WO2010082237A1 - 燃焼バーナ - Google Patents

燃焼バーナ Download PDF

Info

Publication number
WO2010082237A1
WO2010082237A1 PCT/JP2009/002944 JP2009002944W WO2010082237A1 WO 2010082237 A1 WO2010082237 A1 WO 2010082237A1 JP 2009002944 W JP2009002944 W JP 2009002944W WO 2010082237 A1 WO2010082237 A1 WO 2010082237A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
air
gas
branch
flow path
Prior art date
Application number
PCT/JP2009/002944
Other languages
English (en)
French (fr)
Inventor
戸高光正
吹中範生
加藤敏郎
Original Assignee
新日鉄エンジニアリング株式会社
日鐵プラント設計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄エンジニアリング株式会社, 日鐵プラント設計株式会社 filed Critical 新日鉄エンジニアリング株式会社
Priority to BRPI0919986A priority Critical patent/BRPI0919986A2/pt
Priority to CN200980154996.9A priority patent/CN102282419B/zh
Priority to EP09838207.0A priority patent/EP2381172B1/en
Publication of WO2010082237A1 publication Critical patent/WO2010082237A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/70Baffles or like flow-disturbing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • F23G5/165Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber arranged at a different level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00003Fuel or fuel-air mixtures flow distribution devices upstream of the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/303Burning pyrogases

Definitions

  • the present invention relates to a combustion burner that burns combustible gas generated by gasification of waste.
  • a waste treatment furnace such as a waste melting furnace is used.
  • the flammable dust and combustible gas generated in the waste treatment furnace can be recovered by being burned by the combustion burner in the combustion chamber.
  • Patent Document 1 a partially premixed combustion burner that can improve combustibility with a simple structure is known.
  • FIG. 11 and 12A to 12C show the structure described in Patent Document 1.
  • FIG. 11 is a horizontal sectional view of the combustion burner attached to the combustion chamber.
  • 12A is a sectional view taken along line FF in FIG. 11
  • FIG. 12B is a sectional view taken along line EE in FIG. 11
  • FIG. 12C is a sectional view taken along line DD in FIG.
  • the combustion burner 100 is attached to the combustion chamber 200, and the combustible gas generated in the waste treatment furnace is mixed with the combustion air and burned in the combustion chamber 200.
  • the combustible gas passes through the duct 120 and is guided into the combustion chamber 200. Further, the combustion air passes through the duct 121 and is guided to the wind box 122.
  • a rectifying plate 126 is disposed in the passage of combustion air in the wind box 122. As shown in FIG. 12A, the rectifying plate 126 is formed with a plurality of openings 127 for allowing combustion air to pass therethrough.
  • the flammable gas and the combustion air are subjected to a partial premixing process in the gas mixing chamber 125.
  • the gas mixing chamber 125 is a space formed between the burner tile 123 located at the end of the wind box 122 and the outlet of the duct 120.
  • the combustible gas passes through the plurality of discharge ports formed in the plate 128 of the duct 120 and reaches the gas mixing chamber 125.
  • the combustible gas and the combustion air mixed in the gas mixing chamber 125 are ejected into the combustion chamber 200 from the plurality of mixed gas ejection ports 124 to form a flame in the combustion chamber 200.
  • an object of the present invention is to provide a combustion burner that can facilitate mixing of combustible gas and combustion air.
  • the present invention relates to a gas burner for forming a gas flow path for moving a combustible gas in a combustion burner for mixing combustible gas generated by gasification of waste and combustion air and supplying the mixture to a combustion chamber, and a gas duct
  • the air duct is disposed along the outer surface of the gas duct and forms an air flow path for moving combustion air taken from the outside between the gas duct and the gas duct in the gas flow path.
  • a branch post for discharging the combustible gas from the gas duct in a state of being branched into the flow path.
  • the combustion air in the air flow path is guided to the branch post and discharged from the branch post toward the branch flow path of the combustible gas, and is discharged from the gas duct side toward the branch flow path of the combustible gas.
  • the branch passage of the combustible gas can be positioned between the combustion air discharge part in the gas duct and the combustion air discharge part in the branch post. Therefore, combustion air can be supplied with respect to combustible gas from the position which pinches
  • a rectifying plate having an opening for restricting the passage amount of combustion air can be arranged in the air flow path. Thereby, it is possible to suppress variation in the amount of movement of the combustion air in the air flow path.
  • the regions downstream of the combustion air with respect to the rectifying plate are partitioned from each other, and the upper air chamber, the lower air chamber, the left air chamber, and the right air chamber are positioned vertically and horizontally with respect to the gas flow channel.
  • the combustion air in the upper air chamber and the lower air chamber can be guided to the branch post.
  • the combustion air in the left air chamber and the right air chamber can be discharged from the end portion of the gas duct toward the branch passage of the combustible gas.
  • each branch post can be arranged to extend in the vertical direction, and a plurality of branch posts can be arranged side by side in a horizontal plane.
  • a burner tile is arranged along the branch post, and a space for moving the combustion air and a slit for discharging the combustion air toward the branch flow path of the combustible gas are formed between the branch post and the burner tile.
  • the branch post may be formed in a cylindrical shape, and a slit for discharging combustion air may be formed in the branch post.
  • a cross section perpendicular to the moving direction of the combustible gas can be formed in a circular shape.
  • the combustion burner of this invention is attached to the combustion chamber which burns combustible gas and combustion air.
  • combustion air can be supplied from different directions to each branch channel in a state where the gas channel is branched into a plurality of channels using the branch post. Specifically, combustion air can be supplied from the branch post and the gas duct side to the branch passage of the combustible gas. Thereby, combustion air can be efficiently supplied to the combustible gas moving in the gas flow path, and the combustible gas and the combustion air can be easily mixed.
  • Example 1 of this invention it is a vertical sectional view which shows the structure of the combustion chamber provided with the combustion burner.
  • it is a horizontal sectional view of the combustion burner attached to the combustion chamber.
  • it is a vertical sectional view of the combustion burner attached to the combustion chamber.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • 1 is an external view of a combustion burner that is Embodiment 1.
  • FIG. 2 of this invention it is a horizontal sectional view of the combustion burner attached to the combustion chamber.
  • Example 2 it is a vertical sectional view of the combustion burner attached to the combustion chamber. It is a figure when a combustion burner is seen from the direction shown by the arrow B of FIG. FIG.
  • FIG. 7 is a cross-sectional view taken along the line CC of FIG. In Example 3 of this invention, it is a horizontal sectional view of the combustion burner attached to the combustion chamber. It is a horizontal sectional view which shows the conventional structure which attached the combustion burner to the combustion chamber.
  • FIG. 12 is a sectional view taken along line FF in FIG. 11.
  • FIG. 12 is a sectional view taken along line EE in FIG.
  • FIG. 12 is a DD cross-sectional view of FIG. 11.
  • FIG. 1 is a vertical sectional view of a combustion chamber to which a combustion burner is attached.
  • FIG. 2 is a horizontal sectional view of the combustion burner attached to the combustion chamber, and
  • FIG. 3 is a vertical sectional view of the combustion burner.
  • 4 is a cross-sectional view taken along line AA in FIG. 2, and
  • FIG. 5 is an external perspective view of the combustion burner.
  • the combustion burner 1 of this embodiment is attached to a combustion chamber 2 and is supplied into the combustion chamber 2 in a state where flammable gas and combustion air are mixed.
  • the combustible gas is generated by gasification processing in the waste treatment furnace and is supplied to the combustion burner 1.
  • Combustion air is supplied to combustion burner 1 from the atmosphere, for example.
  • the combustible gas and the combustion air supplied from the combustion burner 1 into the combustion chamber 2 form a flame along the inner peripheral surface of the combustion chamber 2 and move.
  • the combustion burner 1 has a gas duct 3 that forms a gas flow path for moving a combustible gas.
  • the gas duct 3 is formed in a rectangular shape in a cross section orthogonal to the moving direction of the combustible gas.
  • a wind box (air duct) 22 is disposed around the gas duct 3.
  • an air flow path for moving the combustion air is formed between the outer wall surface of the gas duct 3 and the inner wall surface of the wind box 22.
  • a supply duct 4 for supplying combustion air is connected to the wind box 22.
  • a rectifying plate 9 is disposed in the air flow path formed by the wind box 22, and the rectifying plate 9 is located on the downstream side of the combustion air from the connection position 22 a of the supply duct 4 to the wind box 22. .
  • the baffle plate 9 has a plurality of openings 10 for allowing combustion air to pass therethrough. In other words, in the region other than the opening 10 in the rectifying plate 9, the movement of the combustion air is prevented. As shown in FIG. 4, the plurality of openings 10 are arranged along the periphery of the gas duct 3.
  • the combustion air that has passed through the opening 10 of the rectifying plate 9 enters the four air chambers 5 to 8 that are partitioned from each other.
  • Three openings 10 are provided in regions of the rectifying plate 9 corresponding to the air chambers 5 to 8.
  • a predetermined amount of combustion air corresponding to the opening area (total) of the three openings 10 enters each of the air chambers 5 to 8.
  • three openings 10 are provided for each of the air chambers 5 to 8, but the present invention is not limited to this, and the number of openings 10 can be set as appropriate. Further, the number of openings 10 in each of the air chambers 5 to 8 may be the same or different from each other.
  • the upper air chamber 5 is an air passage located above the gas duct 3, and the lower air chamber 6 is an air passage located below the gas duct 3.
  • the left air chamber 7 is an air flow path located on the left side of the gas duct 3 when the combustion burner 1 is viewed from the inside of the combustion chamber 2 (see FIG. 4).
  • the right air chamber 8 is an air passage located on the right side of the gas duct 3 when the combustion burner 1 is viewed from the inside of the combustion chamber 2.
  • the gas duct 3 is surrounded by the air chambers 5 to 8.
  • Air chambers 5 and 6 are arranged above and below each air chamber 7 and 8.
  • Burner tiles 12, 13 that form two mixed gas outlets 14 are provided at the tip 1 a of the combustion burner 1.
  • the mixed gas outlet 14 is provided to guide the mixed combustible gas and combustion air to the combustion chamber 2.
  • the burner tile 13 is arranged along the inner wall surface of the wind box 22.
  • the burner tile 12 is arranged at a position where one opening formed by the burner tile 13 is divided into two.
  • the opening divided into two by the burner tile 12 becomes a mixed gas outlet 14, and the two mixed gas outlets 14 are arranged side by side in a horizontal plane.
  • the burner tile 12 is formed with a pair of inclined surfaces 12a, and the width of the burner tile 12 in the horizontal cross section (see FIG. 2) becomes narrower as the distance from the tip 1a of the combustion burner 1 increases.
  • the two mixed gas outlets 14 are provided, but the present invention is not limited to this. That is, the number of the mixed gas outlets 14 can be set as appropriate. In this case, the plurality of mixed gas outlets 14 may be arranged side by side in the horizontal direction.
  • a branch post 15 is disposed upstream of the burner tile 12 in the flow path of the combustible gas.
  • the branch post 15 extends in the vertical direction and is formed in a shape along the inclined surface 12 a of the burner tile 12.
  • the upper end portion of the branch post 15 is connected to the upper air chamber 5 (gas duct 3), and the space formed between the branch post 15 and the burner tile 12 includes the upper air chamber 5. Combustion air from is led.
  • the lower end of the branch post 15 is connected to the lower air chamber 6 (gas duct 3), and combustion air from the lower air chamber 6 is in the space formed between the branch post 15 and the burner tile 12. It has come to be guided.
  • each discharge nozzle 16 is a slit-shaped opening formed by a part of the branch post 15 and a part of the burner tile 12, and discharges combustion air guided from the air chambers 5 and 6. The combustion air discharged from the discharge nozzle 16 moves toward the mixed gas outlet 14.
  • a discharge nozzle 17 for discharging combustion air is formed between the gas duct 3 and the burner tile 13 in the horizontal plane.
  • the discharge nozzle 17 is a slit-shaped opening formed by the end of the gas duct 3 and the burner tile 13, and is provided corresponding to the air chambers 7 and 8.
  • the combustion air in the left air chamber 7 is discharged from one discharge nozzle 17 and moves toward one mixed gas jet port 14.
  • the combustion air in the right air chamber 8 is discharged from the other discharge nozzle 17 and moves toward the other mixed gas outlet 14.
  • Each discharge nozzle 18 is a slit-shaped opening formed by the end of the gas duct 3 and a part of the branch post 15, and discharges combustible gas toward the mixed gas outlet 14.
  • the discharge nozzle 18 is located between the discharge nozzle 16 and the discharge nozzle 17 in the horizontal plane.
  • the combustion air that has passed through the supply duct 4 enters the wind box 22 and then passes through the opening 10 of the rectifying plate 9 and moves to the four air chambers 5 to 8.
  • the combustion air that has moved to the upper air chamber 5 and the lower air chamber 6 enters the space formed between the branch post 15 and the burner tile 12, and is then discharged from the discharge nozzle 16 toward the mixed gas outlet 14.
  • the combustion air that has moved to the left air chamber 7 and the right air chamber 8 is discharged from the discharge nozzle 17 toward the mixed gas outlet 14.
  • the combustible gas is discharged from the discharge nozzle 18 toward the mixed gas outlet 14.
  • the combustible gas discharged from the discharge nozzle 18 is mixed with the combustion air discharged from the discharge nozzles 16, 17, and then injected into the combustion chamber 2 from the mixed gas outlet 14.
  • the combustion air discharged from the discharge nozzles 16 and 17 is mixed with the combustible gas discharged from the discharge nozzle 18. It can be made easy. Therefore, the combustibility of the generated gas in the waste gasification and melting furnace having a large calorie fluctuation depending on the waste quality can be stably maintained. And the combustion efficiency of the mixed gas in the combustion chamber 2 can be improved by improving the mixing efficiency of combustible gas and combustion air.
  • the outer surface of the gas duct 3 is in contact with the combustion air supplied from the supply duct 4, the temperature rise of the gas duct 3 due to the combustible gas can be suppressed.
  • combustion air is made to contact the branch post 15, the temperature rise of the branch post 15 by combustible gas can be suppressed.
  • the combustion burner 1 since the combustion burner 1 is positioned at the tip of the burner, an appropriate temperature can be maintained (300 ° C. to 350 ° C.), and dust blockage due to condensation of tar in the generated gas can be prevented.
  • FIG. 6 is a horizontal sectional view of the combustion burner attached to the combustion chamber
  • FIG. 7 is a vertical sectional view of the combustion burner
  • 8 is a view when the combustion burner is viewed from the direction indicated by arrow B in FIG. 6,
  • FIG. 9 is a cross-sectional view taken along the line CC in FIG.
  • symbol is used about the member which has the same function as the member demonstrated in Example 1.
  • FIG. hereinafter, differences from the first embodiment will be mainly described.
  • the combustion burner 1 of this embodiment has a circular cross section perpendicular to the longitudinal direction. That is, the gas duct 3 and the wind box 22 constituting the combustion burner 1 are formed in a cylindrical shape, and the wind box 22 is disposed concentrically with the gas duct 3. A flow path for moving the combustion air is formed by the outer peripheral surface of the gas duct 3 and the inner peripheral surface of the wind box 22.
  • the current plate 9 is disposed in the wind box 22, and the current plate 9 is formed in an annular shape as shown in FIG. Further, four air chambers 5 to 8 are provided on the downstream side of the flow passage of the combustion air with respect to the rectifying plate 9.
  • the four air chambers 5 to 8 are partitioned from each other by the wind box 22 and are arranged side by side in the circumferential direction of the wind box 22.
  • the upper air chamber 5 forms an air flow path located above the gas duct 3
  • the lower air chamber 6 forms an air flow path located below the gas duct 3.
  • the left air chamber 7 forms an air flow path located on the left side of the gas duct 3 when the combustion burner 1 is viewed from the inside of the combustion chamber 2, and the right air chamber 8 is an air flow located on the right side of the gas duct 3.
  • the current plate 9 has a plurality of openings 10, and the plurality of openings 10 are arranged side by side in the circumferential direction of the wind box 22.
  • the combustion air supplied from the supply duct 4 passes through the opening 10 and moves to the air chambers 5 to 8.
  • the number of openings 10 provided corresponding to each of the air chambers 5 to 8 is equal to each other, and the flow rate of the combustion air guided to each of the air chambers 5 to 8 depends on the cross-sectional area of the opening 10. To do. It should be noted that the number of openings 10 can be varied depending on the air chambers 5 to 8.
  • a cylindrical branch post 15 extending in the vertical direction is arranged in the gas duct 3.
  • the branch post 15 By arranging the branch post 15 in the gas duct 3, as shown in FIG. 6, the flow path of the combustible gas can be branched into two flow paths in the horizontal plane.
  • the cross section perpendicular to the longitudinal direction of the branch post 15 is formed in a circular shape, but the present invention is not limited to this. That is, the branch post 15 only needs to extend in the vertical direction in the gas duct 3 to branch the flow path of the combustible gas, and the cross-sectional shape of the branch post 15 can be appropriately set.
  • the upper end portion of the branch post 15 is connected to the upper air chamber 5 (the gas duct 3 and the wind box 22), and the combustion air in the upper air chamber 5 is guided into the branch post 15.
  • the lower end portion of the branch post 15 is connected to the lower air chamber 6 (the gas duct 3 and the wind box 22), and the combustion air in the lower air chamber 6 is guided into the branch post 15.
  • the branch post 15 can be formed of metal or the like.
  • the branch post 15 has four discharge nozzles 16 for discharging combustion air.
  • Two discharge nozzles 16 are arranged side by side in the circumferential direction of the branch post 15 (in other words, in a horizontal plane), and this set of discharge nozzles 16 is in the vertical direction of the branch post 15 (in other words, in the vertical direction). They are arranged side by side (see FIG. 8).
  • each discharge nozzle 16 is configured as a slit-shaped opening extending in the vertical direction.
  • the discharge nozzle 16 only needs to be able to discharge the combustion air in the branch post 15, and the shape and number of the discharge nozzles 16 can be set as appropriate.
  • the two discharge nozzles 16 arranged side by side in the horizontal plane are provided in a region of the branch post 15 located on the end 1a side of the combustion burner 1.
  • the combustion air introduced into the branch post 15 passes through the four discharge nozzles 16 and is discharged to the outside of the branch post 15.
  • the combustion air discharged from each discharge nozzle 16 moves toward the mixed gas outlet 14.
  • Burner tiles 13 are arranged at the end 1a of the combustion burner 1 along the outer periphery of the wind box 22 (see FIG. 8). Between the gas duct 3 and the burner tile 13, two discharge nozzles 17 for discharging the combustion air in the air chambers 7 and 8 are provided. Here, the part which comprises the discharge nozzle 17 among the gas ducts 3 is extended in the perpendicular direction, as shown in FIG.
  • a discharge nozzle 18 for discharging a combustible gas is formed between the gas duct 3 and the branch post 15 in the horizontal plane.
  • the discharge nozzle 18 is a slit-shaped opening formed by a part of the branch post 15 and the end of the gas duct 3, and is located between the discharge nozzle 17 and the discharge nozzle 16 in a horizontal plane.
  • the combustion air that has passed through the supply duct 4 enters the wind box 22 and then passes through the opening 10 of the rectifying plate 9 and moves to the four air chambers 5 to 8.
  • the combustion air that has moved to the upper air chamber 5 and the lower air chamber 6 is guided into the branch post 15 and then discharged from the discharge nozzle 16.
  • the combustion air that has moved to the left air chamber 7 and the right air chamber 8 is discharged from the discharge nozzle 17.
  • the combustible gas discharged from the discharge nozzle 18 is ejected from the mixed gas ejection port 14 into the combustion chamber 2 while being mixed with the combustion air discharged from the discharge nozzles 16 and 17.
  • the combustion air discharged from the discharge nozzles 16 and 17 is mixed with the combustible gas discharged from the discharge nozzle 18. It can be made easy. And the combustion efficiency of the mixed gas in the combustion chamber 2 can be improved by improving the mixing efficiency of combustible gas and combustion air.
  • the temperature rise of the gas duct 3 by combustible gas can be suppressed by making the outer peripheral surface of the gas duct 3 contact with the combustion air whose temperature is lower than that of combustible gas.
  • the temperature rise of the branch post 15 by combustible gas can be suppressed by making combustion air contact the inner peripheral surface of the branch post 15.
  • FIG. 10 is a horizontal sectional view of the combustion burner attached to the combustion chamber.
  • members having the same functions as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • differences from the first embodiment will be mainly described.
  • the end 1a of the combustion burner 1 has a burner tile 13 disposed along the outer edge of the combustion burner 1 (wind box 22), and three burners connected to the burner tile 13 and extending in the vertical direction. Tiles 12 are arranged. As a result, four gas mixture outlets 14 are formed at the end 1 a of the combustion burner 1.
  • a branch post 15 is disposed upstream of each burner tile 12 in the flow path of the combustible gas.
  • the combustion air from the upper air chamber 5 and the lower air chamber 6 is guided to the space formed between the branch post 15 and the burner tile 12, and the combustion air is discharged from the discharge nozzle 16.
  • a discharge nozzle 17 for discharging combustion air from the right air chamber 7 and the left air chamber 8 is provided between the gas duct 3 and the burner tile 13.
  • the flow path of the combustible gas is branched into four flow paths R1 to R4 by the three branch posts 15.
  • each branch flow path R1, R4 passes through the corresponding discharge nozzle 18. Since the discharge nozzle 18 is located between the discharge nozzles 17 and 16, the combustible gas discharged from the discharge nozzle 18 is mixed with the combustion air discharged from the discharge nozzles 17 and 16, and then mixed. The gas is ejected from the gas ejection port 14 into the combustion chamber 2.
  • each branch flow path R2, R3 passes through the corresponding discharge nozzle 18. Since the discharge nozzle 18 is positioned between the two discharge nozzles 16, the combustible gas discharged from the discharge nozzle 18 is mixed with the combustion air discharged from the discharge nozzle 16, and then the mixed gas spray is performed. It is ejected from the outlet 14 into the combustion chamber 2.
  • the same effect as in the first embodiment can be obtained.
  • the number of the mixed gas outlets 14 is increased as compared with the first embodiment, the combustible gas and the combustion air can be easily mixed.
  • the number of the mixed gas outlets 14 provided in the combustion burner 1, in other words, the number of the branch posts 15 can be appropriately set based on the size of the combustion burner 1 or the like. Air can be easily supplied to the branch post 15 by dividing the upper air chamber 5 and the lower air chamber 6 in FIG. 3 according to the number of the branch posts 15.
  • a plurality of branch posts 15 described in the first embodiment are used.
  • a plurality of branch posts 15 described in the second embodiment can be used.
  • Combustion burner 2 Combustion chamber 3: Gas duct 4: Supply duct 5: Upper air chamber (air duct) 6: Lower air chamber (air duct) 7: Left air chamber (air duct) 8: Right air chamber (air duct) 9: Current plate 10: Opening 12, 13: Burner tile 14: Mixed gas jet 15: Branch post 16, 17, 18: Discharge nozzle 22: Wind box (air duct)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gas Burners (AREA)
  • Incineration Of Waste (AREA)

Abstract

【課題】 可燃性ガスおよび燃焼空気の混合効率を向上させることができる燃焼バーナを提供する。 【解決手段】 廃棄物のガス化によって発生した可燃性ガスと燃焼空気とを混合して燃焼室に供給するための燃焼バーナ(1)において、可燃性ガスを移動させるガス流路を形成するガスダクト(3)と、ガスダクトの外面に沿って配置され、ガスダクトとの間に、外部から取り込まれた燃焼空気を移動させる空気流路を形成する空気ダクト(22)と、ガス流路内においてガスダクトに接続され、ガス流路を複数の流路に分岐させた状態で可燃性ガスをガスダクトから吐出させるための分岐ポスト(15)と、を有する。空気流路内の燃焼空気は、分岐ポストに導かれて分岐ポストから可燃性ガスの分岐流路に向かって吐出されるとともに、ガスダクトの側から可燃性ガスの分岐流路に向かって吐出される。

Description

燃焼バーナ
 本発明は、廃棄物のガス化によって発生する可燃性ガスを燃焼させる燃焼バーナに関するものである。
 一般廃棄物や産業廃棄物といった廃棄物を処理するために、廃棄物溶融炉といった廃棄物処理炉が利用されている。廃棄物処理炉で発生する可燃性ダストや可燃性ガスは、燃焼室で燃焼バーナによって燃焼させることにより、熱回収を行うことができる。
 燃焼バーナとしては、簡単な構造で燃焼性を向上させることができる、部分予混合形式の燃焼バーナが知られている(特許文献1参照)。
 図11および図12A~図12Cには、特許文献1に記載された構造を示している。ここで、図11は、燃焼室に取り付けた燃焼バーナの水平断面図である。図12Aは、図11のF-F断面図であり、図12Bは、図11のE-E断面図であり、図12Cは、図11のD-D断面図である。
 燃焼バーナ100は、燃焼室200に取り付けられ、廃棄物処理炉で発生した可燃性ガスは、燃焼空気と混合されて、燃焼室200内で燃焼する。可燃性ガスは、ダクト120を通過して燃焼室200内に導かれる。また、燃焼空気は、ダクト121を通過して風箱122に導かれる。風箱122における燃焼空気の通路には、整流板126が配置されている。整流板126には、図12Aに示すように、燃焼空気を通過させるための複数の開口127が形成されている。
 可燃性ガスおよび燃焼空気は、ガス混合室125において、部分予混合処理が施される。ガス混合室125は、風箱122の端部に位置するバーナタイル123と、ダクト120の出口との間に形成されたスペースである。ここで、可燃性ガスは、ダクト120の板128に形成された複数の吐出口を通過して、ガス混合室125に到達する。ガス混合室125内で混合された可燃性ガスおよび燃焼空気は、複数の混合ガス噴出口124から燃焼室200内に噴出され、燃焼室200内において火炎を形成する。
特開2006-266619号公報
 特許文献1に記載の燃焼バーナ100では、可燃性ガスのダクト120の周囲のみから燃焼空気が導かれるようになっているため、可燃性ガスおよび燃焼空気を均一に混合させにくい。特に、燃焼バーナ100を大型化させれば、可燃性ガスのダクト120の内径が大きくなるため、可燃性ガスおよび燃焼空気がさらに混合しにくくなってしまう。
 そこで、本発明の目的は、可燃性ガスおよび燃焼空気を混合させやすくすることができる燃焼バーナを提供することにある。
 本発明は、廃棄物のガス化によって発生した可燃性ガスと燃焼空気とを混合して燃焼室に供給するための燃焼バーナにおいて、可燃性ガスを移動させるガス流路を形成するガスダクトと、ガスダクトの外面に沿って配置され、ガスダクトとの間に、外部から取り込まれた燃焼空気を移動させる空気流路を形成する空気ダクトと、ガス流路内においてガスダクトに接続され、ガス流路を複数の流路に分岐させた状態で可燃性ガスをガスダクトから吐出させるための分岐ポストと、を有する。空気流路内の燃焼空気は、分岐ポストに導かれて分岐ポストから可燃性ガスの分岐流路に向かって吐出されるとともに、ガスダクトの側から可燃性ガスの分岐流路に向かって吐出される。
 可燃性ガスの分岐流路を、ガスダクトにおける燃焼空気の吐出部と、分岐ポストにおける燃焼空気の吐出部との間に位置させることができる。これにより、分岐流路を挟む位置から可燃性ガスに対して燃焼空気を供給することができ、可燃性ガスに対する燃焼空気の混合効率を向上させることができる。
 燃焼空気の通過量を規制する開口を備えた整流板を、空気流路内に配置することができる。これにより、空気流路内において、燃焼空気の移動量にバラツキが発生するのを抑制することができる。
 空気流路のうち、整流板に対して燃焼空気の下流側の領域を、互いに仕切られ、ガス流路に対して上下左右に位置する上部空気室、下部空気室、左側空気室および右側空気室で構成することができる。ここで、上部空気室および下部空気室における燃焼空気を、分岐ポストに導くことができる。また、左側空気室および右側空気室における燃焼空気を、ガスダクトの端部から可燃性ガスの分岐流路に向かって吐出することができる。
 上述した分岐ポストを複数設けることができる。この場合において、各分岐ポストを鉛直方向に延びるように配置するとともに、複数の分岐ポストを水平面内において並んで配置することができる。
 分岐ポストに沿ってバーナタイルを配置し、分岐ポストおよびバーナタイルの間に、燃焼空気を移動させるスペースと、燃焼空気を可燃性ガスの分岐流路に向かって吐出させるためのスリットとを形成することができる。また、分岐ポストを円筒状に形成しておき、燃焼空気を吐出させるためのスリットを分岐ポストに形成することもできる。
 ガスダクトのうち、可燃性ガスの移動方向と直交する断面を円形に形成することができる。また、本発明の燃焼バーナは、可燃性ガスおよび燃焼空気を燃焼させる燃焼室に取り付けられる。
 本発明によれば、分岐ポストを用いてガス流路を複数の流路に分岐させた状態において、各分岐流路に対して互いに異なる方向から燃焼空気を供給することができる。具体的には、可燃性ガスの分岐流路に対して、分岐ポストおよびガスダクトの側から燃焼空気を供給することができる。これにより、ガス流路内を移動する可燃性ガスに対して、燃焼空気を効率良く供給することができ、可燃性ガスおよび燃焼空気を混合させやすくすることができる。
本発明の実施例1において、燃焼バーナを備えた燃焼室の構成を示す垂直断面図である。 実施例1において、燃焼室に取り付けられた燃焼バーナの水平断面図である。 実施例1において、燃焼室に取り付けられた燃焼バーナの垂直断面図である。 図2のA-A断面図である。 実施例1である燃焼バーナの外観図である。 本発明の実施例2において、燃焼室に取り付けられた燃焼バーナの水平断面図である。 実施例2において、燃焼室に取り付けられた燃焼バーナの垂直断面図である。 図6の矢印Bで示す方向から燃焼バーナを見たときの図である。 図6のC-C断面図である。 本発明の実施例3において、燃焼室に取り付けられた燃焼バーナの水平断面図である。 燃焼室に燃焼バーナを取り付けた従来の構成を示す水平断面図である。 図11のF-F断面図である。 図11のE-E断面図である。 図11のD-D断面図である。
 本発明の実施例について図面を参照しながら説明する。
 本発明の実施例1である燃焼バーナについて、図1から図5を用いて説明する。ここで、図1は、燃焼バーナが取り付けられた燃焼室の垂直断面図である。図2は、燃焼室に取り付けられた燃焼バーナの水平断面図であり、図3は、燃焼バーナの垂直断面図である。図4は、図2のA-A断面図であり、図5は、燃焼バーナの外観斜視図である。
 図1において、本実施例の燃焼バーナ1は、燃焼室2に取り付けられており、可燃性ガスおよび燃焼空気を混合させた状態で燃焼室2内に供給する。可燃性ガスは、廃棄物処理炉のガス化処理によって発生し、燃焼バーナ1に供給される。燃焼空気は、例えば、大気中から燃焼バーナ1に供給される。燃焼バーナ1から燃焼室2内に供給された可燃性ガスおよび燃焼空気は、燃焼室2の内周面に沿って火炎を形成し移動する。
 図2に示すように、燃焼バーナ1は、可燃性ガスを移動させるガス流路を形成するガスダクト3を有している。ガスダクト3は、可燃性ガスの移動方向と直交する断面において、矩形状に形成されている。ガスダクト3の周囲には、風箱(空気ダクト)22が配置されている。ここで、ガスダクト3の外壁面と、風箱22の内壁面との間には、燃焼空気を移動させるための空気流路が形成されている。また、風箱22には、燃焼空気を供給するための供給ダクト4が接続されている。
 風箱22によって形成された空気流路には、整流板9が配置されており、整流板9は、風箱22に対する供給ダクト4の接続位置22aよりも燃焼空気の下流側に位置している。また、整流板9は、燃焼空気を通過させるための複数の開口10を有している。言い換えれば、整流板9のうち、開口10以外の領域では、燃焼空気の移動が阻止される。複数の開口10は、図4に示すように、ガスダクト3の周囲に沿って配置されている。
 整流板9の開口10を通過した燃焼空気は、互いに仕切られた4つの空気室5~8に進入する。整流板9のうち、各空気室5~8に対応した領域には、3つの開口10が設けられている。これにより、各空気室5~8には、3つの開口10の開口面積(合計)に応じた所定量の燃焼空気が進入することになる。なお、本実施例では、各空気室5~8に対して、3つの開口10を設けるようにしているが、これに限るものではなく、開口10の数は、適宜設定することができる。また、各空気室5~8における開口10の数は、同一であってもよいし、互いに異なっていてもよい。
 上部空気室5は、ガスダクト3の上部に位置する空気流路であり、下部空気室6は、ガスダクト3の下部に位置する空気流路である。また、左側空気室7は、燃焼室2の内部から燃焼バーナ1を見たときに(図4参照)、ガスダクト3の左側に位置する空気流路である。右側空気室8は、燃焼室2の内部から燃焼バーナ1を見たときに、ガスダクト3の右側に位置する空気流路である。図4に示すように、ガスダクト3は、空気室5~8によって囲まれている。また、各空気室7,8の上部および下部に、空気室5,6が配置されている。
 燃焼バーナ1の先端1aには、2つの混合ガス噴出口14を形成するバーナタイル12,13が設けられている。混合ガス噴出口14は、混合された可燃性ガスおよび燃焼空気を燃焼室2に導くために設けられている。バーナタイル13は、図5に示すように、風箱22の内壁面に沿って配置されている。
 バーナタイル12は、バーナタイル13によって形成される1つの開口を2つに分割する位置に配置されている。バーナタイル12によって2つに分割された開口が、混合ガス噴出口14となり、2つの混合ガス噴出口14は、水平面内において並んで配置されている。また、バーナタイル12には、一対の傾斜面12aが形成されており、水平断面(図2参照)におけるバーナタイル12の幅は、燃焼バーナ1の先端1aから離れるにしたがって狭くなっている。
 なお、本実施例では、2つの混合ガス噴出口14を設けているが、これに限るものではない。すなわち、混合ガス噴出口14の数は、適宜設定することができる。この場合において、複数の混合ガス噴出口14は、水平方向に並んで配置すればよい。
 バーナタイル12に対して、可燃性ガスの流路における上流側には、分岐ポスト15が配置されている。分岐ポスト15は、鉛直方向に延びており、バーナタイル12の傾斜面12aに沿った形状に形成されている。ガスダクト3内に分岐ポスト15を設けることにより、可燃性ガスの流路を2つに分岐して、可燃性ガスを2つの混合ガス噴出口14に向かって移動させることができる。
 分岐ポスト15の上端部は、図3に示すように、上部空気室5(ガスダクト3)に接続されており、分岐ポスト15およびバーナタイル12の間に形成されたスペースには、上部空気室5からの燃焼空気が導かれるようになっている。また、分岐ポスト15の下端部は、下部空気室6(ガスダクト3)に接続されており、分岐ポスト15およびバーナタイル12の間に形成されたスペースには、下部空気室6からの燃焼空気が導かれるようになっている。
 また、水平面内における分岐ポスト15およびバーナタイル12の間には、図2に示すように、燃焼空気を吐出させるための2つの吐出ノズル16が形成されている。各吐出ノズル16は、分岐ポスト15の一部とバーナタイル12の一部とによって構成されたスリット形状の開口であり、各空気室5,6から導かれた燃焼空気を吐出させる。吐出ノズル16から吐出された燃焼空気は、混合ガス噴出口14に向かって移動する。
 水平面内におけるガスダクト3およびバーナタイル13の間には、図2に示すように、燃焼空気を吐出させるための吐出ノズル17が形成されている。吐出ノズル17は、ガスダクト3の端部とバーナタイル13とによって構成されたスリット形状の開口であり、各空気室7,8に対応して設けられている。左側空気室7内の燃焼空気は、一方の吐出ノズル17から吐出されて、一方の混合ガス噴出口14に向かって移動する。右側空気室8内の燃焼空気は、他方の吐出ノズル17から吐出されて、他方の混合ガス噴出口14に向かって移動する。
 水平面内におけるガスダクト3および分岐ポスト15の間には、可燃性ガスを吐出させるための2つの吐出ノズル18が形成されている。各吐出ノズル18は、ガスダクト3の端部と分岐ポスト15の一部とによって構成されたスリット形状の開口であり、可燃性ガスを混合ガス噴出口14に向かって吐出させる。吐出ノズル18は、水平面内において、吐出ノズル16および吐出ノズル17の間に位置している。
 次に、燃焼バーナ1の動作について説明する。
 供給ダクト4を通過した燃焼空気は、風箱22内に進入した後、整流板9の開口10を通過して、4つの空気室5~8に移動する。上部空気室5および下部空気室6に移動した燃焼空気は、分岐ポスト15およびバーナタイル12の間に形成されたスペースに進入した後、吐出ノズル16から混合ガス噴出口14に向かって吐出される。左側空気室7および右側空気室8に移動した燃焼空気は、吐出ノズル17から混合ガス噴出口14に向かって吐出される。一方、可燃性ガスは、吐出ノズル18から混合ガス噴出口14に向かって吐出される。
 吐出ノズル18から吐出された可燃性ガスは、各吐出ノズル16,17から吐出された燃焼空気と混合された後に、混合ガス噴出口14から燃焼室2内に噴出される。
 本実施例では、吐出ノズル18を挟む位置に吐出ノズル16,17を配置することにより、吐出ノズル18から吐出された可燃性ガスに対して、吐出ノズル16,17から吐出された燃焼空気を混合させやすくすることができる。従ってごみ質により大きくカロリ変動のある廃棄物ガス化溶融炉の発生ガスの燃焼性が安定して維持できる。そして、可燃性ガスおよび燃焼空気の混合効率を向上させることにより、燃焼室2内における混合ガスの燃焼効率を向上させることができる。
 また、ガスダクト3の外面は、供給ダクト4から供給された燃焼空気と接触しているため、可燃性ガスによるガスダクト3の温度上昇を抑制することができる。また、分岐ポスト15に燃焼空気を接触させているため、可燃性ガスによる分岐ポスト15の温度上昇を抑制することができる。これにより、燃焼バーナ1に特別な耐熱構造を備える必要がなく、燃焼バーナ1(特に、ガスダクト3や分岐ポスト15)を金属で形成することができる。さらに、分岐ポストの位置がバーナの先端部に位置されていることで、適正な温度が維持(300℃~350℃)でき、発生ガス中のタール分の凝縮によるダスト閉塞が防止できる。
 本発明の実施例2である燃焼バーナについて、図6から図9を用いて説明する。ここで、図6は、燃焼室に取り付けられた燃焼バーナの水平断面図であり、図7は、燃焼バーナの垂直断面図である。図8は、図6の矢印Bで示す方向から燃焼バーナを見たときの図であり、図9は、図6のC-C断面図である。なお、実施例1で説明した部材と同一の機能を有する部材については、同一符号を用いている。以下、実施例1と異なる点について、主に説明する。
 本実施例の燃焼バーナ1は、図8に示すように、長手方向と直交する断面が円形に形成されている。すなわち、燃焼バーナ1を構成するガスダクト3および風箱22は、円筒状に形成されており、風箱22は、ガスダクト3と同心円状に配置されている。そして、ガスダクト3の外周面および風箱22の内周面によって、燃焼空気を移動させるための流路が形成されている。
 風箱22内には、実施例1と同様に、整流板9が配置されており、整流板9は、図9に示すように円環状に形成されている。また、整流板9に対して燃焼空気の流路における下流側には、4つの空気室5~8が設けられている。4つの空気室5~8は、風箱22によって互いに仕切られており、風箱22の周方向において、並んで配置されている。上部空気室5は、ガスダクト3の上部に位置する空気流路を形成し、下部空気室6は、ガスダクト3の下部に位置する空気流路を形成する。左側空気室7は、燃焼室2の内部から燃焼バーナ1を見たときに、ガスダクト3の左側に位置する空気流路を形成し、右側空気室8は、ガスダクト3の右側に位置する空気流路を形成する。
 また、整流板9は、図9に示すように、複数の開口10を有しており、複数の開口10は、風箱22の周方向において、並んで配置されている。これにより、供給ダクト4から供給された燃焼空気は、開口10を通過して各空気室5~8に移動する。ここで、各空気室5~8に対応して設けられた開口10の数は、互いに等しくなっており、各空気室5~8に導かれる燃焼空気の流量は、開口10の断面積に依存する。なお、開口10の数を、空気室5~8に応じて異ならせることもできる。
 ガスダクト3内には、鉛直方向に延びる円筒形状の分岐ポスト15が配置されている。ガスダクト3内に分岐ポスト15を配置することにより、図6に示すように、可燃性ガスの流路を水平面内において2つの流路に分岐させることができる。なお、本実施例では、分岐ポスト15の長手方向と直交する断面を円形に形成しているが、これに限るものではない。すなわち、分岐ポスト15は、ガスダクト3内において鉛直方向に延びて、可燃性ガスの流路を分岐させることができればよく、分岐ポスト15の断面形状は適宜設定することができる。
 図7に示すように、分岐ポスト15の上端部は、上部空気室5(ガスダクト3および風箱22)に接続されており、上部空気室5内の燃焼空気が分岐ポスト15内に導かれる。また、分岐ポスト15の下端部は、下部空気室6(ガスダクト3および風箱22)に接続されており、下部空気室6内の燃焼空気が分岐ポスト15内に導かれる。なお、分岐ポスト15は、金属等で形成することができる。
 分岐ポスト15は、燃焼空気を吐出させるための4つの吐出ノズル16を有している。2つの吐出ノズル16が分岐ポスト15の周方向(言い換えれば、水平面内)において並んで配置されているとともに、この一組の吐出ノズル16が分岐ポスト15の上下方向(言い換えれば、鉛直方向)において並んで配置されている(図8参照)。各吐出ノズル16は、図8に示すように、鉛直方向に延びるスリット形状の開口として構成されている。なお、吐出ノズル16は、分岐ポスト15内の燃焼空気を吐出させることができればよく、吐出ノズル16の形状や数は、適宜設定することができる。
 また、水平面内に並んで配置された2つの吐出ノズル16は、図6に示すように、分岐ポスト15のうち、燃焼バーナ1の端部1a側に位置する領域に設けられている。分岐ポスト15内に導かれた燃焼空気は、4つの吐出ノズル16を通過して、分岐ポスト15の外部に吐出される。ここで、各吐出ノズル16から吐出された燃焼空気は、混合ガス噴出口14に向かって移動する。
 燃焼バーナ1の端部1aには、風箱22の外周に沿ってバーナタイル13が配置されている(図8参照)。そして、ガスダクト3およびバーナタイル13の間には、各空気室7,8内の燃焼空気を吐出させるための2つの吐出ノズル17が設けられている。ここで、ガスダクト3のうち、吐出ノズル17を構成する部分は、図8に示すように、鉛直方向に延びている。
 水平面内におけるガスダクト3および分岐ポスト15の間には、可燃性ガスを吐出させるための吐出ノズル18が形成されている。吐出ノズル18は、分岐ポスト15の一部とガスダクト3の端部とによって構成されたスリット形状の開口であり、水平面内において、吐出ノズル17および吐出ノズル16の間に位置している。
 本実施例における燃焼バーナ1の動作について説明する。
 供給ダクト4を通過した燃焼空気は、風箱22内に進入した後、整流板9の開口10を通過して、4つの空気室5~8に移動する。上部空気室5および下部空気室6に移動した燃焼空気は、分岐ポスト15内に導かれた後、吐出ノズル16から吐出される。左側空気室7および右側空気室8に移動した燃焼空気は、吐出ノズル17から吐出される。
 吐出ノズル18から吐出された可燃性ガスは、各吐出ノズル16,17から吐出された燃焼空気と混合された状態で、混合ガス噴出口14から燃焼室2内に噴出される。
 本実施例では、吐出ノズル18を挟む位置に吐出ノズル16,17を配置することにより、吐出ノズル18から吐出された可燃性ガスに対して、吐出ノズル16,17から吐出された燃焼空気を混合させやすくすることができる。そして、可燃性ガスおよび燃焼空気の混合効率を向上させることにより、燃焼室2内における混合ガスの燃焼効率を向上させることができる。
 また、ガスダクト3の外周面を、可燃性ガスよりも温度の低い燃焼空気と接触させることにより、可燃性ガスによるガスダクト3の温度上昇を抑制することができる。また、分岐ポスト15の内周面に燃焼空気を接触させることにより、可燃性ガスによる分岐ポスト15の温度上昇を抑制することができる。これにより、燃焼バーナ1に特別な耐火構造を備える必要がなく、燃焼バーナ1(特に、ガスダクト3や分岐ポスト15)を金属で形成することができる。
 次に、本発明の実施例3である燃焼バーナについて、図10を用いて説明する。図10は、燃焼室に取り付けられた燃焼バーナの水平断面図である。本実施例において、上述した実施例1で説明した部材と同一の機能を有する部材については、同一符号を用い、詳細な説明は省略する。以下、実施例1と異なる点について、主に説明する。
 本実施例において、燃焼バーナ1の端部1aには、燃焼バーナ1(風箱22)の外縁に沿って配置されるバーナタイル13と、バーナタイル13に接続され、鉛直方向に延びる3つのバーナタイル12とが配置されている。これにより、燃焼バーナ1の端部1aには、4つの混合ガス噴出口14が形成される。
 各バーナタイル12に対して、可燃性ガスの流路における上流側には、分岐ポスト15が配置されている。そして、実施例1と同様に、分岐ポスト15およびバーナタイル12の間に形成されたスペースには、上部空気室5および下部空気室6からの燃焼空気が導かれ、この燃焼空気は吐出ノズル16から混合ガス噴出口14に向かって吐出される。また、ガスダクト3およびバーナタイル13の間には、右側空気室7および左側空気室8からの燃焼空気を吐出させるための吐出ノズル17が設けられている。
 本実施例の燃焼バーナ1では、3つの分岐ポスト15によって、可燃性ガスの流路が4つの流路R1~R4に分岐されている。
 各分岐流路R1,R4に導かれた可燃性ガスは、対応する吐出ノズル18を通過する。この吐出ノズル18は、吐出ノズル17,16の間に位置しているため、吐出ノズル18から吐出された可燃性ガスは、吐出ノズル17,16から吐出された燃焼空気と混合された後、混合ガス噴出口14から燃焼室2内に噴出される。
 各分岐流路R2,R3に導かれた可燃性ガスは、対応する吐出ノズル18を通過する。この吐出ノズル18は、2つの吐出ノズル16の間に位置しているため、吐出ノズル18から吐出された可燃性ガスは、吐出ノズル16から吐出された燃焼空気と混合された後、混合ガス噴出口14から燃焼室2内に噴出される。
 本実施例においても、実施例1と同様の効果を得ることができる。また、本実施例では、実施例1と比べて、混合ガス噴出口14の数を増やしているため、可燃性ガスおよび燃焼空気を混合させやすくすることができる。なお、燃焼バーナ1に設ける混合ガス噴出口14の数、言い換えれば、分岐ポスト15の数は、燃焼バーナ1のサイズ等に基づいて、適宜設定することができる。尚、分岐ポスト15への空気の供給は、図3における上部空気室5、下部空気室6を分岐ポスト15の数に応じて仕切ることで容易に可能である。
 なお、本実施例では、実施例1で説明した分岐ポスト15を複数用いているが、実施例2で説明した分岐ポスト15を複数用いることもできる。
1:燃焼バーナ
2:燃焼室
3:ガスダクト
4:供給ダクト
5:上部空気室(空気ダクト)
6:下部空気室(空気ダクト)
7:左側空気室(空気ダクト)
8:右側空気室(空気ダクト)
9:整流板
10:開口
12,13:バーナタイル
14:混合ガス噴出口
15:分岐ポスト
16,17,18:吐出ノズル
22:風箱(空気ダクト)

Claims (8)

  1.  廃棄物のガス化によって発生した可燃性ガスと燃焼空気とを混合して燃焼室に供給するための燃焼バーナにおいて、
     前記可燃性ガスを移動させるガス流路を形成するガスダクトと、
     前記ガスダクトの外面に沿って配置され、前記ガスダクトとの間に、外部から取り込まれた前記燃焼空気を移動させる空気流路を形成する空気ダクトと、
     前記ガス流路内において前記ガスダクトに接続され、前記ガス流路を複数の流路に分岐させた状態で前記可燃性ガスを前記ガスダクトから吐出させるための分岐ポストと、を有し、
     前記空気流路内の前記燃焼空気は、前記分岐ポストに導かれて前記分岐ポストから前記可燃性ガスの分岐流路に向かって吐出されるとともに、前記ガスダクトの側から前記可燃性ガスの分岐流路に向かって吐出されることを特徴とする燃焼バーナ。
  2.  前記可燃性ガスの分岐流路は、前記ガスダクトにおける前記燃焼空気の吐出部と、前記分岐ポストにおける前記燃焼空気の吐出部との間に位置していることを特徴とする請求項1に記載の燃焼バーナ。
  3.  前記空気流路内に配置され、前記燃焼空気の通過量を規制する開口を備えた整流板を有することを特徴とする請求項1又は2に記載の燃焼バーナ。
  4.  前記空気流路のうち、前記整流板に対して前記燃焼空気の下流側の領域は、互いに仕切られ、前記ガス流路に対して上下左右に位置する上部空気室、下部空気室、左側空気室および右側空気室を有しており、
     前記上部空気室および前記下部空気室における前記燃焼空気は、前記分岐ポストに導かれ、
     前記左側空気室および前記右側空気室における前記燃焼空気は、前記ガスダクトの端部から前記可燃性ガスの分岐流路に向かって吐出されることを特徴とする請求項3に記載の燃焼バーナ。
  5.  前記分岐ポストを複数有しており、
     前記複数の分岐ポストは、鉛直方向に延びているとともに、水平面内において並んで配置されていることを特徴とする請求項1から4のいずれか1つに記載の燃焼バーナ。
  6.  前記分岐ポストに沿って配置されるバーナタイルを有しており、
     前記分岐ポストおよび前記バーナタイルの間に、前記燃焼空気を移動させるスペースと、前記燃焼空気を前記可燃性ガスの分岐流路に向かって吐出させるためのスリットとが形成されていることを特徴とする請求項1から5のいずれか1つに記載の燃焼バーナ。
  7.  前記ガスダクトは、前記可燃性ガスの移動方向と直交する断面が円形に形成されていることを特徴とする請求項1から6のいずれか1つに記載の燃焼バーナ。
  8.  請求項1から7のいずれか1つに記載の燃焼バーナを備え、前記燃焼バーナから供給された前記可燃性ガスおよび前記燃焼空気を燃焼させることを特徴とする燃焼室。
     
PCT/JP2009/002944 2009-01-19 2009-06-26 燃焼バーナ WO2010082237A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0919986A BRPI0919986A2 (pt) 2009-01-19 2009-06-26 ''queimador de combustivel compreendendo uma câmara de combustão''
CN200980154996.9A CN102282419B (zh) 2009-01-19 2009-06-26 燃烧器
EP09838207.0A EP2381172B1 (en) 2009-01-19 2009-06-26 Combustion burner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-009019 2009-01-19
JP2009009019A JP5330838B2 (ja) 2009-01-19 2009-01-19 廃棄物のガス化で発生する可燃性ガスの燃焼バーナ

Publications (1)

Publication Number Publication Date
WO2010082237A1 true WO2010082237A1 (ja) 2010-07-22

Family

ID=42339507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002944 WO2010082237A1 (ja) 2009-01-19 2009-06-26 燃焼バーナ

Country Status (5)

Country Link
EP (1) EP2381172B1 (ja)
JP (1) JP5330838B2 (ja)
CN (1) CN102282419B (ja)
BR (1) BRPI0919986A2 (ja)
WO (1) WO2010082237A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021209906A1 (en) * 2020-04-16 2021-10-21 General Electric Company Combustion system for a boiler with fuel stream distribution means in a burner and method of combustion

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171522B2 (ja) * 2008-09-30 2013-03-27 三星ダイヤモンド工業株式会社 脆性材料基板のスクライブ方法
JP5537299B2 (ja) * 2010-07-07 2014-07-02 新日鉄住金エンジニアリング株式会社 廃棄物処理設備の燃焼室
JP5537298B2 (ja) * 2010-07-07 2014-07-02 新日鉄住金エンジニアリング株式会社 廃棄物処理設備の燃焼室の燃焼バーナ
JP2014134350A (ja) * 2013-01-11 2014-07-24 Edwards Kk インレットノズル、及び除害装置
US20160195264A1 (en) * 2013-07-30 2016-07-07 Futurenergy Pty Ltd Process utilizing synergistic mixture of fuels to produce energy and reduce emissions in boilers
CN103574620A (zh) * 2013-11-04 2014-02-12 南京昊扬化工装备有限公司 一种焚烧器
JP6621559B1 (ja) * 2019-06-04 2019-12-18 日鉄エンジニアリング株式会社 燃焼バーナ及び燃焼炉
JP6742475B1 (ja) * 2019-06-04 2020-08-19 日鉄エンジニアリング株式会社 燃焼炉

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339406A (ja) * 1997-06-06 1998-12-22 Osaka Gas Co Ltd 低NOxバーナ
JP2006266619A (ja) 2005-03-24 2006-10-05 Nippon Steel Corp 廃棄物ガス化で発生する可燃性ガスの燃焼バーナ
JP2008116077A (ja) * 2006-11-01 2008-05-22 Takuma Co Ltd ガスバーナ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE357304C (de) * 1922-08-19 Maschb A G Balcke Abt Moll Brenner fuer Gasfeuerungen
JP3153091B2 (ja) * 1994-03-10 2001-04-03 株式会社荏原製作所 廃棄物の処理方法及びガス化及び熔融燃焼装置
US1841831A (en) * 1927-07-22 1932-01-19 Marston Horace Arthur Burner for pulverized fuel
GB309641A (en) * 1928-01-19 1929-04-18 Clarke Chapman And Company Ltd Improvements in or relating to burners particularly for furnaces fired with pulverised fuel
FR1261312A (fr) * 1960-04-05 1961-05-19 Saint Gobain Procédé et dispositif statique de mélange de fluides
JPS57150328U (ja) * 1981-03-13 1982-09-21
JPS5837017U (ja) * 1981-08-28 1983-03-10 東陶機器株式会社 ガスバ−ナ−
JPS5994759U (ja) * 1982-12-13 1984-06-27 新日本製鐵株式会社 溶融金属用容器の加熱装置
JPS606932U (ja) * 1983-06-24 1985-01-18 松下電器産業株式会社 燃焼装置
ZA843645B (en) * 1983-07-07 1984-12-24 Combustion Eng Method and apparatus for preventing erosion of coal buckets
DE3690574C2 (de) * 1985-11-15 1995-09-28 Nippon Oxygen Co Ltd Vorrichtung zum Erhitzen von Sauerstoff
JPS62136725U (ja) * 1986-02-24 1987-08-28
DE3738064A1 (de) * 1987-11-09 1989-05-24 Stubinen Utvecklings Ab Vorrichtung zum verbrennen fester brennstoffe, insbesondere kohle, torf oder dergleichen, in pulverisierter form
US6802178B2 (en) * 2002-09-12 2004-10-12 The Boeing Company Fluid injection and injection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339406A (ja) * 1997-06-06 1998-12-22 Osaka Gas Co Ltd 低NOxバーナ
JP2006266619A (ja) 2005-03-24 2006-10-05 Nippon Steel Corp 廃棄物ガス化で発生する可燃性ガスの燃焼バーナ
JP2008116077A (ja) * 2006-11-01 2008-05-22 Takuma Co Ltd ガスバーナ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021209906A1 (en) * 2020-04-16 2021-10-21 General Electric Company Combustion system for a boiler with fuel stream distribution means in a burner and method of combustion

Also Published As

Publication number Publication date
EP2381172A1 (en) 2011-10-26
CN102282419B (zh) 2014-07-02
EP2381172B1 (en) 2019-01-23
EP2381172A4 (en) 2017-10-18
JP2010164283A (ja) 2010-07-29
BRPI0919986A2 (pt) 2018-02-27
JP5330838B2 (ja) 2013-10-30
CN102282419A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
WO2010082237A1 (ja) 燃焼バーナ
US10378760B2 (en) Lean gas burner
US20140109583A1 (en) Burner
KR20140007765A (ko) 특히 가스 터빈용 연소기 장치
JP4340873B2 (ja) 燃焼装置
JP5936400B2 (ja) 管状火炎バーナ及びラジアントチューブ式加熱装置
KR20160122210A (ko) 인-스트림 버너 모듈
JP2019215138A (ja) マルチノズルバーナ及び燃焼器
JP3812638B2 (ja) 排ガス処理用燃焼器
US20230014871A1 (en) Radiant wall burner
JP5537298B2 (ja) 廃棄物処理設備の燃焼室の燃焼バーナ
JP4772881B2 (ja) バーナ装置および二段燃焼式バーナ装置
JP5537299B2 (ja) 廃棄物処理設備の燃焼室
JP6041662B2 (ja) 粉体燃焼装置
GB2502298A (en) Burner and Combustor for Gaseous Hydrogen
JP2007139380A (ja) 加熱炉用の燃焼装置
JP2006266619A (ja) 廃棄物ガス化で発生する可燃性ガスの燃焼バーナ
KR102537965B1 (ko) 혼합연료가스 예혼합장치
JP7230757B2 (ja) 燃焼器
KR102081257B1 (ko) 복합 가스 연소용 버너
JP2008032310A (ja) 燃焼除害装置
CN108204597B (zh) 火炬燃烧器以及火炬燃烧系统
KR200210408Y1 (ko) 예혼합가스 버너
CN115307128A (zh) 燃料喷口及具有其的燃烧装置
JP2019074305A (ja) 二次燃焼室への酸素含有ガス供給方法及び二次燃焼設備

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154996.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838207

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009838207

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0919986

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110715