WO2010084573A1 - ガスタービン設備 - Google Patents

ガスタービン設備 Download PDF

Info

Publication number
WO2010084573A1
WO2010084573A1 PCT/JP2009/050772 JP2009050772W WO2010084573A1 WO 2010084573 A1 WO2010084573 A1 WO 2010084573A1 JP 2009050772 W JP2009050772 W JP 2009050772W WO 2010084573 A1 WO2010084573 A1 WO 2010084573A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
cooling air
stage
turbine
gas turbine
Prior art date
Application number
PCT/JP2009/050772
Other languages
English (en)
French (fr)
Inventor
達治 高橋
直樹 萩
安威 俊重
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020117001997A priority Critical patent/KR101274928B1/ko
Priority to PCT/JP2009/050772 priority patent/WO2010084573A1/ja
Priority to CN200980129565.7A priority patent/CN102112703B/zh
Priority to US13/056,054 priority patent/US8602724B2/en
Priority to EP09838765.7A priority patent/EP2381069B1/en
Priority to JP2010547334A priority patent/JP5174190B2/ja
Publication of WO2010084573A1 publication Critical patent/WO2010084573A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments

Definitions

  • the present invention relates to a gas turbine equipment that enables tip clearance control of a turbine first stage moving blade.
  • the tip clearance of the gas turbine fluctuates due to expansion / contraction due to a temperature difference between the rotation side structure and the stationary side structure during startup and rated operation, and centrifugal elongation due to rotation. That is, the fluctuation of the tip clearance is affected by the compressor outlet temperature and the combustion gas temperature, and the clearance of the turbine first stage blade is particularly severe.
  • the thermal expansion amount of the blade ring varies depending on the compressor outlet temperature. Therefore, when the tip clearance at the rated operation described above is minimized, an initial clearance having no tolerance for contact is set.
  • ACC active clearance control
  • This ACC performs clearance control using steam in order to increase / decrease the tip clearance during operation of the first stage moving blade of the turbine. Specifically, when the gas turbine starts up, the blade ring is warmed up by steam introduced from the outside of the gas turbine, and during load operation, the blade ring is cooled and the thermal thermal expansion is controlled to control clearance. Is to implement.
  • the ACC blade ring has a steam passage for warming up and cooling in the blade ring, so that even if the first stage blade ring is exposed to the space at the compressor outlet,
  • the amount of expansion of the blade ring that affects the clearance is determined by the relationship between the compressor discharge temperature and the steam temperature, and the amount of thermal expansion of the blade ring can be adjusted. For this reason, it warms up with steam at startup and widens the chip clearance, and cools with steam at a relatively low temperature during load operation and narrows the chip clearance, so that the chip clearance can be adjusted according to the operating conditions.
  • Patent Document 1 Also, a cooling means for cooling the turbine stator blade cooling air is provided, and the air cooled by this cooling means is supplied to the turbine stator blade, whereby the discharge air introduced from the air compressor as the turbine stator blade cooling air.
  • a gas turbine is disclosed that reduces the amount and intermediate stage bleed and improves thermal efficiency.
  • Patent Document 2 Japanese Patent No. 3825279 JP-A-7-54669
  • the conventional ACC described above tends to be less likely to cause pinch points in the tip clearance of the turbine rotor blade, as compared to the conventional technology that does not perform ACC.
  • the conventional ACC needs to allow steam to pass through the blade ring, it has to wait for the condition to be satisfied until the steam condition to be used is satisfied, which has a problem in terms of operation. Therefore, in gas turbine equipment, it is required to solve this problem and improve the operability of ACC.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to ensure the tip clearance of the turbine first stage moving blade required at the start-up and to minimize the tip during load operation (rated operation).
  • An object of the present invention is to provide a gas turbine facility that enables active clearance control (ACC) to realize clearance.
  • a gas turbine equipment according to the present invention is a gas turbine equipment provided with a cooler in an air system used for cooling a turbine two-stage stationary blade, and a first stage facing the blade tip of the turbine first stage moving blade and the turbine second stage moving blade.
  • the split ring and the two-stage split ring are supported by the same blade ring, and the thermal expansion of the blade ring is controlled by forming a cooling air flow path in which the cooling air of the two-stage stationary blade cools the blade ring and flows. It is characterized by controlling the clearance with the blade tip.
  • the first-stage split ring and the two-stage split ring facing the blade tips of the turbine first stage rotor blade and the turbine second stage rotor blade are supported by the same blade ring, and Active clearance control that reduces the tip clearance by controlling the thermal expansion of the blade ring and controlling the clearance with the blade tip by forming a cooling air flow path where cooling air flows by cooling the blade ring Is possible.
  • a switching means is provided in the cooling air supply flow path of the two-stage stationary blades so that the cooling air is bypassed and the cooling air is allowed to flow during startup, and the cooling air is allowed to flow through the cooling device during load operation. It is preferable to switch different flow paths at the time of startup and load operation.
  • the cooling air may be the conventional cooling air, but the flow path is switched between the start-up flow that bypasses the cooler and the load operation that flows through the cooler. This makes it possible to control the thermal expansion of the blade ring more effectively.
  • a high-pressure bleed air of a compressor is introduced as the cooling air, and a flow path that flows by bypassing the cooler is selected during the start-up, and a flow path that flows through the cooler is selected during the load operation It is preferred that In other words, active clearance control that secures the tip clearance of the turbine stage 1 rotor blade using high-temperature cooling air during startup and reduces tip clearance using low-temperature cooling air that passed through the cooler during load operation. Is possible.
  • a high temperature compressed air introduced from a compressor outlet is used as the cooling air at the start-up, and a switching means is provided for the cooling air into which the high-pressure bleed air is introduced at the load operation. It is preferable to switch between different flow paths. That is, in the above invention, there is a possibility that the conventional cooling air may be used, but as a more effective method, the high-temperature compressed air introduced from the compressor outlet is used as the cooling air at start-up, and the cooling air is used during load operation. Is used.
  • the high temperature compressed air having a high temperature is used as it is as the cooling air at the start-up to ensure the tip clearance of the turbine first stage blade, and the high pressure bleed air whose temperature has been lowered by passing through the cooler during the load operation is used as the cooling air. It is possible to use active clearance control to reduce the tip clearance.
  • the air system used for cooling the turbine two-stage stationary blade is provided, and the first-stage split ring and the two-stage split ring facing the blade tips of the turbine first-stage rotor blade and the turbine second-stage rotor blade are provided.
  • a cooling air flow path is formed by supporting the same blade ring member and cooling air of the two-stage stationary blades cooling the blade ring member, and a cooling air flow path switching means is provided in the cooling air flow path. The flow path is switched between the start-up using the high-temperature compressed air introduced from the compressor outlet as the cooling air and the load operation using the high-pressure bleed air introduced from the compressor high-pressure stage as the cooling air.
  • warm-up operation is performed using high-pressure compressed air with a high temperature and tip clearance of the turbine stage 1 rotor blade is ensured.
  • high-pressure bleed air with a relatively low temperature is used as cooling air for tip clearance. Active clearance control can be achieved.
  • the temperature of the blade ring metal is reduced by flowing the cooling air flow path of the turbine two-stage stationary blade through the blade ring holding the one-stage split ring located on the outer periphery of the turbine first-stage moving blade. can do.
  • active clearance control can be performed by switching the cooling air at the time of start-up and load operation.
  • a small tip clearance can be ensured, and a minimum tip clearance can be realized during load operation. This eliminates the need for steam to perform active clearance control, eliminates the problem of waiting for startup until the steam conditions to be used are satisfied, and improves the operability of the gas turbine.
  • FIG. 1 is a partial cross-sectional view showing a turbine inlet portion of a first embodiment as an embodiment of a gas turbine equipment according to the present invention.
  • the figure which shows a turbine part cooling system as 1st Embodiment of the gas turbine equipment which concerns on this invention, and the time of load operation of a gas turbine is shown.
  • It is a figure which shows the 1st modification which concerns on the turbine part cooling system of FIG. 2, and has shown the time of starting operation of a gas turbine.
  • a gas turbine GT shown in FIGS. 2A and 2B includes a compressor 1, a combustor 2, and a turbine unit 3.
  • the gas turbine GT supplies the air compressed by the compressor 1 to the combustor 2 and burns fuel in the combustor 2 using the compressed air.
  • the combustion gas flows between the stationary blades and the moving blades of the turbine unit 3 to extract, for example, the thermal energy of the combustion gas as an axial output. Can do.
  • FIG. 1 is a partial cross-sectional view showing a turbine inlet of a gas turbine GT.
  • a turbine rotor By flowing a high-temperature and high-pressure combustion gas supplied from a combustor 2, a turbine rotor is provided in a casing having an outer casing 11 and a blade ring 12. Rotates.
  • On the inner peripheral surface of the cylindrical blade ring 12, a plurality of stages of turbine stationary blades (a first-stage stationary blade, a 2-stage stationary blade,...) are installed in order from the upstream side in the combustion gas flow direction.
  • a plurality of stages of turbine blades (one-stage blade, two-stage blade,...) are installed on the outer peripheral surface of the turbine rotor in order from the upstream side in the combustion gas flow direction.
  • the number of stages of turbine stationary blades (1 stage stationary blade, 2 stage stationary blades. I will delete them and call them stationary and moving blades.
  • the turbine first stage stationary blade is supported by a heat shield member 15 attached to the inside of the blade ring 12.
  • the turbine two-stage stationary blade is supported by a heat shield member 15 attached to the inside of the blade ring 12.
  • the 1-stage split ring 31 and the 2-stage split ring 32 are members disposed at positions facing the blade tips of the turbine 1-stage moving blade and the turbine 2-stage moving blade, respectively. That is, the first stage split ring 31 and the second stage split ring 32 are both supported by the same blade ring 12 by the heat shield member 15, and the blade tips of the turbine first stage blade and the turbine second stage blade are 1 It rotates along the inner peripheral surface of the stage division ring 31 and the two stage division ring 32.
  • a tip clearance In order to prevent the first stage split ring 31 and the two stage split ring 32 and the blade tips of the turbine first stage rotor blade and the turbine second stage rotor blade from coming into contact with each other when the rotor rotates, it is called a tip clearance. A gap is formed. This tip clearance becomes a value that fluctuates due to the expansion and contraction of both members due to the temperature change between the start of the gas turbine GT and the rated operation.
  • the turbine two-stage stationary blade described above is provided with an air system 40 of cooling air used for cooling.
  • the cooling air system 40 is connected to the compressor 1 of the gas turbine GT and extracted from high-pressure extraction.
  • the cooling air system 40 shown in FIGS. 2A and 2B is defined between the outer casing 11 and the blade ring 12 by using the high-pressure air extracted from the high-pressure stage of the compressor 1 as cooling air for the turbine two-stage stationary blade T2C. It is a cooling air flow path for supplying to the introduction space 13.
  • the cooling air system 40 includes a bypass passage 42 that is branched from a main passage 41 through which cooling air flows during load operation and is provided in parallel.
  • the bypass flow path 42 may be a cooling air flow path that is selected at the time of activation and allows cooling air to flow.
  • the opening / closing valve 43 of the flow path switching means, the orifice 44 for adjusting the flow rate, and the temperature of the high-pressure bleed air are set in order from the upstream side close to the compressor 1.
  • a lowering cooler 45 is provided in series.
  • an orifice 46 for adjusting the flow rate is provided in the bypass flow path 42 used when starting the gas turbine GT.
  • the stationary blade 22 and the split ring 32 are supported by the heat shield member 15 so as to form a space 14 between the stationary blade 22 and the blade ring 12.
  • the cooling air introduced into the introduction space 13 through the cooling air system 40 described above passes through the through-hole 16 provided in the blade ring 12, and the blade ring facing the blade tips of the turbine first stage and turbine second stage moving blades. 12 and the space 14 are introduced to cool the blade ring 12.
  • the gas turbine GT including the cooling air system 40 having the above-described configuration is subjected to start-up operation and load operation as described below.
  • the bypass flow path 42 is selected with the on-off valve 43 closed.
  • a flow path through which the cooling air does not pass through the cooler 45 is selected. That is, the high-pressure bleed gas introduced from the compressor 1 is supplied to the introduction space 13 and the space portion 14 while maintaining the temperature as it is without being cooled by the cooler 45. For this reason, since the temperature rise of the blade ring 12 is promoted, the start-up time of the gas turbine GT can be shortened to operate effectively.
  • the on-off valve 43 When shifting to the load operation, as shown in FIG. 2B, the on-off valve 43 is opened and the main flow paths 41 and 42 are selected. As a result, the high-pressure bleed air introduced from the compressor 1 as cooling air is supplied to the introduction space 13 and the space portion 14 in a state where the temperature is lowered by passing through the cooler 45 and receiving cooling. For this reason, since the blade ring 12 is cooled by the cooling air, the tip clearance formed between the tip of the turbine first stage moving blade and the turbine second stage moving blade can be controlled to an optimum value.
  • the cooling air system 40 for flowing the cooling air of the turbine two-stage stationary blades is formed on the outer periphery of the turbine first-stage moving blade, and the metal temperature of the blade ring 12 positioned on the outer periphery of the turbine first-stage moving blade can be reduced.
  • the tip clearance of the turbine first stage blade is ensured by using the high-temperature cooling air at the start-up, and the tip is made by using the low-temperature cooling air that has passed through the cooler 45 during the load operation.
  • Active clearance control (ACC) that reduces the clearance becomes possible.
  • the cooling air system 40 of the turbine two-stage stationary blade provided with the cooler 45 is effectively used, and the temperature control of the cooling air is performed by using the cooler 45, and the temperature at the time of start-up and load operation It is possible to control and optimize the variation of the tip clearance due to the difference.
  • high-pressure extraction is used as cooling air, operability is improved as compared to the prior art ACC that uses steam, such as waiting for establishment of steam conditions.
  • strain 40 mentioned above is demonstrated based on FIG. 3A and FIG. 3B.
  • the same parts as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a connecting pipe 47 is provided between the high-temperature compressed air introduction pipe 50 and the main pipe 41 so as to communicate with the downstream side of the cooler 45.
  • the connecting pipe 47 has an on-off valve as a flow path switching means. 48 is provided.
  • an on-off valve 43A provided upstream from the position branching to the main pipe 41 and the bypass pipe 42 is provided as a flow path switching means during startup and load operation. ing.
  • the gas turbine GT including the cooling air system 40A having the above-described configuration is subjected to start-up operation and load operation as described below.
  • the connecting valve 47 is selected as the cooling air flow path by closing the on-off valve 43A and opening the on-off valve 48, and the compressor 1 A part of the outlet air is sent to the introduction space 13 via the connecting pipe 47.
  • a flow path for directly introducing high-temperature high-temperature compressed air is selected.
  • the blade ring 16 can be further heated. Therefore, the start-up time of the gas turbine GT necessary for raising the blade ring 12 and the like to a predetermined temperature can be further shortened and effective operation can be performed.
  • the main flow path 41 and the bypass flow path 42 are selected by opening the on-off valve 43A and closing the on-off valve 48 as shown in FIG. 3B.
  • the high-pressure bleed air introduced from the compressor 1 as cooling air is distributed into one that passes through the main flow path 41 and the cooler 45 and receives cooling, and one that passes through the bypass flow path 42.
  • the distribution ratio in this case is determined by the pressure loss of the cooling air due to the passage of the orifices 44 and 46, the cooler 45, the pipe length, and the like.
  • the high-pressure bleed air whose temperature has dropped through the cooler 45 and the high-pressure bleed air that has flowed at the same temperature become a single flow due to the merge of the main flow path 41 and the bypass flow path 42, and the introduction space 13 with the temperature lowered. And supplied to the space 14.
  • a cooling air system 40 for flowing cooling air of the turbine two-stage stationary blades is formed on the outer periphery of the turbine first-stage rotor blade, and reduces the metal temperature of the blade ring 12 located on the outer periphery of the turbine first-stage rotor blade. Can be controlled and optimized.
  • One connecting pipe 49A connects the upstream side of the orifice of the cooling air system 40B and the downstream side of the cooler 51 of the introduction pipe 50, and an on-off valve 48A of the flow path switching means is provided in the middle.
  • the other connecting pipe 49B connects the downstream side of the orifice of the cooling air system 40B and the upstream side of the cooler 51 of the introduction pipe 50, and an opening / closing valve 48B of the flow path switching means is provided in the middle.
  • An on-off valve 43A is provided in the cooling air system 40B as a high-pressure extraction channel switching means used as cooling air.
  • the on-off valves 43A and 48A are closed,
  • a part of the high-temperature compressed air introduced as the rotor cooling air is supplied to the introduction space 13 and the space portion 14 via the on-off valve 48B connecting pipe 49B.
  • the tip clearance formed between the tip of the turbine first stage moving blade and the turbine second stage moving blade is controlled to an optimum value. can do. That is, the cooling air system 40B for flowing the cooling air of the turbine two-stage stationary blades is formed on the outer periphery of the turbine first-stage moving blade, and the metal temperature of the blade ring 12 located on the outer periphery of the turbine first-stage moving blade can be reduced.
  • the cooling air of the turbine two-stage stationary blades flows through the passage 16 provided in the blade ring, so that the on-off valves 43A, 48A, and 48B are provided as flow switching means for the cooling air.
  • the turbine two-stage stationary blade This cooling air can reduce the metal temperature of the blade ring 12.
  • warm-up operation is performed using high-pressure compressed air with a high temperature and tip clearance of the turbine stage 1 rotor blade is ensured.
  • high-pressure bleed air with a relatively low temperature is used as cooling air for tip clearance. ACC can be made smaller.
  • the metal temperature of the blade ring 12 can be reduced by causing the cooling air of the turbine two-stage stationary blade to flow through the through hole 16 provided in the blade ring 12.
  • the active clearance control ACC
  • the temperature of the cooling air is raised at the time of start-up and the warm-up operation is performed.
  • the tip clearance required for the wing is ensured, and the minimum tip clearance can be realized during load operation. Therefore, no steam is required for the implementation of ACC, and the problem of waiting for start-up until the steam condition to be used is satisfied is solved, so that the operability of the gas turbine GT is improved.
  • the turbine inlet portion of the gas turbine GT described above is not limited to the configuration shown in FIG. 1, and may be configured as a modified example shown in FIG. 5, for example. That is, compared with the configuration shown in FIG. 1, although there is a difference in the configuration in which the outer casing 11 and the blade ring 12 are integrated by fitting, the same introduction space 13 and space portion 14 are formed in any case. ing.
  • this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 起動時に必要なタービン1段動翼のチップクリアランスを確保するとともに、負荷運転時に最小のチップクリアランスを実現するためのアクティブ・クリアランス・コントロールが可能となるガスタービン設備を提供する。タービン2段静翼の冷却に用いられる空気系統に冷却器を備えているガスタービン設備において、タービン1段動翼及びタービン2段動翼の翼先端と対向する1段分割環及び2段分割環を同一の翼環部材で支持させるとともに、2段静翼の冷却空気が翼環を冷却して流れる冷却空気流路を形成することで翼環の熱膨張をコントロールし翼先端とのクリアランスをコントロールする。

Description

ガスタービン設備
 本発明は、タービン1段動翼のチップクリアランス制御を可能にしたガスタービン設備に関する。
 ガスタービンのチップクリアランスは、回転側構造体と静止側構造体の、起動時と定格運転時との温度差による膨張・収縮及び回転による遠心伸びで変動する。つまり、チップクリアランスの変動は、圧縮機出口温度や燃焼ガス温度の影響を受け、特にタービン1段動翼のクリアランスが厳しい状況となる。
 従来構造では、タービン部の静止側に温度調整手段(たとえば蒸気通路等)がない場合には翼環の熱膨張量は圧縮機出口温度によって変化する。そのため、上述した定格運転時のチップクリアランスを最小とする場合、接触に対して裕度のない初期クリアランスに設定することになってしまう。
 また、上述したチップクリアランス対策として、起動時に必要なチップクリアランスを確保するとともに、定格時に最小のチップクリアランスを実現するためのアクティブ・クリアランス・コントロール(以下、「ACC」と呼ぶ)が行われている。
 このACCは、タービン1段動翼の運転時におけるチップクリアランスを増加・減少させるため、蒸気を用いたクリアランスコントロールを行うものである。具体的に説明すると、ガスタービン起動時には、ガスタービンの外部から導入した蒸気による翼環の暖機を行い、負荷運転時には、翼環の冷却を実施し、熱熱膨張をコントロールすることでクリアランスコントロールを実施するものである。
 上述したクリアランスコントロールを実施するため、ACC翼環は翼環内に暖機及び冷却のために蒸気通路があり、それにより1段翼環が圧縮機出口部の空間にさらされていても、チップクリアランスに影響を及ぼす翼環の伸び量は、圧縮機吐出温度と蒸気温度との関係により決定され翼環の熱膨張量を調整することができる。このため、起動時には蒸気により暖機しチップクリアランスを広げ、負荷運転時には相対的に低温となる蒸気により冷却しチップクリアランスを狭めるので、運転状況に応じたチップクリアランスの調整が可能となる。(たとえば、特許文献1参照)
 また、タービン静翼冷却用の空気を冷却する冷却手段を設け、この冷却手段で冷却した空気をタービン静翼へ供給することにより、タービン静翼冷却用の空気として空気圧縮機から導入する吐出空気量及び中間段抽気量を軽減して熱効率を向上させるガスタービンが開示されている。(たとえば、特許文献2参照)
特許第3825279号公報 特開平7-54669号公報
 上述した従来のACCは、ACCを行わない従来技術と比較して、タービン動翼のチップクリアランスにピンチポイントが生じにくい傾向となる。しかし、従来のACCは翼環内に蒸気を通過させる必要があるため、使用する蒸気条件の成立まで条件成立待ちをしなければならず、運用上の制限があるという問題を有している。従って、ガスタービン設備においては、この問題を解決してACCの運用性を向上させることが求められている。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、起動時に必要なタービン1段動翼のチップクリアランスを確保するとともに、負荷運転(定格運転)時に最小のチップクリアランスを実現するためのアクティブ・クリアランス・コントロール(ACC)が可能となるガスタービン設備を提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明に係るガスタービン設備は、タービン2段静翼の冷却に用いられる空気系統に冷却器を備えているガスタービン設備において、タービン1段動翼及びタービン2段動翼の翼先端と対向する1段分割環及び2段分割環を同一の翼環で支持させるとともに、前記2段静翼の冷却空気が前記翼環を冷却して流れる冷却空気流路を形成することで前記翼環の熱膨張をコントロールし翼先端とのクリアランスをコントロールすることを特徴とするものである。
 このようなガスタービン設備によれば、タービン1段動翼及びタービン2段動翼の翼先端と対向する1段分割環及び2段分割環を同一の翼環で支持させるとともに、前記2段静翼の冷却空気が前記翼環を冷却して流れる冷却空気流路を形成することで前記翼環の熱膨張をコントロールし翼先端とのクリアランスをコントロールすることにより、チップクリアランスを小さくするアクティブ・クリアランス・コントロールが可能になる。
 上記の発明において、前記2段静翼の冷却空気の供給流路に切替手段を設けて、起動時には前記冷却器をバイパスし冷却空気を流し、負荷運転時には前記冷却器を通って冷却空気を流すことで起動時と負荷運転時とで異なる流路を切り替えることが好ましい。すなわち、上記の発明において、前記冷却空気としてこれまでの冷却空気でも可能性はあるが、冷却器をバイパスして流れる起動時と冷却器を通って流れる負荷運転時とで異なる流路に切り替えることにより、より効果的に翼環の熱膨張をコントロールすることが可能になる。
 上記の発明において、前記冷却空気として圧縮機の高圧抽気を導入し、前記起動時には前記冷却器をバイパスして流れる流路が選択され、前記負荷運転時には前記冷却器を通って流れる流路が選択されることが好ましい。すなわち、起動時には温度の高い冷却空気を用いてタービン1段動翼のチップクリアランスを確保し、負荷運転時には冷却器を通った温度の低い冷却空気を用いてチップクリアランスを小さくするアクティブ・クリアランス・コントロールが可能となる。
 上記の発明において、前記冷却空気として起動時には圧縮機出口から導入した高温圧縮空気を使用し、前記負荷運転時には前記高圧抽気を導入した冷却空気とする切り替え手段を設けて、起動時と負荷運転時とで異なる流路を切り替えることが好ましい。すなわち、上記の発明において、これまでの冷却空気でも可能性はあるが、より効果的な手法として、起動時の冷却空気として圧縮機出口から導入した高温圧縮空気を使用し、負荷運転時には冷却空気を使用する。これにより、起動時には温度の高い高温圧縮空気をそのまま冷却空気として使用することでタービン1段動翼のチップクリアランスを確保し、負荷運転時には冷却器を通ることで温度低下した高圧抽気を冷却空気に用いてチップクリアランスを小さくするアクティブ・クリアランス・コントロールが可能となる。
 このようなガスタービン設備によれば、タービン2段静翼の冷却に用いられる空気系統を備え、タービン1段動翼及びタービン2段動翼の翼先端と対向する1段分割環及び2段分割環を同一の翼環部材で支持させ、2段静翼の冷却空気が翼環部材を冷却して流れる冷却空気流路を形成していると共に、冷却空気用の流路切替手段を冷却空気流路に設けて、冷却空気として圧縮機出口から導入した高温圧縮空気を使用する起動時と、冷却空気として圧縮機高圧段から導入した高圧抽気を使用する負荷運転時とで流路を切り替えるようにしている。そして、起動時には温度の高い高圧圧縮空気を用いて暖機運転を行うとともにタービン1段動翼のチップクリアランスを確保し、負荷運転時には相対的に温度の低い高圧抽気を冷却空気に用いてチップクリアランスを小さくするアクティブ・クリアランス・コントロールが可能となる。
 このように、上述した本発明によれば、タービン2段静翼の冷却空気流路をタービン1段動翼外周に位置する1段分割環を保持する翼環に流すことにより、翼環メタル温度を低減することができる。このとき、起動時及び負荷運転時の冷却空気を切り替えることによりアクティブ・クリアランス・コントロールが可能となるので、起動時には冷却空気の温度を高くして暖機運転を行うとともにタービン1段動翼に必要なチップクリアランスを確保し、負荷運転時には最小のチップクリアランスを実現することができる。このため、アクティブ・クリアランス・コントロールの実施に蒸気が不要となり、使用する蒸気条件の成立まで起動待ちを必要とする問題が解消されてガスタービンの運用性は向上する。
本発明に係るガスタービン設備の一実施形態として、第1の実施形態のタービン入口部を示す部分断面図である。 本発明に係るガスタービン設備の第1の実施形態としてタービン部冷却系統を示す図で、ガスタービンの起動運転時を示している。 本発明に係るガスタービン設備の第1の実施形態としてタービン部冷却系統を示す図で、ガスタービンの負荷運転時を示している。 図2のタービン部冷却系統に係る第1変形例を示す図で、ガスタービンの起動運転時を示している。 図2のタービン部冷却系統に係る第1変形例を示す図で、ガスタービンの負荷運転時を示している。 本発明に係るガスタービン設備の第2の実施形態としてタービン部冷却系統を示す図で、ガスタービンの起動運転時を示している。 本発明に係るガスタービン設備の第2の実施形態としてタービン部冷却系統を示す図で、ガスタービンの負荷運転時を示している。 タービン入口部の構造について、図1の変形例を示す部分断面図である。
符号の説明
  1  圧縮機
  2  燃焼器
  3  タービン部
 11  外車室
 12  翼環
 13  導入空間
 14  空間部
 15  遮熱部材
 16  貫通孔
 21  1段静翼
 22  2段静翼
 23  3段静翼
 31  1段分割環
 32  2段分割環
 40,40A,40B  冷却空気系統
 41  主流路
 42  バイパス流路
 43,43A,48,48A,48B  開閉弁(流路切替手段)
 45,51  冷却器
 47,49A,49B  連結管
 50  導入配管
 T1C  タービン1段静翼
 T2C  タービン2段静翼
 T1S  タービン1段動翼
 以下、本発明に係るガスタービン設備の一実施形態を図面に基づいて説明する。
<第1の実施形態>
 図2A及び図2Bに示すガスタービンGTは、圧縮機1と、燃焼器2と、タービン部3とを備えている。このガスタービンGTは、圧縮機1で圧縮した空気を燃焼器2に供給し、この圧縮空気を用いて燃焼器2で燃料を燃焼させる。こうして生成された高温高圧の燃焼ガスがタービン部3に供給されると、タービン部3の静翼及び動翼の間を燃焼ガスが流れることにより、たとえば燃焼ガスの熱エネルギを軸出力として取り出すことができる。
 図1はガスタービンGTのタービン入口部を示す部分断面図であり、燃焼器2から供給される高温高圧の燃焼ガスを流すことにより、外車室11及び翼環12を備えたケーシング内でタービンロータが回転する。
 円筒状とした翼環12の内周面には、燃焼ガスの流れ方向上流側から順に、複数段のタービン静翼(1段静翼、2段静翼・・・)が設置されている。また、タービンロータの外周面には、同じく燃焼ガスの流れ方向上流側から順に、複数段のタービン動翼(1段動翼、2段動翼・・・)が設置されている。なお、以下の説明では、タービン静翼(1段静翼、2段静翼・・・)及びタービン動翼(1段動翼、2段動翼・・・)の段数を特定しない場合、段数を示す数字を削除して静翼、動翼と呼ぶことにする。
 タービン1段静翼は、翼環12の内側に取り付けられた遮熱部材15によって支持されている。
 タービン2段静翼は、翼環12の内側に取り付けられた遮熱部材15に支持されている。
 1段分割環31及び2段分割環32は、それぞれタービン1段動翼及びタービン2段動翼の翼先端と対向する位置に配置された部材である。すなわち、1段分割環31及び2段分割環32は、いずれも遮熱部材15によって同一の翼環12により支持されており、タービン1段動翼及びタービン2段動翼の翼先端は、1段分割環31及び2段分割環32の内周面に沿って回転する。
 そして、1段分割環31及び2段分割環32とタービン1段動翼及びタービン2段動翼の翼先端との間には、ロータ回転時に互いに接触することを防止するため、チップクリアランスと呼ばれる隙間が形成されている。このチップクリアランスは、ガスタービンGTの起動時と定格運転時との温度変化により、両部材が膨張・収縮するために変動する値となる。
 上述したタービン2段静翼には、冷却に使用される冷却空気の空気系統40が設けられている。この冷却空気系統40は、たとえば図2A,図2Bに示すように、ガスタービンGTの圧縮機1に連結されて高圧抽気から抽気される。
 図2A,図2Bに示す冷却空気系統40は、圧縮機1の高圧段から抽気した高圧抽気を、タービン2段静翼T2C用の冷却空気として、外車室11と翼環12との間に画成された導入空間13に供給するための冷却空気流路である。この冷却空気系統40は、負荷運転時に冷却空気を流す主流路41から分岐して並列に設けられたバイパス流路42を備えている。このバイパス流路42は、起動時に選択されて冷却空気を流す冷却空気流路とすることも可能である。
 ガスタービンGTの負荷運転時に使用する流路41,42には、圧縮機1に近い上流側から順に、流路切替手段の開閉弁43と、流量調整用のオリフィス44と、高圧抽気の温度を下げる冷却器45とが直列に設けられている。また、ガスタービンGTの起動時に使用するバイパス流路42には、流量調整用のオリフィス46が設けられている。
 静翼22及び分割環32は、翼環12との間に空間部14を形成するように遮熱部材15により支持されている。
 上述した冷却空気系統40を通って導入空間13に導入された冷却空気は、翼環12に設けられた貫通孔16を通り、タービン1段及びタービン2段動翼の翼先端と対向する翼環12及び空間部14に導入され、翼環12を冷却する。
 すなわち、翼環12を貫通する貫通孔16及び空間部14に冷却用空気が流入して翼環12を冷却するので、それらに対向するタービン1段動翼T1Sの翼先端とタービン2段動翼T2Sの翼先端とのチップクリアランスの増大を抑制することができる。
 上述した構成の冷却空気系統40を備えたガスタービンGTは、以下に説明するようにして起動運転及び負荷運転が実施される。
 ガスタービンGTの起動運転時には、図2Aに示すように、開閉弁43を閉じた状態にしてバイパス流路42を選択する。この起動運転時は、温度の低い翼環12の温度上昇させる必要があるので、冷却空気が冷却器45を通過しない流路を選択している。すなわち、圧縮機1から導入した高圧抽気は、冷却器45による冷却を受けることがなく、そのままの温度を略維持して導入空間13及び空間部14に供給される。このため、翼環12の昇温が促進されるので、ガスタービンGTの起動時間を短縮して効果的に運転することができる。
 負荷運転に移行すると、図2Bに示すように、開閉弁43を開いて主流路は41,42を選択する。この結果、冷却空気として圧縮機1から導入した高圧抽気は、冷却器45を通過して冷却を受けることにより、温度が低下した状態で導入空間13及び空間部14に供給される。このため、翼環12は冷却空気により冷却されるので、タービン1段動翼及びタービン2段動翼の先端部との間に形成されるチップクリアランスを最適値に制御することができる。すなわち、タービン2段静翼の冷却空気を流す冷却空気系統40がタービン1段動翼の外周に形成され、タービン1段動翼の外周に位置する翼環12のメタル温度を低減することができる。
 従って、ガスタービンGTを運転する際、起動時には温度の高い冷却空気を用いてタービン1段動翼のチップクリアランスを確保し、負荷運転時には冷却器45を通った温度の低い冷却空気を用いてチップクリアランスを小さくするアクティブ・クリアランス・コントロール(ACC)が可能となる。
 このように、冷却器45を備えたタービン2段静翼の冷却空気系統40を有効に利用し、冷却器45を利用することによる冷却空気の温度制御を実施して、起動時及び負荷運転時の温度差によるチップクリアランスの変動を制御して最適化することができる。
 また、高圧抽気を冷却空気として使用するので、蒸気を使用する従来技術のACCと比較して、蒸気条件の成立待ちが不要になるなど運用性も向上する。
 続いて、上述した冷却空気系統40の第1変形例を図3A,図3Bに基づいて説明する。なお、以下の説明では、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明を省略する。
 第1変形例の冷却空気系統40Aは、起動時の冷却空気として、圧縮機1の出口からロータ冷却空気として導入した高温圧縮空気の一部が使用される。このため、高温圧縮空気の導入配管50と主配管41との間を、冷却器45の下流側で連通させた連結管47を設けるとともに、該連結管47には、流路切替手段として開閉弁48を設けてある。
 また、起動時及び負荷運転時の流路切替手段として、上述した連結管47の開閉弁48に加えて、主配管41及びバイパス配管42に分岐する位置より上流側に設けた開閉弁43Aを備えている。
 上述した構成の冷却空気系統40Aを備えたガスタービンGTは、以下に説明するようにして起動運転及び負荷運転が実施される。
 ガスタービンGTの起動運転時には、図3Aに示すように、開閉弁43Aを閉、開閉弁48を開の状態にすることで、冷却空気の流路として連結管47を選択し、圧縮機1の出口空気は、一部が連結管47を経由して導入空間13へ送気される。この起動時は、温度の低い翼環16を暖める必要があることから、温度の高い高温圧縮空気を直接導入する流路が選択される。すなわち、圧縮機1の出口から導入した高温圧縮空気は、高圧抽気より温度の高い空気であるから、翼環16をより一層加熱促進することができる。従って、翼環12等を所定温度まで上昇させるのに必要となるガスタービンGTの起動時間をさらに短縮して効果的な運転ができる。
 上述した起動が終了すると、図3Bに示すように、開閉弁43Aを開、開閉弁48を閉とすることで、主流路41及びバイパス流路42を選択する。この結果、冷却空気として圧縮機1から導入した高圧抽気は、主流路41及び冷却器45を通過して冷却を受けるものと、バイパス流路42を通過するものとに分配される。この場合の分配比は、オリフィス44,46、冷却器45及び配管長等の通過による冷却空気の圧力損失により定まる。そして、冷却器45を通って温度低下した高圧抽気及びそのままの温度で流れてきた高圧抽気は、主流路41及びバイパス流路42の合流によりひとつの流れとなり、温度が低下した状態で導入空間13及び空間部14に供給される。
 このため、翼環12は、温度の低い冷却空気により冷却されるので、タービン1段動翼及びタービン2段動翼の先端部との間に形成されるチップクリアランスを最適値に制御することができる。すなわち、タービン2段静翼の冷却空気を流す冷却空気系統40がタービン1段動翼の外周に形成され、タービン1段動翼の外周に位置する翼環12のメタル温度を低減することから、チップクリアランスの変動を制御して最適化することができる。
<第2の実施形態>
 続いて、本発明に係るガスタービンGTについて、第2の実施形態を図4A,図4Bに基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 この実施形態は、タービン2段静翼T2Cの冷却空気系統40Bに冷却器がない場合に適用され、タービン2段静翼T2Cの冷却空気で翼環12を冷却する。冷却空気は冷却空気流路16を形成している。また、この冷却空気系統40Bでは、起動時の冷却空気として、圧縮機1の出口からロータ冷却空気として導入した高温圧縮空気の一部を使用している。このため、冷却空気系統40Bと高温圧縮空気の導入配管50との間は、一対の連結管49A,49Bにより接続されている。
 一方の連結管49Aは、冷却空気系統40Bのオリフィス上流側と、導入配管50の冷却器51より下流側とを接続し、その途中には流路切替手段の開閉弁48Aが設けられている。
 他方の連結管49Bは、冷却空気系統40Bのオリフィス下流側と、導入配管50の冷却器51より上流側とを接続し、その途中には流路切替手段の開閉弁48Bが設けられている。
 そして、冷却空気として使用する高圧抽気の流路切替手段として、開閉弁43Aを冷却空気系統40Bに設けてある。
 この結果、冷却空気として圧縮機1の高圧抽気ではなく、出口からのロータ冷却空気の一部を導入して使用する起動時には、たとえば図4Aに示すように、開閉弁43A,48Aを閉とし、開閉弁48Bを開とすることにより、ロータ冷却空気として導入した高温圧縮空気の一部が開閉弁48B連結管49Bを経由して導入空間13及び空間部14へ供給される。このため、翼環12等を所定温度まで上昇させるのに必要となるガスタービンGTの起動時間をさらに短縮した効果的に運転ができる。
 また、冷却空気として圧縮機高圧段から導入した高圧抽気を使用する負荷運転時においては、たとえば図4Bに示すように、開閉弁43A,48Aを開とし、開閉弁48Bを閉とすることにより、流路の切り替えにより冷却空気として高圧抽気が導入空間13及び空間部14へ供給され、空気温度を下げる必要があれば、ロータ冷却用空気の一部を導入配管50、冷却器51、連結管49A、開閉弁48A等を経由して高圧抽気に混入して調節する。このため、翼環12は、相対的に温度の低い冷却空気により冷却されるので、タービン1段動翼及びタービン2段動翼の先端部との間に形成されるチップクリアランスを最適値に制御することができる。すなわち、タービン2段静翼の冷却空気を流す冷却空気系統40Bがタービン1段動翼の外周に形成され、タービン1段動翼の外周に位置する翼環12のメタル温度を低減することができる。
 このようなガスタービン設備としても、タービン2段静翼の冷却空気が翼環内に設けられた通路16を流れることで、冷却空気用の流路切替手段として開閉弁43A,48A,48Bを設けて、圧縮機1の出口から導入した高温圧縮空気を使用する起動時と、圧縮機1の高圧段から導入した高圧抽気を使用する負荷運転時とで流路を切り替えるようにしたことで、タービン2段静翼の冷却空気により翼環12のメタル温度を低減することができる。そして、起動時には温度の高い高圧圧縮空気を用いて暖機運転を行うとともにタービン1段動翼のチップクリアランスを確保し、負荷運転時には相対的に温度の低い高圧抽気を冷却空気に用いてチップクリアランスを小さくするACCが可能となる。
 このように、上述した本発明によれば、タービン2段静翼の冷却空気を翼環12内に設けられた貫通孔16に流すことで、翼環12のメタル温度を低減することができる。このとき、起動時及び負荷運転時の冷却空気を切り替えることによりアクティブ・クリアランス・コントロール(ACC)が可能となるので、起動時には冷却空気の温度を高くして暖機運転を行うとともにタービン1段動翼に必要なチップクリアランスを確保し、負荷運転時には最小のチップクリアランスを実現することができる。従って、ACCの実施に蒸気が不要となり、使用する蒸気条件の成立まで起動待ちを必要とする問題が解消されることから、ガスタービンGTの運用性は向上する。
 ところで、上述したガスタービンGTのタービン入口部は、図1に示した構成に限定されることはなく、たとえば図5に示す変形例の構成としてもよい。すなわち、図1に示す構成と比較すると、外車室11と翼環12とを嵌合させて一体化する構成に違いはあるものの、いずれの場合も同様の導入空間13や空間部14が形成されている。
 なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。

Claims (4)

  1.  タービン2段静翼の冷却に用いられる空気系統に冷却器を備えているガスタービン設備において、
     タービン1段動翼及びタービン2段動翼の翼先端と対向する1段分割環及び2段分割環を同一の翼環で支持させるとともに、前記2段静翼の冷却空気が前記翼環を冷却して流れる冷却空気流路を形成することで前記翼環の熱膨張をコントロールし翼先端とのクリアランスをコントロールすることを特徴とするガスタービン設備。
  2.  前記2段静翼の冷却空気の供給流路に切替手段を設けて、起動時には前記冷却器をバイパスして冷却空気を流し、負荷運転時には前記冷却器を通って冷却空気を流すことで、起動時と負荷運転時とで異なる流路を切り替えることを特徴とする請求項1に記載のガスタービン設備。
  3.  前記冷却空気として圧縮機の高圧抽気を導入し、前記起動時には前記冷却器をバイパスして流れる流路が選択され、前記負荷運転時には前記冷却器を通って流れる流路が選択されることを特徴とする請求項2に記載のガスタービン設備。
  4.  前記冷却空気として起動時には圧縮機出口から導入した高温圧縮空気を使用し、前記負荷運転時には前記高圧抽気を導入した冷却空気とする切り替え手段を設けて、起動時と負荷運転時とで異なる流路を切り替えることを特徴とする請求項2に記載のガスタービン設備。
     
PCT/JP2009/050772 2009-01-20 2009-01-20 ガスタービン設備 WO2010084573A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020117001997A KR101274928B1 (ko) 2009-01-20 2009-01-20 가스 터빈 설비
PCT/JP2009/050772 WO2010084573A1 (ja) 2009-01-20 2009-01-20 ガスタービン設備
CN200980129565.7A CN102112703B (zh) 2009-01-20 2009-01-20 燃气轮机设备
US13/056,054 US8602724B2 (en) 2009-01-20 2009-01-20 Gas turbine plant
EP09838765.7A EP2381069B1 (en) 2009-01-20 2009-01-20 Gas turbine facility
JP2010547334A JP5174190B2 (ja) 2009-01-20 2009-01-20 ガスタービン設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050772 WO2010084573A1 (ja) 2009-01-20 2009-01-20 ガスタービン設備

Publications (1)

Publication Number Publication Date
WO2010084573A1 true WO2010084573A1 (ja) 2010-07-29

Family

ID=42355648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050772 WO2010084573A1 (ja) 2009-01-20 2009-01-20 ガスタービン設備

Country Status (6)

Country Link
US (1) US8602724B2 (ja)
EP (1) EP2381069B1 (ja)
JP (1) JP5174190B2 (ja)
KR (1) KR101274928B1 (ja)
CN (1) CN102112703B (ja)
WO (1) WO2010084573A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057278A (ja) * 2011-09-07 2013-03-28 Mitsubishi Heavy Ind Ltd ガスタービン
JP2015031285A (ja) * 2013-07-31 2015-02-16 ゼネラル・エレクトリック・カンパニイ 高温安定性を備えた流体を含む熱アクチュエータ
JP2015145677A (ja) * 2015-04-03 2015-08-13 三菱日立パワーシステムズ株式会社 ガスタービン
JP2016503855A (ja) * 2012-12-19 2016-02-08 シーメンス アクティエンゲゼルシャフト ガスタービンエンジンのベーンキャリア温度制御システム
JP2016151262A (ja) * 2015-02-19 2016-08-22 中国電力株式会社 ガスタービン
WO2017090709A1 (ja) * 2015-11-26 2017-06-01 三菱日立パワーシステムズ株式会社 ガスタービン、及びその部品温度調節方法
WO2022054777A1 (ja) * 2020-09-08 2022-03-17 三菱重工業株式会社 ガスタービンのクリアランス制御システム

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562369B1 (de) * 2011-08-22 2015-01-14 Alstom Technology Ltd Verfahren zum Betrieb einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens
US8973373B2 (en) * 2011-10-31 2015-03-10 General Electric Company Active clearance control system and method for gas turbine
US9260968B2 (en) * 2012-04-25 2016-02-16 General Electric Company Systems and methods for reconditioning turbine engines in power generation systems
US9719372B2 (en) 2012-05-01 2017-08-01 General Electric Company Gas turbomachine including a counter-flow cooling system and method
US9188062B2 (en) * 2012-08-30 2015-11-17 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine
US8920109B2 (en) * 2013-03-12 2014-12-30 Siemens Aktiengesellschaft Vane carrier thermal management arrangement and method for clearance control
EP3348803B1 (en) * 2013-03-13 2019-09-11 United Technologies Corporation Engine mid-turbine frame transfer tube for low pressure turbine case cooling
JP6223111B2 (ja) * 2013-10-15 2017-11-01 三菱日立パワーシステムズ株式会社 ガスタービン
JP6223774B2 (ja) * 2013-10-15 2017-11-01 三菱日立パワーシステムズ株式会社 ガスタービン
EP2896793A1 (en) * 2014-01-21 2015-07-22 Alstom Technology Ltd Method of operating a gas turbine assembly and the gas turbine assembly
US9963994B2 (en) * 2014-04-08 2018-05-08 General Electric Company Method and apparatus for clearance control utilizing fuel heating
JP6368611B2 (ja) 2014-10-03 2018-08-01 三菱日立パワーシステムズ株式会社 ガスタービン、コンバインドサイクルプラント、ガスタービンの起動方法
KR101933819B1 (ko) 2015-01-30 2018-12-28 미츠비시 히타치 파워 시스템즈 가부시키가이샤 가스 터빈의 냉각 계통, 이것을 구비하고 있는 가스 터빈 설비, 및 가스 터빈의 부품 냉각 방법
US10830148B2 (en) 2015-04-24 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US9850819B2 (en) * 2015-04-24 2017-12-26 United Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US20160326915A1 (en) * 2015-05-08 2016-11-10 General Electric Company System and method for waste heat powered active clearance control
KR101790146B1 (ko) * 2015-07-14 2017-10-25 두산중공업 주식회사 외부 케이싱으로 우회하는 냉각공기 공급유로가 마련된 냉각시스템을 포함하는 가스터빈.
CN106555618B (zh) * 2015-09-30 2019-09-13 中国航发商用航空发动机有限责任公司 燃气轮机的叶尖间隙控制系统及其方法
JP6563312B2 (ja) * 2015-11-05 2019-08-21 川崎重工業株式会社 ガスタービンエンジンの抽気構造
US10371056B2 (en) * 2015-12-10 2019-08-06 United Technologies Corporation Multi-source turbine cooling air
US10975721B2 (en) 2016-01-12 2021-04-13 Pratt & Whitney Canada Corp. Cooled containment case using internal plenum
US10794286B2 (en) 2016-02-16 2020-10-06 General Electric Company Method and system for modulated turbine cooling as a function of engine health
PL232314B1 (pl) 2016-05-06 2019-06-28 Gen Electric Maszyna przepływowa zawierająca system regulacji luzu
US10458429B2 (en) 2016-05-26 2019-10-29 Rolls-Royce Corporation Impeller shroud with slidable coupling for clearance control in a centrifugal compressor
US10309246B2 (en) 2016-06-07 2019-06-04 General Electric Company Passive clearance control system for gas turbomachine
US10605093B2 (en) 2016-07-12 2020-03-31 General Electric Company Heat transfer device and related turbine airfoil
US10392944B2 (en) 2016-07-12 2019-08-27 General Electric Company Turbomachine component having impingement heat transfer feature, related turbomachine and storage medium
FR3055355B1 (fr) * 2016-08-30 2020-06-19 Safran Aircraft Engines Dispositif et procede de reglage de jeux entre un rotor et un stator concentrique d'une turbomachine
JP6614502B2 (ja) * 2016-10-21 2019-12-04 三菱重工業株式会社 蒸気タービン
DE102017216119A1 (de) * 2017-09-13 2019-03-14 MTU Aero Engines AG Gasturbinenverdichtergehäuse
WO2021194473A1 (en) * 2020-03-24 2021-09-30 Siemens Energy, Inc. Method for modulating a turbine cooling supply for gas turbine applications
WO2024035537A1 (en) * 2022-08-09 2024-02-15 Siemens Energy Global GmbH & Co. KG Gas turbine engine with turbine vane carrier cooling flow path

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186615A (ja) * 1974-12-19 1976-07-29 Gen Electric
JPS62182444A (ja) * 1986-02-07 1987-08-10 Hitachi Ltd ガスタ−ビン冷却空気制御方法及び装置
US4849895A (en) * 1987-04-15 1989-07-18 Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) System for adjusting radial clearance between rotor and stator elements
JPH0754669A (ja) 1993-08-09 1995-02-28 Mitsubishi Heavy Ind Ltd ガスタービン冷却空気制御装置
JPH1077804A (ja) * 1996-08-07 1998-03-24 Solar Turbines Inc タービンブレードの間隙制御装置
JP2006063982A (ja) * 2004-08-25 2006-03-09 General Electric Co <Ge> ロータ組立体の先端間隙を維持するための方法及び装置
JP3825279B2 (ja) 2001-06-04 2006-09-27 三菱重工業株式会社 ガスタービン
JP2008121684A (ja) * 2006-11-15 2008-05-29 General Electric Co <Ge> 複合間隙制御エンジン

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477804A (en) 1988-06-07 1989-03-23 Fujikura Ltd Tape electric wire
JPH05186615A (ja) 1992-01-16 1993-07-27 Nisshinbo Ind Inc シート材料及びその製造方法
US5305616A (en) * 1992-03-23 1994-04-26 General Electric Company Gas turbine engine cooling system
FR2708669B1 (fr) * 1993-08-05 1995-09-08 Snecma Système de ventilation des disques et du stator de turbine d'un turboréacteur.
US6968696B2 (en) 2003-09-04 2005-11-29 Siemens Westinghouse Power Corporation Part load blade tip clearance control
US7096673B2 (en) * 2003-10-08 2006-08-29 Siemens Westinghouse Power Corporation Blade tip clearance control
WO2011142439A1 (ja) 2010-05-13 2011-11-17 オリエンタル酵母工業株式会社 パン類等の品質改良方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186615A (ja) * 1974-12-19 1976-07-29 Gen Electric
JPS62182444A (ja) * 1986-02-07 1987-08-10 Hitachi Ltd ガスタ−ビン冷却空気制御方法及び装置
US4849895A (en) * 1987-04-15 1989-07-18 Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) System for adjusting radial clearance between rotor and stator elements
JPH0754669A (ja) 1993-08-09 1995-02-28 Mitsubishi Heavy Ind Ltd ガスタービン冷却空気制御装置
JPH1077804A (ja) * 1996-08-07 1998-03-24 Solar Turbines Inc タービンブレードの間隙制御装置
JP3825279B2 (ja) 2001-06-04 2006-09-27 三菱重工業株式会社 ガスタービン
JP2006063982A (ja) * 2004-08-25 2006-03-09 General Electric Co <Ge> ロータ組立体の先端間隙を維持するための方法及び装置
JP2008121684A (ja) * 2006-11-15 2008-05-29 General Electric Co <Ge> 複合間隙制御エンジン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2381069A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057278A (ja) * 2011-09-07 2013-03-28 Mitsubishi Heavy Ind Ltd ガスタービン
JP2016503855A (ja) * 2012-12-19 2016-02-08 シーメンス アクティエンゲゼルシャフト ガスタービンエンジンのベーンキャリア温度制御システム
US9562475B2 (en) 2012-12-19 2017-02-07 Siemens Aktiengesellschaft Vane carrier temperature control system in a gas turbine engine
JP2015031285A (ja) * 2013-07-31 2015-02-16 ゼネラル・エレクトリック・カンパニイ 高温安定性を備えた流体を含む熱アクチュエータ
JP2016151262A (ja) * 2015-02-19 2016-08-22 中国電力株式会社 ガスタービン
JP2015145677A (ja) * 2015-04-03 2015-08-13 三菱日立パワーシステムズ株式会社 ガスタービン
WO2017090709A1 (ja) * 2015-11-26 2017-06-01 三菱日立パワーシステムズ株式会社 ガスタービン、及びその部品温度調節方法
JPWO2017090709A1 (ja) * 2015-11-26 2018-09-13 三菱日立パワーシステムズ株式会社 ガスタービン、及びその部品温度調節方法
US10619564B2 (en) 2015-11-26 2020-04-14 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine and component-temperature adjustment method therefor
WO2022054777A1 (ja) * 2020-09-08 2022-03-17 三菱重工業株式会社 ガスタービンのクリアランス制御システム
JPWO2022054777A1 (ja) * 2020-09-08 2022-03-17
JP7339452B2 (ja) 2020-09-08 2023-09-05 三菱重工業株式会社 ガスタービンのクリアランス制御システム
US11913341B2 (en) 2020-09-08 2024-02-27 Mitsubishi Heavy Industries, Ltd. Clearance control system for gas turbine

Also Published As

Publication number Publication date
CN102112703A (zh) 2011-06-29
EP2381069B1 (en) 2016-03-30
US8602724B2 (en) 2013-12-10
US20110135456A1 (en) 2011-06-09
JPWO2010084573A1 (ja) 2012-07-12
EP2381069A4 (en) 2012-06-27
KR101274928B1 (ko) 2013-06-17
KR20110020946A (ko) 2011-03-03
CN102112703B (zh) 2014-07-23
EP2381069A1 (en) 2011-10-26
JP5174190B2 (ja) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5174190B2 (ja) ガスタービン設備
JP6165879B2 (ja) ガスタービンエンジンのベーンキャリア温度制御システム
US8181443B2 (en) Heat exchanger to cool turbine air cooling flow
US6925814B2 (en) Hybrid turbine tip clearance control system
US9261022B2 (en) System for controlling a cooling flow from a compressor section of a gas turbine
KR101346566B1 (ko) 가스 터빈 및 그 운전 방법
EP2309109B1 (en) Gas turbine and method of operating gas turbine
US7785063B2 (en) Tip clearance control
JP6589211B2 (ja) ガスタービン、及びその部品温度調節方法
US20090226327A1 (en) Gas Turbine Engine Including Temperature Control Device and Method Using Memory Metal
JPS62182444A (ja) ガスタ−ビン冷却空気制御方法及び装置
JP2001504564A (ja) ガスタービン設備において冷却空気の案内により生ずる圧力損失の補償方法
US11085324B2 (en) Gas turbine and gas turbine operating method
JPH10196404A (ja) ガスタービンの動静翼間のクリアランス調整装置及び調整方法
JPS63159626A (ja) ガスタ−ビンケ−シングの温度制御方法および温度制御装置
US20240151151A1 (en) Turbine
JPH02153232A (ja) ガスタービンケーシングの加熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129565.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009838765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010547334

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117001997

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13056054

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE