WO2010073665A1 - Air amplifier, air circulation circuit - Google Patents

Air amplifier, air circulation circuit Download PDF

Info

Publication number
WO2010073665A1
WO2010073665A1 PCT/JP2009/007187 JP2009007187W WO2010073665A1 WO 2010073665 A1 WO2010073665 A1 WO 2010073665A1 JP 2009007187 W JP2009007187 W JP 2009007187W WO 2010073665 A1 WO2010073665 A1 WO 2010073665A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
chamber
amplifier according
suction port
passage
Prior art date
Application number
PCT/JP2009/007187
Other languages
French (fr)
Japanese (ja)
Inventor
西本昌司
Original Assignee
東保
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008336159A external-priority patent/JP2012047188A/en
Priority claimed from JP2008336157A external-priority patent/JP2012047187A/en
Priority claimed from JP2008336158A external-priority patent/JP2012047046A/en
Priority claimed from JP2008336160A external-priority patent/JP2012047189A/en
Priority claimed from JP2008336156A external-priority patent/JP2012047186A/en
Application filed by 東保 filed Critical 東保
Publication of WO2010073665A1 publication Critical patent/WO2010073665A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/15Pneumatic energy storages, e.g. pressure air tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to an air amplifier that amplifies an air flow, and an air circulation circuit in which the air amplifier is arranged and outputs power by an air motor.
  • the current power used as a conventional technology is basically an internal combustion engine that generates power by burning fossil fuel. For this reason, the global environment is worsening and is regarded as a problem. In particular, there are many problems such as CO2 which has a great impact on global warming and NOX which has a great impact on human health. In addition, bioenergy research is being conducted as a solution to fossil fuel depletion, but it is far from solving the problem. Establishing an air circulation circuit makes it possible to put the power of the air motor into practical use and contribute to solving problems.
  • the problem to be solved is the problem of exhaustion of fossil fuel as an energy source.
  • Various researches such as bioenergy have been conducted as alternative fuels, but they are far from solving the problem.
  • a solution to this problem requires a change of mindset.
  • the present invention that achieves the above object has a passage formed inside and through which a main air flow passes, an air suction port provided on the outer periphery of the passage, a secondary air inlet, and the air An air box that covers the periphery of the suction port and accumulates secondary air supplied to the air suction port, and the main air flow passes through the passage route so that a negative pressure is generated in the passage route.
  • the air amplifier is configured to suck the secondary air in the air box generated by the negative pressure toward the passage route through the air suction port.
  • a plurality of the air suction ports are provided on an outer periphery of the passage route, and the air box collectively covers the plurality of the air suction ports.
  • the air amplifier of the present invention that achieves the above object is characterized in that a check valve that suppresses the outflow of air to the outside is provided in the vicinity of the secondary air inlet in the air box.
  • the air suction port is provided with a check valve that suppresses the outflow of air from the passage path side to the air box side.
  • a plurality of compartments including a first chamber and a second chamber are arranged along the main air flow in the passage path, and the first chamber includes A passage hole through which the main airflow is discharged to the second chamber side is provided, and a plurality of the air suction ports are arranged on the outer periphery of the second chamber.
  • a plurality of auxiliary holes are provided around the passage hole of the first chamber, and the main air flow passes through the passage hole and the auxiliary hole. It is discharged to the chamber side.
  • the compartment is integrally formed.
  • a third chamber is disposed on the downstream side of the second chamber in the passage path.
  • the air amplifier of the present invention that achieves the above object is characterized in that the compartments can be divided from each other.
  • a taper-shaped throttle portion having a path diameter that decreases in the discharge direction is provided on the discharge side of the compartment.
  • the air amplifier of the present invention that achieves the above object is characterized in that the air suction port of the next compartment is disposed along the outer wall of the throttle portion in the compartment.
  • the passage path has a tapered shape that gradually increases from the air entry side toward the air discharge side, and the air passage has an outer periphery around the taper-shaped passage path.
  • a suction port is arranged.
  • the air amplifier of the present invention that achieves the above object is characterized in that a plurality of grooves are provided on the inner peripheral surface of the tapered passage path to promote swirl.
  • the air suction port is arranged in a plurality of stages along the path direction with respect to the tapered passage path, and the air box has the plurality of stages. It is characterized by covering the air suction ports together.
  • the air suction port joins at an acute angle with respect to the flow direction of the main air flow in the passage path.
  • the present invention that achieves the above object is an air circulation circuit for operating a power air motor, and is driven by an air tank filled with compressed air and an output of the air motor as a continuous air generating circuit.
  • An air-driven filling compressor that fills the air tank with compressed air, and as a power air circulation circuit, a power air motor driven by air supplied from the air tank, and the power air motor
  • a power circulation path for recirculating the discharged air to the power air motor, and the air amplifier of the present invention disposed on the power circulation path are provided.
  • the air box is arranged so as to surround the periphery of the passage route through which the main air flow passes. Therefore, for example, if a part of the exhaust air output from the air motor is increased in pressure by a blower or the like and then sent to the air box as secondary air, it efficiently joins the main air flow via the air intake port. Can be made.
  • a reverse support valve (check valve) for preventing backflow is provided at the secondary air inlet of the air box, secondary air can be stored in the air box more efficiently. Amplification efficiency can be increased.
  • the air circulation circuit of the present invention it is preferable to further provide a blower on the discharge side of the power air motor, and use the air amplified by this blower as the secondary air of the air amplification circuit.
  • a filter filter for secondary air it is preferable to provide a filter filter for secondary air immediately before the blower, and it is preferable to provide an expansion silencer for reducing noise by expanding gas immediately before the blower.
  • simplification of piping can be realized by arranging an air box on the secondary air supply side.
  • FIG. 1 is a perspective view of a two-stage air amplifier according to a first embodiment of the present invention. It is a side view and a front sectional view of the two-stage integrated air amplifier. It is a perspective view of an air amplifier with three steps according to the second embodiment. It is a side view and a front sectional view of a two-stage divided air amplifier according to a third embodiment. It is front sectional drawing of the taper-shaped air amplifier which concerns on 4th Embodiment. It is front sectional drawing of the taper-shaped air amplifier which concerns on the other structural example of 4th Embodiment. It is front sectional drawing of the air amplifier with a spiral shape and spiral groove which concerns on the other structural example of 4th Embodiment.
  • air amplifiers 101, 201, 301, 401 according to the first to fourth embodiments of the present invention will be described.
  • These air amplifiers have a structure in which air, compressed air, gas, or the like is efficiently sucked and merged with the main air flow by a plurality of air suction ports provided on the outer periphery of the air amplifier to amplify the air. ing.
  • the amplifier 101 includes a passage path 110 that is formed inside and through which a main air flow passes, and an air box 130 that covers the outer periphery of the passage path 110 in a sealed state.
  • a first chamber 112, a second chamber 114, and a third chamber 116 serving as branch chambers are arranged along the main air flow.
  • Each compartment 112, 114, 116 is constituted by cylindrical outer walls 112A, 114A, 116A.
  • a passage hole 112B for discharging air to the second chamber 114 side is formed in the first chamber 112 .
  • a passage hole 114B for discharging air to the third chamber 116 side is formed in the second chamber 114.
  • a passage hole 116B for discharging air to the outside is formed.
  • the first chamber 112, the second chamber 114, and the third chamber 116 are integrally molded as a whole.
  • the inner diameter d2 of the second chamber 114 is larger than the inner diameter d1 of the first chamber 112. Furthermore, the inner diameter d3 of the third chamber 116 is larger than the inner diameter d2 of the second chamber 114.
  • amplification efficiency is increased by increasing the inner diameter of the compartment toward the downstream side.
  • air suction from the outside is realized in a rational shape by arranging an air suction port described later by using this step.
  • the inner diameter of the passage hole 114B in the second chamber 114 is set larger than the inner diameter d4 of the passage hole 112B in the first chamber 112, and the third inner diameter is larger than the inner diameter of the passage hole 114B in the second chamber 114.
  • the inner diameter of the passage hole 116B in the chamber 116 (this coincides with the inner diameter d3 of the third chamber 116) is set large.
  • a tapered throttle portion 112C having a path diameter that decreases in the discharge direction is provided on the discharge side in the first chamber 112. Therefore, the passage hole 112B is disposed at the protruding end of the throttle portion 112C.
  • a tapered throttle portion 114C having a path diameter that decreases in the discharge direction is provided on the discharge side in the second chamber 114. Therefore, the passage hole 114B is disposed at the protruding end of the throttle portion 114C.
  • a plurality of air suction ports are arranged on the outer periphery of the passage route 110. Specifically, in the vicinity of the boundary with the first chamber 112 on the outer periphery of the second chamber 114, four air suction ports 114D for the second chamber are arranged at intervals of 90 degrees in the circumferential direction. In addition, four third chamber air suction ports 116D are arranged at intervals of 90 degrees in the circumferential direction near the boundary with the second chamber 114 on the outer periphery of the third chamber 116.
  • the air suction port 114D for the second chamber is arranged along the outer wall of the throttle portion 112C in the first chamber 112 using its tapered shape. At this time, the air suction port 114D for the second chamber joins at an acute angle ⁇ with respect to the flow direction of the main air flow in the passage path 110.
  • the third chamber air suction port 116 ⁇ / b> D is disposed along the outer wall of the throttle portion 114 ⁇ / b> C in the second chamber 114 using its tapered shape. At this time, the air suction port 116D for the third chamber merges with an acute angle ⁇ with respect to the flow direction of the main air flow in the passage path 110.
  • the air box 130 is a box-shaped space that collectively covers a total of eight ports, the second chamber air suction port 114D and the third chamber air suction port 116D.
  • the air box 130 is a sealed space by engaging with the outer peripheral wall of the passage path 110.
  • the air box 130 is formed with a secondary air inlet 132 for introducing secondary air.
  • the secondary air introduction port 132 is provided with a check valve (check valve) 134 so that the secondary air once introduced into the air box 130 does not flow backward.
  • an air amplifier 201 according to the second embodiment will be described with reference to FIG.
  • parts different from the air amplifier 101 of the first embodiment will be mainly described, and the same or similar parts will be described by matching the last two digits of the reference numerals with the first example. Illustration is omitted.
  • the air amplifier 201 includes a fourth chamber 218 in addition to the first chamber 212, the second chamber 214, and the third chamber 216.
  • the third chamber 216 is also formed with a narrowed portion having a tapered diameter, and air is discharged into the fourth chamber 218 from the through hole at the protruding end.
  • a fourth chamber air suction port 218D is formed on the outer periphery of the fourth chamber 218, and sucks air to further amplify it.
  • the amount of amplification can be increased by increasing the number of compartments on the passage route 210.
  • an air box 230 is disposed on the outer periphery of the first to fourth chambers 212 to 218.
  • the air box 230 is a box-like space that covers a total of 12 ports, the second chamber air suction port 214D, the third chamber air suction port 216D, and the fourth chamber air suction port 218D.
  • the air box 230 is a sealed space by engaging with the outer peripheral wall of the passage path 210.
  • the air box 230 includes a secondary air introduction port for introducing secondary air and a check valve (check valve) disposed in the vicinity of the secondary air introduction port.
  • an air amplifier 301 according to the third embodiment will be described with reference to FIG.
  • portions different from the air amplifier 101 of the first embodiment will be mainly described, and the same or similar portions will be described by matching the last two digits of the reference numerals with the first example. And illustration is abbreviate
  • the first chamber 312, the second chamber 314, and the third chamber 316 are separable. Specifically, a cylindrical engagement portion 314E is formed on the upstream side of the second chamber 314, and the first chamber 312 is inserted into the engagement portion 314E so that they can be detachably fitted to each other. It is like that. A cylindrical engaging portion 316E is also formed on the upstream side of the third chamber 316, and the second chamber 314 is inserted into the engaging portion 316E so that they can be detachably fitted to each other. As described above, the steps formed between the first chamber 312 and the third chamber 316 are effectively utilized, and are fitted in a nested manner to facilitate disassembly and assembly. As a result, maintenance is also simplified.
  • an air box 330 is disposed on the outer periphery of the first to third chambers 312 to 316.
  • the air box 330 is a box-like space that covers a total of eight ports, the second chamber air suction port 314D and the third chamber air suction port 316D.
  • the air box 330 is a sealed space by engaging with the outer peripheral wall of the passage path 310.
  • the air box 330 includes a secondary air introduction port 332 for introducing secondary air, and a check valve (check valve) 334 disposed in the vicinity of the secondary air introduction port 332.
  • the air box 330 can be divided. Therefore, the disassembly of the third chambers 312 to 316 from the first chamber is performed after disassembling and removing the air box 330 first.
  • auxiliary holes 312F are further provided around the passage hole 312B of the first chamber 312.
  • the auxiliary hole 312F can also pass air, and the main air flow is discharged to the second chamber 314 side through both the passage hole 312B and the auxiliary hole 312F. As a result, the air amplification efficiency can be increased.
  • an air amplifier 401 according to the fourth embodiment will be described with reference to FIG.
  • portions different from the air amplifier 101 of the first embodiment will be mainly described, and the same or similar portions will be described by matching the last two digits of the reference numerals with the first example. The illustration is omitted.
  • the air amplifier 401 has an integral structure in which the passage route 410 is not divided into compartments.
  • a throttle portion 410A is disposed in the vicinity of the entrance of the passage route 410, and the flowed air is once throttled to increase the flow velocity.
  • the downstream side of the narrowed portion 410A in the passage route 410 has a tapered shape that gradually increases from the air entry side toward the air discharge side. Therefore, the diameter d7 on the outlet side is larger than the diameter d6 on the inlet side.
  • a first air suction port 410B and a second air suction port 410C are arranged on the outer periphery of the tapered passage route 410 with a certain interval in the axial direction.
  • the structure and function of the air suction ports 410B and 410C are the same as those of the air suction port of the first example, and thus description thereof is omitted.
  • the air flow resistance is reduced, and the amplification efficiency can be increased.
  • an air box 430 is arranged on the outer periphery so as to cover a total of eight ports of the first air suction port 410B and the second air suction port 410C.
  • the air box 430 forms a sealed space by engaging with the outer peripheral wall of the passage path 410.
  • the air box 430 includes a secondary air introduction port 432 for introducing secondary air, and a check valve (check valve) 434 disposed in the vicinity of the secondary air introduction port 432.
  • FIG. 6 shows an air amplifier 401 as another configuration example of the fourth embodiment.
  • a check valve is not provided at the secondary air introduction port 432 of the air box 430. Instead, a check valve 436 is provided in each of a total of eight ports including the first air suction port 410B and the second air suction port 410C. Although the structure is somewhat complicated, the same effect can be obtained even in this way.
  • FIG. 8 shows an air circulation circuit according to the fifth embodiment.
  • the air circulation circuit includes a power air circulation circuit P and a continuous air generation circuit R.
  • the operation of the air circulation circuit will be described at the same time as the description of each component configuration.
  • 9 and 10 are flowcharts showing the operating state of the air circulation circuit.
  • the continuous air generation circuit R will be described.
  • the preparatory compressor 1 is first started to obtain compressed air to be used for starting, and the air tank 3 is initially filled with 0.9 Mpa of compressed air using the air charge valve 2.
  • the air tank 3 is connected to a power air circulation circuit P through an air stop valve 6. Therefore, the air stop valve 6 is opened, and the compressed air is allowed to reach each three-way valve 8 of the power air circulation circuit P.
  • the air tank 3 is provided with an opening / closing valve 4 and a pressure gauge 5.
  • the pressure gauge 5 functions as a pressure sensor, and can detect pressure fluctuations in the air supplied to the power air circulation circuit P.
  • the power air circulation circuit P will be described.
  • the entire path described below corresponds to a power circulation path for recirculating the air discharged from the power air motor 12 to the power air motor 12.
  • the solenoid valve of the accelerator 11 is turned ON so that compressed air flows from the three-way valve 8.
  • the compressed air is automatically controlled to 0.63 MPa by the air control unit 9 and passes through the first air amplifier 10-1.
  • the first air amplifier 10-1 those shown in the first to fourth embodiments with reference to FIGS. 1 to 7 can be used as appropriate.
  • M1 is an air box, and is connected to a second surging tank 17 described later by a secondary flow introduction pipe N1. Accordingly, the secondary air is supplied from the second surging tank 17 to the air box M1.
  • the air flow rate increases about 10 times.
  • the increase is shown in Table 1 in the state of the air amount at the air amplifier inlet and the air increase amount at the outlet.
  • the circulating air that has accumulated energy by increasing the air drives the power air motor 12 via the accelerator 11.
  • the power air motor 12 rotates to generate power.
  • the power air motor 12 has a suction port S1 and a delivery port D1, and compressed air is introduced from the suction port S1 and exhausted from the delivery port D1.
  • the exhaust circulation air discharged from the delivery port D1 of the power air motor 12 is separated into two directions of A flow and B flow by the first flow divider 13.
  • the exhaust circulating air in the A-flow direction is stored in the first surging tank 14 and passes through the second air amplifier 10-2 and the third air amplifier 10-3 to reach the third surging tank 18.
  • the exhaust circulation air in the B flow direction reaches the air regulator 15.
  • the air regulator 15 includes an intake port 15A connected to the first flow divider 13 side, a connection port 15B connected to the intake port side of the blower 16, and an exhaust for discharging excess air.
  • the filter 15D provided immediately before the port 15C and the exhaust port 15C is provided.
  • the exhaust port 15C has a structure in which the outer cover 15F covers the discharge destination of the fine discharge hole 15E from which the exhaust air is discharged, so that a silencing effect can be obtained including the filtration filter 15D. It has become.
  • the blower 16 is belt driven by a power air motor 12.
  • the air sent by the blower 16 is stored in the second surging tank 17, and the air box M2 provided on the outer periphery of the second air amplifier 10-2 and the third air amplifier 10-3 by the secondary flow introduction pipe N2. , M3.
  • the air amplifiers shown in the first to fourth embodiments can be used as appropriate.
  • the air in the second surging tank 17 is also supplied to the air box M1 of the first air amplifier 10-1 through the secondary flow introduction pipe N1.
  • the exhaust circulating air in the A-flow direction passes through the inside of the second air amplifier 10-2 and the third air amplifier 10-3, so that the second air amplifier 10-2 and the third air amplifier 10-3 The inside becomes negative pressure. Accordingly, the secondary air stored in the air boxes M2 and M3 is sucked and joined to the main air flow of the second air amplifier 10-2 and the third air amplifier 10-3 through an air suction port (not shown). As a result, the amount of exhaust circulating air in the second air amplifier 10-2 and the third air amplifier 10-3 increases. The increased exhaust circulation air is stored in the third surging tank 18.
  • the exhaust air circulating through the third surging tank 18 is supplied to one of the second flow dividers 19 divided in two directions.
  • the other of the second flow divider 19 divided in two directions is supplied with compressed air from a second compressor (stabilized compressor) 21 provided for the purpose of stabilization provided in the continuous air generation circuit R. Therefore, in the second flow divider 19, the two airs merge and are stored in the fourth surging tank 20.
  • the air stored in the fourth surging tank 20 returns to the other connection portion of the three-way valve 8, flows into the first air amplifier 10-1, flows into the power air motor 12, and is driven to generate power. Until the solenoid valve of the accelerator 11 is turned off, the air circulation process is repeated and the generation of power continues.
  • the second compressor 21 is driven using the power of the power air motor 12.
  • a third compressor (air-driven filling compressor) 22 is connected to the air tank 3 in order to keep the internal pressure at 0.9 MPa. Thereby, the pressure is always maintained in the air tank 3.
  • the drive shaft of the third compressor 22 is connected to the power air motor 12 by a belt, and is driven by this power.
  • the third compressor 22 includes a clutch (switching means), and can connect and disconnect power according to the load state of the power air motor 12.
  • a determination device (not shown) that determines the load state of the power air motor 12 is provided. According to the determination result of the determination device, when the load of the power air motor 12 is high, Control the clutch to be released so that no extra load is applied. On the other hand, when the load of the power air motor 12 is low and the output is surplus, the clutch is connected and the air tank 3 is replenished with air by the power air motor 12. Thus, the driving power of the third compressor 22 effectively uses the power of the power air motor 12.
  • the clutch with the blower 16 may be released.
  • FIG. 13 shows the configuration of the air-driven filling compressor 22.
  • the air-driven filling compressor 22 includes an air pump 22A, a pulley 22B attached to the input shaft 22C, an electromagnetic clutch 22D for switching connection / release of the pulley 22B and the input shaft 22C, a suction port S, and a delivery port D. .
  • a belt is laid on the pulley 22 ⁇ / b> B and connected to the power air motor 12.
  • the electromagnetic clutch 22D driving and stopping by the power air motor 12 are appropriately switched.
  • the same structure as the air-driven filling compressor 22 may be adopted for the second compressor 21 for stabilization. If the usage is reversed, the air-driven filling compressor 22 can be applied to the power air motor 12.
  • the check valve 7 is arranged in the air supply path before the three-way valve 8 is shown.
  • the three-way valve 8 itself is This check valve 7 can be obtained by using the one having a function of giving priority to the one with high pressure in comparison with the compressed air sent from the air tank 3 and the air sent from the fourth surge tank 20 to the air control unit 9. It is unnecessary.
  • the circuit can be simplified. For this reason, it can be used in the automobile industry / ship business-related or general industries. It is especially pollution free and can be used in a wide range of industries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Disclosed is an air amplifier, wherein air intake ports are disposed at the outer circumference of a passage route, which is formed at the interior of the amplifier, and through which a main air flow passes, and further an air box is disposed to cover the circumference of the air intake ports. Secondary air is collected by forming a secondary air introduction port in the air box. The main airflow passing through the passage route produces negative pressure inside the passage route, and this negative pressure draws the secondary air inside the air box through the air intake port and into the passage route.

Description

エアー増幅器、エアー循環回路Air amplifier, air circulation circuit
 本発明は、エアーの流れを増幅させるエアー増幅器、及び該エアー増幅器が配置されてエアーモーターによって動力を出力するエアー循環回路に関する。 The present invention relates to an air amplifier that amplifies an air flow, and an air circulation circuit in which the air amplifier is arranged and outputs power by an air motor.
 従来の技術として使用されている動力は基本的に化石燃料を燃焼し動力を発生する内燃機関が利用されているのが現状である。このため地球環境の悪化が進み問題視されている。特に地球温暖化に大きな影響を持つCO2の問題や人類の健康に大きな影響を持つNOX等多くの問題がある。加えて化石燃料の枯渇の解決策としてバイオエネルギー等の研究も行われているが、問題解決には程遠い。エアー循環回路の確立により、エアーモーターの動力を実用に供することが可能となり問題解決に寄与する。 The current power used as a conventional technology is basically an internal combustion engine that generates power by burning fossil fuel. For this reason, the global environment is worsening and is regarded as a problem. In particular, there are many problems such as CO2 which has a great impact on global warming and NOX which has a great impact on human health. In addition, bioenergy research is being conducted as a solution to fossil fuel depletion, but it is far from solving the problem. Establishing an air circulation circuit makes it possible to put the power of the air motor into practical use and contribute to solving problems.
 解決しようとする問題点は、エネルギー源としている化石燃料の枯渇の問題である。代替燃料としてバイオエネルギー等いろいろな研究が行われているが問題の解決には程遠い物である。この問題の解決には発想の転換が必要である。 The problem to be solved is the problem of exhaustion of fossil fuel as an energy source. Various researches such as bioenergy have been conducted as alternative fuels, but they are far from solving the problem. A solution to this problem requires a change of mindset.
 本発明者らの鋭意研究によって、上記目的は以下の手段によって達成される。 The above object is achieved by the following means based on the earnest research of the present inventors.
 即ち、上記目的を達成する本発明は、内部に形成されてメインエアーフローが通過する通過経路と、前記通過経路の外周に設けられるエアー吸入ポートと、二次エアー導入口を有すると共に、前記エアー吸入ポートの周囲を覆うことで、該エアー吸入ポートに供給される二次エアーが溜まるエアーボックスと、を備え、前記通過経路を前記メインエアーフローが通過することで該通過経路内に負圧が発生し、前記負圧によって前記エアーボックス内の二次エアーを、前記エアー吸入ポートを介して前記通過経路に向けて吸入することを特徴とするエアー増幅器である。 That is, the present invention that achieves the above object has a passage formed inside and through which a main air flow passes, an air suction port provided on the outer periphery of the passage, a secondary air inlet, and the air An air box that covers the periphery of the suction port and accumulates secondary air supplied to the air suction port, and the main air flow passes through the passage route so that a negative pressure is generated in the passage route. The air amplifier is configured to suck the secondary air in the air box generated by the negative pressure toward the passage route through the air suction port.
 上記目的を達成する上記発明のエアー増幅器は、前記エアー吸入ポートは前記通過経路の外周に複数設けられており、前記エアーボックスは、前記複数の前記エアー吸入ポートをまとめて覆うことを特徴とする。 In the air amplifier according to the invention for achieving the object, a plurality of the air suction ports are provided on an outer periphery of the passage route, and the air box collectively covers the plurality of the air suction ports. .
 上記目的を達成する上記発明のエアー増幅器は、前記エアーボックスにおける前記二次エアー導入口近傍に、外部へのエアーの流出を抑制する逆止弁が設けられることを特徴とする。 The air amplifier of the present invention that achieves the above object is characterized in that a check valve that suppresses the outflow of air to the outside is provided in the vicinity of the secondary air inlet in the air box.
 上記目的を達成する上記発明のエアー増幅器において、前記エアー吸入ポートには、前記通過経路側から前記エアーボックス側へのエアーの流出を抑制する逆止弁が設けられることを特徴とする。 In the air amplifier of the present invention that achieves the above object, the air suction port is provided with a check valve that suppresses the outflow of air from the passage path side to the air box side.
 上記目的を達成する上記発明のエアー増幅器において、前記通過経路には、前記メインエアーフローに沿って、第1室及び第2室を含む複数の分室が配置されており、前記第1室には、前記メインエアーフローが前記第2室側に吐出される通過孔が設けられ、前記第2室の外周には、前記エアー吸入ポートが複数配置されていることを特徴とする。 In the air amplifier of the invention that achieves the above object, a plurality of compartments including a first chamber and a second chamber are arranged along the main air flow in the passage path, and the first chamber includes A passage hole through which the main airflow is discharged to the second chamber side is provided, and a plurality of the air suction ports are arranged on the outer periphery of the second chamber.
 上記目的を達成する上記発明のエアー増幅器において、前記第1室の前記通過孔の周りには複数の補助孔が設けられ、前記通過孔及び前記補助孔を介して前記メインエアーフローが前記第2室側に吐出されることを特徴とする。 In the air amplifier according to the invention for achieving the above object, a plurality of auxiliary holes are provided around the passage hole of the first chamber, and the main air flow passes through the passage hole and the auxiliary hole. It is discharged to the chamber side.
 上記目的を達成する上記発明のエアー増幅器において、前記分室は、一体成形されていることを特徴とする。 In the air amplifier of the present invention that achieves the above object, the compartment is integrally formed.
 上記目的を達成する上記発明のエアー増幅器において、前記通過経路には、前記第2室の下流側に第3室が配置されていることを特徴とする。 In the air amplifier according to the present invention that achieves the above object, a third chamber is disposed on the downstream side of the second chamber in the passage path.
 上記目的を達成する上記発明のエアー増幅器は、前記分室が相互に分割可能となっていることを特徴とする。 The air amplifier of the present invention that achieves the above object is characterized in that the compartments can be divided from each other.
 上記目的を達成する上記発明のエアー増幅器において、前記分室における吐出側には、吐出方向に向かって経路直径が小さくなるテーパ形状の絞り部が設けられていることを特徴とする。 In the air amplifier of the present invention that achieves the above object, a taper-shaped throttle portion having a path diameter that decreases in the discharge direction is provided on the discharge side of the compartment.
 上記目的を達成する上記発明のエアー増幅器は、前記分室における前記絞り部の外壁に沿って、次の前記分室の前記エアー吸入ポートが配置されることを特徴とする。 The air amplifier of the present invention that achieves the above object is characterized in that the air suction port of the next compartment is disposed along the outer wall of the throttle portion in the compartment.
 上記目的を達成する上記発明のエアー増幅器において、前記通過経路は、エアー進入側からエアー放出側に向かって次第に大きくなるテーパー形状となっており、前記テーパー形状の前記通過経路の外周に、前記エアー吸入ポートが配置されていることを特徴とする。 In the air amplifier according to the invention that achieves the above object, the passage path has a tapered shape that gradually increases from the air entry side toward the air discharge side, and the air passage has an outer periphery around the taper-shaped passage path. A suction port is arranged.
 上記目的を達成する上記発明のエアー増幅器は、前記テーパー形状の前記通過経路の内周面に複数条の溝を備えてスワールを促進することを特徴とする。 The air amplifier of the present invention that achieves the above object is characterized in that a plurality of grooves are provided on the inner peripheral surface of the tapered passage path to promote swirl.
 上記目的を達成する上記発明のエアー増幅器は、前記テーパー形状の前記通過経路に対して、前記エアー吸入ポートが経路方向に沿って複数段階に配置されており、前記エアーボックスは、複数段階の前記エアー吸入ポートをまとめて覆うことを特徴とする。 In the air amplifier of the present invention that achieves the above object, the air suction port is arranged in a plurality of stages along the path direction with respect to the tapered passage path, and the air box has the plurality of stages. It is characterized by covering the air suction ports together.
 上記目的を達成する上記発明のエアー増幅器において、前記エアー吸入ポートは、前記通過経路の前記メインエアーフローの流れ方向に対して鋭角を持って合流することを特徴とする。 In the air amplifier of the present invention that achieves the above object, the air suction port joins at an acute angle with respect to the flow direction of the main air flow in the passage path.
 上記目的を達成する本発明は、動力用エアーモータを作動するためのエアー循環回路であって、連続エアー発生回路として、圧縮したエアーが充填されるエアータンクと、エアーモータの出力によって駆動されて前記エアータンクに圧縮エアーを充填するエアー駆動式充填用コンプレッサとを備え、動力用エアー循環回路として、前記エアータンクから供給されるエアーによって駆動される動力用エアーモータと、前記動力用エアーモータから排出されたエアーを該動力用エアーモータに再循環させる動力用循環経路と、前記動力用循環経路上に配置される上記発明のエアー増幅器とを備えることを特徴とする。 The present invention that achieves the above object is an air circulation circuit for operating a power air motor, and is driven by an air tank filled with compressed air and an output of the air motor as a continuous air generating circuit. An air-driven filling compressor that fills the air tank with compressed air, and as a power air circulation circuit, a power air motor driven by air supplied from the air tank, and the power air motor A power circulation path for recirculating the discharged air to the power air motor, and the air amplifier of the present invention disposed on the power circulation path are provided.
 本発明のエアー増幅器によれば、メインエアーフローが通過する通過経路の周囲を囲むようにエアーボックスが配置されている。従って、例えばエアーモータから出力された排気エアーの一部を、ブロワー等で圧力を上げてから、二次エアーとしてエアーボックスに送り込めば、エアー吸入ポートを介して効率的にメインエアーフローに合流させることができる。 According to the air amplifier of the present invention, the air box is arranged so as to surround the periphery of the passage route through which the main air flow passes. Therefore, for example, if a part of the exhaust air output from the air motor is increased in pressure by a blower or the like and then sent to the air box as secondary air, it efficiently joins the main air flow via the air intake port. Can be made.
 更に、このエアーボックスの二次エアー導入口に、逆流防止のための逆支弁(チェックバルブ)を配備しているので、一層効率的にエアーボックス内に二次エアーを貯留することができるので、増幅効率を高めることが出来る。 Furthermore, since a reverse support valve (check valve) for preventing backflow is provided at the secondary air inlet of the air box, secondary air can be stored in the air box more efficiently. Amplification efficiency can be increased.
 また、例えば、通過経路の周囲に複数のエアー吸入ポートを配置する場合、二次エアーを各エアー吸入ポートに直接接続しようとすると配管が複雑になり、製造コストが増大したりメンテナンス効率が悪化したりしやすい。そこで本発明は、複数のエアー吸入ポートを、密閉されるエアーボックスによってまとめて覆うようにしている。この結果、エアーボックス内に二次エアーを貯留させておけば、個別に配管を設置することなく、この二次エアーを複数のエアー吸入ポートから通過経路に導入することができる。この結果、複雑な配管を省略でき、回路の簡素化が可能になる。
 また、本発明のエアー循環回路によれば、上記エアー増幅器を利用することで、配管を簡素化することが可能となる。なお、本発明のエアー循環回路では、更に、動力用エアーモータの排出側にブロワーを設けておき、このブロワーで増幅させたエアーをエアー増幅回路の二次エアーに用いることが好ましい。この際、ブロワーの直前に二次エアーの濾過フィルターを設けておくことが好ましく、更にブロワーの直前には、気体を膨張させることによって騒音を低減する膨張型消音装置を設けること好ましい。
In addition, for example, when a plurality of air suction ports are arranged around the passage route, if the secondary air is directly connected to each air suction port, the piping becomes complicated, which increases the manufacturing cost and deteriorates the maintenance efficiency. It is easy to do. Therefore, in the present invention, a plurality of air suction ports are collectively covered with a sealed air box. As a result, if the secondary air is stored in the air box, the secondary air can be introduced into the passage route from the plurality of air suction ports without separately installing piping. As a result, complicated piping can be omitted, and the circuit can be simplified.
Further, according to the air circulation circuit of the present invention, it is possible to simplify the piping by using the air amplifier. In the air circulation circuit of the present invention, it is preferable to further provide a blower on the discharge side of the power air motor, and use the air amplified by this blower as the secondary air of the air amplification circuit. At this time, it is preferable to provide a filter filter for secondary air immediately before the blower, and it is preferable to provide an expansion silencer for reducing noise by expanding gas immediately before the blower.
 本発明のエアー増幅器によれば、二次エアーの供給側にエアーボックスを配置することで、配管の簡素化を実現することが出来る。 According to the air amplifier of the present invention, simplification of piping can be realized by arranging an air box on the secondary air supply side.
本発明の第1実施形態に係る2段付となるエアー増幅器の斜視図である。1 is a perspective view of a two-stage air amplifier according to a first embodiment of the present invention. 同2段付の一体形のエアー増幅器の側面および正面断面図である。It is a side view and a front sectional view of the two-stage integrated air amplifier. 第2実施形態に係る3段付となるエアー増幅器の斜視図である。It is a perspective view of an air amplifier with three steps according to the second embodiment. 第3実施形態に係る2段付の分割形のエアー増幅器の側面および正面断面図である。It is a side view and a front sectional view of a two-stage divided air amplifier according to a third embodiment. 第4実施形態に係るテーパー形状のエアー増幅器の正面断面図である。It is front sectional drawing of the taper-shaped air amplifier which concerns on 4th Embodiment. 第4実施形態の他の構成例に係るテーパー形状のエアー増幅器の正面断面図である。It is front sectional drawing of the taper-shaped air amplifier which concerns on the other structural example of 4th Embodiment. 第4実施形態の他の構成例に係るテーパー形状でスパイラル溝付きのエアー増幅器の正面断面図である。It is front sectional drawing of the air amplifier with a spiral shape and spiral groove which concerns on the other structural example of 4th Embodiment. 本発明の第5実施形態に係るエアー循環回路を示した説明図である。It is explanatory drawing which showed the air circulation circuit which concerns on 5th Embodiment of this invention. 同エアー循環回路の作動状態図を示す第1のフローチャートである。It is a 1st flowchart which shows the operation state figure of the air circulation circuit. 同エアー循環回路の作動状態図を示す第2のフローチャートである。It is a 2nd flowchart which shows the operation state figure of the air circulation circuit. 同エアー循環回路に用いられるエアーレギュレーターおよびブロワーの図である。It is a figure of the air regulator and blower used for the air circulation circuit. 同エアー循環回路に用いられるクラッチ付のコンプレッサーの図である。It is a figure of the compressor with a clutch used for the air circulation circuit. 同エアー循環回路に用いられるエアー駆動式充填用コンプレッサーの図である。It is a figure of the air drive type filling compressor used for the air circulation circuit.
 まず、本発明の第1~第4実施形態に係るエアー増幅器101、201、301、401を説明する。なお、これらのエアー増幅器は、自身の外周に備えた複数個のエアー吸入ポートによって、大気、圧縮エアーあるいは気体等を効率良く吸入してメインエアーフローに合流させて、エアーを増幅させる構造となっている。 First, the air amplifiers 101, 201, 301, 401 according to the first to fourth embodiments of the present invention will be described. These air amplifiers have a structure in which air, compressed air, gas, or the like is efficiently sucked and merged with the main air flow by a plurality of air suction ports provided on the outer periphery of the air amplifier to amplify the air. ing.
 図1及び図2には、第1実施形態にかかるエアー増幅器101が示されている。この増幅器101は、内部に形成されてメインエアーフローが通過する通過経路110と、この通過経路110の外周を密閉状態で覆うエアーボックス130を備える。 1 and 2 show an air amplifier 101 according to the first embodiment. The amplifier 101 includes a passage path 110 that is formed inside and through which a main air flow passes, and an air box 130 that covers the outer periphery of the passage path 110 in a sealed state.
 この通過経路110には、メインエアーフローに沿って、分室となる第1室112、第2室114、第3室116が配置されている。各分室112、114、116は円筒状の外壁112A、114A、116Aによって構成されている。第1室112には、第2室114側にエアーを吐出する通過孔112Bが形成されている。第2室114には、第3室116側にエアーを吐出する通過孔114Bが形成されている。第3室116には、外部にエアーを吐出する通過孔116Bが形成されている。なお、これらの第1室112、第2室114、第3室116は、全体が一体的に成型されている。 In the passage path 110, a first chamber 112, a second chamber 114, and a third chamber 116 serving as branch chambers are arranged along the main air flow. Each compartment 112, 114, 116 is constituted by cylindrical outer walls 112A, 114A, 116A. In the first chamber 112, a passage hole 112B for discharging air to the second chamber 114 side is formed. In the second chamber 114, a passage hole 114B for discharging air to the third chamber 116 side is formed. In the third chamber 116, a passage hole 116B for discharging air to the outside is formed. The first chamber 112, the second chamber 114, and the third chamber 116 are integrally molded as a whole.
 また、第1室112の内径d1に対して、第2室114の内径d2の方が大きくなっている。更に、第2室114の内径d2に対して、第3室116の内径d3の方が大きくなっている。このように、下流側に向かって分室の内径を増大させていくことで、増幅効率を高めている。また、この段差を利用して、後述するエアー吸入ポートを配置することで、合理的な形状で外側からのエアーの吸引を実現している。 Further, the inner diameter d2 of the second chamber 114 is larger than the inner diameter d1 of the first chamber 112. Furthermore, the inner diameter d3 of the third chamber 116 is larger than the inner diameter d2 of the second chamber 114. Thus, amplification efficiency is increased by increasing the inner diameter of the compartment toward the downstream side. In addition, air suction from the outside is realized in a rational shape by arranging an air suction port described later by using this step.
 更に、第1室112の通過孔112Bの内径d4に対して、第2室114における通過孔114Bの内径は大きく設定され、また、第2室114の通過孔114Bの内径に対して、第3室116における通過孔116Bの内径(これは第3室116の内径d3と一致)が大きく設定されている。 Further, the inner diameter of the passage hole 114B in the second chamber 114 is set larger than the inner diameter d4 of the passage hole 112B in the first chamber 112, and the third inner diameter is larger than the inner diameter of the passage hole 114B in the second chamber 114. The inner diameter of the passage hole 116B in the chamber 116 (this coincides with the inner diameter d3 of the third chamber 116) is set large.
 第1室112における吐出側には、吐出方向に向かって経路直径が小さくなるテーパ形状の絞り部112Cが設けられている。従って、この絞り部112Cの突端に通過孔112Bが配置されていることになる。同様に、第2室114における吐出側には、吐出方向に向かって経路直径が小さくなるテーパ形状の絞り部114Cが設けられている。従って、この絞り部114Cの突端に通過孔114Bが配置されている。これらの絞り部112C、114Cによって、エアーの流速を増大させて、内部の負圧の発生効率を高める。なお、第3室116には絞り部は形成されていない。下流側に負圧を発生させる必要がないからである。 A tapered throttle portion 112C having a path diameter that decreases in the discharge direction is provided on the discharge side in the first chamber 112. Therefore, the passage hole 112B is disposed at the protruding end of the throttle portion 112C. Similarly, on the discharge side in the second chamber 114, a tapered throttle portion 114C having a path diameter that decreases in the discharge direction is provided. Therefore, the passage hole 114B is disposed at the protruding end of the throttle portion 114C. By these throttle parts 112C and 114C, the flow velocity of air is increased and the generation efficiency of internal negative pressure is increased. The third chamber 116 is not formed with a throttle portion. This is because it is not necessary to generate a negative pressure on the downstream side.
 通過経路110の外周には、エアー吸入ポートが複数配置されている。具体的に、第2室114の外周における第1室112との境界近傍には、周方向に90度間隔で、4つの第2室用エアー吸入ポート114Dが配置されている。また、第3室116の外周における第2室114との境界近傍には、周方向に90度間隔で、4つの第3室用エアー吸入ポート116Dが配置されている。通過経路110内をメインエアーフローが通過すると、第2室114内が負圧となって、第2室用エアー吸入ポート114Dからエアーが吸入されて、この通過経路110に合流する。同様に、通過経路110内をメインエアーフローが通過すると、第3室116内が負圧となって、第3室用エアー吸入ポート116Dからエアーが吸入されて、この通過経路110に合流する。 A plurality of air suction ports are arranged on the outer periphery of the passage route 110. Specifically, in the vicinity of the boundary with the first chamber 112 on the outer periphery of the second chamber 114, four air suction ports 114D for the second chamber are arranged at intervals of 90 degrees in the circumferential direction. In addition, four third chamber air suction ports 116D are arranged at intervals of 90 degrees in the circumferential direction near the boundary with the second chamber 114 on the outer periphery of the third chamber 116. When the main air flow passes through the passage path 110, the pressure in the second chamber 114 becomes negative, air is sucked from the second chamber air suction port 114D, and merges with the passage path 110. Similarly, when the main airflow passes through the passage path 110, the pressure in the third chamber 116 becomes negative, air is sucked from the third chamber air suction port 116D, and merges with the passage path 110.
 この第2室用エアー吸入ポート114Dは、第1室112における絞り部112Cの外壁に沿って、そのテーパ形状を利用して配置される。この際、第2室用エアー吸入ポート114Dは、通過経路110のメインエアーフローの流れ方向に対して鋭角αを持って合流するようになっている。同様に、この第3室用エアー吸入ポート116Dは、第2室114における絞り部114Cの外壁に沿って、そのテーパ形状を利用して配置される。この際、第3室用エアー吸入ポート116Dは、通過経路110のメインエアーフローの流れ方向に対して鋭角αを持って合流する。このように、鋭角αで合流することで、合流時の抵抗を低減して、増幅効率を高めるようにしている。 The air suction port 114D for the second chamber is arranged along the outer wall of the throttle portion 112C in the first chamber 112 using its tapered shape. At this time, the air suction port 114D for the second chamber joins at an acute angle α with respect to the flow direction of the main air flow in the passage path 110. Similarly, the third chamber air suction port 116 </ b> D is disposed along the outer wall of the throttle portion 114 </ b> C in the second chamber 114 using its tapered shape. At this time, the air suction port 116D for the third chamber merges with an acute angle α with respect to the flow direction of the main air flow in the passage path 110. Thus, by joining at an acute angle α, the resistance at the time of joining is reduced, and the amplification efficiency is increased.
 エアーボックス130は、第2室用エアー吸入ポート114Dと第3室用エアー吸入ポート116Dの合計8つのポートをまとめて覆う箱状空間となっている。このエアーボックス130は、通過経路110の外周壁と係合することで、密閉空間となっている。更に、このエアーボックス130には、二次エアーを導入するための二次エアー導入口132が形成されている。この二次エアー導入口132には、逆止弁(チェックバルブ)134が設けられており、一旦、エアーボックス130に導入された二次エアーが逆流しないようになっている。 The air box 130 is a box-shaped space that collectively covers a total of eight ports, the second chamber air suction port 114D and the third chamber air suction port 116D. The air box 130 is a sealed space by engaging with the outer peripheral wall of the passage path 110. Further, the air box 130 is formed with a secondary air inlet 132 for introducing secondary air. The secondary air introduction port 132 is provided with a check valve (check valve) 134 so that the secondary air once introduced into the air box 130 does not flow backward.
 このエアーボックス130の二次エアー導入口132に対して、外部から二次エアーを導入すれば、このエアーボックス130内に二次エアーが溜まることになる。この二次エアーは、第2室用エアー吸入ポート114Dと第3室用エアー吸入ポート116Dの各々で吸引されてメインエアーフローに合流する。この結果、二次エアーを導入するための二次導入配管を、第2室用エアー吸入ポート114Dと第3室用エアー吸入ポート116Dに個別に設ける必要が無くなるので、回路を大幅に簡略化する事が可能になる。 If secondary air is introduced from the outside to the secondary air introduction port 132 of the air box 130, the secondary air is accumulated in the air box 130. The secondary air is sucked in each of the second chamber air suction port 114D and the third chamber air suction port 116D and joins the main air flow. As a result, it is not necessary to separately provide the secondary inlet piping for introducing the secondary air in the second chamber air suction port 114D and the third chamber air suction port 116D, so that the circuit is greatly simplified. Things are possible.
 次に、図3を参照して、第2実施形態にかかるエアー増幅器201を説明する。なお、この第2形態では、第1実施形態のエアー増幅器101と異なる部分について主に説明し、同一又は類似する部分については、符号の下二桁を第1例と一致させることで、説明及び図示を省略する。 Next, an air amplifier 201 according to the second embodiment will be described with reference to FIG. In the second embodiment, parts different from the air amplifier 101 of the first embodiment will be mainly described, and the same or similar parts will be described by matching the last two digits of the reference numerals with the first example. Illustration is omitted.
 このエアー増幅器201は、第1室212、第2室214、第3室216に加えて、第4室218を備えている。特に図示しないが、第3室216にも、直径がテーパ状に細くなった状態の絞り部が形成されており、この突端の通過孔から第4室218にエアーが排出される。第4室218の外周には、第4室用エアー吸入ポート218Dが形成されており、エアーを吸入して更に増幅させる。このように、通過経路210上の分室の数を増やすことで、増幅量を増大させることができる。 The air amplifier 201 includes a fourth chamber 218 in addition to the first chamber 212, the second chamber 214, and the third chamber 216. Although not particularly illustrated, the third chamber 216 is also formed with a narrowed portion having a tapered diameter, and air is discharged into the fourth chamber 218 from the through hole at the protruding end. A fourth chamber air suction port 218D is formed on the outer periphery of the fourth chamber 218, and sucks air to further amplify it. Thus, the amount of amplification can be increased by increasing the number of compartments on the passage route 210.
 また、これらの第1室~第4室212~218の外周には、エアーボックス230が配置されている。このエアーボックス230は、第2室用エアー吸入ポート214Dと第3室用エアー吸入ポート216Dと第4室用エアー吸入ポート218Dの合計12のポートをまとめて覆う箱状空間となる。このエアーボックス230は、通過経路210の外周壁と係合することで、密閉空間となっている。図示は省略するが、このエアーボックス230は、二次エアーを導入するための二次エアー導入口と、この二次エアー導入口の近傍に配置される逆止弁(チェックバルブ)を備える。 In addition, an air box 230 is disposed on the outer periphery of the first to fourth chambers 212 to 218. The air box 230 is a box-like space that covers a total of 12 ports, the second chamber air suction port 214D, the third chamber air suction port 216D, and the fourth chamber air suction port 218D. The air box 230 is a sealed space by engaging with the outer peripheral wall of the passage path 210. Although not shown, the air box 230 includes a secondary air introduction port for introducing secondary air and a check valve (check valve) disposed in the vicinity of the secondary air introduction port.
 次に、図4を参照して、第3実施形態にかかるエアー増幅器301を説明する。なお、この第3実施形態では、第1実施形態のエアー増幅器101と異なる部分について主に説明し、同一又は類似する部分については、符号の下二桁を第1例と一致させることで、説明及び図示を省略する。 Next, an air amplifier 301 according to the third embodiment will be described with reference to FIG. In the third embodiment, portions different from the air amplifier 101 of the first embodiment will be mainly described, and the same or similar portions will be described by matching the last two digits of the reference numerals with the first example. And illustration is abbreviate | omitted.
 このエアー増幅器301は、第1室312、第2室314、第3室316が、分離可能になっている。詳細には、第2室314の上流側に円筒状の係合部314Eが形成されており、その係合部314E内に第1室312が挿入されることで、着脱可能に相互に嵌めあうようになっている。第3室316の上流側にも円筒状の係合部316Eが形成されており、その係合部316E内に第2室314が挿入されることで、着脱可能に相互に嵌めあう。このように、第1室312から第3室316の間に形成される段差を有効活用し、入れ子状に嵌めあわせることで、分解や組み立てが容易にしている。この結果、メンテナンスも簡便になる。 In the air amplifier 301, the first chamber 312, the second chamber 314, and the third chamber 316 are separable. Specifically, a cylindrical engagement portion 314E is formed on the upstream side of the second chamber 314, and the first chamber 312 is inserted into the engagement portion 314E so that they can be detachably fitted to each other. It is like that. A cylindrical engaging portion 316E is also formed on the upstream side of the third chamber 316, and the second chamber 314 is inserted into the engaging portion 316E so that they can be detachably fitted to each other. As described above, the steps formed between the first chamber 312 and the third chamber 316 are effectively utilized, and are fitted in a nested manner to facilitate disassembly and assembly. As a result, maintenance is also simplified.
 また、これらの第1室~第3室312~316の外周には、エアーボックス330が配置されている。このエアーボックス330は、第2室用エアー吸入ポート314Dと第3室用エアー吸入ポート316Dの合計8のポートをまとめて覆う箱状空間となる。このエアーボックス330は、通過経路310の外周壁と係合することで、密閉空間となっている。このエアーボックス330は、二次エアーを導入するための二次エアー導入口332と、この二次エアー導入口332の近傍に配置される逆止弁(チェックバルブ)334を備える。このエアーボックス330は分割可能となっている。従って、第1室から第3室312~316を分解は、先にエアーボックス330を分解して取り外した後に行う。 In addition, an air box 330 is disposed on the outer periphery of the first to third chambers 312 to 316. The air box 330 is a box-like space that covers a total of eight ports, the second chamber air suction port 314D and the third chamber air suction port 316D. The air box 330 is a sealed space by engaging with the outer peripheral wall of the passage path 310. The air box 330 includes a secondary air introduction port 332 for introducing secondary air, and a check valve (check valve) 334 disposed in the vicinity of the secondary air introduction port 332. The air box 330 can be divided. Therefore, the disassembly of the third chambers 312 to 316 from the first chamber is performed after disassembling and removing the air box 330 first.
 このエアー増幅器301では、第1室312の通過孔312Bの周囲に、更に複数の補助孔312Fが設けられている。この補助孔312Fも、エアーを通過可能であり、通過孔312B及び補助孔312Fの双方を介してメインエアーフローが第2室314側に吐出される。この結果、エアーの増幅効率を高めることが可能になる。 In the air amplifier 301, a plurality of auxiliary holes 312F are further provided around the passage hole 312B of the first chamber 312. The auxiliary hole 312F can also pass air, and the main air flow is discharged to the second chamber 314 side through both the passage hole 312B and the auxiliary hole 312F. As a result, the air amplification efficiency can be increased.
 次に、図5を参照して、第4実施形態にかかるエアー増幅器401を説明する。なお、この第4実施形態では、第1実施形態のエアー増幅器101と異なる部分について主に説明し、同一又は類似する部分については、符号の下二桁を第1例と一致させることで、説明及び図示を省略する。 Next, an air amplifier 401 according to the fourth embodiment will be described with reference to FIG. In the fourth embodiment, portions different from the air amplifier 101 of the first embodiment will be mainly described, and the same or similar portions will be described by matching the last two digits of the reference numerals with the first example. The illustration is omitted.
 このエアー増幅器401は、通過経路410が分室に分かれていない一体構造となっている。なお、この通過経路410の入口近傍には、絞り部410Aが配置されており、流入したエアーをいったん絞って、流速を高めるようにしている。また、この通過経路410における絞り部410Aの下流側は、エアー進入側からエアー放出側に向かって次第に大きくなるテーパー形状となっている。従って、その入口側の直径d6に対して、出口側の直径d7は大きくなっている。また、このテーパー形状の通過経路410の外周には、軸方向に一定の間隔を空けて、第1エアー吸入ポート410B、及び第2エアー吸入ポート410Cが配置されている。なお、エアー吸入ポート410B、410Cの構造及び機能については、第1例のエアー吸入ポートと同様であるので説明を省略する。このように、通過経路410の内径を滑らかに増大させることで、エアーの流れ抵抗が低減され、増幅効率を高めることが可能となる。 The air amplifier 401 has an integral structure in which the passage route 410 is not divided into compartments. A throttle portion 410A is disposed in the vicinity of the entrance of the passage route 410, and the flowed air is once throttled to increase the flow velocity. In addition, the downstream side of the narrowed portion 410A in the passage route 410 has a tapered shape that gradually increases from the air entry side toward the air discharge side. Therefore, the diameter d7 on the outlet side is larger than the diameter d6 on the inlet side. In addition, a first air suction port 410B and a second air suction port 410C are arranged on the outer periphery of the tapered passage route 410 with a certain interval in the axial direction. Note that the structure and function of the air suction ports 410B and 410C are the same as those of the air suction port of the first example, and thus description thereof is omitted. Thus, by smoothly increasing the inner diameter of the passage route 410, the air flow resistance is reduced, and the amplification efficiency can be increased.
 また、第1エアー吸入ポート410Bと第2エアー吸入ポート410Cの合計8のポートをまとめて覆うようにして、外周にエアーボックス430が配置されている。このエアーボックス430は通過経路410の外周壁と係合することで密閉空間となっている。このエアーボックス430は、二次エアーを導入するための二次エアー導入口432と、この二次エアー導入口432の近傍に配置される逆止弁(チェックバルブ)434を備える。 In addition, an air box 430 is arranged on the outer periphery so as to cover a total of eight ports of the first air suction port 410B and the second air suction port 410C. The air box 430 forms a sealed space by engaging with the outer peripheral wall of the passage path 410. The air box 430 includes a secondary air introduction port 432 for introducing secondary air, and a check valve (check valve) 434 disposed in the vicinity of the secondary air introduction port 432.
 図6には、第4実施形態の他の構成例となるエアー増幅器401が示されている。このエアー増幅器401は、エアーボックス430の二次エアー導入口432に逆止弁が設けられていない。その代わりに、第1エアー吸入ポート410Bと第2エアー吸入ポート410Cの合計8のポートのぞれぞれに逆止弁436が設けられている。多少構造は複雑になるが、このようにしても同様の効果を得ることができる。 FIG. 6 shows an air amplifier 401 as another configuration example of the fourth embodiment. In the air amplifier 401, a check valve is not provided at the secondary air introduction port 432 of the air box 430. Instead, a check valve 436 is provided in each of a total of eight ports including the first air suction port 410B and the second air suction port 410C. Although the structure is somewhat complicated, the same effect can be obtained even in this way.
 なお、このテーパー形状の通過経路410の内周壁には、図7に示される他の構成例のように、複数条の溝410Dを形成することの望ましい。このスパイラル状の溝410Dによって、メインエアーフローにスワールを生じさせて、増幅効率を向上させる。 It should be noted that it is desirable to form a plurality of grooves 410D on the inner peripheral wall of the tapered passage passage 410 as in the other configuration example shown in FIG. The spiral groove 410D generates a swirl in the main air flow and improves amplification efficiency.
 次に、本発明の第5実施形態に係るエアー循環回路について説明する。図8は、第5実施形態に係るエアー循環回路が示されている。エアー循環回路は、動力用エアー循環回路P、連続エアー発生回路Rを備えて構成されている。ここでは、各部品構成の説明と同時に、エアー循環回路の動作についても説明する。なお、図9及び図10には、このエアー循環回路の作動状態を示すフローチャートが示されている。 Next, an air circulation circuit according to a fifth embodiment of the present invention will be described. FIG. 8 shows an air circulation circuit according to the fifth embodiment. The air circulation circuit includes a power air circulation circuit P and a continuous air generation circuit R. Here, the operation of the air circulation circuit will be described at the same time as the description of each component configuration. 9 and 10 are flowcharts showing the operating state of the air circulation circuit.
 まず連続エアー発生回路Rについて説明する。起動の前準備として、最初に起動用に用いる圧縮エアーを得るため準備用コンプレッサー1を起動して、エアーチャージバルブ2を用いてエアータンク3に0.9Mpaの圧縮空気を初期充填する。このエアータンク3は、エアーストップバルブ6を介して動力用エアー循環回路Pに接続される。従って、エアーストップバルブ6を開き、圧縮エアーを動力用エアー循環回路Pの各3方バルブ8に至らしめる。なお、エアータンク3には、開閉バルブ4及び圧力ゲージ5が設けられている。この圧力ゲージ5が圧力センサとして機能し、動力用エアー循環回路Pに供給されるエアーの圧力変動を検知できるようになっている。 First, the continuous air generation circuit R will be described. As preparation before starting, the preparatory compressor 1 is first started to obtain compressed air to be used for starting, and the air tank 3 is initially filled with 0.9 Mpa of compressed air using the air charge valve 2. The air tank 3 is connected to a power air circulation circuit P through an air stop valve 6. Therefore, the air stop valve 6 is opened, and the compressed air is allowed to reach each three-way valve 8 of the power air circulation circuit P. The air tank 3 is provided with an opening / closing valve 4 and a pressure gauge 5. The pressure gauge 5 functions as a pressure sensor, and can detect pressure fluctuations in the air supplied to the power air circulation circuit P.
 次に、動力用エアー循環回路Pについて説明する。なお、以下に説明する経路全体が、動力用エアーモータ12から排出されたエアーをこの動力用エアーモータ12に再循環させる動力用循環経路に相当する。まず、動力用エアー循環回路Pでは、アクセレレーター11のソレノイドバルブをONにして、3方バルブ8から圧縮エアーが流れるようにする。この圧縮エアーは、エアーコントロールユニット9によって自動的に0.63Mpaに制御され、第1エアー増幅器10-1を通過する。この第1エアー増幅器10-1は、図1~図7を参照して第1~第4実施形態で示したものを適宜用いることができる。なおM1はエアーボックスであり、二次流導入配管N1によって後述する第2サージングタンク17に接続されている。従って、エアーボックスM1には、第2サージングタンク17から二次エアーが供給されることになる。この結果、第1エアー増幅器10-1では、エアー流量が約10倍に増加する。その増加に関しは、表1において、エアー増幅器入口のエアー量と出口のエアー増加量の状態で示している。エアー増加でエネルギーを蓄えた循環エアーはアクセレレーター11を経て動力用エアーモーター12を駆動する。これにより動力用エアーモーター12が回転して動力を発生する。なお、この動力用エアーモータ12は、サクションポートS1とデリバリーポートD1を有しており、サクションポートS1から圧縮エアーが導入されて、デリバリーポートD1から排気される。
Figure JPOXMLDOC01-appb-T000001
Next, the power air circulation circuit P will be described. The entire path described below corresponds to a power circulation path for recirculating the air discharged from the power air motor 12 to the power air motor 12. First, in the power air circulation circuit P, the solenoid valve of the accelerator 11 is turned ON so that compressed air flows from the three-way valve 8. The compressed air is automatically controlled to 0.63 MPa by the air control unit 9 and passes through the first air amplifier 10-1. As the first air amplifier 10-1, those shown in the first to fourth embodiments with reference to FIGS. 1 to 7 can be used as appropriate. M1 is an air box, and is connected to a second surging tank 17 described later by a secondary flow introduction pipe N1. Accordingly, the secondary air is supplied from the second surging tank 17 to the air box M1. As a result, in the first air amplifier 10-1, the air flow rate increases about 10 times. The increase is shown in Table 1 in the state of the air amount at the air amplifier inlet and the air increase amount at the outlet. The circulating air that has accumulated energy by increasing the air drives the power air motor 12 via the accelerator 11. As a result, the power air motor 12 rotates to generate power. The power air motor 12 has a suction port S1 and a delivery port D1, and compressed air is introduced from the suction port S1 and exhausted from the delivery port D1.
Figure JPOXMLDOC01-appb-T000001
 動力用エアーモーター12のデリバリーポートD1から吐出された排気循環エアーは、第1分流器13によりAフロー及びBフローの2方向に別れる。Aフロー方向の排気循環エアーは、第1サージングタンク14に蓄えられて、第2エアー増幅器10-2及び第3エアー増幅器10-3を通り第3サージングタンク18に至る。一方、Bフロー方向の排気循環エアーは、エアーレギュレーター15に至る。図11に示されるように、このエアーレギュレータ15は、第1分流器13側に接続される吸気ポート15Aと、ブロワー16の吸気ポート側に接続される連結ポート15Bと、余剰エアーを排出する排気ポート15Cと、排気ポート15Cの直前に設けられる濾過フィルタ15Dを備える。なお、排気ポート15Cは、詳細には、排気エアーが放出される微細な放出孔15Eの吐出先を、外部カバー15Fが覆う構造となっており、濾過フィルタ15Dを含めて消音効果が得られるようになっている。 The exhaust circulation air discharged from the delivery port D1 of the power air motor 12 is separated into two directions of A flow and B flow by the first flow divider 13. The exhaust circulating air in the A-flow direction is stored in the first surging tank 14 and passes through the second air amplifier 10-2 and the third air amplifier 10-3 to reach the third surging tank 18. On the other hand, the exhaust circulation air in the B flow direction reaches the air regulator 15. As shown in FIG. 11, the air regulator 15 includes an intake port 15A connected to the first flow divider 13 side, a connection port 15B connected to the intake port side of the blower 16, and an exhaust for discharging excess air. The filter 15D provided immediately before the port 15C and the exhaust port 15C is provided. In detail, the exhaust port 15C has a structure in which the outer cover 15F covers the discharge destination of the fine discharge hole 15E from which the exhaust air is discharged, so that a silencing effect can be obtained including the filtration filter 15D. It has become.
 このようにして、エアーレギュレータ15で余分の排気エアーは捨てることで、循環排気エアーの効率を高めると同時に、循環回路を安定化させる。なお、このブロワー16は、動力用エアーモーター12によってベルト駆動されている In this way, excess exhaust air is thrown away by the air regulator 15, thereby improving the efficiency of the circulation exhaust air and stabilizing the circulation circuit. The blower 16 is belt driven by a power air motor 12.
 ブロワー16で送られたエアーは、第2サージングタンク17に蓄えられ、二次流導入配管N2により、第2エアー増幅器10-2及び第3エアー増幅器10-3の外周に配備されたエアーボックスM2、M3に供給される。第2エアー増幅器10-2及び第3エアー増幅器10-3の構造は、第1~第4実施形態で示したエアー増幅器を適宜用いることができる。なお、既に述べたが、第2サージングタンク17のエアーは、二次流導入配管N1によって第1エアー増幅器10-1のエアーボックスM1にも供給される。 The air sent by the blower 16 is stored in the second surging tank 17, and the air box M2 provided on the outer periphery of the second air amplifier 10-2 and the third air amplifier 10-3 by the secondary flow introduction pipe N2. , M3. As the structures of the second air amplifier 10-2 and the third air amplifier 10-3, the air amplifiers shown in the first to fourth embodiments can be used as appropriate. As already described, the air in the second surging tank 17 is also supplied to the air box M1 of the first air amplifier 10-1 through the secondary flow introduction pipe N1.
 一方、Aフロー方向の排気循環エアーは、第2エアー増幅器10-2及び第3エアー増幅器10-3の内部を通るので、これにより第2エアー増幅器10-2及び第3エアー増幅器10-3の内部は負圧になる。従って、エアーボックスM2、M3に溜められている二次エアーは、特に図示しないエアー吸入ポートを経て、第2エアー増幅器10-2及び第3エアー増幅器10-3のメインエアーフローに吸引・合流されていき、第2エアー増幅器10-2及び第3エアー増幅器10-3の排気循環エアー量は増加する。増加した排気循環エアーは第3サージングタンク18に蓄えられる。 On the other hand, the exhaust circulating air in the A-flow direction passes through the inside of the second air amplifier 10-2 and the third air amplifier 10-3, so that the second air amplifier 10-2 and the third air amplifier 10-3 The inside becomes negative pressure. Accordingly, the secondary air stored in the air boxes M2 and M3 is sucked and joined to the main air flow of the second air amplifier 10-2 and the third air amplifier 10-3 through an air suction port (not shown). As a result, the amount of exhaust circulating air in the second air amplifier 10-2 and the third air amplifier 10-3 increases. The increased exhaust circulation air is stored in the third surging tank 18.
 第3サージングタンク18を経た排気循環エアーは、第2分流器19の2方向に分かれた一方に供給される。また、第2分流器19の2方向に分かれた他方には、連続エアー発生回路Rに備えられている安定化を目的とした第2コンプレッサー(安定化コンプレッサー)21の圧縮エアーが供給される。従って、第2分流器19では、この2つのエアーが合流して第4サージングタンク20に蓄えられる。第4サージングタンク20に蓄えられたエアーは、3方バルブ8の他方の接続部分に戻り、第1エアー増幅器10-1に流れ込み、動力用エアーモーター12に流れて駆動し動力を発生する。アクセレレーター11のソレノイドバルブをOFFにするまで、エアー循環工程が繰返し、動力の発生が続けられる。なお、この第2コンプレッサー21の駆動は、動力用エアーモータ12の動力を利用している。 The exhaust air circulating through the third surging tank 18 is supplied to one of the second flow dividers 19 divided in two directions. The other of the second flow divider 19 divided in two directions is supplied with compressed air from a second compressor (stabilized compressor) 21 provided for the purpose of stabilization provided in the continuous air generation circuit R. Therefore, in the second flow divider 19, the two airs merge and are stored in the fourth surging tank 20. The air stored in the fourth surging tank 20 returns to the other connection portion of the three-way valve 8, flows into the first air amplifier 10-1, flows into the power air motor 12, and is driven to generate power. Until the solenoid valve of the accelerator 11 is turned off, the air circulation process is repeated and the generation of power continues. The second compressor 21 is driven using the power of the power air motor 12.
 連続エアー発生回路Rに戻って、このエアータンク3には、その内部圧力を0.9Mpaに保つため、第3コンプレッサー(エアー駆動式充填用コンプレッサ)22が接続されている。これにより、エアータンク3は、常に圧力が維持されている。図12に示されるように、この第3コンプレッサー22の駆動軸は、ベルトによって動力用エアーモータ12に接続されており、この動力によって駆動されている。さらにこの第3コンプレッサ22はクラッチ(切替手段)を備えており、動力用エアーモータ12の負荷状態に応じて、動力の接続と切断が行える。 Returning to the continuous air generating circuit R, a third compressor (air-driven filling compressor) 22 is connected to the air tank 3 in order to keep the internal pressure at 0.9 MPa. Thereby, the pressure is always maintained in the air tank 3. As shown in FIG. 12, the drive shaft of the third compressor 22 is connected to the power air motor 12 by a belt, and is driven by this power. Further, the third compressor 22 includes a clutch (switching means), and can connect and disconnect power according to the load state of the power air motor 12.
 具体的に本実施形態では、動力用エアーモータ12の負荷状態を判定する判定装置(図示省略)を備えており、この判定装置の判定結果により、動力用エアーモータ12の負荷が高い場合は、クラッチを開放するように制御して、余分な負荷をかけないようにする。一方、動力用エアーモータ12の負荷が低く、出力に余剰がある場合は、クラッチを接続して、動力用エアーモータ12によってエアータンク3に対するエアーの補充を行っておく。このように、第3コンプレッサー22の駆動動力は、動力用エアーモーター12の動力を効果的に利用している。 Specifically, in the present embodiment, a determination device (not shown) that determines the load state of the power air motor 12 is provided. According to the determination result of the determination device, when the load of the power air motor 12 is high, Control the clutch to be released so that no extra load is applied. On the other hand, when the load of the power air motor 12 is low and the output is surplus, the clutch is connected and the air tank 3 is replenished with air by the power air motor 12. Thus, the driving power of the third compressor 22 effectively uses the power of the power air motor 12.
 既に述べた動力用エアーモータ12の負荷状態を判定する判定装置において、負荷が大きいと判定される場合は、ブロワー16との間のクラッチを開放しても良い。 In the above-described determination apparatus for determining the load state of the power air motor 12, if it is determined that the load is large, the clutch with the blower 16 may be released.
 なお、図13には、エアー駆動式充填用コンプレッサ22の構成が示されている。このエアー駆動式充填用コンプレッサ22は、エアーポンプ22A、入力軸22Cに取り付けられるプーリ22B、プーリ22Bと入力軸22Cの接続・開放を切り替える電磁クラッチ22D、サクションポートS、デリバリーポートDを備えている。プーリ22Bにはベルトが架けられて、動力用エアーモータ12と接続される。電磁クラッチ22Dを切り替えることで、動力用エアーモータ12による駆動と停止を適宜切り替えるようになっている。なお、このエアー駆動式充填用コンプレッサ22と同様の構造を、安定化用となる第2コンプレッサ21に採用しても良い。使い方を逆転すれば、このエアー駆動式充填用コンプレッサ22を動力用エアーモータ12に適用することも可能である。 FIG. 13 shows the configuration of the air-driven filling compressor 22. The air-driven filling compressor 22 includes an air pump 22A, a pulley 22B attached to the input shaft 22C, an electromagnetic clutch 22D for switching connection / release of the pulley 22B and the input shaft 22C, a suction port S, and a delivery port D. . A belt is laid on the pulley 22 </ b> B and connected to the power air motor 12. By switching the electromagnetic clutch 22D, driving and stopping by the power air motor 12 are appropriately switched. Note that the same structure as the air-driven filling compressor 22 may be adopted for the second compressor 21 for stabilization. If the usage is reversed, the air-driven filling compressor 22 can be applied to the power air motor 12.
 以上、本実施形態では、動力用エアー循環回路Pにおいて、3方バルブ8の手前のエアー供給路に、それぞれチェックバルブ7を配置した場合を示しているが、例えば、3方向バルブ8自体が、エアータンク3から送られる圧縮エアーと第4サージタンク20から送られるエアーとの比較で圧力の高いものを優先してエアーコントロールユニット9に送る機能を備えたものを用いれば、このチェックバルブ7は不要である。一方で、この3方バルブ8に代えてT字配管を配置し、エアー供給路の各々にチェックバルブ7を配備することも好ましい。このように圧力の高いほうが優先して次方向に送るようにすれば、エアー循環を効果的におこなうことができる。 As described above, in the present embodiment, in the power air circulation circuit P, the case where the check valve 7 is arranged in the air supply path before the three-way valve 8 is shown. For example, the three-way valve 8 itself is This check valve 7 can be obtained by using the one having a function of giving priority to the one with high pressure in comparison with the compressed air sent from the air tank 3 and the air sent from the fourth surge tank 20 to the air control unit 9. It is unnecessary. On the other hand, it is also preferable to arrange a T-shaped pipe instead of the three-way valve 8 and provide the check valve 7 in each of the air supply paths. If the higher pressure is given priority in this way and the air is sent in the next direction, air circulation can be performed effectively.
 本発明のエアー増幅器によれば、回路を簡略化することが出来る。このため自動車産業・船舶事業関係あるいは一般産業で利用することが可能である。特に無公害であるため、広範囲の産業で利用できる。 According to the air amplifier of the present invention, the circuit can be simplified. For this reason, it can be used in the automobile industry / ship business-related or general industries. It is especially pollution free and can be used in a wide range of industries.

Claims (16)

  1.  内部に形成されてメインエアーフローが通過する通過経路と、
     前記通過経路の外周に設けられるエアー吸入ポートと、
     二次エアー導入口を有すると共に、前記エアー吸入ポートの周囲を覆うことで、該エアー吸入ポートに供給される二次エアーが溜まるエアーボックスと、を備え、
     前記通過経路を前記メインエアーフローが通過することで該通過経路内に負圧が発生し、前記負圧によって前記エアーボックス内の二次エアーを、前記エアー吸入ポートを介して前記通過経路に向けて吸入することを特徴とするエアー増幅器。
    A passage route formed inside and through which the main airflow passes,
    An air suction port provided on the outer periphery of the passage route;
    An air box that has a secondary air inlet and covers the periphery of the air suction port to store secondary air supplied to the air suction port.
    When the main airflow passes through the passage route, a negative pressure is generated in the passage route, and secondary air in the air box is directed to the passage route through the air suction port by the negative pressure. An air amplifier characterized by inhalation.
  2.  前記エアー吸入ポートは前記通過経路の外周に複数設けられており、
     前記エアーボックスは、前記複数の前記エアー吸入ポートをまとめて覆うことを特徴とする請求の範囲1に記載のエアー増幅器。
    A plurality of the air suction ports are provided on the outer periphery of the passage route,
    The air amplifier according to claim 1, wherein the air box covers the plurality of air suction ports together.
  3.  前記エアーボックスにおける前記二次エアー導入口近傍に、外部へのエアーの流出を抑制する逆止弁が設けられることを特徴とする請求の範囲1又は2に記載のエアー増幅器。 3. The air amplifier according to claim 1, wherein a check valve that suppresses the outflow of air to the outside is provided near the secondary air inlet in the air box.
  4.  前記エアー吸入ポートには、前記通過経路側から前記エアーボックス側へのエアーの流出を抑制する逆止弁が設けられることを特徴とする請求の範囲1乃至3のいずれかに記載のエアー増幅器。 The air amplifier according to any one of claims 1 to 3, wherein the air suction port is provided with a check valve that suppresses the outflow of air from the passage path side to the air box side.
  5.  前記通過経路には、前記メインエアーフローに沿って、第1室及び第2室を含む複数の分室が配置されており、
     前記第1室には、前記メインエアーフローが前記第2室側に吐出される通過孔が設けられ、
     前記第2室の外周には、前記エアー吸入ポートが複数配置されていることを特徴とする請求の範囲1乃至4のいずれかに記載のエアー増幅器。
    A plurality of compartments including a first chamber and a second chamber are arranged along the main airflow in the passage route,
    The first chamber is provided with a passage hole through which the main airflow is discharged to the second chamber side,
    The air amplifier according to any one of claims 1 to 4, wherein a plurality of the air suction ports are arranged on an outer periphery of the second chamber.
  6.  前記第1室の前記通過孔の周りには複数の補助孔が設けられ、前記通過孔及び前記補助孔を介して前記メインエアーフローが前記第2室側に吐出されることを特徴とする請求の範囲5に記載のエアー増幅器。 A plurality of auxiliary holes are provided around the passage hole of the first chamber, and the main air flow is discharged to the second chamber side through the passage hole and the auxiliary hole. The air amplifier according to 5 above.
  7.  前記分室は、一体成形されていることを特徴とする請求の範囲5又は6に記載のエアー増幅器。 The air amplifier according to claim 5 or 6, wherein the compartment is integrally formed.
  8.  前記通過経路には、前記第2室の下流側に第3室が配置されていることを特徴とする請求の範囲5、6又は7に記載のエアー増幅器。 The air amplifier according to claim 5, 6 or 7, wherein a third chamber is arranged on the downstream side of the second chamber in the passage route.
  9.  前記分室が相互に分割可能となっていることを特徴とする請求の範囲5乃至8のいずれかに記載のエアー増幅器。 The air amplifier according to any one of claims 5 to 8, wherein the compartments can be divided from each other.
  10.  前記分室における吐出側には、吐出方向に向かって経路直径が小さくなるテーパ形状の絞り部が設けられていることを特徴とする請求の範囲5乃至9のいずれかに記載のエアー増幅器。 10. The air amplifier according to any one of claims 5 to 9, wherein a tapered throttle portion having a path diameter that decreases in a discharge direction is provided on a discharge side in the compartment.
  11.  前記分室における前記絞り部の外壁に沿って、次の前記分室の前記エアー吸入ポートが配置されることを特徴とする請求の範囲10に記載のエアー増幅器。 11. The air amplifier according to claim 10, wherein the air suction port of the next compartment is disposed along the outer wall of the throttle portion in the compartment.
  12.  前記通過経路は、エアー進入側からエアー放出側に向かって次第に大きくなるテーパー形状となっており、
     前記テーパー形状の前記通過経路の外周に、前記エアー吸入ポートが配置されていることを特徴とする請求の範囲1乃至11のいずれかに記載のエアー増幅器。
    The passage route has a tapered shape that gradually increases from the air entry side toward the air release side,
    The air amplifier according to any one of claims 1 to 11, wherein the air suction port is disposed on an outer periphery of the tapered passage.
  13.  前記テーパー形状の前記通過経路の内周面に複数条の溝を備えてスワールを促進することを特徴とする請求の範囲12に記載のエアー増幅器。 13. The air amplifier according to claim 12, wherein a swirl is promoted by providing a plurality of grooves on an inner peripheral surface of the tapered path.
  14.  前記テーパー形状の前記通過経路に対して、前記エアー吸入ポートが経路方向に沿って複数段階に配置されており、
     前記エアーボックスは、複数段階の前記エアー吸入ポートをまとめて覆うことを特徴とする請求の範囲12又は13に記載のエアー増幅器。
    The air suction port is arranged in a plurality of stages along the path direction with respect to the tapered path.
    The air amplifier according to claim 12 or 13, wherein the air box collectively covers the air suction ports in a plurality of stages.
  15.  前記エアー吸入ポートは、前記通過経路の前記メインエアーフローの流れ方向に対して鋭角を持って合流することを特徴とする請求の範囲1乃至14のいずれかに記載のエアー増幅器。 The air amplifier according to any one of claims 1 to 14, wherein the air suction port joins at an acute angle with respect to a flow direction of the main air flow in the passage route.
  16.  動力用エアーモータを作動するためのエアー循環回路であって、
     連続エアー発生回路として、
     圧縮したエアーが充填されるエアータンクと、
     エアーモータの出力によって駆動されて前記エアータンクに圧縮エアーを充填するエアー駆動式充填用コンプレッサとを備え、
     動力用エアー循環回路として、
     前記エアータンクから供給されるエアーによって駆動される動力用エアーモータと、
     前記動力用エアーモータから排出されたエアーを該動力用エアーモータに再循環させる動力用循環経路と、
     前記動力用循環経路上に配置される請求の範囲1乃至15のいずれかに記載のエアー増幅器とを備えることを特徴とするエアー循環回路。
    An air circulation circuit for operating a power air motor,
    As a continuous air generation circuit,
    An air tank filled with compressed air;
    An air-driven filling compressor that is driven by the output of an air motor to fill the air tank with compressed air;
    As an air circulation circuit for power,
    A power air motor driven by air supplied from the air tank;
    A power circulation path for recirculating the air discharged from the power air motor to the power air motor;
    An air circulation circuit comprising: the air amplifier according to any one of claims 1 to 15 disposed on the power circulation path.
PCT/JP2009/007187 2008-12-24 2009-12-24 Air amplifier, air circulation circuit WO2010073665A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008-336156 2008-12-24
JP2008336159A JP2012047188A (en) 2008-12-24 2008-12-24 Closed secondary flow air circulation circuit
JP2008336157A JP2012047187A (en) 2008-12-24 2008-12-24 Twin hybrid air circulation circuit
JP2008-336157 2008-12-24
JP2008-336159 2008-12-24
JP2008-336160 2008-12-24
JP2008336158A JP2012047046A (en) 2008-12-24 2008-12-24 Twin air circulation circuit
JP2008336160A JP2012047189A (en) 2008-12-24 2008-12-24 Multi-air amplifier air circulation circuit
JP2008-336158 2008-12-24
JP2008336156A JP2012047186A (en) 2008-12-24 2008-12-24 Single hybrid air circulation circuit

Publications (1)

Publication Number Publication Date
WO2010073665A1 true WO2010073665A1 (en) 2010-07-01

Family

ID=42287307

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2009/007184 WO2010073662A1 (en) 2008-12-24 2009-12-24 Hybrid air circulation circuit
PCT/JP2009/007185 WO2010073663A1 (en) 2008-12-24 2009-12-24 Hybrid air-circulating circuit
PCT/JP2009/007186 WO2010073664A1 (en) 2008-12-24 2009-12-24 Air circulation circuit
PCT/JP2009/007187 WO2010073665A1 (en) 2008-12-24 2009-12-24 Air amplifier, air circulation circuit

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/JP2009/007184 WO2010073662A1 (en) 2008-12-24 2009-12-24 Hybrid air circulation circuit
PCT/JP2009/007185 WO2010073663A1 (en) 2008-12-24 2009-12-24 Hybrid air-circulating circuit
PCT/JP2009/007186 WO2010073664A1 (en) 2008-12-24 2009-12-24 Air circulation circuit

Country Status (1)

Country Link
WO (4) WO2010073662A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029201A1 (en) * 2011-08-30 2013-03-07 洛阳北方玻璃技术股份有限公司 Air amplifier having function of amplifying air flow
JP2020094512A (en) * 2018-12-11 2020-06-18 富士電機株式会社 Ejector

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153181A (en) * 1974-11-04 1976-05-11 Myoshi Tetsuko Kk Kaitentaino seidoenerugiino chikuatsusaiseiho oyobi sochi
JPS5269018A (en) * 1975-12-05 1977-06-08 Shigeyoshi Ayabe Means for increasing quantity of flow in blowers by pressure
JPS54159414U (en) * 1978-04-28 1979-11-07
JPS5862200U (en) * 1981-10-22 1983-04-26 杉本 久 vacuum generator
JPS6325459A (en) * 1986-07-18 1988-02-02 カルソニックカンセイ株式会社 Steam injection type refrigerator
JPH031525Y2 (en) * 1983-03-31 1991-01-17
JPH06288399A (en) * 1993-03-31 1994-10-11 Smc Corp Multistage ejector device
JPH0733729U (en) * 1993-12-03 1995-06-23 本田技研工業株式会社 Air motor driven vehicle
JPH08502110A (en) * 1992-08-06 1996-03-05 フォルクマン、スィロ Multi-stage ejector pump
JPH09170432A (en) * 1995-12-20 1997-06-30 Yoshiaki Tsunoda Acceleration device for exhaust gas stream
JP2001295800A (en) * 1999-12-08 2001-10-26 Myotoku Ltd Ejector type vacuum generator
JP2002056869A (en) * 2000-08-10 2002-02-22 Honda Motor Co Ltd Fluid supply device for fuel cell
JP2003004319A (en) * 2001-06-20 2003-01-08 Denso Corp Ejector cycle
JP2004360735A (en) * 2003-06-02 2004-12-24 Smc Corp Fluid circuit system
JP2006329096A (en) * 2005-05-27 2006-12-07 Nippon Pneumatics Fluidics System Co Ltd Check valve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU189973B (en) * 1981-04-01 1986-08-28 Energiagazdalkodasi Intezet,Hu Apparatus for utilizing the waste heat of compressor stations
JP2001200811A (en) * 1999-11-09 2001-07-27 Yasuo Tokioka Hydraulic power unit
JP4328191B2 (en) * 2003-02-21 2009-09-09 株式会社日立製作所 Investment recovery plan support system for estimating investment recoverability of fuel gas pipeline facility with booster and exhaust heat recovery compressor
JP2009002497A (en) * 2007-06-20 2009-01-08 Akio Wada Car driving method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153181A (en) * 1974-11-04 1976-05-11 Myoshi Tetsuko Kk Kaitentaino seidoenerugiino chikuatsusaiseiho oyobi sochi
JPS5269018A (en) * 1975-12-05 1977-06-08 Shigeyoshi Ayabe Means for increasing quantity of flow in blowers by pressure
JPS54159414U (en) * 1978-04-28 1979-11-07
JPS5862200U (en) * 1981-10-22 1983-04-26 杉本 久 vacuum generator
JPH031525Y2 (en) * 1983-03-31 1991-01-17
JPS6325459A (en) * 1986-07-18 1988-02-02 カルソニックカンセイ株式会社 Steam injection type refrigerator
JPH08502110A (en) * 1992-08-06 1996-03-05 フォルクマン、スィロ Multi-stage ejector pump
JPH06288399A (en) * 1993-03-31 1994-10-11 Smc Corp Multistage ejector device
JPH0733729U (en) * 1993-12-03 1995-06-23 本田技研工業株式会社 Air motor driven vehicle
JPH09170432A (en) * 1995-12-20 1997-06-30 Yoshiaki Tsunoda Acceleration device for exhaust gas stream
JP2001295800A (en) * 1999-12-08 2001-10-26 Myotoku Ltd Ejector type vacuum generator
JP2002056869A (en) * 2000-08-10 2002-02-22 Honda Motor Co Ltd Fluid supply device for fuel cell
JP2003004319A (en) * 2001-06-20 2003-01-08 Denso Corp Ejector cycle
JP2004360735A (en) * 2003-06-02 2004-12-24 Smc Corp Fluid circuit system
JP2006329096A (en) * 2005-05-27 2006-12-07 Nippon Pneumatics Fluidics System Co Ltd Check valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029201A1 (en) * 2011-08-30 2013-03-07 洛阳北方玻璃技术股份有限公司 Air amplifier having function of amplifying air flow
JP2020094512A (en) * 2018-12-11 2020-06-18 富士電機株式会社 Ejector

Also Published As

Publication number Publication date
WO2010073662A1 (en) 2010-07-01
WO2010073663A1 (en) 2010-07-01
WO2010073664A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP6511538B2 (en) Aspirator system with multiport aspirator
KR101477372B1 (en) Air recovery-type cooling structure for air-cooled gas turbine combustor
JP5795962B2 (en) Exhaust gas turbocharger compressor
JP6480589B2 (en) Crankcase ventilation aspirator
CZ237394A3 (en) Turbo-compressor employing exhaust gases
US20190101084A1 (en) Air pipe for an intake tract of an internal combustion engine
JP6683703B2 (en) Aspirator system to provide high suction vacuum or high suction flow rate
WO2010073665A1 (en) Air amplifier, air circulation circuit
JP2007332855A (en) Fuel vapor processing system
KR101578836B1 (en) An augmentation device having improved air flow
KR20130040139A (en) Compressor, in particular in the intake tract of an internal combustion engine
FI114561B (en) Turbocharger
US7278412B2 (en) Combustion-gas recirculation system
JPWO2009016828A1 (en) Air amplifier, air circulation circuit
JP2011032880A (en) Exhaust gas recirculation device of internal combustion engine
US10662901B2 (en) Vortex pump
JP2008002276A (en) Supercharging system for internal combustion engine
KR101578830B1 (en) An augmentation device having improved air flow
JPWO2018230108A1 (en) Multi-stage supercharger
JP6666811B2 (en) Supercharger
JP2012047188A (en) Closed secondary flow air circulation circuit
JP2012047186A (en) Single hybrid air circulation circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09834471

Country of ref document: EP

Kind code of ref document: A1