RU2506326C2 - Брикет экструзионный (брэкс) - компонент доменной шихты - Google Patents

Брикет экструзионный (брэкс) - компонент доменной шихты Download PDF

Info

Publication number
RU2506326C2
RU2506326C2 RU2012113388/02A RU2012113388A RU2506326C2 RU 2506326 C2 RU2506326 C2 RU 2506326C2 RU 2012113388/02 A RU2012113388/02 A RU 2012113388/02A RU 2012113388 A RU2012113388 A RU 2012113388A RU 2506326 C2 RU2506326 C2 RU 2506326C2
Authority
RU
Russia
Prior art keywords
iron
briquette
carbon
charge
blast
Prior art date
Application number
RU2012113388/02A
Other languages
English (en)
Other versions
RU2012113388A (ru
Inventor
Владимир Николаевич Скороходов
Иван Филиппович Курунов
Дмитрий Николаевич Тихонов
Айтбер Махачевич Бижанов
Original Assignee
Открытое акционерное общество "Новолипецкий металлургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Новолипецкий металлургический комбинат" filed Critical Открытое акционерное общество "Новолипецкий металлургический комбинат"
Priority to RU2012113388/02A priority Critical patent/RU2506326C2/ru
Publication of RU2012113388A publication Critical patent/RU2012113388A/ru
Application granted granted Critical
Publication of RU2506326C2 publication Critical patent/RU2506326C2/ru

Links

Abstract

Изобретение относится к черной металлургии, в частности к способам окускования железорудного сырья, и может быть использовано при подготовке шихты для доменной плавки. Брикет экструзионный, полученный методом жесткой вакуумной экструзии, содержащий минеральное связующее, железорудный концентрат и/или железную руду, углеродсодержащие материалы и, при необходимости, железо- и/или железоуглеродсодержащие отходы и флюсующие добавки, применяют в качестве компонента доменной шихты. Отношение содержаний углерода и железа в брикете находится в пределах 0,05-0,35, массовая доля железо- и/или железоуглеродсодержащих отходов в железосодержащей части шихты брикета, не превышает 0,15, крупность материалов, входящих в шихту для получения брикета не превышает 5 мм, а масса брикета не превышает 0,5 кг. В качестве минерального связующего брикет содержит цемент и, при необходимости, бентонит. Изобретение обеспечивает получение окускованного компонента доменной шихты требуемого химического состава при минимальном расходе связующего, обладающего оптимальными для доменной шихты размерами, высокой горячей прочностью и восстановимостью. 4 з.п. ф-лы, 5 пр.

Description

Изобретение относится к черной металлургии, в частности к способам окускования железорудного сырья, и может быть использовано при подготовке шихты для доменной плавки.
Известно техническое решение - брикет для выплавки металла, имеющий правильную геометрическую форму и приготовляемый из мелкодисперсных железосодержащих отходов, тонкоизмельченного углеродсодержащего материала и связующего в качестве которого используется механическая смесь природных материалов - суглинка, глины или полевого шпата и карбоната натрия [Патент РФ №2154680, С22В 1/243, 7/00, 2000, БИПМ №23]. Брикет для выплавки металла по известному техническому решению получают путем прессования смеси указанных материалов, увлажненной водным раствором жидкого стекла, с последующей сушкой полученного брикета. Недостатком данного известного технического решения является то, что брикет для выплавки металла, получаемый по описанной технологии, не обладает достаточной горячей прочностью, что не позволяет его использовать в качестве компонента шихты в доменных печах. Этому препятствует, также, наличие в брикете щелочных металлов (жидкое стекло), способствующих настылеобразованию в шахтных печах.
Указанный недостаток устраняется в другом известном техническом решении, которым является железосодержащий кусковый материал, приготовляемый из смеси мелких железосодержащих отходов металлургического производства, измельченного углеродсодержащего материала и глиноземистого цемента путем изготовления из этой смеси бетона и дробления его на куски необходимой, для загрузки в доменную печь, крупности [DE 3727576, МКИ С22В 1/243 от 19.08.1987]. Мелочь, образующуюся при дроблении бетона, используют в агломерационной шихте. Последнее является недостатком этого известного технического решения, так как усложняет технологическую схему и понижает содержание железа в агломерате.
Указанный недостаток устраняется в другом известном техническом решении, которым является известный брикет-компонент доменной шихты, получаемый методом вибропрессования из шихты, включающей углеродсодержащие материалы, железосодержащие материалы, флюсующие добавки и минеральное связующее, в котором отношение содержаний углерода и железа находится в пределах 0,35-0,6, основность находится в пределах 0,3…1,6, крупность материалов, входящих в шихту, не превышает 10 мм, масса брикета составляет 1,5-8 кг, а отношение максимального и минимального размеров брикета не превышает 1,2 [Патент РФ №2241760, МКИ С1, 7 С21В 5/00, С22В 1/243. 2003.07.03. Опубликован 2004.12.10].
Недостатком данного известного технического решения является то, что регламентируемое им содержание углерода в брикете является избыточным по отношение к стехиометрическому для реакций прямого восстановления железа в брикете, что приводит к накоплению мелкого углеродсодержащего материала в горне, ухудшает его дренажную способность и повышает вязкость шлаков. Брикет в известном техническом решении не предусматривает использования в его составе металлургических отходов, что ограничивает возможности их утилизации при широком применении брикетов. Кроме того, размеры брикетов значительно превышают оптимальные размеры кусков шихтовых материалов доменной плавки, что затрудняет их загрузку и снижает эффективность применения в доменной печи. Кроме того, технология вибропрессования, по которой производится брикет в известном техническом решении, по принципу действия является дискретной, имеет ограниченную производительность, требует повышенного расхода цемента и тепла на отверждение брикетов.
Технической задачей группы изобретений является устранение указанных недостатков известных технических решений - аналогов и обеспечение получения окускованного компонента доменной шихты требуемого химического состава при минимальном расходе связующего, обладающего оптимальными для доменной шихты размерами, высокой горячей прочностью и восстановимостью, а также возможностью использования в доменной печи совместно с другими компонентами шихты, т.е. с агломератом, окатышами и кусковой рудой с учетом их гранулометрии и химического состава.
Решение данной технической задачи достигается тем, что в качестве компонента доменной шихты применяют брикет экструзионный (БРЭКС), получаемый методом жесткой вакуумной экструзии, включающий минеральное связующее, железорудный концентрат и/или железную РУДУ, углеродсодержащие материалы, и, по необходимости, железо- и/или железоуглеродсодержашие отходы и флюсующие добавки.
Решение данной технической задачи достигается также тем, что отношение содержаний углерода и железа в БРЭКСе, применяемом в качестве компонента доменной шихты, находится в пределах 0,05-0,35, массовая доля железо- и/или железоуглеродсодержащих отходов в железосодержащей части шихты для изготовления БРЭКСов не превышает 0,15, крупность материалов, входящих в шихту для производства БРЭКСа не превышает 5 мм, а масса БРЭКСа не превышает 0,5 кг.
Решение данной технической задачи достигается также тем, что БРЭКС -компонент доменной шихты в качестве углеродсодержащих материалов содержит коксовую мелочь, и/или каменный уголь, и/или антрацит, и/или буроугольный полукокс, и/или бой графитированных или углеродных электродов, и/или бой электролизных ванн для производства алюминия, и/или древесный уголь, и/или древесные опилки, и/или измельченные отходы пластмасс, и/или другие углеродсодержащие отходы.
Дополнительно решение данной технической задачи достигается также тем, что БРЭКС - компонент доменной шихты, в качестве флюсующих добавок содержит известь и, по необходимости, сталеплавильные шлаки, и/или мел, и/или известняк, и/или известьсодержащие отходы, и/или отходы сварочного флюса, и/или кремнеземсодержащие отходы и пыли.
Дополнительно решение данной технической задачи достигается также тем, что БРЭКС - компонента доменной шихты, в качестве минерального связующего содержит цемент и, по необходимости, бентонит.
Технология окускования дисперсных материалов методом жесткой вакуумной экструзии известна. Эта технология, в частности, широко применяется при производстве кирпичей из шихтовой смеси на основе глины (А.Я. Хавкин, Р.З. Берман. Кирпичные заводы малой мощности. Строительные материалы. 2000, №4, с.18-19). Сущность ее заключается в приготовлении влажной шихтовой смеси на основе глины, непрерывной подаче смеси в экструдер, удалении воздуха из смеси вакуумированием и продавливании смеси под давлением через прямоугольное одиночное отверстие в фильере экструдера сечением (40-50)×(60-80) мм, из которого непрерывно выходит плотный пластичный брус. Сырые кирпичи получают путем периодического мгновенного разрезания бруса, выходящего из фильеры, многопроволочным резаком на равные части длиной 160-200 мм. Таким образом, по принципу действия эта технология является непрерывной и обеспечивает прочность «сырых» кирпичей, необходимую для их многослойной укладки на поддоны и транспортировки в печи для упрочняющего обжига. Это принципиально отличает технологию жесткой вакуумной экструзии от дискретной технологии брикетирования методом вибропрессования.
Лабораторные исследования показали возможность применения технологии прессования методом жесткой вакуумной экструзии для окускования смеси минерального связующего, природных железорудных материалов, углеродсодержащих материалов, железо- и/или железоуглеродсодержащих дисперсных отходов и флюсующих добавок. При использовании в экструдере фильеры с множеством отверстий круглой, овальной или другой формы на выходе из нее можно получать плотные пластичные стержни, длина которых определяется их плотностью и пластичностью и формой и размером отверстий фильеры. В результате роста изгибающего момента, возникающего под действием увеличивающегося веса стержней по мере роста их длины при выходе из фильеры, стержни обламываются.
Использование технологии окускования методом жесткой вакуумной экструзии по отношению к природным железорудным материалам и техногенным железо- и/или железоуглеродсодержащим материалам с целью получения брикетов экструзионных (БРЭКСов) для применения их в качестве компонента доменной шихты, имеющего заданные размеры, химический состав и металлургические свойства, обеспечивающие его эффективное использование совместно с любыми другими известными компонентами доменной шихты или отдельно, заявителю не известно..
Сущность изобретения заключается в следующем. Применение метода и технологии жесткой вакуумной экструзии для окускования смеси минерального связующего, железорудного концентрата, и/или железной руды, углеродсодержащих материалов и, при необходимости, флюсующих добавок и железо- и/или железоуглеродсодержащих отходов обеспечивает получение стержней с чрезвычайно плотной (2,0-2,2 г/см3) и пластичной структурой, длина которых (110-180 мм) не исключает их кострение при выгрузке из бункера.
В процессе лабораторных и полупромышленных исследований выявили новые, в том числе неожиданные, эффекты применения жесткой вакуумной экструзии для окускования природных железорудных материалов и техногенных железо- и/или железоуглеродсодержащих материалов в смеси с углеродсодержащими материалами и флюсующими добавками.
Так высокая пластичность стержней, непрерывно выходящих из отверстий фильеры, обуславливает под действием изгибающего момента (из-за возрастающей массы стержней), образование в верхнем слое их тел одной-двух поперечных микротрещин, а затем и обламывание стержня. При транспортировке и перегрузках стержней микротрещины в теле стержней увеличиваются и происходит их деление с образованием 2-3 БРЭКСов, которые имеют идеальные для компонента доменной шихты размеры (25-40)×(40-б0) мм со всех точек зрения (текучесть при выгрузке из бункера, обеспечение газопроницаемости столба шихты в печи, обеспечение полноты их восстановления до подхода к зоне плавления).
Другим новым, обнаруженным в процессе лабораторных исследований эффектом применения жесткой вакуумной экструзии для окускования природных железорудных материалов и техногенных железой/или железоуглеродсодержащих материалов в смеси с углеродсодержащими материалами и флюсующими добавками является образование железокальцийсиликатной (оливиновой) матрицы, упрочняющей тело БРЭКСа при его нагреве в восстановительной атмосфере до температуры 800-1000°С. Тесный контакт частиц цемента и/или флюсующих добавок с частицами железорудного концентрата или железосодержащих металлургических отходов в плотной структуре БРЭКСА благоприятствует протеканию твердофазных реакций образования железокальциевых силикатов, которые в результате формируют матрицу, обеспечивающую прочность брикета после снижения прочности цементного камня при нагреве БРЭКСА выше 800-900°С. Благодаря небольшому поперечному размеру БРЭКСА эти реакции протекают во всем его объеме, чему способствует также микропористость БРЭКСа, обеспечивающая проникновение восстановительного газа во внутренние слои БРЭКСа и восстановление Fe2O3 до FeO, участвующего в твердофазных реакциях образования железокальциевых силикатов. Кроме того, при этом на поверхности БРЭКСа уже появляется слой металлического железа, образуя поверхностный каркас, также упрочняющий тело БРЭКСа. В результате в доменной печи БРЭКС сохраняет свою форму до прихода в зону температур 1100-1250°С, где происходит его размягчение и расплавление. До прихода в эту зону восстановленное железо в БРЭКСе частично науглероживается с образованием карбида железа за счет содержащегося в нем углерода и углерода, образующегося в реакции Белла (2СО=>CO2+С). В лабораторных условиях при нагреве в атмосфере водорода БРЭКС сохранял форму без деформации при нагреве до 1200°С.
Еще одним эффектом применения жесткой вакуумной экструзии для окускования дисперсных металлических отходов отдельно или в смеси с флюсующими добавками, обнаруженным в процессе лабораторных исследований, является эффект ускорения шлакообразования и полного усвоения шлаком в металлургической печи флюсующих добавок, входящих в состав БРЭКСа. Кроме того, наличие в БРЭКСах основных оксидов СаО и MgO, входящих в состав минерального связующего, снижает расход флюсов, применяемых при выплавке металлов. Такое же действие оказывает наличие флюсующих добавок в составе БРЭКСов.
Для применения в качестве компонента шихты в доменных печах можно получать БРЭКСы оптимального размера для этих агрегатов и трактов подачи шихты в них.
Таким образом, применение технологии брикетирования методом жесткой вакуумной экструзии по отношению к железорудным материалам обеспечивает получение новых эффектов, а именно - получение БРЭКсов оптимального для доменной плавки размера и получение БРЭКСа с высокой горячей прочностью, который сохраняет свою целостность до прихода в зону плавления. Эти эффекты являются следствием получения плотной и пластичной структуры выходящих из отверстий фильеры стержней заданных поперечного размера и формы и заданной длины.
Возможность присутствия железо- и/или железоуглеродсодержащих отходов в составе БРЭКСов обеспечивает их рециклинг в доменном процессе с утилизацией не только железа, но и углерода. При нахождении БРЭКСов в доменной печи углерод углеродсодержащего материала в их составе участвует в реакциях прямого восстановления железа и в реакции Будуара (С+CO2=2СО) вместо углерода кокса, что повышает восстановимость БРЭКСов и снижает расход кокса на выплавку чугуна. Наличие, при необходимости, флюсующих добавок различной природы в составе БРЭКСа обеспечивает получение его основности, требуемой для получения заданной основности шлака с учетом основности других компонентов доменной шихты. Максимальная доля железой/или железоуглеродсодержащих отходов в железосодержащей части шихты БРЭКСа 0,15 определяется содержанием железа в отходах и минимально допустимым содержанием железа в БРЭКСах для получения требуемой производительности доменных печей при существующей сырьевой базе. Отношение содержаний углерода и железа в БРЭКСах в пределах 0,05-0,35 обеспечивает полное использование углерода БРЭКСов в реакциях газификации и прямого восстановления железа при любой степени его окисленности до прихода БРЭКСов в зону плавления. Предельная крупность частиц компонентов БРЭКСов (5 мм) обусловлена оптимальным для доменной шихты поперечным размеров БРЭКСов (25-40 мм) и соответствующим размером отверстий фильеры. При более крупных частицах материалов смеси для получения БРЭКСов снижается их пластичность на выходе из фильеры и увеличивается расход электроэнергии на экструзию. Предельный вес БРЭКСа определяется его поперечным размером, который не должен превышать 25-40 мм для обеспечения полноты восстановления железа по всему сечению БРЭКСа к моменту его прихода в зону плавления. Использование в качестве углеродсодержащих компонентов и флюсующих добавок широкого спектра материалов обеспечивает возможность минимизации себестоимости БРЭКСов и снижения себестоимости чугуна, выплавляемого с их использованием. Использование качестве минерального связующего цемента и, по необходимости, бентонита обеспечивает прочность БРЭКСа как в холодном состоянии, так и при нахождении в доменной печи при его нагреве до 800-900°С. Присутствие бентонита в брикетируемой смеси повышает также ее пластичность при экструзии и прочность БРЭКСа в первые часы после экструзии.
Изобретение иллюстрируется следующими примерами.
1. БРЭКС - компонент доменной шихты получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из железорудного концентрата (66%) с содержанием железа 65,6%, окалины (5%), доменного шлама (10%) и энергетического угля (10%) крупностью до 2 мм. В качестве флюсующей добавки использовали известь (2%) крупностью 0-1 мм. В качестве связующего (7%) использовали портландцемент марки 500. Влажность смеси составляла 15%. Отношение содержаний углерода и железа в БРЭКСах составляло 0,19, Давление на смесь в экструдере было 2,5 МПа. Прочность БРЭКСов на раздавливание после вылеживания в течение 48 часов составила 4,5-5,0 МПа. После нагрева БРЭКСов до температуры 1200°С в атмосфере 50% водорода и 50% азота со скоростью 500°С в час степень металлизации составила 87,5%, углерод в БРЭКСах после указанной термообработки не обнаружен. В процессе нагрева БРЭКС полностью сохранил свою форму.
2. БРЭКС - компонент доменной шихты получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из железорудного концентрата (66%) с содержанием железа 65,6%, окалины (5%), доменного шлама (12%) и антрацита (8%) крупностью до 2 мм. В качестве флюсующей добавки использовали известь (1%) и конвертерный шлак (1%) крупностью 0-1 мм. В качестве связующего (7%) использовали портландцемент марки 500. Отношение содержаний углерода и железа в БРЭКСах составляло 0,21. Прочность БРЭКСов на раздавливание после вылеживания в течение 48 часов составила 4,3-4,7 МПа. После нагрева БРЭКСов до температуры 1200°С в атмосфере 50% водорода и 50% азота со скоростью 500°С в час степень металлизации составила 88,5%, углерод в БРЭКСах после указанной термообработки не обнаружен. В процессе нагрева БРЭКС полностью сохранил свою форму.
3. БРЭКС - компонент доменной шихты получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из железорудного концентрата (64%) с содержанием железа 65,6%, окалины (8%), доменного шлама (12%) и буроугольного полукокса (7%) крупностью до 2 мм. В качестве флюсующей добавки использовали известь (0,5%), пыль газоочистки ферросплавной печи (0,5%) крупностью менее 100 мкм и отходы сварочного флюса (1,0%) крупностью 0-1 мм. В качестве связующего использовали портландцемент марки 500 (6%) и бентонит (1%). Отношение содержаний углерода и железа в БРЭКСах составляло 0,16. Прочность БРЭКСов на раздавливание после вылеживания в течение 48 часов составила 4,7-5,2 МПа. После нагрева БРЭКСов до температуры 1200°С в атмосфере 50% водорода и 50% азота со скоростью 500°С в час степень металлизации составила 89,8%, углерод в БРЭКСах после указанной термообработки не обнаружен. В процессе нагрева БРЭКС полностью сохранил свою форму.
4. БРЭКС - компонент доменной шихты получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из железорудного концентрата (70%) с содержанием железа 65,6%, окалины (5%), доменного шлама (6%), древесного угля (8%) крупностью до 2 мм и древесных опилок (2%). В качестве флюсующей добавки использовали известь (0,5%), пыль газоочистки печи для обжига известняка (0,5%) крупностью 0-0,5 мм и мел (1%) крупностью 0-1 мм. В качестве связующего использовали портландцемент марки 500 (6%) и бентонит (1%). Отношение содержаний углерода и железа в БРЭКСах составляло 0,16. Прочность БРЭКСов на раздавливание после вылеживания в течение 48 часов составила 4,9-5,3 МПа. После нагрева БРЭКСов до температуры 1200°С в атмосфере 50% водорода и 50% азота со скоростью 500°С в час степень металлизации составила 85,3%, углерод в БРЭКСах после указанной термообработки не обнаружен. В процессе нагрева БРЭКС полностью сохранил свою форму.
5. БРЭКС - компонент доменной шихты получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из железорудного концентрата (80%) с содержанием железа 65,6, энергетического угля (8%) крупностью до 2 мм, графитового боя электролиных ванн (2%) крупностью 0-1 мм и измельченных отходов пластмасс (1%) крупностью 0-3 мм. В качестве флюсующей добавки использовали известь (1%) крупностью 0-1 мм и известняк (1,0%) крупностью 0-1 мм. В качестве связующего использовали портландцемент марки 500 (6,5%) и бентонит (0,5%). Отношение содержаний углерода и железа в БРЭКСах составляло 0,15. Прочность БРЭКСов на раздавливание после вылеживания в течение 48 часов составила 4,7-4,9 МПа. После нагрева БРЭКСов до температуры 1200°С в атмосфере 50% водорода и 50% азота со скоростью 500°С в час степень металлизации составила 84,2% углерод в БРЭКСах после указанной термообработки не обнаружен. В процессе нагрева БРЭКС полностью сохранил свою форму.
В примерах 2-5 получали брикеты, как указано выше, по технологии жесткой вакуумной экструзии на лабораторном экструдере, при этом влажность смеси составляла от 12 до 17%, а давление на смесь в экструдере от 1,7 до 2,7 МПа.
Компьютерное моделирование доменной плавки выполнили для двух вариантов: на шихте из агломерата (70%) и окатышей (30%) и на шихте из БРЭКСов состава №1 (60%) и окатышей (40%). По результатам моделирования снижение расхода кокса на выплавку чугуна при применении БРЭКСов в шихте вместо агломерата составило 95 кг/т.
Таким образом, применение БРЭКСа, получаемого методом жесткой вакуумной экструзии, в качестве компонента доменной шихты в соответствии с изобретением, обеспечивает повышение газопроницаемости столба шихты в доменной печи за счет слоев с максимальной порозностью, образуемых БРЭКСами, имеющими практически однородный гранулометрический состав и не разрушающимися в доменной печи в процессе нагрева и восстановления. Это способствует повышению производительности доменной печи. Применение в качестве углеродсодержащей добавки в БРЭКСе энергетического угля позволяет экономить дорогостоящий кокс. Применение коксовой мелочи и других углеродсодержащих отходов решает ту же задачу и позволяет утилизировать эти отходы. Применение, по необходимости, различных флюсов позволяет получать БРЭКСы требуемой основности с минимальной себестоимостью и утилизировать известьсодержащие отходы.
Дополнительным экологическим эффектом применения БРЭКСа вместо агломерата является снижение выбросов, загрязняющих атмосферу.

Claims (5)

1. Применение полученного методом жесткой вакуумной экструзии брикета экструзионного, содержащего минеральное связующее, железорудный концентрат и/или железную руду, углеродсодержащие материалы и, при необходимости, железо- и/или железоуглеродсодержащие отходы и флюсующие добавки, в качестве компонента доменной шихты.
2. Применение по п.1, характеризующееся тем, что отношение содержаний углерода и железа в брикете находится в пределах 0,05-0,35, массовая доля железо- и/или железоуглеродсодержащих отходов в железосодержащей части шихты брикета не превышает 0,15, крупность материалов, входящих в шихту для получения брикета, не превышает 5 мм, а масса брикета не превышает 0,5 кг.
3. Применение по п.1, характеризующееся тем, что в качестве углеродсодержащих материалов брикет содержит коксовую мелочь, и/или каменный уголь, и/или антрацит, и/или буроугольный полукокс, и/или бой графитированных или углеродных электродов, и/или бой электролизных ванн для производства алюминия, и/или древесный уголь, и/или древесные опилки, и/или измельченные отходы пластмасс, и/или другие углеродсодержащие отходы.
4. Применение по п.1, характеризующееся тем, что в качестве флюсующих добавок брикет содержит известь и, при необходимости, сталеплавильные шлаки, и/или мел, и/или известняк, и/или известьсодержащие отходы, и/или отходы сварочного флюса, и/или кремнеземсодержащие отходы и пыли.
5. Применение по п.1, характеризующееся тем, что в качестве минерального связующего брикет содержит цемент и, при необходимости, бентонит.
RU2012113388/02A 2012-04-09 2012-04-09 Брикет экструзионный (брэкс) - компонент доменной шихты RU2506326C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012113388/02A RU2506326C2 (ru) 2012-04-09 2012-04-09 Брикет экструзионный (брэкс) - компонент доменной шихты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012113388/02A RU2506326C2 (ru) 2012-04-09 2012-04-09 Брикет экструзионный (брэкс) - компонент доменной шихты

Publications (2)

Publication Number Publication Date
RU2012113388A RU2012113388A (ru) 2013-10-20
RU2506326C2 true RU2506326C2 (ru) 2014-02-10

Family

ID=49356705

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012113388/02A RU2506326C2 (ru) 2012-04-09 2012-04-09 Брикет экструзионный (брэкс) - компонент доменной шихты

Country Status (1)

Country Link
RU (1) RU2506326C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2609885C1 (ru) * 2016-02-18 2017-02-06 Александр Николаевич Шаруда Экструзионный брикет для доменного производства
CN110804474A (zh) * 2019-11-26 2020-02-18 内蒙古万众炜业科技环保股份公司 通过兰炭制备高粘度型煤的制造方法及型煤

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU757601A1 (ru) * 1978-06-05 1980-08-23 Kalininsk Polt Inst Способ получения брикета из тонкоизмельчеиного минерального сырья
SU1134295A1 (ru) * 1983-04-21 1985-01-15 Витебский технологический институт легкой промышленности Устройство дл экструдировани изделий из порошков
RU2015851C1 (ru) * 1990-05-14 1994-07-15 Ереванский политехнический институт Способ получения порошкового сплава на основе меди
WO1996010477A1 (en) * 1994-10-04 1996-04-11 E. Khashoggi Industries Placing filaments within extruded hydraulically settable compositions
CN2344145Y (zh) * 1998-08-18 1999-10-20 新汶矿业集团有限责任公司机械厂 真空硬塑挤砖机
RU2241771C1 (ru) * 2003-07-03 2004-12-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Брикет для выплавки чугуна
CN101851086A (zh) * 2010-03-26 2010-10-06 王爱瑞 一种污泥制自保温砖的生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU757601A1 (ru) * 1978-06-05 1980-08-23 Kalininsk Polt Inst Способ получения брикета из тонкоизмельчеиного минерального сырья
SU1134295A1 (ru) * 1983-04-21 1985-01-15 Витебский технологический институт легкой промышленности Устройство дл экструдировани изделий из порошков
RU2015851C1 (ru) * 1990-05-14 1994-07-15 Ереванский политехнический институт Способ получения порошкового сплава на основе меди
WO1996010477A1 (en) * 1994-10-04 1996-04-11 E. Khashoggi Industries Placing filaments within extruded hydraulically settable compositions
CN2344145Y (zh) * 1998-08-18 1999-10-20 新汶矿业集团有限责任公司机械厂 真空硬塑挤砖机
RU2241771C1 (ru) * 2003-07-03 2004-12-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Брикет для выплавки чугуна
CN101851086A (zh) * 2010-03-26 2010-10-06 王爱瑞 一种污泥制自保温砖的生产方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ХАВКИН А.Я., БЕРМАН Р.З. Кирпичные заводы малой мощности с применением технологии жесткой экструзии. Строит. материалы, 2000, No.4, с.18-19. *
ХАВКИН А.Я., БЕРМАН Р.З. Кирпичные заводы малой мощности с применением технологии жесткой экструзии. Строит. материалы, 2000, №4, с.18-19. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2609885C1 (ru) * 2016-02-18 2017-02-06 Александр Николаевич Шаруда Экструзионный брикет для доменного производства
CN110804474A (zh) * 2019-11-26 2020-02-18 内蒙古万众炜业科技环保股份公司 通过兰炭制备高粘度型煤的制造方法及型煤

Also Published As

Publication number Publication date
RU2012113388A (ru) 2013-10-20

Similar Documents

Publication Publication Date Title
RU2404264C2 (ru) Состав кондиционирующей добавки для шлака, способ ее получения и способ ее использования при получении стали
KR101158883B1 (ko) 자기-환원성 냉-결합 펠렛
KR101304686B1 (ko) 고로용 부분 환원철 및 그 제조방법
CN103468961A (zh) 一种密闭冲天炉处理钢铁厂含锌、铅粉尘工艺方法
EP2949765B1 (en) Composite briquette and method for making a steelmaking furnace charge
Holtzer et al. The recycling of materials containing iron and zinc in the OxyCup process
CN102634622A (zh) 采用难选矿、复合矿和含铁废料还原分离金属铁的方法
KR20120042981A (ko) 고로용의 비소성 함탄 괴성광 및 그 제조 방법
US8025727B2 (en) Agglomerated stone for using in shaft, corex or blast furnaces, method for producing agglomerated stones and use of fine and superfine iron ore dust
CN103160302B (zh) 一种含铁碳锌的冶金尘泥处理方法
CN102653822B (zh) 一种熔融还原炼铁含铁固体副产物及其生产方法
JP5512205B2 (ja) 塊成化状高炉用原料の強度改善方法
RU2502812C2 (ru) Брикет экструзионный (брэкс) металлический
RU2506326C2 (ru) Брикет экструзионный (брэкс) - компонент доменной шихты
CN113166844B (zh) 铁矿粉团块生产方法和造块产品
RU2506325C2 (ru) СПОСОБ ПОЛУЧЕНИЯ БРИКЕТА ЭКСТРУЗИОННОГО (БРЭКСа) ДЛЯ ВЫПЛАВКИ МЕТАЛЛА
RU2241771C1 (ru) Брикет для выплавки чугуна
KR20110108993A (ko) 제강공정 부산물을 이용한 브리켓 제조방법 및 이로 제조된 브리켓
CN115261540A (zh) 赤泥中铁和尾渣回收方法
RU2506327C2 (ru) Брикет экструзионный (брэкс) шламовый
JP2012107288A (ja) 非焼成含炭塊成鉱を用いる高炉操業方法
CN105925744A (zh) 一种低温下利用钢铁厂粉尘生产珠铁的方法
JP4705483B2 (ja) 溶融鉄の製造方法
RU2244026C1 (ru) Брикет для выплавки металла
CN104928419A (zh) 用煤化工废水处理直接还原铁熔分渣生产水淬渣的方法

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant
HZ9A Changing address for correspondence with an applicant