WO2010082494A1 - 防食方法および防食構造 - Google Patents

防食方法および防食構造 Download PDF

Info

Publication number
WO2010082494A1
WO2010082494A1 PCT/JP2010/000192 JP2010000192W WO2010082494A1 WO 2010082494 A1 WO2010082494 A1 WO 2010082494A1 JP 2010000192 W JP2010000192 W JP 2010000192W WO 2010082494 A1 WO2010082494 A1 WO 2010082494A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
anticorrosion
corrosion
electrons
Prior art date
Application number
PCT/JP2010/000192
Other languages
English (en)
French (fr)
Inventor
山本史郎
木村哲士
木暮英雄
Original Assignee
藤森工業株式会社
ショーボンド建設株式会社
ペクセル・テクノロジーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤森工業株式会社, ショーボンド建設株式会社, ペクセル・テクノロジーズ株式会社 filed Critical 藤森工業株式会社
Priority to CN2010800048250A priority Critical patent/CN102301036A/zh
Priority to US13/144,836 priority patent/US20120018312A1/en
Priority to JP2010546598A priority patent/JP5470276B2/ja
Publication of WO2010082494A1 publication Critical patent/WO2010082494A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/20Conducting electric current to electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F15/00Other methods of preventing corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2201/00Type of materials to be protected by cathodic protection
    • C23F2201/02Concrete, e.g. reinforced

Definitions

  • the present invention relates to a cathode anticorrosion method and an anticorrosion structure thereof, and more particularly to an anticorrosion method and an anticorrosion structure in a case where an anticorrosive body such as a reinforcing bar in concrete is covered with a coating layer.
  • an external power source As an electron supplier used when current needs to flow continuously outdoors in an anticorrosion construction method, one is an external power source, and the other is a steel material that is subject to anticorrosion.
  • substances having a low oxidation-reduction potential for example, base metals such as zinc, magnesium, and aluminum, and galvanic anodes (sacrificial anodes) made of alloys thereof.
  • the external power source has problems such as the need for power source maintenance and management of anticorrosion current, and the difficulty in securing a commercial power source.
  • the galvanic anode is consumed over time.
  • Patent Document 1 proposes forming a film containing titanium oxide on the surface of stainless steel.
  • Patent Document 2 electrons generated when light strikes a titanium oxide film provided on a support such as a metal plate or a plastic film are injected into the metal to be protected through a conductive wire, thereby preventing the corrosion. It is supposed to be possible.
  • Patent Document 3 it is said that the electrons generated when light strikes the titanium oxide film are collected by the conductive film and injected into the anticorrosion target metal to prevent corrosion.
  • Patent Document 1 since the proposal of Patent Document 1 forms a film containing titanium oxide directly on the surface of a metal material, it prevents corrosion of metals such as steel materials covered with an anticorrosion film such as reinforcing bars embedded in concrete or paint. There is a problem that you can not.
  • Patent Document 2 since the method and apparatus of Patent Document 2 use conductive wires, it is possible to inject electrons into a metal such as a reinforcing bar embedded in concrete.
  • the titanium oxide film is formed on the ITO conductive glass, the structure is the same as that of FIG.
  • the anode (anode) potential remained at ⁇ 584 mV even when the light having a wavelength of 360 nm was irradiated with the strongest light intensity of 25 mWcm ⁇ 2 using the thickest 3 ⁇ m titanium oxide film.
  • the potential difference from steel (-400 mV) is only 184 mV. This value cannot be said to be sufficiently low as compared with a general sacrificial anode potential of ⁇ 1000 mV or less.
  • the anticorrosion circuit shown in Patent Documents 2 and 3 has a circuit configuration of anode-conductive wire-anticorrosive body. This circuit is not a closed circuit like an ordinary external power supply type anticorrosion circuit. In order to continue to generate electrons at the anode in such a circuit configuration, as shown in FIG. 5 and FIG. It is necessary to oxidize and continue the generation of hydroxyl radical (.OH). However, Patent Documents 2 and 3 do not describe any mechanism for continuing the generation of a hydroxyl radical.
  • Titanium oxide generates two carriers of electrons (e ⁇ ) and holes (h + ) when irradiated with light.
  • the self-cleaning effect of the photocatalyst utilizes a redox reaction with titanium oxide.
  • This oxidation-reduction reaction includes an oxidation reaction in which water is oxidized by holes (h + ) to generate hydroxyl radicals (.OH), and oxygen in the air is reduced by electrons (e ⁇ ) to reduce superoxide anions (. O 2 ⁇ ) is produced.
  • FIGS. 5 and 6 of Patent Document 3 show an oxidation reaction in which these inventions generate a hydroxyl radical (.OH) and a superoxide anion (.O 2 ⁇ ) Is considered to be a schematic diagram for explaining that it comprises a reduction reaction. Therefore, in Experiment 2 in the example of Patent Document 2 that evaluates the anticorrosion circuit shown in these figures, the flow of electrons is an anticorrosion circuit of anode-conductive wire-corroded object-sodium chloride solution-anode. It is thought that there is. In this circuit, it is presumed that current can flow when water is electrolyzed.
  • Patent Documents 2 and 3 it is necessary that the titanium oxide is electrically connected not only to the surface of the titanium oxide but also to the body to be protected and the aqueous sodium chloride solution. And in this invention, unless a hydroxyl radical and a superoxide anion are consumed continuously, a big electric current will not flow, and the corrosion-proof potential of a to-be-protected body cannot fully be made low. Therefore, if the anticorrosion method proposed in Patent Documents 2 and 3 is used, as in the Examples of Patent Documents 2 and 3, both the body to be corroded and the anode (anode) are installed in an environment in which water or water is immersed. There is a problem that the environment where the anticorrosion structure can be installed is extremely limited. In addition, there is a problem that a protective film cannot be provided when it is necessary to protect the titanium oxide layer from damage or significant dirt.
  • the present invention has been made in view of the above circumstances, and has a high degree of freedom in setting up a corrosion-proof structure, and even when a body to be protected, such as a reinforcing bar in concrete, is covered with a coating layer, a sufficient anti-corrosion effect can be obtained. It is an object to provide an anticorrosion method and an anticorrosion structure that can be obtained.
  • the inventors of the present invention have intensively studied to solve the above problems, and as a result, even when a semiconductor layer such as a wall surface of a structure is present in the air and does not substantially come into contact with water, a large amount of anticorrosion objects are present.
  • a semiconductor layer such as a wall surface of a structure
  • the present invention has been made on the basis of this finding, and the first invention is that a semiconductor layer whose surface layer is protected so as not to substantially contact with water is caused to emit electromagnetic waves by receiving an electromagnetic wave, and then emitted.
  • the collected electrons are collected and supplied to the body to be corroded, and the current is passed to the body to be corroded by flowing the electrons back from the body to be corroded to the semiconductor layer through the electrolyte layer. It is the anticorrosion method characterized by making the electric potential of the base.
  • the second invention according to the present invention is the first invention, wherein the semiconductor layer is supported by an impermeable plastic film that can transmit electromagnetic waves, and the film is a surface that receives electromagnetic waves. A semiconductor layer is placed on the body to be protected and the semiconductor layer is protected with the film.
  • the anticorrosion method according to the first or second aspect, wherein the semiconductor layer is subjected to electromagnetic waves having a wavelength of at least 360 nm to 500 nm in a place where direct sunlight is not directly applied. To emit electrons.
  • the anticorrosion method shown in the first to third aspects wherein the anticorrosive body is embedded in a layered electrolyte layer having adhesiveness or adhesiveness. Adhere to a layer containing.
  • an anticorrosion method in which an electron supply body in which a semiconductor layer is formed on a support body that is permeable to electromagnetic waves and is impermeable and conductive is electrically connected to the corrosion-protected body.
  • the anti-corrosion structure is characterized in that the electron supply body is electrically connected to the anti-corrosion body through at least an electrolyte layer in contact with the semiconductor layer.
  • a conductive layer is interposed between the electrolyte layer and the corrosion-protected body.
  • an eighth invention according to the present invention is the anticorrosion structure shown in the seventh invention, wherein the conductive layer is a layer containing cement, and the corrosion-protected body is a metal containing iron.
  • the electrolyte layer is a pressure-sensitive adhesive layer or an adhesive layer.
  • the support can transmit electromagnetic waves having a wavelength of at least 360 nm to 500 nm.
  • the eleventh invention according to the present invention is the water-impermeable plastic film in which the support has a conductive thin film on the semiconductor layer side in the anticorrosion structure shown in the sixth to tenth inventions.
  • the twelfth invention according to the present invention is the anticorrosion structure shown in the sixth to eleventh inventions, wherein the semiconductor layer is a kind selected from a metal oxide containing a compound having a perovskite structure and a metal chalcogenide or It is a layer containing two or more compounds.
  • the semiconductor layer contains a brookite type compound.
  • the fourteenth invention of the present invention is the anticorrosion structure shown in the sixth to thirteenth inventions, wherein the semiconductor layer is one or more metal oxides selected from titanium oxide, zinc oxide and tin oxide. It is a layer containing a product.
  • the semiconductor layer since the semiconductor layer does not get wet with rain or the like, and dirt does not adhere to it, the degree of freedom in installing the semiconductor layer is high, and a large amount of electrons are injected into the corrosion-protected body. And effective anticorrosion.
  • the semiconductor layer made of titania (titanium oxide) or the like since the semiconductor layer made of titania (titanium oxide) or the like is exposed to visible light and can generate electrons that are supplied to the steel in the concrete, the anode is not consumed and it is difficult to obtain electricity from a commercial power source. Electrocorrosion protection is possible at the place.
  • the semiconductor layer can be prevented from being wetted by rain or the like, and the semiconductor layer can be prevented from being contaminated, deteriorated, or broken, so that the degree of freedom of the installation location of the semiconductor layer is high.
  • the semiconductor layer also protects the mortar or concrete layer where the steel is present, so the film protects the mortar such as chloride ions and carbon dioxide. It is possible to suppress deterioration factors of concrete from penetrating into surrounding mortar and concrete such as steel materials, and deterioration of mortar and concrete is suppressed.
  • the semiconductor layer can be installed even in the shade, and the degree of freedom of the anticorrosion work is high.
  • the fourth aspect of the present invention it is easy to carry out the anticorrosion work for the steel material embedded in mortar or concrete, and the labor required for the installation work of the anode can be greatly reduced.
  • the fifth aspect of the present invention even when the object to be protected is a metal covered with a paint film, the adhesive layer or adhesive layer is attached to the paint film. Corrosion protection becomes possible.
  • the semiconductor layer since the semiconductor layer does not get wet with rain or the like, and dirt does not adhere to it, the degree of freedom of the installation location of the semiconductor layer is high and the amount of emitted electrons is small, Effective corrosion prevention can be performed by efficiently injecting electrons into the body to be protected.
  • corrosion protection of steel materials embedded in mortar and concrete is possible.
  • a metal on which an anticorrosion film such as an insulating paint is formed can also be anticorrosive.
  • the ninth aspect of the present invention it is easy to perform a metal anticorrosion work in which an anticorrosion film such as a steel material or paint embedded in mortar or concrete is formed.
  • an anticorrosion film such as a steel material or paint embedded in mortar or concrete is formed.
  • the semiconductor layer can be prevented from being contaminated, deteriorated or broken.
  • the twelfth aspect of the present invention even when the incidence of electromagnetic waves is weak, a large amount of electrons can be emitted and effective corrosion protection can be performed.
  • the thirteenth aspect of the present invention even when the incidence of electromagnetic waves is weak, a large amount of electrons can be emitted and effective corrosion protection can be performed.
  • the fourteenth aspect of the present invention even when the incidence of electromagnetic waves is weak, a large amount of electrons can be emitted and effective corrosion protection can be performed.
  • FIG. 1 is a schematic cross-sectional view showing an anticorrosion structure of Example 1.
  • FIG. 2 is a schematic cross-sectional view showing a test method for an anticorrosion structure of Example 1.
  • FIG. 5 is a schematic cross-sectional view showing a corrosion prevention structure of Comparative Example 1.
  • FIG. 6 is a schematic cross-sectional view showing a test method for a corrosion-proof structure of Comparative Example 1.
  • FIG. 10 is a graph showing the results of Example 2.
  • FIG. 1 is a schematic view showing an embodiment of the anticorrosion structure of the present invention.
  • An anticorrosion structure 10 shown in FIG. 1 includes an electron supply body 13 in which a semiconductor layer 12 is formed on a support 11 that is permeable to electromagnetic waves and has impermeableness and conductivity, and an electrolyte layer 14 that is in contact with at least the semiconductor layer 12.
  • the anticorrosion structure is electrically connected to the to-be-protected object 16 to prevent corrosion.
  • the to-be-corroded body 16 and the electron supply body 13 are electrically connected.
  • a concrete layer is interposed between the electrolyte layer 14 and the corrosion-protected body 16 as the conductive layer 15.
  • the semiconductor layer 12 receives the electromagnetic wave 1 to emit electrons, collects the emitted electrons, supplies the electrons to the anticorrosive body 16 through the conductor 7, and the electrons 2 are supplied.
  • the electrons 3 are refluxed from the anticorrosive body 16 through the electrolyte layer 14 to the semiconductor layer 12, and the electric potential is applied to the anticorrosive body 16 by passing a current. Since the electrolyte layer 14 has a higher electrical resistance than the conductor 7, the electrons 2 generated in the semiconductor layer 12 and collected by the support 11 flow through the conductor 7 having a lower electrical resistance.
  • the potential of the semiconductor layer 12 becomes lower than the potential of the corrosion protection body 16, or the semiconductor layer 12 and the corrosion protection body 16 are mutually connected. If they are equipotential, the electrons 2 move from the semiconductor layer 12 to the corrosion protection body 16. Further, the electrons that have moved to the body to be protected 16 are transported by the electrolyte of the electrolyte layer 14 and move to the semiconductor layer 12. In other words, in the present invention, it can be said that the current generated in the semiconductor layer 12 is passed through the corrosion-protected body 16 through the electrolyte layer 14.
  • the electron supply body 13 -conductor 17 -corrosion body 16 -concrete layer 15 -electrolyte layer 14 -electron supply body 13 are electrically connected and closed. A circuit is formed. Then, since the electrons are circulated to the semiconductor layer 12 through the electrolyte layer 14 from the corrosion-resistant body 16 to which electrons are supplied, the corrosion-resistant body 16 is efficiently used even when the amount of electrons generated in the semiconductor layer 12 is small. A large amount of current is passed through and a great anticorrosion effect is obtained. Therefore, unlike the external power supply method, it is not necessary to apply an external voltage.
  • connection between the corrosion-protected body 16 and the semiconductor layer 12 may be a simple conductor, but a large current cannot be obtained by a simple connection. This is because the electrons that have moved to the corrosion-protected body 16 are positively transported by the electrolyte of the electrolyte layer 14 so that electric charges are continuously transported and a large current is obtained.
  • the electron supplier 13 is a member that generates electrons and supplies them to the body 16 to be protected, and emits electrons when the electromagnetic wave 1 is irradiated to the support 11 that is permeable to the electromagnetic wave 1 and has impermeability and conductivity.
  • a semiconductor layer 12 is formed. Electrons emitted from the semiconductor layer 12 are collected by the conductivity of the support 11.
  • the electron supply body 13 is led to a conductor 7 made of a metal such as copper or aluminum, and is electrically connected to the corrosion protection body 16, and injects the collected electrons into the corrosion protection body 16.
  • the electron supply body 13 is installed in a place where electromagnetic waves are incident. Such a place may be a place where light rays such as sunlight are directly irradiated.
  • the electron supply body 13 may be installed in water or a place where the liquid is intermittently flooded.
  • the electron supply body 13 causes the current to flow to the corrosion-protected body 16 via the electrolyte layer 14, the presence of water is substantially present. It is suitable when it is installed in a place not to be used, for example, air such as a wall surface of a structure. The place where water is not present is preferable because the electrolyte layer 14 does not swell and the electrolyte does not elute.
  • the peripheral edge of the electron supply body 13 is covered with a resin piece such as a fluorine-based resin or an acrylic resin, and the semiconductor layer 12 or It is preferable to perform a waterproof treatment so that water does not enter the electrolyte layer 14.
  • the electron supplier 13 used in the present invention is a relatively thin plate or film, when storing or transporting a plurality, the electron supplier 13 may be superposed in a single sheet or in a long state. It may be wound on a roll. Furthermore, it is more preferable that the electron supply body 13 and the electrolyte layer 14 are integrated and wound on a roll because the installation of the electron supply body 13 is further simplified.
  • the conductor 7 may be fixed to the electron supply body 13 in advance, or may be fixed to the electron supply body 13 at a construction site. The method of winding the electron supply body 13 on a roll and fixing the conductor 7 to the electron supply body 13 at the construction site is preferable because it is easy to match the situation at the construction site.
  • the support 11 is a base material for forming the semiconductor layer 12 and is a current collector that collects electrons emitted from the semiconductor layer 12 because it has conductivity.
  • the support 11 is preferably a flat member such as a film, sheet, plate or the like (in the present specification, these are collectively referred to as a film). Since the support body 11 becomes a surface layer when the electron supply body 13 is installed on the wall surface or the like of the structure, the semiconductor layer 12 is not substantially in contact with water. Therefore, the semiconductor layer 12 also has a function as a protective layer that prevents the semiconductor layer 12 from being stained, deteriorated, or damaged. Moreover, since the support body 11 also protects the mortar and concrete of the site
  • substantially not in contact with water means that the main surface of the semiconductor layer 12 does not come into contact with liquid water, and liquid water or gaseous water vapor penetrates from the end surface of the electron supply body 13 to form the semiconductor layer. It does not mean that contact with 12 is also prohibited.
  • the material for forming the support 11 is not particularly limited as long as it can transmit the electromagnetic wave 1 and has water impermeability and conductivity.
  • the semiconductor layer 12 such as titanium oxide has a thickness of at least 360 nm to 500 nm. Natural light can be used effectively if it can emit an electron by receiving an electromagnetic wave having a wavelength of. Therefore, the support 11 is preferably transparent.
  • transparent as used herein means that the total light transmittance of visible light having a wavelength of 360 nm to 500 nm is high, but unless it is 0, the lower limit is not particularly limited, depending on the object to be protected and the environment, It can select suitably.
  • the preferable total light transmittance of the support 11 is 50% or more at a wavelength of 360 nm to 420 nm, and 70% or more at a wavelength of 360 nm to 500 nm. If the total light transmittance is high, there is no problem even if the haze (cloudiness) is high. Rather, when the electron supplier 13 is installed on the underpass of the car or under the expressway where the car passes underneath, the surface (free surface) of the electron supplier 13 has a frosted glass-like unevenness so that the headlight does not reflect at night. It is preferable from the viewpoint of preventing traffic accidents. Examples of such a transparent material include a glass plate and a plastic film. Among these, a plastic film is preferable because it is lighter than a glass plate, can be wound up in a roll shape, and has excellent impact resistance.
  • the plastic film used for the support 11 has conductivity in order to collect electrons emitted from the semiconductor of the semiconductor layer 12.
  • the plastic film having conductivity may be a film made of a conductive polymer.
  • the conductive polymer include polyacetylene-based, polypyrrole-based, polythiophene-based, polyphenylene-based, and polyphenylene vinylene-based polymers.
  • a conductive film by laminating a conductive thin film on a non-conductive plastic film because the choice of the plastic film is widened as compared with the plastic film having conductivity.
  • a material for forming the conductive thin film laminated on the plastic film there is a metal or a metal oxide.
  • the metal include platinum, gold, silver, aluminum, copper, nickel, chromium, iron, and alloys thereof.
  • the metal oxide include tin oxide, indium oxide, and composite materials thereof. Of these materials forming the conductive thin film, metal oxide is preferable because of its high transparency, and indium tin oxide (ITO) is particularly preferable because of its excellent conductivity, transparency, and chemical stability.
  • a method for laminating a conductive thin film on a plastic film having no conductivity a known method can be adopted. For example, a vacuum deposition method, a sputtering method, a sol-gel method, and the like can be given. Moreover, when laminating
  • the glass transition point is preferably 100 ° C. or higher, more preferably 120 ° C. or higher.
  • resins include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), tetraacetyl cellulose (TAC), polyester sulfone (PES), polyphenylene sulfide (PPS), polycarbonate (PC), and polyarylate (PAr).
  • PET and PEN are particularly preferable in terms of cost and physical strength.
  • the thickness of these plastic films is not particularly limited, but is preferably thin in terms of transparency and cost, as long as they are impermeable and satisfy physical strength, and are in the range of 50 to 500 ⁇ m, preferably 50 to 200 ⁇ m. Is selected.
  • Such a plastic film may be stretched to improve physical strength, or a plurality of layers of the same kind or different kinds may be laminated.
  • a film of a fluorine resin or an acrylic resin may be laminated as a protective layer on the exposed surface.
  • the semiconductor layer 12 is a layer that receives the electromagnetic wave 1 and emits electrons.
  • the semiconductor material for forming the semiconductor layer 12 is not particularly limited as long as it can emit electrons upon receiving electromagnetic waves.
  • a so-called compound semiconductor represented by a compound, a selenide, etc.) or a compound having a perovskite structure can be used.
  • oxide and chalcogenide metal examples include titanium, tin, zinc, iron, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium or tantalum oxide, cadmium, zinc, lead, Silver, antimony or bismuth sulfide, cadmium or lead selenide, cadmium telluride and the like.
  • Examples of compound semiconductors include phosphides such as zinc, gallium, indium, and cadmium, gallium arsenide, copper-indium selenide, and copper-indium-sulfide.
  • Semiconductors include an n-type in which the carrier involved in conduction is an electron and a p-type in which the carrier is a hole. In the present invention, the n-type is preferably used.
  • n-type inorganic semiconductors examples include TiO 2 , TiSrO 3 , ZnO, Nb 2 O 3 , SnO 2 , WO 3 , Si, CdS, CdSe, V 2 O 5 , ZnS, ZnSe, SnSe, KTa 3 , FeS 2, PbS, InP, GaAs , there is such as CuInS 2, CuInSe 2.
  • preferred n-type semiconductors are titanium oxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ).
  • a brookite type compound is preferred because of its excellent ability to emit electrons.
  • titanium oxide is particularly preferable because of its excellent ability to emit electrons upon receiving electromagnetic waves.
  • the titanium oxide may be anatase-type titanium oxide, but brookite-type titanium oxide is preferable because it has a particularly excellent ability to emit electrons upon receiving electromagnetic waves.
  • These semiconductors may be used singly or as a mixture of two or more if necessary.
  • the anatase type titanium oxide and brookite type titanium oxide are not limited to anatase and brookite as natural minerals, and may be artificially synthesized.
  • a known method can be adopted as a method of forming the semiconductor layer 12. For example, coating methods such as gravure coating, bar coating, and screen coating can be given.
  • a sensitizing dye can be used. Examples of sensitizing dyes include organometallic complex dyes, porphyrin dyes, phthalocyanine dyes, and methine dyes. These dyes can be used to expand the wavelength range, control the specific wavelength range, etc. It is used for the purpose. These dyes may be used alone or in combination of two or more as required.
  • the electrolyte layer 14 is sandwiched between the semiconductor layer 12 of the electron supply body 13 and the concrete layer 15 which is a conductive layer, and causes the electrons 3 to flow back to the semiconductor layer 12 from the steel material which is the to-be-protected body 16, so This is a layer that flows from the layer 12 to the body 16 to be protected.
  • the electrolyte forming the electrolyte layer 14 preferably has a function of sticking the electron supply body 13 to the concrete layer 15. Therefore, the electrolyte forming the electrolyte layer 14 may be a solid electrolyte, but an electroconductive water-containing gel (conductive gel) containing an electrolyte is preferable because it can provide tackiness and adhesiveness.
  • the conductive gel also has water retention, it is preferable because it prevents the current from flowing easily due to the high degree of drying of the concrete.
  • the resistivity (specific resistance) of the electrolyte layer 14 made of a conductive gel is set according to the service life of the anticorrosion structure 10 and the environment of the installation location, but considering the stability of long-term conduction, it is 40 to 560 ⁇ ⁇ cm. 40 to 350 ⁇ ⁇ cm is more preferable.
  • Conductive gels are water-containing gels mainly composed of agar, karaya gum, gelatin, sodium alginate, polyacrylic acid or salts thereof, polyacrylamide, polyvinyl alcohol, polystyrene sulfonic acid, polyvinyl pyrrolidone, carboxymethyl cellulose or salts thereof, and hydrophilic gels.
  • Water and an electrolyte are stably held in a hydrophilic resin matrix such as a water-containing gel made of water-soluble polyurethane.
  • a hydrophilic resin matrix may be used independently and may mix and use 2 or more types as needed.
  • polyacrylic acid or a salt thereof is preferable in view of quality stability, adhesiveness, conductivity, shape retention, and the like.
  • the conductive gel it is preferable to use a water-containing gel obtained by blending glycerin, water, and an electrolyte with polyacrylic acid or a salt thereof and applying appropriate crosslinking means.
  • polyhydric alcohol is included in the conductive gel, a decrease in the moisture content of the conductive gel can be suppressed, so that the anode potential can be stabilized for a long period of time and a low ground resistance can be maintained.
  • Polyhydric alcohol is preferable because it provides elasticity to the conductive gel in addition to the action of retaining moisture.
  • the water content of the conductive gel is usually set to about 5 to 50% by weight, preferably about 10 to 30% by weight. If the water content is less than this range, the electrolyte is difficult to move, and the ability to recirculate electrons to the semiconductor layer 12 may be inferior. If it is greater than this range, the shape retention may be inferior. From the viewpoint of tackiness and shape retention, the polyhydric alcohol is adjusted to a range of about 5 to 70% by weight, preferably about 20 to 50% by weight. Examples of the polyhydric alcohol used for the conductive gel include glycerin, polyethylene glycol, and polypropylene alcohol. The polyhydric alcohol can be used by selecting one or more from these. Of these, glycerin is most suitable in terms of long-term water retention. When it is necessary to increase the elasticity of the conductive gel, an effect can be obtained by adding a known filler such as titanium oxide, calcium carbonate, or talc.
  • a known filler such as titanium oxide, calcium carbonate, or talc.
  • the electrolyte layer 14 is preferably an adhesive or an adhesive layer containing an electrolyte or an electrolyte and a redox agent.
  • the electrolyte can be arbitrarily selected from electrochemical supporting salts commonly used as charge transport layers. Examples of such salts include halides of alkali metals such as KCl, NaCl, LiCl, K 2 SO 4 , and Na 2 SO 4 , sulfates, and fluorides such as LiPF 6 and LiBF 4 .
  • the electrons 3 circulate in the semiconductor layer 12 and a current flows.
  • the electrolyte layer 14 can move electrons if it contains an electrolyte, but if it also contains a redox agent, the movement of electrons becomes smoother.
  • a redox agent include organic materials such as a quinone-hydroquinone mixture and inorganic materials such as S / S 2 ⁇ and I 2 / I ⁇ .
  • the method for forming the electrolyte layer 14 may be applied directly to the concrete layer 15 or the to-be-protected body 16 and adhered to the surface of the semiconductor layer 12 of the electron supply body 13. It is preferable to form a layer in advance. When the electrolyte layer 14 is formed in advance, a known method can be employed.
  • coating to the surface of the semiconductor layer 12 by coating methods such as a gravure coat, a bar coat, and a screen coat, can be mentioned.
  • a conductive gel is used as the electrolyte layer 14
  • the conductive gel has adhesiveness or adhesiveness. Therefore, a sheet of the conductive gel previously formed into a layer shape may be attached to the surface of the semiconductor layer 12.
  • a release paper is preferably laminated on the surface of the electrolyte layer 14.
  • the electrolytes contained in these are mainly ions such as OH ⁇ , Na + , Ca 2+ , K +. It is said that With these electrolytes, the concrete layer can function as the conductive layer 15. And the moisture in the concrete layer releases moisture into the air by drying, or absorbs moisture in the air due to daily differences in rain water and temperature, so that the concrete layer will be in an absolutely dry state Absent. Therefore, the electrolyte layer 14 of the electron supply body 13 can be attached to the concrete layer 15 to prevent corrosion.
  • a coating film of paint can be interposed as the conductive layer 15.
  • the coating film of the paint looks like an insulating layer at first glance, the surface of the coating film has many cracks and fine holes, and these often penetrate to the corrosion-protected body 16. Since the cracks and holes cannot block moisture and air, the corrosion-protected body 16 is easily corroded. However, since there is no insulator in the cracks and fine holes, current can flow through this portion. Therefore, the electrolyte layer 14 of the electron supplier 13 can be attached to a paint film to prevent corrosion. The anticorrosion with the paint film interposed therebetween may be performed on the cracks and fine pores, thus preventing an extremely narrow area.
  • the electrolyte layer 14 when a conductive gel is used as the electrolyte layer 14, the conductive gel penetrates into cracks and fine holes on the surface and comes into contact with the object to be protected or is located very close. Therefore, it is preferable.
  • Example 1 A support 11 having a size of 50 ⁇ 35 mm, in which ITO was vacuum-deposited on a transparent PEN film having a thickness of 200 ⁇ m and conductivity of a surface resistance of 10 ⁇ / ⁇ (square) was provided, was prepared.
  • a brookite-type titanium oxide (C-paste made by Showa Denko) as a semiconductor layer 12 is applied to the ITO deposited surface of the PEN film to a size of 40 ⁇ 25 mm and dried to provide a titanium oxide layer 12 having a thickness of 10 ⁇ m. It was.
  • the corrosion-protected body 16 was a steel material (SS400 material) having dimensions of 60 mm ⁇ 70 mm ⁇ 2 mm blasted with alumina.
  • SS400 material steel material
  • a cement paste was applied to the steel material 16
  • a mortar plate 50 mm ⁇ 50 mm ⁇ 15 mm was bonded to form the concrete layer 15.
  • the specification of the mortar is a blend of mortar described in JIS R 5201 “Physical test method of cement”, and the mass ratio is cement 1, standard sand 3, and water cement ratio 0.50.
  • the cement used was ordinary Portland cement.
  • the ITO vapor-deposited surface of the obtained support 11 of the laminated body was electrically connected to the anticorrosive body 16 through the conductive wire 7 to produce the anticorrosion structure 10 schematically shown in FIG.
  • a non-resistance ammeter AM-02 manufactured by Toho Giken Co., Ltd.
  • a silver-silver chloride electrode SE
  • SSE silver-silver chloride electrode
  • Example 1 To which the measuring apparatus shown in FIG. 2 was connected was produced as a specimen. Copper wires were used for the conducting wires 7, 8, and 9 for electrical connection.
  • the non-resistance ammeter 17 is connected so as to show a positive current value when the current flows in the direction of the electron supply body 13 ⁇ the conductive wire 7 ⁇ the steel material 16 as shown in FIG.
  • the current flowing in the direction of the steel material 16 ⁇ the conductive wire 7 ⁇ the electron supply body 13 is observed to show a negative current value.
  • the current could not be measured even when irradiated with light with a fluorescent lamp. Then, although light was irradiated with the reflex lamp, the electric current was not able to be measured like the case of the fluorescent lamp. And it has confirmed that the electric potential of the steel material 16 did not change as proof that the electric current did not flow.
  • the specimen of Comparative Example 1 corresponds to the anticorrosion method and anticorrosion device described in Patent Documents 2 and 3. Patent Documents 2 and 3 also describe that the potential of the metal is lower than its oxidation potential. However, in the anticorrosion structure of Comparative Example 1, even if electrons are generated in the semiconductor layer 12, there is no current. Equally, the potential did not change. Therefore, in the specimen of Comparative Example 1, the amount of electron movement necessary for changing the potential of the metal is overwhelmingly insufficient in an environment that does not substantially contact water, and the metal is protected against corrosion. It is considered impossible.
  • ITO was vacuum-deposited on the same PEN film as in Example 1, and two types of ITO-deposited PEN films with surface resistances of 10 ⁇ / ⁇ and 300 ⁇ / ⁇ and 12 cm ⁇ 12 cm were used as the support 11 in Examples 2 and 3. .
  • the titanium oxide layer 12 having a thickness of 10 ⁇ m is provided on the ITO deposition surface of the two types of supports 11 by applying the same titanium oxide as in Example 1 to a size of 10 cm ⁇ 10 cm and drying to provide the electron supply of Examples 2 and 3. It was set as the body 13.
  • Reinforcing bar 16 is a reinforcing bar (length: 25 cm, diameter: 6 mm), and 6 bars vertically and horizontally are arranged at regular intervals so as to be the central layer of concrete layer 15 having a square shape of 30 cm on each side and a thickness of 6 cm. Then, a copper wire covered with a resin was attached, pulled out as a lead wire, and embedded. As the surface treatment, the concrete layer 15 was formed by subjecting the surface of the concrete substrate with reinforcing bars to diamond (base adjustment) using a diamond cup.
  • Example 2 and 3 A 10 cm ⁇ 10 cm sheet of conductive gel similar to that in Example 1 was attached to the titanium oxide layer 12 of the obtained electron supply body 13 to provide an electrolyte layer 14, and a concrete layer 15 was laminated to form the electron supply body 13 and The laminated body of the concrete layer 15 and the to-be-protected body 16 was produced, and the anti-corrosion structure 10 of Example 2 and 3 modeled by FIG. 1 was produced. Except that the ITO vapor deposition surface of the support 11 of the anticorrosion structure 10 of Examples 2 and 3 was electrically connected to the anticorrosive body 16 via a conductor 7 made of aluminum tape having a width of 5 mm, the same as in Example 1. Thus, the anticorrosion structure 10 of Examples 2 and 3 to which the measuring apparatus schematically illustrated in FIG. 2 was connected was produced as a specimen.
  • the measurement results are shown in FIG. Since the exposure time on the horizontal axis starts from noon on the measurement start date, the scale line position on the horizontal axis becomes noon. The absolute value of the current generated on each measurement day tended to be maximized around noon (12:00 am).
  • the specimen with the surface resistance of 300 ⁇ / ⁇ of the support 11 of Example 3 a current was generated with the sun from the beginning of the exposure, but the surface resistance of the support 11 of Example 2 was 10 ⁇ / ⁇ .
  • the specimen hardly occurred until 20 days after the start of exposure. However, an electric current began to be generated after 20 days from the start of exposure, and there was a period when an electric current larger than that of the specimen of Example 3 was generated for about 11 days.
  • the anticorrosive current flows even at night when there is no light.
  • a zero or very small corrosion current sometimes flowed at the beginning of the exposure, but by continuing energization, a corrosion protection current was produced at night from the beginning of the 20th day of exposure.
  • the anticorrosion current came to occur instead of zero.
  • the anticorrosion current clearly flowed even at night after 9 days from the start of exposure.
  • the current due to electrons generated during the daylight hours can flow at a current value that exceeds or exceeds the current value at night. is there.
  • This phenomenon is considered to be due to the fact that the potential of the semiconductor layer 12 does not immediately become noble even if the amount of light decreases or disappears, and therefore remains lower than the potential of the reinforcing bars.
  • the concrete layer 15 is conductive, but its resistance value is remarkably large. Therefore, the combination of the conductive gel layer 14-concrete layer 15-steel material 16 functions as a kind of capacitor.
  • the potential of the semiconductor layer 12 changes gradually due to its relationship with the concentration of ions and oxygen in the electrolyte layer 14, and the current flowing at night because the semiconductor layer 12 is not originally nominated to the potential shown in the dark place.
  • ⁇ Potential measurement test of semiconductor layer 12 In order to measure the potential of the semiconductor layer 12, it was prepared in the same manner as in Example 1 except that the size of the PEN film was 30 mm ⁇ 35 mm and the coating range of titanium oxide was 30 mm ⁇ 25 mm. Three electron supply bodies 13 were prepared. In order to measure the electric potential, a paste-type silver-silver chloride (SSE) reference electrode 18 is attached to the semiconductor layer 12 of each electron supplier 13, and each of the three semiconductor layers 12 when the illuminance is changed at a pitch of 0 to 1000 lx. The potential of was measured. The potential of the semiconductor layer 12 was measured with an electrometer, and the illuminance was adjusted with a black screen, a fluorescent lamp, and a reflex lamp. The above results are summarized in Table 2.
  • SSE silver-silver chloride
  • the dark potential of the semiconductor layer 12 was -11 to -60 mV, and the average was -29 mV.
  • the natural potential of the steel material 16 was +15 mV in Comparative Example 1 and -81.7 mV in Example 1.
  • the potential of the steel material 16 may be negative and may be lower than the potential of the semiconductor layer 12. It is known that the potential of a steel material changes depending on its corrosion state, and shows a lower potential as corrosion becomes more significant. For example, in seawater, it shows a potential of ⁇ 454 mV to ⁇ 654 mV.
  • the degree of freedom of installation of the anticorrosion structure is high, and a sufficient anticorrosion effect can be obtained even when the anticorrosive body such as a reinforcing bar in concrete is covered with a coating layer.
  • An anticorrosion method and an anticorrosion structure can be provided.
  • Electromagnetic wave 2 ... Electron supplied to to-be-corroded body, 3 ... Electron returned to semiconductor layer, 7, 8, 9 ... Conductor (conductor), 10, 20 ... Corrosion-proof structure, 11 ... Support body, 12 ... Semiconductor layer (titanium oxide layer), 13 ... Electron supply body, 14 ... Electrolyte layer (conductive gel layer), 15 ... Conductive layer (concrete layer), 16 ... Corrosion-protected body (steel material), 17 ... Non-resistance current Total 18 ... Reference electrode 19 ... Electrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

 半導体層(12)に電磁波(1)を受けさせて電子を放出させ、放出された電子を集電して被防食体に供給し、電子(2)が供給された被防食体(16)から電解質層(14)を介して電子(3)を半導体層(12)に還流することで電流を被防食体(16)に流して被防食体(16)の電位を卑にする。防食構造(10)は、電磁波が透過可能で導電性を有する支持体(11)に半導体層(12)が形成されてなる電子供給体(13)を被防食体(16)に電気的に接続して防食し、さらに電子供給体(13)が、少なくとも半導体層(12)に接する電解質層(14)を介して被防食体(16)と電気的に接続されている。本発明により、コンクリート中の鉄筋等、被防食体が被覆層で覆われるものである場合でも、十分な防食効果を得ることができる防食方法および防食構造を提供することができる。

Description

防食方法および防食構造
 本発明は、カソード防食方法およびその防食構造に関し、より詳細には、コンクリート中の鉄筋等、被防食体が被覆層で覆われるものである場合の防食方法および防食構造に関する。
 本願は、2009年1月16日に日本に出願された特願2009-8068号に基づき優先権を主張し、その内容をここに援用する。
 コンクリート表面に設置した電極(例えば陽極)から、コンクリート中の鉄筋等の鋼材に電流を流すことによって、鋼材の電位を腐食しない電位にまで変化させ、鋼材腐食の進行を抑制する工法として、電気防食工法が知られている。
 従来、電気防食工法において屋外で継続的に電流を流す必要がある場合に用いられる電子供給体としては、一つには外部電源があり、もう一つには、電気防食の対象の鋼材よりも酸化還元電位が卑である物質、例えば、亜鉛、マグネシウム、アルミニウム等の卑金属やこれらの合金からなる流電陽極(犠牲陽極)がある。
 しかし、外部電源は、電源の維持管理や防食電流の管理が必要であること、商用電源の確保が困難な場合があること等の問題がある。また、流電陽極は、経時に伴い消耗するという問題がある。
 この様な問題に対して、近年、チタン酸化物皮膜を電子供給体として利用した防食方法が提案されている。
 例えば、特許文献1には、ステンレス鋼の表面にチタン酸化物を含有する皮膜を形成することが提案されている。
 また、特許文献2においては、金属板やプラスチックフィルムなどの支持体上に設けたチタン酸化物皮膜に光があたるときに生ずる電子を、導電線を通して防食対象金属に注入することにより、これを防食できるとされている。
 そして、特許文献3においては、チタン酸化物被膜に光があたるときに生ずる電子を、導電性皮膜で集電して防食対象金属に注入することにより、これを防食できるとされている。
特開平6-10153号公報 特開2001-234370号公報 特開2001-262379号公報
 しかしながら、特許文献1の提案は、金属材料の表面に直接チタン酸化物を含有する皮膜を形成するので、コンクリートに埋設された鉄筋や塗料等の防食膜に覆われた鋼材などの金属の防食をすることができないという問題がある。
 一方、特許文献2の方法および装置は、導電線を用いるので、コンクリートに埋設された鉄筋などの金属に電子を注入することは可能である。
 特許文献2の実施例における実験2においては、ITO導電ガラス上に酸化チタン膜を形成しているので、特許文献3の図5の構造と同じである。しかし、この実験によれば、最も厚い3μmの酸化チタン被膜を用いて波長360nmの光線を最も強い25mWcm-2の光強度で照射しても陽極(アノード)電位は-584mVにとどまっており、炭素鋼(-400mV)との電位差はわずか184mVである。この値は、一般的な犠牲陽極の電位-1000mV以下と比較すると十分に卑であるということはできない。
 ところで、特許文献2、3の発明においては、陽極(アノード)であるチタン酸化物を含む被膜が空気中に位置していても防食可能であるとする発明であるが、いずれの文献の実施例におけるいずれの実験も、すべて塩化ナトリウム水溶液中に被防食体および陽極を浸漬させた状態での実験である。したがって、これらの実施例は、発明の内容と対応していない。それ故、陽極を空気中に設置した場合における陽極の電子生成量が確認されておらず、防食に必要な電子生成量が得られるか否かが明確でない。したがって、空気中の水分や雨によって陽極表面の水膜が生じないような環境においては、防食に十分な電子を生成できない可能性がある。
 特許文献2や3に示される防食回路は、陽極-導電線-被防食体という回路構成である。この回路は通常の外部電源方式の防食回路のように閉じた回路ではない。このような回路構成にて陽極で電子を生成し続けるためには、特許文献3の図5や図6に示されるように雨あるいは空気中の水分により陽極表面に生じる水滴薄膜中に含まれる水を酸化してヒドロキラジカル(・OH)の発生を継続させる必要がある。しかしながら、特許文献2および3には、ヒドロキラジカルの発生を継続させるメカニズムについては、一切記載されていない。
 そもそも特許文献2、3の発明の発明者は、日本における光触媒の第一人者である。そして、これらの発明は、光触媒の原理を応用した発明である。チタン酸化物は、光の照射により、電子(e-)と正孔(h)の二つのキャリアを生成する。光触媒のセルフクリーニング効果は、チタン酸化物による酸化還元反応を利用する。この酸化還元反応は、正孔(h)により水が酸化されてヒドロキラジカル(・OH)が生成する酸化反応と、電子(e-)により空気中の酸素が還元されてスーパーオキサイドアニオン(・O -)が生成する還元反応とからなる。
 特許文献2や3に具体的な記載はないが、特許文献3の図5や図6は、これらの発明がヒドロキラジカル(・OH)を生成する酸化反応と、スーパーオキサイドアニオン(・O -)を生成する還元反応とからなることを説明する模式図と考えられる。したがって、これらの図に示される防食回路を評価する特許文献2の実施例における実験2においては、電子の流れが、陽極-導電線-被防食体-塩化ナトリウム水溶液-陽極という防食回路となっていると考えられる。この回路においては、水が電気分解されることで、電流が流れることが可能になると推定される。そして、陽極では酸素が発生し、被防食体では水素が発生することで、ヒドロキラジカルとスーパーオキサイドアニオンが連続的に消費されるのと考えられる。つまり、この回路においては、水の電気分解により、電子(e-)と正孔(h)の二つのキャリアが連続的に消費されるので、大きな電流が流れると推定される。
 特許文献2、3の発明においては、チタン酸化物は、その表面に水が付着していることのみならず、被防食体と塩化ナトリウム水溶液を介して電気的に接続されている必要がある。そして、この発明においては、ヒドロキラジカルとスーパーオキサイドアニオンが連続的に消費されないと大きな電流が流れることはなく、被防食体の防食電位を十分に低くすることができない。
 したがって、特許文献2や3に提案の防食方法を活用するのであれば、特許文献2や3の実施例のように、被防食体と陽極(アノード)の双方が水中や被水する環境に設置する必要があり、防食構造を設置できる環境が極めて限られるという問題がある。また、チタン酸化物層を損傷や著しい汚れから保護する必要が生じた場合に、保護フィルムを設けることができないという問題もある。
 本発明は、上記事情に鑑みてなされたものであり、防食構造設置の自由度が高く、コンクリート中の鉄筋等、被防食体が被覆層で覆われるものである場合でも、十分な防食効果を得ることができる防食方法および防食構造を提供することを課題とする。
 本発明の発明者らは、上記の課題を解決するため鋭意検討した結果、構造物の壁面など半導体層が空気中に存在し、実質的に水と接触しない場合においても、防食対象に大量の電子を注入するためには、電子が半導体層から防食対象に移動し、さらに半導体層に戻ってくることができる回路構造とする必要があるとの知見を得た。
 本発明は、この知見に基づいてなされたものであり、その第一の発明は、実質的に水と接触しないように表層が保護された半導体層に電磁波を受けさせて電子を放出させ、放出された電子を集電して被防食体に供給し、電子が供給された被防食体から電解質層を介して電子を前記半導体層に還流することで電流を被防食体に流して被防食体の電位を卑にすることを特徴とする防食方法である。
 また、本発明に係る第二の発明は、前記第一の発明において、前記半導体層を電磁波が透過可能で不透水性のプラスチックフィルムで支持し、前記フィルムが電磁波を受ける面となるように前記半導体層を被防食体に設置して前記半導体層を前記フィルムで保護する。
 また、本発明に係る第三の発明は、前記第一または第二の発明に示す防食方法において、直射日光が直接当たらない場所で前記半導体層に少なくとも360nm~500nmの波長を有する電磁波を受けさせて電子を放出させる。
 また、本発明に係る第四の発明は、前記第一ないし第三の発明に示す防食方法において、層状に形成されて粘着性または接着性を有する電解質層を、被防食体が埋設されたセメントを含む層に貼着する。
 また、本発明に係る第五の発明は、前記第一ないし第三の発明に示す防食方法において、層状に形成されて粘着性または接着性を有する電解質層を、被防食体を被覆する塗料の塗膜に貼着する。
 また、本発明に係る第六の発明は、電磁波が透過可能で不透水性および導電性を有する支持体に半導体層が形成されてなる電子供給体を被防食体に電気的に接続して防食する防食構造であって、前記電子供給体が、少なくとも半導体層に接する電解質層を介して被防食体と電気的に接続されたことを特徴とする。
 また、本発明に係る第七の発明は、前記第六の発明に示す防食構造において、前記電解質層と被防食体との間に導電性の層が介在する。
 また、本発明に係る第八の発明は、前記第七の発明に示す防食構造において、導電性の層がセメントを含む層であり、被防食体が鉄を含む金属である。
 また、本発明に係る第九の発明は、前記第六ないし第八の発明に示す防食構造において、前記電解質層が粘着剤層または接着剤層である。
 また、本発明に係る第十の発明は、前記第六ないし第九の発明に示す防食構造において、前記支持体が少なくとも360nm~500nmの波長を有する電磁波を透過可能である。
 また、本発明に係る第十一の発明は、前記第六ないし第十の発明に示す防食構造において、前記支持体が半導体層の側に導電性薄膜を有する不透水性のプラスチックフィルムである。
 また、本発明に係る第十二の発明は、前記第六ないし第十一の発明に示す防食構造において、半導体層がペロブスカイト構造を有する化合物を含む金属の酸化物及び金属カルコゲニドから選ばれる一種または二種以上の化合物を含有する層である。
 また、本発明に係る第十三の発明は、前記第六ないし第十二の発明に示す防食構造において、半導体層がブルッカイト型化合物を含む。
 また、本発明に係る第十四の発明は、前記第六ないし第十三の発明に示す防食構造において、半導体層が酸化チタン、酸化亜鉛および酸化スズから選ばれる一種または二種以上の金属酸化物を含有する層である。
 本発明に係る第一の発明によれば、半導体層が雨等で濡れることもなく、汚れも付着しないので、半導体層の設置場所の自由度が高く、しかも電子を被防食体に大量に注入して効果的な防食を行うことができる。また、チタニア(酸化チタン)等からなる半導体層に可視光を受けさせて発生する電子をコンクリート中の鋼材に供給することができるので、陽極の消耗がなく、商用電源による電気の入手が困難な場所でも電気防食が可能となる。
 本発明に係る第二の発明によれば、半導体層が雨等で濡れることもなく、半導体層の汚染、劣化や破損を防止することができるので、半導体層の設置場所の自由度が高い。また、モルタルやコンクリートに埋設された鋼材等を防食する場合に、半導体層は鋼材等が存在する部位のモルタルやコンクリートの層もフィルムで保護されるので、塩化物イオンや二酸化炭素などのモルタルやコンクリートの劣化因子が鋼材等の周囲のモルタルやコンクリート中に浸透することを抑制することができ、モルタルやコンクリートの劣化が抑制される。
 本発明に係る第三の発明によれば、日陰であっても半導体層を設置でき、防食工事の自由度が高い。
 本発明に係る第四の発明によれば、モルタルやコンクリートに埋設された鋼材の防食工事の施工が容易であり、陽極の設置作業にかかる労力を大幅に削減することができる。
 本発明に係る第五の発明によれば、被防食体が塗料の塗膜で覆われる金属である場合であっても、粘着性または接着性を有する電解質層を塗膜に貼着することで、防食が可能となる。
 本発明に係る第六の発明によれば、半導体層が雨等で濡れることもなく、汚れも付着しないので、半導体層の設置場所の自由度が高く、しかも電子の放出量が小さくても、電子を被防食体に効率的に注入して効果的な防食を行うことができる。
 本発明に係る第七の発明によれば、モルタルやコンクリートに埋設された鋼材の防食が可能である。また、絶縁性の塗料などの防食被膜が形成された金属も防食が可能である。
 本発明に係る第八の発明によれば、モルタルやコンクリートに埋設された鋼材の防食が可能である。
 本発明に係る第九の発明によれば、モルタルやコンクリートに埋設された鋼材や塗料などの防食被膜が形成された金属の防食工事の施工が容易である。
 本発明に係る第十の発明によれば、通常の可視光線を利用することができる。
 本発明に係る第十一の発明によれば、半導体層の汚染、劣化や破損を防止することができる。
 本発明に係る第十二の発明によれば、電磁波の入射が弱くても電子を大量に放出して効果的な防食を行うことができる。
 本発明に係る第十三の発明によれば、電磁波の入射が弱くても電子を大量に放出して効果的な防食を行うことができる。
 本発明に係る第十四の発明によれば、電磁波の入射が弱くても電子を大量に放出して効果的な防食を行うことができる。
実施例1の防食構造を示す模式的断面図である。 実施例1の防食構造の試験方法を示す模式的断面図である。 比較例1の防食構造を示す模式的断面図である。 比較例1の防食構造の試験方法を示す模式的断面図である。 実施例2の結果を示すグラフである。
 以下、実施の形態に基づき、図面を参照して本発明を説明する。
 図1は、本発明の防食構造の一形態例を示す模式図である。図1に示す防食構造10は、電磁波が透過可能で不透水性および導電性を有する支持体11に半導体層12が形成されてなる電子供給体13を、少なくとも半導体層12に接する電解質層14を介して被防食体16に電気的に接続して防食する防食構造である。また、被防食体16と電子供給体13とは電気的に接続されている。そして、導電性の層15としてコンクリート層が電解質層14と被防食体16の間に介在している。
 防食構造10においては、半導体層12に電磁波1を受けさせて電子を放出させ、放出された電子を集電して導体7を介して被防食体16に供給し、電子2が供給された被防食体16から電解質層14を介して電子3を半導体層12に還流して、電流を流すことで被防食体16の電位を卑にする。
 電解質層14は、導体7よりも電気抵抗が大きいので、半導体層12で発生し支持体11で集電された電子2は、電気抵抗が小さい導体7を流れる。 そして、導体7を流れた電子が被防食体16に到達した場合に、半導体層12の電位が被防食体16の電位より卑となるか、または、半導体層12と被防食体16とが互いに等電位であれば、電子2は半導体層12から被防食体16へと移動する。また、被防食体16へと移動した電子は、電解質層14の電解質で輸送されて半導体層12に移動する。つまり、本発明においては、半導体層12で生じた電流を、電解質層14を介して被防食体16に流していると換言できる。
 すなわち、図1の防食構造10では、電子供給体13-導体17-被防食体16-コンクリート層15-電解質層14-電子供給体13のそれぞれの間が電気的に接続しており、閉鎖した回路が形成されている。そして、電子が供給された被防食体16から電解質層14を介して電子を半導体層12に還流するので、半導体層12の電子生成量が小さい場合であっても、被防食体16に効率的に電流が流れて、大きな防食効果が得られる。それ故、外部電源方式と異なり、外部電圧を印加する必要はない。
 なお、被防食体16と半導体層12の接続は、単なる導体でも良さそうであるが、単なる導体による接続では、大きな電流は得られない。なぜなら、被防食体16へと移動した電子は、電解質層14の電解質で積極的に輸送されることで連続的に電荷が輸送され、大きな電流が得られるからである。
 電子供給体13は、電子を発生させて被防食体16に供給する部材であり、電磁波1が透過可能で不透水性および導電性を有する支持体11に電磁波1が照射されて電子を放出する半導体層12が形成されてなる。半導体層12から放出された電子は、支持体11が有する導電性により集電される。電子供給体13は、例えば銅やアルミニウム等の金属からなる導体7に導かれて被防食体16に電気的に接続され、集電した電子を被防食体16に注入する。
 電子供給体13は、電磁波が入射する場所に設置される。その様な場所としては、日光等の光線が直射する場所でも良いが、本発明においては、少ない電子の発生でも高い防食の効果が得られるので、日陰であっても良い。そして、例えば、水中や間歇的に被水する場所などに設置されても良いが、電子供給体13は、電解質層14を介して電流を被防食体16に流すので、実質的に水の存在しない場所、例えば構造物の壁面などの空気中に設置された場合に好適である。水の存在しない場所であれば、電解質層14が膨潤したり、電解質が溶出したりすることがないので好ましい。なお、電子供給体13を水中や間歇的に被水する場所などに設置する場合には、電子供給体13の周辺端部をフッ素系樹脂やアクリル樹脂等の樹脂片で覆って半導体層12や電解質層14に水が浸入しないように防水処理を施しておくことが好ましい。
 本発明に用いる電子供給体13は、比較的薄い板状ないしフィルム状であるので、複数を保管したり、輸送したりする場合には、枚葉で重畳されても良いし、長尺の状態でロールに巻き取られていても良い。さらには,電子供給体13と電解質層14を一体化してロールに巻き取られていると、電子供給体13の設置がさらに簡易になるので、より好適である。
 導体7は、予め電子供給体13に固着されていても良いし、施工現場で電子供給体13に固着しても良い。電子供給体13をロールに巻き取り、施工現場で導体7を電子供給体13に固着する方法は、施工現場の状況に合わせやすいので好ましい。
 支持体11は、半導体層12を形成するための基材であるとともに、導電性を有するので半導体層12から放出された電子を集電する集電体である。支持体11は、フィルム、シート、板等(本明細書では、これらを総称してフィルムという。)の平らな部材であることが好ましい。支持体11は、構造物の壁面等に電子供給体13が設置される場合に、表面層となるので、半導体層12が実質的に水と接触しない。したがって、半導体層12が汚れたり、劣化したり、破損したりすることを防止する保護層としての機能も有する。また、支持体11は、鋼材等が存在する部位のモルタルやコンクリートも保護するので、鋼材等の周囲のモルタルやコンクリートの層の劣化が抑制される。なお、実質的に水と接触しないとは、半導体層12の主面が液体の水と接触しないという意味であり、電子供給体13の端面から液体の水や気体の水蒸気が侵入して半導体層12と接触することをも禁止するという意味ではない。
 支持体11を形成する材料は、電磁波1が透過可能で不透水性および導電性を有するものであれば特に制限はないが、本発明においては、酸化チタン等の半導体層12に少なくとも360nm ~500nmの波長を有する電磁波を受けさせて電子を放出させることができるものであれば、自然光を有効利用することができ好ましい。したがって、支持体11は、透明であることが好ましい。ここで言う透明とは、360nm~500nmの波長を有する可視光の全光線透過率が高いことを意味するが、0でない限り、下限は特に制限されず、防食する対象物や環境に応じて、適宜、選択することができる。
 支持体11の好ましい全光線透過率としては、波長360nm~420nmにおいて50%以上、波長360nm~500nmにおいて70%以上である。そして、全光線透過率が高ければ、ヘイズ(曇り度)が高くても問題はなく、曇りガラス状であってもよい。むしろ、下を車が通る高架橋や高速道路の下面に電子供給体13を設置する場合は、夜間にヘッドライトが反射しないように電子供給体13の表面(自由面)に曇りガラス状の凹凸が形成されていることが交通事故防止の面から好ましい。この様な透明な材料としては、ガラス板やプラスチックフィルムを挙げることができる。中でもプラスチックフィルムは、ガラス板に比べて、軽くて、ロール状に巻き取ることができ、耐衝撃性に優れるので好ましい。
 支持体11に用いられるプラスチックフィルムは、半導体層12の半導体から放出された電子を集電するために、導電性を有する。
 導電性を有するプラスチックフィルムは、導電性高分子からなるフィルムであってもよい。導電性高分子としては、例えば、ポリアセチレン系、ポリピロール系、ポリチオフェン系、ポリフェニレン系、ポリフェニレンビニレン系の高分子等が挙げられる。
 また、導電性を有しないプラスチックフィルムに導電性薄膜を積層して導電性を付与すると、導電性を有するプラスチックフィルムに比べて、プラスチックフィルムの選択肢が広がるので好ましい。プラスチックフィルムに積層する導電性薄膜を形成する材料としては、金属または金属酸化物がある。金属としては、例えば、白金、金、銀、アルミニウム、銅、ニッケル、クロム、鉄やそれらの合金等を挙げることができる。また、金属酸化物としては、酸化スズ、酸化インジウム又はこれらの複合材料等を挙げることができる。これらの導電性薄膜を形成する材料のうち、透明性が高いことから、金属酸化物が好ましく、中でも酸化インジウムスズ(ITO)が導電性、透明性及び化学的安定性に優れるので、特に好ましい。
 導電性を有しないプラスチックフィルムに導電性薄膜を積層する方法は、公知の方法を採用することができる。例えば、真空蒸着法、スパッタリング法やゾルゲル法等を挙げることができる。
 また、金属の導電性薄膜を積層する場合は、メッシュ状の薄膜として、透明性を確保することができる。その様なメッシュ状の薄膜を積層する方法としては、銀ペーストをグラビア法やスクリーン法で印刷する方法、金属箔を積層してエッチングする方法や現像銀層を写真製法により生成する方法等を挙げることができる。
 導電性薄膜により導電性不要とされるプラスチックフィルムを形成する樹脂としては、不透水性のフィルムに成形できるものであれば、特に制限はないが、導電性薄膜や半導体層12を積層するので、耐熱性、耐薬品性や物理的強度に優れるものが好ましい。耐熱性としては、ガラス転移点が100℃以上であることが好ましく、より好ましくは120℃以上である。その様な樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、テトラアセチルセルロース(TAC)、ポリエステルスルフォン(PES)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルフォン(PSF)、ポリエーテルイミド(PEI)、ポリアセタール、透明ポリイミド系ポリマー、ポリエーテルサルフォンなどを挙げることができる。これらのなかでもコストや物理的強度の点で、特にPETやPENが好ましい。
 これらのプラスチックフィルムの厚さとしては、特に制限はないが、不透水性で物理的強度が満たされる限り、透明性やコスト面から薄いことが好ましく、50~500μm、好ましくは50~200μmの範囲が選ばれる。このようなプラスチックフィルムは、物理的強度を向上させるために延伸されていてもよいし、同種または異種が複数層積層されていてもよい。
 また、支持体11の汚れ防止や耐候性向上のために、暴露される面にフッ素系樹脂やアクリル系樹脂のフィルムを保護層として積層してもよい。
 半導体層12は、電磁波1を受けて電子を放出する層である。半導体層12を形成する半導体の材料としては、電磁波を受けて電子を放出させることができれば、特に制限はなく、例えば、シリコン、ゲルマニウムのような単体半導体や金属の酸化物及び金属カルコゲニド(例えば硫化物、セレン化物など)に代表されるいわゆる化合物半導体又はペロブスカイト構造を有する化合物などを使用することができる。
 これら酸化物及びカルコゲニドの金属としては、例えばチタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ又はタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモン又はビスマスの硫化物、カドミウム又は鉛のセレン化物、カドミウムのテルル化物などが挙げられる。
 また、化合物半導体の例としては、亜鉛、ガリウム、インジウム、カドミウムなどのリン化物、ガリウムヒ素、銅-インジウムのセレン化物、銅-インジウム-硫化物などが挙げられる。半導体には、伝導に関わるキャリアが電子であるn型とキャリアが正孔であるp型が存在するが、本発明においてはn型を用いることが好ましい。
 このようなn型の無機半導体としては、TiO、TiSrO、ZnO、Nb、SnO、WO、Si、CdS、CdSe、V、ZnS、ZnSe、SnSe、KTa、FeS、PbS、InP、GaAs、CuInS、CuInSeなどがある。これらのうち、好ましいn型半導体は酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)である。n型半導体のうち電子を放出する能力に優れるのでブルッカイト型化合物が好ましい。
 これらのうち、酸化チタンは、電磁波を受けて電子を放出する能力に優れるので特に好ましい。酸化チタンは、アナターゼ型酸化チタンでも良いが、ブルッカイト型酸化チタンであると、電磁波を受けて電子を放出する能力が特に優れるので好ましい。これらの半導体は、単独で用いてもよいし、必要に応じ2種以上を混合して用いてもよい。なお、アナターゼ型酸化チタンやブルッカイト型酸化チタンは、天然鉱物としてのアナターゼやブルッカイトに限らず、人工的に合成されたものであっても良い。
 半導体層12の形成方法は、公知の方法を採用することができる。例えば、グラビアコート、バーコート、スクリーンコート等のコート方法を挙げることができる。
 半導体層12の半導体を増感するために、増感色素を用いることができる。増感色素としては、例えば有機金属錯体色素、ポルフィリン系色素、フタロシアニン系色素、メチン系色素を挙げることができ、これらの色素は、光発電に際し、波長域の拡大、特定波長域への制御などの目的で用いられる。これらの色素は、単独で用いてもよいし、必要に応じ2種以上を混合して用いてもよい。
 電解質層14は、電子供給体13の半導体層12と導電性の層であるコンクリート層15とに挟まれて被防食体16である鋼材から電子3を半導体層12へ還流させて、電流を半導体層12から被防食体16に流す層である。電解質層14を形成する電解質は、電子供給体13をコンクリート層15に貼着する機能も有することが好ましい。したがって、電解質層14を形成する電解質は、固体電解質でもよいが、電解質を含んだ導電性の含水ゲル(導電性ゲル)であると、粘着性や接着性を付与することができるので好ましい。また、導電性ゲルは、保水性も有しているので、コンクリートの乾燥度合いが高くなることにより電流が流れにくくなることを防止するので好ましい。導電性ゲルからなる電解質層14の抵抗率(比抵抗)は、防食構造10の耐用年数や設置場所の環境に応じて設定されるが、長期通電の安定性を考慮すると、40~560Ω・cmが好ましく、40~350Ω・cmがより好ましい。 
 導電性ゲルは、寒天、カラヤガム、ゼラチン、アルギン酸ナトリウム、ポリアクリル酸またはその塩、ポリアクリルアミド、ポリビニルアルコール、ポリスチレンスルホン酸、ポリビニルピロリドン、カルボキシメチルセルロースまたはその塩などを主成分とする含水ゲルや、親水性ポリウレタンなどからなる含水ゲル等の親水性の樹脂マトリックス中に水および電解質を安定に保持させたものである。また、内部凝集力を高めるために架橋剤にて架橋処理を施すこともできる。親水性の樹脂マトリックスは、単独で用いてもよいし、必要に応じ2種以上を混合して用いてもよい。これらの親水性の樹脂マトリックスのうち、品質の安定性や粘着性、導電性、保型性などを考慮すると、ポリアクリル酸またはその塩が好ましい。
 導電性ゲルは、ポリアクリル酸またはその塩に、グリセリン、水、電解質を配合し、適当な架橋手段を施して得られる含水ゲルを用いることが好ましい。導電性ゲルに、多価アルコールを含ませると、導電性ゲルの含水率の低下を抑制することができるので、陽極電位を長期的に安定させ、低くい接地抵抗を維持することができる。多価アルコールは、水分を保持する作用に加え、導電性ゲルに弾力性も付与するので好ましい。
 また、導電性ゲルの含水率は、通常、5~50重量%、好ましくは10~30重量%程度に設定することが好ましい。含水率がこの範囲より小さいと電解質が移動しにくく、電子を半導体層12に還流させる能力に劣る場合があり、この範囲より大きいと保形性に劣る場合がある。粘着性や保型性の点からは多価アルコール類を5~70重量%、好ましくは20~50重量%程度の範囲に調整する。
 導電性ゲルに用いられる多価アルコールとしては、グリセリン、ポリエチレングリコール、ポリプロピレンアルコール等が挙げられる。多価アルコールは、これらの中から1種又は2種以上を選択して使用することができる。これらのうち、長期保水性の面でグリセリンが最も適している。導電性ゲルの弾力性を上げる必要がある場合には、酸化チタン、炭酸カルシウム、タルク等の公知の充填剤を添加すると効果が得られる。
 電解質層14は、電解質または電解質と酸化還元剤とを含む粘着剤層または接着剤層であることが好ましい。電解質としては、電荷輸送層として慣用されている電気化学用支持塩の中から任意に選ぶことができる。このような塩としては、例えばKCl、NaCl、LiCl、KSO、NaSOのようなアルカリ金属のハロゲン化物や硫酸塩、LiPF、LiBFなどのフッ化物がある。
 本発明においては、電子供給体13の半導体層12が電解質層14に接しているので、半導体層12に電子3が還流し、電流が流れる。この電解質層14は、電解質を含んでいれば、電子の移動が可能であるが、酸化還元剤も含むと、電子の移動がより円滑となる。その様な酸化還元剤としては、キノン-ヒドロキノン混合物などの有機系のものや、S/S2-、I/Iのような無機系のものを挙げることができる。また、LiI、NaI、KI、CsI、CaIのような金属ヨウ化物や、テトラアルキルアンモニウムヨージド、ピリジニウムヨージド、イミダゾリンヨージドのような第四級アンモニウム化合物などのヨウ素化合物も好適に用いられる。
 電解質層14の形成方法は、コンクリート層15や被防食体16に直接塗布して電子供給体13の半導体層12の面と貼着しても良いが、電子供給体13の半導体層12の面に予め層状に形成しておくことが好ましい。電解質層14を予め形成するに際しては、公知の方法を採用することができる。例えば、グラビアコート、バーコート、スクリーンコート等のコート方法で半導体層12の面に塗布する方法を挙げることができる。電解質層14として導電性ゲルを用いる場合は、導電性ゲルが粘着性や接着性を有するので、予め層状に成形された導電性ゲルのシートを半導体層12の面に貼着しても良い。電子供給体13と電解質層14を一体化してロールに巻き取る場合、あるいは枚葉に裁断して重ねる場合は、電解質層14の面に剥離紙を積層しておくことが好ましい。
 コンクリート層中の極めて小さい空隙中には水や水を含んだゲル状の物質があるといわれ、この中に含まれる電解質としては、OH、Na、Ca2+、Kなどのイオンが主なものと言われている。これらの電解質により、コンクリート層は、導電性の層15として機能することができる。そして、コンクリート層中の水分は、乾燥により空気中へ水分を放出したり、あるいは雨水や気温の日各差により空気中の水分を吸収したりするので、コンクリート層が絶乾状態になることはない。したがって、電子供給体13の電解質層14をコンクリート層15に貼着して防食が可能である。
 また、本発明においては、導電性の層15として、塗料の塗膜を介在させることも可能である。塗料の塗膜は、一見、絶縁層に見えるが、塗膜の表面には、クラックや微細な孔が多数あり、これらは、被防食体16にまで貫通している場合が多い。このクラックや孔の部分は,水分や空気を遮断することができないので被防食体16が腐食しやすい。しかしながら、クラックや微細な孔には絶縁物が存在しないため、この部分に電流を流すことができる。したがって、電子供給体13の電解質層14を塗料の塗膜に貼着して防食が可能である。そして、塗料の塗膜を介在させた防食は、このクラックや微細な孔の部分に対して行えばよいので、極めて狭い面積を防食することになる。したがって、電子供給体13からの電子の供給量が小さくても、極めて有効な防食が可能となる。しかも、表面のクラックや微細な孔が小さい程、あるいは少ない程、防食効果は高くなる。
 さらに、本発明において、電解質層14として導電性ゲルを用いた場合は、導電性ゲルが表面のクラックや微細な孔に侵入して、被防食体に接する、もしくは極めて近くに位置することになるので、好適である。
 被防食体16としては、鋼材やステンレスなどの鉄を含むもののほか、ニッケル、チタン、銅や亜鉛を含むものなども防食が可能である。また、コンクリート層や塗料の塗膜に覆われることのない剥き出しの金属に対しても防食できることは言うまでもない。
以下、実施例をもって本発明を具体的に説明する。
≪実施例1の防食構造≫
 厚さ200μmの透明なPENフィルムにITOを真空蒸着して表面抵抗:10Ω/□(スクェアー)の導電性を付与した寸法:50×35mmの支持体11を用意した。
 PENフィルムのITO蒸着面に半導体層12としてブルッカイト型酸化チタン(昭和電工製C-ペースト)を40×25mmの大きさに塗布乾燥して厚さ10μmの酸化チタン層12を設け、電子供給体13とした。
 被防食体16は、アルミナでブラスト処理した寸法:60mm×70mm×2mmの鋼材(SS400材)とした。コンクリート層15中の鋼材16を模擬するために、鋼材16にセメントペーストを塗布してモルタル板:50mm×50mm×15mmを接着し、コンクリート層15とした。モルタルの仕様は、JIS R 5201「セメントの物理試験法」に記載のあるモルタルの配合で、質量比でセメント1、標準砂3、水セメント比0.50である。なお、セメントは普通ポルトランドセメントを使用した。
 得られた電子供給体13の酸化チタン層12に塩素イオンのイオン伝導による電荷移動能が付与された粘着性の導電性ゲルのシート(積水化成品工業製「テクノゲルCR-S」厚さ0.6mm)を貼り付けて電解質層14を設け、コンクリート層15を積層して電子供給体13とコンクリート層15と被防食体16との積層体を作製した。
 得られた積層体の支持体11のITO蒸着面を、導線7を介して被防食体16に電気的に接続し、図1に模式される防食構造10を作製した。
 本実施例においては、図2に示すように、電子供給体13の受光時における鋼材16への電子2の移動を確認するため、導線7に無抵抗電流計(東方技研社製AM-02)17を設けると共に、鋼材16の電位を測定するため、貼付け型の照合電極18として銀塩化銀電極(SSE)をコンクリート層15に貼着し、エレクトロメータ19を介して鋼材16に電気的に接続し、図2に示す測定装置が接続された実施例1の防食構造10を供試体として作製した。電気的接続のための導線7,8,9は、全て銅線を用いた。
 なお、無抵抗電流計17は、図2に示すように、電流が電子供給体13→導線7→鋼材16の方向に流れたときに正の電流値を示すように接続したため、電子2が電子供給体13→導線7→鋼材16の方向に移動する場合は、逆に鋼材16→導線7→電子供給体13の方向に流れる電流を観測して、負の電流値を示すことになる。
≪比較例1の防食構造≫
 導電性ゲル層14を設けることなく電子供給体13とコンクリート層15を離間させたこと、および電子供給体13の天地を入れ替えて半導体層12を支持体11の上側に配置したこと、以外は実施例1と同様にして、図3に模式される比較例1の防食構造20を作製し、図4に模式される測定装置が接続された比較例1の防食構造20の供試体を作製した。
≪防食性能の確認試験≫
 実施例1および比較例1の防食構造20の供試体に光を照射し、防食性能の確認試験を行った。光の照射は、室内の蛍光灯(1000lx)で行なった。なお、光量不足で電流が測定できないと判断される場合には、例外として写真撮影用のレフランプ(5000lx)を用いて光を照射した。試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
≪考察≫
 表1に示すとおり、実施例1の供試体では、マイナス1.84μAの電流が流れ、鋼材の電位がマイナス方向に210.9mV変化した。
 金属の防食をするためには、被防食体16の電位を少なくともマイナス方向に変化させる必要があり、電子供給体13から被防食体16に電子が供給される(すなわち、被防食体16から電子供給体13に電流が流れる)ことが必要不可欠である。
 実施例1の供試体では、電流が流れるとともに、鋼材の電位がマイナス方向に変化した。これにより、金属の電位を変化させるために必要な電子の移動量が十分であり、金属の防食が可能であることが確認できた。
 一方、比較例1の供試体では、蛍光灯で光を照射しても電流が測定できなかった。そこで、レフランプで光を照射したが、蛍光灯の場合と同様に、電流は測定できなかった。そして、電流が流れていないことの裏付けとして、鋼材16の電位も変化しないことが確認できた。比較例1の供試体は、特許文献2や3に記載の防食方法および防食装置に相当するものである。特許文献2や3にも、金属の電位をその酸化電位よりも低くするとの記載があるが、この比較例1の防食構造においては、半導体層12で電子が発生しても、電流は皆無に等しく、電位も変化することがなかった。よって、比較例1の供試体では、実質的に水と接触しない環境においては、金属の電位を変化させるために必要な電子の移動量が、圧倒的に不足しており、金属の防食を行うことはできないと考えられる。
≪実施例2および3の防食構造≫
 実施例1と同様のPENフィルムにITOを真空蒸着し、表面抵抗が10Ω/□と300Ω/□で12cm×12cmの2種類のITO蒸着PENフィルムを実施例2および3の支持体11として用いた。
 2種類の支持体11のITO蒸着面に実施例1と同様の酸化チタンを10cm×10cmの大きさに塗布乾燥して厚さ10μmの酸化チタン層12を設け、実施例2および3の電子供給体13とした。
 被防食体16として鉄筋(長さ25cm、直径6mm)を用い、一辺30cmの正方形状で厚さ6cmのコンクリート層15の中心層となるように縦横6本ずつの鉄筋を等間隔に格子状に配置し、樹脂で被覆した銅線を取り付けてリード線として引き出して埋設した。表面処理として鉄筋入りコンクリート基板の表面にダイアモンドカップによるケレン(素地調整)を行いコンクリート層15とした。
 得られた電子供給体13の酸化チタン層12に10cm×10cmの実施例1と同様の導電性ゲルのシートを貼りつけて電解質層14を設け、コンクリート層15を積層して電子供給体13とコンクリート層15と被防食体16との積層体を作製し、図1に模式される実施例2および3の防食構造10を作製した。
 実施例2および3の防食構造10の支持体11のITO蒸着面を、幅5mmのアルミニウムテープからなる導線7を介して被防食体16に電気的に接続したこと以外は実施例1と同様にして、図2に模式される測定装置が接続された実施例2および3の防食構造10を供試体として作製した。
≪防食性能の確認試験≫
 実施例2および3の供試体を屋外に設置して発生する電流を測定した。
 屋外に電子供給体13を設置するに際して導電性ゲル層14の端面の乾燥や膨潤を防ぐために、フッ素系の樹脂フィルムをリボン状に切断してエポキシ樹脂を用いて支持体11の4辺を覆うようにコンクリート層15の表面に貼り付けた。
 実施例2および3の供試体を、複数個の透明アクリル製円筒体(高さ8cm)を支持台にして、夜間は光が当たらない建物の屋上の床面に電子供給体13が下向きになるように宙に浮かせて設置した。このように設置した理由は、電子供給体13が直射日光を受光しないようにするためである。
 発生する電流は、小型データロガーを用いて60分に1回の頻度で測定した。
 測定結果を図5に示す。横軸の暴露日数は、測定開始日の正午を起点にしているので、横軸の目盛り線位置が正午となる。
 各測定日の発生電流の絶対値は、およそ正午(午前12時)頃に最大になる傾向があった。
 実施例3の支持体11の表面抵抗が300Ω/□の供試体は、暴露開始当初から、日出とともに電流が発生していたが、実施例2の支持体11の表面抵抗が10Ω/□の供試体は、暴露開始20日までほとんど発生しなかった。ところが、暴露開始20日を経過した頃から電流が生じるようになり,11日間程は、実施例3の供試体よりも大きな電流が生じる時期があった。
 注目すべきは、光があたらない夜間でも防食電流が流れることが認められたことである。実施例2の供試体においては、暴露当初はゼロ、もしくは、極小さい腐食電流が流れることもあったが、通電を継続することにより、暴露開始20日を経過した頃から夜間にも防食電流がゼロにはならず、防食電流が生じるようになった。実施例3の供試体においては、暴露開始9日を経過した頃から夜間にも明確に防食電流が流れるようになった。
 しかも、驚くべきことは、一度、夜間に防食電流が流れるようになると、日照時間帯に生じた電子による電流は、夜間の電流値に上乗せとなる電流値、もしくはそれ以上で流すことができることである。
 この現象は、光量が減少あるいは消滅しても半導体層12の電位が即座に貴とはならないので、鉄筋の電位よりも卑であり続けているためと考えられる。この理由は定かではないが、コンクリート層15は、導電性ではあるが、その抵抗値は著しく大きいので、導電ゲル層14-コンクリート層15-鋼材16の組み合わせがある種のコンデンサーのような機能を持つことや電解質層14中のイオンや酸素濃度の関係により、半導体層12の電位変化が緩やかになり、本来、半導体層12が暗所で示す電位まで貴化していないために、夜間に流れる電流が引き続き日照時間帯にも流れて、それに日照時間帯に新たに生じる電子による電流が加わるためと推定される。
 これらのことから、「半導体層12-ITO集電体-アルミニウムテープ-鉄筋-コンクリート層15-導電性ゲル層14-半導体層12」という閉じた電気回路が形成されることにより、外部電源を使用することなく、日照時間帯に生じた電子による電流が夜間も持続的に流れるので、防食効果が維持されるものと考えられる。そして、仮に供試体の支持台が導電性を有する場合でも、電子供給体13が床面に接地されていなければ、電流は最も流れやすいところを流れるので、上述の閉じた電気回路から電流が周囲に漏電することはない。
≪半導体層12の電位測定試験≫
 半導体層12の電位を測定するために、PENフィルムの寸法を30mm×35mmにしたこと、酸化チタンの塗布範囲を30mm×25mmの大きさにしたこと以外は、実施例1と同様にして作成した電子供給体13を3枚用意した。
 電位を測定するために、貼付け型の銀塩化銀(SSE)照合電極18を各電子供給体13の半導体層12に貼付け、0から1000lxピッチで照度を変化させた時の半導体層12各3体の電位を測定した。なお、半導体層12の電位は、エレクトロメータにて測定し、照度の調節は、暗幕、蛍光灯、レフランプで行った。
 以上の結果を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり半導体層12の暗所での電位は-11~-60mV、平均で-29mVであった。一方、鋼材16の自然電位は、表1に示すとおり、比較例1で+15mVであり、実施例1で-81.7mVであった。このように、暗所においては、鋼材16の電位がマイナスで、半導体層12の電位よりも卑である場合もあり得る。鋼材の電位はその腐食状態によって変化し、腐食が著しいほど卑な電位を示すことが知られている。たとえば、海水中では、-454mV~-654mVの電位を示す。このように卑な電位を示す鋼材が被防食体である場合、暗所では半導体層12の電位が必ず貴となるので、防食できないと考えられる。むしろ、防食の初期には、半導体層12により腐食電流が流れる可能性もあることがわかった。しかし、4000lx以上の電磁波が照射されれば、半導体層12のほうがより卑になるので、このような場合であっても、防食が達成される。また、実施例2、3に見られるように、ひとたび電子供給体13に電磁波が照射されると、電子供給体13の方が卑になるので防食は達成され、長期間通電していると、夜間にも継続して防食電流が流れる。したがって、本発明においては、暗所で初期の一瞬腐食電流が流れても問題となることはないといえる。
 以上説明した通り、本発明によれば、防食構造設置の自由度が高く、コンクリート中の鉄筋等、被防食体が被覆層で覆われるものである場合でも、十分な防食効果を得ることができる防食方法および防食構造を提供することができる。
1…電磁波、2…被防食体に供給される電子、3…半導体層に還流される電子、7,8,9…導体(導線)、10,20…防食構造、11…支持体、12…半導体層(酸化チタン層)、13…電子供給体、14…電解質層(導電性ゲル層)、15…導電性の層(コンクリート層)、16…被防食体(鋼材)、17…無抵抗電流計、18…照合電極、19…エレクトロメータ
 

Claims (14)

  1.  実質的に水と接触しないように表層が保護された半導体層に電磁波を受けさせて電子を放出させ、放出された電子を集電して被防食体に供給し、電子が供給された被防食体から電解質層を介して電子を前記半導体層に還流することで電流を被防食体に流して被防食体の電位を卑にする防食方法。
  2.  前記半導体層を電磁波が透過可能で不透水性のプラスチックフィルムで支持し、前記フィルムが電磁波を受ける面となるように前記半導体層を被防食体に設置して前記半導体層を前記フィルムで保護する請求項1に記載の防食方法。
  3.  直射日光が直接当たらない場所で前記半導体層に少なくとも360nm ~500nmの波長を有する電磁波を受けさせて電子を放出させる請求項1に記載の防食方法。
  4.  層状に形成されて 粘着性または接着性を有する電解質層を、被防食体が埋設されたセメントを含む層に貼着する請求項1に記載の防食方法。
  5.  層状に形成されて粘着性または接着性を有する電解質層を、被防食体を被覆する塗料の塗膜に貼着する請求項1に記載の防食方法。
  6.  電磁波が透過可能で不透水性および導電性を有する支持体に半導体層が形成されてなる電子供給体を被防食体に電気的に接続して防食する防食構造であって、
     前記電子供給体が、少なくとも半導体層に接する電解質層を介して被防食体と電気的に接続される防食構造。
  7.  前記電解質層と被防食体との間に導電性の層が介在する請求項6に記載の防食構造。
  8.  導電性の層がセメントを含む層であり、被防食体が鉄を含む金属である請求項7に記載の防食構造。
  9.  前記電解質層が粘着剤層または接着剤層である請求項6に記載の防食構造。
  10.  前記支持体が少なくとも360nm~500nmの波長を有する電磁波を透過可能である請求項6に記載の防食構造。
  11.  前記支持体が半導体層の側に導電性薄膜を有する不透水性のプラスチックフィルムである請求項6に記載の防食構造。
  12.  半導体層がペロブスカイト構造を有する化合物を含む金属の酸化物及び金属カルコゲニドから選ばれる一種または二種以上の化合物を含有する層である請求項6に記載の防食構造。
  13.  半導体層がブルッカイト型化合物を含む請求項6に記載の防食構造。
  14.  半導体層が酸化チタン、酸化亜鉛および酸化スズから選ばれる一種または二種以上の金属酸化物を含有する層である請求項6に記載の防食構造。
PCT/JP2010/000192 2009-01-16 2010-01-15 防食方法および防食構造 WO2010082494A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800048250A CN102301036A (zh) 2009-01-16 2010-01-15 防腐蚀方法及防腐蚀结构
US13/144,836 US20120018312A1 (en) 2009-01-16 2010-01-15 Corrosion Protection Method And Corrosion Protection Structure
JP2010546598A JP5470276B2 (ja) 2009-01-16 2010-01-15 防食方法および防食構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009008068 2009-01-16
JP2009-008068 2009-01-16

Publications (1)

Publication Number Publication Date
WO2010082494A1 true WO2010082494A1 (ja) 2010-07-22

Family

ID=42339746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000192 WO2010082494A1 (ja) 2009-01-16 2010-01-15 防食方法および防食構造

Country Status (6)

Country Link
US (1) US20120018312A1 (ja)
JP (1) JP5470276B2 (ja)
KR (1) KR20110118131A (ja)
CN (1) CN102301036A (ja)
TW (1) TW201040319A (ja)
WO (1) WO2010082494A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077064A (zh) * 2020-01-02 2020-04-28 欧伊翔 一种用于导电溶液中的自零件预警防护监测装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584109B2 (ja) * 2010-12-24 2014-09-03 株式会社堀場製作所 光学分析装置
KR101916617B1 (ko) * 2012-10-11 2018-11-07 에코스펙 글로벌 테크놀로지 피티이 엘티디 시변 전자기파를 사용하여 금속 구조물의 부식을 방지하는 시스템 및 방법
US9637827B2 (en) * 2013-10-01 2017-05-02 William Marsh Rice University Methods of preventing corrosion of surfaces by application of energy storage-conversion devices
US11105001B2 (en) * 2017-09-05 2021-08-31 David William Whitmore Cathodic corrosion protection with solar panel
CN111141668A (zh) * 2019-12-26 2020-05-12 深圳大学 一种光电化学阴极保护的钢筋缓蚀方法
CN111266980B (zh) * 2020-03-23 2021-07-27 青岛伟成达电力设备有限公司 一种基于电化学腐蚀原理的钢结构设备
NL1043637B1 (en) * 2020-04-24 2021-11-02 Giorgini Roberto Anode assembly for corrosion control of steel reinforced concrete structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158665A (ja) * 1997-11-20 1999-06-15 Nakabohtec Corrosion Protecting Co Ltd 鋼材の防食方法
JP2001247985A (ja) * 2000-03-08 2001-09-14 Akira Fujishima 金属材料の防食方法
JP2001262379A (ja) * 2000-03-14 2001-09-26 Akira Fujishima 金属材料の防食構造
JP2004332090A (ja) * 2003-03-07 2004-11-25 Kobe Steel Ltd 防食用部材および該防食用部材を取り付けた金属構造体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286289A (ja) * 1994-04-20 1995-10-31 Tokyo Gas Co Ltd 電気防食方法
JPH07316850A (ja) * 1994-05-27 1995-12-05 Okanishi:Kk 太陽電池による防食方法
US6882459B2 (en) * 2000-09-01 2005-04-19 Akira Fujishima Photoreactive devices, translucent members, ornaments, anticorrosive devices, devices for reducing oxygen and devices for controlling growth of microorganisms
CN100449036C (zh) * 2004-11-08 2009-01-07 比亚迪股份有限公司 二氧化钛金属防腐蚀材料及其制造方法和应用方法
CN104107589B (zh) * 2008-12-09 2017-09-12 纳幕尔杜邦公司 用于从颗粒浆液中选择性移除大颗粒的过滤器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158665A (ja) * 1997-11-20 1999-06-15 Nakabohtec Corrosion Protecting Co Ltd 鋼材の防食方法
JP2001247985A (ja) * 2000-03-08 2001-09-14 Akira Fujishima 金属材料の防食方法
JP2001262379A (ja) * 2000-03-14 2001-09-26 Akira Fujishima 金属材料の防食構造
JP2004332090A (ja) * 2003-03-07 2004-11-25 Kobe Steel Ltd 防食用部材および該防食用部材を取り付けた金属構造体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077064A (zh) * 2020-01-02 2020-04-28 欧伊翔 一种用于导电溶液中的自零件预警防护监测装置
CN111077064B (zh) * 2020-01-02 2022-06-03 欧伊翔 一种用于导电溶液中的自零件预警防护监测装置

Also Published As

Publication number Publication date
TW201040319A (en) 2010-11-16
JP5470276B2 (ja) 2014-04-16
US20120018312A1 (en) 2012-01-26
JPWO2010082494A1 (ja) 2012-07-05
CN102301036A (zh) 2011-12-28
KR20110118131A (ko) 2011-10-28

Similar Documents

Publication Publication Date Title
JP5470276B2 (ja) 防食方法および防食構造
RU2411560C2 (ru) Электрод электрохимических электроуправляемых устройств
ES2475730T3 (es) Módulo de células solares sensibilizadas por colorante y método para fabricar el mismo
JP5501131B2 (ja) 防食構造
US20080083452A1 (en) Photoelectric Converter, and Transparent Conductive Substrate for the same
KR20130129187A (ko) 투명 도전막, 투명 도전막의 제조 방법, 광전 변환 장치 및 전자 기기
KR20100075552A (ko) 색소 증감 태양전지 모듈
US11682740B2 (en) Evaluation method on anion permeability of graphene-containing membrane and photoelectric conversion device
Zhang et al. Pyrolysis preparation of Cu2ZnSnS4 thin film and its application to counter electrode in quantum dot-sensitized solar cells
JP2012021212A (ja) 電子供給体
JP6141654B2 (ja) 防食構造および防食方法
JP2005285472A (ja) 光電変換装置
JP4161688B2 (ja) 湿式太陽電池
EP3955328B1 (en) Solar cell module
JP4759984B2 (ja) 色素増感型太陽電池用電極基板及びその製造方法並びに色素増感型太陽電池
Ganesh et al. Crystallographic phase-mediated dye-sensitized solar cell performance of ZnO nanostructures
JP2006100068A (ja) 光電変換装置およびそれを用いた光発電装置
KR101438689B1 (ko) 금속 기판을 이용한 염료감응 태양전지의 반도체 전극 형성 방법 및 그에 의해 제조된 염료감응 태양전지
WO2013015067A1 (ja) 光電変換装置、電子機器および建築物
EP3220399B1 (en) Electrolyte for dye-sensitized photoelectric conversion elements for low luminance, and dye-sensitized photoelectric conversion element for low luminance using same
JP6267035B2 (ja) 色素増感太陽電池セルの組込構造及び発電ブラインド用スラット
EP3349266A1 (en) Substrate for photoelectric conversion elements
WO2015011306A1 (es) Procedimiento para la preparación de capas conductoras y transparentes de óxido de zinc dopado con aluminio
TW201442265A (zh) 色素增感太陽能電池
JP4788844B2 (ja) 色素増感型太陽電池用電極基板及び色素増感型太陽電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004825.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010546598

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13144836

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117017310

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10731163

Country of ref document: EP

Kind code of ref document: A1