WO2010082618A1 - Liquid fuel processing device - Google Patents

Liquid fuel processing device Download PDF

Info

Publication number
WO2010082618A1
WO2010082618A1 PCT/JP2010/050386 JP2010050386W WO2010082618A1 WO 2010082618 A1 WO2010082618 A1 WO 2010082618A1 JP 2010050386 W JP2010050386 W JP 2010050386W WO 2010082618 A1 WO2010082618 A1 WO 2010082618A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid fuel
processing apparatus
magnetic action
fuel processing
magnetic
Prior art date
Application number
PCT/JP2010/050386
Other languages
French (fr)
Japanese (ja)
Inventor
鉄夫 佐久間
Original Assignee
神富士鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神富士鉱業株式会社 filed Critical 神富士鉱業株式会社
Priority to MX2011007623A priority Critical patent/MX2011007623A/en
Priority to EP10731287A priority patent/EP2388466A4/en
Priority to CA2752488A priority patent/CA2752488A1/en
Priority to US13/144,739 priority patent/US20110271589A1/en
Priority to BRPI1007502A priority patent/BRPI1007502A2/en
Priority to JP2010546650A priority patent/JPWO2010082618A1/en
Priority to CN2010800046522A priority patent/CN102770656A/en
Priority to AU2010205207A priority patent/AU2010205207A1/en
Priority to TW099121222A priority patent/TW201105857A/en
Publication of WO2010082618A1 publication Critical patent/WO2010082618A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • F02M27/045Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism by permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B51/00Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines
    • F02B51/04Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines involving electricity or magnetism

Definitions

  • the present invention greatly reduces harmful substances such as CO, CO 2 , HC, NOx, PM in exhaust gas exhausted from heat engines used in diesel cars, gasoline cars, LP gas cars, ships, diesel generators, boilers, etc. This is a liquid fuel processing apparatus that can be reduced.
  • the main object of the present invention is to further increase the energy saving effect by causing the S pole magnetism to act on the liquid fuel efficiently and in a short time, and also in the exhaust gas such as CO, CO 2 , HC, NOx, PM, etc. It is an object of the present invention to provide a liquid fuel processing apparatus capable of greatly reducing the main harmful substances.
  • a liquid fuel processing apparatus is a liquid fuel processing apparatus disposed on a flow path for supplying liquid fuel to a heat engine in order to reduce harmful substances in exhaust gas discharged from the heat engine. And having a plurality of magnetic action walls provided at appropriate intervals on the flow path, and the upstream surface of the flow path in the magnetic action wall is made of an S-pole magnetic magnet of 0.2 mT or more and 1.5 mT or less.
  • a liquid fuel processing apparatus is characterized by being configured.
  • the ratio of the N pole magnetism to the S pole magnetism in the magnetic action wall is preferably 30% or less.
  • the one surface and the other surface of the magnetic action wall are provided with a magnetic action portion formed of a magnet, and the magnitude of the N pole magnetism is between the magnetic action portions. It is preferable to have a non-magnetic part for reducing.
  • the installation interval of the magnetic action walls is preferably 1 mm or more and 35 mm or less.
  • the flow path is preferably formed inside the metal tube.
  • the liquid fuel processing apparatus according to the present invention in order to increase the area in which the S pole magnetism is applied to the liquid fuel, the liquid fuel is separated from the magnetic action wall inside the metal tube. It is preferable that a passage is provided so as to flow in a zigzag manner.
  • the liquid fuel processing apparatus according to the present invention is preferably installed in a liquid fuel fuel tank.
  • a plurality of magnetic action walls are arranged on the flow path for supplying the liquid fuel to the heat engine. Since it is composed of an S pole magnet having a magnetic field of 2 mT or more and 1.5 mT or less, the south pole magnetism can be effectively applied to the liquid fuel in a short time. Therefore, in the liquid fuel processing apparatus according to the present invention, the combustion efficiency of a heat engine such as a diesel vehicle, a gasoline vehicle, an LP gas vehicle, a ship, or a boiler is improved, and the energy saving effect and all harmful substances HC, CO, CO 2 , HC, NOx, and PM can be greatly reduced.
  • the ratio of N pole magnetism to S pole magnetism is 30% or less in the magnetic working wall, so that it is more effective for the liquid fuel supplied to the heat engine. S pole magnetism can be acted on. Furthermore, in the liquid fuel processing apparatus according to the present invention, since the installation interval of the magnetic action walls is 1 mm or more and 35 mm or less, the south pole magnetism is more effectively applied to the liquid fuel supplied to the heat engine. Can be made. In the liquid fuel processing apparatus according to the present invention, the flow path is formed inside the metal tube, and the liquid fuel supplied to the heat engine is provided between the magnetic action walls in the plurality of magnetic action walls.
  • the passage is provided so as to flow in a zigzag manner, the area for applying the S pole magnetism to the liquid fuel increases, so that the S pole magnetism can be more effectively applied to the liquid fuel. Furthermore, in the liquid fuel processing apparatus according to the present invention, since the liquid fuel processing apparatus is installed in the fuel tank, an additional liquid fuel is provided between the pipes for supplying the liquid fuel from the fuel tank to the heat engine. S pole magnetism can be made to act on liquid fuel, without installing a processing device.
  • FIG. 1 is a cross-sectional view taken along line AA of the liquid fuel processing apparatus according to the present invention.
  • FIG. It is sectional drawing which shows other embodiment of the processing apparatus of the liquid fuel concerning this invention.
  • the further embodiment of the processing apparatus of the liquid fuel concerning this invention is shown, (a) It is front sectional drawing, (b) It is plane sectional drawing.
  • the other embodiment of the processing apparatus of the liquid fuel concerning this invention is shown, (a) Front sectional drawing, (b) Plane sectional drawing.
  • FIG. 1 is a cross-sectional view showing an embodiment of a liquid fuel processing apparatus according to the present invention.
  • FIG. 2 is an exploded perspective view of a magnetic working wall used in the liquid fuel processing apparatus according to the present invention
  • FIG. 3 is an AA cross-sectional view of the liquid fuel processing apparatus according to the present invention.
  • This liquid fuel processing apparatus 10 applies S-polar magnetism to liquid fuel, thereby improving combustion efficiency in a heat engine or the like, reducing fuel consumption, and toxic substances contained in exhaust gas generated from the heat engine or the like. Used to reduce the content of (CO, CO2, HC, NOx and PM).
  • the liquid fuel fuel device 10 is connected in the middle of a pipe for supplying fuel from a fuel tank to a heat engine such as an engine.
  • the liquid fuel is a fuel mainly composed of hydrocarbon, for example, petroleum distillate, coal dry distillation or cracked oil, and refers to heavy oil, light oil, gasoline, and biofuel.
  • the effect by applying the S pole magnetism to the liquid fuel will be described.
  • the S pole magnetism By causing the S pole magnetism to act on the liquid fuel, the molecular group (cluster) constituting the liquid fuel can be reduced. Therefore, by using the liquid fuel on which the S pole magnetism is applied in the heat engine, the spray state is improved, so that the combustion speed can be increased, and as a result, the combustion efficiency can be improved.
  • liquid fuel is ejected from the injection nozzle, but insoluble matters such as impurities contained in the liquid fuel adhere to the injection nozzle, thereby narrowing the injection nozzle port. As a result, the spray state deteriorates.
  • the liquid fuel processing apparatus 10 includes a main body 20, an intake side 30, a discharge side 40, magnetic action walls 50a and 50b, and an action wall fixing member 70.
  • the main body 20 constitutes the outside of the liquid fuel processing apparatus 10 together with the suction side surface 30 and the discharge side surface 40, and is provided to hold the magnetic action walls 50a and 50b and the action wall fixing member 70 therein.
  • the main body 20 is formed in a tubular shape having a circular cross section, and is formed of a magnetic metal container.
  • a first opening 22 and a second opening 24 are formed on the suction side (upstream side) and the discharge side (downstream side) of the main body 20, respectively.
  • a flow path 26 through which liquid fuel flows is formed inside the main body 20.
  • the main body 20 is formed to have an outer diameter of 60 mm, an inner diameter of 55 mm, and a length of about 140 mm, for example.
  • the main body 20 is formed in a tubular shape having a circular cross section, but is not limited thereto, and may have any shape such as a square cross section.
  • the suction side surface 30 is formed to close the opening on the suction side of the main body 20.
  • the suction side surface 30 is formed in a size substantially the same as the first opening 22 on the suction side, and is in close contact with the first opening 22 on the suction side of the main body 20 by, for example, welding.
  • a suction part 32 is formed substantially at the center of the suction side face 30.
  • the suction unit 32 is provided, for example, for sucking the liquid fuel supplied from the fuel tank into the liquid fuel processing apparatus 10.
  • the suction part 32 is formed in a shape to which a pipe for liquid fuel supplied from a fuel tank can be connected.
  • the discharge side surface 40 is formed to block the second opening 24 on the discharge side of the main body 20.
  • the discharge side surface 40 is formed to have substantially the same size as the second opening 24 on the discharge side, and is in close contact with the second opening 24 on the discharge side of the main body 20 by, for example, welding.
  • a discharge portion 42 is formed at the approximate center of the discharge side surface 40.
  • the discharge unit 42 is provided, for example, for discharging liquid fuel from the liquid fuel processing apparatus 10 to the heat engine.
  • the discharge part 42 is formed in a shape to which a pipe for supplying liquid fuel to the heat engine can be connected.
  • a plurality of magnetic action walls 50a and 50b are provided on the flow path 26 formed inside the main body 20 in order to cause the S pole magnetism to act on the liquid fuel supplied to the liquid fuel processing apparatus 10 according to the present invention. Be placed. Next, the arrangement relationship of the magnetic action walls 50a and 50b in the main body 20 will be described in detail.
  • the main body 20 has an upper surface and a lower surface facing each other with a direction (diameter direction) perpendicular to the axial direction.
  • the magnetic action wall 50a is extended from one surface to the other surface substantially perpendicularly.
  • a space is provided as a passage 52a between the magnetic action wall 50a and the other surface.
  • a magnetic action wall 50b extends from the other surface to the one surface substantially perpendicularly.
  • a space is provided as a passage 52b between the magnetic action wall 50b and one surface.
  • the magnetic action wall 50a and the magnetic action wall 50b are alternately arranged with an appropriate interval in the axial direction.
  • the magnetic action walls 50a and 50b are arranged, for example, in a direction perpendicular to the direction of the liquid fuel flow path.
  • interval of the magnetic action walls 50a and 50b can be 1 mm or more and 35 mm or less, it is especially preferable to install in the space
  • the lower limit of the interval between the magnetic action walls 50a and 50b is preferably 2 mm.
  • circulates the inside of the processing apparatus 10 of a liquid fuel can be stabilized.
  • the interval between the magnetic action walls 50a and 50b is larger than the inner diameters of the suction part 32 and the discharge part 42, the liquid fuel sucked into the liquid fuel processing apparatus 10 is changed from the liquid fuel already sucked. There is a possibility of mixing.
  • passages 52 a, 52 b, 52 c and 52 d are formed in the magnetic action walls 50 a and 50 b so that the liquid fuel flows in a zigzag manner between the magnetic action walls 50 a and 50 b inside the main body 20.
  • the passages 52a, 52b, 52c, and 52d are provided so that, for example, at least 1/10 to 3/10 of the diameter of the main body 20 is secured.
  • the passages 52a, 52b, 52c, and 52d are preferably formed so that the size in the direction perpendicular to the flow path direction is at least larger than the inner diameters of the suction part 32 and the discharge part 42. By doing so, the flow volume of the liquid fuel which distribute
  • the passages 52a, 52b, 52c, 52d are formed by the magnetic action walls 50a, 50b being cut in parallel at about 2/3 from the center.
  • the sizes of the passages 52a, 52b, 52c, and 52d can be appropriately changed depending on the flow rate of the liquid fuel.
  • the magnetic action walls 50a and 50b are arranged so that the liquid fuel does not flow except in the passages 52a, 52b, 52c and 52d.
  • the magnetic action walls 50 a and 50 b are constituted by the magnetic action parts 54 and 54 and the nonmagnetic body part 60.
  • the magnetic action part 54 is further configured by a magnet 56 and a magnet holding member 58.
  • the magnet 56 is provided so that one surface 51a and the other surface 51b of the magnetic action walls 50a and 50b are S pole magnetism. That is, the magnets 56 and 56 are provided so that the front surfaces 56a and 56a are S poles and the back surfaces 56b and 56b are N poles. Therefore, the surface 54a of the magnetic action part 54 is S pole magnetism, and the back surface 54b is provided for N pole magnetism. Further, the magnet 56 is formed in a thin plate shape and a substantially circular shape. The magnet 56 is formed of a permanent magnet, and it is particularly preferable to use a plastic magnet. The magnet 56 may be other resin or synthetic rubber as long as the material does not dissolve in oil.
  • the use of such a magnet is particularly preferable because the magnet 56 can be freely molded and can be mass-produced.
  • the strength of the magnetic flux of the S pole magnetism in the magnet 56 is preferably 0.2 mT or more and 1.5 mT or less, and particularly preferably 0.8 mT or more and 1.0 mT or less. It should be noted that when the strength of the magnetic flux is greater than 1.5 mT, the effect of the present invention is hardly recognized, and when the strength of the magnetic flux is less than 0.2 mT, the effect of removing impurities and the like is reduced.
  • the thickness of the magnet 56 is, for example, 4 mm or more and 10 mm or less. In the present embodiment, the magnet 56 has, for example, a magnetic flux strength of 0.8 mT, a diameter of 54 mm, and a thickness of 4 mm.
  • the shape of the magnet 56 used in the liquid fuel processing apparatus according to the present invention may be a circular shape or a rectangular shape, but a circular shape is better for small size, low cost, and mass production.
  • the magnetic action walls 50 a and 50 b are arranged on the main body portion 20 made of a magnetic material, the side surfaces of the magnetic action walls 50 a and 50 b on which the N-pole magnetism acts are in contact with the inner wall surface of the main body portion 20. Therefore, the surfaces on which the N pole magnetism acts on the liquid fuel are only the surfaces of the passages 52a, 52b, 52c, and 52d.
  • the area where the liquid fuel to be processed comes into contact with the S-pole magnetic surface is widened, and the area of the N-pole magnetic surface can be narrowly formed. Furthermore, since the N pole magnetism is dispersed by the magnet holding member 58 and the nonmagnetic body portion 60 described below, the ratio of the N pole magnetism to the S pole magnetism is formed to be 30% or less. By doing so, south pole magnetism can be made to act more strongly with respect to liquid fuel. In the present embodiment, for example, when the strength of the magnetic flux of the S pole is 0.8 mT, the strength of the magnetic flux of the N pole is 0.3 mT or less.
  • the magnet holding member 58 has a role of a case in which the magnet 56 is embedded, and is provided to reduce the N pole magnetism of the magnet 56 by dispersing it.
  • the magnet holding member 58 is formed in a plate-like substantially circular shape in accordance with the cross-sectional shape of the main body portion 20.
  • a recess 58 b for holding the magnet 56 so as to be embedded is formed on the surface 58 a side of the magnet holding member 58.
  • the recess 58b is formed substantially the same as the shape of the magnet 56.
  • the depth of the recess 58b is formed to be approximately the same as the thickness of the magnet 56.
  • a recess 56c is formed on the side surface 56c of the magnet 56, and on the side surface of the recess 58b of the magnet holding member 58.
  • the magnet 56 is disposed on the magnet holding member 58 so that the surface 56a of the magnet 56 and the surface 58a of the magnet holding member 58 form the same plane. By doing so, the flow rate of the liquid fuel is stabilized.
  • the thickness of the side surface of the magnet holding member 58 and the thickness from the bottom surface of the recess 58b to the back surface 58c are formed substantially the same.
  • the thickness of the magnet holding member 58 has a function of adjusting the effect of reducing the N pole magnetism, and can be changed as appropriate.
  • the magnet holding member 58 is formed with a diameter of 54 mm and a thickness of 7 mm.
  • the magnetic action part 54 comprises the member (N pole demagnetizing magnet) which reduced N pole magnetism by combining the magnet 56 and the magnet holding member 58.
  • the non-magnetic part 60 further reduces the N pole magnetism caused by the magnet 56 acting on the recess 58b of the magnet holding member 58, and in addition, the N pole magnetism causes the back surfaces 58c and 58c of the magnet holding members 58 and 58 to It is provided in order to connect without being greatly repelled.
  • the nonmagnetic body portion 60 is disposed between the magnetic action portions 54 and 54, and is formed in a nonmagnetic body wall plate shape having one surface 60a and the other surface 60b.
  • the thickness of the nonmagnetic body portion 60 has a function of adjusting the effect of reducing the N pole magnetism, and can be changed as appropriate. In the present embodiment, for example, the nonmagnetic body portion 60 is formed with a diameter of 54 mm and a thickness of 6 mm.
  • the working wall fixing member 70 is formed, for example, in an annular shape from a metal that is a magnetic material, and is provided, for example, to arrange the magnetic working walls 50a and 50b at appropriate intervals.
  • the action wall fixing member 70 is provided inside the main body 20 to fix the magnetic action walls 50a and 50b, and is disposed between each of the plurality of magnetic action walls 50a and 50b.
  • the width of the working wall fixing member 70 has a function of adjusting the number and spacing of the magnetic working walls 50a and 50b and can be changed as appropriate. It is preferable that the inner diameter is approximately the same as the inner diameter. By doing so, the flow volume of the liquid fuel which distribute
  • the working wall fixing member 70 is preferably made of a magnetic material in order to disperse and reduce the N pole magnetism, but may be made of a nonmagnetic material.
  • the working wall fixing member 70 is formed with an outer diameter of 54 mm, an inner diameter of 48 mm, and a thickness of 6 mm.
  • the length of the main body 20 in the longitudinal direction is 140 mm or more, it is preferable to use a liquid fuel processing apparatus in which the magnetic action walls 50a and 50b are each two or more and the installation interval is 35 mm or less.
  • the S pole magnetism acts on the liquid fuel supplied to the liquid fuel processing apparatus 10 according to the present invention.
  • the liquid fuel sucked from the suction part 32 is perpendicular to the one surface 51a of the magnetic action wall 50a, and the S pole magnetism acts on the liquid fuel.
  • the liquid fuel flows in the direction of the passage 52a.
  • the liquid fuel flows between the other surface 51b of the magnetic working wall 50a and the one surface 51a of the magnetic working wall 50b, and S by the one surface 51a of the magnetic working wall 50b and the other surface 51b of the magnetic working wall 50a.
  • Polar magnetism acts on the liquid fuel.
  • the liquid fuel flows into the next passage 52b, and thereafter, the S pole magnetism acts on the liquid fuel until the liquid fuel is discharged from the discharge portion 42. Subsequently, the one surface 51a of the magnetic action wall 50c and the magnetic force are applied. While flowing between the other surface 51b of the working wall 50b, the flow flows in the order of the passage 52c and the passage 52d, and the liquid fuel is discharged from the discharge portion 42.
  • a plurality of magnetic action walls 50a and 50b on which the S pole magnetism acts on one surface 51a and the other surface 51b are arranged on the liquid fuel flow path, and the liquid fuel flows between them. Thus, since the area where the S pole magnetism is applied increases, the S pole magnetism can be efficiently applied to the liquid fuel.
  • the liquid fuel processing apparatus according to the present invention may be configured as shown in FIG. FIG. 4 is a sectional view showing another embodiment of the liquid fuel processing apparatus according to the present invention.
  • This liquid fuel processing apparatus 110 is configured by combining a magnetic action wall 50 a and a magnetic action part 54. That is, in the liquid fuel processing apparatus 110 according to the present invention, the magnetic action wall 50a is disposed at a substantially intermediate portion with respect to the longitudinal direction of the main body portion 20, and between the suction side face 30 and the magnetic action wall 50a and between the discharge side face 40 and the magnetic force. A plurality of magnetic action portions 54 are arranged between the action walls 50a.
  • the magnetic action wall 50 a and the magnetic action part 54 are fixed by the action wall fixing member 70 in the same manner as the liquid fuel processing apparatus 10.
  • the magnetic action portion 54 arranged on the suction side surface 30 side with the magnetic action wall 50a as the center is arranged so that the south pole magnetism of the magnet 56 faces the direction of the suction side surface 30, and is arranged on the discharge side portion 40 side.
  • the magnetic action part 54 is arranged so that the south pole magnetism of the magnet 56 is directed toward the ejection side surface 40.
  • FIG. 5 shows still another embodiment of the liquid fuel processing apparatus according to the present invention, wherein (a) is a front sectional view and (b) is a plan sectional view.
  • the magnetic action wall 50 a or the magnetic action part 54 is disposed on the entire surface of the bottom face 82 and the side face 84 of the fuel tank 80.
  • the magnetic action part 54 is disposed on the entire surface with respect to the bottom face 82 and the side face 84, and the back face 54 b of the magnetic action part 54 is connected to the bottom face 82 and the side face 84. It is glued. Therefore, in the fuel tank 80, the magnetic action part 54 is provided so that the south pole magnetism acts inward.
  • a fuel feed pipe 86 is provided upright at a substantially central portion in plan view.
  • a suction port 86 a that is one end portion of the fuel supply pipe 86 is provided so as to be close to the bottom surface 82. Therefore, when the liquid fuel is discharged from the fuel feed pipe 86 through the suction port 86a, a flow path 226 is generated along the bottom surface 82 from the side surface 84 and directed toward the suction port 86a.
  • the magnetic action part 54 is arrange
  • FIG. 6 shows another embodiment of the liquid fuel processing apparatus according to the present invention, in which (a) is a front sectional view and (b) is a plan sectional view.
  • the magnetic action wall 50 a or the magnetic action part 54 is disposed so as to contact the bottom surface 182 of the fuel tank 180.
  • a fuel feed pipe 86 is provided upright at a substantially central portion in plan view.
  • a suction port 86 a that is one end portion of the fuel supply pipe 86 is provided so as to be close to the bottom surface 82. Therefore, when liquid fuel is discharged from the fuel feed pipe 86 through the suction port 86a, a flow path 326 is formed along the bottom surface 82 and directed toward the suction port 86a.
  • the magnetic action wall 50 a is in contact with the bottom surface 82 so as to surround the fuel supply pipe 86.
  • four magnetic action walls 50a,..., 50a abut in four directions, and further, four magnetic action walls 50a,.
  • the liquid fuel discharged through the fuel feed pipe 86 flows between the magnetic action walls 50a, 50a arranged perpendicular to the direction of the flow path 326 so as to block the flow path 326.
  • the south pole magnetism acts efficiently on the liquid fuel.
  • Test Example 1 Toyota's first registration is a 1999 diesel car, the body shape is a cab over, the maximum output is 91ps / 4000rpn, the total displacement rated output is 2.98L ⁇ kw, the test vehicle with a total vehicle weight of 2.75t. On an expressway at 80 km / h. The measurement results are shown in Table 1. In Test Example 1, as a result of a running test using the liquid fuel processing apparatus 10, as shown in Table 1, the combustion efficiency was significantly improved and the fuel consumption was greatly improved.
  • the elapsed time of use of the test vehicle used in Test Example 1 is 8 years and 9 months, the traveling distance is 106,000 km, the liquid fuel treatment device 10 is attached to the test vehicle, and the test vehicle is designated by the Ministry of Land, Infrastructure, Transport and Tourism.
  • a diesel 13 mode exhaust gas test was conducted. And the exhaust gas test result which the automobile manufacturer applied to the Ministry of Land, Infrastructure, Transport and Tourism at the time of a new car was compared with the result obtained by this test.
  • CO, HC, NOx, and PM in the exhaust gas were greatly reduced compared to the time of the new vehicle, CO 2 cannot be compared because there is no data for the new vehicle.
  • the test equipment and chassis dynamometer are manufactured by Ono Sokki Co., Ltd., and the exhaust gas analyzer, CVS device, and dilution tunnel are HORIBA, Ltd. The comparison results are shown in Table 2.
  • Test Example 2 Nissan's first registration date is a diesel car in 1990, and the body shape is a cabover, maximum output 200ps / 2900rpm, total displacement 4.16Kw, vehicle total weight 4.9t test vehicle running test on highway It was performed at 80 km. Table 3 shows the measurement results. In Test Example 2, as a result of a running test using the liquid fuel processing apparatus 110, as shown in Table 3, the combustion efficiency was greatly improved and the fuel consumption was also greatly reduced.
  • the elapsed time of use of the test vehicle used in Test Example 2 is about 18 years, and the traveling distance is 26,000 km.
  • a liquid fuel treatment device 110 is attached to the test vehicle, and the test vehicle is designated by the Ministry of Land, Infrastructure, Transport and Tourism.
  • a diesel 13 mode exhaust gas test was conducted.
  • the exhaust gas regulation value of the vehicle total weight of 2.5t or more of the 1994 regulation value (1994 to 11 years) was compared.
  • the magnetism is provided on the flow path 26 formed in the main body 20 so that the one surface 51a and the other surface 51b are S pole magnetism. Since a plurality of action walls 50a are formed, the south pole magnetism can be efficiently applied to the liquid fuel flowing in the main body 20, so that it is included in the exhaust gas discharged from the heat engine or the like. The main harmful substances CO 2 , CO, NOx, HC and PM can be greatly reduced.
  • N Polar magnetism can be reduced more effectively.
  • the passages 52a, 52b, 52c, 52d are provided in the main body 20; however, the present invention is not limited to this, and a circular shape formed according to the cross-sectional shape of the main body 20 is used.
  • a passage hole may be provided in the magnetic action wall 50a so that the liquid fuel flows in a zigzag manner between the magnetic action walls 50a and 50b.
  • the magnet 56, the magnet holding member 58, and the nonmagnetic body portion 60 are configured as separate members. However, the present invention is not limited to this, and at least the magnet holding member 58 and the nonmagnetic body portion 60 are configured. However, they may be configured integrally.
  • the main body portion 20, the suction side surface 30, the discharge side surface 40, and the magnet holding member 58 are formed of a magnetic material, but the present invention is not limited to this, and the nonmagnetic material is used. It may be formed.
  • the non-magnetic part 60 is formed of a non-magnetic material, but is not limited thereto, and may be formed of a magnetic material.
  • the number of the magnetic action walls 50a and 50b arranged can be appropriately changed depending on the length of the main body 20 or the size of the fuel tanks 80 and 180.
  • the suction portion 32 is formed substantially at the center on the suction side surface 30, but is not limited to this, and may be formed on the suction side surface 30. .
  • the discharge part 42 was formed in the approximate center in the discharge side surface 40, it is not restricted to this, It may be formed in any place on the discharge side surface 40.
  • the suction portion 32 is formed on the suction side surface 30 opposite to the passage 52a, so that the S pole magnetism can be applied to the liquid fuel more.
  • the discharge portion 42 is provided in the passage 52d. It is possible to make the south pole magnetism act on the liquid fuel more by being formed on the discharge side 40 opposite to.
  • the liquid fuel processing apparatus is described for the processing of liquid fuel, which is a fuel used in a heat engine or the like. 2582207) or the sewage decomposition process (Patent No. 2769465), the liquid fuel processing apparatus according to the present embodiment is effective in preventing water corruption or sewage decomposition. Can also be used.
  • liquid fuel processing device used for liquid fuel that is liquid fuel of heat engines such as diesel cars, passenger cars, ships, boilers, etc., and CO 2 , CO, NOx, HC, which are the main harmful substances in exhaust gas It is preferably used to greatly reduce PM. Also, the most important thing in the industry is that it has become possible to disseminate because it has become possible to achieve low price and small-scale mass production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Provided is a liquid fuel processing device which can sharply reduce hazardous substances contained in exhaust gas discharged from a thermomotor. A liquid fuel processing device (10) arranged above a channel (26) for supplying liquid fuel to a thermomotor has a plurality of magnetic action walls (50a, 50b) which are arranged on an appropriate interval on the channel (26), wherein the upstream side surface of the channel (26) in the magnetic action walls (50a, 50b) consists of a magnet having S pole magnetism of 0.2-1.5 mT and therefore the S pole magnetism can be made to act efficiently on the liquid fuel. Thus, combustion efficiency of a thermomotor such as a diesel vehicle, a gasoline vehicle, an LP gas vehicle, a vessel, a boiler, or the like, is enhanced and energy saving effect can be attained while sharply reducing all hazardous substances such as CO2, CO, HC, NOx, PM, and the like in the exhaust gas.

Description

液体燃料の処理装置Liquid fuel processing equipment
 本発明はディーゼル車、ガソリン車、LPガス車、船舶、ディーゼル発電機、ボイラー等に用いられる熱機関から排出される排気ガス中のCO、CO2、HC、NOx、PMなどの有害物質を大幅に削減することを可能にする液体燃料の処理装置である。 The present invention greatly reduces harmful substances such as CO, CO 2 , HC, NOx, PM in exhaust gas exhausted from heat engines used in diesel cars, gasoline cars, LP gas cars, ships, diesel generators, boilers, etc. This is a liquid fuel processing apparatus that can be reduced.
 従来、ディーゼル車、ガソリン車、LPガス車、船舶、ボイラー等に用いられる熱機関における燃費を節約するうえで燃料の磁気処理方法が有効であることは知られているが、他にもその様な試みもしばしばなされていた様である。この様な提案や試みは成果に確実性や安定性にかけているため、製品として量産化されていなかった。
 また、一般に入手し得る磁石を用いた装置を、自動車に取付けて走行試験をしても燃費改善、排気ガス中の有害物質の削減に安定した効果は得られなかった。
 本発明者は、種々の特性を有する磁石を製造して(例えば、特許文献1参照)、これを用いて液体処理装置を作り、車両に取付け走行試験した結果、30%前後の燃料節約に有意な効果のあることを知見し、例えば、ディーゼル車で排気ガスディーゼル13モード試験の結果、CO、CO2、HC、NOx、PMが大幅に減少することを、再現性をもって確認した。また、S極磁気を液体燃料に作用させることで、燃費が向上する効果のあることが開示されている(例えば、特許文献1)。
Conventionally, it is known that the magnetic processing method of fuel is effective in saving fuel consumption in heat engines used in diesel cars, gasoline cars, LP gas cars, ships, boilers, etc. It seems that many attempts have been made. Since such proposals and trials depend on certainty and stability in the results, they have not been mass-produced as products.
Moreover, even if a device using a generally available magnet was attached to an automobile and a running test was conducted, a stable effect on fuel consumption improvement and reduction of harmful substances in exhaust gas could not be obtained.
The inventor manufactured magnets having various characteristics (see, for example, Patent Document 1), made a liquid processing apparatus using the magnet, and installed and mounted on a vehicle. As a result, the fuel saving of about 30% was significant. As a result of an exhaust gas diesel 13 mode test with a diesel vehicle, for example, it was confirmed with reproducibility that CO, CO 2 , HC, NOx, and PM were significantly reduced. Further, it has been disclosed that the effect of improving fuel efficiency can be obtained by applying S-polar magnetism to liquid fuel (for example, Patent Document 1).
 しかしながら、従来の金属特殊磁石は、量産が困難であったため、商品の量産化が容易に行えなかった。
 また、S極磁気をさらに効率よく液体燃料に作用させるための構成や具体的なその設置方法は明らかにされていなかった。
However, since conventional metal special magnets are difficult to mass-produce, mass production of products cannot be easily performed.
In addition, a configuration for causing the south pole magnetism to act on the liquid fuel more efficiently and a specific installation method thereof have not been clarified.
特許第2003078号Patent No. 2003078 国際公開第2006/008969号International Publication No. 2006/008969
 それゆえに、この発明の主たる目的は、効率よく短時間で液体燃料にS極磁気を作用させることで、省エネルギー効果を更に大きくし、かつ排気ガス中のCO、CO2、HC、NOx、PMなどの主な有害物質を大幅に削減することを可能とする液体燃料の処理装置を提供することである。 Therefore, the main object of the present invention is to further increase the energy saving effect by causing the S pole magnetism to act on the liquid fuel efficiently and in a short time, and also in the exhaust gas such as CO, CO 2 , HC, NOx, PM, etc. It is an object of the present invention to provide a liquid fuel processing apparatus capable of greatly reducing the main harmful substances.
 この発明にかかる液体燃料の処理装置は、熱機関から排出される排気ガス中の有害物質を減少させるために、液体燃料を熱機関に供給するための流路上に配置される液体燃料の処理装置であって、流路上において適宜の間隔を設けた複数の磁気作用壁を有し、磁気作用壁における流路の上流側の面は、0.2mT以上1.5mT以下のS極磁気の磁石により構成されることを特徴とする、液体燃料の処理装置である。
 また、この発明にかかる液体燃料の処理装置では、磁気作用壁において、S極磁気に対するN極磁気の比が30%以下であることが好ましい。
 また、この発明にかかる液体燃料の処理装置では、磁気作用壁の一方面および他方面は、磁石により形成された磁気作用部を備え、磁気作用部の間には、N極磁気の大きさを減じさせるための非磁性体部を有することが好ましい。
 さらにまた、この発明にかかる液体燃料の処理装置では、磁気作用壁の設置間隔は、1mm以上35mm以下であることが好ましい。
 また、この発明にかかる液体燃料の処理装置では、流路は金属管の内部に形成されることが好ましい。
 また、この発明にかかる液体燃料の処理装置では、前記液体燃料に対してS極磁気を作用させる面積を増加させるために、磁気作用壁において、液体燃料が、金属管の内部において磁気作用壁の間をジグザグ状に流れるように通路が設けられることが好ましい。
 さらにまた、この発明にかかる液体燃料の処理装置では、液体燃料の燃料タンク内に設置されることが好ましい。
A liquid fuel processing apparatus according to the present invention is a liquid fuel processing apparatus disposed on a flow path for supplying liquid fuel to a heat engine in order to reduce harmful substances in exhaust gas discharged from the heat engine. And having a plurality of magnetic action walls provided at appropriate intervals on the flow path, and the upstream surface of the flow path in the magnetic action wall is made of an S-pole magnetic magnet of 0.2 mT or more and 1.5 mT or less. A liquid fuel processing apparatus is characterized by being configured.
In the liquid fuel processing apparatus according to the present invention, the ratio of the N pole magnetism to the S pole magnetism in the magnetic action wall is preferably 30% or less.
In the liquid fuel processing apparatus according to the present invention, the one surface and the other surface of the magnetic action wall are provided with a magnetic action portion formed of a magnet, and the magnitude of the N pole magnetism is between the magnetic action portions. It is preferable to have a non-magnetic part for reducing.
Furthermore, in the liquid fuel processing apparatus according to the present invention, the installation interval of the magnetic action walls is preferably 1 mm or more and 35 mm or less.
Moreover, in the liquid fuel processing apparatus according to the present invention, the flow path is preferably formed inside the metal tube.
In the liquid fuel processing apparatus according to the present invention, in order to increase the area in which the S pole magnetism is applied to the liquid fuel, the liquid fuel is separated from the magnetic action wall inside the metal tube. It is preferable that a passage is provided so as to flow in a zigzag manner.
Furthermore, the liquid fuel processing apparatus according to the present invention is preferably installed in a liquid fuel fuel tank.
 この発明にかかる液体燃料の処理装置では、液体燃料を熱機関に供給するための流路上に複数の磁気作用壁を配置させ、また、磁気作用壁における流路の上流側の面は、0.2mT以上1.5mT以下のS極磁気の磁石により構成されるので、該液体燃料に対して、短時間で効果的にS極磁気を作用させることができる。したがって、本発明にかかる液体燃料の処理装置では、ディーゼル車、ガソリン車、LPガス車、船舶、ボイラー等の熱機関の燃焼効率を高め、省エネルギー効果と排気ガス中の全有害物質HC、CO、CO2、HC、NOx、PMを大幅に削減することが可能となる。
 また、この発明にかかる液体燃料の処理装置では、磁気作用壁において、S極磁気に対するN極磁気の比が30%以下に形成されるので、熱機関に供給する液体燃料に対して、より効果的にS極磁気を作用させることができる。
 さらにまた、この発明にかかる液体燃料の処理装置では、磁気作用壁の設置間隔が、1mm以上35mm以下であるので、熱機関に供給する液体燃料に対して、さらに効果的にS極磁気を作用させることができる。
 また、この発明にかかる液体燃料の処理装置では、流路が金属管の内部に形成されており、その内部に複数の磁気作用壁において、熱機関に供給する液体燃料が、磁気作用壁の間をジグザグ状に流れるように通路が設けられるので、液体燃料にS極磁気を作用させる面積が増加することから、液体燃料に対して、さらに効果的にS極磁気を作用させることができる。
 さらにまた、この発明にかかる液体燃料の処理装置では、燃料タンク内に該液体燃料の処理装置が設置されるので、燃料タンクから熱機関に液体燃料を供給する配管の中間に別途の液体燃料の処理装置を設置することなく、液体燃料に対して、S極磁気を作用させることができる。
In the liquid fuel processing apparatus according to the present invention, a plurality of magnetic action walls are arranged on the flow path for supplying the liquid fuel to the heat engine. Since it is composed of an S pole magnet having a magnetic field of 2 mT or more and 1.5 mT or less, the south pole magnetism can be effectively applied to the liquid fuel in a short time. Therefore, in the liquid fuel processing apparatus according to the present invention, the combustion efficiency of a heat engine such as a diesel vehicle, a gasoline vehicle, an LP gas vehicle, a ship, or a boiler is improved, and the energy saving effect and all harmful substances HC, CO, CO 2 , HC, NOx, and PM can be greatly reduced.
Further, in the liquid fuel processing apparatus according to the present invention, the ratio of N pole magnetism to S pole magnetism is 30% or less in the magnetic working wall, so that it is more effective for the liquid fuel supplied to the heat engine. S pole magnetism can be acted on.
Furthermore, in the liquid fuel processing apparatus according to the present invention, since the installation interval of the magnetic action walls is 1 mm or more and 35 mm or less, the south pole magnetism is more effectively applied to the liquid fuel supplied to the heat engine. Can be made.
In the liquid fuel processing apparatus according to the present invention, the flow path is formed inside the metal tube, and the liquid fuel supplied to the heat engine is provided between the magnetic action walls in the plurality of magnetic action walls. Since the passage is provided so as to flow in a zigzag manner, the area for applying the S pole magnetism to the liquid fuel increases, so that the S pole magnetism can be more effectively applied to the liquid fuel.
Furthermore, in the liquid fuel processing apparatus according to the present invention, since the liquid fuel processing apparatus is installed in the fuel tank, an additional liquid fuel is provided between the pipes for supplying the liquid fuel from the fuel tank to the heat engine. S pole magnetism can be made to act on liquid fuel, without installing a processing device.
 この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。 The above-mentioned object, other objects, features, and advantages of the present invention will become more apparent from the following description of the embodiments for carrying out the invention with reference to the drawings.
この発明にかかる液体燃料の処理装置の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the processing apparatus of the liquid fuel concerning this invention. この発明にかかる液体燃料の処理装置に用いられる磁気作用壁の分解斜視図である。It is a disassembled perspective view of the magnetic action wall used for the processing apparatus of the liquid fuel concerning this invention. この発明にかかる液体燃料の処理装置のA-A断面図である。1 is a cross-sectional view taken along line AA of the liquid fuel processing apparatus according to the present invention. FIG. この発明にかかる液体燃料の処理装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the processing apparatus of the liquid fuel concerning this invention. この発明にかかる液体燃料の処理装置のさらに他の実施形態を示し、(a)正面断面図であり、(b)平面断面図である。The further embodiment of the processing apparatus of the liquid fuel concerning this invention is shown, (a) It is front sectional drawing, (b) It is plane sectional drawing. この発明にかかる液体燃料の処理装置の他の実施形態を示し、(a)正面断面図であり、(b)平面断面図である。The other embodiment of the processing apparatus of the liquid fuel concerning this invention is shown, (a) Front sectional drawing, (b) Plane sectional drawing.
 図1は、本発明にかかる液体燃料の処理装置の実施形態を示す断面図である。また、図2は、本発明にかかる液体燃料の処理装置に用いられる磁気作用壁の分解斜視図であり、図3は、本発明にかかる液体燃料の処理装置のA-A断面図である。この液体燃料の処理装置10は、液体燃料にS極磁気を作用させることで、熱機関等における燃焼効率を高め、燃費を節減するとともに、その熱機関等から発生する排気ガスに含まれる有害物質(CO、CO2、HC、NOxおよびPM)の含有量を削減させるために使用される。液体燃料の燃料装置10は、燃料タンクから例えば、エンジン等の熱機関へ燃料を供給する配管の中間において連結される。
 また、本願において液体燃料とは、炭化水素を主成分とする燃料であって、例えば石油溜分、石炭乾溜または分解油等であり、重油、軽油、ガソリン等ならびにバイオ燃料をいう。
FIG. 1 is a cross-sectional view showing an embodiment of a liquid fuel processing apparatus according to the present invention. FIG. 2 is an exploded perspective view of a magnetic working wall used in the liquid fuel processing apparatus according to the present invention, and FIG. 3 is an AA cross-sectional view of the liquid fuel processing apparatus according to the present invention. This liquid fuel processing apparatus 10 applies S-polar magnetism to liquid fuel, thereby improving combustion efficiency in a heat engine or the like, reducing fuel consumption, and toxic substances contained in exhaust gas generated from the heat engine or the like. Used to reduce the content of (CO, CO2, HC, NOx and PM). The liquid fuel fuel device 10 is connected in the middle of a pipe for supplying fuel from a fuel tank to a heat engine such as an engine.
Further, in the present application, the liquid fuel is a fuel mainly composed of hydrocarbon, for example, petroleum distillate, coal dry distillation or cracked oil, and refers to heavy oil, light oil, gasoline, and biofuel.
 ここで、S極磁気を液体燃料に作用させることによる効果を説明する。
 液体燃料に対して、S極磁気を作用させることで、その液体燃料を構成する分子集団(クラスター)を小さくすることができる。したがって、S極磁気を作用させた液体燃料を熱機関において使用することで、噴霧状態が向上することから、燃焼速度を速めることができ、結果、燃焼効率を向上させることができる。
 また、熱機関等における液体燃料の燃焼室で、噴射ノズルより液体燃料が噴出されるが、液体燃料等に含まれる不純物等の不溶解物が噴射ノズルに付着することにより、噴射ノズル口を狭くさせてしまうので、噴霧状態が悪化する。また、液体燃料が管内を流通すると不純物等に対して静電気が発生するが、このような不純物等は、S極磁気に対しては付着し、N極磁気に対しては付着しない性質を有していることから、この性質を利用することにより不溶解物を分離除去させることができる。したがって、液体燃料にS極磁気を作用させることで、噴射ノズルに対する不純物の付着を防止し噴霧状態を回復させ、結果、燃焼効率を向上させることができる。
Here, the effect by applying the S pole magnetism to the liquid fuel will be described.
By causing the S pole magnetism to act on the liquid fuel, the molecular group (cluster) constituting the liquid fuel can be reduced. Therefore, by using the liquid fuel on which the S pole magnetism is applied in the heat engine, the spray state is improved, so that the combustion speed can be increased, and as a result, the combustion efficiency can be improved.
In addition, in the combustion chamber of liquid fuel in a heat engine or the like, liquid fuel is ejected from the injection nozzle, but insoluble matters such as impurities contained in the liquid fuel adhere to the injection nozzle, thereby narrowing the injection nozzle port. As a result, the spray state deteriorates. In addition, when liquid fuel flows through the pipe, static electricity is generated with respect to impurities and the like, but such impurities and the like adhere to the south pole magnetism and do not adhere to the north pole magnetism. Therefore, an insoluble matter can be separated and removed by utilizing this property. Therefore, by causing the S pole magnetism to act on the liquid fuel, it is possible to prevent the adhesion of impurities to the injection nozzle and restore the spray state, thereby improving the combustion efficiency.
 この液体燃料の処理装置10は、本体部20、吸入側面30、吐出側面40、磁気作用壁50a,50bおよび作用壁固定部材70により構成される。 The liquid fuel processing apparatus 10 includes a main body 20, an intake side 30, a discharge side 40, magnetic action walls 50a and 50b, and an action wall fixing member 70.
 本体部20は、吸入側側面30および吐出側面40と共に液体燃料の処理装置10の外部を構成し、その内部に磁気作用壁50a,50bおよび作用壁固定部材70を保持するために設けられる。本体部20は、例えば、断面円型の管状に形成され、磁性体の金属容器により形成される。また、本体部20における吸入側(上流側)および吐出側(下流側)には、それぞれ第1開口部22および第2開口部24が形成される。そして、本体部20の内部には、液体燃料が流通する流路26が形成される。本実施例においては、本体部20は、例えば、外径60mm、内径55mm、および長さ約140mmに形成される。また、本実施例においては、本体部20は、断面円型の管状に形成されているが、これに限定されることなく、断面角型等、いずれの形状でもよい。 The main body 20 constitutes the outside of the liquid fuel processing apparatus 10 together with the suction side surface 30 and the discharge side surface 40, and is provided to hold the magnetic action walls 50a and 50b and the action wall fixing member 70 therein. For example, the main body 20 is formed in a tubular shape having a circular cross section, and is formed of a magnetic metal container. A first opening 22 and a second opening 24 are formed on the suction side (upstream side) and the discharge side (downstream side) of the main body 20, respectively. A flow path 26 through which liquid fuel flows is formed inside the main body 20. In the present embodiment, the main body 20 is formed to have an outer diameter of 60 mm, an inner diameter of 55 mm, and a length of about 140 mm, for example. Further, in the present embodiment, the main body 20 is formed in a tubular shape having a circular cross section, but is not limited thereto, and may have any shape such as a square cross section.
 吸入側面30は、本体部20における吸入側における開口部を塞ぐために形成される。吸入側面30は、吸入側の第1開口部22と略同形の大きさに形成されており、例えば、溶接により本体部20の吸入側における第1開口部22に密着されている。吸入側面30の略中心には、吸入部32が形成されている。吸入部32は、例えば、燃料タンクから供給される液体燃料を液体燃料の処理装置10に吸入するために設けられる。吸入部32は、燃料タンクから供給される液体燃料用の配管が接続可能な形状に形成される。
 また、吐出側面40は、本体部20における吐出側における第2開口部24を塞ぐために形成される。吐出側面40は、吐出側の第2開口部24と略同形の大きさに形成されており、例えば、溶接により本体部20の吐出側における第2開口部24に密着されている。また吐出側面40の略中心には、吐出部42が形成されている。吐出部42は、例えば、熱機関へ液体燃料を液体燃料の処理装置10から吐出するために設けられる。吐出部42は、熱機関へ液体燃料を供給するための配管が接続可能な形状に形成される。
 吸入口32および吐出口42を吸入側面30および吐出側面40のそれぞれの略中心に形成することで、液体燃料の処理装置10を配管に取り付けた場合に、安定して取り付けることが可能である。また、吸入側面30および吐出側面40に対する加工も容易に行うことができる。
The suction side surface 30 is formed to close the opening on the suction side of the main body 20. The suction side surface 30 is formed in a size substantially the same as the first opening 22 on the suction side, and is in close contact with the first opening 22 on the suction side of the main body 20 by, for example, welding. A suction part 32 is formed substantially at the center of the suction side face 30. The suction unit 32 is provided, for example, for sucking the liquid fuel supplied from the fuel tank into the liquid fuel processing apparatus 10. The suction part 32 is formed in a shape to which a pipe for liquid fuel supplied from a fuel tank can be connected.
The discharge side surface 40 is formed to block the second opening 24 on the discharge side of the main body 20. The discharge side surface 40 is formed to have substantially the same size as the second opening 24 on the discharge side, and is in close contact with the second opening 24 on the discharge side of the main body 20 by, for example, welding. A discharge portion 42 is formed at the approximate center of the discharge side surface 40. The discharge unit 42 is provided, for example, for discharging liquid fuel from the liquid fuel processing apparatus 10 to the heat engine. The discharge part 42 is formed in a shape to which a pipe for supplying liquid fuel to the heat engine can be connected.
By forming the suction port 32 and the discharge port 42 at substantially the center of each of the suction side surface 30 and the discharge side surface 40, when the liquid fuel processing apparatus 10 is mounted on a pipe, it can be stably mounted. Further, the processing on the suction side surface 30 and the discharge side surface 40 can be easily performed.
 本体部20の内部に形成される流路26上には、本発明にかかる液体燃料の処理装置10に供給される液体燃料にS極磁気を作用させるために、磁気作用壁50a,50bが複数配置される。続いて、本体部20における磁気作用壁50a,50bの配置関係を詳細に説明する。
 本体部20においては、軸芯方向に対して垂直な方向(直径方向)に隔てて、互いに対向する上面および下面を有する。そして、一方の面から他方の面に略垂直に磁気作用壁50aが延設される。磁気作用壁50aと他方の面との間には、通路52aとして間隔が設けられる。また、他方の面から一方の面に略垂直に磁気作用壁50bが延設される。この磁気作用壁50bと一方の面との間には、通路52bとして間隔が設けられる。そして、磁気作用壁50aおよび磁気作用壁50bが、軸芯方向に適宜な間隔を設けて互い違いに配置される。
A plurality of magnetic action walls 50a and 50b are provided on the flow path 26 formed inside the main body 20 in order to cause the S pole magnetism to act on the liquid fuel supplied to the liquid fuel processing apparatus 10 according to the present invention. Be placed. Next, the arrangement relationship of the magnetic action walls 50a and 50b in the main body 20 will be described in detail.
The main body 20 has an upper surface and a lower surface facing each other with a direction (diameter direction) perpendicular to the axial direction. And the magnetic action wall 50a is extended from one surface to the other surface substantially perpendicularly. A space is provided as a passage 52a between the magnetic action wall 50a and the other surface. A magnetic action wall 50b extends from the other surface to the one surface substantially perpendicularly. A space is provided as a passage 52b between the magnetic action wall 50b and one surface. The magnetic action wall 50a and the magnetic action wall 50b are alternately arranged with an appropriate interval in the axial direction.
 すなわち、磁気作用壁50a,50bは、液体燃料の流路の方向に対して、例えば、垂直な方向に配置される。なお、磁気作用壁50a,50bの設置間隔は、1mm以上35mm以下で可能であるが、特に、10mmの間隔に設置するのが好ましい。また、安全性を考慮すると、磁気作用壁50a,50bの設置間隔の下限は、2mmが好ましい。本実施例のように、本体部20が管状に形成されている場合は、磁気作用壁50a,50bの設置間隔は、吸入部32および吐出部42の内径と略同一大きさの間隔で設置するのが好ましい。そうすることで、液体燃料の処理装置10内を流通する液体燃料の流量を安定させることができる。なお、磁気作用壁50a,50bの設置間隔が、吸入部32および吐出部42の内径よりも大きくすると、液体燃料の処理装置10内に吸入された液体燃料が、既に吸入されていた液体燃料と混ざり合う可能性がある。
 結果、磁気作用壁50a,50bにおいて、液体燃料が、本体部20の内部において磁気作用壁50a,50bの間をジグザグ状に流れるように、通路52a,52b,52c,52dが形成される。通路52a,52b,52c,52dは、例えば、本体部20の直径の大きさに対して、少なくとも、1/10から3/10の大きさが確保されるように設けられる。換言すると、通路52a,52b,52c,52dにおいて、流路方向に対して垂直な方向の大きさは、少なくとも、吸入部32および吐出部42の内径以上の大きさで形成されるのが好ましい。そうすることで、液体燃料の処理装置10内を流通する液体燃料の流量を安定させることができる。本実施例において、通路52a,52b,52c,52dは、磁気作用壁50a,50bが、その中心部より約2/3において平行カットすることにより形成されている。また、通路52a,52b,52c,52dの大きさは、液体燃料の流量によって適宜、変更可能である。さらに、液体燃料が通路52a,52b,52c,52d以外において流通しないように、磁気作用壁50a,50bは配置される。磁気作用壁50a,50bは、磁気作用部54,54および非磁性体部60により構成される。また、磁気作用部54は、さらに磁石56および磁石保持部材58により構成される。
That is, the magnetic action walls 50a and 50b are arranged, for example, in a direction perpendicular to the direction of the liquid fuel flow path. In addition, although the installation space | interval of the magnetic action walls 50a and 50b can be 1 mm or more and 35 mm or less, it is especially preferable to install in the space | interval of 10 mm. In consideration of safety, the lower limit of the interval between the magnetic action walls 50a and 50b is preferably 2 mm. When the main body 20 is formed in a tubular shape as in the present embodiment, the installation intervals of the magnetic action walls 50a and 50b are installed at an interval substantially the same as the inner diameters of the suction unit 32 and the discharge unit 42. Is preferred. By doing so, the flow volume of the liquid fuel which distribute | circulates the inside of the processing apparatus 10 of a liquid fuel can be stabilized. When the interval between the magnetic action walls 50a and 50b is larger than the inner diameters of the suction part 32 and the discharge part 42, the liquid fuel sucked into the liquid fuel processing apparatus 10 is changed from the liquid fuel already sucked. There is a possibility of mixing.
As a result, passages 52 a, 52 b, 52 c and 52 d are formed in the magnetic action walls 50 a and 50 b so that the liquid fuel flows in a zigzag manner between the magnetic action walls 50 a and 50 b inside the main body 20. The passages 52a, 52b, 52c, and 52d are provided so that, for example, at least 1/10 to 3/10 of the diameter of the main body 20 is secured. In other words, the passages 52a, 52b, 52c, and 52d are preferably formed so that the size in the direction perpendicular to the flow path direction is at least larger than the inner diameters of the suction part 32 and the discharge part 42. By doing so, the flow volume of the liquid fuel which distribute | circulates the inside of the processing apparatus 10 of a liquid fuel can be stabilized. In the present embodiment, the passages 52a, 52b, 52c, 52d are formed by the magnetic action walls 50a, 50b being cut in parallel at about 2/3 from the center. The sizes of the passages 52a, 52b, 52c, and 52d can be appropriately changed depending on the flow rate of the liquid fuel. Further, the magnetic action walls 50a and 50b are arranged so that the liquid fuel does not flow except in the passages 52a, 52b, 52c and 52d. The magnetic action walls 50 a and 50 b are constituted by the magnetic action parts 54 and 54 and the nonmagnetic body part 60. The magnetic action part 54 is further configured by a magnet 56 and a magnet holding member 58.
 磁石56は、磁気作用壁50a,50bの一方面51aと他方面51bとがS極磁気となるように設けられる。すなわち、磁石56,56の表面56a,56aがS極、裏面56b,56bがN極となるように設けられる。したがって、磁気作用部54の表面54aはS極磁気であり、裏面54bは、N極磁気に設けられる。また、磁石56は、薄い板状で、かつ略円型に形成される。磁石56は、永久磁石により形成され、特にプラスチック磁石を使用するのが好ましい。なお、磁石56は、油に溶けない材料であれば、他の樹脂、合成ゴムでもよい。そのような磁石を用いることで、磁石56の成型が自由自在にでき、量産が可能となるので、小型量産化が可能であることから、特に好ましい。また、磁石56におけるS極磁気の磁束の強さは、0.2mT以上1.5mT以下が好ましく、特に、0.8mT以上1.0mT以下が好ましい。なお、1.5mTより大きい磁束の強さでは、本発明にかかる効果の向上が認められにくくなり、0.2mTより小さい磁束の強さでは、不純物等を除去する効果が低下する。磁石56の厚さは、例えば、4mm以上10mm以下で形成される。本実施例においては、磁石56は、例えば、磁束の強さが、0.8mTであり、直径54mm、厚さ4mmに形成されている。 The magnet 56 is provided so that one surface 51a and the other surface 51b of the magnetic action walls 50a and 50b are S pole magnetism. That is, the magnets 56 and 56 are provided so that the front surfaces 56a and 56a are S poles and the back surfaces 56b and 56b are N poles. Therefore, the surface 54a of the magnetic action part 54 is S pole magnetism, and the back surface 54b is provided for N pole magnetism. Further, the magnet 56 is formed in a thin plate shape and a substantially circular shape. The magnet 56 is formed of a permanent magnet, and it is particularly preferable to use a plastic magnet. The magnet 56 may be other resin or synthetic rubber as long as the material does not dissolve in oil. The use of such a magnet is particularly preferable because the magnet 56 can be freely molded and can be mass-produced. The strength of the magnetic flux of the S pole magnetism in the magnet 56 is preferably 0.2 mT or more and 1.5 mT or less, and particularly preferably 0.8 mT or more and 1.0 mT or less. It should be noted that when the strength of the magnetic flux is greater than 1.5 mT, the effect of the present invention is hardly recognized, and when the strength of the magnetic flux is less than 0.2 mT, the effect of removing impurities and the like is reduced. The thickness of the magnet 56 is, for example, 4 mm or more and 10 mm or less. In the present embodiment, the magnet 56 has, for example, a magnetic flux strength of 0.8 mT, a diameter of 54 mm, and a thickness of 4 mm.
 なお、本発明にかかる液体燃料の処理装置に使用する磁石56の形状は円型、角型でも良いが小型、低価格、量産化をする為には円型の方がよい。
 また、磁気作用壁50a,50bが磁性体による本体部20に配置されることで、N極磁気が作用している磁気作用壁50a,50bの側面は、本体部20の内側の壁面に接触するため、液体燃料に対してN極磁気の作用する面は通路52a,52b,52c,52dの面のみとなる。したがって、処理すべき液体燃料がS極磁気面に接触する面積が広くなり、N極磁気面の面積は逆に狭く形成することができる。さらに、以下に説明する磁石保持部材58および非磁性体部60によりN極磁気を分散させるので、S極磁気に対するN極磁気の比は、30%以下となるように形成される。そうすることで、液体燃料に対してS極磁気をより強く作用させることができる。本実施例においては、例えば、S極の磁束の強さは、0.8mTの場合、N極の磁束の強さは0.3mT以下で形成される。
The shape of the magnet 56 used in the liquid fuel processing apparatus according to the present invention may be a circular shape or a rectangular shape, but a circular shape is better for small size, low cost, and mass production.
Further, since the magnetic action walls 50 a and 50 b are arranged on the main body portion 20 made of a magnetic material, the side surfaces of the magnetic action walls 50 a and 50 b on which the N-pole magnetism acts are in contact with the inner wall surface of the main body portion 20. Therefore, the surfaces on which the N pole magnetism acts on the liquid fuel are only the surfaces of the passages 52a, 52b, 52c, and 52d. Therefore, the area where the liquid fuel to be processed comes into contact with the S-pole magnetic surface is widened, and the area of the N-pole magnetic surface can be narrowly formed. Furthermore, since the N pole magnetism is dispersed by the magnet holding member 58 and the nonmagnetic body portion 60 described below, the ratio of the N pole magnetism to the S pole magnetism is formed to be 30% or less. By doing so, south pole magnetism can be made to act more strongly with respect to liquid fuel. In the present embodiment, for example, when the strength of the magnetic flux of the S pole is 0.8 mT, the strength of the magnetic flux of the N pole is 0.3 mT or less.
 磁石保持部材58は、磁石56を埋め込むケースの役割を有するとともに、磁石56のN極磁気を分散させることで減じさせるために設けられる。磁石保持部材58は、本体部20の断面形状に合わせて、板状の略円型に形成される。そして、磁石保持部材58の表面58a側には、磁石56を埋め込むように保持するための凹部58bが形成されている。凹部58bは、磁石56の形状と略同一に形成されている。そして、凹部58bの深さは、磁石56の厚みと略同一の大きさに形成され、さらに、磁石56の側面56cには凹条部56cが形成され、磁石保持部材58の凹部58bの側面には凸条部58dが形成されている。すなわち、磁石56は、凹部58bに埋め込まれることにより、上下左右方向にずれることなく固定される。また、磁石56の表面56aと磁石保持部材58の表面58aとが、同一平面を形成するように磁石56が磁石保持部材58に配置される。そうすることで、液体燃料の流量が安定する。また、N極磁気をさらに分散させるために、磁石保持部材58の側面の厚さと凹部58bの底面から裏面58cとの厚さとは、略同一に形成される。磁石保持部材58の厚さは、N極磁気を減じさせる効果を調整する機能を有し、適宜変更可能である。本実施例においては、例えば、磁石保持部材58は、直径54mm、厚さ7mmに形成される。
 磁気作用部54は、磁石56と磁石保持部材58とを組み合わせることで、N極磁気を減じさせた部材(N極減磁磁石)を構成する。
The magnet holding member 58 has a role of a case in which the magnet 56 is embedded, and is provided to reduce the N pole magnetism of the magnet 56 by dispersing it. The magnet holding member 58 is formed in a plate-like substantially circular shape in accordance with the cross-sectional shape of the main body portion 20. A recess 58 b for holding the magnet 56 so as to be embedded is formed on the surface 58 a side of the magnet holding member 58. The recess 58b is formed substantially the same as the shape of the magnet 56. The depth of the recess 58b is formed to be approximately the same as the thickness of the magnet 56. Further, a recess 56c is formed on the side surface 56c of the magnet 56, and on the side surface of the recess 58b of the magnet holding member 58. Has a ridge 58d. That is, the magnet 56 is fixed without being displaced in the vertical and horizontal directions by being embedded in the recess 58b. The magnet 56 is disposed on the magnet holding member 58 so that the surface 56a of the magnet 56 and the surface 58a of the magnet holding member 58 form the same plane. By doing so, the flow rate of the liquid fuel is stabilized. Further, in order to further disperse the N-pole magnetism, the thickness of the side surface of the magnet holding member 58 and the thickness from the bottom surface of the recess 58b to the back surface 58c are formed substantially the same. The thickness of the magnet holding member 58 has a function of adjusting the effect of reducing the N pole magnetism, and can be changed as appropriate. In this embodiment, for example, the magnet holding member 58 is formed with a diameter of 54 mm and a thickness of 7 mm.
The magnetic action part 54 comprises the member (N pole demagnetizing magnet) which reduced N pole magnetism by combining the magnet 56 and the magnet holding member 58. FIG.
 非磁性体部60は、磁石保持部材58の凹部58bに作用している磁石56によるN極磁気をさらに減じさせ、加えて、N極磁気により、磁石保持部材58,58の裏面58c,58cの間において大きく反発されることなく連結させるために設けられる。非磁性体部60は、磁気作用部54,54との間に配置され、一方面60aおよび他方面60bを有する非磁性体の壁板状に形成される。非磁性体部60の厚さは、N極磁気を減じさせる効果を調整する機能を有し、適宜変更可能である。本実施例においては、例えば、非磁性体部60は、直径54mm、厚さ6mmに形成される。 The non-magnetic part 60 further reduces the N pole magnetism caused by the magnet 56 acting on the recess 58b of the magnet holding member 58, and in addition, the N pole magnetism causes the back surfaces 58c and 58c of the magnet holding members 58 and 58 to It is provided in order to connect without being greatly repelled. The nonmagnetic body portion 60 is disposed between the magnetic action portions 54 and 54, and is formed in a nonmagnetic body wall plate shape having one surface 60a and the other surface 60b. The thickness of the nonmagnetic body portion 60 has a function of adjusting the effect of reducing the N pole magnetism, and can be changed as appropriate. In the present embodiment, for example, the nonmagnetic body portion 60 is formed with a diameter of 54 mm and a thickness of 6 mm.
 作用壁固定部材70は、例えば、磁性体である金属により環状に形成され、例えば、磁気作用壁50a,50bを適宜の間隔で配置させるために設けられる。作用壁固定部材70は、本体部20の内部において磁気作用壁50a,50bを固定するために設けられ、複数の磁気作用壁50a,50bの間の各々に配置される。作用壁固定部材70の幅の大きさは、磁気作用壁50a,50bの配置する数やその配置間隔を調整する機能を有し、適宜変更可能であり、例えば、吸入部32または吐出部42の内径の大きさと略同一の大きさに形成されるのが好ましい。そうすることで、液体燃料の処理装置10内を流通する液体燃料の流量を安定させることができる。作用壁固定部材70は、N極磁気を分散して減じさせるために磁性体材料が好ましいが、非磁性体材料により形成されてもよい。本実施例においては、例えば、作用壁固定部材70は、外径54mm、内径48mm、厚さ6mmに形成される。
 なお、本体部20の長手方向の長さが140mm以上の場合は、磁気作用壁50a,50bは各2個以上とし、その設置間隔は35mm以下に形成した液体燃料の処理装置が好ましい。
The working wall fixing member 70 is formed, for example, in an annular shape from a metal that is a magnetic material, and is provided, for example, to arrange the magnetic working walls 50a and 50b at appropriate intervals. The action wall fixing member 70 is provided inside the main body 20 to fix the magnetic action walls 50a and 50b, and is disposed between each of the plurality of magnetic action walls 50a and 50b. The width of the working wall fixing member 70 has a function of adjusting the number and spacing of the magnetic working walls 50a and 50b and can be changed as appropriate. It is preferable that the inner diameter is approximately the same as the inner diameter. By doing so, the flow volume of the liquid fuel which distribute | circulates the inside of the processing apparatus 10 of a liquid fuel can be stabilized. The working wall fixing member 70 is preferably made of a magnetic material in order to disperse and reduce the N pole magnetism, but may be made of a nonmagnetic material. In this embodiment, for example, the working wall fixing member 70 is formed with an outer diameter of 54 mm, an inner diameter of 48 mm, and a thickness of 6 mm.
In addition, when the length of the main body 20 in the longitudinal direction is 140 mm or more, it is preferable to use a liquid fuel processing apparatus in which the magnetic action walls 50a and 50b are each two or more and the installation interval is 35 mm or less.
 次に、本発明にかかる液体燃料の処理装置10に供給される液体燃料に対してS極磁気が作用する仕組みについて説明する。
 まず、吸入部32から吸入された液体燃料は、磁気作用壁50aの一方面51aに垂直に接し、その液体燃料にS極磁気が作用する。そして、該液体燃料は、通路52aの方向に流れる。続いて、該液体燃料は、磁気作用壁50aの他方面51bおよび磁気作用壁50bの一方面51aとの間に流れ込み、磁気作用壁50bの一方面51aおよび磁気作用壁50aの他方面51bによるS極磁気が該液体燃料に作用する。さらに、液体燃料は、次の通路52bに流れ、以下、吐出部42から液体燃料が吐出されるまで、S極磁気が液体燃料に作用し、続いて、磁気作用壁50cの一方面51aおよび磁気作用壁50bの他方面51bの間を流れながら、通路52c、通路52dと順に流れ込み、吐出部42より液体燃料が、吐出される。
 上述したように、液体燃料の流路上に一方面51aおよび他方面51bにS極磁気が作用する磁気作用壁50a,50bを複数個配置させ、それらの間を液体燃料が流れるように構成することで、S極磁気を作用させる面積が増加することから、効率よく液体燃料にS極磁気を作用させることができる。
Next, a mechanism in which the S pole magnetism acts on the liquid fuel supplied to the liquid fuel processing apparatus 10 according to the present invention will be described.
First, the liquid fuel sucked from the suction part 32 is perpendicular to the one surface 51a of the magnetic action wall 50a, and the S pole magnetism acts on the liquid fuel. The liquid fuel flows in the direction of the passage 52a. Subsequently, the liquid fuel flows between the other surface 51b of the magnetic working wall 50a and the one surface 51a of the magnetic working wall 50b, and S by the one surface 51a of the magnetic working wall 50b and the other surface 51b of the magnetic working wall 50a. Polar magnetism acts on the liquid fuel. Further, the liquid fuel flows into the next passage 52b, and thereafter, the S pole magnetism acts on the liquid fuel until the liquid fuel is discharged from the discharge portion 42. Subsequently, the one surface 51a of the magnetic action wall 50c and the magnetic force are applied. While flowing between the other surface 51b of the working wall 50b, the flow flows in the order of the passage 52c and the passage 52d, and the liquid fuel is discharged from the discharge portion 42.
As described above, a plurality of magnetic action walls 50a and 50b on which the S pole magnetism acts on one surface 51a and the other surface 51b are arranged on the liquid fuel flow path, and the liquid fuel flows between them. Thus, since the area where the S pole magnetism is applied increases, the S pole magnetism can be efficiently applied to the liquid fuel.
 本発明にかかる液体燃料の処理装置は、図4に示すような構成でされてもよい。図4は、本発明にかかる液体燃料の処理装置の他の実施形態を示す断面図である。この液体燃料の処理装置110は、磁気作用壁50aと磁気作用部54とを組み合わせることにより構成されたものである。すなわち、この発明にかかる液体燃料の処理装置110は、本体部20の長手方向に対する略中間部に磁気作用壁50aを配置させ、吸入側面30と磁気作用壁50aとの間および吐出側面40と磁気作用壁50aとの間に複数の磁気作用部54を配置させたものである。これらの磁気作用壁50aおよび磁気作用部54は、液体燃料の処理装置10と同様に、作用壁固定部材70により固定される。磁気作用壁50aを中心として、吸入側面30側に配置されている磁気作用部54は、磁石56のS極磁気が吸入側面30の方向に向くように配置され、吐出側部40側に配置されている磁気作用部54は、磁石56のS極磁気が吐出側面40の方向に向くように配置される。 The liquid fuel processing apparatus according to the present invention may be configured as shown in FIG. FIG. 4 is a sectional view showing another embodiment of the liquid fuel processing apparatus according to the present invention. This liquid fuel processing apparatus 110 is configured by combining a magnetic action wall 50 a and a magnetic action part 54. That is, in the liquid fuel processing apparatus 110 according to the present invention, the magnetic action wall 50a is disposed at a substantially intermediate portion with respect to the longitudinal direction of the main body portion 20, and between the suction side face 30 and the magnetic action wall 50a and between the discharge side face 40 and the magnetic force. A plurality of magnetic action portions 54 are arranged between the action walls 50a. The magnetic action wall 50 a and the magnetic action part 54 are fixed by the action wall fixing member 70 in the same manner as the liquid fuel processing apparatus 10. The magnetic action portion 54 arranged on the suction side surface 30 side with the magnetic action wall 50a as the center is arranged so that the south pole magnetism of the magnet 56 faces the direction of the suction side surface 30, and is arranged on the discharge side portion 40 side. The magnetic action part 54 is arranged so that the south pole magnetism of the magnet 56 is directed toward the ejection side surface 40.
 図5は、本発明にかかる液体燃料の処理装置のさらに他の実施形態を示し、(a)は、正面断面図であり、(b)は、平面断面図である。この液体燃料の処理装置210は、燃料タンク80の底面82および側面84のそれぞれの面において、全面に磁気作用壁50aまたは磁気作用部54を配置させたものである。本実施例においては、磁気作用部54が、底面82および側面84のぞれぞれの面に対して、全面に配置されており、磁気作用部54の裏面54bが、底面82および側面84と接着されている。したがって、燃料タンク80内において、内向きにS極磁気が作用するように、磁気作用部54が設けられる。また、平面視略中央部分には、燃料送油管86が立設されている。そして、燃料送油管86の一端部である吸入口86aが、底面82に近接するように設けられる。したがって、液体燃料が、吸入口86aを介して燃料送油管86から吐出する場合、側面84上から底面82上に沿って発生し、吸入口86aに向かうような流路226が形成される。また、磁気作用部54は、吸入口86aを中心として放射状に配置される。そうすると、燃料送油管86を介して吐出される液体燃料に、S極磁気が効率よく作用する。 FIG. 5 shows still another embodiment of the liquid fuel processing apparatus according to the present invention, wherein (a) is a front sectional view and (b) is a plan sectional view. In the liquid fuel processing apparatus 210, the magnetic action wall 50 a or the magnetic action part 54 is disposed on the entire surface of the bottom face 82 and the side face 84 of the fuel tank 80. In the present embodiment, the magnetic action part 54 is disposed on the entire surface with respect to the bottom face 82 and the side face 84, and the back face 54 b of the magnetic action part 54 is connected to the bottom face 82 and the side face 84. It is glued. Therefore, in the fuel tank 80, the magnetic action part 54 is provided so that the south pole magnetism acts inward. In addition, a fuel feed pipe 86 is provided upright at a substantially central portion in plan view. A suction port 86 a that is one end portion of the fuel supply pipe 86 is provided so as to be close to the bottom surface 82. Therefore, when the liquid fuel is discharged from the fuel feed pipe 86 through the suction port 86a, a flow path 226 is generated along the bottom surface 82 from the side surface 84 and directed toward the suction port 86a. Moreover, the magnetic action part 54 is arrange | positioned radially centering on the suction inlet 86a. As a result, the south pole magnetism efficiently acts on the liquid fuel discharged through the fuel feed pipe 86.
 図6は、本発明にかかる液体燃料の処理装置の他の実施形態を示し、(a)は、正面断面図であり、(b)は、平面断面図である。この液体燃料の処理装置310は、燃料タンク180の底面182に対して当接させるように磁気作用壁50aまたは磁気作用部54を配置させたものである。
 平面視略中央部分には、燃料送油管86が立設されている。そして、燃料送油管86の一端部である吸入口86aが、底面82に近接するように設けられる。したがって、液体燃料が、吸入口86aを介して燃料送油管86から吐出する場合、底面82上に沿って発生し、吸入口86aに向かうような流路326が形成される。また、磁気作用壁50aは、燃料送油管86を囲むように底面82に当接されている。本実施例においては、燃料送油管86において、4方向に4つの磁気作用壁50a,…,50aが、さらに、それらの周りの4方向に、4つの磁気作用壁50a,…,50aが当接されている。そうすると、燃料送油管86を介して吐出される液体燃料は、流路326を遮るようにその流路326の方向に対して垂直に配置された磁気作用壁50a,50aの間を流通するので、該液体燃料にはS極磁気が効率よく作用する。
FIG. 6 shows another embodiment of the liquid fuel processing apparatus according to the present invention, in which (a) is a front sectional view and (b) is a plan sectional view. In the liquid fuel processing apparatus 310, the magnetic action wall 50 a or the magnetic action part 54 is disposed so as to contact the bottom surface 182 of the fuel tank 180.
A fuel feed pipe 86 is provided upright at a substantially central portion in plan view. A suction port 86 a that is one end portion of the fuel supply pipe 86 is provided so as to be close to the bottom surface 82. Therefore, when liquid fuel is discharged from the fuel feed pipe 86 through the suction port 86a, a flow path 326 is formed along the bottom surface 82 and directed toward the suction port 86a. Further, the magnetic action wall 50 a is in contact with the bottom surface 82 so as to surround the fuel supply pipe 86. In this embodiment, in the fuel feed pipe 86, four magnetic action walls 50a,..., 50a abut in four directions, and further, four magnetic action walls 50a,. Has been. Then, the liquid fuel discharged through the fuel feed pipe 86 flows between the magnetic action walls 50a, 50a arranged perpendicular to the direction of the flow path 326 so as to block the flow path 326. The south pole magnetism acts efficiently on the liquid fuel.
 (試験例1)
 トヨタの初度登録は平成11年のディーゼル車で、車体の形状はキャブオーバーで、最高出力91ps/4000rpn、総排気量定格出力2.98L・kwで車両総重量2.75tの試験車で走行試験を高速道路において、時速80kmで行った。測定結果を、表1に示す。
 本試験例1においては、液体燃料の処理装置10を使用して、走行試験をした結果、表1に示すように燃焼効率は大幅に改善して燃料消費量が大幅に改善した。
(Test Example 1)
Toyota's first registration is a 1999 diesel car, the body shape is a cab over, the maximum output is 91ps / 4000rpn, the total displacement rated output is 2.98L · kw, the test vehicle with a total vehicle weight of 2.75t. On an expressway at 80 km / h. The measurement results are shown in Table 1.
In Test Example 1, as a result of a running test using the liquid fuel processing apparatus 10, as shown in Table 1, the combustion efficiency was significantly improved and the fuel consumption was greatly improved.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試験例1に使用した試験車の使用経過年月は8年9カ月、走行距離106千kmであり、該試験車に、液体燃料の処理装置10を取付けて、国土交通省の指定試験機関において、ディーゼル13モード排気ガス試験を行った。そして、自動車メーカーが新車時に国土交通省に申請した排気ガス試験結果と本試験により得られた結果とを比較した。なお、排気ガス中のCO、HC、NOx、PMを新車時より大幅に削減したことが確認できたが、CO2は新車時のデータがないので比較はできない。試験用機器、シャシダイナモメータは株式会社小野測器製で排出ガス分析計、CVS装置、希釈トンネルは株式会社堀場製作所である。比較結果を、表2に示す。 The elapsed time of use of the test vehicle used in Test Example 1 is 8 years and 9 months, the traveling distance is 106,000 km, the liquid fuel treatment device 10 is attached to the test vehicle, and the test vehicle is designated by the Ministry of Land, Infrastructure, Transport and Tourism. A diesel 13 mode exhaust gas test was conducted. And the exhaust gas test result which the automobile manufacturer applied to the Ministry of Land, Infrastructure, Transport and Tourism at the time of a new car was compared with the result obtained by this test. Although it was confirmed that CO, HC, NOx, and PM in the exhaust gas were greatly reduced compared to the time of the new vehicle, CO 2 cannot be compared because there is no data for the new vehicle. The test equipment and chassis dynamometer are manufactured by Ono Sokki Co., Ltd., and the exhaust gas analyzer, CVS device, and dilution tunnel are HORIBA, Ltd. The comparison results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (試験例2)
 ニッサンの初度登録年月は平成2年のディーゼル車で、車体の形状はキャブオーバー、最高出力200ps/2900rpm、総排気量4.16Kw、車両総重量4.9tの試験車で走行試験を高速道路80kmで行った。測定結果を表3に示す。
 本試験例2においては、液体燃料の処理装置110を使用して走行試験をした結果、表3に示すように燃焼効率は大幅に改善して燃料消費量も大幅に削減した。
(Test Example 2)
Nissan's first registration date is a diesel car in 1990, and the body shape is a cabover, maximum output 200ps / 2900rpm, total displacement 4.16Kw, vehicle total weight 4.9t test vehicle running test on highway It was performed at 80 km. Table 3 shows the measurement results.
In Test Example 2, as a result of a running test using the liquid fuel processing apparatus 110, as shown in Table 3, the combustion efficiency was greatly improved and the fuel consumption was also greatly reduced.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験例2に使用した試験車の使用経過年月は、約18年、走行距離26千kmであり、該試験車に、液体燃料の処理装置110を取り付けて、国土交通省の指定試験機関において、ディーゼル13モード排気ガス試験を行った。なお、この車種のディーゼル13モード排気ガス試験のデータが国土交通省になく比較はできないため、平成6年規制値(平成6年~11年間)の車両総重量2.5t以上の排気ガス規制値と本試験により得られた結果とを比較した。なお、排気ガス中のCO、HC、NOx、PMを新車時より大幅に削減したことが確認できたが、CO2は新車時のデータがないので比較はできない。試験用機器、シャシダイナモメータは株式会社小野測器製で排出ガス分析計、CVS装置、希釈トンネルは株式会社堀場製作所である。比較結果を表4に示す。 The elapsed time of use of the test vehicle used in Test Example 2 is about 18 years, and the traveling distance is 26,000 km. A liquid fuel treatment device 110 is attached to the test vehicle, and the test vehicle is designated by the Ministry of Land, Infrastructure, Transport and Tourism. A diesel 13 mode exhaust gas test was conducted. In addition, because the data of the diesel 13 mode exhaust gas test of this vehicle type is not available from the Ministry of Land, Infrastructure, Transport and Tourism and cannot be compared, the exhaust gas regulation value of the vehicle total weight of 2.5t or more of the 1994 regulation value (1994 to 11 years) And the results obtained by this test were compared. Although it was confirmed that CO, HC, NOx, and PM in the exhaust gas were greatly reduced compared to the time of the new vehicle, CO 2 cannot be compared because there is no data for the new vehicle. The test equipment and chassis dynamometer are manufactured by Ono Sokki Co., Ltd., and the exhaust gas analyzer, CVS device, and dilution tunnel are HORIBA, Ltd. Table 4 shows the comparison results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (試験例3)
 トヨタの初度登録年月は平成5年11月のディーゼル車で、車体の形状はステーションワゴン、型式Y-KZH100G、最高出力130ps/3600rpm、総排気量・定格出力2.98L・Kwで車両総重量2.4tの試験車で走行試験を一般道路で行った。測定結果を表5に示す。
 本試験例3においては、炭化水素燃料の処理装置110を使用して走行試験をした結果、表5に示すように燃焼効率は大幅に改善して燃料消費量も大幅に削減した。
(Test Example 3)
Toyota's first registration date is a diesel vehicle in November 1993, and the body shape is a station wagon, model Y-KZH100G, maximum output 130ps / 3600rpm, total displacement and rated output 2.98L · Kw, total vehicle weight A running test was conducted on a general road with a 2.4-t test car. Table 5 shows the measurement results.
In Test Example 3, as a result of a running test using the hydrocarbon fuel processing device 110, as shown in Table 5, the combustion efficiency was greatly improved and the fuel consumption was also greatly reduced.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明にかかる液体燃料の処理装置10,110,210,310によれば、本体部20に形成される流路26上に一方面51aおよび他方面51bがS極磁気となるように設けられる磁気作用壁50aが複数形成されているので、本体部20内において流通する液体燃料に対して、効率よくS極磁気を作用させることができることから、熱機関等から排出される排気ガス中に含まれる主な有害物質であるCO2、CO、NOx、HC、PMを大幅に削減することができる。 According to the liquid fuel processing apparatus 10, 110, 210, 310 according to the present invention, the magnetism is provided on the flow path 26 formed in the main body 20 so that the one surface 51a and the other surface 51b are S pole magnetism. Since a plurality of action walls 50a are formed, the south pole magnetism can be efficiently applied to the liquid fuel flowing in the main body 20, so that it is included in the exhaust gas discharged from the heat engine or the like. The main harmful substances CO 2 , CO, NOx, HC and PM can be greatly reduced.
 また、本発明にかかる液体燃料の処理装置10,110,210,310によれば、磁気作用壁50aを構成する磁気作用部54,54の間に、さらに非磁性体部60を設けるので、N極磁気をより効果的に減じることができる。 Further, according to the liquid fuel processing apparatus 10, 110, 210, 310 according to the present invention, since the non-magnetic body portion 60 is further provided between the magnetic action portions 54, 54 constituting the magnetic action wall 50a, N Polar magnetism can be reduced more effectively.
 なお、本実施例においては、本体部20の内部に通路52a,52b,52c,52dを設けたが、これに限られるものではなく、本体部20の断面形状に合わせて形成された円型の磁気作用壁50aにおいて、液体燃料が、磁気作用壁50a,50bの間をジグザグ状に流れるように通路孔を設けるようにしてもよい。 In the present embodiment, the passages 52a, 52b, 52c, 52d are provided in the main body 20; however, the present invention is not limited to this, and a circular shape formed according to the cross-sectional shape of the main body 20 is used. A passage hole may be provided in the magnetic action wall 50a so that the liquid fuel flows in a zigzag manner between the magnetic action walls 50a and 50b.
 また、本実施例においては、磁石56、磁石保持部材58および非磁性体部60を別部材として構成しているが、これに限られるものではなく、少なくとも磁石保持部材58および非磁性体部60が、一体に構成されていてもよい。 In the present embodiment, the magnet 56, the magnet holding member 58, and the nonmagnetic body portion 60 are configured as separate members. However, the present invention is not limited to this, and at least the magnet holding member 58 and the nonmagnetic body portion 60 are configured. However, they may be configured integrally.
 さらにまた、本実施例においては、本体部20、吸入側面30、吐出側面40、磁石保持部材58は、磁性体材料により形成されているが、これに限られるものではなく、非磁性体材料により形成されてもよい。一方、非磁性体部60は、非磁性体材料により形成されているが、これに限られるものではなく、磁性体材料により形成されてもよい。 Furthermore, in the present embodiment, the main body portion 20, the suction side surface 30, the discharge side surface 40, and the magnet holding member 58 are formed of a magnetic material, but the present invention is not limited to this, and the nonmagnetic material is used. It may be formed. On the other hand, the non-magnetic part 60 is formed of a non-magnetic material, but is not limited thereto, and may be formed of a magnetic material.
 さらに、磁気作用壁50a,50bの配置される数は、本体部20の長さまたは燃料タンク80,180の大きさにより適宜に変更可能である。 Furthermore, the number of the magnetic action walls 50a and 50b arranged can be appropriately changed depending on the length of the main body 20 or the size of the fuel tanks 80 and 180.
 また、本実施例においては、吸入部32は、吸入側面30において略中心に形成されるとしたが、これに限られるものではなく、吸入側面30上であればいずれに形成されてもかまわない。同様に、吐出部42は、吐出側面40において略中心に形成されるとしたが、これに限られるものではなく、吐出側面40上であればいずれに形成されてもかまわない。なお、吸入部32は、通路52aとは反対側の吸入側面30に形成されることで、S極磁気をより液体燃料に作用させることが可能であり、同様に、吐出部42は、通路52dとは反対側の吐出側面40に形成されることで、S極磁気をより液体燃料に作用させることが可能である。 In the present embodiment, the suction portion 32 is formed substantially at the center on the suction side surface 30, but is not limited to this, and may be formed on the suction side surface 30. . Similarly, although the discharge part 42 was formed in the approximate center in the discharge side surface 40, it is not restricted to this, It may be formed in any place on the discharge side surface 40. The suction portion 32 is formed on the suction side surface 30 opposite to the passage 52a, so that the S pole magnetism can be applied to the liquid fuel more. Similarly, the discharge portion 42 is provided in the passage 52d. It is possible to make the south pole magnetism act on the liquid fuel more by being formed on the discharge side 40 opposite to.
 また、本実施例においては、液体燃料の処理装置であって、熱機関等に用いられる燃料である液体燃料の処理について記載しているが、S極磁気の効果が水の腐敗防止(特許第2582207号)または汚水の分解処理(特許第2769465号)に効果があることが明らかにされていることから、本実施例に係る液体燃料の処理装置は、水の腐敗防止または汚水の分解処理にも用いることができる。 In this embodiment, the liquid fuel processing apparatus is described for the processing of liquid fuel, which is a fuel used in a heat engine or the like. 2582207) or the sewage decomposition process (Patent No. 2769465), the liquid fuel processing apparatus according to the present embodiment is effective in preventing water corruption or sewage decomposition. Can also be used.
 ディーゼル車、乗用車、船舶、ボイラー等の熱機関の液体燃料である液体燃料に使用される液体燃料の処理装置であり、排気ガス中の主な有害物質であるCO2、CO、NOx、HC、PMを大幅に削減するために好適に利用される。
 また、産業上で最も重要なことは、低価格、小型量産化が可能になったので普及させることが可能になった。
It is a liquid fuel processing device used for liquid fuel that is liquid fuel of heat engines such as diesel cars, passenger cars, ships, boilers, etc., and CO 2 , CO, NOx, HC, which are the main harmful substances in exhaust gas It is preferably used to greatly reduce PM.
Also, the most important thing in the industry is that it has become possible to disseminate because it has become possible to achieve low price and small-scale mass production.
 10、110、210、310 液体燃料の処理装置
 20 本体部
 22 第1開口部
 24 第2開口部
 26、226、326 流路
 30 吸入側面
 32 吸入部
 40 吐出側面
 42 吐出部
 50a,50b 磁気作用壁
 51a 一方面
 51b 他方面
 52a,52b,52c,52d 通路
 54 磁気作用部
 54a 表面
 54b 裏面
 56 磁石
 56a 表面
 56b 裏面
 56c 凹条部
 58 磁石保持部材
 58a 表面
 58b 凹部
 58c 裏面
 58d 凸条部
 60 非磁性体部
 60a 一方面
 60b 他方面
 70 作用壁固定部材
 80、180 燃料タンク
 82、182 底面
 84 側面
 86 燃料送油管
 86a 吸入口
DESCRIPTION OF SYMBOLS 10, 110, 210, 310 Liquid fuel processing apparatus 20 Main body part 22 1st opening part 24 2nd opening part 26, 226, 326 Flow path 30 Inhalation side surface 32 Inhalation part 40 Discharge side surface 42 Discharge part 50a, 50b Magnetic action wall 51a One surface 51b The other surface 52a, 52b, 52c, 52d Passage 54 Magnetic action part 54a Front surface 54b Back surface 56 Magnet 56a Surface 56b Back surface 56c Recessed portion 58 Magnet holding member 58a Front surface 58b Recessed portion 58c Back surface 58d Convex portion 60 Nonmagnetic material Part 60a One side 60b The other side 70 Working wall fixing member 80, 180 Fuel tank 82, 182 Bottom face 84 Side face 86 Fuel oil supply pipe 86a Suction port

Claims (7)

  1.  熱機関から排出される排気ガス中の有害物質を減少させるために、液体燃料を熱機関に供給するための流路上に配置される液体燃料の処理装置であって、
     前記流路上において適宜の間隔を設けた複数の磁気作用壁を有し、
     前記磁気作用壁における前記流路の上流側の面は、0.2mT以上1.5mT以下のS極磁気の磁石により構成されることを特徴とする、液体燃料の処理装置。
    A liquid fuel processing apparatus disposed on a flow path for supplying liquid fuel to a heat engine in order to reduce harmful substances in exhaust gas discharged from the heat engine,
    A plurality of magnetic action walls provided with appropriate intervals on the flow path;
    The liquid fuel processing apparatus, wherein a surface of the magnetic working wall on the upstream side of the flow path is composed of an S pole magnet having a magnetic capacity of 0.2 mT or more and 1.5 mT or less.
  2.  前記磁気作用壁において、S極磁気に対するN極磁気の比が30%以下であることを特徴とする、請求項1に記載の液体燃料の処理装置。 2. The liquid fuel processing apparatus according to claim 1, wherein the magnetic action wall has a ratio of N pole magnetism to S pole magnetism of 30% or less.
  3.  前記磁気作用壁の一方面および他方面は、前記磁石により形成された磁気作用部を備え、
     前記磁気作用部の間には、N極磁気の大きさを減じさせるための非磁性体部を有することを特徴とする、請求項1または請求項2に記載の液体燃料の処理装置。
    One surface and the other surface of the magnetic action wall include a magnetic action part formed by the magnet,
    3. The liquid fuel processing apparatus according to claim 1, further comprising a non-magnetic body portion for reducing the magnitude of N-pole magnetism between the magnetic action portions.
  4.  前記磁気作用壁の設置間隔は、1mm以上35mm以下であることを特徴とする、請求項1ないし請求項3のいずれかに記載の液体燃料の処理装置。 The apparatus for treating liquid fuel according to any one of claims 1 to 3, wherein an interval between the magnetic action walls is 1 mm or more and 35 mm or less.
  5.  前記流路は金属管の内部に形成されることを特徴とする、請求項1ないし請求項4のいずれかに記載の液体燃料の処理装置。 5. The liquid fuel processing apparatus according to claim 1, wherein the flow path is formed inside a metal pipe.
  6.  前記液体燃料に対してS極磁気を作用させる面積を増加させるために、前記磁気作用壁において、前記液体燃料が、前記金属管の内部において前記磁気作用壁の間をジグザグ状に流れるように通路が設けられることを特徴とする、請求項5に記載の液体燃料の処理装置。 In order to increase the area in which the S pole magnetism is applied to the liquid fuel, a passage is provided in the magnetic action wall so that the liquid fuel flows in a zigzag manner between the magnetic action walls in the metal pipe. The liquid fuel processing apparatus according to claim 5, wherein the liquid fuel processing apparatus is provided.
  7.  前記液体燃料の処理装置は、
     前記液体燃料の燃料タンク内に設置されることを特徴とする、請求項1ないし請求項4のいずれかに記載の液体燃料の処理装置。
    The liquid fuel processing apparatus comprises:
    5. The liquid fuel processing apparatus according to claim 1, wherein the liquid fuel processing apparatus is installed in a fuel tank of the liquid fuel.
PCT/JP2010/050386 2009-01-16 2010-01-15 Liquid fuel processing device WO2010082618A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2011007623A MX2011007623A (en) 2009-01-16 2010-01-15 Liquid fuel processing device.
EP10731287A EP2388466A4 (en) 2009-01-16 2010-01-15 Liquid fuel processing device
CA2752488A CA2752488A1 (en) 2009-01-16 2010-01-15 Liquid fuel processing device
US13/144,739 US20110271589A1 (en) 2009-01-16 2010-01-15 Liquid fuel processing device
BRPI1007502A BRPI1007502A2 (en) 2009-01-16 2010-01-15 device for processing liquid fuel.
JP2010546650A JPWO2010082618A1 (en) 2009-01-16 2010-01-15 Liquid fuel processing equipment
CN2010800046522A CN102770656A (en) 2009-01-16 2010-01-15 Liquid fuel processing device
AU2010205207A AU2010205207A1 (en) 2009-01-16 2010-01-15 Liquid fuel processing device
TW099121222A TW201105857A (en) 2009-07-01 2010-06-29 Processing apparatus of liquid fuel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009029071 2009-01-16
JP2009-029071 2009-01-16

Publications (1)

Publication Number Publication Date
WO2010082618A1 true WO2010082618A1 (en) 2010-07-22

Family

ID=42339872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050386 WO2010082618A1 (en) 2009-01-16 2010-01-15 Liquid fuel processing device

Country Status (10)

Country Link
US (1) US20110271589A1 (en)
EP (1) EP2388466A4 (en)
JP (2) JPWO2010082618A1 (en)
KR (1) KR20110106927A (en)
CN (1) CN102770656A (en)
AU (1) AU2010205207A1 (en)
BR (1) BRPI1007502A2 (en)
CA (1) CA2752488A1 (en)
MX (1) MX2011007623A (en)
WO (1) WO2010082618A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016034992A1 (en) * 2014-09-02 2016-03-10 Titano S.R.L. Magnetization box for fuel, internal combustion engine with means of magnetization of air and fuel and associated method of magnetization
WO2016034989A1 (en) * 2014-09-02 2016-03-10 Titano S.R.L. Anti-harmful emissions internal combustion engine
US10273912B2 (en) * 2014-09-02 2019-04-30 Titano S.R.L. Internal combustion engine with amplified magnetizing effect
IT201900021801A1 (en) * 2019-11-21 2021-05-21 Bosch Gmbh Robert PUMPING GROUP TO FEED FUEL, PREFERABLY DIESEL, TO AN INTERNAL COMBUSTION ENGINE
FR3120399A1 (en) * 2021-03-03 2022-09-09 Societe Cofex Process and device for treating natural gas or fuel oil from a boiler or heat engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023078A (en) 1988-06-20 1990-01-08 Fuji Xerox Co Ltd One-component developing method
JPH0949464A (en) * 1995-08-07 1997-02-18 Shiyouitsu Uda Harmful substance reducing device for engine exhaust gas
JP2582207B2 (en) 1992-07-13 1997-02-19 神富士鉱業 株式会社 How to prevent water rot
JP2769465B2 (en) 1990-08-01 1998-06-25 神富士鉱業株式会社 Wastewater decomposition method
WO2006008969A2 (en) 2004-06-30 2006-01-26 Shin Fuji Mining Co Ltd Magnetic treatment device for hydrocarbon compound fuel

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926276A (en) * 1959-06-02 1960-02-23 Saburo M Moriya Apparatus for the ionization of electrons of flowable materials
US3349354A (en) * 1965-06-02 1967-10-24 Miyata Saburo Means for imposing electric and magnetic fields on flowing fluids
JPS5387033A (en) * 1977-01-10 1978-08-01 Etsurou Fujita Method and apparatus for preventing environmental pollution by processing combustible fuel flow in magnetic field
US4254393A (en) * 1979-07-23 1981-03-03 Robinson T Garrett Treatment of fuel
FR2492462A1 (en) * 1980-10-20 1982-04-23 Imbert Jean Claude APPARATUS WHICH, CONNECTED TO THE CARBURETOR OF AN EXPLOSION ENGINE, REDUCES FUEL CONSUMPTION BY 40 TO 50%
US4569737A (en) * 1984-04-05 1986-02-11 W. Scott Anderson Method of increasing the efficiency of a liquid hydrocarbon fuel
US4711271A (en) * 1986-12-15 1987-12-08 Weisenbarger Gale M Magnetic fluid conditioner
US4933151A (en) * 1988-12-16 1990-06-12 Song Ben C Device for magnetically treating hydrocarbon fuels
JPH0733814B2 (en) * 1989-04-17 1995-04-12 神富士鉱業株式会社 Treatment of hydrocarbon fuels
JPH02301659A (en) * 1989-05-15 1990-12-13 Tomonobu Maeda Magnetic processing device for fuel
US4995425A (en) * 1990-05-11 1991-02-26 Weisenbarger Gale M Magnetic fluid conditioner
JP3023699B2 (en) * 1990-09-28 2000-03-21 キヤノン株式会社 Electron beam generator and image forming apparatus using the same
US5348050A (en) * 1993-07-19 1994-09-20 Ashton Thomas E Magnetic fluid treatment device
BR9501304A (en) * 1995-03-30 1996-12-24 J M V Engenharia E Consultoria Fuel saver
CA2179526C (en) * 1995-06-07 2004-06-15 Hideaki Makita Apparatus for decreasing the harmful exhaust gas from an internal combustion engine or a boiler
JP3023699U (en) * 1995-10-12 1996-04-23 英明 牧田 Harmful exhaust gas reduction device for internal combustion engine or boiler
JPH09217923A (en) * 1996-02-08 1997-08-19 Saibun Hayashi Fuel oil reforming device
US6971409B2 (en) * 2003-05-07 2005-12-06 Dietrich Reichwein Method and apparatus for the treatment of fluids
US7377268B2 (en) * 2006-03-09 2008-05-27 Min Lu Compact inline magnetic fuel conditioner for improving fuel efficiency
WO2008139646A1 (en) * 2007-05-09 2008-11-20 Sumida Corporation Oscillation type electromagnetic power generator and method for manufacturing oscillation type electromagnetic power generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023078A (en) 1988-06-20 1990-01-08 Fuji Xerox Co Ltd One-component developing method
JP2769465B2 (en) 1990-08-01 1998-06-25 神富士鉱業株式会社 Wastewater decomposition method
JP2582207B2 (en) 1992-07-13 1997-02-19 神富士鉱業 株式会社 How to prevent water rot
JPH0949464A (en) * 1995-08-07 1997-02-18 Shiyouitsu Uda Harmful substance reducing device for engine exhaust gas
WO2006008969A2 (en) 2004-06-30 2006-01-26 Shin Fuji Mining Co Ltd Magnetic treatment device for hydrocarbon compound fuel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2388466A4

Also Published As

Publication number Publication date
JPWO2010082618A1 (en) 2012-07-05
MX2011007623A (en) 2011-08-08
AU2010205207A1 (en) 2011-09-08
EP2388466A1 (en) 2011-11-23
CN102770656A (en) 2012-11-07
US20110271589A1 (en) 2011-11-10
JP2015057555A (en) 2015-03-26
BRPI1007502A2 (en) 2016-02-16
KR20110106927A (en) 2011-09-29
EP2388466A4 (en) 2013-02-06
CA2752488A1 (en) 2010-07-22
JP6096754B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6096754B2 (en) Liquid fuel processing equipment
US20070209643A1 (en) A Compact Inline Magnetic Fuel conditioner for Improving Fuel Efficiency
US20100122692A1 (en) Device for Preconditioning of Combustion Air
US20140216015A1 (en) Exhaust gas purification apparatus for internal combustion engine
CN109630248A (en) The mixing of diesel exhaust fluid
ITRM20110198A1 (en) METHOD FOR THE OPTIMIZATION OF COMBUSTION IN ENGINES.
CN101027471A (en) Magnetic processing equipment for engine and magnetic processing system for engine
US7527024B2 (en) Liquid fuel reformer
US7331336B2 (en) Power air-fuel levitation compression
KR101178780B1 (en) Combustion activation device of the internal combustion engines
TW201105857A (en) Processing apparatus of liquid fuel
US20170074217A1 (en) Fuel saver and contaminants reducer system and method
JPH07259666A (en) Magnetic structure for fuel system of automobile and magnetizing method for fluid piping
WO1993022553A1 (en) Magnetic treatment of air/fuel mixture
JP2000303929A (en) Fuel pipe unit
JP7072775B2 (en) Fuel reformer for diesel engines
JP3127704U (en) Liquid fuel efficiency improvement device and its magnet cartridge combination installation structure
JPH08218954A (en) Liquid substance reforming device
EP1660770A1 (en) Device for saving fuel and reducing emissions
JP2015059309A (en) Pollution prevention method
JP2001164266A (en) Fuel reformer
WO2009142344A1 (en) Filtter off impurities device of diesel fuel
JPH07308677A (en) Device for activating fluid
JP2005290088A (en) Fuel reforming method
JP2005344514A (en) Auxiliary gas supply device for combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004652.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2752488

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010546650

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/007623

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3408/KOLNP/2011

Country of ref document: IN

Ref document number: 2010731287

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117018871

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010205207

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2011134251

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2010205207

Country of ref document: AU

Date of ref document: 20100115

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1007502

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1007502

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110714