WO2010078638A1 - Processo de implementação e melhoria do "pellet feed" pela utilização de finos provenientes da aciaria - Google Patents

Processo de implementação e melhoria do "pellet feed" pela utilização de finos provenientes da aciaria Download PDF

Info

Publication number
WO2010078638A1
WO2010078638A1 PCT/BR2010/000011 BR2010000011W WO2010078638A1 WO 2010078638 A1 WO2010078638 A1 WO 2010078638A1 BR 2010000011 W BR2010000011 W BR 2010000011W WO 2010078638 A1 WO2010078638 A1 WO 2010078638A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellet
sludge
fines
implementation
feed
Prior art date
Application number
PCT/BR2010/000011
Other languages
English (en)
French (fr)
Inventor
Jefferson Januário MENDES
Original Assignee
Minesteel Representação E Comércio Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minesteel Representação E Comércio Ltda filed Critical Minesteel Representação E Comércio Ltda
Publication of WO2010078638A1 publication Critical patent/WO2010078638A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present patent which concerns the steel industry, relates to a process for using fines from the cleaning of steelworks gases, where these fines are divided into coarse steel sludge (LGA) and fine steel sludge ( LFA), the thin portion of these residues obtained from cleaning of the steelmaking gases, mainly composed of iron oxide ( '60% FeO) complemented by CaO, SI0 2) MgO, Al 2 0 3, Fe 2 0 3 and low metallic iron content (2 to 3%).
  • LGA coarse steel sludge
  • LFA fine steel sludge
  • Waste in the steel industry is generated from the extraction and processing of iron ore to its reduction and refining for steel production. Each unit operation generates a specific quantity and quality of waste.
  • compositions that are, to reach such a size of particles that their properties begin to differ based on the content of iron and gangue present in them. Thereafter, concentration operations are performed to separate iron-rich content from other compounds.
  • the material had to be comminuted to a smaller range than it was. That is, about 70% of the material was between 0.1 and 1 mm, and had to be brought to a size where about 85% of the particles should be below 0.040 mm.
  • the quality of the finished pellets was also quite high, not only for the much more precise control of the composition, but also for several factors such as guaranteed mechanical load resistance, lower fines generation in the blast furnace, higher permeability - Oven, greater recovery of content present in mines and enabling the use of ores of lower contents than those that made up the granulated load. This all justified the increased energy and equipment consumption in the pellet manufacturing process.
  • the known pelletizing process goes through the following basic steps, according to each type of material and plant design:
  • pellet feed which consists in selecting an ore mix so that the metallic content is within the desired operating range and when subjected to grinding and concentration, mixing of this material with the complementary products occurs.
  • pellet feed such as bentonite, anthracite and lime hydrated.
  • bentonite is a binder which favors the formation of raw pellets during the pelletizing process
  • ground calcite limestone is an important additive to pellet as it provides the essential CaO to the process and a prior homogenization of this material is performed
  • coal mines! ground is of fundamental importance as a heat source, providing better pellet burning and therefore better pellet quality and productivity.
  • lime during the firing and sintering process combines with the silica present in the ore to form the slag layer responsible for the onset of particle agglomeration, and bentonite in addition to Acting as a cold binder helps lower the melting point of the slag layer formed.
  • the process of refining pig iron in steel manufacturing also generates waste, which is already considered a by-product.
  • Slag predominantly composed of CaO
  • the gases are recovered as sources of energy.
  • the fines of steelmaking are divided into two types, the thick steelmaking mud composing 30% on average of the fines generated, and with already defined destination; and the fine sludge, making up the remaining 70% of the fines generated, which is basically made up of FeO (about 60% on average) having no definite use being disposed of in landfills.
  • the present patent presents a process of implementation and improvement of the pellet feed by the use of the fine portion that composes the melt sludge, whose use is beneficial for several reasons: first, its average composition is suitable for use as a component the pellet feed that will be used to prepare the pellets to be loaded into the blast furnaces; second, it allows the recovery of a steel waste that has not yet been defined, preventing it from being discarded, causing damage to the environment; third, its use allows the replacement of a much more expensive component of pellet manufacture that must be mined, that is, in addition to the economic advantage also has the energy saving of mining, preparation and transport of this input partially replaced; Fourth, the use of this residue allows a percentage of CaO to be supplied by the additive itself, eliminating part of the direct addition of limestone, thereby saving energy and even reducing the CO 2 emission in the pelletizing process.
  • the metal content of the finished pellet becomes higher than that produced with the conventional component.
  • Fine sludge which has a higher density than bentonite by replacing it, significantly contributes to the improvement of mechanical strength and structural density of the pellet without compromising its metallurgical permeability.
  • the process described herein not only presents the possibility of recovery and recycling of this waste specifically, but also promotes improvements in yield in the quality of the pellets manufactured, with significant economic advantages in their production.
  • this sludge To use this sludge, it must go through a process of individualizing the particles that make it up, so that they are completely disaggregated from each other, regardless of their size. After this individualization the fine slurry is directed to a concentration spiral only to separate the solid, pulp-like part from the liquid part of the process.
  • fine sludge thus has an important effect on pellet manufacture, as it is basically composed of FeO. Its hygroscopy is intensified with the breakdown of the particles that make up the mud; The contact surface increases significantly, also increasing the aggregating effect of these fines.
  • Fine sludge is an additive that has agglomerating properties that favor the formation of raw pellets and also provides better mechanical resistance to the burned pellet, besides providing part of the CaO necessary to the process, reducing its consumption.
  • the improvement of the mechanical strength is mainly due to the presence of FeO, which in the formation of the binder slag of the particles, confers to it, much greater resistance, in addition to being associated with Fe 2 0 3 present in
  • the mud After disaggregation the mud is directed to the dewatering steps.
  • This sludge can be wet or dry milled as the raw pellet is produced by mixing the pellet feed with water and the other components.
  • the mud is the last to be mixed.
  • this mud is already properly disaggregated and has a very small particle size, it is subjected to a simple size homogenization grinding step, which in this single step brings the particles to close sizes.
  • the average composition of bentonite is approximately: 20.50% of
  • the thin sludge 20 has an average composition content for the same compounds of approximately: 0.14% Al 2 O 3 ; 11, 50% CaO;
  • Figure 1 illustrates the flowchart for obtaining the fine steelmaking sludge from general sludge formation in the thickener to final preparation.
  • FIG. 2 illustrates the processing flowchart for producing the burnt pellet.
  • Figure 3 illustrates the sintering process that occurs with pellets with and without fine steel sludge.
  • Figure 4 illustrates the concentric forming layers of the thin steel sludge pellets, which are mechanically more resistant after firing.
  • the process begins with obtaining the steelmaking sludge from the sludge formation in the thickener (1), from which it is routed to a classifying screw (2). Of this classifier about 30% (2A) is thick steel melt (LGA). The remaining 70% (2B), fine melt sludge (LFA), is sent to the disintegration equipment (3), from which this now disaggregated sludge (3A) is sent to conventional extra-fine particle removal processes. , such as spirals and / or cyclones (4) and (5).
  • the thin sludge After passing through the spiral (4) the thin sludge is separated into a denser pulp (4A) and a more diluted pulp (4B), the part being dense conveyed to the storage silo (7) from where it is sent to the pellet processing and production.
  • the most diluted part because it carries a very large volume of water and, therefore, most of the extra fine particles, is directed to cyclone clearance (5). From the cyclone is obtained the densified product (5A) which is directed to the storage silo (7) and the extra fine particle water (5B) to the settling tank (6).
  • the products that make up the pellet are stored in their own silos (8).
  • the silos which contain the pellet feed (8B), are discharged to receive water (9) shortly before being processed in a ball mill (10). From the mill the milled material is directed to a flotation tank (11) for concentration and cleaning of the pellet feed, then to filtering (12) and from there to the dosing silo (13).
  • the additives (8A) are treated in another circuit and are directed to an additive mill (14), where they receive the addition of concentrated slurry from the storage silos (7). There these materials are properly mixed and directed to the dosing silo (15).
  • the feeder silos (13) and (15) feed the mixer (16) which homogenizes the mixture by sending it to a ready mix feeder silo (17), where the mixture goes to the pelletizing equipment (18).
  • the raw pellet formed in this equipment (18) is discharged into a conveyor system (19) which forwards them to a drying, burning and cooling furnace (20) resulting in the finished pellets (21).
  • the structure formed during pelletizing is composed by microsintering of the grains (25) that make up the raw pellet during its burning. These grains (25A) are consolidated by the formation of a binder layer (25B) at the contact interfaces during raw pellet manufacture.
  • the raw pellet is subjected to firing (20), which promotes the consolidation of this structure (26), this is due to the thermal coalification of these grains (26A) through the microsintered binder layers (26B) between them.
  • the structure gives raw pellet (27), is formed by a binder that is richer in FeO and CaO (27A), and high hygroscopy, which strengthens the bond between the grains. that make up the pellet.
  • this structure After firing (20) this structure (28) has a stronger binder layer (28A), creating more stable and resistant fusion bridges (28A). This favors the increase of the mechanical resistance of the pellet, without, however, reducing its porosity.
  • pellets (22) After firing pellets (22) have circular layers, which form as they heat up from the inside out during pelletizing, where the process of consolidation of their structure occurs.
  • the cross section of a pellet (23) clearly shows the rings that arise during their formation and consolidation. These rings are formed by porous hardening and densifying layers (24) permeable to the reducing gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

O texto do resumo compreendido entre as linhas 4 e 8 deve ser reformulado, de modo a diferenciar entre si as expressões "finos", "lama fina de aciaria (LFA)" e "parcela fina destes resíduos". Sugerimos a substituição do referido texto por "Compreende a presente patente de invenção a um processo para utilização da parcela fina dos residuos obtidos da limpeza dos gases da aciaria, basicamente composta por óxido de ferro, onde estes resíduos se dividem em lama grossa de aciaria (LGA) e lama fina de aciaria (LFA)". Concomitante correção se torna necessária no relatório descritivo, página 1, linhas 3-10.

Description

"PROCESSO DE IMPLEMENTAÇÃO E MELHORIA DO "PELLET FEED" PELA UTILIZAÇÃO DE FINOS PROVENIENTES DA ACI ARI A"
Refere-se a presente patente de invenção, que diz respeito à indústria siderúrgica, a um processo para utilização de finos oriundos da limpeza dos gases de aciaria, onde estes finos se dividem em lama grossa de aciaria (LGA) e lama fina da aciaria (LFA), sendo a parcela fina destes resíduos, obtidos da limpeza dos gases da aciaria, basicamente composta por óxido de ferro (« 60% FeO) complementado por CaO, Si02) MgO, Al203, Fe203 e baixo teor de ferro metálico (2 a 3%).
Desde o início, a siderurgia gerou produtos secundários, que por não terem uso direto foram tratados como resíduos, materiais a serem descartados. Os resíduos na siderurgia são gerados desde a extração e beneficiamento do minério de ferro até sua redução e refino para a produção de aço. Cada operação unitária gera uma quantidade e qualidade de resíduo específico.
Na extração do minério, gera-se a ganga, material com baixo teor de carga metálica (minério de ferro) e alto teor de óxidos indesejáveis (Si02, Al203, P205, etc), que não são retirados do minério inicialmente com facilidade. Para retirada destes materiais do minério são necessárias várias etapas e métodos de beneficiamento e concentração para que se chegue a uma carga de alto teor de ferro metálico e baixo teor de óxidos indesejáveis. Entre as várias operações unitárias de beneficiamento encontram-se algumas que são de processamento mecânico (britagem, moagem, escrubagem, etc), considerando que as etapas posteriores dependem exclusivamente da eficiência dessas, para que atuem corretamente.
Um fator de grande importância consiste na cominuição do minério até um tamanho onde as partículas estejam o mais individualizadas c
possíveis e com composições bem definidas. Isto é, chegar a um tamanho tal de partículas que suas propriedades comecem a diferir com base no teor de ferro e ganga presente nas mesmas. A partir daí, operações de concentração são praticadas para separar o conteúdo rico em ferro dos demais compostos.
São nessas etapas de cominuição que as primeiras partículas finas de minério são geradas e descartadas em bacias de sedimentação, sem muita utilidade para as mesmas, uma vez que seu tamanho (geralmente abaixo de 1 mm) impedia seu uso em qualquer processo conhecido de redução do minério. Com o avanço das técnicas termodinâmicas de siderurgia, partículas de tamanho médio foram direcionadas para o processo de sinterização, onde, por meio de uma fusão localizada, partículas menores são aglomeradas em grãos maiores. Isto permitiu que, não só se aproveitassem partículas menores que 6 mm e maiores que 1 mm, mas acabou por favorecer a formação de um produto de qualidade definida, pois, a partir daí, a composição do produto passou a ser definida no início da mistura, independente da composição inicial do minério utilizado.
Contudo, o material abaixo de 1 mm não tinha como ser sinterizado adequadamente, e um grande volume de material era descartado. À medida que a necessidade de maior rendimento dos processos siderúrgicos aumentava, estudos feitos com o material que se descartava mostraram que o mesmo poderia ser reaproveitado, num processo que se denominou pelotização, pois esses finos eram aglomerados a frio sob a forma de esferas, de tamanho entre 8 e 18 mm, aproximadamente, para posteriormente serem queimadas em um forno, o que causa uma microssinterização das partículas finas dando uma coerência mecânica e permeabilidade metalúrgica às esferas formadas.
Para a fabricação das pelotas, o material teve que ser cominuído a uma faixa menor do que a que se encontrava. Isto é, cerca de 70% do material se encontrava entre 0,1 e 1 mm, e teve que ser levado a um tamanho onde cerca de 85% das partículas deveriam se encontrar abaixo de 0,040 mm.
Essa necessidade de moagem permitiu, contudo, que processos de concentração para materiais extrafinos, tais como flotação e ciclonagem, tivessem efeito, melhorando ainda mais a qualidade do produto a ser utilizado na pelotização.
A qualidade das pelotas prontas também se mostrou bastante alta, não só pelo controle bem mais preciso da composição, mas também por vários fatores tais como: resistência mecânica garantida para a carga, menor geração de finos dentro do alto-forno, maior permeabilidade do alto-forno, maior recuperação de conteúdo presente nas minas e viabilização do uso de minérios de teores menores que os que compunham a carga granulada. Isso tudo justificou o aumento de consumo de energia e equipamentos no processo de fabricação de pelotas.
O processo conhecido de pelotização passa pelas seguintes etapas básicas, de acordo com cada tipo de material e do projeto de planta:
(I) Preparação do "pellet feed", que consiste em selecionar um mix de minério de forma que o teor metálico se encontre dentro da faixa operacional desejada e ao se submeter a uma moagem e concentração, ocorra a mistura deste material com os produtos complementares do "pellet feed", tais como bentonita, antracito e cal hidratada. Considerando que: a bentonita é um aglomerante que favorece a formação das pelotas cruas durante o processo de pelotamento, o calcário calcítico moído é um aditivo importante à pelota por fornecer o CaO, essencial ao processo, sendo realizada uma prévia homogeneização deste material; o carvão minera! moído é de fundamental importância como fonte de calor, proporcionando uma melhor queima à pelota e, consequentemente, melhores níveis de qualidade da pelota e de produtividade.
(II) O carregamento desta mistura no dispositivo de pelotização, onde as pelotas serão formadas em função de vários parâmetros que são ajustados de acordo com as propriedades objetivadas na pelota crua.
(III) Descarregamento da pelota crua e carregamento da mesma em um forno de queima, que submete a pelota a uma temperatura de cerca de 1000°C a 1400°C, pelo tempo necessário para que a mesma sofra o processo de microssinterização e adquira resistência mecânica e permeabilidade para ser carregada no alto-forno.
Além de suas funções específicas na mistura do "pellet feed", a cal durante o processo de queima e sinterização, combina com a sílica presente no minério para formar a camada de escória responsável pelo início da aglomeração das partículas, e, a bentonita, além de atuar como ligante a frio, ajuda no abaixamento do ponto de fusão da camada de escória formada.
O processo de refino do gusa, na fabricação do aço, também gera resíduos, que já são considerados subprodutos. A escória, predominantemente composta por CaO, é utilizada por cimenteiras, ou ainda, direcionada para a fabricação de fertilizantes ou corretivos de solo. Os gases são recuperados como fontes de energia. Os finos da aciaria se dividem em dois tipos, a lama grossa de aciaria compondo 30% em media dos finos gerados, e com destinação já definida; e a lama fina, compondo os 70% restantes dos finos gerados, a qual é composta basicamente por FeO (cerca de 60%, em média) não tendo uso definido sendo descartada em aterros.
A presente patente, neste sentido, apresenta um processo de implementação e melhoria do "pellet feed" pela utilização da parcela fina que compõe a lama de aciaria, cuja utilização é benéfica por vários motivos: primeiro, sua composição média é adequada à utilização como componente do "pellet feed" que será utilizado na preparação das pelotas que serão carregadas nos altos-fornos; segundo, permite a recuperação de um resíduo siderúrgico que ainda não tem uso definido, impedindo que o mesmo venha a ser descartado, causando danos ao meio ambiente; terceiro, sua utilização permite a substituição de um componente da fabricação das pelotas que é bem mais oneroso e deve ser minerado, ou seja, além da vantagem económica tem também a economia energética da mineração, preparo e transporte deste insumo substituído em parte; quarto, a utilização desse resíduo permite que um percentual do CaO seja fornecido pelo próprio aditivo, dispensando parte da adição direta de Calcário, com isso, economizando energia e até diminuindo a emissão de C02 no processo de pelotização.
Como a lama fina de aciaria desagregada substitui a bentonita, que é um material, que inicialmente não possui teores significativos de ferro, o teor metálico da pelota pronta se torna maior do que a produzida com o componente convencional. A lama fina, que possui uma densidade maior que a da bentonita, ao substituí-la, contribui significativamente para a melhoria da resistência mecânica e da densidade estrutural da pelota, sem comprometer sua permeabilidade metalúrgica. O processo aqui descrito apresenta não só a possibilidade de recuperação e reciclagem deste resíduo, especificamente, mas também promove melhorias no rendimento na qualidade das pelotas fabricadas, com vantagens económicas significativas na produção das mesmas.
A utilização deste resíduo, subproduto da aciaria, é extremamente vantajoso em vários aspectos, porque a lama fina de aciaria, embora possua um teor de óxido de ferro (FeO) elevado, por sua granulometria reduzida, é de difícil concentração e separação dos demais componentes da lama, sendo assim, seu tratamento de recuperação torna-se inviável, económica e tecnicamente por outros processos.
Para se utilizar esta lama, a mesma deve passar por um processo de individualização das partículas que a compõe, de forma que as essas fiquem totalmente desagregadas umas das outras, independente do seu tamanho. Após essa individualização a lama fina é direcionada a uma espiral de concentração apenas para separar a parte sólida, sob forma de polpa, da parte líquida do processo.
A utilização da lama fina, desta forma, torna-se de efeito importante na fabricação das pelotas, uma vez que é composta basicamente por FeO. Sua higroscopia é intensificada com a desagregação das partículas que compõe a lama; a superfície de contato aumenta significativamente, elevando também o efeito agregante destes finos.
A lama fina é um aditivo que possui propriedades aglomerantes que favorecem a formação das pelotas cruas e, ainda, confere uma melhor resistência mecânica à pelota queimada, além de fornecer parte do CaO necessário ao processo, diminuindo o consumo do mesmo. A melhoria da resistência mecânica se dá principalmente pela presença de FeO, que na formação da escória ligante das partículas, confere à mesma, uma resistência muito maior, além de se associar ao Fe203 presente no
"pellet feed", gerando uma estrutura muito mais resistente.
Após a desagregação a lama é direcionada às etapas de desaguamento. Esta lama pode ser moída a úmido ou a seco, já que a 5 pelota crua é produzida misturando-se o "pellet feed" com água, e os demais componentes. A lama é a última a ser misturada.
Como esta lama já está devidamente desagregada e apresenta uma granulometria muito pequena, ela é submetida a uma etapa simples de moagem de homogeneização de tamanho, que nesta única etapa leva l o as partículas a tamanhos próximos.
Esta substituição, de parte da bentonita pela lama fina, traz vantagens importantes ao processo de fabricação de pelotas, porque a bentonita é um material de valor e custo de transporte onerosos e a lama pode substituir até sua quase totalidade na fabricação de pelotas. 15 Esta bentonita é normalmente misturada numa relação de 5 a 8kg por tonelada de "pellet feed".
A composição média da bentonita é aproximadamente: 20,50% de
Al203; 0,43% de CaO; 3,50% de Fe203; 1 ,30% de K20; 2,3% de MgO;
0,75% de Na20; 0,23% de P205; 54,3% de Si02, enquanto que a lama 20 fina apresenta um teor médio de composição para os mesmos compostos de aproximadamente: 0,14% de Al203; 11 ,50% de CaO;
1 ,50% de Fe203; 0,07% de K20; 0,015% de MgO; 0,782% de Na20;
0,22% de P205; 8,621% de Si02; e o mais importante, um teor de 60,5% de FeO.
25 O que quer dizer que quando se utiliza em uma pelotização somente bentonita os teores de sílica, alumina e fósforo são maiores do que quando se utiliza a lama fina de aciaria em substituição de parte ou de toda a bentonita. O teor de ferro final e a basicidade da escória formada nas camadas sinterizadas também sofrem aumento.
O processo, objeto desta patente, pode ser mais bem compreendido reportando-se as figuras anexas, que integram este relatório descritivo e contém referências numéricas em conjunto com a descrição de suas particularidades técnicas. Figuras estas, que não restringe sua configuração quanto às suas dimensões, proporções e eventuais tipos de disposições inseridas e nem o alcance de sua aplicação prática.
A figura 1 ilustra o fluxograma de obtenção da lama fina de aciaria, desde a formação da lama geral no espessador até sua preparação final.
A figura 2 ilustra o fluxograma de processamento para produção da pelota queimada.
A figura 3 ilustra o processo de sinterização que ocorre com as pelotas com e sem lama fina de aciaria.
A figura 4 ilustra as camadas de formação concêntrica das pelotas com lama fina de aciaria, que são mecanicamente mais resistentes após a queima.
De acordo com estas figuras e suas referências numéricas, o processo se inicia com a obtenção da lama de fina de aciaria desde a formação da lama no espessador (1), de onde é encaminhada a um parafuso classificador (2). Deste classificador cerca de 30% (2A) é de lama grossa de aciaria (LGA). Os outros 70% restantes (2B), lama fina de aciaria (LFA), são encaminhados ao equipamento de desagregação (3), a partir do qual, esta lama, agora desagregada (3A) é enviada a processos convencionais de retirada das partículas extrafinas, tais como espirais e/ou ciclones (4) e (5).
Após a passagem pela espiral (4) a lama fina é separada em uma polpa mais densa (4A) e numa polpa mais diluída (4B), sendo a parte densa encaminhada para o silo de armazenamento (7) de onde é enviada ao processamento e produção de pelotas. A parte mais diluída, por carregar um volume muito grande de água e, portanto, a maior parte das partículas extrafinas, é direcionada à deslamagem em ciclone (5). Do ciclone obtém-se o produto densificado (5A) que é direcionado ao silo de armazenamento (7), e a água com partículas extrafinas (5B) direcionada ao tanque de decantação (6).
Os produtos que compõem a pelota são armazenados em silos próprios (8). Os silos, que contêm os finos de minério ("pellet feed") (8B), são descarregados de forma a receberem adição de água (9) pouco antes de serem processados em um moinho de bolas (10). Do moinho o material moído é direcionado a um tanque de flotação (11), para concentração e limpeza do pellet feed, seguindo então para a filtragem (12) e desta para o silo de dosagem (13).
Os aditivos (8A) são tratados em outro circuito sendo direcionados para um moinho de aditivos (14), onde recebem a adição da lama fina de aciaria concentrada dos silos de armazenamento (7). Lá esses materiais são devidamente misturados e direcionados para o silo dosador (15). Os silos dosadores (13) e (15) alimentam o misturador (16) que homogeneíza a mistura enviando a mesma para um silo dosador de mistura pronta (17), de onde a mistura segue para o equipamento de fazer pelotas (18). A pelota crua formada neste equipamento (18) é descarrega em um sistema de transporte (19) que as encaminha para um forno (20) de secagem, queima e resfriamento resultando nas pelotas prontas (21).
A estrutura formada durante a pelotização é composta pela microssinterização dos grãos (25) que compõem a pelota crua, durante a sua queima. Estes grãos (25A) se consolidam pela formação de uma camada ligante (25B) nas interfaces de contato durante a fabricação da pelota crua. A pelota crua é submetida à queima (20), o que promove a consolidação desta estrutura (26), isto ocorre devido ao coalecimento térmico destes grãos (26A) através das camadas ligantes microssinterizadas (26B) entre os mesmos.
Com adição de lama fina de aciaria nos aditivos, a estrutura dá pelota crua (27), passa a ser formada por um ligante que é mais rico em FeO e CaO (27A), e de alta higroscopia, que reforça a ligação entre os grãos que compõem a pelota. Após a queima (20) esta estrutura (28) apresenta uma camada ligante mais forte (28A), criando pontes de fusão mais estáveis e resistentes (28A). Isto favorece o aumento da resistência mecânica da pelota, sem, no entanto, diminuir sua porosidade.
As pelotas após a queima (22) apresentam camadas circulares, que se formam à medida que sofrem o aquecimento de dentro pra fora, durante a pelotização, onde ocorre o processo de consolidação de sua estrutura. A seção transversal de uma pelota (23) mostra claramente os anéis que surgem durante sua formação e consolidação. Estes anéis são formados por camadas de endurecimento e densificação (24) porosas e permeáveis aos gases de redução.
A utilização deste resíduo siderúrgico na produção de pelotas apresenta várias vantagens significativas: (i) o aumento do teor metálico sob a forma de FeO, por si só pode promover uma redução no consumo de carvão durante o refino da pelota; (ii) a presença de CaO na lama fina, em maior teor do que na bentonita, proporciona um menor consumo de calcário calcítico no processo de pelotização; (iii) o aumento da resistência mecânica na pelota pronta diminui significativamente a geração de finos durante seu carregamento no altoforno; (iv) a presença de monóxido de ferro e cal na lama fina favorece a diminuição nas emissões de C02 durante o processo de refino da pelota, uma vez que não será gerado C02 na calcinação do calcário substituído pela cal, e a quantidade de carbono necessária para reduzir o FeO a ferro metálico é menor do que o necessário para reduzir a hematita, mais oxidada.

Claims

REIVINDICAÇÕES
1 ) "PROCESSO DE IMPLEMENTAÇÃO E MELHORIA DO "PELLET FEED" PELA UTILIZAÇÃO DE FINOS PROVENIENTES DA ACIARIA", um processo para utilização de finos oriundos da limpeza dos gases de aciaria, no qual a utilização da lama fina de aciaria, devidamente desagregada, é utilizada para compor a pelota, caracterizado por a lama fina ser adicionada substituindo uma parte ou toda a bentonita em função de sua alta higroscopicidade e propriedades químicas; sendo a lama fina obtida a partir da lama de aciaria formada no espessador (1) logo após ser encaminhada a um parafuso classificador (2) que a divide em lama grossa de aciaria (LGA), com destinação já definida, e lama fina da aciaria (LFA); onde a parcela grossa (2A) da lama grossa de aciaria (LGA), cerca de 30% aproximadamente, é separada dos outros 70% restantes (2B), lama fina de aciaria (LFA), para ser processada e utilizada na produção de pelotas ("pellet feed"), através de um processo que envolve o uso de equipamentos, tais como: equipamentos de desagregação (3); equipamentos de retirada de partículas extrafinas, tais como espirais e ciclones (4) e (5); tanque de decantação (6); silos de armazenamento (7); silos próprios (8); adição de água (9) em moinho de bolas (10); tanque de flotação (11); filtragem (12); filtro de dosagem (13); moinho de aditivos (14); silo dosador (15); misturador (16); silo dosador de mistura pronta (17); dispositivo de fabricação de pelotas (18); sistema de transporte (19); e forno de secagem e queima (20); sendo, ainda, a introdução da lama fina atuante como ligante no processo para melhorar o rendimento e a qualidade do "pellet feed", na produção das pelotas prontas (21).
2) "PROCESSO DE IMPLEMENTAÇÃO E MELHORIA DO "PELLET FEED" PELA UTILIZAÇÃO DE FINOS PROVENIENTES DA ACIARIA", de acordo com a reivindicação n° 1 caracterizado por, no equipamento de desagregação (3), a lama fina de aciaria ser desagregada (3A) e enviada a processos convencionais de retirada das partículas extrafinas, tais como espirais e/ou ciclones (4) e (5); sendo, depois da passagem pela espiral (4), separada em uma polpa mais densa (4A) e numa polpa mais diluída (4B), com a parte densa encaminhada para o silo de armazenamento (7) de onde é enviada ao processamento e produção de pelotas; e a parte mais diluída, por carregar um volume muito grande de água, portanto, com a maior parte das partículas extrafinas, ser direcionada à deslamagem em ciclone (5); obtendo do ciclone o produto densificado (5A) que é direcionado ao silo de armazenamento (7), e a água com partículas extrafinas (5B) direcionada ao tanque de decantação (6).
3) "PROCESSO DE IMPLEMENTAÇÃO E MELHORIA DO "PELLET FEED" PELA UTILIZAÇÃO DE FINOS PROVENIENTES DA ACIARIA", de acordo com a reivindicação n° 1 caracterizado por os produtos que compõem a pelota serem armazenados em silos próprios (8); sendo que, dos silos, contendo os finos de minério ("pellet feed") (8B), descarregados de forma a receberem adição de água (9) pouco antes de serem processados em um moinho de bolas (10) e deste, o material moído, ser direcionado a um tanque de flotação (11), para concentração e limpeza do "pellet feed", seguindo então para a filtragem (12) e desta para o silo de dosagem (13).
4) "PROCESSO DE IMPLEMENTAÇÃO E MELHORIA DO "PELLET FEED" PELA UTILIZAÇÃO DE FINOS PROVENIENTES DA ACIARIA", de acordo com a reivindicação n° 1 , caracterizado por os aditivos (8A) serem tratados em outro circuito sendo direcionados para um moinho de aditivos (14), onde recebem a adição da lama fina de aciaria concentrada dos silos de armazenamento (7), onde são devidamente misturados e direcionados para o silo dosador (15); silos dosadores (13) e (15) estes, que alimentam o misturador (16) homogeneizando a mistura e enviando a mesma para um silo dosador de mistura pronta (17), de onde segue para o equipamento produtor de fazer pelotas (18); sendo a pelota crua descarrega em um sistema de transporte (19) que as encaminha para um forno (20) de secagem, queima e resfriamento, resultando nas pelotas prontas (21 ).
5) "PROCESSO DE IMPLEMENTAÇÃO E MELHORIA DO "PELLET FEED" PELA UTILIZAÇÃO DE FINOS PROVENIENTES DA
ACIARIA", de acordo com a reivindicação n° 1 caracterizado por a estrutura formada durante a pelotização ser composta pela microssinterização dos grãos (25) que compõem a pelota crua, durante a sua queima; consolidando os grãos (25A) devido ao coalecimento térmico destes grãos (26A), através das camadas ligantes microssinterizadas (26B) entre os mesmos, que formam uma camada ligante (25B) nas interfaces de contato durante a fabricação da pelota crua.
6) "PROCESSO DE IMPLEMENTAÇÃO E MELHORIA DO "PELLET FEED" PELA UTILIZAÇÃO DE FINOS PROVENIENTES DA
ACIARIA", de acordo com a reivindicação n° 1 caracterizado por, com adição de lama fina de aciaria nos aditivos, a estrutura da pelota crua (27), passar a ser formada por um ligante que é mais rico em FeO e CaO (27A), e de alta higroscopia, que reforça a ligação entre os grãos que compõem a pelota; apresentando esta estrutura (28) uma camada ligante mais forte (28A), que cria pontes de fusão mais estáveis e resistentes (28A), favorecendp o aumento da resistência mecânica da pelota, sem, no entanto, diminuir sua porosidade. 7) "PROCESSO DE IMPLEMENTAÇÃO E MELHORIA DO "PELLET FEED" PELA UTILIZAÇÃO DE FINOS PROVENIENTES DA ACIARIA", de acordo com a reivindicação n° 1 caracterizado por as pelotas, após a queima (22), apresentarem camadas circulares, que se formam à medida que sofrem o aquecimento de dentro pra fora durante a pelotização; contendo a seção transversal de uma pelota (23) anéis, que surgem durante sua formação e consolidação, formados por camadas de endurecimento e densificação (24) porosas e permeáveis aos gases de redução.
8) "PROCESSO DE IMPLEMENTAÇÃO E MELHORIA DO
"PELLET FEED" PELA UTILIZAÇÃO DE FINOS PROVENIENTES DA ACIARIA", de acordo com a reivindicação n° 1 caracterizado por a utilização deste resíduo siderúrgico na produção de pelotas apresentar várias vantagens significativas, tais como: o aumento do teor metálico sob a forma de FeO; uma redução no consumo de carvão durante o refino da pelota; a presença de CaO na lama fina, em maior teor do que na bentonita proporcionando um menor consumo de calcário calcítico no processo de pelotização; o aumento da resistência mecânica na pelota pronta, que diminui significativamente a geração de finos durante seu carregamento no altoforno; a presença de monóxido de ferro e cal na lama fina, que favorece a diminuição nas emissões de C02 durante o processo de refino da pelota, por não ser gerado C02 na calcinação do calcário, que é substituído pela cal, e a redução da quantidade de carbono necessária para reduzir o FeO a ferro metálico ser menor do que o necessário para reduzir a hematita, mais oxidada.
PCT/BR2010/000011 2009-01-09 2010-01-05 Processo de implementação e melhoria do "pellet feed" pela utilização de finos provenientes da aciaria WO2010078638A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI0901149-8 2009-01-09
BRPI0901149-8A BRPI0901149A2 (pt) 2009-01-09 2009-01-09 processo de implementação e melhoria do "pellet feed" pela utilização de finos provenientes da aciaria

Publications (1)

Publication Number Publication Date
WO2010078638A1 true WO2010078638A1 (pt) 2010-07-15

Family

ID=42316155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2010/000011 WO2010078638A1 (pt) 2009-01-09 2010-01-05 Processo de implementação e melhoria do "pellet feed" pela utilização de finos provenientes da aciaria

Country Status (2)

Country Link
BR (1) BRPI0901149A2 (pt)
WO (1) WO2010078638A1 (pt)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9701746A (pt) * 1997-03-21 1998-12-01 De Oliveira Lopes Gomes Campos Processo de separação e aproveitamento de partículas finas e microsc picas contidas na lama gerada pela limpeza dos gases de aciaria por processo de lavagem com agitação mecánica
CN1594607A (zh) * 2004-06-18 2005-03-16 攀钢集团成都钢铁有限责任公司 炼钢污泥浆用于球团生产造球的方法
BR0302809A (pt) * 2003-08-14 2005-03-29 Mauro Fumio Yamamoto Processo de reciclagem de lama de alto forno ou lama fina de aciaria e rejeitos industriais ou metalúrgicos, através da combinação dos seguintes processos: condicionamento, concentração gravimétrica, ciclonagem, separação magnética e flotação
BR0302791A (pt) * 2003-08-14 2005-04-05 Mauro Fumio Yamamoto Processo de reciclagem de lama grossa de aciaria ou rejeitos industriais ou metalúrgicos, através da concentração gravimétrica de ferro metálico ou óxicos de ferro em espirais concentradoras
CN1804057A (zh) * 2006-01-16 2006-07-19 唐山国丰钢铁有限公司 利用细磨钢渣替代膨润土生产球团矿的方法
BRPI0604290A (pt) * 2006-10-13 2008-06-03 Companhia Siderurgica Nac processo integrado de produção de ferro metálico a partir da reciclagem de resìduos siderúrgicos para uso na metalurgia do aço
CN101195856A (zh) * 2007-06-13 2008-06-11 任瑞刚 一种降低冶金球团膨润土用量的生产方法
CN201102976Y (zh) * 2007-09-18 2008-08-20 宝钢集团新疆八一钢铁有限公司 竖炉球团造球喷加炼钢污水装置
CN101457291A (zh) * 2007-12-12 2009-06-17 范英俊 生产氧化球团的设备及利用该设备生产氧化球团的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9701746A (pt) * 1997-03-21 1998-12-01 De Oliveira Lopes Gomes Campos Processo de separação e aproveitamento de partículas finas e microsc picas contidas na lama gerada pela limpeza dos gases de aciaria por processo de lavagem com agitação mecánica
BR0302809A (pt) * 2003-08-14 2005-03-29 Mauro Fumio Yamamoto Processo de reciclagem de lama de alto forno ou lama fina de aciaria e rejeitos industriais ou metalúrgicos, através da combinação dos seguintes processos: condicionamento, concentração gravimétrica, ciclonagem, separação magnética e flotação
BR0302791A (pt) * 2003-08-14 2005-04-05 Mauro Fumio Yamamoto Processo de reciclagem de lama grossa de aciaria ou rejeitos industriais ou metalúrgicos, através da concentração gravimétrica de ferro metálico ou óxicos de ferro em espirais concentradoras
CN1594607A (zh) * 2004-06-18 2005-03-16 攀钢集团成都钢铁有限责任公司 炼钢污泥浆用于球团生产造球的方法
CN1804057A (zh) * 2006-01-16 2006-07-19 唐山国丰钢铁有限公司 利用细磨钢渣替代膨润土生产球团矿的方法
BRPI0604290A (pt) * 2006-10-13 2008-06-03 Companhia Siderurgica Nac processo integrado de produção de ferro metálico a partir da reciclagem de resìduos siderúrgicos para uso na metalurgia do aço
CN101195856A (zh) * 2007-06-13 2008-06-11 任瑞刚 一种降低冶金球团膨润土用量的生产方法
CN201102976Y (zh) * 2007-09-18 2008-08-20 宝钢集团新疆八一钢铁有限公司 竖炉球团造球喷加炼钢污水装置
CN101457291A (zh) * 2007-12-12 2009-06-17 范英俊 生产氧化球团的设备及利用该设备生产氧化球团的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE MAKING, SHAPING AND TREATING OF STEEL, 1999, pages 80 *

Also Published As

Publication number Publication date
BRPI0901149A2 (pt) 2010-11-16

Similar Documents

Publication Publication Date Title
JP5464317B2 (ja) 焼結鉱製造用成形原料の製造方法
JP5000366B2 (ja) 焼結鉱の製造方法
CN104099465B (zh) 一种高磷鲕状赤铁矿自催化还原生产高纯还原铁粉的方法
CN107254585B (zh) 一种从铁矾渣中回收锌、铟、铁、镓的方法
EP2949765B1 (en) Composite briquette and method for making a steelmaking furnace charge
EA024653B1 (ru) Способ переработки латеритных никелевых руд с прямым получением ферроникеля
US8025727B2 (en) Agglomerated stone for using in shaft, corex or blast furnaces, method for producing agglomerated stones and use of fine and superfine iron ore dust
CN101532068A (zh) 一种循环利用钢渣及冶金、化工含铁废渣的高炉炼铁生产工艺
JP2007332428A (ja) 湿ダストの処理方法及び焼結鉱の製造方法
JP5609578B2 (ja) 非焼成含炭塊成鉱を用いる高炉操業方法
RU2241771C1 (ru) Брикет для выплавки чугуна
WO2010078638A1 (pt) Processo de implementação e melhoria do "pellet feed" pela utilização de finos provenientes da aciaria
US3149958A (en) Sintering process
JP2001348623A (ja) 高炉用高品質低SiO2焼結鉱の製造方法
JP2002129246A (ja) 焼結鉱の製造方法
JP6201736B2 (ja) 脱硫スラグを用いた焼結鉱の製造方法
RU2506326C2 (ru) Брикет экструзионный (брэкс) - компонент доменной шихты
JP5517501B2 (ja) 焼結鉱の製造方法
Auyesbek et al. Thermal insulating materials based on magnesium-containing technogenic raw materials
JP2014159622A (ja) 還元鉄の製造方法
JP3945323B2 (ja) 焼結原料の造粒方法
RU2768432C2 (ru) Способ производства офлюсованного железорудного агломерата
KR101676227B1 (ko) 석탄계 용철 제조 공정에서 배출되는 부산물을 재활용하여 용철을 제조하는 방법
Silva et al. Behaviour of biofuel addition on metallurgical properties of sinter
KR20150118564A (ko) 석탄계 용철 제조 공정에서 배출되는 부산물을 재활용하여 용철을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10729065

Country of ref document: EP

Kind code of ref document: A1