WO2010073662A1 - Hybrid air circulation circuit - Google Patents

Hybrid air circulation circuit Download PDF

Info

Publication number
WO2010073662A1
WO2010073662A1 PCT/JP2009/007184 JP2009007184W WO2010073662A1 WO 2010073662 A1 WO2010073662 A1 WO 2010073662A1 JP 2009007184 W JP2009007184 W JP 2009007184W WO 2010073662 A1 WO2010073662 A1 WO 2010073662A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
circulation circuit
power
hybrid
motor
Prior art date
Application number
PCT/JP2009/007184
Other languages
French (fr)
Japanese (ja)
Inventor
西本昌司
Original Assignee
東保
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008336158A external-priority patent/JP2012047046A/en
Priority claimed from JP2008336159A external-priority patent/JP2012047188A/en
Priority claimed from JP2008336160A external-priority patent/JP2012047189A/en
Priority claimed from JP2008336156A external-priority patent/JP2012047186A/en
Priority claimed from JP2008336157A external-priority patent/JP2012047187A/en
Application filed by 東保 filed Critical 東保
Publication of WO2010073662A1 publication Critical patent/WO2010073662A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/15Pneumatic energy storages, e.g. pressure air tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention uses an effective air flow in the air circulation circuit and leads it to power through an air motor, and in particular, installs an electrical circuit centered on a storage battery and an alternator to make it a hybrid and output it.
  • the present invention relates to a technique for improving practicality including stabilization.
  • the current power used as a conventional technology is basically an internal combustion engine that generates power by burning fossil fuel. For this reason, the global environment is worsening and is regarded as a problem. In particular, there are many problems such as CO2 which has a great impact on global warming and NOX which has a great impact on human health. In addition, bioenergy research is being conducted as a solution to fossil fuel depletion, but it is far from solving the problem. Establishing an air circulation circuit makes it possible to put the power of the air motor into practical use and contribute to solving problems.
  • the problem to be solved is the problem of exhaustion of fossil fuel as an energy source.
  • Various researches such as bioenergy have been conducted as alternative fuels, but they are far from solving the problem.
  • a solution to this problem requires a change of mindset.
  • the present invention that achieves the above object is an air circulation circuit for operating a power air motor, an air tank that is filled with compressed air, and an electric filling that supplies high-pressure air to the air tank Compressor, a power air motor driven by air supplied from the air tank, an alternator driven by the power air motor, a storage battery charged by the alternator, and the storage battery as a power source
  • An electric motor that drives an electric charging compressor; a circulation path that recirculates air discharged from the power air motor to the power air motor; and an air amplifier that is disposed on the circulation path.
  • This is a hybrid air circulation circuit.
  • the hybrid air circulation circuit that achieves the above object is characterized in that in the above invention, the hybrid battery further comprises a plug-in outlet for charging the storage battery from a household power source.
  • the hybrid air circulation circuit that achieves the above object comprises the air driven filling compressor to which the output of the power air motor is connected in the above invention, and the air driven filling compressor or the electric filling compressor. By the above, air is replenished to the air tank.
  • the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, by providing a switching means having a clutch structure or a structure similar to the clutch between the connection of the air-driven filling compressor and the power air motor, It is characterized in that the power can be connected and disconnected.
  • the hybrid air circulation circuit that achieves the above object comprises the determination means for determining the load state of the power air motor in the above invention, and opens the switching means when the load of the power air motor is large.
  • the electric charging compressor is driven mainly by the electric motor.
  • the compressed air of the air tank is supplied to a circulation path for recirculating the air discharged from the power air motor to the power air motor.
  • a first air amplifier that amplifies the air amount adjusted by the air control unit; the power air motor that is driven by the air amplified by the first air amplifier; and air that is discharged from the power air motor
  • a first shunt for branching in two directions of A flow and B flow, Second and third air amplifiers connected to the A flow of the shunt, the intake port of the blower connected to the B flow of the first shunt, and the first air supplied from the blower
  • the third air amplifier is connected to one of the two air amplifiers and the third air amplifier, and one of the air holes divided in two directions is connected to the other, and the third compressor is connected to the other.
  • a second s for branching in two directions of A flow
  • the hybrid air circulation circuit that achieves the above object is the above invention, wherein the power air motor and the blower are connected by a belt, and the exhaust air sent to the air regulator is placed in the vicinity of the intake port of the blower. The excess amount of the exhaust air discharged is adjusted.
  • the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the pressure of the air tank is maintained at approximately 0.9 MPa.
  • the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the pressure is adjusted to approximately 0.63 MPa by the air control unit.
  • the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, a check valve is provided in each intake hole of each of the first air amplifier, the second air amplifier, and the third air amplifier so that the backflow of air is prevented. It is prevented.
  • the three-way valve has both an inlet for exhaust air sent from the third air amplifier side and an inlet for compressed air sent from the air tank. It is characterized in that a check valve is provided.
  • the air amplifier disposed on the circulation path of the hybrid air circulation circuit that achieves the above object is provided in the above invention, on the outer periphery of the passage path formed inside and through the main air flow.
  • a negative pressure is generated in the passage route when the main air flow passes through the passage route, and the negative pressure causes gas to flow from the air suction port toward the passage route. It is characterized by inhaling.
  • a plurality of compartments including a first chamber and a second chamber are arranged along the main air flow in the passage path.
  • the first chamber is provided with a passage hole through which the main airflow is discharged to the second chamber side, and a plurality of the air suction ports are arranged on the outer periphery of the second chamber.
  • a plurality of auxiliary holes are provided around the passage hole of the first chamber, and the air hole is interposed through the passage hole and the auxiliary hole. The main airflow is discharged to the second chamber side.
  • the air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, a third chamber is arranged on the downstream side of the second chamber in the passage route.
  • the air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the compartments can be divided from each other.
  • the air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the discharge side in the branch chamber is provided with a tapered throttle portion whose path diameter decreases toward the discharge direction.
  • the air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the air suction port of the next compartment is disposed along the outer wall of the throttle portion in the compartment. .
  • the air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the air suction port joins at an acute angle with respect to the flow direction of the main air flow in the passage path. To do.
  • the air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the air suction port is provided with a check valve that suppresses the outflow of air from the passage path side to the outside.
  • an external circuit of the power air motor is prevented from being reduced by incorporating an electric circuit mainly including a storage battery and an alternator into the air circulation circuit.
  • the charging compressor is operated using an electric motor powered by a storage battery.
  • the air-driven filling compressor is driven using the output of the power air motor to replenish air to the air tank.
  • the compressor should be turned on.
  • the air tank is refilled with an electric filling air compressor using an electric motor that uses battery power instead. As a result, the pressure of the air tank can be stabilized, and this synergistic effect can further stabilize the output of the power air motor.
  • the power output from the power air motor can be stabilized by hybridizing the air circulation circuit.
  • the air tank is replenished with a compressor using the output of the air motor in accordance with the load of the power motor.
  • the air compressor driven by an electric motor using the power of the storage battery is used properly. As a result, more stable power of the air motor is obtained.
  • FIG. 1 shows an embodiment of the present invention, which is a hybrid air circulation circuit having a component configuration of 1 to 27.
  • This hybrid air circulation circuit includes an air circulation circuit P and a continuous air generation circuit R. 2 and 3 are flowcharts showing the operating state of the hybrid air circulation circuit.
  • the preparation compressor 1 is first activated in order to obtain the compressed air to be used for activation first, and the air charge valve 2 is activated.
  • the air tank 3 is initially filled with 0.9 Mpa of compressed air.
  • the air stop valve 6 is opened to bring the compressed air to the three-way valve 8 of the air circulation circuit P.
  • the air tank 3 is provided with an opening / closing valve 4 and a pressure gauge 5.
  • the air circulation circuit P will be described. Note that the entire path described below corresponds to the circulation path in the present invention in which the air discharged from the power air motor 12 is recirculated to the power air motor 12.
  • the solenoid valve of the accelerator 11 is turned on so that compressed air flows from the three-way valve 8.
  • the compressed air is automatically controlled to 0.63 MPa by the air control unit 9 and passes through the first air amplifier 10-1.
  • the first air amplifier 10-1 has a structure in which a negative pressure is caused by passage of compressed air, and outside air flows in by the negative pressure.
  • Each inflow hole is provided with a check valve 7 to prevent backflow.
  • the air flow rate increases about 10 times.
  • the increase is shown in Table 1 in terms of the amount of air at the air amplifier inlet and the amount of air increase at the outlet.
  • the circulating air that has accumulated energy by increasing the air drives the power air motor 12 via the accelerator 11. As a result, the power air motor 12 rotates to generate power.
  • the power air motor 12 has a suction port S1 and a delivery port D1, and compressed air is introduced from the suction port S1 and exhausted from the delivery port D1.
  • the exhaust circulation air discharged from the delivery port D1 of the air motor 12 is separated into two directions of A flow and B flow by the first flow divider 13.
  • the exhaust circulation air in the A-flow direction is stored in the first surging tank 14, and further passes through the second air amplifier 10-2 and the third air amplifier 10-3 to reach the third surging tank 18.
  • the exhaust circulation air in the B flow direction reaches the air regulator 15.
  • the exhaust circulation air is discharged to the intake port of the blower 16 that is belt-driven by the power air motor 12 through the air regulator 15, and at this time, the excess exhaust air is discarded. It is done. This increases the efficiency of the circulating exhaust air and at the same time stabilizes the circulation circuit.
  • the blower 16 is rotationally driven by a blower motor (not shown) in addition to the belt drive.
  • the air sent by the blower 16 is stored in the second surging tank 17, and is connected to the outer periphery of the second air amplifier 10-2 and the third air amplifier 10-3 by a pipe via an intake hole with a check valve. Supplied inside. That is, the structure of the second air amplifier 10-2 and the third air amplifier 10-3 is provided with a check valve 7 at each intake port, as schematically shown in FIG.
  • the exhaust circulation air in the A-flow direction passes through the second air amplifier 10-2 and the third air amplifier 10-3, and thus the second air amplifier 10-2 and the third air amplifier The inside of 10-3 becomes negative pressure. Therefore, the B-flow exhaust circulation air is also sucked and merged into the second air amplifier 10-2 and the third air amplifier 10-3, and the exhaust of the second air amplifier 10-2 and the third air amplifier 10-3 is exhausted. Circulating air volume increases. The increased exhaust circulation air is stored in the third surging tank 18.
  • the exhaust air circulating through the third surging tank 18 is supplied to one of the second flow dividers 19 divided in two directions.
  • the other of the second flow divider 19 divided in two directions is supplied with compressed air from a second compressor (stabilized compressor) 21 for the purpose of stabilization. Therefore, in the second flow divider 19, the two airs merge and are stored in the fourth surging tank 20.
  • the air stored in the fourth surging tank 20 returns to the other connection portion of the three-way valve 8, flows into the first air amplifier 10-1, flows into the power air motor 12, and is driven to generate power. Until the solenoid valve of the accelerator 11 is turned off, the air circulation process is repeated and the generation of power continues.
  • the drive shaft of the second compressor 21 can be selected from driving using the power of the power air motor 12 and driving using the power of the electric motor by the battery 24.
  • a third compressor (air-driven filling compressor) 22 is connected to the air tank 3 in order to keep the internal pressure at 0.9 MPa. Thereby, the pressure is always maintained in the air tank 3.
  • the drive shaft of the third compressor 22 is connected to the power air motor 12 by a belt, and is driven by this power.
  • the third compressor 22 includes a clutch (switching means), and can connect and disconnect power according to the load state of the power air motor 12.
  • a determination device (not shown) that determines the load state of the power air motor 12 is provided. According to the determination result of the determination device, when the load of the power air motor 12 is high, The third compressor 22 is stopped by controlling to release the clutch. On the other hand, when the load of the power air motor 12 is low and the output is surplus, the clutch is connected and energy is allocated to the replenishment of the air tank 3. As described above, the driving power of the third compressor 22 effectively uses surplus power of the power air motor 12.
  • the hybrid air circulation circuit further includes electrical components such as an alternator 23, a storage battery (battery) 24, electric charging compressors 25 and 26, and an electric motor 27.
  • the alternator 23 is directly or indirectly connected to the output shaft of the power air motor 12 and generates power using this power. This power is charged in the battery 23. It is desirable that the alternator 23 and the power air motor 12 can be switched between connection and release according to a clutch structure or a concept similar to the clutch.
  • the electric motor 27 is rotated by the power of the battery 24. As shown in FIG. 8, the electric motor 27 is connected to the electric filling compressors 25 and 26 via a coupling 27A.
  • the electric filling compressors 25 and 26 are for filling the air tank 3 with compressed air and have a suction port S1 and a delivery port D1.
  • the battery 24 also rotates the blower motor of the blower 16. Therefore, it becomes an energy source for moving the electric filling compressors 25 and 26 to maintain the air tank 3 and an energy source for moving the blower 16 to increase the circulation efficiency of the exhaust air.
  • the clutch between the alternator 23 and the power air motor 12 is released to stop charging the battery 23.
  • the clutch between the blower 16 and the power air motor 12 is also released.
  • the battery 23 drives the electric filling compressors 25 and 26 to replenish air to the air tank 3, and the blower 16 is driven by a motor to promote air circulation.
  • the battery 24 is provided with a plug-in outlet for home power supply so that it can be charged by the home power supply.
  • the optimum air amplifiers 101 to 501 may be selected and applied to all of the first to third air amplifiers 10-1, 10-2, and 10-3, or may be partially applied.
  • the air amplifier 101 in the first example has a two-stage amplification structure, so that the above-described second and third amplifiers 10-2, 10-2, -2 may be realized.
  • the air amplifier described below has a structure in which air, compressed air, gas, or the like is efficiently sucked by a plurality of air suction ports provided on the outer periphery of the air amplifier.
  • the amplifier 101 includes a passage path 110 that is formed inside and through which the main airflow passes.
  • a first chamber 112, a second chamber 114, and a third chamber 116 serving as a branch chamber are arranged in the passage route 110 along the main air flow.
  • Each compartment 112, 114, 116 is constituted by cylindrical outer walls 112A, 114A, 116A.
  • a passage hole 112B for discharging air to the second chamber 114 side is formed in the first chamber 112 a passage hole 112B for discharging air to the second chamber 114 side is formed.
  • a passage hole 114B for discharging air to the third chamber 116 side is formed in the third chamber 116.
  • a passage hole 116B for discharging air to the outside is formed.
  • the first chamber 112, the second chamber 114, and the third chamber 116 are integrally molded as a whole.
  • the inner diameter d2 of the second chamber 114 is larger than the inner diameter d1 of the first chamber 112. Furthermore, the inner diameter d3 of the third chamber 116 is larger than the inner diameter d2 of the second chamber 114.
  • amplification efficiency is increased by increasing the inner diameter of the compartment toward the downstream side.
  • air suction from the outside is realized in a rational shape by arranging an air suction port described later by using this step.
  • the inner diameter of the passage hole 114B in the second chamber 114 is set larger than the inner diameter d4 of the passage hole 112B in the first chamber 112, and the third inner diameter is larger than the inner diameter of the passage hole 114B in the second chamber 114.
  • the inner diameter of the passage hole 116B in the chamber 116 (this coincides with the inner diameter d3 of the third chamber 116) is set large.
  • a tapered throttle portion 112C having a path diameter that decreases in the discharge direction is provided on the discharge side in the first chamber 112. Therefore, the passage hole 112B is disposed at the protruding end of the throttle portion 112C.
  • a tapered throttle portion 114C having a path diameter that decreases in the discharge direction is provided on the discharge side in the second chamber 114. Therefore, the passage hole 114B is disposed at the protruding end of the throttle portion 114C.
  • a plurality of air suction ports are arranged on the outer periphery of the passage route 110. Specifically, in the vicinity of the boundary with the first chamber 112 on the outer periphery of the second chamber 114, four air suction ports 114D for the second chamber are arranged at intervals of 90 degrees in the circumferential direction. In addition, four third chamber air suction ports 116D are arranged at intervals of 90 degrees in the circumferential direction near the boundary with the second chamber 114 on the outer periphery of the third chamber 116.
  • the air suction port 114D for the second chamber is arranged along the outer wall of the throttle portion 112C in the first chamber 112 using its tapered shape. At this time, the air suction port 114D for the second chamber joins at an acute angle ⁇ with respect to the flow direction of the main air flow in the passage path 110.
  • the third chamber air suction port 116 ⁇ / b> D is disposed along the outer wall of the throttle portion 114 ⁇ / b> C in the second chamber 114 using its tapered shape. At this time, the air suction port 116D for the third chamber merges with an acute angle ⁇ with respect to the flow direction of the main air flow in the passage path 110.
  • the air amplifier 201 according to the second example will be described with reference to FIG.
  • parts different from the air amplifier 101 of the first example will be mainly described, and the same or similar parts will be described and illustrated by matching the last two digits of the reference numerals with the first example. Is omitted.
  • the air amplifier 201 includes a fourth chamber 218 in addition to the first chamber 212, the second chamber 214, and the third chamber 216. Therefore, although not particularly illustrated, the third chamber 216 is also formed with a narrowed portion having a tapered diameter, and air is discharged to the fourth chamber 218 from the passage hole at the tip.
  • a fourth chamber air suction port 218D is formed on the outer periphery of the fourth chamber 218, and sucks air to further amplify it. Thus, the amount of amplification can be increased by increasing the number of compartments on the passage route 210.
  • an air amplifier 301 according to a third example will be described with reference to FIG.
  • parts different from the air amplifier 101 of the first example will be mainly described, and the same or similar parts will be described and illustrated by matching the last two digits of the reference numerals with the first example. Is omitted.
  • the first chamber 312, the second chamber 314, and the third chamber 316 are separable. Specifically, a cylindrical engagement portion 314E is formed on the upstream side of the second chamber 314, and the first chamber 312 is inserted into the engagement portion 314E so that they can be detachably fitted to each other. It is like that. A cylindrical engaging portion 316E is also formed on the upstream side of the third chamber 316, and the second chamber 314 is inserted into the engaging portion 316E so that they can be detachably fitted to each other. As described above, the steps formed between the first chamber 312 and the third chamber 316 are effectively utilized, and are fitted in a nested manner to facilitate disassembly and assembly. As a result, maintenance is also simplified.
  • auxiliary holes 312F are further provided around the passage hole 312B of the first chamber 312.
  • the auxiliary hole 312F can also pass air, and the main air flow is discharged to the second chamber 314 side through both the passage hole 312B and the auxiliary hole 312F. As a result, the air amplification efficiency can be increased.
  • an air amplifier 401 according to a fourth example will be described with reference to FIG.
  • parts different from the air amplifier 101 of the first example will be mainly described, and the same or similar parts will be described and illustrated by matching the last two digits of the reference numerals with the first example. Is omitted.
  • the air amplifier 401 has an integral structure in which the passage route 410 is not divided into compartments.
  • a throttle portion 410A is disposed in the vicinity of the entrance of the passage route 410, and the flowed air is once throttled to increase the flow velocity.
  • the downstream side of the narrowed portion 410A in the passage route 410 has a tapered shape that gradually increases from the air entry side toward the air discharge side. Therefore, the diameter d7 on the outlet side is larger than the diameter d6 on the inlet side.
  • a first air suction port 410B and a second air suction port 410C are arranged on the outer periphery of the tapered passage route 410 with a certain interval in the axial direction.
  • the structure and function of the air suction ports 410B and 410C are the same as those of the air suction port of the first example, and thus description thereof is omitted.
  • the air flow resistance is reduced, and the amplification efficiency can be increased.
  • the spiral groove 410D generates a swirl in the main air flow and improves amplification efficiency.
  • an air amplifier 501 according to a fifth example will be described with reference to FIG.
  • parts different from the air amplifier 101 of the first example will be mainly described, and the same or similar parts will be described and illustrated by matching the last two digits of the reference numerals with the first example. Is omitted.
  • the first chamber 512 and the second chamber 514 can be separated. Further, the inner diameter d2 of the second chamber 514 is smaller than the inner diameter d1 of the first chamber 512. Thus, the flow velocity is increased by reducing the inner diameter of the compartment toward the downstream side.
  • the passage hole 512B of the first chamber 512 is thinner than the diameter of the second chamber 514 on the downstream side. Further, here, the passage hole 512B itself has a tapered shape that becomes gradually thinner toward the downstream side, so that the flow velocity of the air is increased.
  • an air suction slit 514E having a ring shape is disposed around the outlet of the passage hole 512B by utilizing a step due to the difference in diameter between the passage hole 512B and the second chamber 514. Further, a plurality (eight in this case) of air suction ports 514D are arranged at equal intervals in the circumferential direction in the air suction slit 514E.
  • Main air flow is discharged to the second chamber 514 side through the passage hole 512B. As a result, the air amplification efficiency can be increased.
  • a diffuser 514F On the downstream side of the second chamber 514, a diffuser 514F whose diameter gradually increases is provided.
  • a check valve (check valve) 514G is installed in each air suction port 514D.
  • the hybrid air circulation circuit makes it possible to store energy in the battery 24 using the output when the compressed air filled in the air tank 3 is converted into power. Further, the power of the battery 24 can be used to replenish the air tank 3 with compressed air or to operate the blower 16. Therefore, the air circulation circuit generally has a drawback that it cannot flexibly cope with fluctuations in external load. However, by using such a hybrid, it can flexibly deal with fluctuations in external load and use efficiency of compressed air. Can be increased.
  • the battery 24 is not charged by the power, and further, the replenishment of compressed air using the battery 24 is performed, so that the power air The power of the motor 12 is not reduced.
  • the surplus power can be stored in the battery 24 via the alternator 23 to prepare for the next high load.
  • the check valve 7 is arranged in the air supply path before the three-way valve 8 is shown.
  • the three-way valve 8 itself is compressed air sent from the air tank 3.
  • the check valve 7 is not necessary if a device having a function of sending air in the direction of the air control unit 9 preferentially in comparison with air sent from the fourth surge tank 20 is used.
  • the air circulation circuit for using the air motor as power can be operated more effectively.
  • air motor rotational power can be easily obtained by effectively providing an air amplifier on the air circulation circuit. For this reason, it can be used in the automobile industry / ship business-related or general industries. It is especially pollution free and can be used in a wide range of industries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Fuel Cell (AREA)

Abstract

An electrical circuit, composed primarily of a storage battery, an alternator, and an electric motor for driving an air compressor, is installed as an air circulation circuit. In addition, it is desirable that a blower be driven with the electric power of the storage battery. When a power-producing air motor sustains a heavy load, the air compressor is driven by the electric motor using the electric power of the storage battery, and air, which is the power source, is replenished. The output of the power-producing air motor is stabilized as a result.

Description

ハイブリッド・エアー循環回路Hybrid air circulation circuit
 本発明は、エアー循環回路に効果的エアーフローを利用し、エアーモーターを介して動力に導き活用するものであり、特に、蓄電池とオルタネータを中心とした電装回路を設置してハイブリッド化し、出力の安定化を含めた実用性の向上を図る技術に関する。 The present invention uses an effective air flow in the air circulation circuit and leads it to power through an air motor, and in particular, installs an electrical circuit centered on a storage battery and an alternator to make it a hybrid and output it. The present invention relates to a technique for improving practicality including stabilization.
 従来の技術として使用されている動力は基本的に化石燃料を燃焼し動力を発生する内燃機関が利用されているのが現状である。このため地球環境の悪化が進み問題視されている。特に地球温暖化に大きな影響を持つCO2の問題や人類の健康に大きな影響を持つNOX等多くの問題がある。加えて化石燃料の枯渇の解決策としてバイオエネルギー等の研究も行われているが、問題解決には程遠い。エアー循環回路の確立により、エアーモーターの動力を実用に供することが可能となり問題解決に寄与する。 The current power used as a conventional technology is basically an internal combustion engine that generates power by burning fossil fuel. For this reason, the global environment is worsening and is regarded as a problem. In particular, there are many problems such as CO2 which has a great impact on global warming and NOX which has a great impact on human health. In addition, bioenergy research is being conducted as a solution to fossil fuel depletion, but it is far from solving the problem. Establishing an air circulation circuit makes it possible to put the power of the air motor into practical use and contribute to solving problems.
 解決しようとする問題点は、エネルギー源としている化石燃料の枯渇の問題である。代替燃料としてバイオエネルギー等いろいろな研究が行われているが問題の解決には程遠い物である。この問題の解決には発想の転換が必要である。 The problem to be solved is the problem of exhaustion of fossil fuel as an energy source. Various researches such as bioenergy have been conducted as alternative fuels, but they are far from solving the problem. A solution to this problem requires a change of mindset.
 本発明者らの鋭意研究によって、上記目的は以下の手段によって達成される。 The above object is achieved by the following means based on the earnest research of the present inventors.
 即ち、上記目的を達成する本発明は、動力用エアーモータを作動するためのエアー循環回路であって、圧縮したエアーが充填されるエアータンクと、前記エアータンクに高圧エアーを供給する電動式充填用コンプレッサと、前記エアータンクから供給されるエアーによって駆動される動力用エアーモータと、該動力用エアーモータによって駆動されるオルタネータと、前記オルタネータによって充電される蓄電池と、前記蓄電池を動力源として前記電動式充填用コンプレッサを駆動する電動モータと、前記動力用エアーモータから排出されたエアーを該動力用エアーモータに再循環させる循環経路と、前記循環経路上に配置されるエアー増幅器と、を備えることを特徴とするハイブリッド・エアー循環回路である。 That is, the present invention that achieves the above object is an air circulation circuit for operating a power air motor, an air tank that is filled with compressed air, and an electric filling that supplies high-pressure air to the air tank Compressor, a power air motor driven by air supplied from the air tank, an alternator driven by the power air motor, a storage battery charged by the alternator, and the storage battery as a power source An electric motor that drives an electric charging compressor; a circulation path that recirculates air discharged from the power air motor to the power air motor; and an air amplifier that is disposed on the circulation path. This is a hybrid air circulation circuit.
 上記目的を達成するハイブリッド・エアー循環回路は、上記発明において、前記蓄電池に対する家庭用電源からの充電を行うプラグインコンセントを更に備えることを特徴とする。 The hybrid air circulation circuit that achieves the above object is characterized in that in the above invention, the hybrid battery further comprises a plug-in outlet for charging the storage battery from a household power source.
 上記目的を達成するハイブリッド・エアー循環回路は、上記発明において、前記動力用エアーモータの出力が接続されるエアー駆動式充填用コンプレッサを備え、前記エアー駆動式充填用コンプレッサ又は前記電動式充填用コンプレッサによって、前記エアータンクにエアーが補充されることを特徴とする。 The hybrid air circulation circuit that achieves the above object comprises the air driven filling compressor to which the output of the power air motor is connected in the above invention, and the air driven filling compressor or the electric filling compressor. By the above, air is replenished to the air tank.
 上記目的を達成するハイブリッド・エアー循環回路は、上記発明において、前記エアー駆動式充填用コンプレッサと前記動力用エアーモータとの接続間においてクラッチ構造又はクラッチに準ずる構造となる切替手段を設けることで、動力の接続と切断が行えることを特徴とする。 The hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, by providing a switching means having a clutch structure or a structure similar to the clutch between the connection of the air-driven filling compressor and the power air motor, It is characterized in that the power can be connected and disconnected.
 上記目的を達成するハイブリッド・エアー循環回路は、上記発明において、前記動力用エアーモータの負荷状態を判定する判定手段を備え、前記動力用エアーモータの負荷が大きい場合には、前記切替手段を開放することによって、主として前記電動モータによって前記電動式充填用コンプレッサを駆動することを特徴とする。 The hybrid air circulation circuit that achieves the above object comprises the determination means for determining the load state of the power air motor in the above invention, and opens the switching means when the load of the power air motor is large. Thus, the electric charging compressor is driven mainly by the electric motor.
 上記目的を達成するハイブリッド・エアー循環回路は、上記発明において、前記動力用エアーモータから排出されたエアーを該動力用エアーモータに再循環させる循環経路上には、前記エアータンクの圧縮エアーが供給される3方バルブと、前記3方バルブに接続されるアクセレレーターと、前記アクセレレーターが開いた際に、前記3方バルブから供給される圧縮エアーの圧力を調節するエアーコントロールユニットと、前記エアーコントロールユニットで調整されたエアー量を増幅する第1エアー増幅器と、前記第1エアー増幅器によって増幅されたエアーによって駆動される前記動力用エアーモーターと、前記動力用エアーモーターから排出されたエアーが供給されてAフローとBフローの2方向に分岐させる第1分流器と、前記第1分流器のAフローに接続される第2エアー増幅器および第3エアー増幅器と、前記第1分流器のBフローに接続されるブロワーの吸気ポートと、前記ブロワーからの排気エアーが供給される前記第2エアー増幅器および前記第3エアー増幅器の吸気孔と、自身の2方向に分かれた一方には前記第3エアー増幅器が接続されると共に、他方には安定化用コンプレッサーが接続され、前記第3エアー増幅器の前記排気エアーと前記安定化用コンプレッサーのエアーが混合される第2分流器と、前記第2分流器によって混合されたエアーが供給される前記3方バルブと、を備えることを特徴とする。 In the hybrid air circulation circuit that achieves the above object, in the above invention, the compressed air of the air tank is supplied to a circulation path for recirculating the air discharged from the power air motor to the power air motor. A three-way valve, an accelerator connected to the three-way valve, an air control unit that adjusts the pressure of compressed air supplied from the three-way valve when the accelerator is opened, A first air amplifier that amplifies the air amount adjusted by the air control unit; the power air motor that is driven by the air amplified by the first air amplifier; and air that is discharged from the power air motor And a first shunt for branching in two directions of A flow and B flow, Second and third air amplifiers connected to the A flow of the shunt, the intake port of the blower connected to the B flow of the first shunt, and the first air supplied from the blower The third air amplifier is connected to one of the two air amplifiers and the third air amplifier, and one of the air holes divided in two directions is connected to the other, and the third compressor is connected to the other. A second shunt for mixing the exhaust air of the amplifier and the air of the stabilizing compressor, and the three-way valve for supplying the air mixed by the second shunt. .
 上記目的を達成するハイブリッド・エアー循環回路は、上記発明において、前記動力用エアーモーターと前記ブロワーはベルト掛けで接続され、前記エアーレギュレーターに送られた前記排気エアーが前記ブロワーの吸気ポート付近に大気放出され、前記排気エアーの余分量が調整されることを特徴とする。 The hybrid air circulation circuit that achieves the above object is the above invention, wherein the power air motor and the blower are connected by a belt, and the exhaust air sent to the air regulator is placed in the vicinity of the intake port of the blower. The excess amount of the exhaust air discharged is adjusted.
 上記目的を達成するハイブリッド・エアー循環回路は、上記発明において、前記エアータンクの圧力は略0.9Mpaに維持されることを特徴とする。 The hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the pressure of the air tank is maintained at approximately 0.9 MPa.
 上記目的を達成するハイブリッド・エアー循環回路は、上記発明において、前記エアーコントロールユニットによって圧力が略0.63Mpaに調節されることを特徴とする。 The hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the pressure is adjusted to approximately 0.63 MPa by the air control unit.
 上記目的を達成するハイブリッド・エアー循環回路は、上記発明において、前記第1エアー増幅器、前記第2エアー増幅器および前記第3エアー増幅器の各々が有する吸気孔にチェックバルブを設けて、エアーの逆流が防止されることを特徴とする。 The hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, a check valve is provided in each intake hole of each of the first air amplifier, the second air amplifier, and the third air amplifier so that the backflow of air is prevented. It is prevented.
 上記目的を達成するハイブリッド・エアー循環回路は、上記発明において、前記3方バルブは、前記第3エアー増幅器側から送られる排気エアーの入口と、前記エアータンクからの送られる圧縮エアーの入口の双方にチェックバルブが配備されることを特徴とする。 In the hybrid air circulation circuit that achieves the above object, in the above invention, the three-way valve has both an inlet for exhaust air sent from the third air amplifier side and an inlet for compressed air sent from the air tank. It is characterized in that a check valve is provided.
 上記目的を達成するハイブリッド・エアー循環回路の前記循環経路上に配置される前記エアー増幅器は、上記発明において、内部に形成されてメインエアーフローが通過する通過経路と、前記通過経路の外周に設けられるエアー吸入ポートと、を備え、前記通過経路を前記メインエアーフローが通過することで該通過経路内に負圧が発生し、前記負圧によって前記エアー吸入ポートから前記通過経路に向けて気体を吸入することを特徴とする。 The air amplifier disposed on the circulation path of the hybrid air circulation circuit that achieves the above object is provided in the above invention, on the outer periphery of the passage path formed inside and through the main air flow. A negative pressure is generated in the passage route when the main air flow passes through the passage route, and the negative pressure causes gas to flow from the air suction port toward the passage route. It is characterized by inhaling.
 上記目的を達成するハイブリッド・エアー循環回路の前記エアー増幅器は、上記発明において、前記通過経路には、前記メインエアーフローに沿って、第1室及び第2室を含む複数の分室が配置されており、前記第1室には、前記メインエアーフローが前記第2室側に吐出される通過孔が設けられ、前記第2室の外周には、前記エアー吸入ポートが複数配置されていることを特徴とする。 In the air amplifier of the hybrid air circulation circuit that achieves the above object, in the above invention, a plurality of compartments including a first chamber and a second chamber are arranged along the main air flow in the passage path. The first chamber is provided with a passage hole through which the main airflow is discharged to the second chamber side, and a plurality of the air suction ports are arranged on the outer periphery of the second chamber. Features.
 上記目的を達成するハイブリッド・エアー循環回路の前記エアー増幅器は、上記発明において、前記第1室の前記通過孔の周りには複数の補助孔が設けられ、前記通過孔及び前記補助孔を介して前記メインエアーフローが前記第2室側に吐出されることを特徴とする。 In the air amplifier of the hybrid air circulation circuit that achieves the above object, in the above invention, a plurality of auxiliary holes are provided around the passage hole of the first chamber, and the air hole is interposed through the passage hole and the auxiliary hole. The main airflow is discharged to the second chamber side.
 上記目的を達成するハイブリッド・エアー循環回路の前記エアー増幅器は、上記発明において、前記通過経路には、前記第2室の下流側に第3室が配置されていることを特徴とする。 The air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, a third chamber is arranged on the downstream side of the second chamber in the passage route.
 上記目的を達成するハイブリッド・エアー循環回路の前記エアー増幅器は、上記発明において、前記分室が相互に分割可能となっていることを特徴とする。 The air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the compartments can be divided from each other.
 上記目的を達成するハイブリッド・エアー循環回路の前記エアー増幅器は、上記発明において、前記分室における吐出側には、吐出方向に向かって経路直径が小さくなるテーパ形状の絞り部が設けられていることを特徴とする。 The air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the discharge side in the branch chamber is provided with a tapered throttle portion whose path diameter decreases toward the discharge direction. Features.
 上記目的を達成するハイブリッド・エアー循環回路の前記エアー増幅器は、上記発明において、前記分室における前記絞り部の外壁に沿って、次の前記分室の前記エアー吸入ポートが配置されることを特徴とする。 The air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the air suction port of the next compartment is disposed along the outer wall of the throttle portion in the compartment. .
 上記目的を達成するハイブリッド・エアー循環回路の前記エアー増幅器は、上記発明において、前記エアー吸入ポートは、前記通過経路の前記メインエアーフローの流れ方向に対して鋭角を持って合流することを特徴とする。 The air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the air suction port joins at an acute angle with respect to the flow direction of the main air flow in the passage path. To do.
 上記目的を達成するハイブリッド・エアー循環回路の前記エアー増幅器は、上記発明において、前記エアー吸入ポートには、前記通過経路側から外部へのエアーの流出を抑制する逆止弁が設けられることを特徴とする。 The air amplifier of the hybrid air circulation circuit that achieves the above object is characterized in that, in the above invention, the air suction port is provided with a check valve that suppresses the outflow of air from the passage path side to the outside. And
 本発明では、エアー循環回路に対して、蓄電池とオルタネータ等を中心とした電装回路を組み込むことにより、動力用エアーモータの外部出力の低下を抑制する。具体的には、動力用エアーモータの出力を常に安定した状態に維持するために、蓄電池を電源した電動モータを利用して充填用コンプレッサを動作させる。この結果、動力用エアーモータの負荷が大きくても、エアータンクの圧力低下を抑制できる。なお、通常は、動力用エアーモータの出力を使用してエアー駆動式充填用コンプレッサを駆動して、エアータンクへのエアーの補充をおこなうが、動力用エアーモータの負荷が大きい場合は、コンプレッサを停止させて、代わりにバッテリーの電力を使用した電動モータによって電動式充填用エアーコンプレッサで、エアータンクのエアーの補充を行う。この結果、エアータンクの圧力も安定させることができるので、この相乗効果によって、動力用エアーモータの出力を一層安定させることが可能となる。また本発明によれば、適切にエアー増幅器を配備することで、エアーの効率を上げることができる。 In the present invention, an external circuit of the power air motor is prevented from being reduced by incorporating an electric circuit mainly including a storage battery and an alternator into the air circulation circuit. Specifically, in order to maintain the output of the motive power air motor in a stable state at all times, the charging compressor is operated using an electric motor powered by a storage battery. As a result, even if the load of the power air motor is large, the pressure drop of the air tank can be suppressed. Normally, the air-driven filling compressor is driven using the output of the power air motor to replenish air to the air tank. However, if the load on the power air motor is heavy, the compressor should be turned on. The air tank is refilled with an electric filling air compressor using an electric motor that uses battery power instead. As a result, the pressure of the air tank can be stabilized, and this synergistic effect can further stabilize the output of the power air motor. Further, according to the present invention, it is possible to increase the efficiency of air by appropriately providing an air amplifier.
 本発明では、エアー循環回路をハイブリッド化することにより、動力用エアーモータから出力される動力の安定化を図ることができるようになる。 In the present invention, the power output from the power air motor can be stabilized by hybridizing the air circulation circuit.
本発明の実施形態に係るハイブリッド・エアー循環回路を示した説明図である。It is explanatory drawing which showed the hybrid air circulation circuit which concerns on embodiment of this invention. 同ハイブリッド・エアー循環回路の作動状態図を示す第1のフローチャートである。It is a 1st flowchart which shows the operation state figure of the hybrid air circulation circuit. 同ハイブリッド・エアー循環回路の作動状態図を示す第2のフローチャートである。It is a 2nd flowchart which shows the operation state figure of the hybrid air circulation circuit. 同ハイブリッド・エアー循環回路の第1エアー増幅器の管路構成を示す説明図である。It is explanatory drawing which shows the pipe line structure of the 1st air amplifier of the hybrid air circulation circuit. 同ハイブリッド・エアー循環回路の第2・第3エアー増幅器の管路構成を示す説明図である。It is explanatory drawing which shows the pipe line structure of the 2nd and 3rd air amplifier of the hybrid air circulation circuit. 同ハイブリッド・エアー循環回路に用いられるエアーレギュレーターおよびブロワーの図である。It is a figure of the air regulator and blower used for the hybrid air circulation circuit. 同ハイブリッド・エアー循環回路に用いられるクラッチ付のコンプレッサーの図である。It is a figure of the compressor with a clutch used for the hybrid air circulation circuit. 同ハイブリッド・エアー循環回路に用いられる電動式充填用コンプレッサーの状態図である。It is a state figure of the electric filling compressor used for the hybrid air circulation circuit. 同ハイブリッド・エアー循環回路に用いられる第1例の2段付となるエアー増幅器の斜視図である。It is a perspective view of the air amplifier with two steps of the 1st example used for the hybrid air circulation circuit. 同2段付の一体形のエアー増幅器の側面および正面断面図である。It is a side view and a front sectional view of the two-stage integrated air amplifier. 同ハイブリッド・エアー循環回路に用いられる第2例の3段付となるエアー増幅器の斜視図である。It is a perspective view of the air amplifier with three steps of the 2nd example used for the hybrid air circulation circuit. 同ハイブリッド・エアー循環回路に用いられる第3例の2段付の分割形のエアー増幅器の側面および正面断面図である。It is a side view and a front sectional view of a two-stage split air amplifier of the third example used in the hybrid air circulation circuit. 同ハイブリッド・エアー循環回路に用いられる第4例のテーパー形状のエアー増幅器の正面断面図である。It is front sectional drawing of the taper-shaped air amplifier of the 4th example used for the hybrid air circulation circuit. 同ハイブリッド・エアー循環回路に用いられる第4例におけるテーパー形状でスパイラル溝付きのエアー増幅器の正面断面図である。It is front sectional drawing of the air amplifier with a taper shape and spiral groove in the 4th example used for the hybrid air circulation circuit. 同ハイブリッド・エアー循環回路に用いられる第5例の1段付となるエアー増幅器の側面および正面断面図である。It is the side and front sectional drawing of the air amplifier used as the 1st step of the 5th example used for the hybrid air circulation circuit.
 本発明の実施形態では、エアー循環回路を円滑且つ効率的に動作させるため、動力用エアーモータの負荷の大きさに応じて、エアータンクのエアーの補充を、エアーモータの出力を使用したコンプレッサと、蓄電池の電力を使用した電動モータで駆動するエアーコンプレッサとで使い分けるようにしている。これにより、一層安定化したエアーモータの動力を得るようにしている。また、エアー増幅器の開発も併せて行っている。以下詳細に説明する。 In the embodiment of the present invention, in order to operate the air circulation circuit smoothly and efficiently, the air tank is replenished with a compressor using the output of the air motor in accordance with the load of the power motor. The air compressor driven by an electric motor using the power of the storage battery is used properly. As a result, more stable power of the air motor is obtained. We are also developing air amplifiers. This will be described in detail below.
 図1は、本発明の実施形態であって、1~27の部品構成を備えて構成されるハイブリッド・エアー循環回路である。ここでは、各部品構成の説明と同時に、ハイブリッド・エアー循環回路の動作についても説明する。このハイブリッド・エアー循環回路は、エアー循環回路Pと連続エアー発生回路Rを備えて構成される。なお、図2及び図3には、このハイブリッド・エアー循環回路の作動状態を示すフローチャートが示されている。 FIG. 1 shows an embodiment of the present invention, which is a hybrid air circulation circuit having a component configuration of 1 to 27. Here, the operation of the hybrid air circulation circuit will be described at the same time as the description of each component configuration. This hybrid air circulation circuit includes an air circulation circuit P and a continuous air generation circuit R. 2 and 3 are flowcharts showing the operating state of the hybrid air circulation circuit.
 連続エアー発生回路Rでは、動力用エアーモーター12を動力として活用するにあたり、起動の前準備として、最初に起動用に用いる圧縮エアーを得るため準備用コンプレッサー1を起動して、エアーチャージバルブ2を用いてエアータンク3に0.9Mpaの圧縮空気を初期充填する。次いで、エアーストップバルブ6を開くことで、圧縮エアーを、エアー循環回路Pの3方バルブ8に至らしめる。なお、エアータンク3には、開閉バルブ4及び圧力ゲージ5が設けられている。 In the continuous air generation circuit R, in order to use the power air motor 12 as power, the preparation compressor 1 is first activated in order to obtain the compressed air to be used for activation first, and the air charge valve 2 is activated. The air tank 3 is initially filled with 0.9 Mpa of compressed air. Next, the air stop valve 6 is opened to bring the compressed air to the three-way valve 8 of the air circulation circuit P. The air tank 3 is provided with an opening / closing valve 4 and a pressure gauge 5.
 次にエアー循環回路Pについて説明する。なお、以下に説明する経路全体が、動力用エアーモータ12から排出されたエアーをこの動力用エアーモータ12に再循環させる本発明における循環経路に相当する。まず、アクセレレーター11のソレノイドバルブをONにして、3方バルブ8から圧縮エアーが流れるようにする。この圧縮エアーは、エアーコントロールユニット9によって自動的に0.63Mpaに制御され、第1エアー増幅器10-1を通過する。この第1エアー増幅器10-1は、図4に概略構成が示されるように、圧縮エアーの通過によって内部が負圧となり、その負圧によって外気が流入する構造となっている。各流入孔にはチェックバルブ7が設けられており、逆流を防止している。この結果、第1エアー増幅器10-1では、エアー流量が約10倍に増加する。その増加に関しは、表1において、エアー増幅器入口のエアー量と出口のエアー増加量の状態で示した。エアー増加でエネルギーを蓄えた循環エアーはアクセレレーター11を経て動力用エアーモーター12を駆動する。これにより動力用エアーモーター12が回転して動力を発生する。なお、この動力用エアーモータ12は、サクションポートS1とデリバリーポートD1を有しており、サクションポートS1から圧縮エアーが導入されて、デリバリーポートD1から排気される。
Figure JPOXMLDOC01-appb-T000001
Next, the air circulation circuit P will be described. Note that the entire path described below corresponds to the circulation path in the present invention in which the air discharged from the power air motor 12 is recirculated to the power air motor 12. First, the solenoid valve of the accelerator 11 is turned on so that compressed air flows from the three-way valve 8. The compressed air is automatically controlled to 0.63 MPa by the air control unit 9 and passes through the first air amplifier 10-1. As schematically shown in FIG. 4, the first air amplifier 10-1 has a structure in which a negative pressure is caused by passage of compressed air, and outside air flows in by the negative pressure. Each inflow hole is provided with a check valve 7 to prevent backflow. As a result, in the first air amplifier 10-1, the air flow rate increases about 10 times. The increase is shown in Table 1 in terms of the amount of air at the air amplifier inlet and the amount of air increase at the outlet. The circulating air that has accumulated energy by increasing the air drives the power air motor 12 via the accelerator 11. As a result, the power air motor 12 rotates to generate power. The power air motor 12 has a suction port S1 and a delivery port D1, and compressed air is introduced from the suction port S1 and exhausted from the delivery port D1.
Figure JPOXMLDOC01-appb-T000001
 エアーモーター12のデリバリーポートD1から吐出された排気循環エアーは、第1分流器13によりAフロー及びBフローの2方向に別れる。Aフロー方向の排気循環エアーは、第1サージングタンク14に蓄えられ、更に、第2エアー増幅器10-2及び第3エアー増幅器10-3を通り第3サージングタンク18に至る。一方、Bフロー方向の排気循環エアーは、エアーレギュレーター15に至る。このエアーレギュレータ15を介して、排気循環エアーは、図6に示されるように、動力用エアーモーター12によってベルト駆動されているブロワー16の吸気ポートに排出されて、この時余分の排気エアーは捨てられる。これにより、循環排気エアーの効率を高めると同時に、循環回路の安定化の動きをするものである。なお、このブロワー16は、ベルト駆動の他に、特に図示しないブロワ用モータによって回転駆動されるようになっている。 The exhaust circulation air discharged from the delivery port D1 of the air motor 12 is separated into two directions of A flow and B flow by the first flow divider 13. The exhaust circulation air in the A-flow direction is stored in the first surging tank 14, and further passes through the second air amplifier 10-2 and the third air amplifier 10-3 to reach the third surging tank 18. On the other hand, the exhaust circulation air in the B flow direction reaches the air regulator 15. As shown in FIG. 6, the exhaust circulation air is discharged to the intake port of the blower 16 that is belt-driven by the power air motor 12 through the air regulator 15, and at this time, the excess exhaust air is discarded. It is done. This increases the efficiency of the circulating exhaust air and at the same time stabilizes the circulation circuit. The blower 16 is rotationally driven by a blower motor (not shown) in addition to the belt drive.
 ブロワー16で送られたエアーは、第2サージングタンク17に蓄えられ、配管により、第2エアー増幅器10-2及び第3エアー増幅器10-3の外周に配備されたチェックバルブ付吸気孔を介して内部に供給される。即ち、第2エアー増幅器10-2及び第3エアー増幅器10-3の構造は、図5に概略構成が示されるように、各吸気口にチェックバルブ7が設置される。 The air sent by the blower 16 is stored in the second surging tank 17, and is connected to the outer periphery of the second air amplifier 10-2 and the third air amplifier 10-3 by a pipe via an intake hole with a check valve. Supplied inside. That is, the structure of the second air amplifier 10-2 and the third air amplifier 10-3 is provided with a check valve 7 at each intake port, as schematically shown in FIG.
 既に述べたように、Aフロー方向の排気循環エアーは、第2エアー増幅器10-2及び第3エアー増幅器10-3の内部を通るので、これにより第2エアー増幅器10-2及び第3エアー増幅器10-3の内部は負圧になる。従ってこのBフローの排気循環エアーも第2エアー増幅器10-2及び第3エアー増幅器10-3内に吸引・合流されていき、第2エアー増幅器10-2及び第3エアー増幅器10-3の排気循環エアー量は増加する。増加した排気循環エアーは第3サージングタンク18に蓄えられる。 As described above, the exhaust circulation air in the A-flow direction passes through the second air amplifier 10-2 and the third air amplifier 10-3, and thus the second air amplifier 10-2 and the third air amplifier The inside of 10-3 becomes negative pressure. Therefore, the B-flow exhaust circulation air is also sucked and merged into the second air amplifier 10-2 and the third air amplifier 10-3, and the exhaust of the second air amplifier 10-2 and the third air amplifier 10-3 is exhausted. Circulating air volume increases. The increased exhaust circulation air is stored in the third surging tank 18.
 第3サージングタンク18を経た排気循環エアーは、第2分流器19の2方向に分かれた一方に供給される。また、第2分流器19の2方向に分かれた他方には、安定化を目的とした第2コンプレッサー(安定化コンプレッサー)21の圧縮エアーが供給される。従って、第2分流器19では、この2つのエアーが合流して第4サージングタンク20に蓄えられる。第4サージングタンク20に蓄えられたエアーは、3方バルブ8の他方の接続部分に戻り、第1エアー増幅器10-1に流れ込み、動力用エアーモーター12に流れて駆動し動力を発生する。アクセレレーター11のソレノイドバルブをOFFにするまで、エアー循環工程が繰返し、動力の発生が続けられる。なお、この第2コンプレッサー21の駆動軸は、動力用エアーモータ12の動力を利用した駆動と、バッテリー24による電動モータの動力による駆動を選択できるようになっている。 The exhaust air circulating through the third surging tank 18 is supplied to one of the second flow dividers 19 divided in two directions. The other of the second flow divider 19 divided in two directions is supplied with compressed air from a second compressor (stabilized compressor) 21 for the purpose of stabilization. Therefore, in the second flow divider 19, the two airs merge and are stored in the fourth surging tank 20. The air stored in the fourth surging tank 20 returns to the other connection portion of the three-way valve 8, flows into the first air amplifier 10-1, flows into the power air motor 12, and is driven to generate power. Until the solenoid valve of the accelerator 11 is turned off, the air circulation process is repeated and the generation of power continues. The drive shaft of the second compressor 21 can be selected from driving using the power of the power air motor 12 and driving using the power of the electric motor by the battery 24.
 また、エアータンク3には、その内部圧力を0.9Mpaに保つため、第3コンプレッサー(エアー駆動式充填用コンプレッサ)22が接続されている。これにより、エアータンク3は、常に圧力が維持されている。図7に示されるように、この第3コンプレッサー22の駆動軸は、ベルトによって動力用エアーモータ12に接続されており、この動力によって駆動されている。さらにこの第3コンプレッサ22はクラッチ(切替手段)を備えており、動力用エアーモータ12の負荷状態に応じて、動力の接続と切断が行える。具体的に本実施形態では、動力用エアーモータ12の負荷状態を判定する判定装置(図示省略)を備えており、この判定装置の判定結果により、動力用エアーモータ12の負荷が高い場合は、クラッチを開放するように制御して、第3コンプレッサ22を停止させる。一方、動力用エアーモータ12の負荷が低く、出力に余剰がある場合は、クラッチを接続してエアータンク3の補充にエネルギーを割り当てる。このように、第3コンプレッサー22の駆動動力は、動力用エアーモーター12の余剰動力を効果的に利用している。 In addition, a third compressor (air-driven filling compressor) 22 is connected to the air tank 3 in order to keep the internal pressure at 0.9 MPa. Thereby, the pressure is always maintained in the air tank 3. As shown in FIG. 7, the drive shaft of the third compressor 22 is connected to the power air motor 12 by a belt, and is driven by this power. Further, the third compressor 22 includes a clutch (switching means), and can connect and disconnect power according to the load state of the power air motor 12. Specifically, in the present embodiment, a determination device (not shown) that determines the load state of the power air motor 12 is provided. According to the determination result of the determination device, when the load of the power air motor 12 is high, The third compressor 22 is stopped by controlling to release the clutch. On the other hand, when the load of the power air motor 12 is low and the output is surplus, the clutch is connected and energy is allocated to the replenishment of the air tank 3. As described above, the driving power of the third compressor 22 effectively uses surplus power of the power air motor 12.
 更にこのハイブリッド・エアー循環回路は、オルタネータ23、蓄電池(バッテリー)24、電動式充填用コンプレッサ25、26、電動モータ27等の電装部品を備えている。オルタネータ23は、直接又は間接的に動力用エアーモータ12の出力軸に接続されており、この動力によって発電する。この電力はバッテリー23に充電される。オルタネータ23と動力用エアーモータ12の間にも、クラッチ構造又はクラッチに準ずる構想によって接続と開放を切り替えることができるようにすることが望ましい。
電動モータ27は、バッテリー24の電力によって回転する。図8に示されるように、この電動モータ27は、電動式充填用コンプレッサ25、26にカップリング27Aを介して接続されている。この電動式充填用コンプレッサ25、26は、エアータンク3に圧縮エアーを充填するものであり、サクションポートS1とデリバリーポートD1を有している。
The hybrid air circulation circuit further includes electrical components such as an alternator 23, a storage battery (battery) 24, electric charging compressors 25 and 26, and an electric motor 27. The alternator 23 is directly or indirectly connected to the output shaft of the power air motor 12 and generates power using this power. This power is charged in the battery 23. It is desirable that the alternator 23 and the power air motor 12 can be switched between connection and release according to a clutch structure or a concept similar to the clutch.
The electric motor 27 is rotated by the power of the battery 24. As shown in FIG. 8, the electric motor 27 is connected to the electric filling compressors 25 and 26 via a coupling 27A. The electric filling compressors 25 and 26 are for filling the air tank 3 with compressed air and have a suction port S1 and a delivery port D1.
 なお、このバッテリー24は、ブロワー16のブロワ用モータも回転させる。従って、電動式充填用コンプレッサ25、26を動かしてエアータンク3を維持するためのエネルギー源と、ブロワー16を動かして排気エアーの循環効率を高めるためのエネルギー源となる。 The battery 24 also rotates the blower motor of the blower 16. Therefore, it becomes an energy source for moving the electric filling compressors 25 and 26 to maintain the air tank 3 and an energy source for moving the blower 16 to increase the circulation efficiency of the exhaust air.
 既に述べた動力用エアーモータ12の負荷状態を判定する判定装置において、負荷が大きいと判定される場合は、オルタネータ23と動力用エアーモータ12の間のクラッチを開放してバッテリー23の充電を中止すると共に、ブロワー16と動力用エアーモータ12の間のクラッチも開放する。一方、バッテリー23によって、電動式充填用コンプレッサ25、26を駆動してエアータンク3へのエアーの補充を行うと共に、ブロワー16をモータによって駆動してエアー循環を促す。このように、エアーの再循環とエアーの補充をハイブリッド化することによって、外部出力の負荷に柔軟に対応できるようにすることで、エアーの利用効率を更に高めることが可能となる。 In the above-described determination apparatus for determining the load state of the power air motor 12, if it is determined that the load is large, the clutch between the alternator 23 and the power air motor 12 is released to stop charging the battery 23. At the same time, the clutch between the blower 16 and the power air motor 12 is also released. On the other hand, the battery 23 drives the electric filling compressors 25 and 26 to replenish air to the air tank 3, and the blower 16 is driven by a motor to promote air circulation. As described above, by hybridizing the air recirculation and the air replenishment, it is possible to flexibly cope with the load of the external output, thereby further improving the air utilization efficiency.
 なお特に図示しないが、このバッテリー24には、家庭用電源のプラグインコンセントが用意されており、家庭用電源によっても充電できるようになっている。 Although not specifically shown, the battery 24 is provided with a plug-in outlet for home power supply so that it can be charged by the home power supply.
 次に、第1~第3エアー増幅器10-1、10-2、10-3の詳細構造について説明する。なお、ここでは5種類のエアー増幅器101~501を説明することにする。エアー増幅器101~501から最適なものを選択して、第1~第3エアー増幅器10-1、10-2、10-3の全てに適用してもよく、また部分的に適用しても良い。また、後述の通り、例えば第1例のエアー増幅器101等については2段の増幅構造となっていることから、1台のエアー増幅器101によって、上述の第2,第3増幅器10-2、10-2を実現しても良い。以下で説明するエアー増幅器は、自身の外周に備えた複数個のエアー吸入ポートによって、大気、圧縮エアーあるいは気体等を効率良く吸入する構造となっている。 Next, the detailed structure of the first to third air amplifiers 10-1, 10-2, 10-3 will be described. Here, five types of air amplifiers 101 to 501 will be described. The optimum air amplifiers 101 to 501 may be selected and applied to all of the first to third air amplifiers 10-1, 10-2, and 10-3, or may be partially applied. . Further, as will be described later, for example, the air amplifier 101 in the first example has a two-stage amplification structure, so that the above-described second and third amplifiers 10-2, 10-2, -2 may be realized. The air amplifier described below has a structure in which air, compressed air, gas, or the like is efficiently sucked by a plurality of air suction ports provided on the outer periphery of the air amplifier.
 図9及び図10には、第1例にかかるエアー増幅器101が示されている。この増幅器101は、内部に形成されてメインエアーフローが通過する通過経路110を備える。この通過経路110には、メインエアーフローに沿って、分室となる第1室112、第2室114、第3室116が配置されている。各分室112、114、116は円筒状の外壁112A、114A、116Aによって構成されている。第1室112には、第2室114側にエアーを吐出する通過孔112Bが形成されている。第2室114には、第3室116側にエアーを吐出する通過孔114Bが形成されている。第3室116には、外部にエアーを吐出する通過孔116Bが形成されている。なお、これらの第1室112、第2室114、第3室116は、全体が一体的に成型されている。 9 and 10 show the air amplifier 101 according to the first example. The amplifier 101 includes a passage path 110 that is formed inside and through which the main airflow passes. A first chamber 112, a second chamber 114, and a third chamber 116 serving as a branch chamber are arranged in the passage route 110 along the main air flow. Each compartment 112, 114, 116 is constituted by cylindrical outer walls 112A, 114A, 116A. In the first chamber 112, a passage hole 112B for discharging air to the second chamber 114 side is formed. In the second chamber 114, a passage hole 114B for discharging air to the third chamber 116 side is formed. In the third chamber 116, a passage hole 116B for discharging air to the outside is formed. The first chamber 112, the second chamber 114, and the third chamber 116 are integrally molded as a whole.
 また、第1室112の内径d1に対して、第2室114の内径d2の方が大きくなっている。更に、第2室114の内径d2に対して、第3室116の内径d3の方が大きくなっている。このように、下流側に向かって分室の内径を増大させていくことで、増幅効率を高めている。また、この段差を利用して、後述するエアー吸入ポートを配置することで、合理的な形状で外側からのエアーの吸引を実現している。 Further, the inner diameter d2 of the second chamber 114 is larger than the inner diameter d1 of the first chamber 112. Furthermore, the inner diameter d3 of the third chamber 116 is larger than the inner diameter d2 of the second chamber 114. Thus, amplification efficiency is increased by increasing the inner diameter of the compartment toward the downstream side. In addition, air suction from the outside is realized in a rational shape by arranging an air suction port described later by using this step.
 更に、第1室112の通過孔112Bの内径d4に対して、第2室114における通過孔114Bの内径は大きく設定され、また、第2室114の通過孔114Bの内径に対して、第3室116における通過孔116Bの内径(これは第3室116の内径d3と一致)が大きく設定されている。 Further, the inner diameter of the passage hole 114B in the second chamber 114 is set larger than the inner diameter d4 of the passage hole 112B in the first chamber 112, and the third inner diameter is larger than the inner diameter of the passage hole 114B in the second chamber 114. The inner diameter of the passage hole 116B in the chamber 116 (this coincides with the inner diameter d3 of the third chamber 116) is set large.
 第1室112における吐出側には、吐出方向に向かって経路直径が小さくなるテーパ形状の絞り部112Cが設けられている。従って、この絞り部112Cの突端に通過孔112Bが配置されていることになる。同様に、第2室114における吐出側には、吐出方向に向かって経路直径が小さくなるテーパ形状の絞り部114Cが設けられている。従って、この絞り部114Cの突端に通過孔114Bが配置されている。これらの絞り部112C、114Cによって、エアーの流速を増大させて、内部の負圧の発生効率を高める。なお、第3室116には絞り部は形成されていない。下流側に負圧を発生させる必要がないからである。 A tapered throttle portion 112C having a path diameter that decreases in the discharge direction is provided on the discharge side in the first chamber 112. Therefore, the passage hole 112B is disposed at the protruding end of the throttle portion 112C. Similarly, on the discharge side in the second chamber 114, a tapered throttle portion 114C having a path diameter that decreases in the discharge direction is provided. Therefore, the passage hole 114B is disposed at the protruding end of the throttle portion 114C. By these throttle parts 112C and 114C, the flow velocity of air is increased and the generation efficiency of internal negative pressure is increased. The third chamber 116 is not formed with a throttle portion. This is because it is not necessary to generate a negative pressure on the downstream side.
 通過経路110の外周には、エアー吸入ポートが複数配置されている。具体的に、第2室114の外周における第1室112との境界近傍には、周方向に90度間隔で、4つの第2室用エアー吸入ポート114Dが配置されている。また、第3室116の外周における第2室114との境界近傍には、周方向に90度間隔で、4つの第3室用エアー吸入ポート116Dが配置されている。通過経路110内をメインエアーフローが通過すると、第2室114内が負圧となって、第2室用エアー吸入ポート114Dからエアーが吸入されて、この通過経路110に合流する。同様に、通過経路110内をメインエアーフローが通過すると、第3室116内が負圧となって、第3室用エアー吸入ポート116Dからエアーが吸入されて、この通過経路110に合流する。 A plurality of air suction ports are arranged on the outer periphery of the passage route 110. Specifically, in the vicinity of the boundary with the first chamber 112 on the outer periphery of the second chamber 114, four air suction ports 114D for the second chamber are arranged at intervals of 90 degrees in the circumferential direction. In addition, four third chamber air suction ports 116D are arranged at intervals of 90 degrees in the circumferential direction near the boundary with the second chamber 114 on the outer periphery of the third chamber 116. When the main air flow passes through the passage path 110, the pressure in the second chamber 114 becomes negative, air is sucked from the second chamber air suction port 114D, and merges with the passage path 110. Similarly, when the main airflow passes through the passage path 110, the pressure in the third chamber 116 becomes negative, air is sucked from the third chamber air suction port 116D, and merges with the passage path 110.
 この第2室用エアー吸入ポート114Dは、第1室112における絞り部112Cの外壁に沿って、そのテーパ形状を利用して配置される。この際、第2室用エアー吸入ポート114Dは、通過経路110のメインエアーフローの流れ方向に対して鋭角αを持って合流するようになっている。同様に、この第3室用エアー吸入ポート116Dは、第2室114における絞り部114Cの外壁に沿って、そのテーパ形状を利用して配置される。この際、第3室用エアー吸入ポート116Dは、通過経路110のメインエアーフローの流れ方向に対して鋭角αを持って合流する。このように、鋭角αで合流することで、合流時の抵抗を低減して、増幅効率を高めるようにしている。 The air suction port 114D for the second chamber is arranged along the outer wall of the throttle portion 112C in the first chamber 112 using its tapered shape. At this time, the air suction port 114D for the second chamber joins at an acute angle α with respect to the flow direction of the main air flow in the passage path 110. Similarly, the third chamber air suction port 116 </ b> D is disposed along the outer wall of the throttle portion 114 </ b> C in the second chamber 114 using its tapered shape. At this time, the air suction port 116D for the third chamber merges with an acute angle α with respect to the flow direction of the main air flow in the passage path 110. Thus, by joining at an acute angle α, the resistance at the time of joining is reduced, and the amplification efficiency is increased.
 次に、図11を参照して、第2例にかかるエアー増幅器201を説明する。なお、この第2例では、第1例のエアー増幅器101と異なる部分について主に説明し、同一又は類似する部分については、符号の下二桁を第1例と一致させることで、説明及び図示を省略する。 Next, the air amplifier 201 according to the second example will be described with reference to FIG. In the second example, parts different from the air amplifier 101 of the first example will be mainly described, and the same or similar parts will be described and illustrated by matching the last two digits of the reference numerals with the first example. Is omitted.
 このエアー増幅器201は、第1室212、第2室214、第3室216に加えて、第4室218を備えている。従って、特に図示しないが、第3室216にも、直径がテーパ状に細くなった状態の絞り部が形成されており、この突端の通過孔から第4室218にエアーが排出される。第4室218の外周には、第4室用エアー吸入ポート218Dが形成されており、エアーを吸入して更に増幅させる。このように、通過経路210上の分室の数を増やすことで、増幅量を増大させることができる。 The air amplifier 201 includes a fourth chamber 218 in addition to the first chamber 212, the second chamber 214, and the third chamber 216. Therefore, although not particularly illustrated, the third chamber 216 is also formed with a narrowed portion having a tapered diameter, and air is discharged to the fourth chamber 218 from the passage hole at the tip. A fourth chamber air suction port 218D is formed on the outer periphery of the fourth chamber 218, and sucks air to further amplify it. Thus, the amount of amplification can be increased by increasing the number of compartments on the passage route 210.
 次に、図12を参照して、第3例にかかるエアー増幅器301を説明する。なお、この第3例では、第1例のエアー増幅器101と異なる部分について主に説明し、同一又は類似する部分については、符号の下二桁を第1例と一致させることで、説明及び図示を省略する。 Next, an air amplifier 301 according to a third example will be described with reference to FIG. In the third example, parts different from the air amplifier 101 of the first example will be mainly described, and the same or similar parts will be described and illustrated by matching the last two digits of the reference numerals with the first example. Is omitted.
 このエアー増幅器301は、第1室312、第2室314、第3室316が、分離可能になっている。詳細には、第2室314の上流側に円筒状の係合部314Eが形成されており、その係合部314E内に第1室312が挿入されることで、着脱可能に相互に嵌めあうようになっている。第3室316の上流側にも円筒状の係合部316Eが形成されており、その係合部316E内に第2室314が挿入されることで、着脱可能に相互に嵌めあう。このように、第1室312から第3室316の間に形成される段差を有効活用し、入れ子状に嵌めあわせることで、分解や組み立てが容易にしている。この結果、メンテナンスも簡便になる。 In the air amplifier 301, the first chamber 312, the second chamber 314, and the third chamber 316 are separable. Specifically, a cylindrical engagement portion 314E is formed on the upstream side of the second chamber 314, and the first chamber 312 is inserted into the engagement portion 314E so that they can be detachably fitted to each other. It is like that. A cylindrical engaging portion 316E is also formed on the upstream side of the third chamber 316, and the second chamber 314 is inserted into the engaging portion 316E so that they can be detachably fitted to each other. As described above, the steps formed between the first chamber 312 and the third chamber 316 are effectively utilized, and are fitted in a nested manner to facilitate disassembly and assembly. As a result, maintenance is also simplified.
 このエアー増幅器301では、第1室312の通過孔312Bの周囲に、更に複数の補助孔312Fが設けられている。この補助孔312Fも、エアーを通過可能であり、通過孔312B及び補助孔312Fの双方を介してメインエアーフローが第2室314側に吐出される。この結果、エアーの増幅効率を高めることが可能になる。 In the air amplifier 301, a plurality of auxiliary holes 312F are further provided around the passage hole 312B of the first chamber 312. The auxiliary hole 312F can also pass air, and the main air flow is discharged to the second chamber 314 side through both the passage hole 312B and the auxiliary hole 312F. As a result, the air amplification efficiency can be increased.
 次に、図13を参照して、第4例にかかるエアー増幅器401を説明する。なお、この第4例では、第1例のエアー増幅器101と異なる部分について主に説明し、同一又は類似する部分については、符号の下二桁を第1例と一致させることで、説明及び図示を省略する。 Next, an air amplifier 401 according to a fourth example will be described with reference to FIG. In the fourth example, parts different from the air amplifier 101 of the first example will be mainly described, and the same or similar parts will be described and illustrated by matching the last two digits of the reference numerals with the first example. Is omitted.
 このエアー増幅器401は、通過経路410が分室に分かれていない一体構造となっている。なお、この通過経路410の入口近傍には、絞り部410Aが配置されており、流入したエアーをいったん絞って、流速を高めるようにしている。また、この通過経路410における絞り部410Aの下流側は、エアー進入側からエアー放出側に向かって次第に大きくなるテーパー形状となっている。従って、その入口側の直径d6に対して、出口側の直径d7は大きくなっている。また、このテーパー形状の通過経路410の外周には、軸方向に一定の間隔を空けて、第1エアー吸入ポート410B、及び第2エアー吸入ポート410Cが配置されている。なお、エアー吸入ポート410B、410Cの構造及び機能については、第1例のエアー吸入ポートと同様であるので説明を省略する。このように、通過経路410の内径を滑らかに増大させることで、エアーの流れ抵抗が低減され、増幅効率を高めることが可能となる。 The air amplifier 401 has an integral structure in which the passage route 410 is not divided into compartments. A throttle portion 410A is disposed in the vicinity of the entrance of the passage route 410, and the flowed air is once throttled to increase the flow velocity. In addition, the downstream side of the narrowed portion 410A in the passage route 410 has a tapered shape that gradually increases from the air entry side toward the air discharge side. Therefore, the diameter d7 on the outlet side is larger than the diameter d6 on the inlet side. In addition, a first air suction port 410B and a second air suction port 410C are arranged on the outer periphery of the tapered passage route 410 with a certain interval in the axial direction. Note that the structure and function of the air suction ports 410B and 410C are the same as those of the air suction port of the first example, and thus description thereof is omitted. Thus, by smoothly increasing the inner diameter of the passage route 410, the air flow resistance is reduced, and the amplification efficiency can be increased.
 なお、このテーパー形状の通過経路410の内周壁には、図14に示されるように、複数条の溝410Dを形成することの望ましい。このスパイラル状の溝410Dによって、メインエアーフローにスワールを生じさせて、増幅効率を向上させる。 In addition, as shown in FIG. 14, it is desirable to form a plurality of grooves 410D on the inner peripheral wall of the tapered passage passage 410. The spiral groove 410D generates a swirl in the main air flow and improves amplification efficiency.
 次に、図15を参照して、第5例にかかるエアー増幅器501を説明する。なお、この第5例では、第1例のエアー増幅器101と異なる部分について主に説明し、同一又は類似する部分については、符号の下二桁を第1例と一致させることで、説明及び図示を省略する。 Next, an air amplifier 501 according to a fifth example will be described with reference to FIG. In the fifth example, parts different from the air amplifier 101 of the first example will be mainly described, and the same or similar parts will be described and illustrated by matching the last two digits of the reference numerals with the first example. Is omitted.
 このエアー増幅器501は、第1室512、第2室514が分離可能になっている。また、第1室512の内径d1に対して、第2室514の内径d2の方が小さくなっている。このように、下流側に向かって分室の内径を縮小させていくことで、流速を高めるようにしている。一方、第1室512の通過孔512Bは、下流側の第2室514の直径よりも細くなっている。更にここでは、この通過孔512B自体が、下流側に進むにつれて次第に細くなるテーパ形状となっており、エアーの流速が高まるようになっている。また、通過孔512Bと第2室514の直径が異なることによる段差を利用して、通過孔512Bの出口の周囲に、リング形状となるエアー吸入スリット514Eが配置されている。更にこのエアー吸入スリット514Eには、複数(ここでは8つ)のエアー吸入ポート514Dが周方向に等間隔で配置される。 In the air amplifier 501, the first chamber 512 and the second chamber 514 can be separated. Further, the inner diameter d2 of the second chamber 514 is smaller than the inner diameter d1 of the first chamber 512. Thus, the flow velocity is increased by reducing the inner diameter of the compartment toward the downstream side. On the other hand, the passage hole 512B of the first chamber 512 is thinner than the diameter of the second chamber 514 on the downstream side. Further, here, the passage hole 512B itself has a tapered shape that becomes gradually thinner toward the downstream side, so that the flow velocity of the air is increased. Further, an air suction slit 514E having a ring shape is disposed around the outlet of the passage hole 512B by utilizing a step due to the difference in diameter between the passage hole 512B and the second chamber 514. Further, a plurality (eight in this case) of air suction ports 514D are arranged at equal intervals in the circumferential direction in the air suction slit 514E.
 通過孔512Bを介してメインエアーフローが第2室514側に吐出される。この結果、エアーの増幅効率を高めることが可能になる。第2室514の下流側は、直径が次第に広くなるデフューザ514Fが設けられている。 Main air flow is discharged to the second chamber 514 side through the passage hole 512B. As a result, the air amplification efficiency can be increased. On the downstream side of the second chamber 514, a diffuser 514F whose diameter gradually increases is provided.
 更に各エアー吸入ポート514Dには、逆止弁(チェックバルブ)514Gが設置されている。このようにすることで、エアー吸入ポートから通過経路に向かうエアーの流れは許容し、その反対の流れは抑制することで、一層、増幅の推進力を向上させることができる。 Furthermore, a check valve (check valve) 514G is installed in each air suction port 514D. By doing in this way, the flow of the air which goes to a passage route from an air suction port is permitted, and the driving force of amplification can be improved further by suppressing the opposite flow.
 以上、本実施形態のハイブリッド・エアー循環回路は、エアータンク3に充填された圧縮エアーを動力に変換する際に、その出力を利用してバッテリー24にエネルギーを蓄えることを可能にしている。また、このバッテリー24の電力を利用して、エアータンク3への圧縮エアーの補充を行ったり、ブロアー16を動作させたりすることができる。従って、エアー循環回路では、一般的に、外部負荷の変動に柔軟に対応できないという欠点があるが、このようにハイブリッド化することによって、外部負荷の変動に柔軟に対応でき、圧縮エアーの利用効率を高めることが出来る。 As described above, the hybrid air circulation circuit according to the present embodiment makes it possible to store energy in the battery 24 using the output when the compressed air filled in the air tank 3 is converted into power. Further, the power of the battery 24 can be used to replenish the air tank 3 with compressed air or to operate the blower 16. Therefore, the air circulation circuit generally has a drawback that it cannot flexibly cope with fluctuations in external load. However, by using such a hybrid, it can flexibly deal with fluctuations in external load and use efficiency of compressed air. Can be increased.
 具体的には、動力用エアーモータ12の負荷が高いときは、この動力によるバッテリー24の充電を行わないようにし、更に、このバッテリー24を利用した圧縮エアーの補充を行うことで、動力用エアーモータ12の動力低下が生じないようにする。一方で、動力用エアーモータ12の負荷が軽いときは、その余剰動力をオルタネータ23を介してバッテリー24に蓄えるようにして、次の高負荷時に備えることができる。 Specifically, when the load of the power air motor 12 is high, the battery 24 is not charged by the power, and further, the replenishment of compressed air using the battery 24 is performed, so that the power air The power of the motor 12 is not reduced. On the other hand, when the load of the power air motor 12 is light, the surplus power can be stored in the battery 24 via the alternator 23 to prepare for the next high load.
 以上、本実施形態では、3方バルブ8の手前のエアー供給路に、それぞれチェックバルブ7を配置した場合を示しているが、例えば、3方向バルブ8自体が、エアータンク3から送られる圧縮エアーと第4サージタンク20から送られるエアーとの比較で圧力の高いものを優先してエアーコントロールユニット9方向に送る機能を備えたものを用いれば、このチェックバルブ7は不要である。一方で、この3方バルブ8に代えてT字配管を配置し、エアー供給路の各々にチェックバルブ7を配備することも好ましい。このように圧力の高いほうが優先して次方向に送るようにすれば、エアー循環を効果的におこなうことができる。 As described above, in this embodiment, the case where the check valve 7 is arranged in the air supply path before the three-way valve 8 is shown. For example, the three-way valve 8 itself is compressed air sent from the air tank 3. The check valve 7 is not necessary if a device having a function of sending air in the direction of the air control unit 9 preferentially in comparison with air sent from the fourth surge tank 20 is used. On the other hand, it is also preferable to arrange a T-shaped pipe in place of the three-way valve 8 and provide the check valve 7 in each of the air supply paths. If the higher pressure is given priority in this way and the air is sent in the next direction, air circulation can be performed effectively.
 充電可能なバッテリーを搭載することで、エアーモータを動力に利用するためのエアー循環回路をより効果的に作動させる事ができる。また、エアー循環回路上にエアー増幅器を効果的に配備することでエアーモーター回転動力を容易に得る事が出来る。このため自動車産業・船舶事業関係あるいは一般産業で利用することが可能である。特に無公害であるため、広範囲の産業で利用できる。 ¡By installing a rechargeable battery, the air circulation circuit for using the air motor as power can be operated more effectively. Moreover, air motor rotational power can be easily obtained by effectively providing an air amplifier on the air circulation circuit. For this reason, it can be used in the automobile industry / ship business-related or general industries. It is especially pollution free and can be used in a wide range of industries.

Claims (20)

  1.  動力用エアーモータを作動するためのエアー循環回路であって、
     圧縮したエアーが充填されるエアータンクと、
     前記エアータンクに高圧エアーを供給する電動式充填用コンプレッサと、
     前記エアータンクから供給されるエアーによって駆動される動力用エアーモータと、
     該動力用エアーモータによって駆動されるオルタネータと、
     前記オルタネータによって充電される蓄電池と、
     前記蓄電池を動力源として前記電動式充填用コンプレッサを駆動する電動モータと、
     前記動力用エアーモータから排出されたエアーを該動力用エアーモータに再循環させる循環経路と、
     前記循環経路上に配置されるエアー増幅器と、
     を備えることを特徴とするハイブリッド・エアー循環回路。
    An air circulation circuit for operating a power air motor,
    An air tank filled with compressed air;
    An electric charging compressor for supplying high-pressure air to the air tank;
    A power air motor driven by air supplied from the air tank;
    An alternator driven by the power air motor;
    A storage battery charged by the alternator;
    An electric motor that drives the electric charging compressor using the storage battery as a power source;
    A circulation path for recirculating the air discharged from the power air motor to the power air motor;
    An air amplifier disposed on the circulation path;
    A hybrid air circulation circuit comprising:
  2.  前記蓄電池に対する家庭用電源からの充電を行うプラグインコンセントを更に備えることを特徴とする請求の範囲1に記載のハイブリッド・エアー循環回路。 The hybrid air circulation circuit according to claim 1, further comprising a plug-in outlet for charging the storage battery from a household power source.
  3.  前記動力用エアーモータの出力が接続されるエアー駆動式充填用コンプレッサを備え、
     前記エアー駆動式充填用コンプレッサ又は前記電動式充填用コンプレッサによって、前記エアータンクにエアーが補充されることを特徴とする請求の範囲1又は2に記載のハイブリッド・エアー循環回路。
    An air-driven filling compressor to which the output of the power air motor is connected;
    The hybrid air circulation circuit according to claim 1 or 2, wherein the air tank is replenished with air by the air-driven filling compressor or the electric filling compressor.
  4.  前記エアー駆動式充填用コンプレッサと前記動力用エアーモータとの接続間においてクラッチ構造又はクラッチに準ずる構造となる切替手段を設けることで、動力の接続と切断が行えることを特徴とする請求の範囲3に記載のハイブリッド・エアー循環回路。 The power can be connected and disconnected by providing a switching means having a clutch structure or a structure similar to the clutch between the connection between the air-driven filling compressor and the power air motor. The hybrid air circulation circuit described in 1.
  5.  前記動力用エアーモータの負荷状態を判定する判定手段を備え、
     前記動力用エアーモータの負荷が大きい場合には、前記切替手段を開放することによって、主として前記電動モータによって前記電動式充填用コンプレッサを駆動することを特徴とする請求の範囲4に記載のハイブリッド・エアー循環回路。
    A determination means for determining a load state of the power motor;
    5. The hybrid vehicle according to claim 4, wherein when the load of the power air motor is large, the electric charging compressor is driven mainly by the electric motor by opening the switching means. Air circulation circuit.
  6.  前記動力用エアーモータから排出されたエアーを該動力用エアーモータに再循環させる循環経路上には、
     前記エアータンクの圧縮エアーが供給される3方バルブと、
     前記3方バルブに接続されるアクセレレーターと、
     前記アクセレレーターが開いた際に、前記3方バルブから供給される圧縮エアーの圧力を調節するエアーコントロールユニットと、
     前記エアーコントロールユニットで調整されたエアー量を増幅する第1エアー増幅器と、
     前記第1エアー増幅器によって増幅されたエアーによって駆動される前記動力用エアーモーターと、
     前記動力用エアーモーターから排出されたエアーが供給されてAフローとBフローの2方向に分岐させる第1分流器と、
     前記第1分流器のAフローに接続される第2エアー増幅器および第3エアー増幅器と、
     前記第1分流器のBフローに接続されるブロワーの吸気ポートと、
     前記ブロワーからの排気エアーが供給される前記第2エアー増幅器および前記第3エアー増幅器の吸気孔と、
     自身の2方向に分かれた一方には前記第3エアー増幅器が接続されると共に、他方には安定化用コンプレッサーが接続され、前記第3エアー増幅器の前記排気エアーと前記安定化用コンプレッサーのエアーが混合される第2分流器と、
     前記第2分流器によって混合されたエアーが供給される前記3方バルブと、
     を備えることを特徴とする請求の範囲1乃至5のいずれかに記載のハイブリッド・エアー循環回路。
    On the circulation path for recirculating the air discharged from the power air motor to the power air motor,
    A three-way valve to which compressed air from the air tank is supplied;
    An accelerator connected to the three-way valve;
    An air control unit that adjusts the pressure of the compressed air supplied from the three-way valve when the accelerator is opened;
    A first air amplifier that amplifies the amount of air adjusted by the air control unit;
    The power air motor driven by the air amplified by the first air amplifier;
    A first diverter that is supplied with air discharged from the power air motor and branches in two directions of A flow and B flow;
    A second air amplifier and a third air amplifier connected to the A flow of the first shunt;
    An intake port of a blower connected to the B flow of the first flow divider;
    An intake hole of the second air amplifier and the third air amplifier to which exhaust air from the blower is supplied;
    The third air amplifier is connected to one of the two separate directions, and the stabilization compressor is connected to the other, and the exhaust air of the third air amplifier and the air of the stabilization compressor are connected to each other. A second shunt to be mixed;
    The three-way valve to which the air mixed by the second flow divider is supplied;
    The hybrid air circulation circuit according to any one of claims 1 to 5, further comprising:
  7.  前記動力用エアーモーターと前記ブロワーはベルト掛けで接続され、前記エアーレギュレーターに送られた前記排気エアーが前記ブロワーの吸気ポート付近に大気放出され、前記排気エアーの余分量が調整されることを特徴とする請求の範囲6に記載のハイブリッド・エアー循環回路。 The power air motor and the blower are connected by a belt, and the exhaust air sent to the air regulator is discharged to the vicinity of the intake port of the blower, so that the excess amount of the exhaust air is adjusted. The hybrid air circulation circuit according to claim 6.
  8.  前記エアータンクの圧力は略0.9Mpaに維持されることを特徴とする請求の範囲6乃至7のいずれかに記載のハイブリッド・エアー循環回路。 The hybrid air circulation circuit according to any one of claims 6 to 7, wherein the pressure of the air tank is maintained at approximately 0.9 MPa.
  9.  前記エアーコントロールユニットによって圧力が略0.63Mpaに調節されることを特徴とする請求の範囲6乃至8のいずれかに記載のハイブリッド・エアー循環回路。 9. The hybrid air circulation circuit according to any one of claims 6 to 8, wherein the pressure is adjusted to approximately 0.63 MPa by the air control unit.
  10.  前記第1エアー増幅器、前記第2エアー増幅器および前記第3エアー増幅器の各々が有する吸気孔にチェックバルブを設けて、エアーの逆流が防止されることを特徴とする請求の範囲6乃至9のいずれかに記載のハイブリッド・エアー循環回路。 10. The air flow is prevented from flowing back by providing a check valve in an intake hole of each of the first air amplifier, the second air amplifier, and the third air amplifier. The hybrid air circulation circuit according to Crab.
  11.  前記3方バルブは、前記第3エアー増幅器側から送られる排気エアーの入口と、前記エアータンクからの送られる圧縮エアーの入口の双方にチェックバルブが配備されることを特徴とする請求の範囲6乃至10のいずれかに記載のハイブリッド・エアー循環回路。 7. The three-way valve is characterized in that check valves are provided at both an inlet of exhaust air sent from the third air amplifier side and an inlet of compressed air sent from the air tank. The hybrid air circulation circuit according to any one of 1 to 10.
  12.  前記循環経路上に配置される前記エアー増幅器は、
     内部に形成されてメインエアーフローが通過する通過経路と、
     前記通過経路の外周に設けられるエアー吸入ポートと、を備え、
     前記通過経路を前記メインエアーフローが通過することで該通過経路内に負圧が発生し、前記負圧によって前記エアー吸入ポートから前記通過経路に向けて気体を吸入することを特徴とする請求の範囲1乃至11のいずれかに記載のハイブリッド・エアー循環回路。
    The air amplifier arranged on the circulation path is
    A passage route formed inside and through which the main airflow passes,
    An air suction port provided on the outer periphery of the passage route,
    The main air flow passes through the passage path to generate a negative pressure in the passage path, and the negative pressure sucks gas from the air suction port toward the passage path. The hybrid air circulation circuit according to any one of ranges 1 to 11.
  13.  前記通過経路には、前記メインエアーフローに沿って、第1室及び第2室を含む複数の分室が配置されており、
     前記第1室には、前記メインエアーフローが前記第2室側に吐出される通過孔が設けられ、
     前記第2室の外周には、前記エアー吸入ポートが複数配置されていることを特徴とする請求の範囲12に記載のハイブリッド・エアー循環回路。
    A plurality of compartments including a first chamber and a second chamber are arranged along the main airflow in the passage route,
    The first chamber is provided with a passage hole through which the main airflow is discharged to the second chamber side,
    The hybrid air circulation circuit according to claim 12, wherein a plurality of the air suction ports are arranged on an outer periphery of the second chamber.
  14.  前記第1室の前記通過孔の周りには複数の補助孔が設けられ、前記通過孔及び前記補助孔を介して前記メインエアーフローが前記第2室側に吐出されることを特徴とする請求の範囲13に記載のハイブリッド・エアー循環回路。 A plurality of auxiliary holes are provided around the passage hole of the first chamber, and the main air flow is discharged to the second chamber side through the passage hole and the auxiliary hole. The hybrid air circulation circuit according to claim 13.
  15.  前記通過経路には、前記第2室の下流側に第3室が配置されていることを特徴とする請求の範囲13乃至14のいずれかに記載のハイブリッド・エアー循環回路。 The hybrid air circulation circuit according to any one of claims 13 to 14, wherein a third chamber is disposed on the downstream side of the second chamber in the passage route.
  16.  前記分室が相互に分割可能となっていることを特徴とする請求の範囲13乃至15のいずれかに記載のハイブリッド・エアー循環回路。 The hybrid air circulation circuit according to any one of claims 13 to 15, wherein the compartments are separable from each other.
  17.  前記分室における吐出側には、吐出方向に向かって経路直径が小さくなるテーパ形状の絞り部が設けられていることを特徴とする、請求の範囲13乃至16のいずれかに記載のハイブリッド・エアー循環回路。 The hybrid air circulation according to any one of claims 13 to 16, wherein a tapered throttle portion whose path diameter decreases in the discharge direction is provided on the discharge side in the compartment. circuit.
  18.  前記分室における前記絞り部の外壁に沿って、次の前記分室の前記エアー吸入ポートが配置されることを特徴とする請求の範囲17に記載のハイブリッド・エアー循環回路。 The hybrid air circulation circuit according to claim 17, wherein the air suction port of the next compartment is disposed along the outer wall of the throttle portion in the compartment.
  19.  前記エアー吸入ポートは、前記通過経路の前記メインエアーフローの流れ方向に対して鋭角を持って合流することを特徴とする請求の範囲12乃至18のいずれか記載のハイブリッド・エアー循環回路。 The hybrid air circulation circuit according to any one of claims 12 to 18, wherein the air suction port joins at an acute angle with respect to a flow direction of the main air flow in the passage route.
  20.  前記エアー吸入ポートには、前記通過経路側から外部へのエアーの流出を抑制する逆止弁が設けられることを特徴とする請求の範囲12乃至19のいずれかに記載のハイブリッド・エアー循環回路。 The hybrid air circulation circuit according to any one of claims 12 to 19, wherein the air suction port is provided with a check valve for suppressing outflow of air from the passage route side to the outside.
PCT/JP2009/007184 2008-12-24 2009-12-24 Hybrid air circulation circuit WO2010073662A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008-336156 2008-12-24
JP2008336158A JP2012047046A (en) 2008-12-24 2008-12-24 Twin air circulation circuit
JP2008336159A JP2012047188A (en) 2008-12-24 2008-12-24 Closed secondary flow air circulation circuit
JP2008336160A JP2012047189A (en) 2008-12-24 2008-12-24 Multi-air amplifier air circulation circuit
JP2008-336160 2008-12-24
JP2008336156A JP2012047186A (en) 2008-12-24 2008-12-24 Single hybrid air circulation circuit
JP2008-336159 2008-12-24
JP2008-336158 2008-12-24
JP2008336157A JP2012047187A (en) 2008-12-24 2008-12-24 Twin hybrid air circulation circuit
JP2008-336157 2008-12-24

Publications (1)

Publication Number Publication Date
WO2010073662A1 true WO2010073662A1 (en) 2010-07-01

Family

ID=42287307

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2009/007187 WO2010073665A1 (en) 2008-12-24 2009-12-24 Air amplifier, air circulation circuit
PCT/JP2009/007186 WO2010073664A1 (en) 2008-12-24 2009-12-24 Air circulation circuit
PCT/JP2009/007185 WO2010073663A1 (en) 2008-12-24 2009-12-24 Hybrid air-circulating circuit
PCT/JP2009/007184 WO2010073662A1 (en) 2008-12-24 2009-12-24 Hybrid air circulation circuit

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/JP2009/007187 WO2010073665A1 (en) 2008-12-24 2009-12-24 Air amplifier, air circulation circuit
PCT/JP2009/007186 WO2010073664A1 (en) 2008-12-24 2009-12-24 Air circulation circuit
PCT/JP2009/007185 WO2010073663A1 (en) 2008-12-24 2009-12-24 Hybrid air-circulating circuit

Country Status (1)

Country Link
WO (4) WO2010073665A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029201A1 (en) * 2011-08-30 2013-03-07 洛阳北方玻璃技术股份有限公司 Air amplifier having function of amplifying air flow
JP2020094512A (en) * 2018-12-11 2020-06-18 富士電機株式会社 Ejector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870010A (en) * 1981-04-01 1983-04-26 エネルジヤガザ−ルコダ−シ・インテ−ゼツト Waste heat utilizing plant of compression apparatus of gas pipeline
JP2001200811A (en) * 1999-11-09 2001-07-27 Yasuo Tokioka Hydraulic power unit
JP2005147111A (en) * 2003-02-21 2005-06-09 Hitachi Ltd Fuel gas pipeline facility with booster, payout plan support system for estimating payout possibility of exhaust heat recovery compressor
JP2009002497A (en) * 2007-06-20 2009-01-08 Akio Wada Car driving method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153181A (en) * 1974-11-04 1976-05-11 Myoshi Tetsuko Kk Kaitentaino seidoenerugiino chikuatsusaiseiho oyobi sochi
JPS5269018A (en) * 1975-12-05 1977-06-08 Shigeyoshi Ayabe Means for increasing quantity of flow in blowers by pressure
JPS5717947Y2 (en) * 1978-04-28 1982-04-15
JPS5862200U (en) * 1981-10-22 1983-04-26 杉本 久 vacuum generator
JPS59154504U (en) * 1983-03-31 1984-10-17 ニチハ株式会社 Water cutter jointer
JPS6325459A (en) * 1986-07-18 1988-02-02 カルソニックカンセイ株式会社 Steam injection type refrigerator
DE9210496U1 (en) * 1992-08-06 1993-12-02 Volkmann, Thilo, 59514 Welver Multi-stage ejector
JP3421701B2 (en) * 1993-03-31 2003-06-30 Smc株式会社 Multistage ejector device
JPH0733729U (en) * 1993-12-03 1995-06-23 本田技研工業株式会社 Air motor driven vehicle
JP2766819B2 (en) * 1995-12-20 1998-06-18 角田 ジェラワン Exhaust gas flow accelerator
JP2001295800A (en) * 1999-12-08 2001-10-26 Myotoku Ltd Ejector type vacuum generator
JP3995870B2 (en) * 2000-08-10 2007-10-24 本田技研工業株式会社 Fuel cell fluid supply device
JP2003004319A (en) * 2001-06-20 2003-01-08 Denso Corp Ejector cycle
JP3818980B2 (en) * 2003-06-02 2006-09-06 Smc株式会社 Fluid circuit system
JP4873887B2 (en) * 2005-05-27 2012-02-08 日本空圧システム株式会社 Check valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870010A (en) * 1981-04-01 1983-04-26 エネルジヤガザ−ルコダ−シ・インテ−ゼツト Waste heat utilizing plant of compression apparatus of gas pipeline
JP2001200811A (en) * 1999-11-09 2001-07-27 Yasuo Tokioka Hydraulic power unit
JP2005147111A (en) * 2003-02-21 2005-06-09 Hitachi Ltd Fuel gas pipeline facility with booster, payout plan support system for estimating payout possibility of exhaust heat recovery compressor
JP2009002497A (en) * 2007-06-20 2009-01-08 Akio Wada Car driving method

Also Published As

Publication number Publication date
WO2010073663A1 (en) 2010-07-01
WO2010073665A1 (en) 2010-07-01
WO2010073664A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
CN111344482B (en) Passive pumping for recirculating exhaust gases
JP7058732B2 (en) A turbo compressor, a fuel cell system including the turbo compressor, and a method of starting or stopping the fuel cell system.
JP6511538B2 (en) Aspirator system with multiport aspirator
CZ237394A3 (en) Turbo-compressor employing exhaust gases
KR101695581B1 (en) Internal combustion engine comprising a booster
BR112017007487B1 (en) CHARGING DEVICE FOR AN INTERNAL COMBUSTION ENGINE, AND METHOD OF OPERATION FOR THE CHARGING DEVICE
JP2011517020A (en) FUEL CELL DEVICE AND METHOD OF OPERATING FUEL CELL DEVICE
US20230178764A1 (en) Air supply apparatus for fuel cell systems, and fuel cell system
WO2010073662A1 (en) Hybrid air circulation circuit
BRPI1003163A2 (en) system using supplementary compressor for exhaust gas recirculation (rgd)
KR20170088860A (en) Evacuator system for supplying high suction vacuum or high suction flow rate
US20190032672A1 (en) Vortex pump
CN103797629B (en) Method for fuel cell operation system
US20160061164A1 (en) Vacuum producer including an aspirator and an ejector
JP2014098324A (en) Supercharger for engine
CN111502869A (en) Method for regenerating an activated carbon filter and internal combustion engine
JPWO2009016828A1 (en) Air amplifier, air circulation circuit
US20060219230A1 (en) Combustion-gas recirculation system
JP2024518325A (en) Air supply device, fuel cell system, and vehicle
US10662901B2 (en) Vortex pump
JP2007205231A (en) Evaporated fuel treatment device
JPWO2021228915A5 (en)
JP2005228635A (en) Gas supply system of fuel cell
JP7434990B2 (en) air supply system
JP2012047186A (en) Single hybrid air circulation circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP