物理的に異なる位置に設けられているが、上記理由により、特に光吸収層の吸収端近辺の波長の光に関しては、これらのバッファ層2,3,4及び半導体基板1によって検出されなくなるため、赤外線検出素子から読み出されるキャリアの空間的な広がりが小さくなり、この素子は高速応答性に優れることとなる。また、光吸収層の吸収端より離れた短い波長の光に関しては、バッファ層及び半導体基板によってもキャリアが検出されるため、この赤外線検出素子は光電変換効率に優れることとなる。光電変換効率に優れる場合には、この赤外線検出素子は微弱光の計測に用いることができる。
 なお、第2形態においては、バッファ層2,3の合計の厚み(T2+T3)は3μmであるが、これは光吸収層5の厚みT5よりも小さい。良好な結晶性を有する光吸収層5を形成するためには、バッファ層2とバッファ層3の組成比の異なる五層のそれぞれの層の厚み(T2、T3の内の各層の厚み)は、それぞれ0.5μm以上であることが好ましい。
 なお、上述の化合物半導体層はMOCVD(有機金属気相成長)装置又はMBE(分子線エピタキシー)装置を用いて製造することができ、電極は、蒸着法又はスパッタ法を用いて形成することができる。不純物の添加法としては、熱拡散法又はイオン注入法を用いることができ、イオン注入後には熱処理を行う。
 なお、上記では第1導電型をN型とし、第2導電型をP型として説明したが、これらの導電型は逆であってもよい。
 本発明は、赤外線ガス分析装置やFT-IR(フーリエ変換型赤外分光)装置などに用いられる赤外線検出素子に利用することができる。
1…半導体基板、2,3,4…バッファ層、5…光吸収層、6…キャップ層。

Claims (2)

  1.  第1導電型のInAsからなる半導体基板と、
     前記半導体基板上に形成されたInAsX1Sb1-X1を含むバッファ層と、
     前記バッファ層上に形成されたInAsX2Sb1-X2からなる光吸収層と、
     前記光吸収層上に形成されたInPSbからなるキャップ層と、
    を備え、
     前記バッファ層における組成比X1は、前記光吸収層における組成比X2よりも大きく、且つ、前記バッファ層の組成比X1は、前記半導体基板から前記光吸収層に近づくに従って段階的に減少しており、
     前記キャップ層の表面から前記光吸収層内に第2導電型の不純物が添加されてなる、ことを特徴とする赤外線検出素子。
  2.  第1導電型のInSbからなる半導体基板と、
     前記半導体基板上に形成されたInAsY1Sb1-Y1を含むバッファ層と、
     前記バッファ層上に形成されたInAsY2Sb1-Y2からなる光吸収層と、
     前記光吸収層上に形成されたInPSbからなるキャップ層と、
    を備え、
     前記バッファ層における組成比Y1は、前記光吸収層における組成比Y2よりも小さく、且つ、前記バッファ層の組成比Y1は、前記半導体基板から前記光吸収層に近づくに従って段階的に増加しており、
     前記キャップ層の表面から前記光吸収層内に第2導電型の不純物が添加されてなる、ことを特徴とする赤外線検出素子。
PCT/JP2010/051007 2009-01-28 2010-01-27 赤外線検出素子 WO2010087353A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009016804A JP2010177350A (ja) 2009-01-28 2009-01-28 赤外線検出素子
JP2009-016804 2009-01-28

Publications (1)

Publication Number Publication Date
WO2010087353A1 true WO2010087353A1 (ja) 2010-08-05

Family

ID=42395612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051007 WO2010087353A1 (ja) 2009-01-28 2010-01-27 赤外線検出素子

Country Status (2)

Country Link
JP (1) JP2010177350A (ja)
WO (1) WO2010087353A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6734678B2 (ja) * 2016-03-29 2020-08-05 旭化成エレクトロニクス株式会社 量子型赤外線センサ
JP7458696B2 (ja) * 2018-05-16 2024-04-01 住友電気工業株式会社 半導体積層体および受光素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160429A (ja) * 1991-12-09 1993-06-25 Nec Corp 赤外線検知器
JP2001177142A (ja) * 1999-12-16 2001-06-29 Hamamatsu Photonics Kk 受光素子
JP2002373999A (ja) * 2001-06-14 2002-12-26 Yokogawa Electric Corp 半導体素子
WO2008026536A1 (fr) * 2006-08-29 2008-03-06 Hamamatsu Photonics K.K. Photodétecteur et procédé de fabrication d'un photodétecteur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160429A (ja) * 1991-12-09 1993-06-25 Nec Corp 赤外線検知器
JP2001177142A (ja) * 1999-12-16 2001-06-29 Hamamatsu Photonics Kk 受光素子
JP2002373999A (ja) * 2001-06-14 2002-12-26 Yokogawa Electric Corp 半導体素子
WO2008026536A1 (fr) * 2006-08-29 2008-03-06 Hamamatsu Photonics K.K. Photodétecteur et procédé de fabrication d'un photodétecteur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Proceedings of the Symposium on Heteroepitaxial Approaches in Semiconductors: Lattice Mismatch and Its Consequences, 1988", article R.M.BIEFELD: "A structural investigation of compositionally graded InAsxSb1-x buffer layers", pages: 207 - 217 *

Also Published As

Publication number Publication date
JP2010177350A (ja) 2010-08-12

Similar Documents

Publication Publication Date Title
US8058642B2 (en) Light-receiving device
US9178089B1 (en) Strain-balanced extended-wavelength barrier detector
US10062794B2 (en) Resonant-cavity infrared photodetectors with fully-depleted absorbers
US8004012B2 (en) Unipolar semiconductor photodetector with suppressed dark current and method for producing the same
US7795640B2 (en) Depletion-less photodiode with suppressed dark current and method for producing the same
US10886325B2 (en) Infrared detector devices and focal plane arrays having a transparent common ground structure and methods of fabricating the same
Park et al. Normal incidence infrared detector using p‐type SiGe/Si multiple quantum wells
WO2012073539A1 (ja) 受光素子、検出装置、半導体エピタキシャルウエハ、およびこれらの製造方法
JP6487284B2 (ja) 赤外線センサ素子及びその製造方法
US9748427B1 (en) MWIR photodetector with compound barrier with P-N junction
Perera Heterojunction and superlattice detectors for infrared to ultraviolet
US20120217475A1 (en) Optoelectronic Devices Including Compound Valence-Band Quantum Well Structures
Aifer et al. Dual band LWIR/VLWIR type-II superlattice photodiodes
US10872997B2 (en) Photodetector comprising a stack of vertically adjacent layers
WO2010087353A1 (ja) 赤外線検出素子
US20190157338A1 (en) Method for manufacturing a photosensor comprising a stack of layers placed on top of each other
JPH02119274A (ja) アバランシェフォトダイオード
WO2014002082A2 (en) Photodetector device
JP2011082348A (ja) 半導体素子および半導体ウエハ
Suo et al. Dark Current Analysis of InAsSb-Based Hetero-$ p {\text {-}} i {\text {-}} n $ Mid-Infrared Photodiode
Tidrow et al. Two-stack two-color high-strain quantum well infrared photodetector
Aifer et al. High quantum efficiency long-wave infrared photodiodes using W-structured type-II superlattices
JP2023143360A (ja) 赤外線センサ
US11063163B1 (en) Infrared photo-detector with low turn-on voltage
Tian et al. High-operating-temperature MWIR detectors using type II superlattices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10735819

Country of ref document: EP

Kind code of ref document: A1