WO2010074232A1 - Wiring structure and micro relay comprising same - Google Patents

Wiring structure and micro relay comprising same Download PDF

Info

Publication number
WO2010074232A1
WO2010074232A1 PCT/JP2009/071596 JP2009071596W WO2010074232A1 WO 2010074232 A1 WO2010074232 A1 WO 2010074232A1 JP 2009071596 W JP2009071596 W JP 2009071596W WO 2010074232 A1 WO2010074232 A1 WO 2010074232A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
base
wiring
transmission line
shield
Prior art date
Application number
PCT/JP2009/071596
Other languages
French (fr)
Japanese (ja)
Inventor
敦 諏訪
早崎 嘉城
橋本 健
浩司 横山
健雄 白井
西村 太
雅和 足立
吉原 孝明
徹 馬場
成正 岩本
隆司 西條
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008332912A external-priority patent/JP2010149268A/en
Priority claimed from JP2009073087A external-priority patent/JP2010226552A/en
Priority claimed from JP2009151612A external-priority patent/JP2010170981A/en
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2010074232A1 publication Critical patent/WO2010074232A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • H01P1/047Strip line joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a wiring structure employed in a transmission line that transmits microwaves and the like.
  • the present invention also relates to a microrelay having this wiring structure.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 10-173410
  • a transmission line is provided on the upper surface of a dielectric substrate made of PTFE, and one end of the transmission line is electrically connected to one end of the transmission line via a connection through hole on the rear surface side of the dielectric substrate. Is provided. Furthermore, the first ground conductor is provided on the lower surface of the dielectric substrate, and the second ground conductor is provided on the lower surface of the dielectric substrate, thereby forming microstrip lines on the front and back surfaces of the dielectric substrate.
  • a plurality of grounding through holes whose upper ends are connected to the second grounding conductor are provided so as to surround the connecting through holes.
  • the resonance phenomenon that occurs between the grounding through-holes cannot be suppressed only by arranging a plurality of grounding through-holes so as to surround the connecting through-holes. Specifically, the resonance phenomenon that occurs when the distance between the grounding through-holes becomes 1 ⁇ 4 of the wavelength of the high-frequency wave transmitted through the connecting through-holes cannot be suppressed, and ripples are generated in the transmission characteristics of the transmission line. Will occur.
  • the present invention has been made in view of the above problems, and its object is to suppress the resonance phenomenon that occurs when the interval between the buried ground wirings is 1 ⁇ 4 of the wavelength of the high frequency transmitted through the transmission line. It is to provide a wiring structure.
  • the wiring structure of the present invention is used in a MEMS device.
  • This MEMS device includes a base and a transmission line provided on the base.
  • the transmission line is provided for transmitting a high-frequency signal.
  • the base has an upper surface ground electrode on its upper surface.
  • the upper surface ground electrode is electrically insulated from the transmission line.
  • the upper surface ground electrode is provided on the upper surface of the base so as to surround the periphery of the transmission line.
  • the base is formed with a through hole along the thickness direction of the base.
  • the base includes a through wiring, and this through wiring is disposed inside the through hole.
  • the through wiring is electrically connected to the transmission line.
  • the base has an external terminal and a lower surface ground electrode on its lower surface. The external terminal is electrically connected to the through wiring.
  • the lower surface ground electrode is electrically insulated from the external terminal.
  • the lower surface ground electrode is provided on the lower surface of the base so as to surround the external terminal.
  • the base includes a first shield formed along the thickness direction of the base.
  • the first shield is electrically insulated from the through wiring.
  • the first shield is electrically connected to at least one of the upper surface ground electrode and the lower surface ground electrode.
  • the first shield is located around the through wiring. Therefore, the first shield forms a pseudo coaxial structure with respect to the through wiring. Therefore, the transmission loss of the high frequency signal transmitted through the through wiring can be reduced.
  • the base preferably has a plurality of first shields.
  • the plurality of first shields are arranged along a circle surrounding the through wiring. Each first shield is separated from the adjacent first shield by a predetermined distance.
  • the high frequency signal has a first signal having the highest frequency.
  • the predetermined distance is set to a length less than 1 ⁇ 4 of the wavelength of the first signal.
  • the base preferably further has a second shield.
  • the second shield is provided inside the base so as to overlap the transmission line in the thickness direction of the base.
  • the upper end of the second shield is separated from the transmission line.
  • the second shield is electrically insulated from the transmission line.
  • the lower end of the second shield is electrically connected to the lower surface ground electrode.
  • the base preferably further has a lead-out wiring on the lower surface.
  • the lead-out wiring is electrically connected to the through wiring.
  • the external terminal is electrically connected to the through wiring via the extraction wiring.
  • the base further includes a third shield.
  • the third shield overlaps with the extraction wiring in the thickness direction of the base. The lower end of the third shield is separated from the extraction wiring. Thereby, the third shield is electrically insulated from the extraction wiring.
  • the upper end of the third shield is electrically connected to the upper surface ground electrode.
  • the first shield is preferably formed along a circle surrounding the through wiring.
  • the present invention further aims to reduce transmission loss of a high-frequency signal flowing through a transmission line.
  • the base preferably includes a fourth shield formed so as to cover the lower part of the transmission line.
  • the base has a first hole and a second hole. Each of the first hole and the second hole penetrates in the thickness direction of the base. Each of the first hole and the second hole has a width along the width direction of the transmission line.
  • the transmission line is located between the first hole and the second hole.
  • the base further includes a first conductor, a second conductor, and a third conductor.
  • the first conductor is provided in the first hole.
  • the second conductive part is provided in the second hole.
  • the third conductor is provided on the lower surface of the base so as to overlap the transmission line in the thickness direction of the base.
  • the third conductor is electrically connected to each of the first conductor and the second conductor.
  • the first conductor forms a fourth shield in cooperation with the second conductor and the third conductor.
  • the widths of the lower ends of the first hole and the second hole are respectively larger than the widths of the upper ends of the first hole and the second hole.
  • each of the first hole and the second hole is preferably formed in a slit shape. And this slit-shaped 1st hole part and 2nd hole part are formed so that it may have the length along the length of a transmission line.
  • the base has a plurality of first holes and a plurality of second holes, and each of the first holes and the second holes is along the length direction of the transmission line. It is preferable that the predetermined intervals are arranged, and the predetermined intervals are less than 1 ⁇ 4 of the wavelength of the signal having the highest frequency among the high frequencies.
  • the base preferably has a plurality of first holes and a plurality of second holes.
  • the first holes are arranged at predetermined intervals along the length direction of the transmission line.
  • the second holes are also arranged at predetermined intervals along the length direction of the transmission line.
  • the high frequency signal has a first signal.
  • the predetermined distance is set to a length less than 1 ⁇ 4 of the wavelength of the first signal.
  • the fourth shield provided on the base is located below the transmission line. Therefore, a 4th shield prevents the transmission loss of the high frequency signal transmitted via a transmission line.
  • the upper surface ground electrode is preferably composed of a fourth conductor and a fifth conductor formed on the upper surface of the base.
  • the fourth conductor is disposed so as to surround the transmission line in cooperation with the fifth conductor.
  • the fourth conductor and the fifth conductor are electrically connected to the first conductor and the second conductor, respectively.
  • the MEMS device preferably further includes a functional part and a cover.
  • the functional unit is provided on the base.
  • the cover is provided on the functional unit.
  • the functional unit has a fifth shield.
  • the cover has a sixth shield. The fourth shield cooperates with the fifth shield and the sixth shield to surround the transmission line.
  • the fourth shield, the fifth shield, and the sixth shield surround the transmission line. Therefore, the fourth shield can prevent transmission loss of the high frequency signal passing through the transmission line in cooperation with the fifth shield and the sixth shield.
  • the functional unit is preferably joined to the base by the upper surface ground electrode.
  • a hole is formed on the upper surface of the base, and all of the transmission lines are disposed at the bottom of the hole.
  • the width of the first hole and the second hole increase stepwise from the upper surface to the lower surface of the base.
  • the fourth shield provided on the base is located below the transmission line. Therefore, a 4th shield prevents the transmission loss of the high frequency signal transmitted via a transmission line.
  • the functional unit preferably has a frame.
  • a function part has opening.
  • the transmission line is arranged so as to be located inside the frame.
  • the cover has a lower surface region facing the transmission line through the opening.
  • the frame has a first edge and a second edge extending along the length direction of the transmission line.
  • the frame is preferably provided with a sixth conductor on the first edge.
  • the frame is provided with a seventh conductor on the second edge.
  • the sixth conductor defines the fifth shield in cooperation with the seventh conductor.
  • the sixth conductor and the seventh conductor are electrically connected to the first conductor and the second conductor, respectively.
  • the cover is provided with an eighth conductor in the lower surface region.
  • the eighth conductor defines the sixth shield.
  • the eighth conductor is electrically connected to both the sixth conductor and the seventh conductor.
  • each of the first edge and the second edge is formed with a slogan formed so as to penetrate along the thickness direction of the frame.
  • the sixth conductor is provided in the connection hole on the first edge.
  • the seventh conductor is provided in the connection hole on the second edge.
  • connection slit is formed in each of the first edge and the second edge. This connection slit is formed penetrating along the thickness direction of the frame.
  • the connection slit has a length along the length direction of the transmission line.
  • the sixth conductor is provided inside the connection slit on the first edge.
  • the seventh conductor is provided inside the connection slit on the second edge.
  • the sixth conductor and the seventh conductor can be arranged on the frame.
  • the MEMS device has a functional unit provided on the base.
  • the function unit is provided with a fifth shield.
  • the fifth shield has a length along the length direction of the transmission line.
  • the fourth shield cooperates with the fifth shield to surround the transmission line.
  • the functional part preferably has a first recess having a length along the length direction of the transmission line on the lower surface.
  • the length of the first recess is larger than the length of the transmission line.
  • the first recess has a first inner surface and a second inner surface formed along the length direction of the transmission line, and a bottom surface.
  • the functional unit is provided with a sixth conductor on the first inner surface.
  • the functional part is provided with a seventh conductor on the second inner surface.
  • the functional part is provided with an eighth conductor on the bottom surface.
  • the sixth conductor, the seventh conductor, and the eighth conductor cooperate with each other to define the fifth shield.
  • the sixth conductor and the seventh conductor are electrically connected to the first conductor and the second conductor, respectively.
  • the eighth conductor is electrically connected to the sixth conductor and the seventh conductor.
  • the functional part further has a second recess.
  • the second recess is formed at the bottom of the first recess.
  • the second recess is located at a position facing the transmission line.
  • the base preferably has a recess formed on the upper surface thereof.
  • the base preferably has a support.
  • the support is disposed on the base so as to overlap the recess.
  • the recess has a width larger than the width of the transmission line.
  • the transmission line is disposed on the support.
  • the first hole and the second hole are formed so as to penetrate from the bottom surface of the recess to the bottom surface of the base.
  • the recess has a first inner surface and a second inner surface formed along the length direction of the transmission line.
  • the base has a ninth conductor on the first inner surface.
  • the base has a tenth conductor on the second inner surface.
  • the ninth conductor is electrically connected to the first conductor and the sixth conductor.
  • the tenth conductor is electrically connected to the second conductor and the seventh conductor.
  • the arrangement of the fourth shield, the fifth shield, the sixth shield and the transmission line can be made closer to the coaxial cable.
  • the support preferably includes a frame portion and a crossbar.
  • the frame portion has a length along the length direction of the transmission line.
  • the cross bar is separated from both edges in the width direction of the frame.
  • the cross bar is connected to both edges in the length direction of the frame portion. Thereby, the opening window is formed in the both sides of the crossbar.
  • the transmission line is arranged along the crossbar.
  • the base has a groove formed on its upper surface.
  • This groove is provided on each side of the transmission line.
  • the groove is formed along the length direction of the transmission line.
  • the groove has a first inner surface, a second inner surface, and a bottom surface. Each of the first inner surface, the second inner surface, and the bottom surface is formed along the length direction of the transmission line.
  • the second inner surface is located farther from the transmission line than the first inner surface.
  • the base is provided with a first conductive portion on the second inner surface.
  • the base is provided with a second conductive portion on the bottom surface.
  • the first conductive part and the second conductive part define a fourth shield.
  • the MEMS device preferably further includes a functional part and a cover.
  • the functional unit is provided on the base.
  • the cover is provided on the functional unit.
  • the functional unit has a fifth shield.
  • the cover has a sixth shield. The fourth shield cooperates with the fifth shield and the sixth shield to surround the transmission line.
  • the functional unit preferably has a frame.
  • the functional part has an opening.
  • the transmission line is arrange
  • the cover has a lower surface region facing the transmission line through the opening.
  • the cover is provided with a third conductive portion in the lower surface region.
  • the third conductive part defines a sixth shield.
  • the frame has a first edge and a second edge extending along the length direction of the transmission line.
  • the frame is provided with a fourth conductive portion at the first edge.
  • the frame is provided with a fifth conductive portion at the second edge.
  • the fourth conductive part and the fifth conductive part define a fifth shield.
  • the fourth conductive part is electrically connected to the first conductive part and the third conductive part.
  • the fifth conductive part is electrically connected to the second conductive part and the third conductive part.
  • the base further has a sixth conductive part.
  • the sixth conductive part is disposed inside the base so as to be electrically connected to the first conductive part and the second conductive part.
  • the base preferably has a recess formed on its upper surface.
  • the base further includes a support body arranged to overlap the recess.
  • the recess is provided with a conductive portion on its inner surface.
  • the recess has a width larger than the width of the transmission line.
  • the transmission line is disposed on the support.
  • the support preferably has a frame portion and a crossbar.
  • the frame portion has a length along the length direction of the transmission line.
  • the cross bar is separated from both edges in the width direction of the frame portion.
  • the crossbar is connected to both edges in the length direction of the frame.
  • a support body has an opening window and this opening window is located in the both sides of a cross bar.
  • the transmission line is arranged along the crossbar.
  • each opening window has a shape along the length direction of the transmission line.
  • a plurality of holes penetrating in the thickness direction of the frame are formed in each of the first edge and the second edge.
  • the plurality of holes are arranged along the length direction of the transmission line.
  • the fourth conductive portion is provided in the plurality of holes on the first edge.
  • the fifth conductive portion is provided in the plurality of holes on the second edge.
  • connection slit is formed in each of the first edge and the second edge.
  • This connection slit is formed penetrating along the thickness direction of the frame.
  • the connection slit has a length along the length direction of the transmission line.
  • the fourth conductive portion is provided inside the connection slit on the first edge.
  • the fifth conductive portion is provided inside the connection slit on the second edge.
  • the micro relay includes the base, the functional unit, and the cover, the micro relay includes an electromagnet device, and the base includes a pair of transmission lines and a pair of fixed contacts.
  • the pair of fixed contacts are electrically connected to each of the pair of transmission lines, and the functional unit further includes an armature, and the armature includes a movable plate, a magnetic plate, and a movable contact.
  • the magnetic plate is attached to the movable plate, the movable contact is disposed on the movable plate so as to face the pair of fixed contacts, and the armature is configured to be the movable plate.
  • the movable contact is both fixed contacts.
  • the electromagnet device is provided on the cover, and supplies current to the coil and the coil.
  • a pair of coil terminals for supplying the coil, and the coil generates a magnetic field for moving the magnetic plate when current is supplied through the coil terminal. Move to the first position or the second position.
  • FIG. 1 is a perspective view showing an external appearance of a microrelay in which the transmission lines described in Embodiments 1-1 to 3-6 of the present invention are employed.
  • FIG. 2 is an exploded perspective view of the micro relay.
  • FIG. 3A is a schematic top view of the transmission line according to Embodiment 1-1. This transmission line is employed in a portion surrounded by dotted lines G1 and G2 in FIG.
  • FIG. 3B is a bottom view of the embodiment 1-1.
  • FIG. 4A is a perspective view showing the arrangement of one end of the signal wiring 10, the through wiring 12, and the first shields 15a to 15g.
  • FIG. 4B is a cross-sectional view taken along the line AA in FIG. FIG.
  • FIG. 5A is a top view showing a configuration of a transmission line according to the embodiment 1-2 of the present invention, which is applied to a portion surrounded by dotted lines G1 and G2 in FIG.
  • FIG. 5B is a bottom view thereof.
  • FIG. 6A is a perspective view showing the arrangement of the through wiring 12 and the embedded ground wirings 15a to 15c and 15e to 15g at one end of the signal wiring 10.
  • FIG. 6B is a cross-sectional view taken along line BB in FIG.
  • FIG. 7A is a top view showing a configuration of a transmission line according to Embodiment 1-3 of the present invention, which is applied to a portion surrounded by dotted lines G1 and G2 in FIG.
  • FIG. 7B is a bottom view thereof.
  • FIG. 7C is a perspective view showing the arrangement of the through wiring 12 and the embedded ground wiring 17 at one end of the signal wiring 10.
  • FIG. 8A is a top view showing a configuration of a transmission line according to a modification of Embodiment 1-1 of the present invention, which is applied to a portion surrounded by dotted lines G1 and G2 in FIG.
  • FIG. 8B is a bottom view thereof.
  • FIG. 8C is a cross-sectional view along the CD line in FIG.
  • FIG. 9A is a plan view showing the wiring structure of the embodiment 2-1.
  • FIG. 9B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 9C is a cross-sectional view taken along line BB in FIG. FIG.
  • FIG. 9D is a cross-sectional view taken along the line CC of FIG. 9A.
  • FIG. 10A is a plan view showing a modification of the wiring structure of the embodiment 2-1.
  • FIG. 10B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 10C is a cross-sectional view taken along line BB in FIG.
  • FIG. 10D is a cross-sectional view taken along the line CC of FIG.
  • FIG. 11A is a plan view showing the wiring structure of the embodiment 2-2.
  • FIG. 11B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 11C is a cross-sectional view taken along the line BB in FIG.
  • FIG. 11D is a cross-sectional view taken along the line CC of FIG. FIG.
  • FIG. 12A is a plan view showing the wiring structure of the embodiment 2-3.
  • FIG. 12B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 12C is a cross-sectional view taken along the line BB in FIG.
  • FIG. 12D is a cross-sectional view taken along the line CC of FIG.
  • FIG. 13 is a plan view showing the wiring structure of the embodiment 2-4.
  • FIG. 13B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 13C is a sectional view taken along line BB in FIG.
  • FIG. 13D is a cross-sectional view taken along the line CC of FIG.
  • FIG. 14A is a plan view showing the wiring structure of the embodiment 2-5.
  • FIG. 14A is a plan view showing the wiring structure of the embodiment 2-5.
  • FIG. 14B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 14C is a cross-sectional view taken along line BB in FIG.
  • FIG. 14D is a cross-sectional view taken along the line CC of FIG.
  • FIG. 15A is a plan view showing a modification of the wiring structure of the embodiment 2-5.
  • FIG. 15B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 16A is a plan view showing the arrangement of the base, the support, and the signal wiring in Embodiment 2-6.
  • FIG. 16B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 17A is a plan view showing a modified example of the arrangement of the base, the support, and the signal wiring in the embodiment 2-6.
  • FIG. 17B is a plan view showing still another modified example of the arrangement of the base, the support, and the signal wiring in the embodiment 2-6.
  • FIG. 18A is a plan view showing the wiring structure of the embodiment 2-7.
  • FIG. 18B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 18C is a cross-sectional view taken along the line BB in FIG.
  • FIG. 18D is a cross-sectional view taken along the line CC of FIG.
  • FIG. 19A is a cross-sectional view showing a wiring structure according to Embodiment 2-8. This sectional view is along a plane orthogonal to the width direction of the signal wiring.
  • FIG. 19B is a cross-sectional view showing the wiring structure of the embodiment 2-8.
  • FIG. 20A is a cross-sectional view showing a modification of the wiring structure of the embodiment 2-8. This sectional view is along a plane orthogonal to the width direction of the signal wiring.
  • FIG. 20B is a cross-sectional view showing a modification of the wiring structure of the embodiment 2-8. This sectional view is along a plane orthogonal to the length direction of the signal wiring.
  • FIG. 21 is a cross-sectional view of a wiring structure according to Embodiment 2-9. This sectional view is along a plane orthogonal to the width direction of the signal wiring.
  • Embodiment 3A shows a wiring structure of Embodiment 3-1, (a) is a plan view, (b) is a cross-sectional view taken along line AA in FIG. (A), and (c) is a cross-sectional view along line BB in FIG. FIG. It is sectional drawing of the wiring structure of Embodiment 3-2.
  • the wiring structure of Embodiment 3-3 is shown, (a) is a plan view, (b) is a cross-sectional view taken along line AA in FIG. (A), and (c) is a cross-sectional view along line BB in FIG. FIG.
  • the main part of the wiring structure of Embodiment 3-4 is shown, (a) is a plan view, and (b) is a cross-sectional view taken along line AA in FIG.
  • the principal part of the wiring structure of the other example of Embodiment 3-4 is shown, (a) is a top view, (b) is the AA arrow directional cross-sectional view of the same figure (a).
  • the main part of the wiring structure of still another example of Embodiment 3-4 is shown, (a) is a plan view, and (b) is a cross-sectional view taken along line AA in FIG.
  • the wiring structure of Embodiment 3-5 is shown, (a) is a plan view, (b) is a cross-sectional view taken along line AA in FIG.
  • FIG. 6 shows a wiring structure of Embodiment 3-6, where (a) is a plan view, (b) is a cross-sectional view taken along line AA in FIG. FIG.
  • the micro relay according to the present embodiment is a MEMS relay that handles a high-frequency electric signal and has a micro drive mechanism that is manufactured using a semiconductor process, and further includes a normally open contact and a normally closed contact. It is a latching type relay.
  • the width direction of the micro relay is defined by the x direction.
  • the length direction of the micro relay is defined by the y direction.
  • the height direction of the micro relay is defined by the z direction.
  • the micro relay includes a base 20, a functional unit 30, a cover 40, and a drive device 50 having an electromagnet device 51.
  • FIG. 2 illustrates each configuration of the base 20, the functional unit 30, the cover 40, and the driving device 50 in a state where they are separated in the stacking direction (z direction).
  • the transmission line according to Embodiment 1-1 of the present invention is used in a part of the base 20, for example, a part surrounded by dotted lines G1 and G2.
  • the base 20 includes a signal wiring 10 disposed on the upper surface thereof.
  • This signal wiring 10 is a so-called transmission line.
  • the signal wiring 10 is provided for transmitting a high frequency signal.
  • the signal wirings 10 are arranged in pairs at both ends in the longitudinal direction of the base 20.
  • the length direction of each signal wiring 10 coincides with the width direction (x direction) of the base 20, and the pair of signal wirings 10 are arranged side by side in the length direction.
  • a plurality of fixed contacts 26 that are electrically connected to the signal wiring 10 are formed on the upper surface of the base 20.
  • Each fixed contact 26 is connected to an end portion of each signal wiring 10 located at the center in the width direction of the base 20. That is, the signal wiring 10 has a first end located at one end in the width direction of the base 20 and a second end located on the opposite side to the first end.
  • Each fixed contact 26 is provided at the second end.
  • the fixed contact 26 is a metal thin film made of a metal material having good conductivity such as copper (Cu) or gold (Au). Such a fixed contact 26 can be formed using a sputtering method, an electroplating method, a vacuum deposition method, or the like.
  • the fixed contact 26 is not limited to a single layer structure, and may be a multilayer structure including, for example, an Au layer and a Ti layer interposed between the Au layer and the base 20.
  • the functional unit 30 mainly includes an armature 32 and a frame 33 surrounding the armature 32.
  • the frame 33 is formed in a rectangular frame shape.
  • the length direction and width direction of the base 20 are equal to the length direction and width direction of the frame 33, respectively.
  • first openings 31 for positioning the signal wiring 10 inside the frame 33.
  • the signal wiring 10 is disposed so as to be positioned inside the frame 33, and thereby the signal wiring 10 is positioned in the first opening 31.
  • the signal wiring 10 faces the cover 40 through the first opening 31.
  • a second opening 34 for arranging the armature 32 inside the frame 33 is formed at the center of the frame 33.
  • Each of the first openings 31 and the second openings 34 are in communication with each other at the center in the width direction of the frame 33.
  • the frame 33 has inner peripheral surfaces located at both ends in the width direction, and includes a regulation protrusion 330 protruding from the inner peripheral surface in the width direction of the frame.
  • Each regulation protrusion 330 is located between the first opening 31 and the second opening 34. That is, the first opening 31 is delimited by the second opening 32 and the regulation protrusion 330.
  • the outer size of the frame 33 is equal to the outer size of the base 20.
  • the signal wiring 10 is disposed so as to be positioned inside the frame 33, and thus the signal wiring 10 is positioned in the first opening 31. The signal wiring 10 faces the cover 40 through the first opening 31.
  • the frame 33 has the first edge 331, the second edge 332, the third edge 333, and the fourth edge 334.
  • the first edge 331, the second edge 332, the third edge 333, and the fourth edge 334 cooperate with each other to form the first opening 31.
  • the first edge 331 is defined by the edge of the frame located at one end in the length direction of the frame 33. That is, the frame 33 has a first edge 331 formed along the length direction of the transmission line.
  • the second edge 332 is defined by a pair of restricting protrusions 330. That is, the frame 33 has a second edge 332 formed along the length direction of the transmission line.
  • the second edge 332 is located on the opposite side of the first edge 331.
  • the third edge 333 is defined by the edge of the frame located at one end in the width direction of the frame 33.
  • the fourth edge 334 is defined by the edge of the frame located at one end in the width direction of the frame and is located on the opposite side to the third edge 333.
  • the armature 32 has a movable plate 3, a magnetic plate 60, and a movable contact.
  • the movable plate 3 includes a main body 320 disposed in the second opening 34 of the frame 33 and contact protrusions 321 respectively disposed in the first opening 31 of the frame 33.
  • the main body 320 is formed in a rectangular plate shape.
  • the longitudinal direction of the main body 320 and the longitudinal direction of the frame 33 substantially coincide with each other.
  • a contact protrusion 321 protruding in the longitudinal direction of the armature 32 is provided at the center of each of both ends in the longitudinal direction of the main body 320.
  • the tip of the contact protrusion 321 is disposed in the first opening 31.
  • a movable contact (not shown) is provided on the lower surface of the contact protrusion 321.
  • the movable contact simultaneously contacts each of the pair of fixed contacts 26, the movable contact short-circuits between the pair of fixed contacts 26.
  • a fulcrum protrusion 323 that protrudes in the width direction of the main body 320 protrudes from the center of each of both ends in the width direction of the main body 320.
  • a fulcrum protrusion 324 is provided on the upper surface of the fulcrum protrusion 323. The fulcrum protrusion 324 is used as a fulcrum for the swinging motion (seesaw motion) of the armature 32.
  • the armature is disposed inside the frame so that the movable plate can move between the first position and the second position.
  • the fixed contact provided at the left end contacts the movable contact.
  • the fixed contact provided at the left end is separated from the movable contact.
  • the armature 32 is integrally connected to the frame 33 by a plurality of support pieces 35.
  • the armature 32 is integrally connected to the frame 33 by four support pieces 35.
  • Each support piece 35 integrally connects the inner side surface in the longitudinal direction of the second opening 34 of the frame 33 and the outer side surface in the width direction of the main body 320.
  • the four support pieces 35 are arranged at positions that are point-symmetric with respect to the center of the main body 320.
  • the support piece 35 has a curved shape that advances while meandering in a direction along the longitudinal direction of the main body 320 in a plane orthogonal to the height direction. As a result, the armature 32 is swingably supported with respect to the frame 33. By forming the support piece 35 in a meandering shape, the length of the support piece 35 can be increased. Therefore, the spring constant of the spring force generated when the support piece 35 is twisted when the armature 32 swings can be appropriately reduced, and the stress applied to the support piece 35 can also be dispersed.
  • the armature 32, the frame 33, and the support piece 35 are made of, for example, a semiconductor substrate having a thickness of about 50 ⁇ m to 300 ⁇ m, preferably about 200 ⁇ m (for example, a silicon substrate or an SOI substrate), a semiconductor microfabrication technique such as a photolithography technique and an etching technique It can form by patterning using.
  • a semiconductor substrate having a thickness of about 50 ⁇ m to 300 ⁇ m, preferably about 200 ⁇ m
  • a semiconductor microfabrication technique such as a photolithography technique and an etching technique It can form by patterning using.
  • a magnetic plate 60 is provided on the upper surface of the main body 320.
  • the magnetic plate 60 is made of, for example, a magnetic material such as electromagnetic soft iron, electromagnetic stainless steel, and permalloy machined into a rectangular plate shape, and is joined to the main body 320 by a method such as adhesion, welding, heat fitting, or brazing.
  • the magnetic plate 60 is used for swinging the armature 32 by a magnetic field generated by the electromagnet device 51 of the driving device 50.
  • a reciprocal (residual) 70 is provided on the lower surface of the armature 32.
  • the sequential 70 is used to set the distance between the armature 32 and the base 20 to a suitable distance.
  • the functional unit 30 is joined to the base 20 in a state in which the movable contact and the pair of fixed contacts 26 are aligned so as to face each other. Thereby, the functional unit 30 is attached to the upper surface of the base 20.
  • the movable plate When the movable plate is located at the first position, the movable contact contacts both of the fixed contacts.
  • the movable plate When the movable plate is located at the second position, the movable contact is separated from both fixed contacts.
  • a joining metal layer (not shown) can be used in joining the frame 33 to the base 20, a joining metal layer (not shown) can be used. The metal layer can be used as a ground.
  • the cover 40 is made of an insulating material (for example, glass).
  • the outer size of the cover 40 is equal to the outer size of the base 20.
  • An opening 41 that penetrates the cover 40 in the thickness direction (z direction) is formed at the center of the cover 40.
  • the closing plate 42 is tightly bonded to the lower surface of the cover 40 and closes the entire opening 41. Therefore, a space surrounded by the inner peripheral surface of the opening 41 and the closing plate 42 constitutes a storage chamber of the driving device 50.
  • the closing plate 42 is made of, for example, a thin plate such as a silicon plate or a glass plate having a thickness of about 5 to 50 ⁇ m, preferably about 20 ⁇ m.
  • the cover 40 is joined to the upper surface of the frame 33.
  • a joining metal layer (not shown) can be used.
  • the metal layer can be used as a high-frequency shield layer.
  • a nonmagnetic material is used as the material of the metal layer so as not to block the magnetic field of the driving device 50.
  • the driving device 50 includes an electromagnet device 51 that generates a magnetic field for attracting the magnetic plate 60 and a permanent magnet 52 for latching the armature 32.
  • the electromagnet device 51 mainly includes a yoke 53 and a pair of coils 54.
  • the yoke 53 is integrally provided with a long rectangular plate-shaped main piece 530 and rectangular plate-shaped leg pieces 531 projecting from both ends in the longitudinal direction of the lower surface of the main piece 530.
  • Such a yoke 53 is formed by bending or forging an iron plate such as electromagnetic soft iron.
  • the permanent magnet 52 is formed in a rectangular parallelepiped shape, and is magnetized so that the upper surface and the lower surface have different polarities.
  • the permanent magnet 52 is attached to the yoke 53 such that the lower surface thereof is in contact with the longitudinal central portion of the upper surface of the main piece 530 of the yoke 53.
  • Each coil 54 is wound around each portion of the main piece 530 between each leg piece 531 and the permanent magnet 52.
  • the drive device 50 is provided with a pair of coil terminals 55. By applying a voltage between the pair of coil terminals 55, a current flows through each coil 54. When a current flows through the coil 54, the coil generates a magnetic field. This magnetic field moves the magnetic plate 60. Since the magnetic plate 60 is fixed to the movable plate, the movable plate also moves between the first position and the second position as the magnetic plate 60 moves.
  • Such a driving device 50 is stored in the storage chamber of the cover 40.
  • a drive electrode (not shown) for energizing the coil 54 is formed on the lower surface of the base 20.
  • a wiring pattern 43 to which the coil terminal 55 is connected is formed on the upper surface of the cover 40.
  • the drive electrode and the wiring pattern 43 described above are a through via 27 that penetrates the base 20 in the stacking direction, a through via 36 that penetrates the frame 33 in the thickness direction, and a through via that penetrates the cover 40 in the thickness direction. 44 and are electrically connected.
  • the end portion of the signal wiring 10 that is located at one end in the width direction of the base 20 is connected through the through wiring 12 provided inside the hole that penetrates the base 20.
  • the back surface extraction electrode disposed on the lower surface of the base 20 is electrically connected.
  • the transmission line according to this embodiment is applied to a portion surrounded by dotted lines G1 and G2 in FIG. 2 including the signal wiring 10, the through wiring 12, and the back surface extraction electrode.
  • the signal wiring is shown as one signal wire for the sake of simplicity.
  • Such a signal wiring is divided into two at the center in the length direction of the signal wiring 10 in a micro relay or the like.
  • FIG. 3A is a plan view showing an upper surface of a portion surrounded by dotted lines G1 and G2 in the base 20 shown in FIG. 2, and FIG. 3B is a plan view showing a lower surface.
  • the transmission line of this embodiment is an electric wire used for a micro relay as an example of a MEMS structure.
  • This micro relay includes a base 20, a signal wiring 10, an upper surface ground electrode 16, a through wiring 12, a lower surface ground electrode 14, and embedded ground wirings 15a, 15b, 15c, 15d, 15e, 15f, and 15g. Have.
  • the base 20 has an upper surface and a lower surface and is made of a dielectric.
  • the signal wiring 10 is provided for transmitting a high frequency signal. This high frequency signal has a first signal having the highest frequency.
  • the upper surface ground electrode 16 is disposed on the upper surface of the base 20 and is electrically insulated from the signal wiring 10.
  • the through wiring 12 penetrates from the upper surface to the lower surface of the base 20 and is electrically connected to the signal wiring 10.
  • the lower surface ground electrode 14 is disposed on the lower surface of the base 20 and is electrically insulated from the through wiring 12.
  • the plurality of embedded ground wirings 15 a, 15 b, 15 c, 15 d, 15 e, 15 f, and 15 g are embedded along the circle that is embedded in the base 20 and surrounds the periphery of the through wiring 12.
  • These embedded ground wirings 15a, 15b, 15c, 15d, 15e, 15f, and 15g each constitute a first shield.
  • the base 20 has a plurality of first shields. The first shield is disposed in the base 20 so as to surround the through wiring 12.
  • Each embedded ground wiring 15 a, 15 b, 15 c, 15 d, 15 e, 15 f, 15 g is formed along the thickness direction of the base 20.
  • Each of the embedded ground wirings 15a to 15g is electrically connected to at least one of the upper surface ground electrode 16 and the lower surface ground electrode.
  • the plurality of buried ground wirings 15a to 15g are arranged at a predetermined distance from the neighboring buried ground wiring.
  • the predetermined distance is set to a distance less than 1 ⁇ 4 of the wavelength of the high frequency transmitted through the signal wiring 10. More specifically, the predetermined distance is less than 1 ⁇ 4 of the wavelength of the first signal.
  • the base 20 has a through hole 22 that penetrates in the thickness direction.
  • the through wiring 12 is disposed inside the through hole 22.
  • the upper surface ground electrode 16 is disposed on the upper surface of the base 20 so as to surround the signal wiring 10, and a predetermined gap is formed between the upper surface ground electrode 16 and the signal wiring 10.
  • the predetermined gap is constant along the longitudinal direction of the signal wiring 10, and the base 20 is exposed in the predetermined gap. Therefore, the upper surface ground electrode 16 is electrically insulated from the transmission line.
  • the upper surface ground electrode 16 is electrically connected to the ground (earth).
  • an external terminal 13 is disposed on the lower surface of the base 20.
  • the external terminal 13 is disposed so as to be electrically connected to the through wiring 12 in FIG.
  • the lower surface ground electrode 14 is disposed on the lower surface of the base 20 so as to surround the external terminal 13, and a predetermined gap is formed between the lower surface ground electrode 14 and the external terminal 13.
  • the base 20 is exposed in the predetermined gap. Therefore, the external terminal 13 is electrically insulated from the lower surface ground electrode 14.
  • each of the embedded ground wirings 15a to 15g is electrically connected to both the upper surface ground electrode 16 and the lower surface ground electrode.
  • FIG. 4A shows only wirings and electrodes except for the base 20.
  • the through wiring 12 penetrates from the upper surface to the lower surface of the base 20, and the upper end and the lower end of the through wiring 12 are electrically connected to the signal wiring 10 and the external terminal 13, respectively.
  • the plurality of embedded ground wirings 15 a to 15 g penetrate from the upper surface to the lower surface of the base 20, and are arranged in an arc shape and at equal intervals around the through wiring 12 except for the signal wiring 10. .
  • the reason for excluding the portion of the signal wiring 10 is that if the embedded ground wiring penetrating from the upper surface to the lower surface of the base 20 is disposed in the portion where the signal wiring 10 is disposed, the embedded ground wiring is formed on the surface of the base 20. This is because they are in contact with the signal wiring 10.
  • the embedded ground wirings 15a to 15g and the through wiring 12 have a cylindrical shape.
  • the distances between the centers of the embedded ground wirings 15a to 15g and the center of the through wiring 12 are equal, and the embedded ground wirings 15a to 15g are arranged on one arc centering on the through wiring 12.
  • the distances between the buried ground wirings 15a to 15g are equal and less than 1 ⁇ 4 of the wavelength of the high frequency transmitted through the signal wiring 10.
  • a case where seven embedded ground wirings 15 a to 15 g are arranged at one end of the signal wiring 10 is shown, but the interval between the embedded ground wirings 15 a to 15 g is 1 ⁇ 4 of the wavelength of the high frequency transmitted through the signal wiring 10. If it is less, the number of buried ground wirings 15a to 15g may be increased or decreased.
  • the interval between the embedded ground wirings 15a to 15g is designed to be 1/4 of the high frequency wavelength of 50 GHz, so that 1 / of the high frequency wavelength of 40 GHz is obtained.
  • the buried ground wirings 15a to 15g can be arranged at intervals of less than 4.
  • the interval less than 1 ⁇ 4 will be described more specifically.
  • the first signal flowing through the signal wiring 10 is 40 GHz
  • 1 ⁇ 4 of the wavelength of the first signal corresponds to 1.875 mm. Therefore, it is preferable that the interval between the buried ground wirings 15a to 15g is 1.5 mm or less.
  • the characteristic impedance of the transmission line can be arbitrarily designed by adjusting the diameter of the through wiring 12 and the distance between the through wiring 12 and the embedded ground wirings 15a to 15g.
  • the upper end and the lower end of the embedded ground wiring 15d are electrically connected to the upper surface ground electrode 16 and the lower surface ground electrode 14, respectively.
  • the upper end and the lower end of the through wiring 12 are electrically connected to the signal wiring 10 and the external terminal 13, respectively.
  • the base 20 is exposed between the signal wiring 10 and the upper surface ground electrode 16 and between the external terminal 13 and the lower surface ground electrode 14.
  • the embedded ground wirings 15a to 15c and 15e to 15g have the same cross-sectional structure as the embedded ground wiring 15d.
  • a metal film such as Au or Cu is formed on the upper surface of the base 20 by plating. Thereafter, the upper surface ground electrode 16 and the signal wiring 10 are patterned by using a photolithography technique and an etching technique as shown in FIG.
  • a plurality of embedded ground wirings 15a to 15g are arranged at intervals of less than 1 ⁇ 4 of the wavelength ⁇ of the high frequency transmitted through the signal wiring 10. It is possible to suppress the resonance phenomenon that occurs when the interval between the buried ground wirings becomes 1 ⁇ 4 of the wavelength of the high frequency that is transmitted through the signal wiring 10 and the occurrence of ripples due to the resonance phenomenon. That is, if the interval between the buried ground wirings 15a to 15g is set to be shorter than 1/4 of the shortest wavelength in the high-frequency band transmitted through the transmission line, the occurrence of this resonance phenomenon and ripple can be suppressed. it can.
  • a pseudo- A simple coaxial structure can be realized.
  • the capacitance between the through wiring 12 and each of the embedded ground wirings 15a to 15g is constant in any part of the through wiring 12. Therefore, since the characteristic impedance of the through wiring 12 can be matched, reflection of signals and mutual interference between signals due to the reflection can be suppressed, and high-frequency transmission characteristics of the transmission line can be improved.
  • FIG. 5A and FIG. 5B show views of the upper surface and the lower surface of the base 20 having the wiring structure of this embodiment.
  • a description will be given of a wiring structure having a buried ground wiring in which the lower surface extraction electrodes are each extended outward from the signal wiring 10 and the arrangement thereof is changed.
  • the transmission line according to the present embodiment is different from FIG. 3A in that it does not have the embedded ground wiring 15d, and other configurations are the same as those in FIG. It is.
  • the external terminals 13b are each extended outward from the signal wiring 10, and the other configurations are as shown in FIG. Same as b). That is, in the transmission line according to the present embodiment, the lower surface electrode 13 b extends toward the outer periphery of the base 20 along the width direction of the base 20.
  • FIG. 6A shows only wirings and electrodes except for the base 20.
  • FIG. 6B is a cross-sectional view taken along the line BB in FIG.
  • the base is provided with an extraction wiring 13b on the lower surface thereof.
  • One end of the extraction wiring is electrically connected to the through wiring 12, and the other end is electrically connected to the external terminal 13.
  • the extraction wiring 13b is extended in a direction in which the longitudinal direction thereof coincides with the longitudinal direction of the signal wiring 10. For this reason, the extended portion of the extraction wiring 13b and the embedded ground wiring 15d overlap each other. Since the embedded ground wiring 15 d penetrates to the back surface of the base 20, the embedded ground wiring 15 d comes into contact with an extended portion of the extraction wiring 13 b disposed on the back surface of the base 20. Therefore, in this embodiment, since the extraction wiring 13b is extended outward from the signal wiring 10, only the embedded ground wirings 15a to 15c and 15e to 15g except the embedded ground wiring 15d are arranged. .
  • the embedded ground wirings 15a to 15c are arranged at an interval of less than 1 ⁇ 4 of the wavelength ⁇ of the high frequency transmitted through the signal wiring 10, and the embedded ground wirings 15e to 15g are arranged. Occurs when the interval between the embedded ground wirings becomes 1 ⁇ 4 of the wavelength of the high frequency transmitted through the signal wiring 10 by being arranged at an interval of less than 1 ⁇ 4 of the wavelength ⁇ of the high frequency transmitting the signal wiring 10. And the occurrence of ripple due to the resonance phenomenon can be suppressed.
  • the interval between the buried ground wires 15a to 15c and the interval between the buried ground wires 15e to 15g are set to be shorter than 1/4 of the shortest wavelength in the high-frequency band transmitted through the transmission line. Resonance and ripple can be suppressed.
  • FIG. 7A and 7B show the configuration of the transmission line according to the present embodiment, which is applied to the portion surrounded by the dotted lines G1 and G2 in the base 20 shown in FIG. 7A is a plan view showing an upper surface of a portion surrounded by dotted lines G1 and G2 in the base 20 shown in FIG. 2, and FIG. 7B is surrounded by a dotted line G1 in the base 20 shown in FIG. It is a top view which shows the lower surface of a part.
  • FIG. 7C shows only the wiring and electrodes except for the base 20.
  • the transmission line according to the present embodiment is a transmission line used for a micro relay as an example of a MEMS structure, and includes a base 20 having an upper surface and a lower surface, and a signal wiring 10 disposed on the upper surface and transmitting a high frequency. And an upper surface ground electrode 16 disposed on the upper surface and electrically insulated from the signal wiring 10, and a through wiring 12 penetrating from the upper surface to the lower surface of the base 20 and electrically connected to the signal wiring 10. And a bottom ground electrode 14 disposed on the bottom surface and electrically insulated from the through wiring 12, and a buried ground wiring 17 embedded in the base 20 and extending along a circle surrounding the through wiring 12. .
  • external terminals 13 are disposed on the lower surface of the base 20.
  • the external terminal 13 is disposed at a position corresponding to the through wiring 12 in FIG.
  • the lower surface ground electrode 14 is disposed on the back surface of the base 20 so as to surround the external terminal 13, and a predetermined gap is formed between the lower surface ground electrode 14 and the external terminal 13.
  • the base 20 is exposed in the predetermined gap.
  • the external terminal 13 is electrically insulated from the lower surface ground electrode 14.
  • the buried ground wiring 17 is electrically connected to both the upper surface ground electrode 16 and the lower surface ground electrode 14.
  • the embedded ground wiring 17 penetrates from the upper surface to the lower surface of the base 20, and is continuously arranged in an arc shape around the through wiring 12 except for the signal wiring 10.
  • the embedded ground wiring 17 is arranged on one arc centering on the through wiring 12 and has a planar shape that approximates the alphabet “C”.
  • the reason for excluding the portion of the signal wiring 10 is that if the embedded ground wiring 17 penetrating from the front surface to the back surface of the base 20 is disposed in the portion where the signal wiring 10 is disposed, the embedded ground is formed on the surface of the base 20. This is because the wiring 17 comes into contact with the signal wiring 10.
  • the characteristic impedance of the transmission line can be arbitrarily designed.
  • the embedded ground wiring 17 surrounds the periphery of the through wiring 12 in an arc shape and continuously, so that the pseudo coaxial structure is strengthened and the impedance can be made constant. it can.
  • Embodiment 1-3 since the plurality of embedded ground wirings 15 are arranged in an arc around the through wiring 12, it is necessary to adjust the interval between the embedded ground wirings 15 to a predetermined value or less. .
  • Embodiment 1-3 instead of the plurality of embedded ground wirings 15, one continuous embedded ground wiring 17 is arranged around the through wiring 12. It is possible to prevent a resonance phenomenon that occurs when the wavelength of the high-frequency wave transmitted through the wiring 10 is 1 ⁇ 4, and the occurrence of ripples. That is, the concept of the interval between the embedded ground wirings is eliminated, and it is not necessary to consider 1/4 of the wavelength ⁇ of the high frequency, and the transmission line can be easily designed.
  • FIG. 8A is a top view showing the configuration of the transmission line according to the modification of the embodiment 1-1 of the present invention applied to the portion surrounded by the dotted line G1 in FIG. Is a bottom view thereof.
  • a plurality of embedded ground wirings 15a to 15g, 15h, and 15j are connected to the signal wiring 10. You may arrange
  • the base 20 has embedded ground wirings 15h and 15j in addition to the plurality of embedded ground wirings 15a to 15g shown in FIGS. 3 (a) and 3 (b).
  • Each of the buried ground lines 15h and 15j constitutes a second shield.
  • the buried ground wirings 15a to 15g, 15h, and 15j are arranged on the base 20 along a circle surrounding the periphery of the through wiring 12. As a result, the effect of suppressing the resonance phenomenon that occurs when the interval between the embedded ground wirings becomes 1 ⁇ 4 of the wavelength of the high frequency transmitted through the signal wiring 10 is increased. Further, the range surrounding the through wiring 12 in an arc shape is widened, the pseudo coaxial structure is strengthened, and the impedance can be made constant.
  • FIG. 8C is a cross-sectional view taken along the CD line in FIG.
  • the embedded ground wirings 15 a to 15 g penetrate from the upper surface to the lower surface of the base 20 and are in contact with the upper surface ground electrode 16 and the lower surface ground electrode 14.
  • the base 20 further has embedded ground wirings 15 h and 15 j, which overlap with the signal wiring 10 in the thickness direction of the base 20.
  • a base 20 is interposed between the signal wiring 10 and the upper surface ground electrode 16. Thereby, the buried ground wiring and the signal wiring 10 can be electrically insulated.
  • the lower ends of the embedded ground wires 15 h and 15 j are in contact with the lower surface ground electrode 14 on the lower surface of the base 20. Thereby, the embedded ground wirings 15h and 15j are grounded.
  • the characteristic impedance of the transmission line can be arbitrarily designed.
  • the base 20 having a laminated structure made of two or more different materials having etching selectivity is prepared and the etching selectivity is used, the embedding depth of the embedded ground wirings 15h and 15j, that is, the embedded ground wiring 15h. , 15j and the signal wiring 10 can be easily made constant.
  • the thickness of each layer of the base 20 the characteristic impedance of the transmission line can be arbitrarily designed.
  • the base 20 further includes a third shield.
  • the third shield is placed in the thickness direction of the base and overlaps with the extraction wiring.
  • the base 20 is interposed between the lower end of the third shield and the lower surface of the base 20, whereby the third shield is electrically insulated from the extraction wiring.
  • the upper end of the third shield reaches the upper surface of the base 20, whereby the third shield is electrically connected to the upper surface ground electrode.
  • the base 20 has been described as an example of a dielectric substrate.
  • the dielectric substrate is a silicon substrate made of single crystal silicon or a low-temperature co-fired ceramic substrate (LTCC substrate). It does not matter.
  • LTCC substrate low-temperature co-fired ceramic substrate
  • the advantages of each substrate are described.
  • a semiconductor microfabrication technique such as a photolithography technique and an etching technique can be used. Therefore, the base 20 can be easily processed as compared with the case where the base 20 is used.
  • the functional unit 30 is formed using silicon, the linear expansion coefficients of the functional unit 30 and the base 20 can be made approximately equal. Therefore, the stress resulting from the difference in linear expansion coefficient can be reduced.
  • As the silicon substrate it is desirable to use high resistance silicon. In this case, high frequency characteristics (particularly, high frequency characteristics in the slow wave mode) can be improved.
  • the high frequency characteristics can be improved by using glass which is a substance having a relatively low dielectric constant.
  • the low-temperature co-fired ceramic substrate can easily form circular through-holes and internal wiring (ground layer) having a uniform diameter as compared with the base 20.
  • the diameter of the through hole is uniform, the high frequency characteristics are improved as compared with the case where the diameter of the through hole is not uniform (for example, when the diameter changes according to the depth of the hole).
  • the impedance can be adjusted, and the impedance design becomes easy. Therefore, high-frequency transmission characteristics can be improved compared to a glass substrate.
  • Embodiments 1-1 to 1-3 of the present invention a micro relay has been described as an example of a MEMS structure.
  • the present invention is not limited to this, and a high frequency switch, a resonator, a filter, An oscillator is also included.
  • Embodiment 2-1 a shield structure surrounding a signal wiring formed on the upper surface of the base 20 will be described.
  • the wiring structure of the present embodiment is applied to a MEMS device including a base 20, a functional unit 30, and a cover 40, for example, as shown in FIGS. 9 (a) to 9 (d).
  • 9 to 21 the structure of the MEMS device is shown in a simplified manner in order to briefly explain the main points of the wiring structure of the present embodiment. That is, the base 20, the functional unit 30, the cover 40, and the like described in FIGS. 9 to 21 are applied to a portion surrounded by a dotted line G1 in FIG.
  • the second edge 332 is defined by a pair of restricting protrusions 330 in the micro relay. However, in FIGS. 9 to 21, the pair of restricting protrusions 330 are described as a single unit, and thereby represent the second edge 332.
  • the base 20 is made of a substrate (in this embodiment, a glass substrate).
  • a signal wiring 10 is formed on the upper surface of the base 20.
  • the base 20 may be formed of a silicon substrate instead of an insulating substrate such as a glass substrate.
  • the functional unit 30 is formed using silicon, the linear expansion coefficients of the functional unit 30 and the base 20 can be approximately equal. Therefore, the stress resulting from the difference in linear expansion coefficient can be reduced.
  • the silicon substrate it is preferable to use a high resistance silicon substrate using high resistance silicon. In this case, the high frequency characteristics (particularly, the high frequency characteristics in the slow wave mode) can be improved.
  • the signal wiring 10 is formed in a straight line as shown in FIG.
  • a pair of external terminals 13 are formed on the lower surface of the base 20. Further, the base 20 is formed with a pair of through holes 22 that penetrates the base 20 in the thickness direction. Since the base 20 is a glass substrate, the through hole 22 is formed by blasting (for example, sand blasting) from the lower surface of the base 20. Inside the through hole 22, the through wiring 12 that electrically connects each end of the signal wiring 10 in the longitudinal direction to the external terminal 13 is formed. Accordingly, the pair of external terminals 13 are electrically connected to each other by the signal wiring 10.
  • the base 20 includes a first hole 24 and a second hole 25. Each first hole 24 and second hole 25 penetrates the base 20 in the thickness direction.
  • the first hole 24 is located on the left side of the signal wiring 10.
  • the second hole 25 is located on the right side of the signal wiring 10.
  • the first hole 24 and the second hole 25 are provided adjacent to the left and right sides of the signal wiring 10.
  • the signal wiring 10 is located between the first hole 24 and the second hole 25.
  • the distance between each of the holes 24 and 25 and the signal wiring 10 is set to such a distance that a transmission loss of a high-frequency signal passing through the signal wiring 10 can be sufficiently reduced by a ground line described later.
  • each of the first hole 24 and the second hole 25 is a slit formed in parallel with the signal wiring 10.
  • the first hole portion 24 and the second hole portion 25 each have a length along the length direction of the signal wiring 10.
  • the first hole 24 and the second hole 25 are formed along the signal wiring 10.
  • the first hole portion 24 and the second hole portion 25 have a width along the width direction of the signal wiring 10.
  • the widths of the first holes 24 and the second holes 25 become wider from the upper surface of the base 20 toward the lower surface. That is, each of the first hole 24 and the second hole 25 is formed so that the width on the lower surface of the base 20 is larger than the width on the upper surface of the base 20.
  • the angle formed between the inner surface of each first hole 24 and second hole 25 and the upper surface of the base 20 is, for example, 75 degrees, and preferably 45 degrees.
  • the holes 24 and 25 can be formed by blasting the base 20 from the lower surface of the base 20 (for example, sand blasting). In addition, you may form each 1st hole 24 and the 2nd hole 25 using well-known techniques other than blasting.
  • the functional unit 30 is made of a semiconductor substrate (for example, a silicon substrate) processed using a semiconductor microfabrication technique.
  • the functional unit 30 is provided (attached) on the upper surface of the base 20 using a metal layer 80 for bonding.
  • a rectangular first opening 31 is formed in the functional unit 30 so that the entire signal wiring 10 faces the cover 40 side.
  • the functional unit 30 is provided on the upper surface of the base 20. As a result, the signal wiring 10 is located in the first opening 31.
  • the cover 40 is made of an insulating material (for example, glass).
  • the cover 40 is provided on the functional unit 30. That is, the cover 40 is placed on the base 20 so as to sandwich the functional unit 30 with the base 20.
  • the cover 40 is formed in a plate shape having a size capable of closing the first opening 31 of the functional unit 30. Thus, the cover 40 is provided on the functional unit 30. Further, the cover 40 faces the signal wiring 10 through the first opening 31.
  • the wiring structure of the present embodiment includes a base 20, a signal wiring 10 formed on the upper surface of the base 20, a first hole portion 24 and a second hole portion 25 penetrating the base 20 in the thickness direction, and the signal wiring 10. And an electrically insulated ground line 11.
  • the signal wiring 10 is located between the first hole 24 and the second hole 25.
  • the ground line 11 is formed around the signal wiring 10.
  • the ground line 11 in this embodiment is formed in a shape surrounding the signal line 10 in a plane intersecting the length direction of the signal line 10. More specifically, the ground line 11 of the present embodiment is formed to surround the signal wiring 10 in a plane orthogonal to the length direction of the signal wiring 10.
  • the ground line 11 is made of a conductor provided on each of the base 20, the functional unit 30, and the cover 40.
  • the base 20 includes a first conductor 110, a second conductor 111, a third conductor 112, a fourth conductor 113, and a fifth conductor 114.
  • the first conductor 110, the second conductor 111, the third conductor 112, the fourth conductor 113, and the fifth conductor 114 cooperate with each other to define a fourth shield. Since the fourth shield is provided on the base 20, the fourth shield covers the lower side of the signal wiring 10.
  • the functional unit 30 includes a sixth conductor 115 and a seventh conductor 116.
  • the sixth conductor 115 and the seventh conductor 116 cooperate with each other to define the fifth shield.
  • the cover 40 includes an eighth conductor 117.
  • the eighth conductor 117 defines a sixth shield. Accordingly, the first conductor 110 to the eighth conductor 117 constitute a ground line.
  • the first conductor 110 is formed inside the first hole 24 of the base 20.
  • the second conductor 111 is formed inside the second hole 25 of the base 20.
  • the third conductor 112 is formed on the lower surface of the base 20.
  • the third conductor 112 is formed between the slits 24 and 25 on the lower surface of the base 20 and between the pair of external terminals 13. Therefore, the third conductor 112 is located at a position overlapping the signal wiring 10 in the thickness direction of the base 20.
  • the third conductor 112 is directly connected to the first conductor 110 on the left side of the signal wiring 10.
  • the third conductor 112 is directly connected to the second conductor 111 on the right side of the signal wiring 10.
  • the first conductor 110 and the second conductor 111 are electrically connected to each other by the third conductor 112.
  • the third conductor 112 may be electrically connected to the lower surface ground electrode 14 or may be electrically insulated.
  • the fourth conductor 113 is formed on the right side of the signal wiring 10 in the base 20.
  • the fourth conductor 113 is formed to cover the entire first conductor 110 exposed from the first hole 24 to the upper surface of the base 20. As a result, the fourth conductor 113 is directly connected to the first conductor 110.
  • the fifth conductor 114 is formed on the right side of the signal wiring 10 in the base 20.
  • the fifth conductor 114 is formed so as to cover the entire second conductor 111 exposed on the upper surface of the base 20 through the second hole 25. As a result, the fifth conductor 114 is directly connected to the second conductor 111.
  • the metal layer 80 is formed to surround the signal wiring 10 on the upper surface of the base 20.
  • the left portion of the signal wiring 10 in the metal layer 80 is used as the fourth conductor 113
  • the right portion of the signal wiring 10 in the metal layer 80 is used as the fifth conductor 114. That is, the fourth conductor 113 and the fifth conductor 114 are formed using the metal layer 80. That is, the upper surface ground electrode 16 can be used as the metal layer 80.
  • the sixth conductor 115 and the seventh conductor 116 are formed on the inner surface of the frame 33 of the functional unit 30. More specifically, the frame 33 has a first edge 331 and a second edge 332 along the length direction of the transmission line, and a third edge 333 along the width direction of the transmission line. And a fourth edge 334. Accordingly, the frame 33 has the first inner surface 33L and the second inner surface 33R along the length direction of the transmission line, and the third inner surface and the fourth inner surface along the width direction of the transmission line. And the inner surface.
  • the sixth conductor 115 is formed on the first inner surface 33L of the first edge 331.
  • the sixth conductor 115 is electrically connected to the first conductor 110 through the fourth conductor 113.
  • the seventh conductor 116 is formed on the second inner surface 33R of the second edge 332.
  • the seventh conductor 116 is electrically connected to the second conductor 111 through the fifth conductor 114.
  • the eighth conductor 117 is formed in the lower surface region 40U facing the opening 31 in the cover 40. More specifically, the cover 40 has a lower surface region 40 ⁇ / b> U that faces the base 20 through the first opening 31.
  • the eighth conductor 117 is formed in the lower surface region 40U.
  • the eighth conductor 117 is directly connected to each of the sixth conductor 115 and the seventh conductor 116. In other words, the sixth conductor 115 electrically connects the first conductor 110 and the eighth conductor 117 to each other.
  • the seventh conductor 116 electrically connects the second conductor 111 and the eighth conductor 117 to each other.
  • the dimension of the first opening 31 in the length direction of the signal wiring 10 is larger than that of the signal wiring 10. Further, the dimension of the first opening 31 in the width direction of the signal wiring 10 is such that each of the first hole 24 and the second hole 25 faces the cover 40 side when the metal layer 80 is not provided. It is.
  • the first conductor 110 and the second conductor 111 are electrically connected to each other by the third conductor 112.
  • the fourth conductor 113 is electrically connected to the first conductor 110
  • the sixth conductor 115 is electrically connected to the first conductor 110 via the fourth conductor 113.
  • the fifth conductor 114 is electrically connected to the second conductor 111
  • the seventh conductor 116 is electrically connected to the second conductor 111 via the fifth conductor 114.
  • the sixth conductor 115 and the seventh conductor 116 are electrically connected to each other by the eighth conductor 117.
  • the conductors 110 to 117 are electrically connected to each other. At least one of the conductors 110 to 117 is connected to the ground (reference potential point).
  • Each of the conductors 110 to 117 can be formed by a conventionally known method such as electroplating or sputtering.
  • the wiring structure of the present embodiment has the base 20 made of the substrate, the signal wiring 10 formed on the upper surface of the base 20, the periphery of the signal wiring 10, and electrically insulated from the signal wiring 10. And a first hole 24 and a second hole 25 that are provided adjacent to the left and right sides of the signal wiring 10 and penetrate the base 20 in the thickness direction.
  • the ground line 11 is formed on the first conductor 110 formed inside the first hole 24, the second conductor 111 formed inside the second hole 25, and the lower surface of the base 20.
  • the first hole 24 and the second hole 25 are formed so that the length along the width direction of the signal wiring 10 is larger on the lower surface than on the upper surface.
  • the wiring structure of the present embodiment since a pseudo coaxial structure is obtained, transmission loss of high frequency signals can be reduced. Further, when the ground line 11 is manufactured, not only the base 20 of the MEMS device but also the functional unit 30 and the cover 40 are used. Therefore, it is not necessary to produce a laminated body such as a semiconductor layer, an insulating layer, or a conductive layer in order to obtain a three-dimensional structure, compared to a case where the ground line 11 is produced using only the base 20. Thereby, the ground line 11 can be easily manufactured.
  • the lengths of the first hole 24 and the second hole 25 in the direction along the width direction of the signal wiring 10 are uniform, grounding in a plane intersecting the length direction of the signal wiring 10 is performed.
  • the shape of the line 11 can be brought close to an annular shape, and high frequency characteristics can be improved.
  • each of the first hole 24 and the second hole 25 is a slit formed so as to be parallel to the signal wiring 10, the ripple of the high frequency signal output to the signal wiring 10 is not affected. Generation can be suppressed and high frequency characteristics can be improved.
  • the ground line 11 includes a fourth conductor 113 electrically connected to the first conductor 110 and a fifth conductor 114 electrically connected to the second conductor 111 on the upper surface of the base 20. Prepare. Therefore, transmission loss of high frequency signals can be further reduced.
  • the fourth conductor 113 and the fifth conductor 114 are formed using a metal layer 80 for joining the functional unit 30 to the base 20. Therefore, the manufacturing cost can be reduced.
  • the ground line 11 is formed on the first inner surface 33 ⁇ / b> L of the frame 33 and is formed on the second inner surface 33 ⁇ / b> R of the frame 33 and the sixth conductor 115 electrically connected to the first conductor 110.
  • the seventh conductor 116 electrically connected to the second conductor 111 and the seventh conductor 116 formed in the lower surface region 40U and electrically connected to the sixth conductor 115 and the seventh conductor 116.
  • an eighth conductor 117 is formed on the first inner surface 33 ⁇ / b> L of the frame 33 and is formed on the second inner surface 33 ⁇ / b> R of the frame 33 and the sixth conductor 115 electrically connected to the first conductor 110.
  • the seventh conductor 116 electrically connected to the second conductor 111 and the seventh conductor 116 formed in the lower surface region 40U and electrically connected to the sixth conductor 115 and the seventh conductor 116.
  • an eighth conductor 117 is formed on the shape of the grounding line 11 in the plane intersecting the length
  • FIGS. 10A to 10D show modified examples of the wiring structure of FIG.
  • the metal layer 80 is not used for joining the functional unit 30 and the base 20, and the ground line 11 ⁇ / b> A does not include the fourth conductor 113 and the fifth conductor 114. That is, the ground line 11A includes first to third, sixth to eighth conductors 110 to 112, 115 to 117. In the ground line 11 ⁇ / b> A, the sixth conductor 115 is directly connected to the first conductor 110, and the seventh conductor 116 is directly connected to the second conductor 111.
  • the sixth to eighth conductors 115 to 117 may be omitted.
  • Embodiment 2-2 In the wiring structure of the present embodiment, as shown in FIGS. 11A to 11D, the ground line 11B and the base 20B are different from the wiring structure of the first embodiment.
  • symbol is attached
  • the base 20B is different from the embodiment 2-1 in each of the first hole 24B and the second hole 25B. That is, the base 20B has a plurality of first holes 24B and a plurality of second holes 25B.
  • Each of the first hole portions 24 ⁇ / b> B and the second hole portions 25 ⁇ / b> B is a through-hole formed in a plurality at predetermined intervals along the length direction of the signal wiring 10. In the illustrated example, only five holes 24B and 25B are shown for simplification.
  • each hole 24B, 25B becomes wider from the upper surface to the lower surface of the base 20B as in the case of the embodiment 2-1.
  • the inclination angle formed by the inner surface of each hole 24B, 25B with the upper surface of the base 20B is 75 degrees, preferably 45 degrees.
  • Each of the holes 24B and 25B can be formed by blasting (for example, sand blasting) the base 20B from the lower surface of the base 20B.
  • the ground line 11B includes a plurality of first conductors 110B, a plurality of second conductors 111B, a third conductor 112B, a sixth conductor 115, a seventh conductor 116, and an eighth conductor 117.
  • the ground line 11B may further include a fourth conductor 113 and a fifth conductor 114.
  • the ground line 11B may include only the first conductor 110B, the second conductor 111B, and the third conductor 112B.
  • Each first conductor 110B is a through-hole wiring formed in each first hole 24B.
  • Each second conductor 111B is a through-hole wiring formed in each second hole 25B.
  • These conductors 110B and 111B can be formed by a conventionally known method such as electroplating or sputtering.
  • the third conductor 112B is formed on the upper surface of the base 20B.
  • the third conductor 112B is directly connected to each of the plurality of first conductors 110B on the left side of the signal wiring 10.
  • the third conductor 112B is directly connected to each of the plurality of second conductors 111B on the right side of the signal wiring 10. All the first conductors 110B and all the second conductors 111B are electrically connected to each other by the third conductor 112B.
  • Such a ground line 11B can suppress the occurrence of ripple with respect to a high-frequency signal having a wavelength that is four times or more the above-mentioned predetermined interval.
  • the above-mentioned predetermined interval that is, the distance between the centers of the adjacent holes (respective holes 24B and 25B) is the high-frequency signal output to the signal wiring 10 (that is, the high-frequency signal assumed to be used).
  • the frequency is set to a value less than 1/4 of the wavelength of the highest frequency signal.
  • the predetermined interval is designed. That is, the predetermined interval may be designed to be less than 1 ⁇ 4 of the wavelength of 50 GHz.
  • the interval less than 1 ⁇ 4 will be described more specifically.
  • the first signal flowing through the signal wiring 10 is 40 GHz
  • 1 ⁇ 4 of the wavelength of the first signal corresponds to 1.875 mm. Therefore, it is preferable that the interval between the buried ground wirings 15a to 15g is 1.5 mm or less.
  • the transmission loss of high-frequency signals can be reduced as in the case of Embodiment 2-1.
  • each of the first hole portions 24B and the second hole portions 25B is formed at a predetermined interval along the length direction of the signal wiring 10, and the predetermined interval is the wavelength of the high-frequency signal output to the signal wiring 10. Is less than 1 ⁇ 4. Therefore, it is possible to improve the high frequency characteristics for the high frequency signal output to the signal wiring 10.
  • each of the first hole 24B and the second hole 25B is formed so as to increase in width from the upper surface of the base 20 toward the lower surface. Therefore, high frequency characteristics can be improved.
  • the functional part 30C includes a first connection hole 37 (hereinafter, denoted by reference numeral 371 as necessary) and a second connection hole 37 (hereinafter, denoted by reference numeral 372 as necessary) penetrating the functional part 30C in the thickness direction.
  • a plurality of first connection holes 371 are formed on the first edge 331 of the frame 33.
  • the plurality of first connection holes 371 are arranged at equal intervals along the length direction of the signal wiring 10.
  • a plurality of second connection holes 372 are formed on the second edge 332 of the frame 33.
  • the plurality of second connection holes 372 are arranged at equal intervals along the length direction of the signal wiring 10. That is, a plurality of connection holes 371 and 372 are formed around the first opening 31 of the functional unit 30 ⁇ / b> C along the length direction of the signal wiring 10.
  • the ground line 11 ⁇ / b> C includes a first conductor 110, a second conductor 111, a third conductor 112, a sixth conductor 115 ⁇ / b> C, a seventh conductor 116 ⁇ / b> C, and an eighth conductor 117.
  • the ground line 11C may further include a fourth conductor 113 and a fifth conductor 114.
  • the sixth conductor 115C is formed inside each first connection hole 371, and the seventh conductor 116 is formed inside each second connection hole 372.
  • the eighth conductor 117 is formed so that both end portions in the direction along the width direction of the signal wiring 10 overlap with the first conductor 110 and the second conductor 111 in the thickness direction.
  • Each first connection hole 371 is provided at a position where the eighth conductor 117 faces the opening on the cover 40 side and the first conductor 110 faces the opening on the base 20 side.
  • Each second connection hole 372 is provided at a position where the eighth conductor 117 faces the opening on the cover 40 side and the second conductor 111 faces the opening on the base 20 side. Therefore, the first conductor 110 and the eighth conductor 117 are electrically connected by the sixth conductor 115, and the second conductor 111 and the eighth conductor 117 are electrically connected by the seventh conductor 116. Is done.
  • the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the wiring structure of the embodiment 2-1.
  • connection holes 37 penetrating the functional part 30C in the thickness direction are formed around the first opening 31 of the functional part 30C along the length direction of the signal wiring 10.
  • the sixth conductor 115C and the seventh conductor 116C of the ground line 11C are formed inside the connection hole 37. Therefore, the sixth conductor 115C and the seventh conductor 116C can be easily formed as compared with the case where the sixth conductor 115 and the seventh conductor 116 are formed on the inner surface of the first opening 31 of the functional unit 30C.
  • the cross section of each connection hole 37 is a perfect circle shape, this is an example to the last.
  • each of the connection holes 371 and 372 is formed seven by one, this is only an example.
  • the characteristic part of the wiring structure of the present embodiment can also be applied to the embodiment 2-2.
  • FIG. 13 shows the wiring structure of this embodiment.
  • the ground line 11D and the functional unit 30D are different from the wiring structure of the embodiment 2-1.
  • symbol is attached
  • the functional unit 30D has two connection slits 38 that penetrate the functional unit 30D in the thickness direction.
  • the first connection slit 38 (hereinafter, denoted by reference numeral 381 as necessary) is formed on the first edge 331 located on the left side of the signal wiring 10.
  • the second connection slit 38 (hereinafter denoted by reference numeral 382 as necessary) is formed at the second edge 332 located on the right side of the signal wiring 10.
  • Each connection slit 38 is formed along the length direction of the signal wiring 10. That is, the connection slit 38 is formed along the length direction of the signal wiring 10 around the first opening 31 of the functional unit 30D.
  • the ground line 11D includes a first conductor 110, a second conductor 111, a third conductor 112, a sixth conductor 115D, a seventh conductor 116D, and an eighth conductor 117.
  • the ground line 11D may further include a fourth conductor 113 and a fifth conductor 114.
  • the sixth conductor 115D is formed inside the first connection slit 381, and the seventh conductor 116D is formed on the second connection slit 382 side.
  • the eighth conductor 117 is formed in such a manner that both end portions in the direction along the width direction of the signal wiring 10 overlap with the first conductor 110 and the second conductor 111 in the thickness direction.
  • the first connection slit 381 is provided at a position where the eighth conductor 117 faces the opening on the cover 40 side and the first conductor 110 faces the opening on the base 20 side.
  • the second connection slit 382 is provided at a position where the eighth conductor 117 faces the opening on the cover 40 side and the second conductor 111 faces the opening on the base 20 side. Therefore, the first conductor 110 and the eighth conductor 117 are electrically connected by the sixth conductor 115, and the second conductor 111 and the eighth conductor 117 are electrically connected by the seventh conductor 116. Is done.
  • the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the wiring structure of the embodiment 2-1.
  • a connection slit 38 that penetrates the functional portion 30D in the thickness direction is formed around the first opening 31 of the functional portion 30D along the length direction of the signal wiring 10.
  • the sixth conductor 115D and the seventh conductor 116D of the ground line 11D are formed inside the connection slit 38. Therefore, according to the wiring structure of the present embodiment, the sixth conductor 115 and the seventh conductor 115 are compared with the case where the sixth conductor 115 and the seventh conductor 116 are formed on the inner surface of the first opening 31 of the functional unit 30.
  • the seventh conductor 116 can be easily formed.
  • connection hole 37 is formed around the first opening 31 of the functional unit 30C, and the sixth conductor 115C and the seventh conductor 116C are formed in the connection hole 37. Compared with the case, the high frequency characteristics can be improved.
  • the characteristic part of the wiring structure of the present embodiment can also be applied to the embodiment 2-2.
  • Embodiment 2-5 In the wiring structure of the present embodiment, as shown in FIGS. 14A to 14D, the ground line 11E and the functional unit 30E are different from the wiring structure of the embodiment 2-1.
  • symbol is attached
  • the functional unit 30E includes a rectangular recess 39 instead of the first opening 31.
  • the recess 39 is formed on the lower surface of the functional unit 30E.
  • the recess 39 is formed so that its width is larger than the width of the signal wiring 10.
  • the recess 39 is formed such that its length is larger than the length of the signal wiring 10.
  • the length direction of the recess 39 is along the length direction of the signal wiring.
  • the width of the signal wiring 10 is set such that a part of the first hole 24 and the second hole 25 faces the recess 39.
  • the ground line 11E is configured by a fourth shield and a fifth shield provided in the base 20 and the functional unit 30E, respectively. More specifically, the base 20 includes a first conductor 110, a second conductor 111, a third conductor 112, a fourth conductor 113, and a fifth conductor 114.
  • the functional unit 30E includes a sixth conductor 115E, a seventh conductor 116E, and an eighth conductor 117E. The first conductor 110E to the eighth conductor 117E constitute the ground line 11E.
  • the concave portion 39 has a left inner side surface 39L, a right inner side surface 39R, and a bottom surface along the length direction of the signal wiring 10.
  • the sixth conductor 115E is formed on the left inner surface 39L of the recess 39.
  • the sixth conductor 115E is electrically connected to the first conductor 110 through the fourth conductor 113.
  • the seventh conductor 116E is formed on the right inner surface 39R of the recess 39.
  • the seventh conductor 116E is electrically connected to the second conductor 111 through the fifth conductor 114.
  • 8th conductor 117 is formed in the bottom face of crevice 39 of functional part 30E.
  • the eighth conductor 117 is directly electrically connected to the sixth conductor 115E and the seventh conductor 116E.
  • the sixth conductor 115E electrically connects the first conductor 110 and the eighth conductor 117E to each other.
  • the seventh conductor 116E electrically connects the second conductor 111 and the eighth conductor 117E to each other.
  • the conductors 110 to 114 and 115E to 117E are electrically connected to each other. Further, at least one of the conductors 110 to 114 and 115E to 117E is connected to the ground (reference potential point).
  • Each of the conductors 110 to 114 and 115E to 117E can be formed by a conventionally known method such as electroplating or sputtering.
  • the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the wiring structure of the embodiment 2-1.
  • the distance between the eighth conductor 117E and the signal wiring 10 can be determined by changing the depth of the recess 39. Therefore, the distance between the eighth conductor 117E and the signal wiring 10 can be set to a distance suitable for improving the high frequency characteristics.
  • ground line 11E does not necessarily include the fourth conductor 113 and the fifth conductor 114.
  • 15A and 15B show a modification of the wiring structure of the present embodiment.
  • the functional unit 30F includes a second recess 390F on the bottom surface of the recess 39F.
  • the second recess 390F is formed at the center of the bottom surface of the recess 39F (the center of the bottom surface in the width direction of the signal wiring 10).
  • the second recess 390F has a length along the length direction of the recess 39F. Therefore, the bottom surface of the recess 39F is formed in a shape in which a portion facing the signal wiring 10 (a central portion in the width direction of the signal wiring 10) is recessed.
  • the ground line 11F includes the first conductor 110, the second conductor 111, the third conductor 112, the sixth conductor 115E, the seventh conductor 116E, and the eighth conductor.
  • the ground line 11F may further include a fourth conductor 113 and a fifth conductor 114.
  • the eighth conductor 117F is formed on the entire bottom surface of the recess 39. That is, the eighth conductor 117F is also formed on the inner surface of the second recess 390F.
  • the shape of the ground line 11F in the plane intersecting the length direction of the signal wiring 10 can be made closer to an annular shape as compared with the case where the bottom surface of the recess 39 is flat as in the wiring structure of FIG. . Therefore, high frequency characteristics can be improved.
  • the characteristic part of the wiring structure of the present embodiment can also be applied to the embodiment 2-2.
  • Embodiment 2-6 In the wiring structure of the present embodiment, as shown in FIGS. 16A and 16B, the base 20G is different from the wiring structure of the embodiment 2-5. Note that components common to the wiring structure of the present embodiment and the wiring structure of Embodiment 2-5 are denoted by the same reference numerals and description thereof is omitted. 16A and 16B, the functional unit 30E and the sixth to eighth conductive units 115E to 117E are not shown.
  • the base 20G includes a recess 281 on the upper surface.
  • the opening size of the recessed part 281 is substantially equal to the opening size of the recessed part 39 of the functional part 30E. Further, the recess 281 is formed in such a manner that the dimension of the recess 281 in the direction along the width direction of the signal wiring 10 becomes smaller as it goes from the upper surface to the lower surface of the base 20G.
  • the recess 281 has a left inner surface and a right inner surface along the length direction of the signal wiring 10.
  • the recess 281 can be formed by blasting the one surface side of the base 20G.
  • the concave portion 281 can be formed using a photolithography technique, an etching technique, and the like.
  • the support 29 is attached to the upper surface of the base 20G.
  • the support 29 is a thin plate such as a silicon plate or a glass plate that is thinner than the base 20G.
  • the thickness of the support 29 is set to about 5 to 50 ⁇ m (preferably about 20 ⁇ m).
  • the outer size of the support 29 is larger than the opening size of the recess 281.
  • the support 29 is bonded to the upper surface of the base 20G so as to cover (close) the recess 281.
  • the signal wiring 10 is formed on the upper surface of the support 29.
  • the signal wiring 10 is formed so as to straddle the recess 281. Therefore, the portions on both ends in the width direction of the signal wiring 10 in the base 20 ⁇ / b> G are located on the upper surface than the signal wiring 10. Both end portions of the signal wiring 10 in the length direction are electrically connected to the external terminals 13 through the through wiring 12.
  • the ground line 11G includes a first conductor 110, a second conductor 111, a third conductor 112, a sixth conductor 115E, a seventh conductor 116E, an eighth conductor 117F, and a ninth conductor.
  • the ninth conductor 118 and the tenth conductor 119 are provided on the left side surface and the right side surface of the recess 281, respectively.
  • the first conductor 110 and the sixth conductor 115E are electrically connected to each other using a through-hole wiring (not shown) or a surface wiring (not shown) formed in the support 29.
  • the second conductor 111 and the seventh conductor 116E are electrically connected to each other using a through-hole wiring (not shown) or a surface wiring (not shown) formed in the support 29.
  • the ground line 11G may further include a fourth conductor 113 and a fifth conductor 114.
  • the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the wiring structure of the embodiment 2-5.
  • the concave portion 281 exists between the signal wiring 10 and the base 20G. Therefore, the high frequency characteristics can be improved as compared with the case where the signal wiring 10 is directly formed on the upper surface of the base 20.
  • FIGS. 17A and 17B show a modification of the wiring structure of the present embodiment.
  • the support 29 includes a frame portion 290 having a rectangular frame shape and a cross bar 291.
  • the cross bar 291 is separated from both edges in the width direction of the frame portion 290.
  • the cross bar 291 has both ends connected to both ends in the length direction of the frame portion 290.
  • the support 29 has openings 292 on both sides of the cross bar 291. Therefore, the opening 292 of the support 29 communicates with the recess 281.
  • the signal wiring 10 is formed so as to cross the opening of the frame part 290 through the cross bar 291. Further, the signal wiring 10 is provided on the cross bar 291 so as to be located on the opposite side to the recess 281.
  • the space surrounded by the cross bar 291 and the frame portion 290 constitutes an opening 292 that penetrates the support 29 in the thickness direction.
  • the opening 292 is formed in parallel with the signal wiring 10.
  • the opening 292 is formed in the support 29, the insulation between the signal wiring 10 and the base 20 is further improved. Therefore, the high frequency characteristics can be further improved.
  • the opening 292 is parallel to the signal wiring 10, the wiring structure becomes closer to the coaxial structure. Therefore, the high frequency characteristics can be further improved.
  • the cross bar 291 when the cross bar 291 becomes longer, the mechanical strength of the cross bar 291 becomes lower. Therefore, the cross bar 291 may be damaged.
  • the support 29 includes a pair of auxiliary cross bars 293.
  • the pair of auxiliary cross bars 293 integrally connect the center portion of the cross bar 291 and the inner edge portions on both ends in the width direction of the frame portion 290.
  • the auxiliary cross bar 293 can prevent the cross bar 291 from being damaged.
  • a plurality of pairs of auxiliary cross bars 293 may be provided.
  • the characteristic part of the wiring structure of this embodiment can be applied not only to the wiring structure of the embodiment 2-5 but also to the wiring structures of the embodiments 2-1 to 2-4.
  • Embodiment 2-7 In the wiring structure of this embodiment, as shown in FIGS. 18A to 18D, the ground line 11H and the base 20H are different from the wiring structure of the embodiment 2-1.
  • symbol is attached
  • the base 20H is formed not by a glass substrate but by a low temperature co-fired ceramic substrate (LTCC substrate).
  • LTCC substrate low temperature co-fired ceramic substrate
  • a low-temperature co-fired ceramic substrate is used for the base 20H, unlike the case where a glass substrate is used, holes having a uniform diameter can be easily formed.
  • the through hole 22H is formed in a shape having a constant diameter in the thickness direction of the base 20H, as shown in FIGS. 18 (a) and 18 (c). . Therefore, the through wiring 12H is formed in a shape having a constant diameter in the thickness direction of the base 20H, like the through hole 22H.
  • each of the first hole portion 24 and the second hole portion 25 is formed in a shape in which the width gradually increases from the upper surface to the lower surface of the base 20H.
  • each of the holes 24 and 25 has three types of widths.
  • the rate at which the widths of the holes 24 and 25 are widened is not constant, and may be increased from the upper surface to the lower surface of the base 20H. In this way, the shape of the ground line 11H in the plane intersecting the length direction of the signal wiring 10 can be made closer to an annular shape.
  • the first conductor 110H is formed inside the first hole 24, and the second conductor 111H is formed inside the second hole 25.
  • the ground line 11H includes a first conductor 110H, a second conductor 111H, a third conductor 112, a sixth conductor 115, a seventh conductor 116, and an eighth conductor 117.
  • the ground line 11H may further include a fourth conductor 113 and a fifth conductor 114.
  • the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the wiring structure of the embodiment 2-1.
  • each hole 24, 25 is formed in a shape in which the width gradually increases from the upper surface to the lower surface of the base 20H. Therefore, the shape of the ground line 11H in the plane intersecting the length direction of the signal wiring 10 can be made closer to an annular shape as compared with the case where the widths of the holes 24 and 25 are uniform. Therefore, high frequency characteristics can be improved.
  • the through hole 22H is formed in a shape having a constant diameter in the thickness direction of the base 20H. Therefore, the high frequency characteristics can be improved as compared with the case where the diameter of the through hole 22H increases from the upper surface to the lower surface of the base 20H.
  • the characteristic part of the wiring structure of this embodiment can be applied not only to the embodiment 2-1, but also to the wiring structures of the embodiments 2-2 to 2-5.
  • Embodiment 2-8 In the wiring structure of the present embodiment, as shown in FIGS. 19A and 19B, the ground line 11I and the base 20I are different from the wiring structure of the embodiment 2-1. Note that components common to the wiring structure of the present embodiment and the wiring structure of Embodiment 2-1 are denoted by the same reference numerals and description thereof is omitted.
  • the base 20I has a hole 282 on the upper surface.
  • the opening size of the hole 282 and the opening size of the first opening 31 of the functional unit 30 are substantially equal.
  • the width of the hole 282 is formed so as to decrease from the upper surface to the lower surface of the base 20I.
  • the hole 282 can be formed by blasting or the like from the upper surface of the base 20I.
  • the signal wiring 10 is formed on the bottom surface of the hole 282. More specifically, the entire signal wiring 10 is disposed on the bottom surface of the hole 282. Therefore, a through hole 22 is formed in the base 20I so as to penetrate between the bottom surface of the hole 282 and the upper surface of the base 20I in the thickness direction.
  • the signal wiring 10 is electrically connected to the external terminal 13 through the through wiring 12 formed in the through hole 22.
  • each hole 24, 25 is formed in a shape penetrating between the bottom surface of the hole 282 and the lower surface of the base 20I in the thickness direction.
  • the ground line 11I includes two conductors 118I and 119I in addition to the conductors 110 to 112 and 115 to 117.
  • the ground line 11I may further include a fourth conductor 113 and a fifth conductor 114.
  • the two conductors 118I and 119I are formed on the inner surface of the hole 282.
  • the ninth conductor 118I is formed on the left inner surface of the signal wiring 10 in the hole 282, and electrically connects the first conductor 110 and the sixth conductor 115 to each other.
  • the tenth conductor 119I is formed on the inner surface on the right side of the signal wiring 10 in the hole 282, and electrically connects the second conductor 111 and the seventh conductor 116 to each other.
  • the transmission loss of high-frequency signals can be reduced and can be easily manufactured as in the case of Embodiment 2-1.
  • the signal wiring 10 is formed on the bottom surface of the hole 282 formed on the top surface of the base 20I. Therefore, compared with the case where there is no hole 282, the length of the through hole 22 can be shortened, so that the high frequency characteristics can be improved.
  • the dimension of the hole 282 in the direction along the width direction of the signal wiring 10 becomes smaller from the upper surface to the lower surface of the base 20I. Therefore, the shape of the ground line 11I in the plane intersecting the length direction of the signal wiring 10 can be brought close to an annular shape, and high frequency characteristics can be improved.
  • FIG. 20A and 20B show another modification of the wiring structure of the present embodiment.
  • the ground line 11J and the base 20J are different from the wiring structure of the embodiment 2-1.
  • components common to the wiring structure of FIG. 20 and the wiring structure of Embodiment 2-1 are denoted by the same reference numerals and description thereof is omitted.
  • the base 20J is made of a low temperature co-fired ceramic substrate.
  • the base 20J includes a hole 282 on the upper surface. In the example shown in FIG. 20, the opening size of the hole 282 is uniform with respect to the thickness direction of the base 20J.
  • holes 24H and 25H similar to those in the embodiment 2-6 are formed.
  • the ground line 11J includes a ninth conductor 118J in addition to the first conductor 110H, the second conductor 111H, the third conductor 112, the sixth conductor 115, the seventh conductor 116, and the eighth conductor 117. And a tenth conductor 119.
  • the ground line 11J may further include a fourth conductor 113 and a fifth conductor 114.
  • the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the case of the wiring structure of FIG.
  • the hole 282 can be easily formed as compared with the case where the base 20J is made of a glass substrate, thereby improving workability.
  • the hole 282 can be similarly provided when the base 20 is made of a low-temperature co-fired ceramic substrate.
  • the characteristic portions of the wiring structure shown in FIGS. 19 and 20 can be applied not only to the embodiment 2-1, but also to the wiring structures of the embodiments 2-2 to 2-5.
  • Embodiment 2-9 In the wiring structure of the present embodiment, as shown in FIG. 21, the base 20K is different from the wiring structure of the embodiment 2-1.
  • symbol is attached
  • the base 20K is formed of a glass substrate similarly to the embodiment 2-1, but the through hole 22K and the through wiring 12K are different from the base 20 of the embodiment 2-1.
  • the through hole 22K is formed such that the diameter (hole diameter) of the intermediate portion in the thickness direction of the base 20K is narrower than the opening side.
  • the through hole 22K includes a first through hole portion 220 and a second through hole portion 221 that communicate with each other.
  • the first through-hole portion 220 is formed by blasting (for example, sand blasting) the base 20K from the upper surface to a predetermined depth.
  • the second through-hole portion 221 is formed by blasting the base 20K from the lower surface to a predetermined depth.
  • the through wiring 12K includes a first wiring part 120 and a second wiring part 121 that are directly and electrically connected to each other.
  • the first wiring part 120 is formed inside the first through hole part 220
  • the second wiring part 121 is formed inside the second through hole part 221.
  • Each wiring part 120, 121 is formed by a conventionally known method such as an electroplating method or a sputtering method.
  • the through hole 22K and the through wiring 12K are produced as follows, for example. First, the first through hole 220 is formed by blasting the base 20K from the upper surface to a predetermined depth. Thereafter, the first wiring part 120 is formed inside the first through-hole part 220. Next, the second through-hole portion 221 is formed by blasting the base 20K to a predetermined depth from the lower surface until the first wiring portion 120 is exposed. Thereafter, the second wiring part 121 is formed inside the second through hole part 221. Thereby, the through hole 22K and the through wiring 12K shown in FIG. 21 can be obtained.
  • the transmission loss of the high-frequency signal can be reduced as in the case of Embodiment 2-1, and can be easily manufactured.
  • the change width of the diameter of the through hole 22 is smaller than that in the case where the through hole 22 of the base 20 is manufactured by blasting from one direction as in Embodiment 2-1. Can be small. Therefore, high frequency characteristics can be improved.
  • the characteristic part of the wiring structure of this embodiment can be applied not only to the embodiment 2-1, but also to the wiring structures of the embodiments 2-2 to 2-5.
  • FIGS. 22 (a) to 22 (c) The wiring structure of the present embodiment is applied to a MEMS device including a base 20, a functional unit 30, and a cover 40 as shown in FIGS. 22 (a) to 22 (c), for example.
  • FIG. 22 the structure of the MEMS device is shown in a simplified manner in order to briefly explain the main points of the wiring structure of the present embodiment.
  • symbol is attached
  • FIGS. 22 to 29 the structure of the MEMS device is shown in a simplified manner in order to briefly explain the main points of the wiring structure of the present embodiment. That is, the base 20, the functional unit 30, the cover 40, and the like described in FIGS.
  • the second edge 332 is defined by a pair of restricting protrusions 330 in the micro relay.
  • the pair of restricting protrusions 330 are described as a single unit, thereby representing the second edge 332.
  • the ground line 11 is configured by a fourth shield, a fifth shield, and a sixth shield provided on the base 20, the functional unit 30, and the cover 40, respectively.
  • the base 20 is provided with a first conductive portion 110C and a second conductive portion 111C.
  • the first conductive part 110C and the second conductive part 111C define a fourth shield.
  • the functional unit 30 includes a fourth conductive unit 113C and a fifth conductive unit 114C.
  • the fourth conductive portion 113C and the fifth conductive portion 114C define a fifth shield.
  • the cover 40 is provided with a third conductive portion 112C.
  • the third conductive portion 112C defines a sixth shield.
  • two grooves 24 ⁇ / b> C and 25 ⁇ / b> C are formed on the upper surface of the base 20.
  • the groove 24 ⁇ / b> C is located on the left side of the signal wiring 10 in the base 20, and the groove 25 ⁇ / b> C is located on the right side of the signal wiring 10 in the base 20.
  • the grooves 24C and 25C are formed so as to be parallel to the signal wiring 10.
  • Such grooves 24C and 25C are formed by blasting the base 20 from the upper surface (for example, sand blasting). By using blasting in this way, the width of the grooves 24C and 25C can be narrowed from the upper surface of the base 20 toward the lower surface.
  • the first conductive portion 110C is formed in the groove 24C of the base 20. More specifically, the groove 24C has a right inner surface 24R having a length along the length direction of the signal wiring 10, a left inner surface 24L, and a bottom surface 24B. The left inner surface 24L is located farther from the signal wiring 10 than the right inner surface 24R. In other words, the left inner surface 24L is separated from the signal wiring 10 by a first distance. The right inner surface 24R is separated from the signal wiring 10 by a second distance. The first distance is greater than the second distance.
  • the first conductive portion 110C is provided on the left inner surface 24L and the bottom surface 24B.
  • the second conductive portion 111 ⁇ / b> C is formed in the groove 25 ⁇ / b> C of the base 20.
  • the groove 25C has a left inner side surface 25L having a length along the length direction of the signal wiring 10, a right inner side surface 25R, and a bottom surface 25B.
  • the right inner surface 25R is located farther from the signal wiring 10 than the left inner surface 25L.
  • the right inner surface 25R is separated from the signal wiring 10 by a first distance.
  • the left inner surface 25L is separated from the signal wiring 10 by a second distance.
  • the first distance is greater than the second distance.
  • the second conductive portion 111C is provided on the right inner surface 25R and the bottom surface 25B.
  • the third conductive portion 112 ⁇ / b> C is formed in the lower surface region 40 ⁇ / b> U of the cover 40 facing the signal wiring 10. That is, the cover 40 has a lower surface region 40 ⁇ / b> U that faces the transmission line via the signal wiring 10 and the first opening 31.
  • the third conductive portion 112C is provided in the lower surface region 40U.
  • the dimension of the first opening 31 in the length direction of the signal wiring 10 is larger than that of the signal wiring 10.
  • the dimension of the first opening 31 in the width direction of the signal wiring 10 is such that the grooves 24C and 25 of the base 20 face the cover 40 side.
  • the fourth conductive portion 113C and the fifth conductive portion 114 are provided on the first edge 331 and the second edge 332, respectively.
  • the fourth conductive portion 113C is provided to electrically connect the first conductive portion 110C and the third conductive portion 112C.
  • the fourth conductive portion 113 ⁇ / b> C is formed on the side surface of the first edge 331.
  • the fifth conductive portion 114C is provided to electrically connect the second conductive portion 111C and the third conductive portion 112C.
  • the fifth conductive portion 114C is formed on the side surface of the second edge 332.
  • the fourth conductive portion 113C and the fifth conductive portion 114C are connected to the third conductive portion 112C when the cover 40 and the functional portion 30 are joined.
  • the first conductive portion 110C is connected to the third conductive portion 112C via the fourth conductive portion 113C, and the second conductive portion 111C is connected to the third conductive portion 114C via the fifth conductive portion 114C.
  • Each part 112C is electrically connected. That is, the conductive portions 110C to 114C are electrically connected to each other. At least one of the conductive portions 110C to 114C is connected to the ground (reference potential point).
  • each of the conductive portions 110C to 114C can be formed by a conventionally known method such as an electroplating method or a sputtering method, and thus the description thereof is omitted.
  • the ground line 11 surrounds the signal wiring 10 in a plane intersecting the length direction of the signal wiring 10, a pseudo coaxial structure is formed. can get. Therefore, transmission loss of high frequency signals can be reduced.
  • the ground line 11 is constituted by the first to fifth conductive portions 110C to 114C.
  • the first and second conductive portions 110C to 111C are connected to the base 20 and the third conductive portion.
  • 112C is formed in the cover 40, and the fourth and fifth conductive portions 113C and 114C are formed in the functional portion 30.
  • the ground line 11 when the ground line 11 is manufactured, not only the base 20 of the MEMS device but also the functional unit 30 and the cover 40 are used. Therefore, it is not necessary to produce a laminated body such as a semiconductor layer, an insulating layer, or a conductive layer in order to obtain a three-dimensional structure, compared to a case where the ground line 11 is produced using only the base 20. Thus, it can be easily manufactured.
  • the above-described grooves 24C and 25C are formed on both sides of the signal wiring 10 in the length direction of the base 20.
  • the conductive portions 110C to 114C constituting the ground line 11 are formed as follows. First, the first conductive portion 110C is formed inside the groove 24C, and the second conductive portion 111C is formed inside the groove 25C. Further, the third conductive portion 112 ⁇ / b> C is formed in the cover 40. Further, the fourth conductive portion 113 ⁇ / b> C is formed on the left side of the first opening 31 of the functional unit 30, and the fifth conductive portion 114 is formed on the right side of the signal wiring 10 in the first opening 31.
  • Such a ground line 11 can be formed corresponding to each of the four signal wirings 10 provided on the base 20.
  • the transmission loss of the high-frequency signal can be reduced and can be easily manufactured.
  • the operation of this micro relay is well known in the art and will not be described.
  • the driving device 50 is provided on the cover 40. Therefore, the thickness of the base 20 can be reduced as compared with the case where the driving device 50 is provided on the base 20. Therefore, the through hole 22 for drawing out the signal wiring 10 to the lower surface of the base 20 can be shortened, and high frequency characteristics can be improved. Further, since the distance between the driving device 50 and the signal wiring 10 can be increased, the possibility that the signal wiring 10 is adversely affected by the magnetic field generated by the driving device 50 can be reduced.
  • Embodiment 3-2 In the wiring structure of the present embodiment, the base 20 is different from that of the embodiment 3-1, as shown in FIG. Since the other configuration of the present embodiment is the same as that of the embodiment 3-1, the description of the same configuration as that of the embodiment 3-1 is omitted.
  • the base 20 in this embodiment is formed of a glass substrate as in the embodiment 3-1. Further, the external terminal 13, the through hole 22, and the through wiring 12 are formed in the base 20 as in the case of the embodiment 3-1. However, in the base 20 in the present embodiment, as shown in FIG. 23, the through hole 22 and the through wiring 12 are different from those in the embodiment 3-1.
  • the through hole 22 in the present embodiment is formed such that the diameter (hole diameter) of the intermediate portion in the thickness direction of the base 20 is narrower than the opening side.
  • a through hole 22 is composed of a first hole 220 and a second hole 221.
  • the first hole 220 is formed by blasting the base 20 from the one surface side to a predetermined depth.
  • the second hole 221 is formed by blasting the base from the other surface side to a predetermined depth.
  • a sandblasting process is employable, for example.
  • the through wiring 12 in the present embodiment includes a first wiring part 230 and a second wiring part 231.
  • the first wiring part 230 is formed inside the first hole part 220
  • the second wiring part 231 is formed inside the second hole part 221.
  • each wiring part 230,231 can be formed by conventionally well-known methods, such as an electroplating method and a sputtering method.
  • the through hole 22 and the through wiring 12 are manufactured as follows. First, the first hole 220 is formed by blasting the base 20 from the upper surface to a predetermined depth. Thereafter, the first wiring part 230 is formed inside the first hole part 220. Thereafter, the second hole 221 is formed by blasting the base 20 to a predetermined depth from the other surface side until the first wiring part 230 is exposed. Thereafter, the second wiring part 231 is formed inside the second hole part 221. Thereby, the through hole 22 and the through wiring 12 shown in FIG. 23 can be obtained.
  • transmission loss of high-frequency signals can be reduced as in the case of Embodiment 3-1. Further, it can be easily manufactured.
  • the wiring structure of the present embodiment compared to the case where the through hole 22 of the base 20 is manufactured by blasting from one direction as in Embodiment 3-1, the change width of the diameter of the through hole 22 is reduced. Can be small. Therefore, high frequency characteristics can be improved. Since the wiring structure of the present embodiment has the same ground line 11 as that of Embodiment 3-1, the transmission loss of the high-frequency signal can be reduced and can be easily manufactured.
  • Embodiment 3-3 24A to 24C show the wiring structure of this embodiment.
  • the base 20 and the ground line 11 are mainly different from the embodiment 3-1. Since the other configuration of the present embodiment is the same as that of the embodiment 3-1, the description of the same configuration as that of the embodiment 3-1 is omitted.
  • the base 20 in this embodiment is not a glass substrate, but is formed of a low temperature co-fired ceramic substrate (LTCC substrate).
  • LTCC substrate low temperature co-fired ceramic substrate
  • the internal wiring can be easily formed on the low-temperature co-fired ceramic substrate. Therefore, the sixth conductive portion 115C is provided on the ground line 11 by utilizing the characteristics of such a low-temperature co-fired ceramic substrate.
  • the ground line 11 in this embodiment includes a sixth conductive portion 115C in addition to the first to fifth conductive portions 110C to 114C described above.
  • the sixth conductive portion 115C is disposed inside the base 20 so as to electrically connect the first conductive portion 110C and the second conductive portion 111C. That is, the sixth conductive portion 115 ⁇ / b> C is an internal wiring of the base 20. Note that the sixth conductive portion 115C can be formed using a conventionally known method, and thus detailed description thereof is omitted.
  • the through hole 22 in the present embodiment has a constant diameter in the thickness direction of the base 20, as shown in FIGS. 24 (a) and 24 (c). Is formed. Therefore, the through wiring 12 in the present embodiment is formed in a shape having a constant diameter in the thickness direction of the base 20, similarly to the through hole 22. In the present embodiment, the signal wiring 10 is electrically connected to the external terminal 13 through such a through wiring 12.
  • transmission loss of high-frequency signals can be reduced as in the first embodiment. Further, it can be easily manufactured.
  • the shape of the ground line 11 in the plane intersecting the length direction of the signal wiring 10 can be brought close to an annular shape. Therefore, the high frequency characteristics can be further improved.
  • the base 20 is formed of a low-temperature co-fired ceramic substrate, the workability can be improved as compared with the case where the base 20 is made of a glass substrate. Therefore, the sixth conductive portion 115C made of the internal wiring as described above can be easily formed.
  • the through hole 22 is formed in a shape having a constant diameter in the thickness direction of the base 20. Therefore, the high frequency characteristics can be improved as compared with the case where the diameter of the through hole 22 increases from the upper surface to the lower surface of the base 20.
  • FIG. 25 shows the wiring structure of this embodiment.
  • the base 20 is mainly different from the embodiment 3-1. Since the other configuration of the present embodiment is the same as that of the embodiment 3-1, the description of the same configuration as that of the embodiment 3-1 is omitted.
  • one recess 28 is formed instead of the two grooves 24C and 25C.
  • the recess 28 is formed in a rectangular shape.
  • Such a recess 28 can be formed using a known technique such as blasting, for example.
  • a support 29 is attached to the upper surface of the base 20.
  • the support 29 is, for example, a thin plate such as a silicon plate or a glass plate formed to have a thickness of about 5 to 50 ⁇ m (preferably about 20 ⁇ m).
  • the outer size of the support 29 is larger than the opening size of the recess 28.
  • Such a support 29 is bonded to the upper surface of the base 20 so as to cover (close) the recess 28.
  • the signal wiring 10 in the present embodiment is formed on the opposite side of the support 29 from the recess 28 side. Further, the signal wiring 10 is formed so as to straddle the recess 28, and the portions on both ends in the width direction of the signal wiring 10 in the base 20 are located on the other surface side than the signal wiring 10. Both end portions of the signal wiring 10 in the length direction are electrically connected to the external terminals 13 through the through wiring 12.
  • the ground line 11 in the present embodiment includes the first to sixth conductive portions 110C to 115C as in the embodiment 3-3.
  • the first conductive portion 110 ⁇ / b> C, the second conductive portion 111 ⁇ / b> C, and the sixth conductive portion 115 ⁇ / b> C in the present embodiment are formed in the recess 28 of the base 20. More specifically, the first conductive portion 110 ⁇ / b> C is formed on the left inner surface and bottom surface of the recess 28. On the other hand, the second conductive portion 111 ⁇ / b> C is formed on the right inner surface and bottom surface of the recess 28. The sixth conductive portion 115 ⁇ / b> C is formed on the bottom surface of the recess 28.
  • the first conductive portion 110C and the second conductive portion 111C are electrically connected.
  • illustration of the function part 30 and the cover 40 is abbreviate
  • the first conductive portion 110C and the fourth conductive portion 113C are electrically connected using a through-hole wiring (not shown), a surface wiring (not shown), etc. formed in the support 29. The The same applies to the second conductive portion 111C and the fifth conductive portion 114.
  • transmission loss of high-frequency signals can be reduced as in the case of Embodiment 3-1. Further, it can be easily manufactured.
  • a space is formed between the signal wiring 10 and the base 20. Therefore, the high frequency characteristics can be improved as compared with the case where the signal wiring 10 is formed directly on the upper surface of the base 20.
  • a support 29 shown in FIG. 26 includes a frame portion 290 having a rectangular frame shape and a cross bar 291.
  • the frame part 290 has a length along the length direction of the signal wiring 10.
  • the support body 29 has an opening window having a length along the length direction of the cross bar 291.
  • the support 29 is joined to the upper surface of the base 20 so that the opening window of the frame portion 290 communicates with the recess 28.
  • the cross bar 291 integrally connects the inner edge portions on both ends in the longitudinal direction of the frame portion 290 at the center portion.
  • the cross bar 291 is separated from both edges in the width direction of the frame 290.
  • the signal wiring 10 is formed so as to straddle the opening of the frame portion 290 through the cross bar 291. Therefore, the signal wiring 10 is provided along the length direction of the cross bar 291.
  • the space surrounded by the cross bar 291 and the frame portion 290 constitutes a hole 292 that penetrates the support 29 in the thickness direction.
  • the hole 292 is formed in parallel with the signal wiring 10.
  • the insulating property between the signal wiring 10 and the base 20 is further improved by forming the hole 292. Therefore, the high frequency characteristics can be further improved.
  • the hole 292 is formed in parallel with the signal wiring 10, the wiring structure becomes closer to the coaxial structure. Therefore, the high frequency characteristics can be further improved.
  • the support 29 may be provided with a pair of auxiliary cross bars 293.
  • the pair of auxiliary cross bars 293 integrally connect the center portion of the cross bar 291 and the inner edge portions of both ends of the frame portion 290 in the short direction.
  • the auxiliary crossbar 293 can prevent the crossbar 291 from being damaged.
  • Embodiment 3-5 In the wiring structure of the present embodiment, the functional unit 30 is mainly different from the embodiment 3-1. Since the other configuration of the present embodiment is the same as that of the embodiment 3-1, the description of the same configuration as that of the embodiment 3-1 is omitted.
  • the functional unit 30 in the present embodiment includes a first hole 37 that penetrates the functional unit 30 in the thickness direction (hereinafter denoted by reference numeral 37A as necessary). And a second hole portion 37 (hereinafter, indicated by reference numeral 38B as necessary).
  • a plurality of first holes 37 ⁇ / b> A are formed on the first edge 331 located on the left side of the transmission line 10.
  • the plurality of first hole portions 37 ⁇ / b> A are arranged at equal intervals along the length direction of the signal wiring 10.
  • a plurality of second holes 37 ⁇ / b> B are formed on the second edge 332 located on the right side of the signal wiring 10.
  • the plurality of holes 37 ⁇ / b> B are arranged at equal intervals along the length direction of the signal wiring 10. As described above, a plurality of holes 37 ⁇ / b> A and 37 ⁇ / b> B are formed along the length direction of the signal wiring 10 around the opening 31 of the functional unit 30 in the present embodiment.
  • the ground line 11 in the present embodiment is different from the embodiment 3-1 in the fourth conductive portion 113C and the fifth conductive portion 114.
  • the fourth conductive portion 113C in the present embodiment is formed inside each of the plurality of hole portions 37A
  • the fifth conductive portion 114 is formed inside each of the plurality of hole portions 37B.
  • the third conductive portion 112C is formed such that both end portions in the direction along the width direction of the signal wiring 10 overlap with the first conductive portion 110C and the second conductive portion 111C in the thickness direction. Yes.
  • each hole 37A faces the third conductive portion 112C from the opening on the cover 40 side
  • the first conductive portion 110C faces from the opening on the base 20 side.
  • each hole portion 37B faces the third conductive portion 112C from the opening on the cover 40 side, and the second conductive portion 111C faces from the opening on the base 20 side.
  • the first conductive unit 110C and the third conductive unit 112C are electrically connected by the fourth conductive unit 113C, and the second conductive unit 111C.
  • the third conductive portion 112C are electrically connected by the fifth conductive portion 114.
  • transmission loss of high-frequency signals can be reduced as in the case of Embodiment 3-1. Further, it can be easily manufactured.
  • a plurality of holes 37 that penetrate the functional unit 30 in the thickness direction are formed around the first opening 31 of the functional unit 30 along the length direction of the signal wiring 10. .
  • the fourth conductive portion 113 ⁇ / b> C and the fifth conductive portion 114 of the ground line 11 are formed inside the hole portion 37. Therefore, according to the wiring structure of the present embodiment, compared with the case where the fourth conductive portion 113C and the fifth conductive portion 114 are formed on the inner surfaces of the first edge 331 and the second edge 332, respectively, The fourth conductive portion 113C and the fifth conductive portion 114 can be easily formed.
  • the cross section of the hole part 37 in this embodiment is a perfect circle shape, this is an example to the last.
  • seven each of the hole portions 37A and 37B are formed, this is only an example.
  • the configuration of the present embodiment can also be applied to the other embodiments 3-2 to 3-4 other than the embodiment 3-1.
  • Embodiment 3-6 In the wiring structure of the present embodiment, the functional unit 30 is mainly different from the embodiment 3-1. Since the other configuration of the present embodiment is the same as that of the embodiment 3-1, the description of the same configuration as that of the embodiment 3-1 is omitted.
  • the functional unit 30 in the present embodiment includes a connection slit 38A and a connection slit 38B that penetrate the functional unit 30 in the thickness direction, as shown in FIGS. 29 (a) to 29 (c).
  • the connection slit 38 ⁇ / b> A is formed on the first edge 331 of the frame 33.
  • the connection slit 38 ⁇ / b> B is formed on the second edge 332 of the frame 33. Further, each of the connection slits 38 ⁇ / b> A and 38 ⁇ / b> B is formed along the length direction of the signal wiring 10.
  • the functional unit 30 of the present embodiment has the first edge 331, and the first edge 331 is formed with the connection slit 38 ⁇ / b> A, and the connection slit 38 ⁇ / b> A is connected to the signal wiring 10. Along the length direction.
  • the functional unit 30 of the present embodiment has a second edge 332, and a connection slit 38 ⁇ / b> B is formed on the second edge 332, and this connection slit 38 ⁇ / b> B is the length of the signal wiring 10.
  • this connection slit 38 ⁇ / b> B is the length of the signal wiring 10.
  • the ground line 11 in this embodiment is different from Embodiment 3-1 in the fourth conductive portion 113C and the fifth conductive portion 114C. That is, the fourth conductive portion 113C in the present embodiment is formed inside the connection slit 38A, and the fifth conductive portion 114C is formed inside the connection slit 38B.
  • the third conductive portion 112C is formed such that both end portions in the direction along the width direction of the signal wiring 10 overlap each of the first conductive portion 110C and the second conductive portion 111C in the thickness direction. Yes.
  • connection slit 38 ⁇ / b> A is a position where the third conductive portion 112 ⁇ / b> C faces the opening on the cover 40 side and the first conductive portion 110 ⁇ / b> C faces the opening on the base 20 side when the cover 40 and the functional portion 30 are joined. Is provided.
  • the connection slit 38B is a position where the third conductive portion 112C faces the opening on the cover 40 side and the second conductive portion 111C faces the opening on the base 20 side when the cover 40 and the functional portion 30 are joined. Is provided.
  • the first conductive unit 110C and the third conductive unit 112C are electrically connected by the fourth conductive unit 113C, and the second conductive unit 111C.
  • the third conductive portion 112C are electrically connected by the fifth conductive portion 114.
  • transmission loss of high-frequency signals can be reduced as in the case of Embodiment 3-1. Further, it can be easily manufactured.
  • connection slits 38 ⁇ / b> A and 38 ⁇ / b> B that penetrate the functional unit 30 in the thickness direction are formed around the first opening 31 of the functional unit 30 along the length direction of the signal wiring 10. ing.
  • the fourth conductive portion 113C and the fifth conductive portion 114 of the ground line 11 are formed inside the connection slits 38A and 38B. Therefore, according to the wiring structure of the present embodiment, the fourth conductive portion 113 ⁇ / b> C and the fifth conductive portion 114 are formed on the inner surface of the first opening 31 of the functional unit 30, compared to the case where the fourth conductive portion 113 ⁇ / b> C is formed.
  • the portion 113C and the fifth conductive portion 114 can be easily formed. Further, as in the embodiment 3-5, the hole 37 is formed around the first opening 31 of the functional unit 30, and the fourth conductive portion 113C and the fifth conductive portion 114 are formed in the hole 37. Compared to the case, the high frequency characteristics can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)

Abstract

Disclosed is a wiring structure for an MEMS device, which comprises a transmission line for transmitting a high frequency signal on the upper surface of a base. In the wiring structure, the base comprises, on the upper surface, an upper ground electrode which is electrically insulated from the transmission line; the upper ground electrode surrounds the transmission line; the base comprises a through interconnect that is arranged within a through hole formed in the base along the thickness direction; the through interconnect is electrically connected to the transmission line; the base comprises, on the lower surface, an external terminal that is electrically connected to the through interconnect, and a lower ground electrode that is electrically insulated from the external terminal; the lower ground electrode surrounds the external terminal; the base comprises a first shield which is formed along the thickness direction of the base and electrically insulated from the through interconnect; and the first shield is arranged in the base so as to surround the through interconnect.

Description

配線構造およびこれを有するマイクロリレーWiring structure and microrelay having the same
 本発明は、マイクロ波などを伝送する伝送線路に採用される配線構造に関する。また、本発明は、この配線構造を有するマイクロリレーに関する。 The present invention relates to a wiring structure employed in a transmission line that transmits microwaves and the like. The present invention also relates to a microrelay having this wiring structure.
 従来から、マイクロ波などを伝送する伝送線路が知られている。このような伝送線路は、日本公開特許公報特開平10-173410号公報(以下、特許文献1)に開示されている。特許文献1は、PTFEからなる誘電体基板の上面に伝送線路を設け、誘電体基板の裏面側には、伝送線路の一端と接続用スルーホールを介して一端が電気的に接続された取出し配線を設けている。更に、誘電体基板の下面に第1接地導体を設け、誘電体基板の下面に第2接地導体を設けることにより、誘電体基板の表裏面それぞれにマイクロストリップ線路を形成している。 Conventionally, transmission lines that transmit microwaves and the like are known. Such a transmission line is disclosed in Japanese Laid-Open Patent Publication No. 10-173410 (hereinafter referred to as Patent Document 1). In Patent Document 1, a transmission line is provided on the upper surface of a dielectric substrate made of PTFE, and one end of the transmission line is electrically connected to one end of the transmission line via a connection through hole on the rear surface side of the dielectric substrate. Is provided. Furthermore, the first ground conductor is provided on the lower surface of the dielectric substrate, and the second ground conductor is provided on the lower surface of the dielectric substrate, thereby forming microstrip lines on the front and back surfaces of the dielectric substrate.
 そして、接続用スルーホールを囲むように、上端が第2接地導体に接続された複数の接地用スルーホールを設けている。これにより、円柱形誘電体線路と同等の伝送特性が得られ、接続用スルーホールの伝送路のインピーダンスを安定させることができるとされている。 A plurality of grounding through holes whose upper ends are connected to the second grounding conductor are provided so as to surround the connecting through holes. Thereby, the transmission characteristic equivalent to a cylindrical dielectric line is obtained, and it is supposed that the impedance of the transmission line of a connection through hole can be stabilized.
 しかし、接続用スルーホールを囲むように複数の接地用スルーホールを配置しただけでは、接地用スルーホール同士の間で発生する共振現象を抑制することができない。具体的には、接地用スルーホール同士の間隔が接続用スルーホールを伝送する高周波の波長の1/4となる時に発生する共振現象を抑制することができず、伝送線路の通過特性にリプルが発生してしまう。 However, the resonance phenomenon that occurs between the grounding through-holes cannot be suppressed only by arranging a plurality of grounding through-holes so as to surround the connecting through-holes. Specifically, the resonance phenomenon that occurs when the distance between the grounding through-holes becomes ¼ of the wavelength of the high-frequency wave transmitted through the connecting through-holes cannot be suppressed, and ripples are generated in the transmission characteristics of the transmission line. Will occur.
 本発明は、上記問題点に鑑みて成されたものであり、その目的は、埋込グラウンド配線同士の間隔が伝送線路を伝送する高周波の波長の1/4となる時に発生する共振現象を抑制する配線構造を提供することである。 The present invention has been made in view of the above problems, and its object is to suppress the resonance phenomenon that occurs when the interval between the buried ground wirings is ¼ of the wavelength of the high frequency transmitted through the transmission line. It is to provide a wiring structure.
 上記課題を解決するために、本発明の配線構造は、MEMSデバイスに用いられる。このMEMSデバイスは、ベースと、当該ベースの上に設けられた伝送線路とを備えている。伝送線路は、高周波信号を伝送するために設けられている。ベースは、その上面に、上面グラウンド電極を有している。この上面グラウンド電極は、伝送線路から電気的に絶縁されている。上面グラウンド電極は、伝送線路の周囲を囲むように、ベースの上面に設けられている。ベースは、当該ベースの厚み方向に沿った貫通孔が形成されている。ベースは、貫通配線を備えており、この貫通配線は、貫通孔の内部に配置されている。貫通配線は、伝送線路と電気的に接続されている。ベースは、その下面に、外部端子と下面グラウンド電極とを有している。外部端子は、貫通配線と電気的に接続されている。下面グラウンド電極は、外部端子から電気的に絶縁されている。下面グラウンド電極は、外部端子を囲むようにベースの下面に設けられている。ベースは、当該ベースの厚み方向に沿って形成された第1シールドを備えている。この第1シールドは、貫通配線から電気的に絶縁されている。第1シールドは、上面グラウンド電極及び下面グラウンド電極のうちの少なくとも一方と電気的に接続されている。 In order to solve the above problems, the wiring structure of the present invention is used in a MEMS device. This MEMS device includes a base and a transmission line provided on the base. The transmission line is provided for transmitting a high-frequency signal. The base has an upper surface ground electrode on its upper surface. The upper surface ground electrode is electrically insulated from the transmission line. The upper surface ground electrode is provided on the upper surface of the base so as to surround the periphery of the transmission line. The base is formed with a through hole along the thickness direction of the base. The base includes a through wiring, and this through wiring is disposed inside the through hole. The through wiring is electrically connected to the transmission line. The base has an external terminal and a lower surface ground electrode on its lower surface. The external terminal is electrically connected to the through wiring. The lower surface ground electrode is electrically insulated from the external terminal. The lower surface ground electrode is provided on the lower surface of the base so as to surround the external terminal. The base includes a first shield formed along the thickness direction of the base. The first shield is electrically insulated from the through wiring. The first shield is electrically connected to at least one of the upper surface ground electrode and the lower surface ground electrode.
 この場合、第1シールドは、貫通配線の周囲に位置する。したがって、第1シールドは、貫通配線に対して擬似的な同軸構造を構成する。したがって、貫通配線を伝送される高周波信号の伝送ロスを低減することができる。 In this case, the first shield is located around the through wiring. Therefore, the first shield forms a pseudo coaxial structure with respect to the through wiring. Therefore, the transmission loss of the high frequency signal transmitted through the through wiring can be reduced.
 ベースは、複数の第1シールドを有していることが好ましい。この複数の第1シールドは、貫通配線を囲む円に沿って配列されている。そして、各第1シールドは、隣の第1シールドから、所定の距離で離間している。高周波信号は、最も高い周波数を有する第1信号を有している。所定の距離は、第1信号の波長の1/4未満の長さに設定されている。 The base preferably has a plurality of first shields. The plurality of first shields are arranged along a circle surrounding the through wiring. Each first shield is separated from the adjacent first shield by a predetermined distance. The high frequency signal has a first signal having the highest frequency. The predetermined distance is set to a length less than ¼ of the wavelength of the first signal.
 第1シールド同士の間隔が高周波の波長の1/4である場合、共振現象及びこれによるリップルが発生する。しかしながら、第1シールド同士の間隔が高周波の波長の1/4未満である場合、この共振現象及びリップルの発生を防ぐことができる。 When the distance between the first shields is ¼ of the wavelength of the high frequency, a resonance phenomenon and a ripple due to this phenomenon occur. However, when the interval between the first shields is less than ¼ of the wavelength of the high frequency, this resonance phenomenon and ripple can be prevented.
 前記ベースは、さらに第2シールドを有していることが好ましい。この第2シールドは、ベースの厚み方向において、前記伝送線路と重複するようにベースの内部に設けられている。第2シールドの上端は、伝送線路から離間している。これにより、第2シールドは、伝送線路と電気的に絶縁されている。第2シールドの下端は、前記下面グラウンド電極と電気的に接続されている。 The base preferably further has a second shield. The second shield is provided inside the base so as to overlap the transmission line in the thickness direction of the base. The upper end of the second shield is separated from the transmission line. Thereby, the second shield is electrically insulated from the transmission line. The lower end of the second shield is electrically connected to the lower surface ground electrode.
 ベースは、その下面に、さらに取り出し配線を有していることが好ましい。この取り出し配線は、貫通配線と電気的に接続されている。外部端子は、取り出し配線を介して貫通配線と電気的に接続されている。ベースは、さらに第3シールドを備える。この第3シールドは、ベースの厚み方向において、取り出し配線と重複する。そして、第3シールドの下端は、取り出し配線から離間している。これにより、第3シールドは、取り出し配線と電気的に絶縁されている。第3シールドの上端は、上面グラウンド電極に電気的に接続されている。 The base preferably further has a lead-out wiring on the lower surface. The lead-out wiring is electrically connected to the through wiring. The external terminal is electrically connected to the through wiring via the extraction wiring. The base further includes a third shield. The third shield overlaps with the extraction wiring in the thickness direction of the base. The lower end of the third shield is separated from the extraction wiring. Thereby, the third shield is electrically insulated from the extraction wiring. The upper end of the third shield is electrically connected to the upper surface ground electrode.
 また、第1シールドは、貫通配線を囲む円に沿って形成されていることも好ましい。 The first shield is preferably formed along a circle surrounding the through wiring.
 本発明は、さらに伝送線路を流れる高周波信号の伝送ロスを低減することを課題としている。 The present invention further aims to reduce transmission loss of a high-frequency signal flowing through a transmission line.
 この課題を解決するために、ベースは、伝送線路の下方を覆うように形成された第4シールドを備えることが好ましい。 In order to solve this problem, the base preferably includes a fourth shield formed so as to cover the lower part of the transmission line.
 ベースは、第1孔部と第2孔部とを有している。第1孔部及び第2孔部は、それぞれ、ベースの厚み方向に貫通している。第1孔部及び第2孔部のそれぞれは、伝送線路の幅方向に沿った幅を有している。伝送線路は、第1孔部と第2孔部との間に位置する。ベースは、さらに第1導電体と第2導電体と第3導電体とを有している。第1導電体は、第1孔部に設けられている。第2導電部は、第2孔部に設けられている。第3導電体は、ベースの厚み方向において伝送線路と重複するようにベースの下面に設けられている。第3導電体は、第1導電体及び第2導電体のそれぞれと電気的に接続されている。第1導電体は、第2導電体及び第3導電体と協働して、第4シールドを構成する。第1孔部及び第2孔部の下端の幅は、第1孔部及び第2孔部の上端の幅よりもそれぞれ大きい。 The base has a first hole and a second hole. Each of the first hole and the second hole penetrates in the thickness direction of the base. Each of the first hole and the second hole has a width along the width direction of the transmission line. The transmission line is located between the first hole and the second hole. The base further includes a first conductor, a second conductor, and a third conductor. The first conductor is provided in the first hole. The second conductive part is provided in the second hole. The third conductor is provided on the lower surface of the base so as to overlap the transmission line in the thickness direction of the base. The third conductor is electrically connected to each of the first conductor and the second conductor. The first conductor forms a fourth shield in cooperation with the second conductor and the third conductor. The widths of the lower ends of the first hole and the second hole are respectively larger than the widths of the upper ends of the first hole and the second hole.
 また、第1孔部及び第2孔部のそれぞれは、スリット状に形成されていることが好ましい。そして、このスリット状の第1孔部及び第2孔部は、伝送線路の長さに沿った長さを有するように形成されている。 In addition, each of the first hole and the second hole is preferably formed in a slit shape. And this slit-shaped 1st hole part and 2nd hole part are formed so that it may have the length along the length of a transmission line.
 前記ベースは、複数の前記第1孔部及び複数の前記第2孔部を有しており、前記第1孔部及び前記第2孔部のそれぞれは、前記伝送線路の長さ方向に沿って所定の間隔で配列されており、前記所定の間隔は、前記高周波のうち最も周波数の高い信号の波長の1/4未満であることが好ましい。 The base has a plurality of first holes and a plurality of second holes, and each of the first holes and the second holes is along the length direction of the transmission line. It is preferable that the predetermined intervals are arranged, and the predetermined intervals are less than ¼ of the wavelength of the signal having the highest frequency among the high frequencies.
 また、ベースは、複数の第1孔部及び複数の第2孔部を有することも好ましい。第1孔部は、伝送線路の長さ方向に沿って所定の間隔で配列されている。第2孔部も、伝送線路の長さ方向に沿って所定の間隔で配列されている。高周波信号は、第1信号を有している。所定の距離は、第1信号の波長の1/4未満の長さに設定されている。 Also, the base preferably has a plurality of first holes and a plurality of second holes. The first holes are arranged at predetermined intervals along the length direction of the transmission line. The second holes are also arranged at predetermined intervals along the length direction of the transmission line. The high frequency signal has a first signal. The predetermined distance is set to a length less than ¼ of the wavelength of the first signal.
 これらの場合、ベースに設けられた第4シールドは、伝送線路の下方に位置する。したがって、第4シールドは、伝送線路を介して伝送される高周波信号の伝送ロスを防ぐ。 In these cases, the fourth shield provided on the base is located below the transmission line. Therefore, a 4th shield prevents the transmission loss of the high frequency signal transmitted via a transmission line.
 上面グラウンド電極は、ベースの上面に形成された第4導電体及び第5導電体とからなることが好ましい。第4導電体は、第5導電体と協働して前記伝送線路を囲むように配置されている。第4導電体及び第5導電体は、第1導電体と第2導電体のそれぞれと電気的に接続されている。 The upper surface ground electrode is preferably composed of a fourth conductor and a fifth conductor formed on the upper surface of the base. The fourth conductor is disposed so as to surround the transmission line in cooperation with the fifth conductor. The fourth conductor and the fifth conductor are electrically connected to the first conductor and the second conductor, respectively.
 MEMSデバイスは、さらに機能部とカバーとを有することが好ましい。機能部は、ベースの上に設けられている。カバーは、機能部の上に設けられている。機能部は、第5シールドを有している。カバーは第6シールドを有している。第4シールドは、第5シールドと第6シールドと協働して、伝送線路の周囲を囲む。 The MEMS device preferably further includes a functional part and a cover. The functional unit is provided on the base. The cover is provided on the functional unit. The functional unit has a fifth shield. The cover has a sixth shield. The fourth shield cooperates with the fifth shield and the sixth shield to surround the transmission line.
 この場合、第4シールドと第5シールドと第6シールドとは、伝送線路を囲む。したがって、第4シールドは、第5シールド及び第6シールドと協働して、前記伝送線路を通る高周波信号の伝送ロスを防ぐことができる。 In this case, the fourth shield, the fifth shield, and the sixth shield surround the transmission line. Therefore, the fourth shield can prevent transmission loss of the high frequency signal passing through the transmission line in cooperation with the fifth shield and the sixth shield.
 前記機能部は、前記上面グラウンド電極によって前記ベースと接合されていることが好ましい。 The functional unit is preferably joined to the base by the upper surface ground electrode.
 前記ベースは、その上面に穴部が形成されており、前記伝送線路の全ては、前記穴部の底に配置されていることが好ましい。 It is preferable that a hole is formed on the upper surface of the base, and all of the transmission lines are disposed at the bottom of the hole.
 前記第1孔部及び前記第2孔部は、前記ベースの上面から下面に向かうにつれて、前記幅が段階的に大きくなることが好ましい。 It is preferable that the width of the first hole and the second hole increase stepwise from the upper surface to the lower surface of the base.
 これらの場合、ベースに設けられた第4シールドは、伝送線路の下方に位置する。したがって、第4シールドは、伝送線路を介して伝送される高周波信号の伝送ロスを防ぐ。 In these cases, the fourth shield provided on the base is located below the transmission line. Therefore, a 4th shield prevents the transmission loss of the high frequency signal transmitted via a transmission line.
 機能部は、フレームを有していることが好ましい。これにより、機能部は、開口を有する。伝送線路は、フレームの内側に位置するように配置されている。カバーは、開口を介して伝送線路と対向する下面領域を有している。フレームは、伝送線路の長さ方向に沿って延出する第1の縁及び第2の縁を有している。 The functional unit preferably has a frame. Thereby, a function part has opening. The transmission line is arranged so as to be located inside the frame. The cover has a lower surface region facing the transmission line through the opening. The frame has a first edge and a second edge extending along the length direction of the transmission line.
 フレームは、第1の縁に第6導電体が設けられていることが好ましい。フレームは、第2の縁に、第7導電体が設けられている。第6導電体は、第7導電体と協働して第5シールドを定義する。第6導電体及び第7導電体は、第1導電体及び第2導電体のそれぞれと電気的に接続されている。カバーは、その下面領域に第8導電体が設けられている。第8導電体は、第6シールドを定義する。第8導電体は、第6導電体及び第7導電体の両方と電気的に接続されている。 The frame is preferably provided with a sixth conductor on the first edge. The frame is provided with a seventh conductor on the second edge. The sixth conductor defines the fifth shield in cooperation with the seventh conductor. The sixth conductor and the seventh conductor are electrically connected to the first conductor and the second conductor, respectively. The cover is provided with an eighth conductor in the lower surface region. The eighth conductor defines the sixth shield. The eighth conductor is electrically connected to both the sixth conductor and the seventh conductor.
 第1の縁及び第2の縁のそれぞれには、フレームの厚さ方向に沿って貫通して形成された切語句工が形成されていることが好ましい。そして、第6導電体は、第1の縁の接続孔に設けられている。また、第7導電体は、第2の縁の接続孔に設けられている。 It is preferable that each of the first edge and the second edge is formed with a slogan formed so as to penetrate along the thickness direction of the frame. The sixth conductor is provided in the connection hole on the first edge. The seventh conductor is provided in the connection hole on the second edge.
 第1の縁及び第2の縁のそれぞれには、接続スリットが形成されていることが好ましい。この接続スリットは、フレームの厚さ方向に沿って貫通して形成されている。また、この接続スリットは、伝送線路の長さ方向に沿った長さを有している。第6導電体は、第1の縁の接続スリットの内側に設けられている。第7導電体は、第2の縁の接続スリットの内側に設けられている。 It is preferable that a connection slit is formed in each of the first edge and the second edge. This connection slit is formed penetrating along the thickness direction of the frame. The connection slit has a length along the length direction of the transmission line. The sixth conductor is provided inside the connection slit on the first edge. The seventh conductor is provided inside the connection slit on the second edge.
 この場合、第6導電体及び第7導電体をフレームに配置することができる。 In this case, the sixth conductor and the seventh conductor can be arranged on the frame.
 一方、MEMSデバイスは、ベースの上に設けられる機能部を有していることも好ましい。この場合、機能部には、第5シールドが設けられている。第5シールドは、伝送線路の長さ方向に沿った長さを有している。第4シールドは、第5シールドと協働して、伝送線路の周囲を囲む。 On the other hand, it is also preferable that the MEMS device has a functional unit provided on the base. In this case, the function unit is provided with a fifth shield. The fifth shield has a length along the length direction of the transmission line. The fourth shield cooperates with the fifth shield to surround the transmission line.
 機能部は、その下面に、伝送線路の長さ方向に沿った長さを有する第1の凹部を有していることが好ましい。この第1の凹部の長さは、伝送線路の長さよりも大きい。この第1の凹部は、伝送線路の長さ方向に沿って形成された第1の内側面及び第2の内側面と、底面とを有している。機能部は、第1の内側面に、第6導電体が設けられている。機能部は、第2の内側面に、第7導電体が設けられている。機能部は、底面に、第8導電体が設けられている。第6導電体と第7導電体と第8導電体とは、互いに協働して第5シールドを定義する。第6導電体及び第7導電体は、それぞれ第1導電体及び第2導電体と電気的に接続されている。第8導電体は、第6導電体及び第7導電体と電気的に接続されている。 The functional part preferably has a first recess having a length along the length direction of the transmission line on the lower surface. The length of the first recess is larger than the length of the transmission line. The first recess has a first inner surface and a second inner surface formed along the length direction of the transmission line, and a bottom surface. The functional unit is provided with a sixth conductor on the first inner surface. The functional part is provided with a seventh conductor on the second inner surface. The functional part is provided with an eighth conductor on the bottom surface. The sixth conductor, the seventh conductor, and the eighth conductor cooperate with each other to define the fifth shield. The sixth conductor and the seventh conductor are electrically connected to the first conductor and the second conductor, respectively. The eighth conductor is electrically connected to the sixth conductor and the seventh conductor.
 機能部は、さらに第2の凹部が形成されていることが好ましい。この第2の凹部は、第1の凹部の底に形成されている。第2の凹部は、伝送線路と対向する位置に位置する。 It is preferable that the functional part further has a second recess. The second recess is formed at the bottom of the first recess. The second recess is located at a position facing the transmission line.
 前記ベースは、その上面に凹部が形成されていることが好ましい。そして、ベースは、支持体を有することが好ましい。この支持体は、前記凹部に重複するようにベース上に配置されている。凹部は、伝送線路の幅よりも大きい幅を有している。伝送線路は、支持体の上に配置されている。第1孔部及び第2孔部は、凹部の底面からベースの下面に貫通して形成されている。凹部は、伝送線路の長さ方向に沿って形成された第1の内側面と第2の内側面とを有している。ベースは、第1の内側面に、第9導電体を有している。ベースは、第2の内側面に、第10導電体を有している。第9導電体は、第1導電体及び第6導電体と電気的に接続されている。第10導電体は、第2導電体及び第7導電体と電気的に接続されている。 The base preferably has a recess formed on the upper surface thereof. The base preferably has a support. The support is disposed on the base so as to overlap the recess. The recess has a width larger than the width of the transmission line. The transmission line is disposed on the support. The first hole and the second hole are formed so as to penetrate from the bottom surface of the recess to the bottom surface of the base. The recess has a first inner surface and a second inner surface formed along the length direction of the transmission line. The base has a ninth conductor on the first inner surface. The base has a tenth conductor on the second inner surface. The ninth conductor is electrically connected to the first conductor and the sixth conductor. The tenth conductor is electrically connected to the second conductor and the seventh conductor.
 この場合、第4シールド,第5シールド,第6シールドと伝送線路との配置を同軸ケーブルにより近づけることができる。 In this case, the arrangement of the fourth shield, the fifth shield, the sixth shield and the transmission line can be made closer to the coaxial cable.
 支持体は、フレーム部分とクロスバーとを備えていることが好ましい。フレーム部分は、伝送線路の長さ方向に沿った長さを有している。クロスバーは、フレームの幅方向の両縁から離間している。クロスバーは、フレーム部分の長さ方向の両縁と接続されている。これにより、開口窓が、クロスバーの両側に形成されている。伝送線路は、クロスバーに沿って配置されている。 The support preferably includes a frame portion and a crossbar. The frame portion has a length along the length direction of the transmission line. The cross bar is separated from both edges in the width direction of the frame. The cross bar is connected to both edges in the length direction of the frame portion. Thereby, the opening window is formed in the both sides of the crossbar. The transmission line is arranged along the crossbar.
 一方、ベースは、その上面に溝が形成されていることも好ましい。この溝は、伝送線路の両側それぞれに設けられている。溝は、伝送線路の長さ方向に沿って形成されている。溝は、第1の内側面と第2の内側面と底面とを有している。第1の内側面と第2の内側面と底面とのそれぞれは、伝送線路の長さ方向に沿って形成されている。第2の内側面は、伝送線路から第1の内側面よりも離れて位置している。ベースは、第2の内側面に第1導電部が設けられている。ベースは、底面に、第2導電部が設けられている。第1導電部と第2導電部とは、第4シールドを定義する。 On the other hand, it is also preferable that the base has a groove formed on its upper surface. This groove is provided on each side of the transmission line. The groove is formed along the length direction of the transmission line. The groove has a first inner surface, a second inner surface, and a bottom surface. Each of the first inner surface, the second inner surface, and the bottom surface is formed along the length direction of the transmission line. The second inner surface is located farther from the transmission line than the first inner surface. The base is provided with a first conductive portion on the second inner surface. The base is provided with a second conductive portion on the bottom surface. The first conductive part and the second conductive part define a fourth shield.
 MEMSデバイスは、さらに機能部とカバーとを有することが好ましい。機能部は、ベースの上に設けられている。カバーは、機能部の上に設けられている。機能部は、第5シールドを有している。カバーは、第6シールドを有している。第4シールドは、第5シールド及び第6シールドと協働して、伝送線路の周囲を囲む。 The MEMS device preferably further includes a functional part and a cover. The functional unit is provided on the base. The cover is provided on the functional unit. The functional unit has a fifth shield. The cover has a sixth shield. The fourth shield cooperates with the fifth shield and the sixth shield to surround the transmission line.
 機能部は、フレームを有していることが好ましい。これにより、機能部は開口を有する。そして、伝送線路はフレームの内側に位置するように配置されている。カバーは、開口を介して伝送線路と対向する下面領域を有している。カバーは、下面領域に第3導電部が設けられている。第3導電部は、第6シールドを定義する。フレームは、伝送線路の長さ方向に沿って延出する第1の縁及び第2の縁を有している。フレームは、第1の縁に、第4導電部が設けられている。フレームは、第2の縁に、第5導電部が設けられている。第4導電部と第5導電部とは、第5シールドを定義する。第4導電部は、第1導電部及び第3導電部と電気的に接続されている。第5導電部は、第2導電部及び第3導電部と電気的に接続されている。 The functional unit preferably has a frame. Thereby, the functional part has an opening. And the transmission line is arrange | positioned so that it may be located inside a flame | frame. The cover has a lower surface region facing the transmission line through the opening. The cover is provided with a third conductive portion in the lower surface region. The third conductive part defines a sixth shield. The frame has a first edge and a second edge extending along the length direction of the transmission line. The frame is provided with a fourth conductive portion at the first edge. The frame is provided with a fifth conductive portion at the second edge. The fourth conductive part and the fifth conductive part define a fifth shield. The fourth conductive part is electrically connected to the first conductive part and the third conductive part. The fifth conductive part is electrically connected to the second conductive part and the third conductive part.
 ベースは、さらに第6導電部を有していることが好ましい。第6導電部は、第1導電部及び第2導電部と電気的に接続するように、ベースの内部に配置されている。 It is preferable that the base further has a sixth conductive part. The sixth conductive part is disposed inside the base so as to be electrically connected to the first conductive part and the second conductive part.
 ベースは、その上面に凹所が形成されていることが好ましい。また、ベースは、凹所と重複するように配置された支持体をさらに有する。凹所は、その内面に導電部が設けられている。凹所は、伝送線路の幅よりも大きい幅を有している。伝送線路は、支持体の上に配置されている。 The base preferably has a recess formed on its upper surface. The base further includes a support body arranged to overlap the recess. The recess is provided with a conductive portion on its inner surface. The recess has a width larger than the width of the transmission line. The transmission line is disposed on the support.
 支持体は、フレーム部分とクロスバーとを有することが好ましい。フレーム部分は、伝送線路の長さ方向に沿った長さを有している。クロスバーは、フレーム部分の幅方向の両縁から離間している。また、クロスバーは、フレームの長さ方向の両縁と接続されている。これにより、支持体は、開口窓を有し、この開口窓はクロスバーの両側に位置する。伝送線路は、クロスバーに沿って配置されている。 The support preferably has a frame portion and a crossbar. The frame portion has a length along the length direction of the transmission line. The cross bar is separated from both edges in the width direction of the frame portion. The crossbar is connected to both edges in the length direction of the frame. Thereby, a support body has an opening window and this opening window is located in the both sides of a cross bar. The transmission line is arranged along the crossbar.
 前記各開口窓は、前記伝送線路の長さ方向に沿った形を有することが好ましい。 It is preferable that each opening window has a shape along the length direction of the transmission line.
 第1の縁及び第2の縁のそれぞれには、フレームの厚み方向において貫通する複数の孔部が形成されていることが好ましい。この複数の孔部は、伝送線路の長さ方向に沿って配列されている。第4の導電部は、第1の縁の複数の孔部に設けられている。第5導電部は、第2の縁の複数の孔部に設けられている。 It is preferable that a plurality of holes penetrating in the thickness direction of the frame are formed in each of the first edge and the second edge. The plurality of holes are arranged along the length direction of the transmission line. The fourth conductive portion is provided in the plurality of holes on the first edge. The fifth conductive portion is provided in the plurality of holes on the second edge.
 また、第1の縁及び第2の縁のそれぞれには、接続スリットが形成されていることが好ましい。この接続スリットは、フレームの厚さ方向に沿って貫通して形成されている。また、この接続スリットは、伝送線路の長さ方向に沿った長さを有している。第4導電部は、第1の縁の接続スリットの内側に設けられている。第5導電部は、第2の縁の接続スリットの内側に設けられている。 Further, it is preferable that a connection slit is formed in each of the first edge and the second edge. This connection slit is formed penetrating along the thickness direction of the frame. The connection slit has a length along the length direction of the transmission line. The fourth conductive portion is provided inside the connection slit on the first edge. The fifth conductive portion is provided inside the connection slit on the second edge.
 そして、このような配線構造は、マイクロリレーに採用される。このマイクロリレーは、前記ベースと前記機能部と前記カバーとを備え、当該マイクロリレーは電磁石装置を備えており、前記ベースは、一対の前記伝送線路と、一対の固定接点とを有しており、一対の前記固定接点は、一対の前記伝送線路のそれぞれと電気的に接続されており、前記機能部は、さらにアーマチュアを有しており、当該アーマチュアは、可動板と磁性板と可動接点とを有しており、当該磁性板は、前記可動板に取り付けられており、前記可動接点は前記一対の固定接点と対向するように前記可動板に配置されており、前記アーマチュアは、前記可動板が第1位置と第2位置との間で移動可能となるように前記フレームの内側に配置されており、前記可動板が前記第1位置に位置するときには、前記可動接点は両方の固定接点と接触し、前記可動板が前記第2位置に位置するときに刃前記可動接点は両方の前記固定接点から離間し、前記電磁石装置は、前記カバーに設けられており、コイルと当該コイルに電流を供給するための一対のコイル端子とを有しており、前記コイルは、前記コイル端子を介して電流が供給されたときに前記磁性板を移動させる磁場を発生させ、これにより前記可動板を前記第1位置または前記第2位置に移動させる。 And such a wiring structure is adopted for a micro relay. The micro relay includes the base, the functional unit, and the cover, the micro relay includes an electromagnet device, and the base includes a pair of transmission lines and a pair of fixed contacts. The pair of fixed contacts are electrically connected to each of the pair of transmission lines, and the functional unit further includes an armature, and the armature includes a movable plate, a magnetic plate, and a movable contact. The magnetic plate is attached to the movable plate, the movable contact is disposed on the movable plate so as to face the pair of fixed contacts, and the armature is configured to be the movable plate. Is arranged inside the frame so as to be movable between a first position and a second position, and when the movable plate is located at the first position, the movable contact is both fixed contacts. When the movable plate contacts and the blade is located at the second position, the movable contact of the blade is separated from both of the fixed contacts, and the electromagnet device is provided on the cover, and supplies current to the coil and the coil. A pair of coil terminals for supplying the coil, and the coil generates a magnetic field for moving the magnetic plate when current is supplied through the coil terminal. Move to the first position or the second position.
図1は、本発明の実施形態1-1~3-6に記載の伝送線路が採用されるマイクロリレーの外観を示す斜視図である。FIG. 1 is a perspective view showing an external appearance of a microrelay in which the transmission lines described in Embodiments 1-1 to 3-6 of the present invention are employed. 図2は、マイクロリレーの分解斜視図である。FIG. 2 is an exploded perspective view of the micro relay. 図3(a)は、実施形態1-1の伝送線路の上面概略図である。この伝送線路は、図2の点線G1およびG2で囲まれた部分に採用される。図3(b)は、実施形態1-1の底面図である。FIG. 3A is a schematic top view of the transmission line according to Embodiment 1-1. This transmission line is employed in a portion surrounded by dotted lines G1 and G2 in FIG. FIG. 3B is a bottom view of the embodiment 1-1. 図4(a)は、信号配線10の一端と貫通配線12と第1シールド15a~15gの配置を示す斜視図である。図4(b)は、図3(a)のA-A線に沿った断面図である。FIG. 4A is a perspective view showing the arrangement of one end of the signal wiring 10, the through wiring 12, and the first shields 15a to 15g. FIG. 4B is a cross-sectional view taken along the line AA in FIG. 図5(a)は、図2の点線G1およびG2で囲んだ部分に適用される、本発明の実施形態1-2の伝送線路の構成を示す上面図である。図5(b)は、その底面図である。FIG. 5A is a top view showing a configuration of a transmission line according to the embodiment 1-2 of the present invention, which is applied to a portion surrounded by dotted lines G1 and G2 in FIG. FIG. 5B is a bottom view thereof. 図6(a)は、信号配線10の一端における貫通配線12及び埋込グラウンド配線15a~15c、15e~15gの配置を示す斜視図である。図6(b)は、図5(a)におけるB-B線に沿った断面図である。FIG. 6A is a perspective view showing the arrangement of the through wiring 12 and the embedded ground wirings 15a to 15c and 15e to 15g at one end of the signal wiring 10. FIG. FIG. 6B is a cross-sectional view taken along line BB in FIG. 図7(a)は、図2の点線G1およびG2で囲んだ部分に適用される、本発明の実施形態1-3の伝送線路の構成を示す上面図である。図7(b)は、その底面図である。図7(c)は、信号配線10の一端における貫通配線12及び埋込グラウンド配線17の配置を示す斜視図である。FIG. 7A is a top view showing a configuration of a transmission line according to Embodiment 1-3 of the present invention, which is applied to a portion surrounded by dotted lines G1 and G2 in FIG. FIG. 7B is a bottom view thereof. FIG. 7C is a perspective view showing the arrangement of the through wiring 12 and the embedded ground wiring 17 at one end of the signal wiring 10. 図8(a)は、図2の点線G1およびG2で囲んだ部分に適用される、本発明の実施形態1-1の変形例に関わる伝送線路の構成を示す上面図である。図8(b)は、その底面図である。図8(c)は、図8(a)におけるCD線に沿った断面図である。FIG. 8A is a top view showing a configuration of a transmission line according to a modification of Embodiment 1-1 of the present invention, which is applied to a portion surrounded by dotted lines G1 and G2 in FIG. FIG. 8B is a bottom view thereof. FIG. 8C is a cross-sectional view along the CD line in FIG. 図9(a)は実施形態2-1の配線構造を示す平面図である。図9(b)は、図9(a)のA-A線における断面図である。図9(c)は図9(a)のB-B線における断面図である。図9(d)は図9図(a)のC-C線における断面図である。FIG. 9A is a plan view showing the wiring structure of the embodiment 2-1. FIG. 9B is a cross-sectional view taken along the line AA in FIG. FIG. 9C is a cross-sectional view taken along line BB in FIG. FIG. 9D is a cross-sectional view taken along the line CC of FIG. 9A. 図10(a)は、実施形態2-1の配線構造の変形例を示す平面図である。図10(b)は図10(a)のA-A線における断面図である。図10(c)は図10(a)のB-B線における断面図である。図10(d)は、図10(a)のC-C線における断面図である。FIG. 10A is a plan view showing a modification of the wiring structure of the embodiment 2-1. FIG. 10B is a cross-sectional view taken along the line AA in FIG. FIG. 10C is a cross-sectional view taken along line BB in FIG. FIG. 10D is a cross-sectional view taken along the line CC of FIG. 図11(a)は、実施形態2-2の配線構造を示すは平面図である。図11(b)は図11(a)のA-A線における断面図である。図11(c)は図11(a)のB-B線における断面図である。図11(d)は、図11(a)のC-C線における断面図である。FIG. 11A is a plan view showing the wiring structure of the embodiment 2-2. FIG. 11B is a cross-sectional view taken along the line AA in FIG. FIG. 11C is a cross-sectional view taken along the line BB in FIG. FIG. 11D is a cross-sectional view taken along the line CC of FIG. 図12(a)は、実施形態2-3の配線構造を示す平面図である。図12(b)は、図12(a)のA-A線における断面図である。図12(c)は、図12(a)のB-B線における断面図である。図12(d)は、図12(a)のC-C線における断面図である。FIG. 12A is a plan view showing the wiring structure of the embodiment 2-3. FIG. 12B is a cross-sectional view taken along the line AA in FIG. FIG. 12C is a cross-sectional view taken along the line BB in FIG. FIG. 12D is a cross-sectional view taken along the line CC of FIG. 図13は、実施形態2-4の配線構造を示す平面図である。図13(b)は、図13(a)のA-A線における断面図である。図13(c)は、は図13(a)のB-B線における断面図である。図13(d)は、図13(a)のC-C線における断面図である。FIG. 13 is a plan view showing the wiring structure of the embodiment 2-4. FIG. 13B is a cross-sectional view taken along the line AA in FIG. FIG. 13C is a sectional view taken along line BB in FIG. FIG. 13D is a cross-sectional view taken along the line CC of FIG. 図14(a)は、実施形態2-5の配線構造を示す平面図である。図14(b)は図14(a)のA-A線における断面図である。図14(c)は、図14(a)のB-B線における断面図である。図14(d)は図14(a)のC-C線における断面図である。FIG. 14A is a plan view showing the wiring structure of the embodiment 2-5. FIG. 14B is a cross-sectional view taken along the line AA in FIG. FIG. 14C is a cross-sectional view taken along line BB in FIG. FIG. 14D is a cross-sectional view taken along the line CC of FIG. 図15(a)は、実施形態2-5の配線構造の変形例を示す平面図である。図15(b)は、図15(a)のA-A線における断面図である。FIG. 15A is a plan view showing a modification of the wiring structure of the embodiment 2-5. FIG. 15B is a cross-sectional view taken along the line AA in FIG. 図16(a)は、実施形態2-6におけるベースと支持体と信号配線との配置を示す平面図である。図16(b)は、図16(a)のA-A線における断面図である。FIG. 16A is a plan view showing the arrangement of the base, the support, and the signal wiring in Embodiment 2-6. FIG. 16B is a cross-sectional view taken along the line AA in FIG. 図17(a)は実施形態2-6におけるベースと支持体と信号配線との配置の変更例を示す平面図である。図17(b)は、実施形態2-6におけるベースと支持体と信号配線との配置のさらに別の変更例を示す平面図である。FIG. 17A is a plan view showing a modified example of the arrangement of the base, the support, and the signal wiring in the embodiment 2-6. FIG. 17B is a plan view showing still another modified example of the arrangement of the base, the support, and the signal wiring in the embodiment 2-6. 図18(a)は、実施形態2-7の配線構造を示す平面図である。図18(b)は、図18(a)のA-A線における断面図である。図18(c)は、図18(a)のB-B線における断面図である。図18(d)は、図18(a)のC-C線における断面図である。FIG. 18A is a plan view showing the wiring structure of the embodiment 2-7. FIG. 18B is a cross-sectional view taken along the line AA in FIG. FIG. 18C is a cross-sectional view taken along the line BB in FIG. FIG. 18D is a cross-sectional view taken along the line CC of FIG. 図19(a)は、実施形態2-8の配線構造を示す断面図である。この断面図は、信号配線の幅方向に直交する面に沿っている。図19(b)は、実施形態2-8の配線構造を示す断面図である。この断面図は、信号配線の長さ方向に直交する面に沿っている。FIG. 19A is a cross-sectional view showing a wiring structure according to Embodiment 2-8. This sectional view is along a plane orthogonal to the width direction of the signal wiring. FIG. 19B is a cross-sectional view showing the wiring structure of the embodiment 2-8. This sectional view is along a plane orthogonal to the length direction of the signal wiring. 図20(a)は、実施形態2-8の配線構造の変形例を示す断面図である。この断面図は、信号配線の幅方向に直交する面に沿っている。図20(b)は、実施形態2-8の配線構造の変形例を示す断面図である。この断面図は、信号配線の長さ方向に直交する面に沿っている。FIG. 20A is a cross-sectional view showing a modification of the wiring structure of the embodiment 2-8. This sectional view is along a plane orthogonal to the width direction of the signal wiring. FIG. 20B is a cross-sectional view showing a modification of the wiring structure of the embodiment 2-8. This sectional view is along a plane orthogonal to the length direction of the signal wiring. 図21は、実施形態2-9の配線構造の断面図である。この断面図は、信号配線の幅方向に直交する面に沿っている。FIG. 21 is a cross-sectional view of a wiring structure according to Embodiment 2-9. This sectional view is along a plane orthogonal to the width direction of the signal wiring. 実施形態3-1の配線構造を示し、(a)は平面図、(b)は同図(a)のA-A線矢視断面図、(c)は同図(a)のB-B線矢視断面図である。3A shows a wiring structure of Embodiment 3-1, (a) is a plan view, (b) is a cross-sectional view taken along line AA in FIG. (A), and (c) is a cross-sectional view along line BB in FIG. FIG. 実施形態3-2の配線構造の断面図である。It is sectional drawing of the wiring structure of Embodiment 3-2. 実施形態3-3の配線構造を示し、(a)は平面図、(b)は同図(a)のA-A線矢視断面図、(c)は同図(a)のB-B線矢視断面図である。The wiring structure of Embodiment 3-3 is shown, (a) is a plan view, (b) is a cross-sectional view taken along line AA in FIG. (A), and (c) is a cross-sectional view along line BB in FIG. FIG. 実施形態3-4の配線構造の要部を示し、(a)は平面図、(b)は同図(a)のA-A線矢視断面図である。The main part of the wiring structure of Embodiment 3-4 is shown, (a) is a plan view, and (b) is a cross-sectional view taken along line AA in FIG. 実施形態3-4の他例の配線構造の要部を示し、(a)は平面図、(b)は同図(a)のA-A線矢視断面図である。The principal part of the wiring structure of the other example of Embodiment 3-4 is shown, (a) is a top view, (b) is the AA arrow directional cross-sectional view of the same figure (a). 実施形態3-4のさらに別の例の配線構造の要部を示し、(a)は平面図、(b)は同図(a)のA-A線矢視断面図である。The main part of the wiring structure of still another example of Embodiment 3-4 is shown, (a) is a plan view, and (b) is a cross-sectional view taken along line AA in FIG. 実施形態3-5の配線構造を示し、(a)は平面図、(b)は同図(a)のA-A線矢視断面図、(c)は同図(a)のB-B線矢視断面図である。The wiring structure of Embodiment 3-5 is shown, (a) is a plan view, (b) is a cross-sectional view taken along line AA in FIG. (A), and (c) is a cross-sectional view along line BB in FIG. FIG. 実施形態3-6の配線構造を示し、(a)は平面図、(b)は同図(a)のA-A線矢視断面図、(c)は同図(a)のB-B線矢視断面図である。FIG. 6 shows a wiring structure of Embodiment 3-6, where (a) is a plan view, (b) is a cross-sectional view taken along line AA in FIG. FIG.
 以下図面を参照して、本発明の実施の形態を説明する。図面の記載において同一部分には同一符号を付している。 Embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals.
 (実施形態1-1)
 先ず、図1及び図2を参照して、本実施形態の伝送線路に採用される配線構造を有するMEMS構造体の一例として、マイクロリレーの構成を説明する。本実施形態に関わるマイクロリレーは、高周波の電気信号を取り扱い、且つ半導体プロセスを用いて作製される微小駆動機構を有するMEMSリレーであり、更に、常開接点と常閉接点とを備えた、いわゆるラッチング型リレーである。なお、図2に示すように、マイクロリレーの幅方向は、x方向によって定義される。同様に、マイクロリレーの長さ方向は、y方向によって定義される。マイクロリレーの高さ方向はz方向で定義される。
Embodiment 1-1
First, with reference to FIG.1 and FIG.2, the structure of a micro relay is demonstrated as an example of the MEMS structure which has the wiring structure employ | adopted as the transmission line of this embodiment. The micro relay according to the present embodiment is a MEMS relay that handles a high-frequency electric signal and has a micro drive mechanism that is manufactured using a semiconductor process, and further includes a normally open contact and a normally closed contact. It is a latching type relay. As shown in FIG. 2, the width direction of the micro relay is defined by the x direction. Similarly, the length direction of the micro relay is defined by the y direction. The height direction of the micro relay is defined by the z direction.
 図1に示すように、マイクロリレーは、ベース20と、機能部30と、カバー40と、電磁石装置51を有する駆動装置50とを備えている。図2は、ベース20、機能部30、カバー40及び駆動装置50の各構成を図示するため、各々を積層方向(z方向)に分離した状態で示している。本発明の実施形態1-1に関わる伝送線路は、ベース20の一部分、例えば、点線G1およびG2で囲んだ部分に用いられている。 As shown in FIG. 1, the micro relay includes a base 20, a functional unit 30, a cover 40, and a drive device 50 having an electromagnet device 51. FIG. 2 illustrates each configuration of the base 20, the functional unit 30, the cover 40, and the driving device 50 in a state where they are separated in the stacking direction (z direction). The transmission line according to Embodiment 1-1 of the present invention is used in a part of the base 20, for example, a part surrounded by dotted lines G1 and G2.
 図2に示すように、ベース20は、その上面上に配置された信号配線10を備える。この信号配線10は、いわゆる伝送線路である。この信号配線10は、高周波信号を伝送するために設けられている。信号配線10は、ベース20の長手方向の両端それぞれに対を成して配置されている。各信号配線10の長さ方向は、ベース20の幅方向(x方向)と一致し、1対の信号配線10は、その長さ方向に並んで配置されている。 As shown in FIG. 2, the base 20 includes a signal wiring 10 disposed on the upper surface thereof. This signal wiring 10 is a so-called transmission line. The signal wiring 10 is provided for transmitting a high frequency signal. The signal wirings 10 are arranged in pairs at both ends in the longitudinal direction of the base 20. The length direction of each signal wiring 10 coincides with the width direction (x direction) of the base 20, and the pair of signal wirings 10 are arranged side by side in the length direction.
 ベース20の上面には、信号配線10に電気的に接続される複数の固定接点26がそれぞれ形成されている。各固定接点26は、各信号配線10においてベース20の幅方向の中央に位置する端部に接続されている。すなわち、信号配線10は、ベース20の幅方向の一端に位置する第1端と、当該第1端と反対側に位置する第2端とを有する。各固定接点26は、この第2端にそれぞれ設けられている。 A plurality of fixed contacts 26 that are electrically connected to the signal wiring 10 are formed on the upper surface of the base 20. Each fixed contact 26 is connected to an end portion of each signal wiring 10 located at the center in the width direction of the base 20. That is, the signal wiring 10 has a first end located at one end in the width direction of the base 20 and a second end located on the opposite side to the first end. Each fixed contact 26 is provided at the second end.
 固定接点26は、例えば、銅(Cu)や金(Au)などの導電性が良好な金属材料からなる金属薄膜である。このような固定接点26は、スパッタ法や、電気めっき法、真空蒸着法などを利用して形成することができる。また、固定接点26は、単層構造に限らず、例えば、Au層と、Au層とベース20との間に介在されるTi層とからなる多層構造であってもよい。 The fixed contact 26 is a metal thin film made of a metal material having good conductivity such as copper (Cu) or gold (Au). Such a fixed contact 26 can be formed using a sputtering method, an electroplating method, a vacuum deposition method, or the like. The fixed contact 26 is not limited to a single layer structure, and may be a multilayer structure including, for example, an Au layer and a Ti layer interposed between the Au layer and the base 20.
 機能部30は、主として、アーマチュア32と、アーマチュア32を囲むフレーム33とを有する。 The functional unit 30 mainly includes an armature 32 and a frame 33 surrounding the armature 32.
 図2に示すように、フレーム33は、矩形枠状に形成されている。ベース20の長さ方向及び幅方向は、フレーム33の長さ方向及び幅方向とそれぞれ等しい。フレーム33の長さ方向の両端側それぞれには、信号配線10をフレーム33の内側に位置するための第1の開口31を有している。言い換えると、信号配線10は、フレーム33の内側に位置するように配置されており、これにより信号配線10は、第1の開口31に位置する。そして、信号配線10は、第1の開口31を介してカバー40と対向する。また、フレーム33の中央部には、アーマチュア32をフレーム33の内側に配置するための第2の開口34が形成されている。第1の開口31それぞれと第2の開口34とは、フレーム33の幅方向の中央部において互いに連通されている。なお、フレーム33は、幅方向の両端に位置する内周面を有しており、また、この内周面からフレームの幅方向に向かって突出した規制突起330を備える。この各規制突起330は、第1の開口31と第2の開口34との間に位置する。すなわち、第1の開口31は、第2の開口32と、規制突起330によって区切られる。また、フレーム33の外形サイズは、ベース20の外形サイズと等しい。また、信号配線10は、フレーム33の内側に位置するように配置されており、これにより、前記信号配線10は、第1の開口31に位置する。そして、信号配線10は、第1の開口31を介してカバー40と対向する。 As shown in FIG. 2, the frame 33 is formed in a rectangular frame shape. The length direction and width direction of the base 20 are equal to the length direction and width direction of the frame 33, respectively. At both ends of the frame 33 in the length direction, there are first openings 31 for positioning the signal wiring 10 inside the frame 33. In other words, the signal wiring 10 is disposed so as to be positioned inside the frame 33, and thereby the signal wiring 10 is positioned in the first opening 31. The signal wiring 10 faces the cover 40 through the first opening 31. Further, a second opening 34 for arranging the armature 32 inside the frame 33 is formed at the center of the frame 33. Each of the first openings 31 and the second openings 34 are in communication with each other at the center in the width direction of the frame 33. The frame 33 has inner peripheral surfaces located at both ends in the width direction, and includes a regulation protrusion 330 protruding from the inner peripheral surface in the width direction of the frame. Each regulation protrusion 330 is located between the first opening 31 and the second opening 34. That is, the first opening 31 is delimited by the second opening 32 and the regulation protrusion 330. The outer size of the frame 33 is equal to the outer size of the base 20. Further, the signal wiring 10 is disposed so as to be positioned inside the frame 33, and thus the signal wiring 10 is positioned in the first opening 31. The signal wiring 10 faces the cover 40 through the first opening 31.
 したがって、フレーム33が有する第1の縁331と第2の縁332と第3の縁333と第4の縁334とを有している。第1の縁331と第2の縁332と第3の縁333と第4の縁334とは、互いに協働して第1の開口31を形成する。第1の縁331は、フレーム33の長さ方向の一端に位置する当該フレームの縁で定義される。即ち、フレーム33は、伝送線路の長さ方向に沿って形成された第1の縁331を有する。第2の縁332は、一対の規制突起330で定義される。すなわち、フレーム33は、伝送線路の長さ方向に沿って形成された第2の縁332を有する。第2の縁332は、第1の縁331の反対側に位置する。第3の縁333は、フレーム33の幅方向の一端に位置する当該フレームの縁で定義される。第4の縁334は、フレームの幅方向の一端に位置する当該フレームの縁で定義され、且つ、第3の縁333と反対側に位置する。 Therefore, the frame 33 has the first edge 331, the second edge 332, the third edge 333, and the fourth edge 334. The first edge 331, the second edge 332, the third edge 333, and the fourth edge 334 cooperate with each other to form the first opening 31. The first edge 331 is defined by the edge of the frame located at one end in the length direction of the frame 33. That is, the frame 33 has a first edge 331 formed along the length direction of the transmission line. The second edge 332 is defined by a pair of restricting protrusions 330. That is, the frame 33 has a second edge 332 formed along the length direction of the transmission line. The second edge 332 is located on the opposite side of the first edge 331. The third edge 333 is defined by the edge of the frame located at one end in the width direction of the frame 33. The fourth edge 334 is defined by the edge of the frame located at one end in the width direction of the frame and is located on the opposite side to the third edge 333.
 アーマチュア32は、可動板3と、磁性板60と可動接点とを有する。可動板3は、フレーム33の第2の開口34内に配置される本体部320と、フレーム33の第1の開口31内にそれぞれ配置される接点用突片321とを有している。本体部320は、矩形板状に形成されている。本体部320の長手方向とフレーム33の長手方向とは略一致している。本体部320の長手方向の両端部それぞれの中央部には、アーマチュア32の長手方向に向かって突出した接点用突片321が突設されている。接点用突片321の先端部は、第1の開口31内に配置されている。接点用突片321の下面には可動接点(図示せず)が設けられている。可動接点が一対の固定接点26それぞれに同時に接触した時、可動接点は当該一対の固定接点26間を短絡させる。一方、本体部320の幅方向の両端部それぞれの中央部には、本体部320の幅方向に突出した支点用突片323が突設されている。支点用突片323の上面には支点突起324が設けられている。支点突起324は、アーマチュア32の揺動動作(シーソ動作)の支点として使用される。したがって、アーマチュアは、可動板が第1位置と第2位置との間で移動可能となるように、フレームの内側に配置されている。可動板が第1位置に位置するとき、左端に設けられた固定接点は、可動接点と接触する。可動板が第2位置に位置するとき、左端に設けられた固定接点は、可動接点と離間する。 The armature 32 has a movable plate 3, a magnetic plate 60, and a movable contact. The movable plate 3 includes a main body 320 disposed in the second opening 34 of the frame 33 and contact protrusions 321 respectively disposed in the first opening 31 of the frame 33. The main body 320 is formed in a rectangular plate shape. The longitudinal direction of the main body 320 and the longitudinal direction of the frame 33 substantially coincide with each other. A contact protrusion 321 protruding in the longitudinal direction of the armature 32 is provided at the center of each of both ends in the longitudinal direction of the main body 320. The tip of the contact protrusion 321 is disposed in the first opening 31. A movable contact (not shown) is provided on the lower surface of the contact protrusion 321. When the movable contact simultaneously contacts each of the pair of fixed contacts 26, the movable contact short-circuits between the pair of fixed contacts 26. On the other hand, a fulcrum protrusion 323 that protrudes in the width direction of the main body 320 protrudes from the center of each of both ends in the width direction of the main body 320. A fulcrum protrusion 324 is provided on the upper surface of the fulcrum protrusion 323. The fulcrum protrusion 324 is used as a fulcrum for the swinging motion (seesaw motion) of the armature 32. Therefore, the armature is disposed inside the frame so that the movable plate can move between the first position and the second position. When the movable plate is positioned at the first position, the fixed contact provided at the left end contacts the movable contact. When the movable plate is located at the second position, the fixed contact provided at the left end is separated from the movable contact.
 アーマチュア32は、複数の支持片35によりフレーム33と一体に連結されている。本実施形態において、アーマチュア32は、4つの支持片35によりフレーム33と一体に連結されている。各支持片35は、フレーム33の第2の開口34の長手方向における内側面と、本体部320の幅方向の外側面とを一体に連結している。4つの支持片35は、本体部320の中心に対して点対称となる位置に配置されている。 The armature 32 is integrally connected to the frame 33 by a plurality of support pieces 35. In the present embodiment, the armature 32 is integrally connected to the frame 33 by four support pieces 35. Each support piece 35 integrally connects the inner side surface in the longitudinal direction of the second opening 34 of the frame 33 and the outer side surface in the width direction of the main body 320. The four support pieces 35 are arranged at positions that are point-symmetric with respect to the center of the main body 320.
 支持片35は、高さ方向に直交する平面内で本体部320の長手方向に沿った方向に蛇行しながら進む曲線形状を有する。これによって、アーマチュア32はフレーム33に対して揺動自在に支持される。支持片35を蛇行形状に形成することで、支持片35の長さを長くできる。そのため、アーマチュア32が揺動する際に支持片35がねじられることで生じるばね力のばね定数を適切に小さくすることができ、支持片35に加えられる応力も分散することができる。 The support piece 35 has a curved shape that advances while meandering in a direction along the longitudinal direction of the main body 320 in a plane orthogonal to the height direction. As a result, the armature 32 is swingably supported with respect to the frame 33. By forming the support piece 35 in a meandering shape, the length of the support piece 35 can be increased. Therefore, the spring constant of the spring force generated when the support piece 35 is twisted when the armature 32 swings can be appropriately reduced, and the stress applied to the support piece 35 can also be dispersed.
 アーマチュア32、フレーム33及び支持片35は、例えば、50μm~300μm程度、好ましくは200μm程度の厚みの半導体基板(例えば、シリコン基板や、SOI基板)をフォトリソグラフィ技術およびエッチング技術などの半導体微細加工技術を利用してパターニングすることにより形成することができる。 The armature 32, the frame 33, and the support piece 35 are made of, for example, a semiconductor substrate having a thickness of about 50 μm to 300 μm, preferably about 200 μm (for example, a silicon substrate or an SOI substrate), a semiconductor microfabrication technique such as a photolithography technique and an etching technique It can form by patterning using.
 本体部320の上面には、磁性板60が設けられている。磁性板60は、例えば、電磁軟鉄、電磁ステンレス、パーマロイなどの磁性材料を矩形板状に機械加工したものからなり、接着、溶接、熱着、或いはロウ付けなどの方法で本体部320に接合される。磁性板60は、駆動装置50の電磁石装置51が発生する磁場によりアーマチュア32を揺動させるために使用される。一方、アーマチュア32の下面には、レシジュアル(レシジャル)70が設けられている。レシジュアル70は、アーマチュア32とベース20との距離を好適な距離に設定するために使用される。 A magnetic plate 60 is provided on the upper surface of the main body 320. The magnetic plate 60 is made of, for example, a magnetic material such as electromagnetic soft iron, electromagnetic stainless steel, and permalloy machined into a rectangular plate shape, and is joined to the main body 320 by a method such as adhesion, welding, heat fitting, or brazing. The The magnetic plate 60 is used for swinging the armature 32 by a magnetic field generated by the electromagnet device 51 of the driving device 50. On the other hand, a reciprocal (residual) 70 is provided on the lower surface of the armature 32. The sequential 70 is used to set the distance between the armature 32 and the base 20 to a suitable distance.
 機能部30は、可動接点と一対の固定接点26とがそれぞれ対向するように位置合わせを行った状態で、ベース20に接合される。これにより、機能部30はベース20の上面に取り付けられる。そして、可動板が第1位置に位置するときには、可動接点は両方の固定接点と接触する。可動板が第2位置に位置するときには、可動接点は両方の固定接点から離間する。なお、フレーム33をベース20に接合するにあたっては、接合用の金属層(図示せず)を用いることができる。当該金属層は、グラウンドとして利用することができる。 The functional unit 30 is joined to the base 20 in a state in which the movable contact and the pair of fixed contacts 26 are aligned so as to face each other. Thereby, the functional unit 30 is attached to the upper surface of the base 20. When the movable plate is located at the first position, the movable contact contacts both of the fixed contacts. When the movable plate is located at the second position, the movable contact is separated from both fixed contacts. In joining the frame 33 to the base 20, a joining metal layer (not shown) can be used. The metal layer can be used as a ground.
 カバー40は、絶縁材料(例えばガラス)などからなる。カバー40の外形サイズは、ベース20の外形サイズと等しい。カバー40の中央部には、当該カバー40を厚み方向(z方向)に貫通する開孔部41が形成されている。閉塞板42は、カバー40の下面に密着接合され、開孔部41全体を閉塞している。したがって、開孔部41の内周面と閉塞板42とで囲まれる空間部が駆動装置50の収納室を構成している。閉塞板42は、例えば、厚みが5~50μm程度、好ましくは20μm程度に形成されたシリコン板やガラス板などの薄板からなる。カバー40は、フレーム33の上面に接合される。なお、カバー40をフレーム33に接合するにあたっては、接合用の金属層(図示せず)を用いることができる。当該金属層は、高周波用のシールド層として利用することができる。ただし、駆動装置50の磁場を遮断することがないように、当該金属層の材料には、非磁性体を用いる。 The cover 40 is made of an insulating material (for example, glass). The outer size of the cover 40 is equal to the outer size of the base 20. An opening 41 that penetrates the cover 40 in the thickness direction (z direction) is formed at the center of the cover 40. The closing plate 42 is tightly bonded to the lower surface of the cover 40 and closes the entire opening 41. Therefore, a space surrounded by the inner peripheral surface of the opening 41 and the closing plate 42 constitutes a storage chamber of the driving device 50. The closing plate 42 is made of, for example, a thin plate such as a silicon plate or a glass plate having a thickness of about 5 to 50 μm, preferably about 20 μm. The cover 40 is joined to the upper surface of the frame 33. In joining the cover 40 to the frame 33, a joining metal layer (not shown) can be used. The metal layer can be used as a high-frequency shield layer. However, a nonmagnetic material is used as the material of the metal layer so as not to block the magnetic field of the driving device 50.
 駆動装置50は、磁性板60を吸引する磁場を発生させる電磁石装置51と、アーマチュア32をラッチするための永久磁石52とを備えている。電磁石装置51は、主として、ヨーク53と、一対のコイル54とを備えている。ヨーク53は、長尺矩形板状の主片530と、主片530の下面の長手方向両端部それぞれに突設された矩形板状の脚片531とを一体に備えている。このようなヨーク53は、電磁軟鉄などの鉄板を曲げ加工あるいは鍛造加工することにより形成されている。永久磁石52は、直方体状に形成され、上面と下面とが互いに異極となるように着磁されている。永久磁石52は、その下面をヨーク53の主片530の上面における長手方向中央部に当接させるようにして、ヨーク53に取り付けられる。各コイル54は、主片530における各脚片531と永久磁石52との間の部位それぞれに巻回される。また、駆動装置50には、一対のコイル端子55が設けられている。これら一対のコイル端子55間に電圧を印加することで、各コイル54に電流が流れる。コイル54に電流が流れたとき、コイルは磁場を発生する。この磁場は、磁性板60を移動させる。磁性板60は可動板と固定されているため、磁性板60の移動に伴って可動板も第1位置と第2位置との間で移動する。このような駆動装置50は、カバー40の上記収納室に収納される。 The driving device 50 includes an electromagnet device 51 that generates a magnetic field for attracting the magnetic plate 60 and a permanent magnet 52 for latching the armature 32. The electromagnet device 51 mainly includes a yoke 53 and a pair of coils 54. The yoke 53 is integrally provided with a long rectangular plate-shaped main piece 530 and rectangular plate-shaped leg pieces 531 projecting from both ends in the longitudinal direction of the lower surface of the main piece 530. Such a yoke 53 is formed by bending or forging an iron plate such as electromagnetic soft iron. The permanent magnet 52 is formed in a rectangular parallelepiped shape, and is magnetized so that the upper surface and the lower surface have different polarities. The permanent magnet 52 is attached to the yoke 53 such that the lower surface thereof is in contact with the longitudinal central portion of the upper surface of the main piece 530 of the yoke 53. Each coil 54 is wound around each portion of the main piece 530 between each leg piece 531 and the permanent magnet 52. The drive device 50 is provided with a pair of coil terminals 55. By applying a voltage between the pair of coil terminals 55, a current flows through each coil 54. When a current flows through the coil 54, the coil generates a magnetic field. This magnetic field moves the magnetic plate 60. Since the magnetic plate 60 is fixed to the movable plate, the movable plate also moves between the first position and the second position as the magnetic plate 60 moves. Such a driving device 50 is stored in the storage chamber of the cover 40.
 なお、図1および図2に示すマイクロリレーでは、コイル54に通電するための駆動電極(図示せず)がベース20の下面に形成されている。また、カバー40の上面に、コイル端子55が接続される配線パターン43が形成されている。ここで、上記した駆動電極と配線パターン43とは、ベース20を積層方向に貫通する貫通ビア27と、フレーム33を厚み方向に貫通する貫通ビア36と、カバー40を厚み方向に貫通する貫通ビア44とによって、電気的に接続されている。 In the micro relay shown in FIGS. 1 and 2, a drive electrode (not shown) for energizing the coil 54 is formed on the lower surface of the base 20. A wiring pattern 43 to which the coil terminal 55 is connected is formed on the upper surface of the cover 40. Here, the drive electrode and the wiring pattern 43 described above are a through via 27 that penetrates the base 20 in the stacking direction, a through via 36 that penetrates the frame 33 in the thickness direction, and a through via that penetrates the cover 40 in the thickness direction. 44 and are electrically connected.
 また、図1及び図2には示さないが、信号配線10においてベース20の幅方向の一端に位置する端部は、ベース20を貫通する孔の内部に設けられた貫通配線12を介して、ベース20の下面上に配置された裏面取出電極に電気的に接続されている。本実施形態に関わる伝送線路は、信号配線10、貫通配線12、及び裏面取出電極を含む、図2の点線G1およびG2で囲んだ部分に適用される。 Although not shown in FIGS. 1 and 2, the end portion of the signal wiring 10 that is located at one end in the width direction of the base 20 is connected through the through wiring 12 provided inside the hole that penetrates the base 20. The back surface extraction electrode disposed on the lower surface of the base 20 is electrically connected. The transmission line according to this embodiment is applied to a portion surrounded by dotted lines G1 and G2 in FIG. 2 including the signal wiring 10, the through wiring 12, and the back surface extraction electrode.
 次に、図3及び図4を参照して、図2に示すベース20における点線G1およびG2で囲んだ部分に適用される、本実施形態に関わる伝送線路の構成を説明する。なお、図3などにおいては、説明を簡略にするために、一本の信号配線として記載している。このような信号配線は、マイクロリレーなどにおいては、信号配線10の長さ方向の中央において二つに分けられる。 Next, with reference to FIG. 3 and FIG. 4, the configuration of the transmission line according to this embodiment applied to the portion surrounded by the dotted lines G1 and G2 in the base 20 shown in FIG. In FIG. 3 and the like, the signal wiring is shown as one signal wire for the sake of simplicity. Such a signal wiring is divided into two at the center in the length direction of the signal wiring 10 in a micro relay or the like.
 図3(a)は、図2に示すベース20における点線G1およびG2で囲んだ部分の上面を示す平面図であり、図3(b)は、下面を示す平面図である。 3A is a plan view showing an upper surface of a portion surrounded by dotted lines G1 and G2 in the base 20 shown in FIG. 2, and FIG. 3B is a plan view showing a lower surface.
 本実施形態の伝送線路は、MEMS構造体の一例としてのマイクロリレーに用いられる電線路である。このマイクロリレーは、ベース20と、信号配線10と、上面グラウンド電極16と、貫通配線12と、下面グラウンド電極14と、埋込グラウンド配線15a、15b、15c、15d、15e、15f、15gとを有する。ベース20は、上面及び下面を有しており、誘電体からなる。信号配線10は、高周波信号を伝送するために設けられている。この高周波信号は、最も高い周波数を有する第1信号を有している。上面グラウンド電極16は、ベース20の上面に配置されており、且つ信号配線10から電気的に絶縁されている。貫通配線12は、ベース20の上面から下面までを貫通しており、且つ信号配線10に電気的に接続されている。下面グラウンド電極14は、ベース20の下面に配置されており、且つ貫通配線12から電気的に絶縁されている。複数の埋込グラウンド配線15a、15b、15c、15d、15e、15f、15gは、ベース20に埋め込まれ、且つ貫通配線12の周囲を囲む円に沿って配置されている。これらの埋込グラウンド配線15a、15b、15c、15d、15e、15f、15gは、それぞれ第1シールドを構成する。したがって、ベース20は、複数の第1シールドを有する。また、第1シールドは、前記貫通配線12の周囲を囲むようにベース20内に配置されている。各埋込グラウンド配線15a、15b、15c、15d、15e、15f、15gは、ベース20の厚み方向に沿って形成されている。埋込グラウンド配線15a~15gの各々は、上面グラウンド電極16及び下面グラウンド電極14の少なくとも一方に電気的に接続されている。複数の埋込グラウンド配線15a~15gは、隣の埋込グラウンド配線から、所定の距離で離間して配置されている。そして、この所定の距離は、信号配線10を伝送する高周波の波長の1/4未満の距離に設定されている。詳しく説明すると、所定の距離は、第1信号の波長の1/4未満長さである。ベース20は、厚み方向に貫通する貫通孔22を有する。貫通配線12は、この貫通孔22の内側に配置されている。 The transmission line of this embodiment is an electric wire used for a micro relay as an example of a MEMS structure. This micro relay includes a base 20, a signal wiring 10, an upper surface ground electrode 16, a through wiring 12, a lower surface ground electrode 14, and embedded ground wirings 15a, 15b, 15c, 15d, 15e, 15f, and 15g. Have. The base 20 has an upper surface and a lower surface and is made of a dielectric. The signal wiring 10 is provided for transmitting a high frequency signal. This high frequency signal has a first signal having the highest frequency. The upper surface ground electrode 16 is disposed on the upper surface of the base 20 and is electrically insulated from the signal wiring 10. The through wiring 12 penetrates from the upper surface to the lower surface of the base 20 and is electrically connected to the signal wiring 10. The lower surface ground electrode 14 is disposed on the lower surface of the base 20 and is electrically insulated from the through wiring 12. The plurality of embedded ground wirings 15 a, 15 b, 15 c, 15 d, 15 e, 15 f, and 15 g are embedded along the circle that is embedded in the base 20 and surrounds the periphery of the through wiring 12. These embedded ground wirings 15a, 15b, 15c, 15d, 15e, 15f, and 15g each constitute a first shield. Accordingly, the base 20 has a plurality of first shields. The first shield is disposed in the base 20 so as to surround the through wiring 12. Each embedded ground wiring 15 a, 15 b, 15 c, 15 d, 15 e, 15 f, 15 g is formed along the thickness direction of the base 20. Each of the embedded ground wirings 15a to 15g is electrically connected to at least one of the upper surface ground electrode 16 and the lower surface ground electrode. The plurality of buried ground wirings 15a to 15g are arranged at a predetermined distance from the neighboring buried ground wiring. The predetermined distance is set to a distance less than ¼ of the wavelength of the high frequency transmitted through the signal wiring 10. More specifically, the predetermined distance is less than ¼ of the wavelength of the first signal. The base 20 has a through hole 22 that penetrates in the thickness direction. The through wiring 12 is disposed inside the through hole 22.
 上面グラウンド電極16は、ベース20の上面において、信号配線10の周りを囲むように配置され、上面グラウンド電極16と信号配線10との間には所定の隙間が形成されている。この所定の隙間は、信号配線10の長手方向に沿って一定であり、所定の隙間にはベース20が露出されている。したがって、上面グラウンド電極16は、伝送線路から電気的に絶縁されている。また、上面グラウンド電極16は、グラウンド(アース)と電気的に接続される。 The upper surface ground electrode 16 is disposed on the upper surface of the base 20 so as to surround the signal wiring 10, and a predetermined gap is formed between the upper surface ground electrode 16 and the signal wiring 10. The predetermined gap is constant along the longitudinal direction of the signal wiring 10, and the base 20 is exposed in the predetermined gap. Therefore, the upper surface ground electrode 16 is electrically insulated from the transmission line. The upper surface ground electrode 16 is electrically connected to the ground (earth).
 図3(b)に示すように、ベース20の下面には、外部端子13が配置されている。外部端子13は、図3(a)の貫通配線12と電気的に接続するように配置されている。また、下面グラウンド電極14は、ベース20の下面において、外部端子13の周りを囲むように配置され、下面グラウンド電極14と外部端子13との間には所定の隙間が形成されている。所定の隙間にはベース20が露出されている。したがって、外部端子13は、下面グラウンド電極14から電気的に絶縁されている。 As shown in FIG. 3B, an external terminal 13 is disposed on the lower surface of the base 20. The external terminal 13 is disposed so as to be electrically connected to the through wiring 12 in FIG. The lower surface ground electrode 14 is disposed on the lower surface of the base 20 so as to surround the external terminal 13, and a predetermined gap is formed between the lower surface ground electrode 14 and the external terminal 13. The base 20 is exposed in the predetermined gap. Therefore, the external terminal 13 is electrically insulated from the lower surface ground electrode 14.
 本実施形態において、埋込グラウンド配線15a~15gの各々は、上面グラウンド電極16及び下面グラウンド電極14の両方に電気的に接続されている。 In this embodiment, each of the embedded ground wirings 15a to 15g is electrically connected to both the upper surface ground electrode 16 and the lower surface ground electrode.
 次に、図4(a)を参照して、信号配線10の一端における貫通配線12及び埋込グラウンド配線15a~15gの配置を説明する。図4(a)は、ベース20を除いて配線及び電極だけを表示している。 Next, the arrangement of the through wiring 12 and the embedded ground wirings 15a to 15g at one end of the signal wiring 10 will be described with reference to FIG. FIG. 4A shows only wirings and electrodes except for the base 20.
 貫通配線12は、ベース20の上面から下面までを貫通し、貫通配線12の上端及び下端は、信号配線10及び外部端子13にそれぞれ電気的に接続されている。複数の埋込グラウンド配線15a~15gは、ベース20の上面から下面までを貫通し、且つ貫通配線12の周囲のうち、信号配線10を除いた部分に、円弧状且つ等間隔に配置されている。信号配線10の部分を除く理由は、ベース20の上面から下面までを貫通する埋込グラウンド配線を信号配線10が配置された部分に配置してしまうと、ベース20の表面において、埋込グラウンド配線は信号配線10と接触してしまうからである。 The through wiring 12 penetrates from the upper surface to the lower surface of the base 20, and the upper end and the lower end of the through wiring 12 are electrically connected to the signal wiring 10 and the external terminal 13, respectively. The plurality of embedded ground wirings 15 a to 15 g penetrate from the upper surface to the lower surface of the base 20, and are arranged in an arc shape and at equal intervals around the through wiring 12 except for the signal wiring 10. . The reason for excluding the portion of the signal wiring 10 is that if the embedded ground wiring penetrating from the upper surface to the lower surface of the base 20 is disposed in the portion where the signal wiring 10 is disposed, the embedded ground wiring is formed on the surface of the base 20. This is because they are in contact with the signal wiring 10.
 埋込グラウンド配線15a~15g及び貫通配線12は円柱形状を有している。各埋込グラウンド配線15a~15gの中心と貫通配線12の中心との距離は等しく、埋込グラウンド配線15a~15gは、貫通配線12を中心とする1つの円弧上に配置されている。埋込グラウンド配線15a~15g間の距離は、等しく、且つ信号配線10を伝送する高周波の波長の1/4未満である。ここでは、信号配線10の一端において7つの埋込グラウンド配線15a~15gを配置した場合を示すが、埋込グラウンド配線15a~15g同士の間隔が信号配線10を伝送する高周波の波長の1/4未満であれば、埋込グラウンド配線15a~15gの数は増減しても構わない。 The embedded ground wirings 15a to 15g and the through wiring 12 have a cylindrical shape. The distances between the centers of the embedded ground wirings 15a to 15g and the center of the through wiring 12 are equal, and the embedded ground wirings 15a to 15g are arranged on one arc centering on the through wiring 12. The distances between the buried ground wirings 15a to 15g are equal and less than ¼ of the wavelength of the high frequency transmitted through the signal wiring 10. Here, a case where seven embedded ground wirings 15 a to 15 g are arranged at one end of the signal wiring 10 is shown, but the interval between the embedded ground wirings 15 a to 15 g is ¼ of the wavelength of the high frequency transmitted through the signal wiring 10. If it is less, the number of buried ground wirings 15a to 15g may be increased or decreased.
 例えば、40GHzの高周波を伝送する伝送線路を設計する場合において、埋込グラウンド配線15a~15g同士の間隔を50GHzの高周波の波長の1/4に設計することにより、40GHzの高周波の波長の1/4未満の間隔で埋込グラウンド配線15a~15gを配置することができる。以下に、1/4未満の間隔をより具体的に説明する。信号配線10を流れる第1信号が40GHzである場合、第1信号の波長の1/4は1.875mmに相当する。従って、埋め込みグラウンド配線15a~15g同士の間隔を、1.5mm以下とすることが好ましい。 For example, when designing a transmission line that transmits a high frequency of 40 GHz, the interval between the embedded ground wirings 15a to 15g is designed to be 1/4 of the high frequency wavelength of 50 GHz, so that 1 / of the high frequency wavelength of 40 GHz is obtained. The buried ground wirings 15a to 15g can be arranged at intervals of less than 4. Hereinafter, the interval less than ¼ will be described more specifically. When the first signal flowing through the signal wiring 10 is 40 GHz, ¼ of the wavelength of the first signal corresponds to 1.875 mm. Therefore, it is preferable that the interval between the buried ground wirings 15a to 15g is 1.5 mm or less.
 また、貫通配線12の直径、及び貫通配線12と埋込グラウンド配線15a~15gとの距離を調整することにより、伝送線路の特性インピーダンスを任意に設計することができる。 Further, the characteristic impedance of the transmission line can be arbitrarily designed by adjusting the diameter of the through wiring 12 and the distance between the through wiring 12 and the embedded ground wirings 15a to 15g.
 また、図4(b)に示すように、埋込グラウンド配線15dの上端及び下端は、上面グラウンド電極16及び下面グラウンド電極14にそれぞれ電気的に接続されている。貫通配線12の上端及び下端は、信号配線10及び外部端子13にそれぞれ電気的に接続されている。また、信号配線10と上面グラウンド電極16との間、及び外部端子13と下面グラウンド電極14との間にはベース20がそれぞれ露出している。信号配線10と上面グラウンド電極16との距離、及び外部端子13と下面グラウンド電極14との距離を調整することにより、伝送線路の特性インピーダンスを任意に設計することができる。なお、図示は省略するが、埋込グラウンド配線15a~15c、15e~15gは、埋込グラウンド配線15dと同じ断面構造を有している。 Further, as shown in FIG. 4B, the upper end and the lower end of the embedded ground wiring 15d are electrically connected to the upper surface ground electrode 16 and the lower surface ground electrode 14, respectively. The upper end and the lower end of the through wiring 12 are electrically connected to the signal wiring 10 and the external terminal 13, respectively. The base 20 is exposed between the signal wiring 10 and the upper surface ground electrode 16 and between the external terminal 13 and the lower surface ground electrode 14. By adjusting the distance between the signal wiring 10 and the upper surface ground electrode 16 and the distance between the external terminal 13 and the lower surface ground electrode 14, the characteristic impedance of the transmission line can be arbitrarily designed. Although not shown, the embedded ground wirings 15a to 15c and 15e to 15g have the same cross-sectional structure as the embedded ground wiring 15d.
 次に、図3及び図4に示した伝送線路の製造方法の一例を説明する。ベース20に対して、貫通配線12及び埋込グラウンド配線15a~15gそれぞれのためのスルーホールを、ブラスト加工などを用いて形成する。そして、ベース20の裏面上に、金(Au)または銅(Cu)等の金属膜をメッキ処理によって成膜する。このとき、上記したスルーホール内に金属が充填される。その後、フォトリソグラフィ技術及びエッチング技術を用いて、図3(b)に示すように、下面グラウンド電極14及び外部端子13をパターニングする。 Next, an example of a method for manufacturing the transmission line shown in FIGS. 3 and 4 will be described. Through holes for the through wiring 12 and the buried ground wirings 15a to 15g are formed in the base 20 by blasting or the like. Then, a metal film such as gold (Au) or copper (Cu) is formed on the back surface of the base 20 by plating. At this time, the metal is filled in the above-described through hole. Thereafter, using the photolithography technique and the etching technique, the lower surface ground electrode 14 and the external terminal 13 are patterned as shown in FIG.
 同様にして、ベース20の上面上に、AuまたはCu等の金属膜をメッキ処理によって成膜する。その後、フォトリソグラフィ技術及びエッチング技術を用いて、図3(a)に示すように、上面グラウンド電極16及び信号配線10をパターニングする。 Similarly, a metal film such as Au or Cu is formed on the upper surface of the base 20 by plating. Thereafter, the upper surface ground electrode 16 and the signal wiring 10 are patterned by using a photolithography technique and an etching technique as shown in FIG.
 以上説明したように、本実施形態の配線構造によれば、信号配線10を伝送する高周波の波長λの1/4未満の間隔で複数の埋込グラウンド配線15a~15gを配置することにより、埋込グラウンド配線同士の間隔が信号配線10を伝送する高周波の波長の1/4となる時に発生する共振現象及び当該共振現象によるリップルの発生を抑制することができる。すなわち、埋込グラウンド配線15a~15g同士の間隔を、伝送線路を伝送する高周波の帯域のうち最も短い波長の1/4よりも短く設定すれば、この共振現象及びリップルの発生を抑制することができる。 As described above, according to the wiring structure of the present embodiment, a plurality of embedded ground wirings 15a to 15g are arranged at intervals of less than ¼ of the wavelength λ of the high frequency transmitted through the signal wiring 10. It is possible to suppress the resonance phenomenon that occurs when the interval between the buried ground wirings becomes ¼ of the wavelength of the high frequency that is transmitted through the signal wiring 10 and the occurrence of ripples due to the resonance phenomenon. That is, if the interval between the buried ground wirings 15a to 15g is set to be shorter than 1/4 of the shortest wavelength in the high-frequency band transmitted through the transmission line, the occurrence of this resonance phenomenon and ripple can be suppressed. it can.
 また、ベース20の上面に配置された信号配線10を伝送する信号を下面へ引き出す際に使用される貫通配線12の周囲に、複数の埋込グラウンド配線15a~15gを配置することにより、擬似的な同軸構造を実現することができる。そして、貫通配線12と各埋込グラウンド配線15a~15gとの間の静電容量が貫通配線12のどの部分でも一定となる。よって、貫通配線12の特性インピーダンスを整合させることができるので、信号の反射、この反射による信号同士の相互干渉を抑制し、伝送線路の高周波伝達特性を向上させることができる。 Further, by arranging a plurality of embedded ground wirings 15a to 15g around the through wiring 12 used when a signal transmitted through the signal wiring 10 disposed on the upper surface of the base 20 is drawn to the lower surface, a pseudo- A simple coaxial structure can be realized. The capacitance between the through wiring 12 and each of the embedded ground wirings 15a to 15g is constant in any part of the through wiring 12. Therefore, since the characteristic impedance of the through wiring 12 can be matched, reflection of signals and mutual interference between signals due to the reflection can be suppressed, and high-frequency transmission characteristics of the transmission line can be improved.
 (実施形態1-2)
 図5(a)及び図5(b)は、本実施形態の配線構造を有するベース20の上面及び下面の図を示している。本実施形態では、下面取出電極がそれぞれ信号配線10よりも外側へ引き延ばされ、これにより配置が変更された埋込グラウンド配線を有する配線構造について説明する。
Embodiment 1-2
FIG. 5A and FIG. 5B show views of the upper surface and the lower surface of the base 20 having the wiring structure of this embodiment. In the present embodiment, a description will be given of a wiring structure having a buried ground wiring in which the lower surface extraction electrodes are each extended outward from the signal wiring 10 and the arrangement thereof is changed.
 図5(a)に示すように、本実施形態に関わる伝送線路は、埋込グラウンド配線15dを有していない点が図3(a)と異なり、その他の構成は図3(a)と同じである。また、図5(b)に示すように、本実施形態に関わる伝送線路において、外部端子13bがそれぞれ信号配線10よりも外側へ引き延ばされている点が異なり、その他の構成は図3(b)と同じである。すなわち、本実施形態に関わる伝送線路において、下面電極13bは、それぞれベース20の幅方向に沿って、ベース20の外周に向かって延出している。 As shown in FIG. 5A, the transmission line according to the present embodiment is different from FIG. 3A in that it does not have the embedded ground wiring 15d, and other configurations are the same as those in FIG. It is. Further, as shown in FIG. 5B, in the transmission line according to the present embodiment, the external terminals 13b are each extended outward from the signal wiring 10, and the other configurations are as shown in FIG. Same as b). That is, in the transmission line according to the present embodiment, the lower surface electrode 13 b extends toward the outer periphery of the base 20 along the width direction of the base 20.
 次に、図6(a)及び図6(b)を参照して、信号配線10の一端における貫通配線12及び埋込グラウンド配線15a~15c、15e~15gの配置を説明する。図6(a)は、ベース20を除いて配線及び電極だけを表示している。図6(b)は図5(a)のB-B切断面に沿った断面図である。 Next, with reference to FIG. 6A and FIG. 6B, the arrangement of the through wiring 12 and the embedded ground wirings 15a to 15c and 15e to 15g at one end of the signal wiring 10 will be described. FIG. 6A shows only wirings and electrodes except for the base 20. FIG. 6B is a cross-sectional view taken along the line BB in FIG.
 ベースは、その下面に、取り出し配線13bが設けられている。この取り出し配線の一端は、貫通配線12と電気的に接続されており、他端は外部端子13と電気的に接続されている。 The base is provided with an extraction wiring 13b on the lower surface thereof. One end of the extraction wiring is electrically connected to the through wiring 12, and the other end is electrically connected to the external terminal 13.
 この場合、取り出し配線13bは、その長手方向が信号配線10の長手方向と一致する方向に延長されている。このため、取り出し配線13bの延長部分と埋込グラウンド配線15dとが重なってしまう。埋込グラウンド配線15dは、ベース20の裏面まで貫通しているので、ベース20の裏面に配置される取り出し配線13bの延長部分と接触してしまう。そこで、本実施形態では、取り出し配線13bがそれぞれ信号配線10よりも外側へ引き延ばされたため、埋込グラウンド配線15dを除いた埋込グラウンド配線15a~15c、15e~15gのみが配置されている。 In this case, the extraction wiring 13b is extended in a direction in which the longitudinal direction thereof coincides with the longitudinal direction of the signal wiring 10. For this reason, the extended portion of the extraction wiring 13b and the embedded ground wiring 15d overlap each other. Since the embedded ground wiring 15 d penetrates to the back surface of the base 20, the embedded ground wiring 15 d comes into contact with an extended portion of the extraction wiring 13 b disposed on the back surface of the base 20. Therefore, in this embodiment, since the extraction wiring 13b is extended outward from the signal wiring 10, only the embedded ground wirings 15a to 15c and 15e to 15g except the embedded ground wiring 15d are arranged. .
 以上説明したように、本実施形態によれば、埋込グラウンド配線15a~15cが信号配線10を伝送する高周波の波長λの1/4未満の間隔で配置され、埋込グラウンド配線15e~15gが信号配線10を伝送する高周波の波長λの1/4未満の間隔で配置されていることにより、埋込グラウンド配線同士の間隔が信号配線10を伝送する高周波の波長の1/4となる時に発生する共振現象及び当該共振現象によるリップルの発生を抑制することができる。すなわち、埋込グラウンド配線15a~15c同士の間隔及び埋込グラウンド配線15e~15g同士の間隔を、伝送線路を伝送する高周波の帯域のうち最も短い波長の1/4よりも短く設定すれば、この共振現象及びリップルの発生を抑制することができる。 As described above, according to the present embodiment, the embedded ground wirings 15a to 15c are arranged at an interval of less than ¼ of the wavelength λ of the high frequency transmitted through the signal wiring 10, and the embedded ground wirings 15e to 15g are arranged. Occurs when the interval between the embedded ground wirings becomes ¼ of the wavelength of the high frequency transmitted through the signal wiring 10 by being arranged at an interval of less than ¼ of the wavelength λ of the high frequency transmitting the signal wiring 10. And the occurrence of ripple due to the resonance phenomenon can be suppressed. That is, if the interval between the buried ground wires 15a to 15c and the interval between the buried ground wires 15e to 15g are set to be shorter than 1/4 of the shortest wavelength in the high-frequency band transmitted through the transmission line. Resonance and ripple can be suppressed.
 (実施形態1-3)
 本実施形態では、複数の埋込グラウンド配線15a~15gの替わりに、貫通配線12の周囲を円弧状且つ連続して取り囲む埋込グラウンド配線を用いた場合について説明する。
(Embodiment 1-3)
In the present embodiment, a description will be given of a case where, instead of the plurality of embedded ground wirings 15a to 15g, embedded ground wiring that surrounds the through wiring 12 in an arc shape and continuously is used.
 図7(a)及び図7(b)は、図2に示すベース20における点線G1およびG2で囲んだ部分に適用される、本実施形態に関わる伝送線路の構成である。図7(a)は、図2に示すベース20における点線G1およびG2で囲んだ部分の上面を示す平面図であり、図7(b)は、図2に示すベース20における点線G1で囲んだ部分の下面を示す平面図である。図7(c)は、ベース20を除いて配線及び電極だけを表示している。 7A and 7B show the configuration of the transmission line according to the present embodiment, which is applied to the portion surrounded by the dotted lines G1 and G2 in the base 20 shown in FIG. 7A is a plan view showing an upper surface of a portion surrounded by dotted lines G1 and G2 in the base 20 shown in FIG. 2, and FIG. 7B is surrounded by a dotted line G1 in the base 20 shown in FIG. It is a top view which shows the lower surface of a part. FIG. 7C shows only the wiring and electrodes except for the base 20.
 本実施形態に関わる伝送線路は、MEMS構造体の一例としてのマイクロリレーに用いられる伝送線路であって、上面及び下面を有するベース20と、上面上に配置され、且つ高周波を伝送する信号配線10と、上面上に配置され、且つ信号配線10から電気的に絶縁された上面グラウンド電極16と、ベース20の上面から下面までを貫通し、且つ信号配線10に電気的に接続された貫通配線12と、下面上に配置され、貫通配線12から電気的に絶縁された下面グラウンド電極14と、ベース20に埋め込まれ、且つ貫通配線12の周囲を囲む円に沿った埋込グラウンド配線17とを有する。 The transmission line according to the present embodiment is a transmission line used for a micro relay as an example of a MEMS structure, and includes a base 20 having an upper surface and a lower surface, and a signal wiring 10 disposed on the upper surface and transmitting a high frequency. And an upper surface ground electrode 16 disposed on the upper surface and electrically insulated from the signal wiring 10, and a through wiring 12 penetrating from the upper surface to the lower surface of the base 20 and electrically connected to the signal wiring 10. And a bottom ground electrode 14 disposed on the bottom surface and electrically insulated from the through wiring 12, and a buried ground wiring 17 embedded in the base 20 and extending along a circle surrounding the through wiring 12. .
 図7(b)に示すように、ベース20の下面上には、外部端子13が配置されている。外部端子13は、図7(a)の貫通配線12に対応する位置に配置されている。また、下面グラウンド電極14は、ベース20の裏面において、外部端子13の周りを囲むように配置され、下面グラウンド電極14と外部端子13との間には所定の隙間が形成されている。所定の隙間にはベース20が表出している。外部端子13は、下面グラウンド電極14から電気的に絶縁されている。 As shown in FIG. 7B, external terminals 13 are disposed on the lower surface of the base 20. The external terminal 13 is disposed at a position corresponding to the through wiring 12 in FIG. Further, the lower surface ground electrode 14 is disposed on the back surface of the base 20 so as to surround the external terminal 13, and a predetermined gap is formed between the lower surface ground electrode 14 and the external terminal 13. The base 20 is exposed in the predetermined gap. The external terminal 13 is electrically insulated from the lower surface ground electrode 14.
 本実施形態において、埋込グラウンド配線17は、上面グラウンド電極16及び下面グラウンド電極14の両方に電気的に接続されている。埋込グラウンド配線17は、ベース20の上面から下面までを貫通し、且つ貫通配線12の周囲のうち、信号配線10を除いた部分に、円弧状且つ連続して配置されている。換言すれば、埋込グラウンド配線17は、貫通配線12を中心とする1つの円弧上に配置され、アルファベットの「C」に近似した平面形状を有する。信号配線10の部分を除く理由は、ベース20の表面から裏面までを貫通する埋込グラウンド配線17を信号配線10が配置された部分に配置してしまうと、ベース20の表面において、埋込グラウンド配線17は信号配線10と接触してしまうからである。 In the present embodiment, the buried ground wiring 17 is electrically connected to both the upper surface ground electrode 16 and the lower surface ground electrode 14. The embedded ground wiring 17 penetrates from the upper surface to the lower surface of the base 20, and is continuously arranged in an arc shape around the through wiring 12 except for the signal wiring 10. In other words, the embedded ground wiring 17 is arranged on one arc centering on the through wiring 12 and has a planar shape that approximates the alphabet “C”. The reason for excluding the portion of the signal wiring 10 is that if the embedded ground wiring 17 penetrating from the front surface to the back surface of the base 20 is disposed in the portion where the signal wiring 10 is disposed, the embedded ground is formed on the surface of the base 20. This is because the wiring 17 comes into contact with the signal wiring 10.
 貫通配線12の直径、及び貫通配線12と埋込グラウンド配線17との距離を調整することにより、伝送線路の特性インピーダンスを任意に設計することができる。 By adjusting the diameter of the through wiring 12 and the distance between the through wiring 12 and the embedded ground wiring 17, the characteristic impedance of the transmission line can be arbitrarily designed.
 その他の構成は、図3及び図4に示した構成と同じであり、説明を省略する。 Other configurations are the same as those shown in FIG. 3 and FIG.
 以上説明したように、本実施形態によれば、埋込グラウンド配線17が貫通配線12の周囲を円弧状且つ連続して取り囲むことにより、擬似的な同軸構造が強まり、インピーダンスを一定にすることができる。 As described above, according to the present embodiment, the embedded ground wiring 17 surrounds the periphery of the through wiring 12 in an arc shape and continuously, so that the pseudo coaxial structure is strengthened and the impedance can be made constant. it can.
 実施形態1-1及び1-2では、複数の埋込グラウンド配線15を貫通配線12の周囲に円弧状に配列したため、埋込グラウンド配線15同士の間隔を所定値以下まで調整する必要があった。これに対して、実施形態1-3では、複数の埋込グラウンド配線15の替わりに連続する1つの埋込グラウンド配線17を貫通配線12の周囲に配置したため、埋込グラウンド配線同士の間隔が信号配線10を伝送する高周波の波長の1/4となる時に発生する共振現象、及びこれによるリップルの発生を防止することができる。すなわち、埋込グラウンド配線同士の間隔という概念がなくなり、高周波の波長λの1/4を考慮しなくてもよく、伝送線路の設計が容易となる。 In the embodiments 1-1 and 1-2, since the plurality of embedded ground wirings 15 are arranged in an arc around the through wiring 12, it is necessary to adjust the interval between the embedded ground wirings 15 to a predetermined value or less. . On the other hand, in Embodiment 1-3, instead of the plurality of embedded ground wirings 15, one continuous embedded ground wiring 17 is arranged around the through wiring 12. It is possible to prevent a resonance phenomenon that occurs when the wavelength of the high-frequency wave transmitted through the wiring 10 is ¼, and the occurrence of ripples. That is, the concept of the interval between the embedded ground wirings is eliminated, and it is not necessary to consider 1/4 of the wavelength λ of the high frequency, and the transmission line can be easily designed.
 (実施形態1-4)
 図8(a)は、図2の点線G1で囲んだ部分に適用される、本発明の実施形態1-1の変形例に関わる伝送線路の構成を示す上面図であり、図8(b)は、その底面図である。例えば、図8(a)及び図8(b)に示すように、本発明の実施形態1-1の変形例として、複数の埋込グラウンド配線15a~15g、15h、15jを、信号配線10に重なる部分を含めて貫通配線12の周囲に円状且つ等間隔に配置してもよい。
Embodiment 1-4
FIG. 8A is a top view showing the configuration of the transmission line according to the modification of the embodiment 1-1 of the present invention applied to the portion surrounded by the dotted line G1 in FIG. Is a bottom view thereof. For example, as shown in FIGS. 8A and 8B, as a modification of the embodiment 1-1 of the present invention, a plurality of embedded ground wirings 15a to 15g, 15h, and 15j are connected to the signal wiring 10. You may arrange | position circularly and equidistantly around the penetration wiring 12 including an overlapping part.
 すなわち、本変形例において、ベース20は、図3(a)及び図3(b)に示す複数の埋込グラウンド配線15a~15gに加えて、さらに埋込グラウンド配線15h,15jを有する。この埋込グラウンド配線15h,15jは、それぞれ第2シールドを構成する。埋込グラウンド配線15a~15g,15h,15jは、貫通配線12の周囲を囲む円に沿うように、ベース20に配置されている。これにより、埋込グラウンド配線同士の間隔が信号配線10を伝送する高周波の波長の1/4となる時に発生する共振現象を抑制する効果が増加する。また、貫通配線12を円弧状に囲む範囲が広がり、擬似的な同軸構造が強まり、インピーダンスを一定にすることができる。 That is, in this modification, the base 20 has embedded ground wirings 15h and 15j in addition to the plurality of embedded ground wirings 15a to 15g shown in FIGS. 3 (a) and 3 (b). Each of the buried ground lines 15h and 15j constitutes a second shield. The buried ground wirings 15a to 15g, 15h, and 15j are arranged on the base 20 along a circle surrounding the periphery of the through wiring 12. As a result, the effect of suppressing the resonance phenomenon that occurs when the interval between the embedded ground wirings becomes ¼ of the wavelength of the high frequency transmitted through the signal wiring 10 is increased. Further, the range surrounding the through wiring 12 in an arc shape is widened, the pseudo coaxial structure is strengthened, and the impedance can be made constant.
 図8(c)は、図8(a)におけるCD線に沿った断面図である。図8(c)に示すように、埋込グラウンド配線15a~15gはベース20の上面から下面までを貫通して上面グラウンド電極16及び下面グラウンド電極14に接触している。また、ベース20は、埋込グラウンド配線15h,15jをさらに有しており、これらはベース20の厚み方向に置いて信号配線10と重複する。そして、信号配線10と上面グラウンド電極16との間にベース20が介在している。これにより、埋込グラウンド配線と信号配線10とを電気的に絶縁することができる。なお、埋込グラウンド配線15h、15jの下端は、ベース20の下面において下面グラウンド電極14に接触している。これにより、埋込グラウンド配線15h、15jは、グラウンド(アース)される。 FIG. 8C is a cross-sectional view taken along the CD line in FIG. As shown in FIG. 8C, the embedded ground wirings 15 a to 15 g penetrate from the upper surface to the lower surface of the base 20 and are in contact with the upper surface ground electrode 16 and the lower surface ground electrode 14. The base 20 further has embedded ground wirings 15 h and 15 j, which overlap with the signal wiring 10 in the thickness direction of the base 20. A base 20 is interposed between the signal wiring 10 and the upper surface ground electrode 16. Thereby, the buried ground wiring and the signal wiring 10 can be electrically insulated. Note that the lower ends of the embedded ground wires 15 h and 15 j are in contact with the lower surface ground electrode 14 on the lower surface of the base 20. Thereby, the embedded ground wirings 15h and 15j are grounded.
 埋込グラウンド配線15h、15jと信号配線10との距離を調整することにより、伝送線路の特性インピーダンスを任意に設計することができる。例えば、エッチング選択性を有する2以上の異なる材料からなる積層構造を有するベース20を用意し、エッチング選択性を利用すれば、埋込グラウンド配線15h、15jの埋め込み深さ、すなわち埋込グラウンド配線15h、15jと信号配線10との距離を容易に一定にすることができる。さらに、ベース20の各層の厚さを調整することにより、伝送線路の特性インピーダンスを任意に設計することができる。 By adjusting the distance between the embedded ground wirings 15h and 15j and the signal wiring 10, the characteristic impedance of the transmission line can be arbitrarily designed. For example, if the base 20 having a laminated structure made of two or more different materials having etching selectivity is prepared and the etching selectivity is used, the embedding depth of the embedded ground wirings 15h and 15j, that is, the embedded ground wiring 15h. , 15j and the signal wiring 10 can be easily made constant. Furthermore, by adjusting the thickness of each layer of the base 20, the characteristic impedance of the transmission line can be arbitrarily designed.
 更に、図5及び図6に示した伝送線路に対しても、同様にして適用することができる。すなわち、ベース20は、さらに第3シールドを備える。この第3シールドは、ベースの厚み方向に置いて、取り出し配線と重複する。第3シールドの下端とベース20の下面との間にはベース20が介在しており、これにより第3シールドは取り出し配線と電気的に絶縁されている。第3シールドの上端は、ベース20の上面に至っており、これにより、前記第3シールドは、上面グラウンド電極と電気的に接続される。 Furthermore, the present invention can be similarly applied to the transmission lines shown in FIGS. That is, the base 20 further includes a third shield. The third shield is placed in the thickness direction of the base and overlaps with the extraction wiring. The base 20 is interposed between the lower end of the third shield and the lower surface of the base 20, whereby the third shield is electrically insulated from the extraction wiring. The upper end of the third shield reaches the upper surface of the base 20, whereby the third shield is electrically connected to the upper surface ground electrode.
 また、実施形態1-1~1-3では、誘電体基板の一例としてベース20について説明したが、誘電体基板は、単結晶シリコンからなるシリコン基板や、低温同時焼成セラミックス基板(LTCC基板)であっても構わない。それぞれの基板の利点を述べる。先ず、シリコン基板の場合は、フォトリソグラフィ技術及びエッチング技術といった半導体微細加工技術を利用することができるから、ベース20を用いる場合に比べて、ベース20の加工を容易に行うことができる。特に、機能部30は、シリコンを用いて形成されているから、機能部30とベース20との線膨張係数をおおよそ等しくすることができる。そのため、線膨張係数の差に起因する応力を低減することができる。なお、シリコン基板としては、高抵抗のシリコンを用いることが望ましい。この場合には、高周波特性(特にスローウェーブモードでの高周波特性)を向上させることができる。 In Embodiments 1-1 to 1-3, the base 20 has been described as an example of a dielectric substrate. However, the dielectric substrate is a silicon substrate made of single crystal silicon or a low-temperature co-fired ceramic substrate (LTCC substrate). It does not matter. The advantages of each substrate are described. First, in the case of a silicon substrate, a semiconductor microfabrication technique such as a photolithography technique and an etching technique can be used. Therefore, the base 20 can be easily processed as compared with the case where the base 20 is used. In particular, since the functional unit 30 is formed using silicon, the linear expansion coefficients of the functional unit 30 and the base 20 can be made approximately equal. Therefore, the stress resulting from the difference in linear expansion coefficient can be reduced. As the silicon substrate, it is desirable to use high resistance silicon. In this case, high frequency characteristics (particularly, high frequency characteristics in the slow wave mode) can be improved.
 誘電体基板がベース20である場合、比較的誘電率が低い物質であるガラスを用いることで高周波特性を向上させることができる。 When the dielectric substrate is the base 20, the high frequency characteristics can be improved by using glass which is a substance having a relatively low dielectric constant.
 低温同時焼成セラミックス基板は、ベース20に比べて、直径が一様な円形状の貫通孔や内部配線(グラウンド層)を容易に形成することができる。貫通孔の直径が一様である場合には、貫通孔の直径が一様でない場合(例えば、孔の深さに従って径が変化する場合)に比べて、高周波特性が向上する。また、基板内部にグラウンド層を設けることにより、インピーダンスを調整することができ、インピーダンスの設計が容易になる。よって、ガラス基板に比べて、高周波の伝送特性を向上させることができる。 The low-temperature co-fired ceramic substrate can easily form circular through-holes and internal wiring (ground layer) having a uniform diameter as compared with the base 20. When the diameter of the through hole is uniform, the high frequency characteristics are improved as compared with the case where the diameter of the through hole is not uniform (for example, when the diameter changes according to the depth of the hole). Further, by providing a ground layer inside the substrate, the impedance can be adjusted, and the impedance design becomes easy. Therefore, high-frequency transmission characteristics can be improved compared to a glass substrate.
 また、本発明の実施形態1-1~1-3では、MEMS構造体の一例として、マイクロリレーについて説明したが、これに限らず、高周波の電気信号を取り扱う、高周波スイッチ、共振器、フィルタ、発振器なども含まれる。 In Embodiments 1-1 to 1-3 of the present invention, a micro relay has been described as an example of a MEMS structure. However, the present invention is not limited to this, and a high frequency switch, a resonator, a filter, An oscillator is also included.
 (実施形態2-1)
 本実施形態では、ベース20の上面に形成される信号配線を囲むシールドの構造について説明する。本実施形態の配線構造は、例えば、図9(a)~(d)に示すように、ベース20と、機能部30と、カバー40とを備えるMEMSデバイスに適用される。なお、図9~図21では、本実施形態の配線構造の要点を簡単に説明するために、MEMSデバイスの構造を簡略化して図示している。すなわち、図9~図21に記載のベース20、機能部30、カバー40などは、図2のG1の点線で囲まれた部分に適用される。そして、第2の縁332は、マイクロリレーにおいては、一対の規制突起330によって定義される。しかしながら、図9~図21においては、一対の規制突起330を一体として記載しており、これにより第2の縁332を表している。
Embodiment 2-1
In the present embodiment, a shield structure surrounding a signal wiring formed on the upper surface of the base 20 will be described. The wiring structure of the present embodiment is applied to a MEMS device including a base 20, a functional unit 30, and a cover 40, for example, as shown in FIGS. 9 (a) to 9 (d). 9 to 21, the structure of the MEMS device is shown in a simplified manner in order to briefly explain the main points of the wiring structure of the present embodiment. That is, the base 20, the functional unit 30, the cover 40, and the like described in FIGS. 9 to 21 are applied to a portion surrounded by a dotted line G1 in FIG. The second edge 332 is defined by a pair of restricting protrusions 330 in the micro relay. However, in FIGS. 9 to 21, the pair of restricting protrusions 330 are described as a single unit, and thereby represent the second edge 332.
 ベース20は、基板(本実施形態では、ガラス基板)よりなる。ベース20の上面には、信号配線10が形成される。なお、ベース20は、ガラス基板などの絶縁性基板ではなく、シリコン基板より形成されていてもよい。特に、機能部30はシリコンを用いて形成されるから、機能部30とベース20との線膨張係数をおおよそ等しくできる。そのため、線膨張係数の差に起因する応力を低減できる。また、シリコン基板としては、高抵抗のシリコンを用いた高抵抗シリコン基板を用いることが好ましい。この場合には、高周波特性(特にスローウェーブモードでの高周波特性)を向上できる。 The base 20 is made of a substrate (in this embodiment, a glass substrate). A signal wiring 10 is formed on the upper surface of the base 20. Note that the base 20 may be formed of a silicon substrate instead of an insulating substrate such as a glass substrate. In particular, since the functional unit 30 is formed using silicon, the linear expansion coefficients of the functional unit 30 and the base 20 can be approximately equal. Therefore, the stress resulting from the difference in linear expansion coefficient can be reduced. As the silicon substrate, it is preferable to use a high resistance silicon substrate using high resistance silicon. In this case, the high frequency characteristics (particularly, the high frequency characteristics in the slow wave mode) can be improved.
 信号配線10は、図9(a)に示すように、直線状に形成される。 The signal wiring 10 is formed in a straight line as shown in FIG.
 ベース20の下面には、一対の外部端子13が形成される。また、ベース20には、ベース20を厚み方向に貫通する一対の貫通孔22が形成される。なお、ベース20は、ガラス基板であるから、貫通孔22は、ベース20の下面からブラスト加工(例えば、サンドブラスト加工)することにより形成される。貫通孔22の内側には、信号配線10の長手方向の各端部を外部端子13に電気的に接続する貫通配線12が形成される。よって、一対の外部端子13は、信号配線10によって相互に電気的に接続される。 A pair of external terminals 13 are formed on the lower surface of the base 20. Further, the base 20 is formed with a pair of through holes 22 that penetrates the base 20 in the thickness direction. Since the base 20 is a glass substrate, the through hole 22 is formed by blasting (for example, sand blasting) from the lower surface of the base 20. Inside the through hole 22, the through wiring 12 that electrically connects each end of the signal wiring 10 in the longitudinal direction to the external terminal 13 is formed. Accordingly, the pair of external terminals 13 are electrically connected to each other by the signal wiring 10.
 また、ベース20は、第1孔部24と第2孔部25とを備える。各第1孔部24及び第2孔部25は、ベース20を厚み方向に貫通する。第1孔部24は、信号配線10の左側に位置する。第2孔部25は、信号配線10の右側に位置する。このように、第1孔部24および第2孔部25は、信号配線10の左側及び右側のそれぞれに隣接するように設けられる。言い換えると、信号配線10は、第1孔部24と第2孔部25との間に位置する。ここで、各孔部24,25と信号配線10との距離は、信号配線10を通る高周波信号の伝送ロスを後述する接地線路によって十分に低減できるような距離に設定される。 The base 20 includes a first hole 24 and a second hole 25. Each first hole 24 and second hole 25 penetrates the base 20 in the thickness direction. The first hole 24 is located on the left side of the signal wiring 10. The second hole 25 is located on the right side of the signal wiring 10. As described above, the first hole 24 and the second hole 25 are provided adjacent to the left and right sides of the signal wiring 10. In other words, the signal wiring 10 is located between the first hole 24 and the second hole 25. Here, the distance between each of the holes 24 and 25 and the signal wiring 10 is set to such a distance that a transmission loss of a high-frequency signal passing through the signal wiring 10 can be sufficiently reduced by a ground line described later.
 本実施形態において、各第1孔部24及び第2孔部25は、信号配線10に並行するように形成されるスリットである。第1孔部24及び第2孔部25は、それぞれ信号配線10の長さ方向に沿った長さを有している。第1孔部24及び第2孔部25は、信号配線10に沿って形成されている。第1孔部24及び第2孔部25は、前記信号配線10の幅方向に沿った幅を有する。各第1孔部24及び第2孔部25の幅は、ベース20の上面から下面に向かうにつれて広くなっている。すなわち、各第1孔部24及び第2孔部25は、ベース20の下面における幅がベース20の上面における上記幅も大きくなる形に形成される。各第1孔部24及び第2孔部25の内側面とベース20の上面とが作る角度は、例えば75度、好適には45度である。各孔部24,25は、ベース20の下面からベース20をブラスト加工(例えば、サンドブラスト加工)することで形成できる。なお、各第1孔部24及び第2孔部25は、ブラスト加工以外の周知の技術を利用して形成してもよい。 In the present embodiment, each of the first hole 24 and the second hole 25 is a slit formed in parallel with the signal wiring 10. The first hole portion 24 and the second hole portion 25 each have a length along the length direction of the signal wiring 10. The first hole 24 and the second hole 25 are formed along the signal wiring 10. The first hole portion 24 and the second hole portion 25 have a width along the width direction of the signal wiring 10. The widths of the first holes 24 and the second holes 25 become wider from the upper surface of the base 20 toward the lower surface. That is, each of the first hole 24 and the second hole 25 is formed so that the width on the lower surface of the base 20 is larger than the width on the upper surface of the base 20. The angle formed between the inner surface of each first hole 24 and second hole 25 and the upper surface of the base 20 is, for example, 75 degrees, and preferably 45 degrees. The holes 24 and 25 can be formed by blasting the base 20 from the lower surface of the base 20 (for example, sand blasting). In addition, you may form each 1st hole 24 and the 2nd hole 25 using well-known techniques other than blasting.
 機能部30は、半導体微細加工技術を利用して加工された半導体基板(例えばシリコン基板)よりなる。機能部30は、接合用の金属層80を用いてベース20の上面に設けられる(取り付けられる)。また、機能部30には、信号配線10全体をカバー40側に臨ませる矩形状の第1の開口31が形成される。このように、機能部30は、ベース20の上面に設けられる。これにより、信号配線10は、第1の開口31に位置する。 The functional unit 30 is made of a semiconductor substrate (for example, a silicon substrate) processed using a semiconductor microfabrication technique. The functional unit 30 is provided (attached) on the upper surface of the base 20 using a metal layer 80 for bonding. In addition, a rectangular first opening 31 is formed in the functional unit 30 so that the entire signal wiring 10 faces the cover 40 side. As described above, the functional unit 30 is provided on the upper surface of the base 20. As a result, the signal wiring 10 is located in the first opening 31.
 カバー40は、絶縁性材料(例えばガラス)よりなる。カバー40は、機能部30の上に設けられる。つまり、カバー40は、ベース20とで機能部30を挟むようにベース20に載置される。カバー40は、機能部30の第1の開口31を閉塞できる大きさの板状に形成される。このように、カバー40は、機能部30の上に設けられる。また、カバー40は、第1の開口31を介して信号配線10と対向する。 The cover 40 is made of an insulating material (for example, glass). The cover 40 is provided on the functional unit 30. That is, the cover 40 is placed on the base 20 so as to sandwich the functional unit 30 with the base 20. The cover 40 is formed in a plate shape having a size capable of closing the first opening 31 of the functional unit 30. Thus, the cover 40 is provided on the functional unit 30. Further, the cover 40 faces the signal wiring 10 through the first opening 31.
 本実施形態の配線構造は、ベース20と、ベース20の上面に形成された信号配線10と、ベース20を厚み方向に貫通した第1孔部24および第2孔部25と、信号配線10から電気的に絶縁された接地線路11とを備える。信号配線10は、第1孔部24と第2孔部25との間に位置する。 The wiring structure of the present embodiment includes a base 20, a signal wiring 10 formed on the upper surface of the base 20, a first hole portion 24 and a second hole portion 25 penetrating the base 20 in the thickness direction, and the signal wiring 10. And an electrically insulated ground line 11. The signal wiring 10 is located between the first hole 24 and the second hole 25.
 接地線路11は、信号配線10の周囲に形成される。本実施形態における接地線路11は、信号配線10の長さ方向に交差する面内において信号配線10を囲う形に形成される。より詳しく説明すると、本実施形態の接地線路11は、信号配線10の長さ方向に直交する面内において信号配線10を囲む形に形成される。 The ground line 11 is formed around the signal wiring 10. The ground line 11 in this embodiment is formed in a shape surrounding the signal line 10 in a plane intersecting the length direction of the signal line 10. More specifically, the ground line 11 of the present embodiment is formed to surround the signal wiring 10 in a plane orthogonal to the length direction of the signal wiring 10.
 接地線路11は、ベース20と機能部30とカバー40とのそれぞれに設けられる導電体で構成される。ベース20には、第1導電体110と第2導電体111と第3導電体112と第4導電体113と第5導電体114とを備える。この第1導電体110と第2導電体111と第3導電体112と第4導電体113と第5導電体114とは、互いに協働して第4シールドを定義する。この第4シールドはベース20に設けられているため、第4シールドは、信号配線10の下方を覆っている。機能部30は、第6導電体115と第7導電体116とを備える。第6導電体115と第7導電体116とは、互いに協働して第5シールドを定義する。カバー40は、第8導電体117を備える。この第8導電体117は、第6シールドを定義する。したがって、第1導電体110から第8導電体117は、接地線路を構成する。 The ground line 11 is made of a conductor provided on each of the base 20, the functional unit 30, and the cover 40. The base 20 includes a first conductor 110, a second conductor 111, a third conductor 112, a fourth conductor 113, and a fifth conductor 114. The first conductor 110, the second conductor 111, the third conductor 112, the fourth conductor 113, and the fifth conductor 114 cooperate with each other to define a fourth shield. Since the fourth shield is provided on the base 20, the fourth shield covers the lower side of the signal wiring 10. The functional unit 30 includes a sixth conductor 115 and a seventh conductor 116. The sixth conductor 115 and the seventh conductor 116 cooperate with each other to define the fifth shield. The cover 40 includes an eighth conductor 117. The eighth conductor 117 defines a sixth shield. Accordingly, the first conductor 110 to the eighth conductor 117 constitute a ground line.
 第1導電体110は、ベース20の第1孔部24の内側に形成される。 The first conductor 110 is formed inside the first hole 24 of the base 20.
 第2導電体111は、ベース20の第2孔部25の内側に形成される。 The second conductor 111 is formed inside the second hole 25 of the base 20.
 第3導電体112は、ベース20の下面に形成される。第3導電体112は、ベース20の下面におけるスリット24,25間、かつ一対の外部端子13間の部位に形成される。したがって、第3導電体112は、ベース20の厚み方向において、前記信号配線10と重複する位置に位置する。第3導電体112は、信号配線10の左側において第1導電体110に直接的に接続される。また、第3導電体112は、信号配線10の右側において第2導電体111と直接的に接続される。第1導電体110と第2導電体111とは、第3導電体112によって相互に電気的に接続される。なお、この第3導電体112は、前記下面グラウンド電極14と電気的に接続されていてもよく、また、電気的に絶縁されていても良い。 The third conductor 112 is formed on the lower surface of the base 20. The third conductor 112 is formed between the slits 24 and 25 on the lower surface of the base 20 and between the pair of external terminals 13. Therefore, the third conductor 112 is located at a position overlapping the signal wiring 10 in the thickness direction of the base 20. The third conductor 112 is directly connected to the first conductor 110 on the left side of the signal wiring 10. The third conductor 112 is directly connected to the second conductor 111 on the right side of the signal wiring 10. The first conductor 110 and the second conductor 111 are electrically connected to each other by the third conductor 112. The third conductor 112 may be electrically connected to the lower surface ground electrode 14 or may be electrically insulated.
 第4導電体113は、ベース20における信号配線10の右側に形成される。第4導電体113は、第1孔部24よりベース20の上面に露出する第1導電体110全体を覆う形に形成される。これによって、第4導電体113は、第1導電体110に直接的に接続される。 The fourth conductor 113 is formed on the right side of the signal wiring 10 in the base 20. The fourth conductor 113 is formed to cover the entire first conductor 110 exposed from the first hole 24 to the upper surface of the base 20. As a result, the fourth conductor 113 is directly connected to the first conductor 110.
 第5導電体114は、ベース20における信号配線10の右側に形成される。第5導電体114は、第2孔部25よりベース20の上面に露出する第2導電体111全体を覆う形に形成される。これによって、第5導電体114は、第2導電体111に直接的に接続される。 The fifth conductor 114 is formed on the right side of the signal wiring 10 in the base 20. The fifth conductor 114 is formed so as to cover the entire second conductor 111 exposed on the upper surface of the base 20 through the second hole 25. As a result, the fifth conductor 114 is directly connected to the second conductor 111.
 ここで、金属層80は、ベース20の上面で信号配線10を囲う形に形成される。本実施形態では、金属層80における信号配線10の左側の部位を第4導電体113として用い、金属層80における信号配線10の右側の部位を第5導電体114として用いる。つまり、第4導電体113と第5導電体114とは、金属層80を用いて形成される。すなわち、前記上面グラウンド電極16は、金属層80として使用することができる。 Here, the metal layer 80 is formed to surround the signal wiring 10 on the upper surface of the base 20. In the present embodiment, the left portion of the signal wiring 10 in the metal layer 80 is used as the fourth conductor 113, and the right portion of the signal wiring 10 in the metal layer 80 is used as the fifth conductor 114. That is, the fourth conductor 113 and the fifth conductor 114 are formed using the metal layer 80. That is, the upper surface ground electrode 16 can be used as the metal layer 80.
 第6導電体115と第7導電体116は、機能部30のフレーム33の内側面に形成される。詳しく説明すると、フレーム33は、伝送線路の長さ方向に沿った第1の縁331と第2の縁332とを有しており、且つ、伝送線路の幅方向に沿った第3の縁333と第4の縁334とを有している。したがって、フレーム33は、伝送線路の長さ方向に沿った第1の内面33Lと第2の内面33Rとを有しており、且つ、伝送線路の幅方向に沿った第3の内面と第4の内面とを有している。 The sixth conductor 115 and the seventh conductor 116 are formed on the inner surface of the frame 33 of the functional unit 30. More specifically, the frame 33 has a first edge 331 and a second edge 332 along the length direction of the transmission line, and a third edge 333 along the width direction of the transmission line. And a fourth edge 334. Accordingly, the frame 33 has the first inner surface 33L and the second inner surface 33R along the length direction of the transmission line, and the third inner surface and the fourth inner surface along the width direction of the transmission line. And the inner surface.
 第6導電体115は、第1の縁331の第1の内面33Lに形成される。第6導電体115は、第4導電体113を介して第1導電体110に電気的に接続される。 The sixth conductor 115 is formed on the first inner surface 33L of the first edge 331. The sixth conductor 115 is electrically connected to the first conductor 110 through the fourth conductor 113.
 第7導電体116は、第2の縁332の第2の内面33Rに形成される。第7導電体116は、第5導電体114を介して第2導電体111に電気的に接続される。 The seventh conductor 116 is formed on the second inner surface 33R of the second edge 332. The seventh conductor 116 is electrically connected to the second conductor 111 through the fifth conductor 114.
 第8導電体117は、カバー40における開口31に臨む下面領域40Uに形成される。詳しく説明すると、カバー40は、第1の開口31を介してベース20と対向する下面領域40Uを有する。第8導電体117は、前記下面領域40Uに形成される。第8導電体117は、第6導電体115および第7導電体116それぞれと直接的に接続される。言い換えれば、第6導電体115は、第1導電体110と第8導電体117とを相互に電気的に接続する。第7導電体116は、第2導電体111と第8導電体117とを相互に電気的に接続する。 The eighth conductor 117 is formed in the lower surface region 40U facing the opening 31 in the cover 40. More specifically, the cover 40 has a lower surface region 40 </ b> U that faces the base 20 through the first opening 31. The eighth conductor 117 is formed in the lower surface region 40U. The eighth conductor 117 is directly connected to each of the sixth conductor 115 and the seventh conductor 116. In other words, the sixth conductor 115 electrically connects the first conductor 110 and the eighth conductor 117 to each other. The seventh conductor 116 electrically connects the second conductor 111 and the eighth conductor 117 to each other.
 なお、信号配線10の長さ方向における第1の開口31の寸法は、信号配線10よりも大きい。また、信号配線10の幅方向における第1の開口31の寸法は、金属層80がない場合に各第1孔部24及び第2孔部25の一部がカバー40側に臨むような大きさである。 Note that the dimension of the first opening 31 in the length direction of the signal wiring 10 is larger than that of the signal wiring 10. Further, the dimension of the first opening 31 in the width direction of the signal wiring 10 is such that each of the first hole 24 and the second hole 25 faces the cover 40 side when the metal layer 80 is not provided. It is.
 接地線路11では、第1導電体110と第2導電体111とが第3導電体112によって相互に電気的に接続される。第4導電体113が第1導電体110に電気的に接続されるとともに、第6導電体115が第4導電体113を介して第1導電体110に電気的に接続される。第5導電体114が第2導電体111に電気的に接続されるとともに、第7導電体116が第5導電体114を介して第2導電体111に電気的に接続される。第6導電体115と第7導電体116とは第8導電体117によって相互に電気的に接続される。 In the ground line 11, the first conductor 110 and the second conductor 111 are electrically connected to each other by the third conductor 112. The fourth conductor 113 is electrically connected to the first conductor 110, and the sixth conductor 115 is electrically connected to the first conductor 110 via the fourth conductor 113. The fifth conductor 114 is electrically connected to the second conductor 111, and the seventh conductor 116 is electrically connected to the second conductor 111 via the fifth conductor 114. The sixth conductor 115 and the seventh conductor 116 are electrically connected to each other by the eighth conductor 117.
 このように接地線路11では、各導電体110~117は相互に電気的に接続される。また、導電体110~117のうちの少なくとも1つは、グラウンド(基準電位点)に接続される。なお、各導電体110~117は、電気めっき法や、スパッタ法など、従来周知の方法により形成できる。 As described above, in the grounding line 11, the conductors 110 to 117 are electrically connected to each other. At least one of the conductors 110 to 117 is connected to the ground (reference potential point). Each of the conductors 110 to 117 can be formed by a conventionally known method such as electroplating or sputtering.
 以上述べたように本実施形態の配線構造は、基板よりなるベース20と、ベース20の上面に形成された信号配線10と、信号配線10の周囲に配置され且つ信号配線10から電気的に絶縁された接地線路11と、信号配線10の左側及び右側のそれぞれに隣接して設けられベース20を厚み方向に貫通した第1孔部24および第2孔部25とを備える。そして、接地線路11は、第1孔部24の内側に形成された第1導電体110と、第2孔部25の内側に形成された第2導電体111と、ベース20の下面に形成され第1導電体110および第2導電体111に電気的に接続された第3導電体112とを有する。また、第1孔部24および第2孔部25は、信号配線10の幅方向に沿った長さが、下面の方が上面よりも大きくなるように形成されている。 As described above, the wiring structure of the present embodiment has the base 20 made of the substrate, the signal wiring 10 formed on the upper surface of the base 20, the periphery of the signal wiring 10, and electrically insulated from the signal wiring 10. And a first hole 24 and a second hole 25 that are provided adjacent to the left and right sides of the signal wiring 10 and penetrate the base 20 in the thickness direction. The ground line 11 is formed on the first conductor 110 formed inside the first hole 24, the second conductor 111 formed inside the second hole 25, and the lower surface of the base 20. A third conductor 112 electrically connected to the first conductor 110 and the second conductor 111. The first hole 24 and the second hole 25 are formed so that the length along the width direction of the signal wiring 10 is larger on the lower surface than on the upper surface.
 本実施形態の配線構造によれば、擬似的な同軸構造が得られるから、高周波信号の伝送ロスを低減できる。また、接地線路11を作製するにあたっては、MEMSデバイスのベース20だけではなく、機能部30とカバー40も利用している。そのため、ベース20のみを利用して接地線路11を作製しようとする場合に比べて、立体的な構造を得るために半導体層や、絶縁層、導電層などの積層体を作製する必要がなくなる。これによって、接地線路11を容易に作製できる。しかも、信号配線10の幅方向に沿った方向における第1孔部24および第2孔部25の長さが均一である場合に比べれば、信号配線10の長さ方向に交差する面内における接地線路11の形状を円環状に近付けることができ、高周波特性を向上できる。 According to the wiring structure of the present embodiment, since a pseudo coaxial structure is obtained, transmission loss of high frequency signals can be reduced. Further, when the ground line 11 is manufactured, not only the base 20 of the MEMS device but also the functional unit 30 and the cover 40 are used. Therefore, it is not necessary to produce a laminated body such as a semiconductor layer, an insulating layer, or a conductive layer in order to obtain a three-dimensional structure, compared to a case where the ground line 11 is produced using only the base 20. Thereby, the ground line 11 can be easily manufactured. Moreover, as compared with the case where the lengths of the first hole 24 and the second hole 25 in the direction along the width direction of the signal wiring 10 are uniform, grounding in a plane intersecting the length direction of the signal wiring 10 is performed. The shape of the line 11 can be brought close to an annular shape, and high frequency characteristics can be improved.
 また、各第1孔部24及び第2孔部25は、信号配線10に並行するように形成されたスリットであるから、信号配線10に出力される高周波信号の波長によらずに、リプルの発生を抑制でき、高周波特性を向上できる。 In addition, since each of the first hole 24 and the second hole 25 is a slit formed so as to be parallel to the signal wiring 10, the ripple of the high frequency signal output to the signal wiring 10 is not affected. Generation can be suppressed and high frequency characteristics can be improved.
 さらに、接地線路11は、第1導電体110に電気的に接続される第4導電体113と、第2導電体111に電気的に接続される第5導電体114とをベース20の上面に備える。そのため、高周波信号の伝送ロスをさらに低減できる。第4導電体113と第5導電体114とは、機能部30をベース20に接合するための金属層80を用いて形成される。そのため、製造コストを削減できる。 Further, the ground line 11 includes a fourth conductor 113 electrically connected to the first conductor 110 and a fifth conductor 114 electrically connected to the second conductor 111 on the upper surface of the base 20. Prepare. Therefore, transmission loss of high frequency signals can be further reduced. The fourth conductor 113 and the fifth conductor 114 are formed using a metal layer 80 for joining the functional unit 30 to the base 20. Therefore, the manufacturing cost can be reduced.
 さらに、接地線路11は、フレーム33の第1の内面33Lに形成されており且つ第1導電体110と電気的に接続された第6導電体115と、フレーム33の第2の内面33Rに形成されており且つ第2導電体111と電気的に接続された第7導電体116と、下面領域40Uに形成されており且つ第6導電体115と第7導電体116と電気的に接続された第8導電体117とを備える。これにより、信号配線10の長さ方向に交差する面内における接地線路11の形状を円環状に近づけることができ、高周波特性を向上できる。 Further, the ground line 11 is formed on the first inner surface 33 </ b> L of the frame 33 and is formed on the second inner surface 33 </ b> R of the frame 33 and the sixth conductor 115 electrically connected to the first conductor 110. And the seventh conductor 116 electrically connected to the second conductor 111 and the seventh conductor 116 formed in the lower surface region 40U and electrically connected to the sixth conductor 115 and the seventh conductor 116. And an eighth conductor 117. Thereby, the shape of the grounding line 11 in the plane intersecting the length direction of the signal wiring 10 can be brought close to an annular shape, and the high frequency characteristics can be improved.
 図10(a)~(d)は、図9の配線構造の変形例を示す。 FIGS. 10A to 10D show modified examples of the wiring structure of FIG.
 図10の配線構造では、機能部30とベース20との接合に金属層80を用いておらず、接地線路11Aは、第4導電体113と第5導電体114とを備えていない。すなわち、接地線路11Aは、第1~第3,第6~第8導電体110~112,115~117を備える。接地線路11Aにおいて、第6導電体115は直接的に第1導電体110に接続され、第7導電体116は直接的に第2導電体111に接続される。 In the wiring structure of FIG. 10, the metal layer 80 is not used for joining the functional unit 30 and the base 20, and the ground line 11 </ b> A does not include the fourth conductor 113 and the fifth conductor 114. That is, the ground line 11A includes first to third, sixth to eighth conductors 110 to 112, 115 to 117. In the ground line 11 </ b> A, the sixth conductor 115 is directly connected to the first conductor 110, and the seventh conductor 116 is directly connected to the second conductor 111.
 図10の配線構造においても、図9の配線構造と同様に、高周波信号の伝送ロスを低減でき、しかも容易に作製できる。なお、図10の配線構造においても、第6~第8導電体115~117を省略してもよい。 10 can reduce the transmission loss of the high-frequency signal as well as the wiring structure of FIG. 9 and can be easily manufactured. In the wiring structure of FIG. 10, the sixth to eighth conductors 115 to 117 may be omitted.
 (実施形態2-2)
 本実施形態の配線構造では、図11(a)~(d)に示すように、接地線路11Bとベース20Bとが実施形態1の配線構造と異なる。なお、本実施形態の配線構造と実施形態1の配線構造とで共通する構成については同一の符号を付して説明を省略する。
Embodiment 2-2
In the wiring structure of the present embodiment, as shown in FIGS. 11A to 11D, the ground line 11B and the base 20B are different from the wiring structure of the first embodiment. In addition, the same code | symbol is attached | subjected about the structure which is common in the wiring structure of this embodiment, and the wiring structure of Embodiment 1, and description is abbreviate | omitted.
 ベース20Bは、各第1孔部24B及び第2孔部25Bが実施形態2-1と異なる。すなわち、ベース20Bは、複数の第1孔部24Bと複数の第2孔部25Bとを有する。各第1孔部24B及び第2孔部25Bは、信号配線10の長さ方向に沿って所定の間隔で複数形成される貫通孔である。図示例では、簡略化のために各孔部24B,25Bを5つだけ図示している。 The base 20B is different from the embodiment 2-1 in each of the first hole 24B and the second hole 25B. That is, the base 20B has a plurality of first holes 24B and a plurality of second holes 25B. Each of the first hole portions 24 </ b> B and the second hole portions 25 </ b> B is a through-hole formed in a plurality at predetermined intervals along the length direction of the signal wiring 10. In the illustrated example, only five holes 24B and 25B are shown for simplification.
 各孔部24B,25Bの幅は、実施形態2-1と同様に、ベース20Bの上面から下面に向かうにつれて広くなっている。例えば、各孔部24B,25Bの内側面がベース20Bの上面と作る傾斜角度は75度、好適には45度である。各孔部24B,25Bは、ベース20Bの下面からベース20Bをブラスト加工(例えば、サンドブラスト加工)することで形成できる。 The width of each hole 24B, 25B becomes wider from the upper surface to the lower surface of the base 20B as in the case of the embodiment 2-1. For example, the inclination angle formed by the inner surface of each hole 24B, 25B with the upper surface of the base 20B is 75 degrees, preferably 45 degrees. Each of the holes 24B and 25B can be formed by blasting (for example, sand blasting) the base 20B from the lower surface of the base 20B.
 接地線路11Bは、複数の第1導電体110Bと複数の第2導電体111Bと第3導電体112Bと第6導電体115と第7導電体116と第8導電体117とを備える。なお、接地線路11Bは、さらに第4導電体113と第5導電体114とを備えていても良い。また、接地線路11Bは、第1導電体110Bと第2導電体111Bと第3導電体112Bとだけを備えていても良い。 The ground line 11B includes a plurality of first conductors 110B, a plurality of second conductors 111B, a third conductor 112B, a sixth conductor 115, a seventh conductor 116, and an eighth conductor 117. The ground line 11B may further include a fourth conductor 113 and a fifth conductor 114. The ground line 11B may include only the first conductor 110B, the second conductor 111B, and the third conductor 112B.
 各第1導電体110Bは、各第1孔部24B内に形成される貫通孔配線である。各第2導電体111Bは、各第2孔部25B内に形成される貫通孔配線である。これら導電体110B,111Bは、電気めっき法や、スパッタ法など、従来周知の方法により形成できる。 Each first conductor 110B is a through-hole wiring formed in each first hole 24B. Each second conductor 111B is a through-hole wiring formed in each second hole 25B. These conductors 110B and 111B can be formed by a conventionally known method such as electroplating or sputtering.
 第3導電体112Bは、ベース20Bの上面に形成される。第3導電体112Bは、信号配線10の左側において複数の第1導電体110Bそれぞれに直接的に接続される。また、第3導電体112Bは、信号配線10の右側において複数の第2導電体111Bそれぞれと直接的に接続される。全ての第1導電体110Bと全ての第2導電体111Bとは、第3導電体112Bによって相互に電気的に接続される。 The third conductor 112B is formed on the upper surface of the base 20B. The third conductor 112B is directly connected to each of the plurality of first conductors 110B on the left side of the signal wiring 10. The third conductor 112B is directly connected to each of the plurality of second conductors 111B on the right side of the signal wiring 10. All the first conductors 110B and all the second conductors 111B are electrically connected to each other by the third conductor 112B.
 このような接地線路11Bは、上述の所定の間隔の4倍以上の波長を有する高周波信号に対して、リプルの発生を抑制できる。 Such a ground line 11B can suppress the occurrence of ripple with respect to a high-frequency signal having a wavelength that is four times or more the above-mentioned predetermined interval.
 したがって、上述の所定の間隔、すなわち、隣接する孔(各孔部24B,25B)の中心間の距離は、信号配線10に出力される高周波信号(つまり、使用が想定される高周波信号)のうち周波数が最も高い高周波信号の波長の1/4未満の値に設定される。例えば、信号配線10に通したい高周波信号の周波数の最大値(上限周波数)が40GHzである場合には、40GHzでのリプルの発生を効率的に抑制するために、少し高めの周波数50GHzの波長をもとにして上記所定の間隔を設計する。すなわち、上記所定の間隔は、周波数50GHzの波長の1/4未満になるように設計すればよい。以下に、1/4未満の間隔をより具体的に説明する。信号配線10を流れる第1信号が40GHzである場合、第1信号の波長の1/4は1.875mmに相当する。従って、埋め込みグラウンド配線15a~15g同士の間隔を、1.5mm以下とすることが好ましい。 Therefore, the above-mentioned predetermined interval, that is, the distance between the centers of the adjacent holes ( respective holes 24B and 25B) is the high-frequency signal output to the signal wiring 10 (that is, the high-frequency signal assumed to be used). The frequency is set to a value less than 1/4 of the wavelength of the highest frequency signal. For example, when the maximum value (upper limit frequency) of the frequency of the high-frequency signal to be passed through the signal wiring 10 is 40 GHz, in order to efficiently suppress the occurrence of ripple at 40 GHz, a slightly higher frequency of 50 GHz is used. Based on the above, the predetermined interval is designed. That is, the predetermined interval may be designed to be less than ¼ of the wavelength of 50 GHz. Hereinafter, the interval less than ¼ will be described more specifically. When the first signal flowing through the signal wiring 10 is 40 GHz, ¼ of the wavelength of the first signal corresponds to 1.875 mm. Therefore, it is preferable that the interval between the buried ground wirings 15a to 15g is 1.5 mm or less.
 以上述べた本実施形態の配線構造によれば、実施形態2-1と同様に、高周波信号の伝送ロスを低減できる。 According to the wiring structure of the present embodiment described above, the transmission loss of high-frequency signals can be reduced as in the case of Embodiment 2-1.
 特に、各第1孔部24B及び第2孔部25Bは、信号配線10の長さ方向に沿って所定の間隔で複数形成され、所定の間隔は、信号配線10に出力される高周波信号の波長の1/4未満である。そのため、信号配線10に出力される高周波信号に対する高周波特性を向上できる。 In particular, each of the first hole portions 24B and the second hole portions 25B is formed at a predetermined interval along the length direction of the signal wiring 10, and the predetermined interval is the wavelength of the high-frequency signal output to the signal wiring 10. Is less than ¼. Therefore, it is possible to improve the high frequency characteristics for the high frequency signal output to the signal wiring 10.
 また、実施形態2-1と同様に、各第1孔部24B及び第2孔部25Bは、ベース20の上面から下面に向かうにつれて幅が広くなる形に形成される。そのため、高周波特性を向上できる。 Similarly to the embodiment 2-1, each of the first hole 24B and the second hole 25B is formed so as to increase in width from the upper surface of the base 20 toward the lower surface. Therefore, high frequency characteristics can be improved.
 (実施形態2-3)
 本実施形態の配線構造では、図12(a)~(d)に示すように、接地線路11Cと機能部30Cとが実施形態2-1の配線構造と異なる。なお、本実施形態の配線構造と実施形態2-1とで共通する構成については、同じ符号を付して説明を省略する。
(Embodiment 2-3)
In the wiring structure of the present embodiment, as shown in FIGS. 12A to 12D, the ground line 11C and the functional unit 30C are different from the wiring structure of the embodiment 2-1. In addition, about the structure which is common in the wiring structure of this embodiment and Embodiment 2-1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 機能部30Cは、機能部30Cを厚み方向に貫通する第1接続孔37(以下、必要に応じて符号371で表す)と第2接続孔37(以下、必要に応じて符号372で表す)とを有する。第1接続孔371は、フレーム33の第1の縁331に複数形成される。複数の第1接続孔371は、信号配線10の長さ方向に沿って等間隔で並ぶ。第2接続孔372は、フレーム33の第2の縁332に複数形成される。複数の第2接続孔372は、信号配線10の長さ方向に沿って等間隔で並ぶ。つまり、機能部30Cの第1の開口31周辺には、各接続孔371,372が信号配線10の長さ方向に沿って複数形成される。 The functional part 30C includes a first connection hole 37 (hereinafter, denoted by reference numeral 371 as necessary) and a second connection hole 37 (hereinafter, denoted by reference numeral 372 as necessary) penetrating the functional part 30C in the thickness direction. Have A plurality of first connection holes 371 are formed on the first edge 331 of the frame 33. The plurality of first connection holes 371 are arranged at equal intervals along the length direction of the signal wiring 10. A plurality of second connection holes 372 are formed on the second edge 332 of the frame 33. The plurality of second connection holes 372 are arranged at equal intervals along the length direction of the signal wiring 10. That is, a plurality of connection holes 371 and 372 are formed around the first opening 31 of the functional unit 30 </ b> C along the length direction of the signal wiring 10.
 接地線路11Cは、第1導電体110と、第2導電体111と、第3導電体112と、第6導電体115Cと、第7導電体116Cと、第8導電体117とを備える。なお、接地線路11Cは、さらに第4導電体113と第5導電体114とを備えていても良い。 The ground line 11 </ b> C includes a first conductor 110, a second conductor 111, a third conductor 112, a sixth conductor 115 </ b> C, a seventh conductor 116 </ b> C, and an eighth conductor 117. The ground line 11C may further include a fourth conductor 113 and a fifth conductor 114.
 第6導電体115Cは各第1接続孔371の内側に形成され、第7導電体116は各第2接続孔372の内側に形成される。なお、第8導電体117は、信号配線10の幅方向に沿った方向における両端部それぞれが第1導電体110および第2導電体111それぞれと厚み方向で重なるように形成される。 The sixth conductor 115C is formed inside each first connection hole 371, and the seventh conductor 116 is formed inside each second connection hole 372. The eighth conductor 117 is formed so that both end portions in the direction along the width direction of the signal wiring 10 overlap with the first conductor 110 and the second conductor 111 in the thickness direction.
 各第1接続孔371は、カバー40側の開口から第8導電体117が臨み、ベース20側の開口から第1導電体110が臨む位置に設けられる。また、各第2接続孔372は、カバー40側の開口から第8導電体117が臨み、ベース20側の開口から第2導電体111が臨む位置に設けられる。よって、第1導電体110と第8導電体117とが第6導電体115によって電気的に接続され、第2導電体111と第8導電体117とが第7導電体116によって電気的に接続される。 Each first connection hole 371 is provided at a position where the eighth conductor 117 faces the opening on the cover 40 side and the first conductor 110 faces the opening on the base 20 side. Each second connection hole 372 is provided at a position where the eighth conductor 117 faces the opening on the cover 40 side and the second conductor 111 faces the opening on the base 20 side. Therefore, the first conductor 110 and the eighth conductor 117 are electrically connected by the sixth conductor 115, and the second conductor 111 and the eighth conductor 117 are electrically connected by the seventh conductor 116. Is done.
 以上述べた本実施形態の配線構造によれば、実施形態2-1の配線構造と同様に、高周波信号の伝送ロスを低減でき、容易に作製できる。 According to the wiring structure of the present embodiment described above, the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the wiring structure of the embodiment 2-1.
 さらに、本実施形態の配線構造では、機能部30Cを厚み方向に貫通する接続孔37が機能部30Cの第1の開口31周辺に信号配線10の長さ方向に沿って複数形成される。そして、接地線路11Cの第6導電体115Cおよび第7導電体116Cは、接続孔37の内側に形成される。そのため、機能部30Cの第1の開口31の内側面に第6導電体115および第7導電体116を形成する場合に比べれば、第6導電体115Cおよび第7導電体116Cを容易に形成できる。なお、各接続孔37の断面は正円形状となっているが、これはあくまでも一例である。また、各接続孔371,372は7つずつ形成されているが、これも一例に過ぎない。 Furthermore, in the wiring structure of the present embodiment, a plurality of connection holes 37 penetrating the functional part 30C in the thickness direction are formed around the first opening 31 of the functional part 30C along the length direction of the signal wiring 10. The sixth conductor 115C and the seventh conductor 116C of the ground line 11C are formed inside the connection hole 37. Therefore, the sixth conductor 115C and the seventh conductor 116C can be easily formed as compared with the case where the sixth conductor 115 and the seventh conductor 116 are formed on the inner surface of the first opening 31 of the functional unit 30C. . In addition, although the cross section of each connection hole 37 is a perfect circle shape, this is an example to the last. In addition, although each of the connection holes 371 and 372 is formed seven by one, this is only an example.
 なお、本実施形態の配線構造の特徴部分は、実施形態2-2にも適用できる。 The characteristic part of the wiring structure of the present embodiment can also be applied to the embodiment 2-2.
 (実施形態2-4)
 図13は、本実施形態の配線構造を示している。図13(a)~(d)に示すように、本実施形態の配線構造では、接地線路11Dと機能部30Dとが実施形態2-1の配線構造と異なる。なお、本実施形態の配線構造と実施形態2-1の配線構造とで共通する構成については、同じ符号を付して説明を省略する。
Embodiment 2-4
FIG. 13 shows the wiring structure of this embodiment. As shown in FIGS. 13A to 13D, in the wiring structure of the present embodiment, the ground line 11D and the functional unit 30D are different from the wiring structure of the embodiment 2-1. In addition, about the structure which is common in the wiring structure of this embodiment, and the wiring structure of Embodiment 2-1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 機能部30Dは、機能部30Dを厚み方向に貫通する接続スリット38を2つ有する。第1接続スリット38(以下、必要に応じて符号381で表す)は、信号配線10の左側に位置する第1の縁331に形成される。第2接続スリット38(以下、必要に応じて符号382で表す)は、信号配線10の右側に位置する第2の縁332に形成される。また、各接続スリット38は、信号配線10の長さ方向に沿って形成される。つまり、機能部30Dの第1の開口31周辺には、接続スリット38が信号配線10の長さ方向に沿って形成される。 The functional unit 30D has two connection slits 38 that penetrate the functional unit 30D in the thickness direction. The first connection slit 38 (hereinafter, denoted by reference numeral 381 as necessary) is formed on the first edge 331 located on the left side of the signal wiring 10. The second connection slit 38 (hereinafter denoted by reference numeral 382 as necessary) is formed at the second edge 332 located on the right side of the signal wiring 10. Each connection slit 38 is formed along the length direction of the signal wiring 10. That is, the connection slit 38 is formed along the length direction of the signal wiring 10 around the first opening 31 of the functional unit 30D.
 接地線路11Dは、第1導電体110と、第2導電体111と、第3導電体112と、第6導電体115Dと、第7導電体116Dと、第8導電体117とを備える。なお、接地線路11Dは、さらに第4導電体113と第5導電体114とを備えていても良い。 The ground line 11D includes a first conductor 110, a second conductor 111, a third conductor 112, a sixth conductor 115D, a seventh conductor 116D, and an eighth conductor 117. The ground line 11D may further include a fourth conductor 113 and a fifth conductor 114.
 第6導電体115Dは、第1接続スリット381の内側に形成され、第7導電体116Dは、第2接続スリット382の側に形成される。なお、第8導電体117は、信号配線10の幅方向に沿った方向における両端部それぞれが、第1導電体110および第2導電体111それぞれと厚み方向で重なる形に形成される。 The sixth conductor 115D is formed inside the first connection slit 381, and the seventh conductor 116D is formed on the second connection slit 382 side. The eighth conductor 117 is formed in such a manner that both end portions in the direction along the width direction of the signal wiring 10 overlap with the first conductor 110 and the second conductor 111 in the thickness direction.
 第1接続スリット381は、カバー40側の開口から第8導電体117が臨み、ベース20側の開口から第1導電体110が臨む位置に設けられる。第2接続スリット382は、カバー40側の開口から第8導電体117が臨み、ベース20側の開口から第2導電体111が臨む位置に設けられる。よって、第1導電体110と第8導電体117とが第6導電体115によって電気的に接続され、第2導電体111と第8導電体117とが第7導電体116によって電気的に接続される。 The first connection slit 381 is provided at a position where the eighth conductor 117 faces the opening on the cover 40 side and the first conductor 110 faces the opening on the base 20 side. The second connection slit 382 is provided at a position where the eighth conductor 117 faces the opening on the cover 40 side and the second conductor 111 faces the opening on the base 20 side. Therefore, the first conductor 110 and the eighth conductor 117 are electrically connected by the sixth conductor 115, and the second conductor 111 and the eighth conductor 117 are electrically connected by the seventh conductor 116. Is done.
 以上述べた本実施形態の配線構造によれば、実施形態2-1の配線構造と同様に、高周波信号の伝送ロスを低減でき、容易に作製できる。 According to the wiring structure of the present embodiment described above, the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the wiring structure of the embodiment 2-1.
 さらに、本実施形態の配線構造では、機能部30Dを厚み方向に貫通する接続スリット38が機能部30Dの第1の開口31周辺に信号配線10の長さ方向に沿って形成される。そして、接地線路11Dの第6導電体115Dおよび第7導電体116Dは、接続スリット38の内側に形成される。そのため、本実施形態の配線構造によれば、機能部30の第1の開口31の内側面に第6導電体115および第7導電体116を形成する場合に比べれば、第6導電体115および第7導電体116を容易に形成できる。また、実施形態2-2の配線構造ように機能部30Cの第1の開口31周辺に接続孔37を形成して、当該接続孔37に第6導電体115Cおよび第7導電体116Cを形成する場合に比べれば、高周波特性を向上できる。 Furthermore, in the wiring structure of the present embodiment, a connection slit 38 that penetrates the functional portion 30D in the thickness direction is formed around the first opening 31 of the functional portion 30D along the length direction of the signal wiring 10. The sixth conductor 115D and the seventh conductor 116D of the ground line 11D are formed inside the connection slit 38. Therefore, according to the wiring structure of the present embodiment, the sixth conductor 115 and the seventh conductor 115 are compared with the case where the sixth conductor 115 and the seventh conductor 116 are formed on the inner surface of the first opening 31 of the functional unit 30. The seventh conductor 116 can be easily formed. Further, as in the wiring structure of the embodiment 2-2, the connection hole 37 is formed around the first opening 31 of the functional unit 30C, and the sixth conductor 115C and the seventh conductor 116C are formed in the connection hole 37. Compared with the case, the high frequency characteristics can be improved.
 なお、本実施形態の配線構造の特徴部分は、実施形態2-2にも適用できる。 The characteristic part of the wiring structure of the present embodiment can also be applied to the embodiment 2-2.
 (実施形態2-5)
 本実施形態の配線構造では、図14(a)~(d)に示すように、接地線路11Eと機能部30Eとが実施形態2-1の配線構造と異なる。なお、本実施形態の配線構造と実施形態2-1の配線構造とで共通する構成については、同じ符号を付して説明を省略する。
Embodiment 2-5
In the wiring structure of the present embodiment, as shown in FIGS. 14A to 14D, the ground line 11E and the functional unit 30E are different from the wiring structure of the embodiment 2-1. In addition, about the structure which is common in the wiring structure of this embodiment and the wiring structure of Embodiment 2-1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 機能部30Eは、第1の開口31の代わりに矩形状の凹部39を備える。凹部39は、機能部30Eの下面に形成される。凹部39は、その幅が、信号配線10の幅よりも大きくなるように形成される。凹部39は、その長さが、信号配線10の長さよりも大きくなるように形成される。凹部39の長さ方向は、信号配線の長さ方向に沿っている。特に、信号配線10の幅は、第1孔部24と第2孔部25の一部が凹部39内に臨むような大きさに設定されている。 The functional unit 30E includes a rectangular recess 39 instead of the first opening 31. The recess 39 is formed on the lower surface of the functional unit 30E. The recess 39 is formed so that its width is larger than the width of the signal wiring 10. The recess 39 is formed such that its length is larger than the length of the signal wiring 10. The length direction of the recess 39 is along the length direction of the signal wiring. In particular, the width of the signal wiring 10 is set such that a part of the first hole 24 and the second hole 25 faces the recess 39.
 接地線路11Eは、ベース20及び機能部30Eのそれぞれに設けられた第4シールドと第5シールドによって構成される。詳しく説明すると、ベース20は、第1導電体110と第2導電体111と第3導電体112と第4導電体113と第5導電体114とを備える。機能部30Eは、第6導電体115Eと第7導電体116Eと第8導電体117Eとを備える。そして、第1導電体110E~第8導電体117Eが、接地線路11Eを構成する。 The ground line 11E is configured by a fourth shield and a fifth shield provided in the base 20 and the functional unit 30E, respectively. More specifically, the base 20 includes a first conductor 110, a second conductor 111, a third conductor 112, a fourth conductor 113, and a fifth conductor 114. The functional unit 30E includes a sixth conductor 115E, a seventh conductor 116E, and an eighth conductor 117E. The first conductor 110E to the eighth conductor 117E constitute the ground line 11E.
 凹部39は、信号配線10の長さ方向に沿った左内側面39Lと、右内側面39Rと、底面とを有している。 The concave portion 39 has a left inner side surface 39L, a right inner side surface 39R, and a bottom surface along the length direction of the signal wiring 10.
 第6導電体115Eは、凹部39の左内側面39Lに形成される。第6導電体115Eは、第4導電体113を介して第1導電体110に電気的に接続される。 The sixth conductor 115E is formed on the left inner surface 39L of the recess 39. The sixth conductor 115E is electrically connected to the first conductor 110 through the fourth conductor 113.
 第7導電体116Eは、凹部39の右内側面39Rに形成される。第7導電体116Eは、第5導電体114を介して第2導電体111に電気的に接続される。 The seventh conductor 116E is formed on the right inner surface 39R of the recess 39. The seventh conductor 116E is electrically connected to the second conductor 111 through the fifth conductor 114.
 第8導電体117は、機能部30Eの凹部39の底面に形成される。第8導電体117は、第6導電体115Eおよび第7導電体116Eそれぞれと直接的に電気的に接続される。言い換えれば、第6導電体115Eは、第1導電体110と第8導電体117Eとを相互に電気的に接続する。第7導電体116Eは、第2導電体111と第8導電体117Eとを相互に電気的に接続する。 8th conductor 117 is formed in the bottom face of crevice 39 of functional part 30E. The eighth conductor 117 is directly electrically connected to the sixth conductor 115E and the seventh conductor 116E. In other words, the sixth conductor 115E electrically connects the first conductor 110 and the eighth conductor 117E to each other. The seventh conductor 116E electrically connects the second conductor 111 and the eighth conductor 117E to each other.
 接地線路11Eでは、各導電体110~114,115E~117Eは相互に電気的に接続される。また、導電体110~114,115E~117Eのうちの少なくとも1つは、グラウンド(基準電位点)に接続される。なお、各導電体110~114,115E~117Eは、電気めっき法や、スパッタ法など、従来周知の方法により形成できる。 In the ground line 11E, the conductors 110 to 114 and 115E to 117E are electrically connected to each other. Further, at least one of the conductors 110 to 114 and 115E to 117E is connected to the ground (reference potential point). Each of the conductors 110 to 114 and 115E to 117E can be formed by a conventionally known method such as electroplating or sputtering.
 以上述べた本実施形態の配線構造によれば、実施形態2-1の配線構造と同様に、高周波信号の伝送ロスを低減でき、容易に作製できる。 According to the wiring structure of the present embodiment described above, the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the wiring structure of the embodiment 2-1.
 さらに、本実施形態の配線構造では、凹部39の深さを変えることによって第8導電体117Eと信号配線10との距離を決定できる。そのため、第8導電体117Eと信号配線10との距離を高周波特性の向上に好適な距離に設定できる。 Furthermore, in the wiring structure of the present embodiment, the distance between the eighth conductor 117E and the signal wiring 10 can be determined by changing the depth of the recess 39. Therefore, the distance between the eighth conductor 117E and the signal wiring 10 can be set to a distance suitable for improving the high frequency characteristics.
 なお、接地線路11Eは、必ずしも第4導電体113と第5導電体114とを備えている必要はない。 Note that the ground line 11E does not necessarily include the fourth conductor 113 and the fifth conductor 114.
 図15(a),(b)は、本実施形態の配線構造の変形例を示す。 15A and 15B show a modification of the wiring structure of the present embodiment.
 図15の配線構造では、機能部30Fは、凹部39Fの底面に第2凹部390Fを備える。第2凹部390Fは、凹部39Fの底面の中央部(信号配線10の幅方向における底面の中央部)に形成される。この第2凹部390Fは、凹部39Fの長さ方向に沿った長さを有する。したがって、凹部39Fの底面は、信号配線10に対面する部分(信号配線10の幅方向の中央部)が凹む形に形成される。 15, the functional unit 30F includes a second recess 390F on the bottom surface of the recess 39F. The second recess 390F is formed at the center of the bottom surface of the recess 39F (the center of the bottom surface in the width direction of the signal wiring 10). The second recess 390F has a length along the length direction of the recess 39F. Therefore, the bottom surface of the recess 39F is formed in a shape in which a portion facing the signal wiring 10 (a central portion in the width direction of the signal wiring 10) is recessed.
 図15の配線構造において、接地線路11Fは、第1導電体110と、第2導電体111と、第3導電体112と、第6導電体115Eと、第7導電体116Eと、第8導電体117Fとを備える。なお、接地線路11Fは、さらに第4導電体113と第5導電体114とを備えていても良い。 In the wiring structure of FIG. 15, the ground line 11F includes the first conductor 110, the second conductor 111, the third conductor 112, the sixth conductor 115E, the seventh conductor 116E, and the eighth conductor. A body 117F. The ground line 11F may further include a fourth conductor 113 and a fifth conductor 114.
 第8導電体117Fは、凹部39の底面の全面に形成される。すなわち、第8導電体117Fは、第2凹部390Fの内面にも形成される。 The eighth conductor 117F is formed on the entire bottom surface of the recess 39. That is, the eighth conductor 117F is also formed on the inner surface of the second recess 390F.
 図15の配線構造によれば、図14の配線構造と同様に、高周波信号の伝送ロスを低減でき、容易に作製できる。 15 can reduce the transmission loss of the high-frequency signal and can be easily manufactured, similarly to the wiring structure of FIG.
 その上、図14の配線構造のように凹部39の底面が平面である場合に比べれば、信号配線10の長さ方向に交差する面内における接地線路11Fの形状を円環状に近付けることができる。よって、高周波特性を向上できる。 In addition, the shape of the ground line 11F in the plane intersecting the length direction of the signal wiring 10 can be made closer to an annular shape as compared with the case where the bottom surface of the recess 39 is flat as in the wiring structure of FIG. . Therefore, high frequency characteristics can be improved.
 なお、本実施形態の配線構造の特徴部分は、実施形態2-2にも適用できる。 The characteristic part of the wiring structure of the present embodiment can also be applied to the embodiment 2-2.
 (実施形態2-6)
 本実施形態の配線構造では、図16(a),(b)に示すように、ベース20Gが実施形態2-5の配線構造と異なる。なお、本実施形態の配線構造と実施形態2-5の配線構造とで共通する構成については同一の符号を付して説明を省略する。なお、図16(a),(b)では、機能部30Eと第6~第8導電部115E~117Eとの図示を省略している。
Embodiment 2-6
In the wiring structure of the present embodiment, as shown in FIGS. 16A and 16B, the base 20G is different from the wiring structure of the embodiment 2-5. Note that components common to the wiring structure of the present embodiment and the wiring structure of Embodiment 2-5 are denoted by the same reference numerals and description thereof is omitted. 16A and 16B, the functional unit 30E and the sixth to eighth conductive units 115E to 117E are not shown.
 ベース20Gは、上面に凹部281を備える。凹部281の開口サイズは、機能部30Eの凹部39の開口サイズと略等しい。また、凹部281は、信号配線10の幅方向に沿った方向における凹部281の寸法がベース20Gの上面から下面にいくにつれて小さくなる形に形成される。凹部281は、信号配線10の長さ方向に沿った左内側面と、右内側面とを有する。凹部281は、ベース20Gの上記一表面側をブラスト加工することにより形成できる。また、凹部281は、フォトリソグラフィ技術およびエッチング技術などを利用して形成できる。 The base 20G includes a recess 281 on the upper surface. The opening size of the recessed part 281 is substantially equal to the opening size of the recessed part 39 of the functional part 30E. Further, the recess 281 is formed in such a manner that the dimension of the recess 281 in the direction along the width direction of the signal wiring 10 becomes smaller as it goes from the upper surface to the lower surface of the base 20G. The recess 281 has a left inner surface and a right inner surface along the length direction of the signal wiring 10. The recess 281 can be formed by blasting the one surface side of the base 20G. The concave portion 281 can be formed using a photolithography technique, an etching technique, and the like.
 ベース20Gの上面には、支持体29が取り付けられる。支持体29は、ベース20Gに比べて厚みが薄いシリコン板やガラス板などの薄板である。例えば、ベース20Gの厚みが500μm程度である場合、支持体29の厚みは5~50μm程度(好ましくは20μm程度)に設定される。支持体29の外形サイズは、凹部281の開口サイズより大きい。支持体29は、凹部281を覆う(塞ぐ)ようにしてベース20Gの上面に接合される。 The support 29 is attached to the upper surface of the base 20G. The support 29 is a thin plate such as a silicon plate or a glass plate that is thinner than the base 20G. For example, when the thickness of the base 20G is about 500 μm, the thickness of the support 29 is set to about 5 to 50 μm (preferably about 20 μm). The outer size of the support 29 is larger than the opening size of the recess 281. The support 29 is bonded to the upper surface of the base 20G so as to cover (close) the recess 281.
 信号配線10は、支持体29の上面に形成される。信号配線10は、凹部281を跨ぐように形成される。そのため、ベース20Gにおける信号配線10の幅方向の両端側の部位は、信号配線10よりも上面に位置する。なお、信号配線10の長さ方向の両端部それぞれは、貫通配線12を通じて外部端子13に電気的に接続される。 The signal wiring 10 is formed on the upper surface of the support 29. The signal wiring 10 is formed so as to straddle the recess 281. Therefore, the portions on both ends in the width direction of the signal wiring 10 in the base 20 </ b> G are located on the upper surface than the signal wiring 10. Both end portions of the signal wiring 10 in the length direction are electrically connected to the external terminals 13 through the through wiring 12.
 接地線路11Gは、第1導電体110と、第2導電体111と、第3導電体112と、第6導電体115Eと、第7導電体116Eと、第8導電体117Fと、第9導電体118と第10導電体119とを備える。第9導電体118及び第10導電体119は、凹部281の左側面及び右側面にそれぞれ設けられる。 The ground line 11G includes a first conductor 110, a second conductor 111, a third conductor 112, a sixth conductor 115E, a seventh conductor 116E, an eighth conductor 117F, and a ninth conductor. A body 118 and a tenth conductor 119. The ninth conductor 118 and the tenth conductor 119 are provided on the left side surface and the right side surface of the recess 281, respectively.
 接地線路11Gでは、第1導電体110と第6導電体115Eとは、支持体29に形成される貫通孔配線(図示せず)や表面配線(図示せず)などを利用して相互に電気的に接続される。同様に、第2導電体111と第7導電体116Eとは、支持体29に形成される貫通孔配線(図示せず)や表面配線(図示せず)などを利用して相互に電気的に接続される。なお、接地線路11Gは、さらに第4導電体113と第5導電体114とを備えていても良い。 In the ground line 11G, the first conductor 110 and the sixth conductor 115E are electrically connected to each other using a through-hole wiring (not shown) or a surface wiring (not shown) formed in the support 29. Connected. Similarly, the second conductor 111 and the seventh conductor 116E are electrically connected to each other using a through-hole wiring (not shown) or a surface wiring (not shown) formed in the support 29. Connected. The ground line 11G may further include a fourth conductor 113 and a fifth conductor 114.
 以上述べた本実施形態の配線構造によれば、実施形態2-5の配線構造と同様に、高周波信号の伝送ロスを低減でき、容易に作製できる。 According to the wiring structure of the present embodiment described above, the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the wiring structure of the embodiment 2-5.
 特に、本実施形態の配線構造によれば、信号配線10とベース20Gとの間に凹部281が存在する。そのため、信号配線10がベース20の上面に直接的に形成される場合に比べて、高周波特性を向上できる。 In particular, according to the wiring structure of the present embodiment, the concave portion 281 exists between the signal wiring 10 and the base 20G. Therefore, the high frequency characteristics can be improved as compared with the case where the signal wiring 10 is directly formed on the upper surface of the base 20.
 図17(a),(b)は、本実施形態の配線構造の変形例を示す。 FIGS. 17A and 17B show a modification of the wiring structure of the present embodiment.
 図17(a),(b)の配線構造では、支持体29は、矩形枠状のフレーム部290と、クロスバー291とを備える。クロスバー291は、フレーム部290の幅方向の両縁から離間している。クロスバー291は、フレーム部290の長さ方向の両端それぞれと接続された両端を有している。これにより、支持体29は、そのクロスバー291の両側に開口292を有している。したがって、支持体29の開口292は、凹部281と連通している。 17A and 17B, the support 29 includes a frame portion 290 having a rectangular frame shape and a cross bar 291. The cross bar 291 is separated from both edges in the width direction of the frame portion 290. The cross bar 291 has both ends connected to both ends in the length direction of the frame portion 290. Thereby, the support 29 has openings 292 on both sides of the cross bar 291. Therefore, the opening 292 of the support 29 communicates with the recess 281.
 信号配線10は、クロスバー291を通ってフレーム部290の開口を跨ぐように形成される。また、この信号配線10は、凹部281と反対側に位置するように、クロスバー291の上に設けられている。 The signal wiring 10 is formed so as to cross the opening of the frame part 290 through the cross bar 291. Further, the signal wiring 10 is provided on the cross bar 291 so as to be located on the opposite side to the recess 281.
 支持体29では、クロスバー291とフレーム部290とで囲まれる空間部が、支持体29を厚み方向に貫通する開口292を構成する。開口292は、信号配線10に並行する形に形成される。 In the support 29, the space surrounded by the cross bar 291 and the frame portion 290 constitutes an opening 292 that penetrates the support 29 in the thickness direction. The opening 292 is formed in parallel with the signal wiring 10.
 このように図17(a)に示す配線構造では、支持体29に開口292が形成されているから、信号配線10とベース20との間の絶縁性がさらに向上する。よって、高周波特性をさらに向上できる。特に、開口292が信号配線10に並行しているので、配線構造がより同軸構造に近くなる。そのため、高周波特性をさらに向上できる。 As described above, in the wiring structure shown in FIG. 17A, since the opening 292 is formed in the support 29, the insulation between the signal wiring 10 and the base 20 is further improved. Therefore, the high frequency characteristics can be further improved. In particular, since the opening 292 is parallel to the signal wiring 10, the wiring structure becomes closer to the coaxial structure. Therefore, the high frequency characteristics can be further improved.
 ところで、図17(a)の支持体29では、クロスバー291が長くなると、クロスバー291の機械的強度が低くなる。そのため、クロスバー291が破損するおそれがある。 By the way, in the support body 29 of FIG. 17A, when the cross bar 291 becomes longer, the mechanical strength of the cross bar 291 becomes lower. Therefore, the cross bar 291 may be damaged.
 そこで、図17(b)に示す変形例では、支持体29は、一対の補助クロスバー293を備える。図17(b)の支持体29では、一対の補助クロスバー293は、クロスバー291の中央部とフレーム部290の幅方向両端側それぞれの内縁部とを一体に連結する。このような支持体29においては、補助クロスバー293によって、クロスバー291の破損を防止できる。また、補助クロスバー293は複数対設けられていても良い。 Therefore, in the modification shown in FIG. 17B, the support 29 includes a pair of auxiliary cross bars 293. In the support body 29 of FIG. 17B, the pair of auxiliary cross bars 293 integrally connect the center portion of the cross bar 291 and the inner edge portions on both ends in the width direction of the frame portion 290. In such a support 29, the auxiliary cross bar 293 can prevent the cross bar 291 from being damaged. Further, a plurality of pairs of auxiliary cross bars 293 may be provided.
 なお、本実施形態の配線構造の特徴部分は、実施形態2-5の配線構造だけではなく、実施形態2-1~2-4の配線構造にも適用できる。 The characteristic part of the wiring structure of this embodiment can be applied not only to the wiring structure of the embodiment 2-5 but also to the wiring structures of the embodiments 2-1 to 2-4.
 (実施形態2-7)
 本実施形態の配線構造では、図18(a)~(d)に示すように、接地線路11Hとベース20Hとが実施形態2-1の配線構造と異なる。なお、本実施形態の配線構造と実施形態1の配線構造とで共通する構成については同一の符号を付して説明を省略する。
Embodiment 2-7
In the wiring structure of this embodiment, as shown in FIGS. 18A to 18D, the ground line 11H and the base 20H are different from the wiring structure of the embodiment 2-1. In addition, the same code | symbol is attached | subjected about the structure which is common in the wiring structure of this embodiment, and the wiring structure of Embodiment 1, and description is abbreviate | omitted.
 ベース20Hは、ガラス基板ではなく、低温同時焼成セラミックス基板(LTCC基板)により形成される。ここで、ベース20Hに低温同時焼成セラミックス基板を用いれば、ガラス基板を用いる場合とは異なり、直径が一様な孔を容易に形成できる。 The base 20H is formed not by a glass substrate but by a low temperature co-fired ceramic substrate (LTCC substrate). Here, if a low-temperature co-fired ceramic substrate is used for the base 20H, unlike the case where a glass substrate is used, holes having a uniform diameter can be easily formed.
 このような低温同時焼成セラミックス基板の特性を利用して、貫通孔22Hは、図18(a),(c)に示すように、ベース20Hの厚み方向において直径が一定となる形に形成される。そのため、貫通配線12Hは、貫通孔22Hと同様に、ベース20Hの厚み方向において直径が一定となる形に形成される。 Utilizing such characteristics of the low-temperature co-fired ceramic substrate, the through hole 22H is formed in a shape having a constant diameter in the thickness direction of the base 20H, as shown in FIGS. 18 (a) and 18 (c). . Therefore, the through wiring 12H is formed in a shape having a constant diameter in the thickness direction of the base 20H, like the through hole 22H.
 各第1孔部24,第2孔部25は、図18(b),(d)に示すように、ベース20Hの上面から下面に向かうにつれて幅が段階的に広くなる形に形成される。なお、図示例では、各孔部24,25は、3種類の幅を有する。各孔部24,25の幅が広くなる割合は、一定ではなく、ベース20Hの上面から下面に向かうにつれて大きくなるようにしてもよい。このようにすれば、信号配線10の長さ方向に交差する面内における接地線路11Hの形状を円環状により近付けることができる。 As shown in FIGS. 18B and 18D, each of the first hole portion 24 and the second hole portion 25 is formed in a shape in which the width gradually increases from the upper surface to the lower surface of the base 20H. In the illustrated example, each of the holes 24 and 25 has three types of widths. The rate at which the widths of the holes 24 and 25 are widened is not constant, and may be increased from the upper surface to the lower surface of the base 20H. In this way, the shape of the ground line 11H in the plane intersecting the length direction of the signal wiring 10 can be made closer to an annular shape.
 本実施形態の配線構造においても、第1孔部24の内側に第1導電体110Hが形成され、第2孔部25の内側に第2導電体111Hが形成される。 Also in the wiring structure of the present embodiment, the first conductor 110H is formed inside the first hole 24, and the second conductor 111H is formed inside the second hole 25.
 接地線路11Hは、第1導電体110Hと、第2導電体111Hと、第3導電体112と、第6導電体115と、第7導電体116と、第8導電体117とを備える。なお、接地線路11Hは、さらに第4導電体113と第5導電体114とを備えていても良い。 The ground line 11H includes a first conductor 110H, a second conductor 111H, a third conductor 112, a sixth conductor 115, a seventh conductor 116, and an eighth conductor 117. The ground line 11H may further include a fourth conductor 113 and a fifth conductor 114.
 以上述べた本実施形態の配線構造によれば、実施形態2-1の配線構造と同様に、高周波信号の伝送ロスを低減でき、容易に作製できる。 According to the wiring structure of the present embodiment described above, the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the wiring structure of the embodiment 2-1.
 さらに、本実施形態の配線構造では、各孔部24,25は、ベース20Hの上面から下面に向かうにつれて幅が段階的に広くなる形に形成される。そのため、各孔部24,25の幅が均一である場合に比べれば、信号配線10の長さ方向に交差する面内における接地線路11Hの形状を円環状に近付けることができる。よって、高周波特性を向上できる。 Furthermore, in the wiring structure of the present embodiment, each hole 24, 25 is formed in a shape in which the width gradually increases from the upper surface to the lower surface of the base 20H. Therefore, the shape of the ground line 11H in the plane intersecting the length direction of the signal wiring 10 can be made closer to an annular shape as compared with the case where the widths of the holes 24 and 25 are uniform. Therefore, high frequency characteristics can be improved.
 また、本実施形態の配線構造では、貫通孔22Hは、ベース20Hの厚み方向において直径が一定となる形に形成される。そのため、ベース20Hの上面から下面に向かうにつれて貫通孔22Hの直径が大きくなる場合に比べれば、高周波特性を向上できる。 Further, in the wiring structure of the present embodiment, the through hole 22H is formed in a shape having a constant diameter in the thickness direction of the base 20H. Therefore, the high frequency characteristics can be improved as compared with the case where the diameter of the through hole 22H increases from the upper surface to the lower surface of the base 20H.
 なお、本実施形態の配線構造の特徴部分は、実施形態2-1だけではなく、実施形態2-2~2-5の配線構造にも適用できる。 The characteristic part of the wiring structure of this embodiment can be applied not only to the embodiment 2-1, but also to the wiring structures of the embodiments 2-2 to 2-5.
 (実施形態2-8)
 本実施形態の配線構造では、図19(a),(b)に示すように、接地線路11Iとベース20Iとが実施形態2-1の配線構造と異なる。なお、本実施形態の配線構造と実施形態2-1の配線構造とで共通する構成については同一の符号を付して説明を省略する。
Embodiment 2-8
In the wiring structure of the present embodiment, as shown in FIGS. 19A and 19B, the ground line 11I and the base 20I are different from the wiring structure of the embodiment 2-1. Note that components common to the wiring structure of the present embodiment and the wiring structure of Embodiment 2-1 are denoted by the same reference numerals and description thereof is omitted.
 ベース20Iは、上面に穴部282を備える。穴部282の開口サイズと機能部30の第1の開口31の開口サイズとは略等しい。穴部282の幅は、ベース20Iの上面から下面にいくにつれて小さくなるように形成される。穴部282は、ベース20Iの上面からブラスト加工等をすることにより形成できる。 The base 20I has a hole 282 on the upper surface. The opening size of the hole 282 and the opening size of the first opening 31 of the functional unit 30 are substantially equal. The width of the hole 282 is formed so as to decrease from the upper surface to the lower surface of the base 20I. The hole 282 can be formed by blasting or the like from the upper surface of the base 20I.
 穴部282の底面には信号配線10が形成される。より詳しく説明すると、穴部282の底面には、信号配線10の全てが配置される。そのため、ベース20Iには、穴部282の底面とベース20Iの上面との間を厚み方向に貫通する貫通孔22が形成される。信号配線10は、貫通孔22内に形成される貫通配線12を介して外部端子13に電気的に接続される。 The signal wiring 10 is formed on the bottom surface of the hole 282. More specifically, the entire signal wiring 10 is disposed on the bottom surface of the hole 282. Therefore, a through hole 22 is formed in the base 20I so as to penetrate between the bottom surface of the hole 282 and the upper surface of the base 20I in the thickness direction. The signal wiring 10 is electrically connected to the external terminal 13 through the through wiring 12 formed in the through hole 22.
 また、各孔部24,25は、穴部282の底面とベース20Iの下面との間を厚み方向に貫通する形に形成される。 Further, each hole 24, 25 is formed in a shape penetrating between the bottom surface of the hole 282 and the lower surface of the base 20I in the thickness direction.
 接地線路11Iは、各導電体110~112,115~117に加えて、2つの導電体118I,119Iを備える。なお、接地線路11Iは、さらに第4導電体113と第5導電体114とを備えていても良い。 The ground line 11I includes two conductors 118I and 119I in addition to the conductors 110 to 112 and 115 to 117. The ground line 11I may further include a fourth conductor 113 and a fifth conductor 114.
 2つの導電体118I,119Iは、穴部282の内側面に形成される。 The two conductors 118I and 119I are formed on the inner surface of the hole 282.
 第9導電体118Iは、穴部282における信号配線10の左側の内側面に形成され、第1導電体110と第6導電体115とを相互に電気的に接続する。 The ninth conductor 118I is formed on the left inner surface of the signal wiring 10 in the hole 282, and electrically connects the first conductor 110 and the sixth conductor 115 to each other.
 第10導電体119Iは、穴部282における信号配線10の右側の内側面に形成され、第2導電体111と第7導電体116とを相互に電気的に接続する。 The tenth conductor 119I is formed on the inner surface on the right side of the signal wiring 10 in the hole 282, and electrically connects the second conductor 111 and the seventh conductor 116 to each other.
 以上述べた本実施形態の配線構造によれば、実施形態2-1と同様に、高周波信号の伝送ロスを低減でき、容易に作製できる。 According to the wiring structure of the present embodiment described above, the transmission loss of high-frequency signals can be reduced and can be easily manufactured as in the case of Embodiment 2-1.
 さらに、本実施形態の配線構造によれば、ベース20Iの上面に形成される穴部282の底面に信号配線10が形成されている。そのため、穴部282がない場合に比べれば、貫通孔22の長さを短くできるから、高周波特性を向上できる。また、信号配線10の幅方向に沿った方向における穴部282の寸法はベース20Iの上面から下面にいくにつれて小さくなる。そのため、信号配線10の長さ方向に交差する面内における接地線路11Iの形状を円環状に近付けることができ、高周波特性を向上できる。 Furthermore, according to the wiring structure of this embodiment, the signal wiring 10 is formed on the bottom surface of the hole 282 formed on the top surface of the base 20I. Therefore, compared with the case where there is no hole 282, the length of the through hole 22 can be shortened, so that the high frequency characteristics can be improved. In addition, the dimension of the hole 282 in the direction along the width direction of the signal wiring 10 becomes smaller from the upper surface to the lower surface of the base 20I. Therefore, the shape of the ground line 11I in the plane intersecting the length direction of the signal wiring 10 can be brought close to an annular shape, and high frequency characteristics can be improved.
 図20(a),(b)は、本実施形態の配線構造の別の変形例を示す。図20の配線構造では、接地線路11Jとベース20Jとが実施形態2-1の配線構造と異なる。なお、図20の配線構造と実施形態2-1の配線構造とで共通する構成については同一の符号を付して説明を省略する。 20A and 20B show another modification of the wiring structure of the present embodiment. In the wiring structure of FIG. 20, the ground line 11J and the base 20J are different from the wiring structure of the embodiment 2-1. Note that components common to the wiring structure of FIG. 20 and the wiring structure of Embodiment 2-1 are denoted by the same reference numerals and description thereof is omitted.
 ベース20Jは、低温同時焼成セラミックス基板よりなる。ベース20Jは、上面に穴部282を備える。図20に示す例において、穴部282の開口サイズは、ベース20Jの厚み方向に対して均一である。ベース20Jには、実施形態2-6と同様の各孔部24H,25Hが形成される。 The base 20J is made of a low temperature co-fired ceramic substrate. The base 20J includes a hole 282 on the upper surface. In the example shown in FIG. 20, the opening size of the hole 282 is uniform with respect to the thickness direction of the base 20J. In the base 20J, holes 24H and 25H similar to those in the embodiment 2-6 are formed.
 接地線路11Jは、第1導電体110Hと第2導電体111Hと第3導電体112と第6導電体115と第7導電体116と第8導電体117とに加えて、第9導電体118Jと第10導電体119とを備える。なお、接地線路11Jは、さらに第4導電体113と第5導電体114とを備えていても良い。 The ground line 11J includes a ninth conductor 118J in addition to the first conductor 110H, the second conductor 111H, the third conductor 112, the sixth conductor 115, the seventh conductor 116, and the eighth conductor 117. And a tenth conductor 119. The ground line 11J may further include a fourth conductor 113 and a fifth conductor 114.
 以上述べた図20の配線構造によれば、図19の配線構造と同様に、高周波信号の伝送ロスを低減でき、容易に作製できる。また、図20の配線構造によれば、ベース20Jが低温同時焼成セラミックス基板よりなるので、ベース20Jがガラス基板よりなる場合に比べて穴部282を容易に形成でき、加工性を向上できる。 According to the wiring structure of FIG. 20 described above, the transmission loss of the high-frequency signal can be reduced and can be easily manufactured as in the case of the wiring structure of FIG. In addition, according to the wiring structure of FIG. 20, since the base 20J is made of a low-temperature co-fired ceramic substrate, the hole 282 can be easily formed as compared with the case where the base 20J is made of a glass substrate, thereby improving workability.
 このように、穴部282は、ベース20が低温同時焼成セラミックス基板よりなる場合にも同様に設けることができる。 Thus, the hole 282 can be similarly provided when the base 20 is made of a low-temperature co-fired ceramic substrate.
 なお、図19,図20に示す配線構造の特徴部分は、実施形態2-1だけではなく、実施形態2-2~2-5の配線構造にも適用できる。 The characteristic portions of the wiring structure shown in FIGS. 19 and 20 can be applied not only to the embodiment 2-1, but also to the wiring structures of the embodiments 2-2 to 2-5.
 (実施形態2-9)
 本実施形態の配線構造では、図21に示すように、ベース20Kが実施形態2-1の配線構造と異なる。なお、本実施形態の配線構造と実施形態2-1の配線構造とで共通する構成については、同一の符号を付して説明を省略する。
Embodiment 2-9
In the wiring structure of the present embodiment, as shown in FIG. 21, the base 20K is different from the wiring structure of the embodiment 2-1. In addition, about the structure which is common in the wiring structure of this embodiment and the wiring structure of Embodiment 2-1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 ベース20Kは、実施形態2-1と同様にガラス基板により形成されるが、貫通孔22Kと貫通配線12Kとが実施形態2-1のベース20と異なる。 The base 20K is formed of a glass substrate similarly to the embodiment 2-1, but the through hole 22K and the through wiring 12K are different from the base 20 of the embodiment 2-1.
 貫通孔22Kは、ベース20Kの厚み方向における中間部の直径(孔径)が開口側よりも狭く形成される。貫通孔22Kは、互いに連通する第1貫通孔部220と第2貫通孔部221とを備える。第1貫通孔部220は、ベース20Kを上面から所定深さまでブラスト加工(例えばサンドブラスト加工)して形成される。第2貫通孔部221は、ベース20Kを下面から所定深さまでブラスト加工して形成される。 The through hole 22K is formed such that the diameter (hole diameter) of the intermediate portion in the thickness direction of the base 20K is narrower than the opening side. The through hole 22K includes a first through hole portion 220 and a second through hole portion 221 that communicate with each other. The first through-hole portion 220 is formed by blasting (for example, sand blasting) the base 20K from the upper surface to a predetermined depth. The second through-hole portion 221 is formed by blasting the base 20K from the lower surface to a predetermined depth.
 貫通配線12Kは、互いに直接的に電気的に接続される第1配線部120と第2配線部121とを備える。第1配線部120は第1貫通孔部220の内側に形成され、第2配線部121は第2貫通孔部221の内側に形成される。各配線部120,121は、電気めっき法やスパッタ法などの従来周知の方法により形成される。 The through wiring 12K includes a first wiring part 120 and a second wiring part 121 that are directly and electrically connected to each other. The first wiring part 120 is formed inside the first through hole part 220, and the second wiring part 121 is formed inside the second through hole part 221. Each wiring part 120, 121 is formed by a conventionally known method such as an electroplating method or a sputtering method.
 貫通孔22Kと貫通配線12Kは例えば次のようにして作製する。まず、ベース20Kを上面から所定深さまでブラスト加工して第1貫通孔部220を形成する。その後、第1貫通孔部220の内側に第1配線部120を形成する。次にベース20Kを下面から所定深さ、第1配線部120が露出するまでブラスト加工して第2貫通孔部221を形成する。その後、第2貫通孔部221の内側に第2配線部121を形成する。これによって、図21に示す貫通孔22Kと貫通配線12Kとを得ることができる。 The through hole 22K and the through wiring 12K are produced as follows, for example. First, the first through hole 220 is formed by blasting the base 20K from the upper surface to a predetermined depth. Thereafter, the first wiring part 120 is formed inside the first through-hole part 220. Next, the second through-hole portion 221 is formed by blasting the base 20K to a predetermined depth from the lower surface until the first wiring portion 120 is exposed. Thereafter, the second wiring part 121 is formed inside the second through hole part 221. Thereby, the through hole 22K and the through wiring 12K shown in FIG. 21 can be obtained.
 以上述べた本実施形態の配線構造によれば、実施形態2-1と同様に高周波信号の伝送ロスを低減でき、容易に作製できる。 According to the wiring structure of the present embodiment described above, the transmission loss of the high-frequency signal can be reduced as in the case of Embodiment 2-1, and can be easily manufactured.
 さらに、本実施形態の配線構造によれば、実施形態2-1のようにベース20の貫通孔22を一方向からのブラスト加工によって作製する場合に比べれば、貫通孔22の直径の変化幅を小さくできる。そのため、高周波特性を向上できる。 Furthermore, according to the wiring structure of the present embodiment, the change width of the diameter of the through hole 22 is smaller than that in the case where the through hole 22 of the base 20 is manufactured by blasting from one direction as in Embodiment 2-1. Can be small. Therefore, high frequency characteristics can be improved.
 なお、本実施形態の配線構造の特徴部分は、実施形態2-1だけではなく、実施形態2-2~2-5の配線構造にも適用できる。 The characteristic part of the wiring structure of this embodiment can be applied not only to the embodiment 2-1, but also to the wiring structures of the embodiments 2-2 to 2-5.
 (実施形態3-1)
 本実施形態の配線構造は、例えば、図22(a)~(c)に示すように、ベース20と、機能部30と、カバー40とを備えるMEMSデバイスに適用される。なお、図22では、本実施形態の配線構造の要点を簡単に説明するために、MEMSデバイスの構造を簡略化して図示している。なお、上述の実施形態と同一の構成には同一の符号を付して説明を省略する。また、図22~図29では、本実施形態の配線構造の要点を簡単に説明するために、MEMSデバイスの構造を簡略化して図示している。すなわち、図22~図29に記載のベース20、機能部30、カバー40などは、図2のG1の点線で囲まれた部分に適用される。そして、第2の縁332は、マイクロリレーにおいては、一対の規制突起330によって定義される。しかしながら、図9~図21においては、一対の規制突起330を一体として記載しており、これにより第2の縁332を表している。
(Embodiment 3-1)
The wiring structure of the present embodiment is applied to a MEMS device including a base 20, a functional unit 30, and a cover 40 as shown in FIGS. 22 (a) to 22 (c), for example. In FIG. 22, the structure of the MEMS device is shown in a simplified manner in order to briefly explain the main points of the wiring structure of the present embodiment. In addition, the same code | symbol is attached | subjected to the structure same as the above-mentioned embodiment, and description is abbreviate | omitted. In FIGS. 22 to 29, the structure of the MEMS device is shown in a simplified manner in order to briefly explain the main points of the wiring structure of the present embodiment. That is, the base 20, the functional unit 30, the cover 40, and the like described in FIGS. 22 to 29 are applied to a portion surrounded by a dotted line G1 in FIG. The second edge 332 is defined by a pair of restricting protrusions 330 in the micro relay. However, in FIGS. 9 to 21, the pair of restricting protrusions 330 are described as a single unit, thereby representing the second edge 332.
 接地線路11は、図22(a)~(c)に示すように、ベース20と機能部30とカバー40とのそれぞれに設けられた第4シールドと第5シールドと第6シールドとによって構成される。詳しく説明すると、ベース20には、第1の導電部110Cと第2の導電部111Cとが設けられている。第1の導電部110Cと第2の導電部111Cとは、第4シールドを定義する。機能部30には、第4の導電部113Cと第5の導電部114Cとが設けられている。第4の導電部113Cと第5の導電部114Cとは、第5シールドを定義する。カバー40には、第3の導電部112Cが設けられている。第3の導電部112Cは、第6シールドを定義する。 As shown in FIGS. 22A to 22C, the ground line 11 is configured by a fourth shield, a fifth shield, and a sixth shield provided on the base 20, the functional unit 30, and the cover 40, respectively. The More specifically, the base 20 is provided with a first conductive portion 110C and a second conductive portion 111C. The first conductive part 110C and the second conductive part 111C define a fourth shield. The functional unit 30 includes a fourth conductive unit 113C and a fifth conductive unit 114C. The fourth conductive portion 113C and the fifth conductive portion 114C define a fifth shield. The cover 40 is provided with a third conductive portion 112C. The third conductive portion 112C defines a sixth shield.
 ここで、ベース20の上面には、2つの溝24C,25Cが形成されている。溝24Cは、ベース20における信号配線10の左側に位置し、溝25Cは、ベース20における信号配線10の右側に位置している。また、各溝24C,25Cは、信号配線10に並行するように形成されている。このような溝24C,25Cは、ベース20を上面からブラスト加工(例えば、サンドブラスト加工)することにより形成されている。このようにブラスト加工を利用することによって、溝24C,25Cの幅を、ベース20の上面から下面に向かうにつれて狭くすることができる。 Here, two grooves 24 </ b> C and 25 </ b> C are formed on the upper surface of the base 20. The groove 24 </ b> C is located on the left side of the signal wiring 10 in the base 20, and the groove 25 </ b> C is located on the right side of the signal wiring 10 in the base 20. The grooves 24C and 25C are formed so as to be parallel to the signal wiring 10. Such grooves 24C and 25C are formed by blasting the base 20 from the upper surface (for example, sand blasting). By using blasting in this way, the width of the grooves 24C and 25C can be narrowed from the upper surface of the base 20 toward the lower surface.
 そして、第1の導電部110Cは、ベース20の溝24C内に形成される。詳しく説明すると、溝24Cは、信号配線10の長さ方向に沿った長さを有する右内側面24Rと、左内側面24Lと、底面24Bとを有する。左内側面24Lは、右内側面24Rよりも、前記信号配線10から遠い位置に位置する。言い換えると、前記左内側面24Lは、信号配線10から第1の距離離間している。右内側面24Rは、信号配線10から第2の距離離間している。第1の距離は、第2の距離よりも大きい。そして、第1の導電部110Cは、左内側面24L及び底面24Bに設けられている。同様に、第2の導電部111Cは、ベース20の溝25C内に形成される。詳しく説明すると、溝25Cは、信号配線10の長さ方向に沿った長さを有する左内側面25Lと、右内側面25Rと、底面25Bとを有する。右内側面25Rは、左内側面25Lよりも、前記信号配線10から遠い位置に位置する。言い換えると、前記右内側面25Rは、信号配線10から第1の距離離間している。左内側面25Lは、信号配線10から第2の距離離間している。第1の距離は、第2の距離よりも大きい。そして、第2導電部111Cは、右内側面25R及び底面25Bに設けられている。 The first conductive portion 110C is formed in the groove 24C of the base 20. More specifically, the groove 24C has a right inner surface 24R having a length along the length direction of the signal wiring 10, a left inner surface 24L, and a bottom surface 24B. The left inner surface 24L is located farther from the signal wiring 10 than the right inner surface 24R. In other words, the left inner surface 24L is separated from the signal wiring 10 by a first distance. The right inner surface 24R is separated from the signal wiring 10 by a second distance. The first distance is greater than the second distance. The first conductive portion 110C is provided on the left inner surface 24L and the bottom surface 24B. Similarly, the second conductive portion 111 </ b> C is formed in the groove 25 </ b> C of the base 20. More specifically, the groove 25C has a left inner side surface 25L having a length along the length direction of the signal wiring 10, a right inner side surface 25R, and a bottom surface 25B. The right inner surface 25R is located farther from the signal wiring 10 than the left inner surface 25L. In other words, the right inner surface 25R is separated from the signal wiring 10 by a first distance. The left inner surface 25L is separated from the signal wiring 10 by a second distance. The first distance is greater than the second distance. The second conductive portion 111C is provided on the right inner surface 25R and the bottom surface 25B.
 第3の導電部112Cは、カバー40における信号配線10との対向する下面領域40Uに形成されている。すなわち、カバー40は、信号配線10と第1の開口31を介して伝送線路と対向する下面領域40Uを有する。第3の導電部112Cは、この下面領域40Uに設けられている。ここで、信号配線10の長さ方向における第1の開口31の寸法は、信号配線10よりも大きくなっている。また、信号配線10の幅方向における第1の開口31の寸法は、ベース20の各溝24C,25がカバー40側に臨むような大きさになっている。 The third conductive portion 112 </ b> C is formed in the lower surface region 40 </ b> U of the cover 40 facing the signal wiring 10. That is, the cover 40 has a lower surface region 40 </ b> U that faces the transmission line via the signal wiring 10 and the first opening 31. The third conductive portion 112C is provided in the lower surface region 40U. Here, the dimension of the first opening 31 in the length direction of the signal wiring 10 is larger than that of the signal wiring 10. The dimension of the first opening 31 in the width direction of the signal wiring 10 is such that the grooves 24C and 25 of the base 20 face the cover 40 side.
 第4の導電部113Cと第5の導電部114は、第1の縁331及び第2の縁332にそれぞれ設けられている。第4の導電部113Cは、第1の導電部110Cと第3の導電部112Cとを電気的に接続するために設けられる。この第4の導電部113Cは、前記第1の縁331の側面に形成されている。第5の導電部114Cは、第2の導電部111Cと第3の導電部112Cとを電気的に接続するために設けられる。この第5の導電部114Cは、前記第2の縁332の側面に形成されている。これら第4の導電部113Cおよび第5の導電部114Cは、カバー40と機能部30とを接合した際に、第3の導電部112Cと接続される。 The fourth conductive portion 113C and the fifth conductive portion 114 are provided on the first edge 331 and the second edge 332, respectively. The fourth conductive portion 113C is provided to electrically connect the first conductive portion 110C and the third conductive portion 112C. The fourth conductive portion 113 </ b> C is formed on the side surface of the first edge 331. The fifth conductive portion 114C is provided to electrically connect the second conductive portion 111C and the third conductive portion 112C. The fifth conductive portion 114C is formed on the side surface of the second edge 332. The fourth conductive portion 113C and the fifth conductive portion 114C are connected to the third conductive portion 112C when the cover 40 and the functional portion 30 are joined.
 この接地線路11では、第1の導電部110Cが第4の導電部113Cを介して第3の導電部112Cに、第2の導電部111Cが第5の導電部114Cを介して第3の導電部112Cにそれぞれ電気的に接続されている。すなわち、各導電部110C~114Cは相互に電気的に接続されている。そして、これら導電部110C~114Cのうちの少なくとも1つが、グラウンド(基準電位点)に接続される。なお、各導電部110C~114Cは、電気めっき法や、スパッタ法など、従来周知の方法により形成することができるから、説明を省略する。 In the ground line 11, the first conductive portion 110C is connected to the third conductive portion 112C via the fourth conductive portion 113C, and the second conductive portion 111C is connected to the third conductive portion 114C via the fifth conductive portion 114C. Each part 112C is electrically connected. That is, the conductive portions 110C to 114C are electrically connected to each other. At least one of the conductive portions 110C to 114C is connected to the ground (reference potential point). Note that each of the conductive portions 110C to 114C can be formed by a conventionally known method such as an electroplating method or a sputtering method, and thus the description thereof is omitted.
 以上述べたように、本実施形態の配線構造によれば、接地線路11が、信号配線10の長さ方向に交差する面内において信号配線10を囲っていることによって、擬似的な同軸構造が得られる。そのため、高周波信号の伝送ロスを低減することができる。 As described above, according to the wiring structure of the present embodiment, since the ground line 11 surrounds the signal wiring 10 in a plane intersecting the length direction of the signal wiring 10, a pseudo coaxial structure is formed. can get. Therefore, transmission loss of high frequency signals can be reduced.
 また、接地線路11は、上述したように、第1~第5の導電部110C~114Cによって構成されており、第1,第2の導電部110C~111Cはベース20に、第3の導電部112Cはカバー40に、第4,第5の導電部113C,114Cは機能部30に形成されている。 Further, as described above, the ground line 11 is constituted by the first to fifth conductive portions 110C to 114C. The first and second conductive portions 110C to 111C are connected to the base 20 and the third conductive portion. 112C is formed in the cover 40, and the fourth and fifth conductive portions 113C and 114C are formed in the functional portion 30.
 このように本実施形態の配線構造によれば、接地線路11を作製するにあたっては、MEMSデバイスのベース20だけではなく、機能部30とカバー40も利用している。そのため、ベース20のみを利用して接地線路11を作製しようとする場合に比べて、立体的な構造を得るために半導体層や、絶縁層、導電層などの積層体を作製する必要がなくなる。これによって、容易に作製することができるようになる。 As described above, according to the wiring structure of the present embodiment, when the ground line 11 is manufactured, not only the base 20 of the MEMS device but also the functional unit 30 and the cover 40 are used. Therefore, it is not necessary to produce a laminated body such as a semiconductor layer, an insulating layer, or a conductive layer in order to obtain a three-dimensional structure, compared to a case where the ground line 11 is produced using only the base 20. Thus, it can be easily manufactured.
 ここで、本実施形態の配線構造を適用するにあたっては、ベース20における信号配線10の長さ方向の両側に、上述の溝24C,25Cを形成する。 Here, in applying the wiring structure of the present embodiment, the above-described grooves 24C and 25C are formed on both sides of the signal wiring 10 in the length direction of the base 20.
 そして、接地線路11を構成する各導電部110C~114Cを次のようにして形成する。まず、溝24Cの内側に第1の導電部110Cを形成し、溝25Cの内側に第2の導電部111Cを形成する。また、カバー40に第3の導電部112Cを形成する。さらに、機能部30の第1の開口31の左側に第4の導電部113Cを形成し、第1の開口31における信号配線10の右側に第5の導電部114を形成する。 Then, the conductive portions 110C to 114C constituting the ground line 11 are formed as follows. First, the first conductive portion 110C is formed inside the groove 24C, and the second conductive portion 111C is formed inside the groove 25C. Further, the third conductive portion 112 </ b> C is formed in the cover 40. Further, the fourth conductive portion 113 </ b> C is formed on the left side of the first opening 31 of the functional unit 30, and the fifth conductive portion 114 is formed on the right side of the signal wiring 10 in the first opening 31.
 このような接地線路11は、ベース20に設けられた4つの信号配線10それぞれに対応して形成することができる。 Such a ground line 11 can be formed corresponding to each of the four signal wirings 10 provided on the base 20.
 そして、本実施形態の配線構造が設けられたマイクロリレーによれば、高周波信号の伝送ロスを低減することができ、しかも容易に作製することができる。なお、このマイクロリレーの動作については従来周知であるから説明を省略する。 And according to the microrelay provided with the wiring structure of this embodiment, the transmission loss of the high-frequency signal can be reduced and can be easily manufactured. The operation of this micro relay is well known in the art and will not be described.
 ところで、上述したマイクロリレーでは、駆動装置50は、カバー40に設けられている。したがって、駆動装置50をベース20に設ける場合に比べれば、ベース20の厚みを薄くできる。そのため、信号配線10をベース20の下面に引き出すための貫通孔22を短くすることができて、高周波特性を向上することができる。また、駆動装置50と信号配線10との距離を離すことができるから、駆動装置50が発生する磁場によって信号配線10に悪影響が生じる可能性を低くすることができる。 Incidentally, in the micro relay described above, the driving device 50 is provided on the cover 40. Therefore, the thickness of the base 20 can be reduced as compared with the case where the driving device 50 is provided on the base 20. Therefore, the through hole 22 for drawing out the signal wiring 10 to the lower surface of the base 20 can be shortened, and high frequency characteristics can be improved. Further, since the distance between the driving device 50 and the signal wiring 10 can be increased, the possibility that the signal wiring 10 is adversely affected by the magnetic field generated by the driving device 50 can be reduced.
 (実施形態3-2)
 本実施形態の配線構造では、図23に示すように、ベース20が実施形態3-1と異なっている。なお、本実施形態のその他の構成は、実施形態3-1と同様であるから、実施形態3-1と同様の構成については説明を省略する。
Embodiment 3-2
In the wiring structure of the present embodiment, the base 20 is different from that of the embodiment 3-1, as shown in FIG. Since the other configuration of the present embodiment is the same as that of the embodiment 3-1, the description of the same configuration as that of the embodiment 3-1 is omitted.
 本実施形態におけるベース20は、実施形態3-1と同様にガラス基板により形成されている。また、ベース20には、実施形態3-1と同様に、外部端子13と、貫通孔22と、貫通配線12とが形成されている。しかしながら、本実施形態におけるベース20では、図23に示すように、貫通孔22および貫通配線12が実施形態3-1と異なっている。 The base 20 in this embodiment is formed of a glass substrate as in the embodiment 3-1. Further, the external terminal 13, the through hole 22, and the through wiring 12 are formed in the base 20 as in the case of the embodiment 3-1. However, in the base 20 in the present embodiment, as shown in FIG. 23, the through hole 22 and the through wiring 12 are different from those in the embodiment 3-1.
 本実施形態における貫通孔22は、ベース20の厚み方向における中間部の直径(孔径)が開口側よりも狭く形成されている。このような貫通孔22は、第1の穴部220と、第2の穴部221とで構成されている。ここで、第1の穴部220は、ベース20を上記一表面側から所定深さまでブラスト加工して形成されている。一方、第2の穴部221は、上記ベースを上記他表面側から所定深さまでブラスト加工して形成されている。なお、ブラスト加工としては、例えば、サンドブラスト加工を採用することができる。 The through hole 22 in the present embodiment is formed such that the diameter (hole diameter) of the intermediate portion in the thickness direction of the base 20 is narrower than the opening side. Such a through hole 22 is composed of a first hole 220 and a second hole 221. Here, the first hole 220 is formed by blasting the base 20 from the one surface side to a predetermined depth. On the other hand, the second hole 221 is formed by blasting the base from the other surface side to a predetermined depth. In addition, as a blasting process, a sandblasting process is employable, for example.
 また、本実施形態における貫通配線12は、第1の配線部230と、第2の配線部231とで構成されている。第1の配線部230は、第1の穴部220の内側に形成されており、第2の配線部231は、第2の穴部221の内側に形成されている。なお、各配線部230,231は、電気めっき法や、スパッタ法など、従来周知の方法により形成することができる。 Further, the through wiring 12 in the present embodiment includes a first wiring part 230 and a second wiring part 231. The first wiring part 230 is formed inside the first hole part 220, and the second wiring part 231 is formed inside the second hole part 221. In addition, each wiring part 230,231 can be formed by conventionally well-known methods, such as an electroplating method and a sputtering method.
 このような貫通孔22および貫通配線12は、例えば、次のようにして作製する。まず、ベース20を上面から所定深さまでブラスト加工することで、第1の穴部220を形成する。その後、第1の穴部220の内側に第1の配線部230を形成する。その後、ベース20を上記他表面側から所定深さ、第1の配線部230が露出するまでブラスト加工することで、第2の穴部221を形成する。その後、第2の穴部221の内側に第2の配線部231を形成する。これによって、図23に示す貫通孔22および貫通配線12を得ることができる。 For example, the through hole 22 and the through wiring 12 are manufactured as follows. First, the first hole 220 is formed by blasting the base 20 from the upper surface to a predetermined depth. Thereafter, the first wiring part 230 is formed inside the first hole part 220. Thereafter, the second hole 221 is formed by blasting the base 20 to a predetermined depth from the other surface side until the first wiring part 230 is exposed. Thereafter, the second wiring part 231 is formed inside the second hole part 221. Thereby, the through hole 22 and the through wiring 12 shown in FIG. 23 can be obtained.
 以上述べたように、本実施形態の配線構造によれば、実施形態3-1と同様に、高周波信号の伝送ロスを低減することができる。また、容易に作製することができるようになる。 As described above, according to the wiring structure of the present embodiment, transmission loss of high-frequency signals can be reduced as in the case of Embodiment 3-1. Further, it can be easily manufactured.
 さらに、本実施形態の配線構造によれば、実施形態3-1のようにベース20の貫通孔22を一方向からのブラスト加工によって作製する場合に比べれば、貫通孔22の直径の変化幅を小さくすることができる。そのため、高周波特性を向上することができる。なお、本実施形態の配線構造は、実施形態3-1と同様の接地線路11を有するので、高周波信号の伝送ロスを低減することができ、また、容易に作製することができるようになる。 Furthermore, according to the wiring structure of the present embodiment, compared to the case where the through hole 22 of the base 20 is manufactured by blasting from one direction as in Embodiment 3-1, the change width of the diameter of the through hole 22 is reduced. Can be small. Therefore, high frequency characteristics can be improved. Since the wiring structure of the present embodiment has the same ground line 11 as that of Embodiment 3-1, the transmission loss of the high-frequency signal can be reduced and can be easily manufactured.
 (実施形態3-3)
 図24(a)~(c)は、本実施形態の配線構造を示している。本実施形態の配線構造では、主としてベース20および接地線路11が実施形態3-1と異なっている。なお、本実施形態のその他の構成は、実施形態3-1と同様であるから、実施形態3-1と同様の構成については説明を省略する。
Embodiment 3-3
24A to 24C show the wiring structure of this embodiment. In the wiring structure of the present embodiment, the base 20 and the ground line 11 are mainly different from the embodiment 3-1. Since the other configuration of the present embodiment is the same as that of the embodiment 3-1, the description of the same configuration as that of the embodiment 3-1 is omitted.
 本実施形態におけるベース20は、ガラス基板ではなく、低温同時焼成セラミックス基板(LTCC基板)により形成されている。ここで、低温同時焼成セラミックス基板には、ガラス基板とは異なり、容易に内部配線を形成することができる。そこで、このような低温同時焼成セラミックス基板の特性を利用して、接地線路11に第6の導電部115Cを設けている。 The base 20 in this embodiment is not a glass substrate, but is formed of a low temperature co-fired ceramic substrate (LTCC substrate). Here, unlike the glass substrate, the internal wiring can be easily formed on the low-temperature co-fired ceramic substrate. Therefore, the sixth conductive portion 115C is provided on the ground line 11 by utilizing the characteristics of such a low-temperature co-fired ceramic substrate.
 すなわち、本実施形態における接地線路11は、上述の第1~第5の導電部110C~114Cに加えて、第6の導電部115Cを備えている。第6の導電部115Cは、第1の導電部110Cと第2の導電部111Cとを電気的に接続するようにベース20の内部に配置されている。すなわち、第6の導電部115Cは、ベース20の内部配線である。なお、第6の導電部115Cは、従来から周知の方法を利用して形成することができるから詳細な説明は省略する。 That is, the ground line 11 in this embodiment includes a sixth conductive portion 115C in addition to the first to fifth conductive portions 110C to 114C described above. The sixth conductive portion 115C is disposed inside the base 20 so as to electrically connect the first conductive portion 110C and the second conductive portion 111C. That is, the sixth conductive portion 115 </ b> C is an internal wiring of the base 20. Note that the sixth conductive portion 115C can be formed using a conventionally known method, and thus detailed description thereof is omitted.
 また、ベース20に低温同時焼成セラミックス基板を用いれば、ガラス基板を用いる場合とは異なり、直径が一様な孔を容易に形成することができる。このような低温同時焼成セラミックス基板の特性を利用して、本実施形態における貫通孔22は、図24(a),(c)に示すように、ベース20の厚み方向において直径が一定となる形に形成されている。そのため、本実施形態における貫通配線12は、貫通孔22と同様に、ベース20の厚み方向において直径が一定となる形に形成されている。そして、本実施形態では、信号配線10は、このような貫通配線12を介して外部端子13に電気的に接続されている。 Also, if a low-temperature co-fired ceramic substrate is used for the base 20, unlike the case where a glass substrate is used, holes having a uniform diameter can be easily formed. Utilizing such characteristics of the low-temperature co-fired ceramic substrate, the through hole 22 in the present embodiment has a constant diameter in the thickness direction of the base 20, as shown in FIGS. 24 (a) and 24 (c). Is formed. Therefore, the through wiring 12 in the present embodiment is formed in a shape having a constant diameter in the thickness direction of the base 20, similarly to the through hole 22. In the present embodiment, the signal wiring 10 is electrically connected to the external terminal 13 through such a through wiring 12.
 以上述べたように、本実施形態の配線構造によれば、実施形態1と同様に、高周波信号の伝送ロスを低減することができる。また、容易に作製することができるようになる。 As described above, according to the wiring structure of the present embodiment, transmission loss of high-frequency signals can be reduced as in the first embodiment. Further, it can be easily manufactured.
 さらに、接地線路11に第6の導電部115Cを設けたことによって、信号配線10の長さ方向に交差する面内における接地線路11の形状を円環状に近付けることができる。よって、高周波特性をさらに向上することができる。また、ベース20は、低温同時焼成セラミックス基板により形成されているから、ベース20がガラス基板よりなる場合に比べて加工性を向上することができる。そのため、上述したような内部配線よりなる第6の導電部115Cを容易に形成することができる。さらに、また、本実施形態の配線構造では、貫通孔22は、ベース20の厚み方向において直径が一定となる形に形成されている。そのため、ベース20の上面から下面に向かうにつれて貫通孔22の直径が大きくなっている場合に比べれば、高周波特性を向上することができる。 Furthermore, by providing the sixth conductive portion 115C in the ground line 11, the shape of the ground line 11 in the plane intersecting the length direction of the signal wiring 10 can be brought close to an annular shape. Therefore, the high frequency characteristics can be further improved. Moreover, since the base 20 is formed of a low-temperature co-fired ceramic substrate, the workability can be improved as compared with the case where the base 20 is made of a glass substrate. Therefore, the sixth conductive portion 115C made of the internal wiring as described above can be easily formed. Furthermore, in the wiring structure of the present embodiment, the through hole 22 is formed in a shape having a constant diameter in the thickness direction of the base 20. Therefore, the high frequency characteristics can be improved as compared with the case where the diameter of the through hole 22 increases from the upper surface to the lower surface of the base 20.
 (実施形態3-4)
 図25は、本実施形態の配線構造を示している。本実施形態の配線構造では、主としてベース20が実施形態3-1と異なっている。なお、本実施形態のその他の構成は、実施形態3-1と同様であるから、実施形態3-1と同様の構成については説明を省略する。
Embodiment 3-4
FIG. 25 shows the wiring structure of this embodiment. In the wiring structure of the present embodiment, the base 20 is mainly different from the embodiment 3-1. Since the other configuration of the present embodiment is the same as that of the embodiment 3-1, the description of the same configuration as that of the embodiment 3-1 is omitted.
 本実施形態におけるベース20には、図25(a),(b)に示すように、2つの溝24C,25Cの代わりに、1つの凹所28が形成されている。凹所28は、矩形状に形成されている。このような凹所28は、例えば、ブラスト加工などの周知の技術を利用して形成することができる。 In the base 20 in this embodiment, as shown in FIGS. 25A and 25B, one recess 28 is formed instead of the two grooves 24C and 25C. The recess 28 is formed in a rectangular shape. Such a recess 28 can be formed using a known technique such as blasting, for example.
 また、ベース20の上面には、支持体29が取り付けられている。支持体29は、例えば厚みが5~50μm程度(好ましくは20μm程度)に形成されたシリコン板やガラス板などの薄板である。支持体29の外形サイズは、凹所28の開口サイズより大きくなっている。このような支持体29は、凹所28を覆う(塞ぐ)ようにしてベース20の上面に接合されている。 Also, a support 29 is attached to the upper surface of the base 20. The support 29 is, for example, a thin plate such as a silicon plate or a glass plate formed to have a thickness of about 5 to 50 μm (preferably about 20 μm). The outer size of the support 29 is larger than the opening size of the recess 28. Such a support 29 is bonded to the upper surface of the base 20 so as to cover (close) the recess 28.
 本実施形態における信号配線10は、支持体29における凹所28側とは反対側に形成されている。また、信号配線10は、凹所28を跨ぐように形成されており、ベース20における信号配線10の幅方向の両端側の部位は、信号配線10よりも上記他表面側に位置している。なお、信号配線10の長さ方向の両端部それぞれは、貫通配線12を通じて外部端子13に電気的に接続されている。 The signal wiring 10 in the present embodiment is formed on the opposite side of the support 29 from the recess 28 side. Further, the signal wiring 10 is formed so as to straddle the recess 28, and the portions on both ends in the width direction of the signal wiring 10 in the base 20 are located on the other surface side than the signal wiring 10. Both end portions of the signal wiring 10 in the length direction are electrically connected to the external terminals 13 through the through wiring 12.
 また、本実施形態における接地線路11は、実施形態3-3と同様に、第1~第6の導電部110C~115Cを備えている。本実施形態における第1の導電部110C、第2の導電部111C、および第6の導電部115Cは、ベース20の凹所28内に形成されている。より詳細には、第1の導電部110Cは、凹所28の左側の内側面および底面に形成されている。一方、第2の導電部111Cは、凹所28の右側の内側面および底面に形成されている。また、第6の導電部115Cは、凹所28の底面に形成されている。この第6の導電部115Cによって、第1の導電部110Cと第2の導電部111Cとが電気的に接続されている。なお、図25(a),(b)では、機能部30およびカバー40の図示を省略している。また、第1の導電部110Cと第4の導電部113Cとは、支持体29に形成した貫通孔配線(図示せず)や表面配線(図示せず)などを利用して電気的に接続される。これは、第2の導電部111Cと第5の導電部114についても同様である。 Further, the ground line 11 in the present embodiment includes the first to sixth conductive portions 110C to 115C as in the embodiment 3-3. The first conductive portion 110 </ b> C, the second conductive portion 111 </ b> C, and the sixth conductive portion 115 </ b> C in the present embodiment are formed in the recess 28 of the base 20. More specifically, the first conductive portion 110 </ b> C is formed on the left inner surface and bottom surface of the recess 28. On the other hand, the second conductive portion 111 </ b> C is formed on the right inner surface and bottom surface of the recess 28. The sixth conductive portion 115 </ b> C is formed on the bottom surface of the recess 28. By the sixth conductive portion 115C, the first conductive portion 110C and the second conductive portion 111C are electrically connected. In addition, in FIG. 25 (a), (b), illustration of the function part 30 and the cover 40 is abbreviate | omitted. Also, the first conductive portion 110C and the fourth conductive portion 113C are electrically connected using a through-hole wiring (not shown), a surface wiring (not shown), etc. formed in the support 29. The The same applies to the second conductive portion 111C and the fifth conductive portion 114.
 以上述べたように、本実施形態の配線構造によれば、実施形態3-1と同様に、高周波信号の伝送ロスを低減することができる。また、容易に作製することができるようになる。特に、本実施形態の配線構造によれば、信号配線10とベース20との間に空間が形成されている。そのため、信号配線10がベース20の上面に直に形成されている場合に比べて、高周波特性を向上することができる。 As described above, according to the wiring structure of the present embodiment, transmission loss of high-frequency signals can be reduced as in the case of Embodiment 3-1. Further, it can be easily manufactured. In particular, according to the wiring structure of this embodiment, a space is formed between the signal wiring 10 and the base 20. Therefore, the high frequency characteristics can be improved as compared with the case where the signal wiring 10 is formed directly on the upper surface of the base 20.
 上述した支持体29は、例えば、図26(a),(b)に示すような形に形成されていてもよい。図26に示す支持体29は、矩形枠状のフレーム部290と、クロスバー291とを備えている。フレーム部290は、信号配線10の長さ方向に沿った長さを有する。これにより、支持体29は、クロスバー291の長さ方向に沿った長さを有する開口窓を有する。そして、支持体29は、フレーム部290の開口窓が凹所28と連通するようにして、ベース20の上面に接合されている。また、クロスバー291は、フレーム部290の長手方向両端側それぞれの内縁部同士をその中央部で一体に連結している。クロスバー291は、フレーム290の幅方向の両縁から離間している。図26に示す例においては、信号配線10は、クロスバー291を通ってフレーム部290の開口を跨ぐように形成されている。したがって、信号配線10は、クロスバー291の長さ方向に沿って設けられている。 The support 29 described above may be formed in a shape as shown in FIGS. 26 (a) and 26 (b), for example. A support 29 shown in FIG. 26 includes a frame portion 290 having a rectangular frame shape and a cross bar 291. The frame part 290 has a length along the length direction of the signal wiring 10. Thereby, the support body 29 has an opening window having a length along the length direction of the cross bar 291. The support 29 is joined to the upper surface of the base 20 so that the opening window of the frame portion 290 communicates with the recess 28. In addition, the cross bar 291 integrally connects the inner edge portions on both ends in the longitudinal direction of the frame portion 290 at the center portion. The cross bar 291 is separated from both edges in the width direction of the frame 290. In the example shown in FIG. 26, the signal wiring 10 is formed so as to straddle the opening of the frame portion 290 through the cross bar 291. Therefore, the signal wiring 10 is provided along the length direction of the cross bar 291.
 図26に示す支持体29においては、クロスバー291とフレーム部290とで囲まれる空間部が、支持体29を厚み方向に貫通する孔部292を構成している。この孔部292は、信号配線10に並行する形に形成されている。 26, the space surrounded by the cross bar 291 and the frame portion 290 constitutes a hole 292 that penetrates the support 29 in the thickness direction. The hole 292 is formed in parallel with the signal wiring 10.
 以上述べた図26に示す例では、孔部292が形成されていることによって、信号配線10とベース20との間の絶縁性がさらに向上する。よって、さらに高周波特性を向上することができる。特に、孔部292は、信号配線10に並行する形に形成されているため、配線構造がより同軸構造に近くなる。よって、高周波特性をさらに向上することができる。 In the example shown in FIG. 26 described above, the insulating property between the signal wiring 10 and the base 20 is further improved by forming the hole 292. Therefore, the high frequency characteristics can be further improved. In particular, since the hole 292 is formed in parallel with the signal wiring 10, the wiring structure becomes closer to the coaxial structure. Therefore, the high frequency characteristics can be further improved.
 ところで、図26に示す支持体29では、クロスバー291が長くなると、クロスバー291の機械的強度が低くなる。そのため、クロスバー291が破損してしまうおそれがある。そこで、図27(a),(b)に示すように、支持体29には、一対の補助クロスバー293を設けるようにしてもよい。図27に示す例においては、一対の補助クロスバー293は、クロスバー291の中央部と、フレーム部290の短手方向両端側それぞれの内縁部とを一体に連結している。このような図27に示す支持体29においては、補助クロスバー293によって、クロスバー291の破損を防止することができる。 By the way, in the support body 29 shown in FIG. 26, when the cross bar 291 becomes longer, the mechanical strength of the cross bar 291 becomes lower. For this reason, the cross bar 291 may be damaged. Therefore, as shown in FIGS. 27A and 27B, the support 29 may be provided with a pair of auxiliary cross bars 293. In the example shown in FIG. 27, the pair of auxiliary cross bars 293 integrally connect the center portion of the cross bar 291 and the inner edge portions of both ends of the frame portion 290 in the short direction. In such a support 29 shown in FIG. 27, the auxiliary crossbar 293 can prevent the crossbar 291 from being damaged.
 (実施形態3-5)
 本実施形態の配線構造では、主として機能部30が実施形態3-1と異なっている。なお、本実施形態のその他の構成は、実施形態3-1と同様であるから、実施形態3-1と同様の構成については説明を省略する。
Embodiment 3-5
In the wiring structure of the present embodiment, the functional unit 30 is mainly different from the embodiment 3-1. Since the other configuration of the present embodiment is the same as that of the embodiment 3-1, the description of the same configuration as that of the embodiment 3-1 is omitted.
 本実施形態における機能部30は、図28(a)~(c)に示すように、機能部30を厚み方向に貫通する第1の孔部37(以下、必要に応じて符号37Aで表す)と第2の孔部37(以下、必要に応じて符号38Bで表す)とを有している。第1の孔部37Aは、伝送線路10の左側に位置する第1の縁331に複数(図示例では7つずつ)形成されている。複数の第1の孔部37Aは、信号配線10の長さ方向に沿って等間隔で並んでいる。第2の孔部37Bは、信号配線10の右側に位置する第2の縁332に複数(図示例では7つずつ)形成されている。複数の孔部37Bは、信号配線10の長さ方向に沿って等間隔で並んでいる。このように、本実施形態における機能部30の開口31周辺には、孔部37A,37Bそれぞれが信号配線10の長さ方向に沿って複数形成されている。 As shown in FIGS. 28A to 28C, the functional unit 30 in the present embodiment includes a first hole 37 that penetrates the functional unit 30 in the thickness direction (hereinafter denoted by reference numeral 37A as necessary). And a second hole portion 37 (hereinafter, indicated by reference numeral 38B as necessary). A plurality of first holes 37 </ b> A (seven in the illustrated example) are formed on the first edge 331 located on the left side of the transmission line 10. The plurality of first hole portions 37 </ b> A are arranged at equal intervals along the length direction of the signal wiring 10. A plurality of second holes 37 </ b> B (seven in the illustrated example) are formed on the second edge 332 located on the right side of the signal wiring 10. The plurality of holes 37 </ b> B are arranged at equal intervals along the length direction of the signal wiring 10. As described above, a plurality of holes 37 </ b> A and 37 </ b> B are formed along the length direction of the signal wiring 10 around the opening 31 of the functional unit 30 in the present embodiment.
 本実施形態における接地線路11は、第4の導電部113Cと、第5の導電部114とが実施形態3-1と異なっている。すなわち、本実施形態における第4の導電部113Cは、複数の孔部37Aそれぞれの内側に形成され、第5の導電部114は、複数の孔部37Bそれぞれの内側に形成されている。なお、第3の導電部112Cは、信号配線10の幅方向に沿った方向における両端部それぞれが、第1の導電部110Cおよび第2の導電部111Cそれぞれと厚み方向で重なるように形成されている。そして、各孔部37Aは、カバー40と機能部30とを接合した際に、カバー40側の開口から第3の導電部112Cが臨み、ベース20側の開口から第1の導電部110Cが臨む位置に設けられる。また、各孔部37Bは、カバー40と機能部30とを接合した際に、カバー40側の開口から第3の導電部112Cが臨み、ベース20側の開口から第2の導電部111Cが臨む位置に設けられる。よって、カバー40と機能部30とを接合した際には、第1の導電部110Cと第3の導電部112Cとが第4の導電部113Cによって電気的に接続され、第2の導電部111Cと第3の導電部112Cとが第5の導電部114によって電気的に接続される。 The ground line 11 in the present embodiment is different from the embodiment 3-1 in the fourth conductive portion 113C and the fifth conductive portion 114. In other words, the fourth conductive portion 113C in the present embodiment is formed inside each of the plurality of hole portions 37A, and the fifth conductive portion 114 is formed inside each of the plurality of hole portions 37B. The third conductive portion 112C is formed such that both end portions in the direction along the width direction of the signal wiring 10 overlap with the first conductive portion 110C and the second conductive portion 111C in the thickness direction. Yes. When the cover 40 and the functional unit 30 are joined, each hole 37A faces the third conductive portion 112C from the opening on the cover 40 side, and the first conductive portion 110C faces from the opening on the base 20 side. Provided in position. In addition, when the cover 40 and the functional unit 30 are joined, each hole portion 37B faces the third conductive portion 112C from the opening on the cover 40 side, and the second conductive portion 111C faces from the opening on the base 20 side. Provided in position. Therefore, when the cover 40 and the functional unit 30 are joined, the first conductive unit 110C and the third conductive unit 112C are electrically connected by the fourth conductive unit 113C, and the second conductive unit 111C. And the third conductive portion 112C are electrically connected by the fifth conductive portion 114.
 以上述べたように、本実施形態の配線構造によれば、実施形態3-1と同様に、高周波信号の伝送ロスを低減することができる。また、容易に作製することができるようになる。 As described above, according to the wiring structure of the present embodiment, transmission loss of high-frequency signals can be reduced as in the case of Embodiment 3-1. Further, it can be easily manufactured.
 さらに、本実施形態の配線構造では、機能部30の第1の開口31周辺に、機能部30を厚み方向に貫通する孔部37が信号配線10の長さ方向に沿って複数形成されている。そして、接地線路11の第4の導電部113Cおよび第5の導電部114は、孔部37の内側に形成されている。そのため、本実施形態の配線構造によれば、第1の縁331及び第2の縁332の内側面それぞれに第4の導電部113Cおよび第5の導電部114を形成する場合に比べれば、第4の導電部113Cおよび第5の導電部114を容易に形成することができる。なお、本実施形態における孔部37の断面は正円形状となっているが、これはあくまでも一例である。また、各孔部37A,37Bは7つずつ形成されているが、これも一例に過ぎない。また、本実施形態の構成は、実施形態3-1以外の他の実施形態3-2~3-4にも適用することができる。 Furthermore, in the wiring structure of the present embodiment, a plurality of holes 37 that penetrate the functional unit 30 in the thickness direction are formed around the first opening 31 of the functional unit 30 along the length direction of the signal wiring 10. . The fourth conductive portion 113 </ b> C and the fifth conductive portion 114 of the ground line 11 are formed inside the hole portion 37. Therefore, according to the wiring structure of the present embodiment, compared with the case where the fourth conductive portion 113C and the fifth conductive portion 114 are formed on the inner surfaces of the first edge 331 and the second edge 332, respectively, The fourth conductive portion 113C and the fifth conductive portion 114 can be easily formed. In addition, although the cross section of the hole part 37 in this embodiment is a perfect circle shape, this is an example to the last. Moreover, although seven each of the hole portions 37A and 37B are formed, this is only an example. The configuration of the present embodiment can also be applied to the other embodiments 3-2 to 3-4 other than the embodiment 3-1.
 (実施形態3-6)
 本実施形態の配線構造では、主として機能部30が実施形態3-1と異なっている。なお、本実施形態のその他の構成は、実施形態3-1と同様であるから、実施形態3-1と同様の構成については説明を省略する。
Embodiment 3-6
In the wiring structure of the present embodiment, the functional unit 30 is mainly different from the embodiment 3-1. Since the other configuration of the present embodiment is the same as that of the embodiment 3-1, the description of the same configuration as that of the embodiment 3-1 is omitted.
 本実施形態における機能部30は、図29(a)~(c)に示すように、機能部30を厚み方向に貫通する接続スリット38A及び接続スリット38Bを有している。接続スリット38Aは、フレーム33の第1の縁331に形成されている。接続スリット38Bは、フレーム33の第2の縁332に形成されている。また、両接続スリット38A,38Bそれぞれは、信号配線10の長さ方向に沿って形成されている。このように、本実施形態の機能部30は、第1の縁331を有しており、この第1の縁331は接続スリット38Aが形成されており、この接続スリット38Aは、信号配線10の長さ方向に沿っている。同様に、本実施形態の機能部30は、第2の縁332を有しており、この第2の縁332は接続スリット38Bが形成されており、この接続スリット38Bは、信号配線10の長さ方向に沿っている。 The functional unit 30 in the present embodiment includes a connection slit 38A and a connection slit 38B that penetrate the functional unit 30 in the thickness direction, as shown in FIGS. 29 (a) to 29 (c). The connection slit 38 </ b> A is formed on the first edge 331 of the frame 33. The connection slit 38 </ b> B is formed on the second edge 332 of the frame 33. Further, each of the connection slits 38 </ b> A and 38 </ b> B is formed along the length direction of the signal wiring 10. As described above, the functional unit 30 of the present embodiment has the first edge 331, and the first edge 331 is formed with the connection slit 38 </ b> A, and the connection slit 38 </ b> A is connected to the signal wiring 10. Along the length direction. Similarly, the functional unit 30 of the present embodiment has a second edge 332, and a connection slit 38 </ b> B is formed on the second edge 332, and this connection slit 38 </ b> B is the length of the signal wiring 10. Along the direction.
 本実施形態における接地線路11は、第4の導電部113Cと、第5の導電部114Cとが実施形態3-1と異なっている。すなわち、本実施形態における第4の導電部113Cは、接続スリット38Aの内側に形成され、第5の導電部114Cは、接続スリット38Bの内側に形成されている。なお、第3の導電部112Cは、信号配線10の幅方向に沿った方向における両端部それぞれが、第1の導電部110Cおよび第2の導電部111Cそれぞれと厚み方向で重なる形に形成されている。そして、接続スリット38Aは、カバー40と機能部30とを接合した際に、カバー40側の開口から第3の導電部112Cが臨み、ベース20側の開口から第1の導電部110Cが臨む位置に設けられる。また、接続スリット38Bは、カバー40と機能部30とを接合した際に、カバー40側の開口から第3の導電部112Cが臨み、ベース20側の開口から第2の導電部111Cが臨む位置に設けられる。よって、カバー40と機能部30とを接合した際には、第1の導電部110Cと第3の導電部112Cとが第4の導電部113Cによって電気的に接続され、第2の導電部111Cと第3の導電部112Cとが第5の導電部114によって電気的に接続される。 The ground line 11 in this embodiment is different from Embodiment 3-1 in the fourth conductive portion 113C and the fifth conductive portion 114C. That is, the fourth conductive portion 113C in the present embodiment is formed inside the connection slit 38A, and the fifth conductive portion 114C is formed inside the connection slit 38B. The third conductive portion 112C is formed such that both end portions in the direction along the width direction of the signal wiring 10 overlap each of the first conductive portion 110C and the second conductive portion 111C in the thickness direction. Yes. The connection slit 38 </ b> A is a position where the third conductive portion 112 </ b> C faces the opening on the cover 40 side and the first conductive portion 110 </ b> C faces the opening on the base 20 side when the cover 40 and the functional portion 30 are joined. Is provided. The connection slit 38B is a position where the third conductive portion 112C faces the opening on the cover 40 side and the second conductive portion 111C faces the opening on the base 20 side when the cover 40 and the functional portion 30 are joined. Is provided. Therefore, when the cover 40 and the functional unit 30 are joined, the first conductive unit 110C and the third conductive unit 112C are electrically connected by the fourth conductive unit 113C, and the second conductive unit 111C. And the third conductive portion 112C are electrically connected by the fifth conductive portion 114.
 以上述べたように、本実施形態の配線構造によれば、実施形態3-1と同様に、高周波信号の伝送ロスを低減することができる。また、容易に作製することができるようになる。 As described above, according to the wiring structure of the present embodiment, transmission loss of high-frequency signals can be reduced as in the case of Embodiment 3-1. Further, it can be easily manufactured.
 さらに、本実施形態の配線構造では、機能部30の第1の開口31周辺に、機能部30を厚み方向に貫通する接続スリット38A,38Bが、信号配線10の長さ方向に沿って形成されている。そして、接地線路11の第4の導電部113Cおよび第5の導電部114は、接続スリット38A,38Bの内側に形成されている。そのため、本実施形態の配線構造によれば、機能部30の第1の開口31の内側面に第4の導電部113Cおよび第5の導電部114を形成する場合に比べれば、第4の導電部113Cおよび第5の導電部114を容易に形成することができる。また、実施形態3-5のように機能部30の第1の開口31周辺に孔部37を形成して、当該孔部37に第4の導電部113Cおよび第5の導電部114を形成する場合に比べれば、高周波特性を向上することができる。 Furthermore, in the wiring structure of the present embodiment, connection slits 38 </ b> A and 38 </ b> B that penetrate the functional unit 30 in the thickness direction are formed around the first opening 31 of the functional unit 30 along the length direction of the signal wiring 10. ing. The fourth conductive portion 113C and the fifth conductive portion 114 of the ground line 11 are formed inside the connection slits 38A and 38B. Therefore, according to the wiring structure of the present embodiment, the fourth conductive portion 113 </ b> C and the fifth conductive portion 114 are formed on the inner surface of the first opening 31 of the functional unit 30, compared to the case where the fourth conductive portion 113 </ b> C is formed. The portion 113C and the fifth conductive portion 114 can be easily formed. Further, as in the embodiment 3-5, the hole 37 is formed around the first opening 31 of the functional unit 30, and the fourth conductive portion 113C and the fifth conductive portion 114 are formed in the hole 37. Compared to the case, the high frequency characteristics can be improved.
 上記の各実施形態で示された個別の特徴は、任意に組み合わせることが可能である。 The individual features shown in the above embodiments can be arbitrarily combined.

Claims (33)

  1.  ベースの上面に高周波信号を伝送するための伝送線路を備えたMEMSデバイスの配線構造であって、
     前記ベースは、その上面に、前記伝送線路から電気的に絶縁された上面グラウンド電極を有しており、この上面グラウンド電極は、前記伝送線路の周囲を囲み、
     前記ベースは、その厚み方向に沿って形成された貫通孔の内部に配置される貫通配線を備えており、前記貫通配線は、前記伝送線路に電気的に接続されており、
     前記ベースは、その下面に、前記貫通配線と電気的に接続された外部端子と、当該外部端子から電気的に絶縁された下面グラウンド電極とを有しており、この下面グラウンド電極は前記外部端子を囲み、
     前記ベースは、その厚み方向に沿って形成されており且つ前記貫通配線から電気的に絶縁された第1シールドを備えており、前記第1シールドは、前記貫通配線の周囲を囲むように前記ベースに配置されており、
     前記第1シールドは、前記上面グラウンド電極および前記下面グラウンド電極のうちの少なくとも一方と電気的に接続されていることを特徴とする配線構造。
    A wiring structure of a MEMS device including a transmission line for transmitting a high-frequency signal on an upper surface of a base,
    The base has an upper surface ground electrode electrically insulated from the transmission line on the upper surface, and the upper surface ground electrode surrounds the periphery of the transmission line,
    The base includes a through wiring disposed inside a through hole formed along the thickness direction, and the through wiring is electrically connected to the transmission line,
    The base has, on its lower surface, an external terminal electrically connected to the through wiring and a lower surface ground electrode electrically insulated from the external terminal, and the lower surface ground electrode is the external terminal. Enclose
    The base includes a first shield formed along a thickness direction of the base and electrically insulated from the through wiring, and the first shield surrounds the periphery of the through wiring. Are located in
    The wiring structure according to claim 1, wherein the first shield is electrically connected to at least one of the upper surface ground electrode and the lower surface ground electrode.
  2.  前記ベースは、複数の前記第1シールドを有しており、
     前記複数の第1シールドは、前記貫通配線を囲む円に沿って配列されており、隣の第1シールドから所定の距離で離間しており、
     前記高周波信号は、最も高い周波数を有する第1信号を有しており、
     前記所定の距離は、前記第1信号の波長の1/4未満の長さであることを特徴とする請求項1に記載の配線構造。
    The base has a plurality of the first shields,
    The plurality of first shields are arranged along a circle surrounding the through-wiring, and are separated from a neighboring first shield by a predetermined distance,
    The high-frequency signal has a first signal having the highest frequency;
    The wiring structure according to claim 1, wherein the predetermined distance is a length less than ¼ of the wavelength of the first signal.
  3.  前記ベースは、さらに第2シールドを有しており、この第2シールドは、ベースの厚み方向において前記伝送線路と重複するように前記ベースの内部に設けられており、
     前記第2シールドの上端は、前記伝送線路から離間しており、これにより前記伝送線路と電気的に絶縁されており、
     前記第2シールドの下端は、前記下面グラウンド電極と電気的に接続されていることを特徴とする請求項1に記載の配線構造。
    The base further includes a second shield, and the second shield is provided inside the base so as to overlap the transmission line in the thickness direction of the base.
    The upper end of the second shield is separated from the transmission line, thereby being electrically insulated from the transmission line,
    The wiring structure according to claim 1, wherein a lower end of the second shield is electrically connected to the lower surface ground electrode.
  4.  前記ベースは、その前記下面に、さらに取り出し配線を有しており、この取り出し配線は、前記貫通配線と電気的に接続されており、
     前記外部端子は、前記取り出し配線を介して前記貫通配線と接続されており、
     前記ベースは、さらに、第3シールドを備えており、この第3シールドは、ベースの厚み方向において前記取り出し配線と重複し、
     前記第3シールドの下端は、前記取り出し配線から離間しており、これにより前記取り出し配線と電気的に絶縁されており、
     前記第3シールドの上端は、前記上面グラウンド電極に電気的に接続されていることを特徴とする請求項1に記載の配線構造。
    The base further has an extraction wiring on the lower surface thereof, and the extraction wiring is electrically connected to the through wiring,
    The external terminal is connected to the through wiring through the extraction wiring,
    The base further includes a third shield, and the third shield overlaps the extraction wiring in the thickness direction of the base,
    The lower end of the third shield is separated from the extraction wiring, and is thereby electrically insulated from the extraction wiring,
    The wiring structure according to claim 1, wherein an upper end of the third shield is electrically connected to the upper surface ground electrode.
  5.  前記第1シールドは、前記貫通配線を囲む円に沿って形成されていることを特徴とする請求項1に記載の配線構造。
    The wiring structure according to claim 1, wherein the first shield is formed along a circle surrounding the through wiring.
  6.  前記ベースは、前記伝送線路の下方を覆う第4シールドを備えることを特徴とする請求項1に記載の配線構造。
    The wiring structure according to claim 1, wherein the base includes a fourth shield that covers a lower portion of the transmission line.
  7.  前記ベースは、当該ベースの厚み方向に貫通した第1孔部と第2孔部とを有しており、前記第1孔部及び前記第2孔部のそれぞれは、前記伝送線路の幅方向に沿った幅を有しており、
     前記伝送線路は、前記第1孔部と前記第2孔部との間に位置し、
     前記ベースは、さらに第1導電体と第2導電体と第3導電体とを有しており、
     前記第1導電体及び前記第2導電体は、それぞれ前記第1孔部及び前記第2孔部に設けられており、
     前記第3導電体は、前記ベースの厚み方向に置いて前記伝送線路と重複するように前記ベースの下面に設けられており、前記第1導電体及び前記第2導電体のそれぞれと電気的に接続されており、前記第1導電体は前記第2導電体と前記第3導電体と協働して前記第4シールドを構成し、
     前記第1孔部及び前記第2孔部の下端の幅は、前記第1孔部及び前記第2孔部の上端の幅のそれぞれよりも大きいことを特徴とする請求項6に記載の配線構造。
    The base has a first hole and a second hole penetrating in the thickness direction of the base, and each of the first hole and the second hole is in the width direction of the transmission line. Has a width along
    The transmission line is located between the first hole and the second hole,
    The base further includes a first conductor, a second conductor, and a third conductor,
    The first conductor and the second conductor are provided in the first hole and the second hole, respectively.
    The third conductor is provided on the lower surface of the base so as to overlap the transmission line in the thickness direction of the base, and is electrically connected to each of the first conductor and the second conductor. The first conductor constitutes the fourth shield in cooperation with the second conductor and the third conductor;
    The wiring structure according to claim 6, wherein widths of lower ends of the first hole portion and the second hole portion are larger than widths of upper ends of the first hole portion and the second hole portion, respectively. .
  8.  前記第1孔部及び前記第2孔部のそれぞれは、スリット状に形成されており、前記伝送線路に沿って形成されていることを特徴とする請求項7に記載の配線構造。
    The wiring structure according to claim 7, wherein each of the first hole and the second hole is formed in a slit shape and is formed along the transmission line.
  9.  前記ベースは、複数の前記第1孔部及び複数の前記第2孔部を有しており、
     前記第1孔部及び前記第2孔部のそれぞれは、前記伝送線路の長さ方向に沿って所定の間隔で配列されており、
     前記所定の間隔は、前記高周波のうち最も周波数の高い信号の波長の1/4未満であることを特徴とする請求項7に記載の配線構造。
    The base has a plurality of the first holes and a plurality of the second holes,
    Each of the first hole and the second hole is arranged at a predetermined interval along the length direction of the transmission line,
    The wiring structure according to claim 7, wherein the predetermined interval is less than ¼ of a wavelength of a signal having the highest frequency among the high frequencies.
  10.  前記上面グラウンド電極は、前記ベースの上面に形成された第4導電体及び第5導電体とからなり、当該第4導電体は、前記第5導電体と協働して前記伝送線路を囲み、
     前記第4導電体及び前記第5導電体は、前記第1導電体と前記第2導電体と電気的に接続されていることを特徴とする請求項7に記載の配線構造。
    The upper surface ground electrode includes a fourth conductor and a fifth conductor formed on the upper surface of the base, and the fourth conductor surrounds the transmission line in cooperation with the fifth conductor,
    The wiring structure according to claim 7, wherein the fourth conductor and the fifth conductor are electrically connected to the first conductor and the second conductor.
  11.  前記MEMSデバイスはさらに、前記ベースの上に設けられる機能部と、当該機能部の上に設けられるカバーと、前記機能部及び前記カバーのそれぞれに設けられる第5シールド及び第6シールドを有しており、
     前記第4シールドは前記第5シールドと前記第6シールドと協働して、前記伝送線路の周囲を囲むことを特徴とする請求項7から10のいずれかに記載の配線構造。
    The MEMS device further includes a functional unit provided on the base, a cover provided on the functional unit, and a fifth shield and a sixth shield provided on each of the functional unit and the cover. And
    The wiring structure according to claim 7, wherein the fourth shield surrounds the transmission line in cooperation with the fifth shield and the sixth shield.
  12.  前記機能部は、前記上面グラウンド電極によって前記ベースと接合されていることを特徴とする請求項11に記載の配線構造。
    The wiring structure according to claim 11, wherein the functional part is joined to the base by the upper surface ground electrode.
  13.  前記ベースは、その上面に穴部が形成されており、
     前記伝送線路の全ては、前記穴部の底に配置されていることを特徴とする請求項6に記載の配線構造。
    The base has a hole formed on the upper surface thereof,
    All the said transmission lines are arrange | positioned at the bottom of the said hole, The wiring structure of Claim 6 characterized by the above-mentioned.
  14.  前記第1孔部及び前記第2孔部は、前記ベースの上面から下面に向かうにつれて、前記幅が段階的に大きくなることを特徴とする請求項7に記載の配線構造。
    The wiring structure according to claim 7, wherein the width of the first hole and the second hole increases stepwise from the upper surface to the lower surface of the base.
  15.  前記機能部はフレームを有しており、これにより開口を有しており、
     前記伝送線路は、前記フレームの内側に位置するように配置されており、
     前記カバーは、前記開口を介して伝送線路と対向する下面領域を有しており、
     前記フレームは、前記伝送線路の長さ方向に沿って延出する第1の縁および第2の縁を有していることを特徴とする請求項7に記載の配線構造。
    The functional part has a frame, thereby having an opening,
    The transmission line is arranged to be located inside the frame,
    The cover has a lower surface region facing the transmission line through the opening,
    The wiring structure according to claim 7, wherein the frame has a first edge and a second edge extending along a length direction of the transmission line.
  16.  前記フレームは、前記第1の縁および前記第2の縁に、第6導電体と第7導電体とが設けられており、前記第6導電体は、前記第7導電体と協働して前記第5シールドを定義し、
     前記第6導電体及び前記第7導電体は、前記第1導電体及び前記第2導電体のそれぞれと電気的に接続されており、
     前記カバーは、前記下面領域に第8導電体が設けられており、当該第8導電体は前記第6シールドを定義し、当該第8導電体は、前記第6導電体及び前記第7導電体の両方と電気的に接続されていることを特徴とする請求項15に記載の配線構造。
    The frame is provided with a sixth conductor and a seventh conductor at the first edge and the second edge, and the sixth conductor cooperates with the seventh conductor. Defining the fifth shield;
    The sixth conductor and the seventh conductor are electrically connected to the first conductor and the second conductor, respectively.
    The cover is provided with an eighth conductor in the lower surface region, the eighth conductor defines the sixth shield, and the eighth conductor includes the sixth conductor and the seventh conductor. The wiring structure according to claim 15, wherein the wiring structure is electrically connected to both.
  17.  前記第1の縁および前記第2の縁のそれぞれには、前記フレームの厚さ方向に沿って貫通して形成された接続孔が形成されており、
     前記第6導電体及び前記第7導電体は、前記複数の接続孔にそれぞれ設けられていることを特徴とする請求項16に記載の配線構造。
    Each of the first edge and the second edge is formed with a connection hole formed penetrating along the thickness direction of the frame,
    The wiring structure according to claim 16, wherein the sixth conductor and the seventh conductor are provided in the plurality of connection holes, respectively.
  18.  前記第1の縁及び前記第2の縁のそれぞれには、接続スリットが形成されており、当該接続スリットは、前記フレームの厚さ方向に沿って貫通して形成されており且つ前記伝送線路の長さ方向に沿った長さを有しており、
     前記第6導電体及び前記第7導電体は、前記接続スリットの内側にそれぞれ設けられていることを特徴とする請求項16に記載の配線構造。
    Each of the first edge and the second edge is formed with a connection slit, and the connection slit is formed through the thickness direction of the frame and the transmission line Has a length along the length direction,
    The wiring structure according to claim 16, wherein the sixth conductor and the seventh conductor are respectively provided inside the connection slit.
  19.  前記MEMSデバイスはさらに、前記ベースの上に設けられる機能部を有しており、
     前記機能部には、第5シールドが設けられており、当該第5シールドは、前記伝送線路の長さ方向に沿った長さを有しており、
     前記第4シールドは、前記第5シールドと協働して、前記伝送線路の周囲を囲むことを特徴とする請求項7から10のいずれかに記載の配線構造。
    The MEMS device further includes a functional unit provided on the base,
    The functional part is provided with a fifth shield, and the fifth shield has a length along the length direction of the transmission line,
    The wiring structure according to claim 7, wherein the fourth shield surrounds the periphery of the transmission line in cooperation with the fifth shield.
  20.  前記機能部は、その下面に、前記伝送線路の長さ方向に沿った長さを有する第1の凹部を有しており、当該第1の凹部の長さは、前記伝送線路の長さよりも大きく、
     前記凹部は、前記伝送線路の長さ方向に沿って形成された第1の内側面及び第2の内側面と、底面とを有しており、
     前記機能部は、前記第1の内側面及び前記第2の内側面に、第6導電体及び第7導電体がそれぞれ設けられており、前記第1の凹部の底面に第8導電体が設けられており、
     前記第6導電体と前記第7導電体と前記第8導電体とは、前記第5シールドを定義し、
     前記第6導電体及び前記第7導電体は、それぞれ前記第1導電体及び前記第2導電体と電気的に接続されており、前記第8導電体は、前記第6導電体及び前記第7導電体と電気的に接続されていることを特徴とする請求項19に記載の配線構造。
    The functional unit has a first recess having a length along a length direction of the transmission line on a lower surface thereof, and the length of the first recess is larger than the length of the transmission line. big,
    The recess has a first inner surface and a second inner surface formed along the length direction of the transmission line, and a bottom surface.
    The functional section includes a sixth conductor and a seventh conductor on the first inner surface and the second inner surface, respectively, and an eighth conductor on the bottom surface of the first recess. And
    The sixth conductor, the seventh conductor, and the eighth conductor define the fifth shield;
    The sixth conductor and the seventh conductor are electrically connected to the first conductor and the second conductor, respectively, and the eighth conductor is the sixth conductor and the seventh conductor, respectively. The wiring structure according to claim 19, wherein the wiring structure is electrically connected to a conductor.
  21.  前記機能部は、さらに第2の凹部が形成されており、この第2の凹部は、前記第1の凹部の底に形成されており、
     前記第2の凹部は、前記伝送線路と対向する位置に位置することを特徴とする請求項20に記載の配線構造。
    The functional part is further formed with a second recess, and the second recess is formed at the bottom of the first recess,
    The wiring structure according to claim 20, wherein the second recess is located at a position facing the transmission line.
  22.  前記ベースは、その上面に凹部が形成されており、当該凹部に重複するようにベース上に配置された支持体を有しており、
     前記凹部は、前記伝送線路の幅よりも大きい幅を有しており、
     前記伝送線路は、前記支持体の上に配置されており、
     前記第1孔部及び前記第2孔部は、前記凹部の底面から前記ベースの下面に貫通して形成されており、
     前記凹部は、前記伝送線路の長さ方向に沿って形成された第1の内側面および第2の内側面を有しており、
     前記ベースは、前記第1の内側面および前記第2の内側面に、第9導電体及び第10導電体がそれぞれ設けられており、
     前記第9導電体は、前記第1導電体及び前記第6導電体と電気的に接続されており、
     前記第10導電体は、前記第2導電体及び前記第7導電体と電気的に接続されていることを特徴とする請求項7に記載の配線構造。
    The base has a recess formed on the upper surface thereof, and has a support body disposed on the base so as to overlap the recess.
    The recess has a width greater than the width of the transmission line;
    The transmission line is disposed on the support;
    The first hole and the second hole are formed so as to penetrate from the bottom surface of the recess to the lower surface of the base,
    The recess has a first inner surface and a second inner surface formed along the length direction of the transmission line,
    The base is provided with a ninth conductor and a tenth conductor on the first inner surface and the second inner surface, respectively.
    The ninth conductor is electrically connected to the first conductor and the sixth conductor;
    The wiring structure according to claim 7, wherein the tenth conductor is electrically connected to the second conductor and the seventh conductor.
  23.  前記支持体は、フレーム部分とクロスバーとを備えており、
     前記フレーム部分は、前記伝送線路の長さ方向に沿った長さを有しており、
     前記クロスバーは、前記フレーム部分の幅方向の両縁から離間しており且つ、フレーム部分の長さ方向の両縁と接続されており、これにより開口窓が前記クロスバーの両側に形成され、
     前記伝送線路は、前記クロスバーに沿って配置されていることを特徴とする請求項22に記載の配線構造。
    The support includes a frame portion and a crossbar,
    The frame portion has a length along the length direction of the transmission line,
    The crossbar is separated from both edges in the width direction of the frame portion and is connected to both edges in the length direction of the frame portion, whereby opening windows are formed on both sides of the crossbar,
    The wiring structure according to claim 22, wherein the transmission line is disposed along the crossbar.
  24.  前記ベースは、その上面に溝が形成されており、この溝は前記伝送線路の両側それぞれに設けられており、
     前記溝は、前記伝送線路の長さ方向に沿っており、前記伝送線路の長さ方向に沿った第1の内側面と、第2の内側面と、底面とを有しており、当該第2の内側面は、前記伝送線路から第1の内側面よりも離れて位置しており、
     前記ベースは、前記第2の内側面および底面それぞれに、第1導電部と第2導電部とが設けられており、前記第1導電部と前記第2導電部とは、前記第4シールドを定義することを特徴とする請求項6に記載の配線構造。
    The base has a groove formed on the upper surface thereof, and the groove is provided on each side of the transmission line.
    The groove is along the length direction of the transmission line, and has a first inner surface, a second inner surface, and a bottom surface along the length direction of the transmission line. The inner surface of 2 is located away from the first inner surface from the transmission line,
    The base is provided with a first conductive portion and a second conductive portion on each of the second inner side surface and the bottom surface, and the first conductive portion and the second conductive portion are configured to connect the fourth shield. The wiring structure according to claim 6, wherein the wiring structure is defined.
  25.  前記MEMSデバイスはさらに、前記ベースの上に設けられる機能部と、当該機能部の上に設けられるカバーと、前記機能部及び前記カバーのそれぞれに設けられる第5シールド及び第6シールドを有しており、
     前記第4シールドは前記第5シールドと前記第6シールドと協働して、前記伝送線路の周囲を囲むことを特徴とする請求項24に記載の配線構造。
    The MEMS device further includes a functional unit provided on the base, a cover provided on the functional unit, and a fifth shield and a sixth shield provided on each of the functional unit and the cover. And
    The wiring structure according to claim 24, wherein the fourth shield surrounds the transmission line in cooperation with the fifth shield and the sixth shield.
  26.  前記機能部は、フレームを有しており、これにより開口を有し、
     前記伝送線路は、前記フレームの内側に位置するように配置されており、
     前記カバーは、前記開口を介して伝送線路と対向する下面領域を有しており、
     前記カバーは、前記下面領域に第3導電部が設けられており、当該第3導電部は前記第6シールドを定義し、
     前記フレームは、前記伝送線路の長さ方向に沿って延出する第1の縁及び第2の縁を有しており、
     前記フレームは、前記第1の縁及び前記第2の縁に、第4導電部及び第5導電部がそれぞれ設けられており、当該第4導電部と当該第5導電部は、前記第5シールドを定義し、
     前記第4導電部は、前記第1導電部及び前記第3導電部と電気的に接続されており、
     前記第5導電部は、前記第2導電部及び前記第3導電部と電気的に接続されていることを特徴とする請求項25に記載の配線構造。
    The functional part has a frame, thereby having an opening,
    The transmission line is arranged to be located inside the frame,
    The cover has a lower surface region facing the transmission line through the opening,
    The cover is provided with a third conductive portion in the lower surface region, and the third conductive portion defines the sixth shield,
    The frame has a first edge and a second edge extending along a length direction of the transmission line;
    The frame is provided with a fourth conductive portion and a fifth conductive portion on the first edge and the second edge, respectively, and the fourth conductive portion and the fifth conductive portion are connected to the fifth shield. Define
    The fourth conductive part is electrically connected to the first conductive part and the third conductive part,
    26. The wiring structure according to claim 25, wherein the fifth conductive portion is electrically connected to the second conductive portion and the third conductive portion.
  27.  前記ベースは、さらに第6導電部を有しており、
     前記第6導電部は、前記第1導電部及び前記第2導電部と電気的に接続するように前記ベースの内部に配置されていることを特徴とする請求項24に記載の配線構造。
    The base further includes a sixth conductive portion,
    The wiring structure according to claim 24, wherein the sixth conductive portion is disposed inside the base so as to be electrically connected to the first conductive portion and the second conductive portion.
  28.  前記ベースは、その上面に凹所が形成されており、当該凹所と重複するように前記ベース上に配置された支持体を有しており、
     前記凹所は、その内面に導電部が設けられており、
     前記凹所は、前記伝送線路の幅よりも大きい幅を有しており、
     前記伝送線路は、前記支持体の上に配置されていることを特徴とする請求項6に記載の配線構造。
    The base has a recess formed on an upper surface thereof, and has a support body disposed on the base so as to overlap the recess.
    The recess is provided with a conductive portion on its inner surface,
    The recess has a width greater than the width of the transmission line;
    The wiring structure according to claim 6, wherein the transmission line is disposed on the support.
  29.  前記支持体は、フレーム部分とクロスバーとを備えており、
     前記フレーム部分は、前記伝送線路の長さ方向に沿った長さを有しており、
     前記クロスバーは、前記フレーム部分の幅方向の両縁から離間しており且つ、フレーム部分の長さ方向の両縁と接続されており、これにより開口窓が前記クロスバーの両側に形成され、
     前記伝送線路は、前記クロスバーに沿って配置されていることを特徴とする請求項28に記載の配線構造。
    The support includes a frame portion and a crossbar,
    The frame portion has a length along the length direction of the transmission line,
    The crossbar is separated from both edges in the width direction of the frame portion and is connected to both edges in the length direction of the frame portion, whereby opening windows are formed on both sides of the crossbar,
    The wiring structure according to claim 28, wherein the transmission line is arranged along the crossbar.
  30.  前記各開口窓は、前記伝送線路の長さ方向に沿った形を有することを特徴とする請求項23または29に記載の配線構造。
    30. The wiring structure according to claim 23 or 29, wherein each opening window has a shape along a length direction of the transmission line.
  31.  前記第1の縁および前記第2の縁のそれぞれには、前記フレームの厚み方向において貫通する複数の孔部が形成されており、この複数の孔部は、前記伝送線路の長さ方向に沿って配列されており、
     前記第4の導電部及び前記第5の導電部は、前記孔部の中に設けられていることを特徴とする請求項26に記載の配線構造。
    A plurality of holes penetrating in the thickness direction of the frame are formed in each of the first edge and the second edge, and the plurality of holes extend along the length direction of the transmission line. Are arranged,
    27. The wiring structure according to claim 26, wherein the fourth conductive portion and the fifth conductive portion are provided in the hole portion.
  32.  前記第1の縁および前記第2の縁のそれぞれには、接続スリットが形成されており、前記接続スリットは、前記フレームの厚さ方向に沿って貫通して形成されており且つ前記伝送線路の長さ方向に沿った長さを有しており、
     前記第4導電部及び前記第5導電部は、前記接続スリットにそれぞれ設けられていることを特徴とする請求項26に記載の配線構造。
    A connection slit is formed in each of the first edge and the second edge, and the connection slit is formed through the thickness direction of the frame and the transmission line Has a length along the length direction,
    27. The wiring structure according to claim 26, wherein the fourth conductive portion and the fifth conductive portion are provided in the connection slit, respectively.
  33.  前記ベースと前記機能部と前記カバーとを備えるマイクロリレーであって、
     当該マイクロリレーは電磁石装置を備えており、
     前記ベースは、一対の前記伝送線路と、一対の固定接点とを有しており、一対の前記固定接点は、一対の前記伝送線路のそれぞれと電気的に接続されており、
     前記機能部は、さらにアーマチュアを有しており、当該アーマチュアは、可動板と磁性板と可動接点とを有しており、当該磁性板は、前記可動板に取り付けられており、前記可動接点は前記一対の固定接点と対向するように前記可動板に配置されており、
     前記アーマチュアは、前記可動板が第1位置と第2位置との間で移動可能となるように前記フレームの内側に配置されており、前記可動板が前記第1位置に位置するときには、前記可動接点は両方の固定接点と接触し、前記可動板が前記第2位置に位置するときに刃前記可動接点は両方の前記固定接点から離間し、
     前記電磁石装置は、前記カバーに設けられており、コイルと当該コイルに電流を供給するための一対のコイル端子とを有しており、前記コイルは、前記コイル端子を介して電流が供給されたときに前記磁性板を移動させる磁場を発生させ、これにより前記可動板を前記第1位置または前記第2位置に移動させることを特徴とする請求項11に記載の配線構造を有するマイクロリレー。
    A micro relay comprising the base, the functional unit, and the cover,
    The micro relay has an electromagnet device,
    The base has a pair of transmission lines and a pair of fixed contacts, and the pair of fixed contacts are electrically connected to each of the pair of transmission lines,
    The functional unit further includes an armature, the armature includes a movable plate, a magnetic plate, and a movable contact, and the magnetic plate is attached to the movable plate, and the movable contact is It is arranged on the movable plate so as to face the pair of fixed contacts,
    The armature is disposed inside the frame so that the movable plate can move between a first position and a second position, and when the movable plate is positioned at the first position, the movable arm is A contact is in contact with both fixed contacts, and the blade is moved away from both of the fixed contacts when the movable plate is in the second position;
    The electromagnet device is provided on the cover and includes a coil and a pair of coil terminals for supplying current to the coil, and the coil is supplied with current via the coil terminal. 12. The microrelay having a wiring structure according to claim 11, wherein a magnetic field that sometimes moves the magnetic plate is generated, thereby moving the movable plate to the first position or the second position.
PCT/JP2009/071596 2008-12-26 2009-12-25 Wiring structure and micro relay comprising same WO2010074232A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008-332912 2008-12-26
JP2008-332913 2008-12-26
JP2008332913 2008-12-26
JP2008-332911 2008-12-26
JP2008332912A JP2010149268A (en) 2008-12-26 2008-12-26 Wiring structure and mems relay
JP2008332911 2008-12-26
JP2009073087A JP2010226552A (en) 2009-03-25 2009-03-25 Transmission line
JP2009-073087 2009-03-25
JP2009151612A JP2010170981A (en) 2008-12-26 2009-06-25 Wiring structure and mems relay
JP2009-151612 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010074232A1 true WO2010074232A1 (en) 2010-07-01

Family

ID=42287835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071596 WO2010074232A1 (en) 2008-12-26 2009-12-25 Wiring structure and micro relay comprising same

Country Status (1)

Country Link
WO (1) WO2010074232A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114730649A (en) * 2019-11-20 2022-07-08 株式会社自动网络技术研究所 Wiring member arrangement structure and wiring member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04336702A (en) * 1991-05-14 1992-11-24 Mitsubishi Electric Corp Package
JPH0685158A (en) * 1992-09-07 1994-03-25 Matsushita Electric Ind Co Ltd Electric transmission line and manufacture thereof
JP2005216556A (en) * 2004-01-27 2005-08-11 Matsushita Electric Works Ltd Micro relay
JP2007060714A (en) * 2006-10-30 2007-03-08 Kyocera Corp High-frequency line-waveguide converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04336702A (en) * 1991-05-14 1992-11-24 Mitsubishi Electric Corp Package
JPH0685158A (en) * 1992-09-07 1994-03-25 Matsushita Electric Ind Co Ltd Electric transmission line and manufacture thereof
JP2005216556A (en) * 2004-01-27 2005-08-11 Matsushita Electric Works Ltd Micro relay
JP2007060714A (en) * 2006-10-30 2007-03-08 Kyocera Corp High-frequency line-waveguide converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114730649A (en) * 2019-11-20 2022-07-08 株式会社自动网络技术研究所 Wiring member arrangement structure and wiring member
CN114730649B (en) * 2019-11-20 2024-04-09 株式会社自动网络技术研究所 Wiring member arrangement structure and wiring member

Similar Documents

Publication Publication Date Title
US7292124B2 (en) Variable resonator and variable phase shifter
EP2905839B1 (en) Waveguide-to-microstrip transition
JP3750335B2 (en) Band stop dielectric filter, dielectric duplexer, and communication device
JP3841305B2 (en) Variable resonator and variable phase shifter
US8525623B2 (en) Integrated electromechanical relays
US6211756B1 (en) Electromechanical relay and method of matching the impedance of the relay with the impedance of a signal source
US6717494B2 (en) Printed-circuit board, coaxial cable, and electronic device
WO2010074232A1 (en) Wiring structure and micro relay comprising same
JP4148423B2 (en) Dielectric device
WO2011145549A1 (en) Structure provided with wiring structure, and mems relay
KR100326949B1 (en) Dielectric filter, transmission/reception sharing device and communication device
JP2010226450A (en) Transmission line
JP2010226552A (en) Transmission line
JP2001185912A (en) Non-reciprocal circuit element and communication device
JP2010170981A (en) Wiring structure and mems relay
WO2010110315A1 (en) Transmission line
JP2010225431A (en) Transmission line
JP2010149268A (en) Wiring structure and mems relay
WO2023176780A1 (en) Electronic component
JPH0731480Y2 (en) Switch for transmission line
WO2010074221A1 (en) Micro relay
JP3364781B2 (en) Magnetic body for latching circulator
JP2011096409A (en) Contact device, relay using the same, and micro relay
JP4702325B2 (en) Micro relay
EP1267481B1 (en) Multi-frequency dielectric resonator oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09835028

Country of ref document: EP

Kind code of ref document: A1