WO2010072529A1 - A flowable laundry composition and packaging therefor - Google Patents

A flowable laundry composition and packaging therefor Download PDF

Info

Publication number
WO2010072529A1
WO2010072529A1 PCT/EP2009/066286 EP2009066286W WO2010072529A1 WO 2010072529 A1 WO2010072529 A1 WO 2010072529A1 EP 2009066286 W EP2009066286 W EP 2009066286W WO 2010072529 A1 WO2010072529 A1 WO 2010072529A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
treatment device
reservoir
stain
laundry
Prior art date
Application number
PCT/EP2009/066286
Other languages
French (fr)
Inventor
Nicola-Jane Morley
John Stephen Morris
Stephen John Singleton
Original Assignee
Unilever Plc
Unilever N.V.
Hindustan Unilever Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Hindustan Unilever Limited filed Critical Unilever Plc
Priority to CN2009801519713A priority Critical patent/CN102264887A/en
Publication of WO2010072529A1 publication Critical patent/WO2010072529A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/42Closures with filling and discharging, or with discharging, devices with pads or like contents-applying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/24Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes
    • B65D51/249Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes the closure being specifically formed for supporting the container

Definitions

  • the present invention concerns a viscous laundry product and packaging therefore.
  • An objective is to provide an improved pre-treatment device for the precise pre- treatment of laundry stains.
  • the present invention provides a packaged laundry product comprising a flowable laundry composition contained in a package, wherein:
  • the flowable laundry composition has a viscosity of at least 100 Pa. s. (and preferably at least 500 Pa. s) when in rest or up to a shear stress of 10 Pa and comprising at least one surfactant;
  • the package comprises a squeeze-operated compressible container in which the flowable laundry composition is stored and a dispensing device and stain treatment device both located at the base of the compressible container;
  • a reservoir providing a supportive base portion and configured to receive the dispensed flowable laundry composition from the dispensing device and also receive at least a portion of the stain treatment device.
  • the invention provides a method of treating a stain on a fabric using the device of the first aspect, the method comprising the steps of:
  • Steps (ii) and (iii) may be repeated at least once e.g. for larger stains, where repeated loading of the stain treatment device is needed.
  • the advantage of the above arrangement is that it offers great ease in a high viscosity composition vis-a-vis stained areas. Highly viscous liquids or gels are desirable for treating as they do not spread out so much after application and so can be restricted to the stain area.
  • stain treating with such high viscosity fluids using squeeze-operated hand-held products can be difficult ergonomically.
  • One particular problem is how to dispense a high viscosity composition onto the stain treatment device so it may be applied to the stain.
  • Various devices are known, such as sponge applicators downstream of a dispensing orifice, whereby dispensing the fluid forces it through the sponge, however this is difficult with high viscosity fluids to get large amounts onto the stain treatment device.
  • the arrangement of invention allows the composition to be dispensed in the reservoir, such that it can be applied to the stain treatment device very easily and repeatedly for repeated loading with the composition which is useful for larger stains.
  • the dispensing/stain treatment part being positioned at the base of the reservoir, means the user does not need to invert the package to dispense and treat stains as gravity maintains the composition at the bottom of the container, ready for dispensing.
  • the dispensing device need not involve complicated and expensive seal/valves as the reservoir encloses the stain treatment device any drips are collected in the reservoir for later use. This also allows efficient emptying of the bottle when the composition is nearly all used up.
  • the stained area may present in any form such as discolouration, fading, darkening and may be due to soil or dirt or any other stain-creating substance.
  • stains affect localised areas (as opposed to the whole garment being affected) but can be quite large.
  • the treatment may precede a further operation such as a main washing operation. However it may also incorporate a rinsing process whereby the stain is simply treated and the stained area or whole fabric/article rinsed without a main wash.
  • the dispensing device may comprise a channel or duct or valve or aperture or any combination thereof.
  • the reservoir may be part of a closure and may also be used as a dosing device which can be placed in a washing machine along with the stained fabric (for a main wash or for a rinse etc) which has been pre-treated using the stain treatment device.
  • the reservoir preferably receives the stain treatment device to such a degree that the stain treatment device projects into the reservoir by more than 50% of the depth of the reservoir, and more preferably by more than 60%, even more preferably by more than 75% and most preferably by more than 90%.
  • the depth of the reservoir would preferably be the depth measured from the centre of the reservoir base to the top level of the reservoir sides at its highest point.
  • the depth would be measured along the longitudinal axis from the centre of the base which is the deepest part to the level of the sides - in Fig 1 this is shown from X to Y. - A -
  • This feature means that the stain treatment device projects sufficiently deeply into the reservoir such that the stain treatment device is easily loaded with the composition.
  • the reservoir forms part of a closure device, this is especially advantageous, since it minimises the risk that inserting the stain treater into the reservoir activates any closure mechanism (e.g. by snap-fit engagement or screw- on screw-off) as screw-threads or snap-fit members become engaged by accident.
  • the stain treatment device may comprise a device allowing mechanical cleaning, such as a body with multiple projections.
  • the projections may be flexible so that they move during cleaning providing a light cleaning action. Alternatively some or all of the projections may be semi-rigid or rigid so as to provide a harsher mechanical cleaning action.
  • the projections may be thin e.g. bristles to provide a brush-like device, or thicker so as to provide finger like projections.
  • the stain treatment device comprises a generally hemispherical body with multiple projections extending radially therefrom.
  • the stain treatment device may itself be an extension of the dispensing device. So it may be continuous with e.g. a dispensing aperture, valve etc. It may comprise a surface surrounding said aperture or valve etc. so that it can be loaded with, so as to carry the composition which is then applied to the stained area without any scrubbing action as might be used with the above described devices containing projections.
  • the surface may be a ring (full or partial e.g. annular section) around the dispensing aperture.
  • the package may have a convex, preferably a curved e.g. hemispherical top to deter users from storing the bottle top-down. In this way the package is more likely to be stored in a stain treatment device - loading position i.e. with the flowable laundry composition accumulated by gravity in the base of the package.
  • the composition is preferably a shear thinning gel-type composition.
  • the viscosity under shear stress may be less than 300 Pa. s, preferably less than 100 Pa. s and more preferably less than 5 Pa. s, even more preferably it is at most 1 Pa. s and most preferably it is at most 0.5 Pa. s.
  • Shear thinning compositions may comprise a polymer gum, e.g. Xanthan gum or other gum capable of forming stable continuous gum networks which can suspend particles.
  • a polymer gum e.g. Xanthan gum or other gum capable of forming stable continuous gum networks which can suspend particles.
  • external structurants e.g. hydrogenated castor oil, micro crystalline cellulose may be used.
  • compositions may comprise a soap or fatty acid in combination with sodium sulphate and one or more surfactants may be used to form a gelled structure by the formation of lamellar phases.
  • the composition may comprise a lamellar phase dispersions from a micellar surfactant systems, and additionally a structurant for establishing the lamellar phase, whereby said structurant may be a fatty alcohol.
  • the composition of invention contains one or more surfactants and/or optionally other ingredients such that the composition is fully functional as a laundry cleaning and/or care composition.
  • a composition of the invention may be provided in solid or liquid form. If in a solid form, the composition may be rehydrated and/or dissolved in a solvent, including water, before use. The composition may be provided in a concentrated form to be diluted or may be a ready-to-use (in-use) composition.
  • the present invention is suitable for use in industrial or domestic fabric wash compositions. The present invention can also be applied to industrial or domestic non-detergent based fabric care compositions.
  • contemplated ingredients including hydrotropes, preservatives, fillers, builders, complexing agents, polymers, stabilizers, perfumes per se, other conventional detergent ingredients, or combinations of one or more thereof are discussed below.
  • Fabric wash compositions according to the present invention comprise a fabric wash detergent material selected from non-soap anionic surfactant, nonionic surfactants, soap, amphoteric surfactants, zwitterionic surfactants and mixtures thereof.
  • Detergent compositions suitable for use in domestic or industrial automatic fabric washing machines generally contain anionic non-soap surfactant or nonionic surfactant, or combinations of the two in suitable ratio, as will be known to the person skilled in the art, optionally together with soap.
  • the surfactants may be present in the composition at a level of from 0.1 % to 60% by weight.
  • Suitable anionic surfactants include alkyl benzene sulphonate, primary and secondary alkyl sulphates, particularly Cs-Ci 5 primary alkyl sulphates; alkyl ether sulphates; olefin sulphonates; alkyl xylene sulphonates, dialkyl sulphosuccinates; ether carboxylates; isethionates; sarcosinates; fatty acid ester sulphonates and mixtures thereof.
  • the sodium salts are generally preferred.
  • the composition When included therein the composition usually contains from about 1 % to about 50%, preferably 10 wt%-40 wt% based on the fabric treatment composition of an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap.
  • Preferred surfactants are alkyl ether sulphates and blends of alkoxylated alkyl nonionic surfactants with either alkyl sulphonates or alkyl ether sulphates.
  • Preferred alkyl ether sulphates are C8-C15 alkyl and have 2-10 moles of ethoxlation.
  • Preferred alkyl sulphates are alkylbenzene sulphonates, particularly linear alkylbenzene sulphonates having an alkyl chain length of Cs-Ci 5 .
  • the counter ion for anionic surfactants is typically sodium, although other counter-ions such as TEA or ammonium can be used. Suitable anionic surfactant materials are available in the marketplace as the 'Genapol'TM range from Clariant.
  • Nonionic surfactants include primary and secondary alcohol ethoxylates, especially Cs-C 7 aliphatic alcohol ethoxylated with an average of from 1 to 7 moles of ethylene oxide per mole of alcohol, and more especially the C10-C15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
  • Non-ethoxylated nonionic surfactants include alkyl polyglycosides, glycerol monoethers and polyhydroxy amides (glucamide). Mixtures of nonionic surfactant may be used.
  • the composition When included therein the composition usually contains from about 0.2% to about 40%, preferably 1 to 7 wt%, more preferably 5 to 15 wt% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”).
  • a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”).
  • Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the Cs-C 7 aliphatic alcohols ethoxylated with an average of from 1 to 35 moles of ethylene oxide per mole of alcohol, and more especially the Cio-Ci5 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
  • the composition may comprise one or more enzymes may be in any suitable. It is to be understood that enzyme variants (produced, for example, by recombinant techniques) are included within the meaning of the term "enzyme”. Examples of such enzyme variants are disclosed, e.g., in EP 251 ,446 (Genencor), WO 91/00345 (Novo Nordisk), EP 525,610 (Solvay) and WO 94/02618 (Gist- Brocades NV).
  • the types of enzymes which may appropriately be incorporated in granules of the invention include oxidoreductases, transferases hydrolases, lyases, isomerases and ligases, that is, respectively (EC 1.-.-.-), (EC 2.-.-.-),
  • enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof. Most preferred enzymes are proteases.
  • Suitable proteases include those of animal, vegetable or microbial origin.
  • the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • alkaline proteases are subtilisins, especially those derived from Bacillus, e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279).
  • trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusahum protease described in WO 89/06270 and WO 94/25583.
  • Examples of useful proteases are the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946, especially the variants with substitutions in one or more of the following positions: 27, 36, 57, 76, 87, 97, 101 , 104, 120, 123, 167, 170, 194, 206, 218, 222, 224, 235 and 274.
  • Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or
  • WO 96/27002 P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).
  • lipase variants such as those described in WO 92/05249, WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202.
  • Preferred commercially available lipase enzymes include LipolaseTM and Lipolase UltraTM, LipexTM (Novozymes A/S).
  • the method of the invention may be carried out in the presence of cutinase. Classified in EC 3.1.1.74.
  • the cutinase used according to the invention may be of any origin.
  • Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Cutinases are enzymes which are able to degrade cutin.
  • the cutinase is derived from a strain of Aspergillus, in particular Aspergillus oryzae, a strain of Alternaria, in particular Alternaria brassiciola, a strain of Fusahum, in particular Fusahum solani, Fusarium solani pisi, Fusahum roseum culmorum, or Fusarium roseum sambucium, a strain of Helminthosporum, in particular Helminthosporum sativum, a strain of Humicola, in particular Humicola insolens, a strain of Pseudomonas, in particular Pseudomonas mendocina, or Pseudomonas putida, a strain of Rhizoctonia, in particular Rhizoctonia solani, a strain of Streptomyces, in particular Streptomyces scabies, or a strain of
  • the cutinase is derived from a strain of Humicola insolens, in particular the strain Humicola insolens DSM 1800.
  • Humicola insolens cutinase is described in WO 96/13580 which is herby incorporated by reference.
  • the cutinase may be a variant, such as one of the variants disclosed in WO 00/34450 and WO 01/92502, which are hereby incorporated by reference.
  • Preferred cutinase variants include variants listed in Example 2 of WO 01/92502, which is hereby specifically incorporated by reference.
  • Preferred commercial cutinases include NOVOZYMTM 51032 (available from Novozymes A/S, Denmark).
  • phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol estehfied with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases Ai and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • phospholipase includes enzymes with phospholipase activity, e.g., phospholipase A (Ai or A 2 ), phospholipase B activity, phospholipase C activity or phospholipase D activity.
  • phospholipase A used herein in connection with an enzyme of the invention is intended to cover an enzyme with Phospholipase Ai and/or Phospholipase A 2 activity.
  • the phospholipase activity may be provided by enzymes having other activities as well, such as, e.g., a lipase with phospholipase activity.
  • the phospholipase activity may, e.g., be from a lipase with phospholipase side activity.
  • the phospholipase enzyme activity is provided by an enzyme having essentially only phospholipase activity and wherein the phospholipase enzyme activity is not a side activity.
  • the phospholipase may be of any origin, e.g., of animal origin (such as, e.g., mammalian), e.g. from pancreas (e.g., bovine or porcine pancreas), or snake venom or bee venom.
  • animal origin such as, e.g., mammalian
  • pancreas e.g., bovine or porcine pancreas
  • snake venom or bee venom e.g., from snake venom or bee venom.
  • the phospholipase may be of microbial origin, e.g., from filamentous fungi, yeast or bacteria, such as the genus or species Aspergillus, e.g., A. niger; Dictyostelium, e.g., D. discoideum; Mucor, e.g. M. javanicus, M. mucedo, M.
  • subtilissimus Neurospora, e.g. N. crassa; Rhizomucor, e.g., R. pusillus; Rhizopus, e.g. R. arrhizus, R. japonicus, R. stolonifer; Sclerotinia, e.g., S. libertiana; Trichophyton, e.g. T. rubrum; Whetzelinia, e.g., W. sclerotiorum; Bacillus, e.g., B. megaterium, B. subtilis; Citrobacter, e.g., C. freundii; Enterobacter, e.g., E. aerogenes, E.
  • the phospholipase may be fungal, e.g., from the class Pyrenomycetes, such as the genus Fusarium, such as a strain of F. culmorum, F. heterosporum, F. solani, or a strain of F. oxysporum.
  • the phospholipase may also be from a filamentous fungus strain within the genus Aspergillus, such as a strain of
  • Preferred phospholipases are derived from a strain of Humicola, especially Humicola lanuginosa.
  • the phospholipase may be a variant, such as one of the variants disclosed in WO 00/32758, which are hereby incorporated by reference.
  • Preferred phospholipase variants include variants listed in Example 5 of WO 00/32758, which is hereby specifically incorporated by reference.
  • the phospholipase is one described in WO 04/111216, especially the variants listed in the table in Example 1.
  • the phospholipase is derived from a strain of Fusarium, especially Fusarium oxysporum.
  • the phospholipase may be the one concerned in WO 98/026057 derived from Fusarium oxysporum DSM 2672, or variants thereof.
  • the phospholipase is a phospholipase Ai (EC. 3.1.1.32). In another preferred embodiment of the invention the phospholipase is a phospholipase A 2 (EC.3.1.1.4.).
  • Examples of commercial phospholipases include LECITASETM and LECITASETM ULTRA, YIELSMAX, or LIPOPAN F (available from Novozymes A/S, Denmark).
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060.
  • amylases are the variants described in WO 94/02597,
  • amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 ,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
  • cellulases are the alkaline or neutral cellulases having color care benefits.
  • Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940.
  • Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US 5,763,254, WO 95/24471 , WO 98/12307 and PCT/DK98/00299.
  • cellulases include CelluzymeTM, CarezymeTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation).
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S).
  • pectate lyases examples include pectate lyases that have been cloned from different bacterial genera such as Erwinia, Pseudomonas, Klebsiella and Xanthomonas, as well as from Bacillus subtilis (Nasser et al. (1993) FEBS Letts. 335:319-326) and Bacillus sp. YA-14 (Kim et al. (1994) Biosci. Biotech. Biochem. 58:947-949). Purification of pectate lyases with maximum activity in the pH range of 8-10 produced by Bacillus pumilus (Dave and Vaughn (1971 ) J. Bacteriol. 108:166-174), B.
  • the pectate lyase comprises the amino acid sequence of a pectate lyase disclosed in Heffron et al., (1995) MoI. Plant- Microbe Interact. 8: 331 -334 and Henrissat et al., (1995) Plant Physiol. 107: 963- 976.
  • pectatel lyases are disclosed in WO 99/27083 and WO 99/27084.
  • Other specifically contemplates pectate lyases derived from Bacillus licheniformis is disclosed in US patent no. 6,284,524 (which document is hereby incorporated by reference).
  • pectate lyase variants are disclosed in WO 02/006442, especially the variants disclosed in the Examples in WO 02/006442 (which document is hereby incorporated by reference).
  • alkaline pectate lyases examples include BIOPREPTM and SCOURZYMETM L from Novozymes A/S, Denmark.
  • mannanases examples include mannanases of bacterial and fungal origin.
  • the mannanase is derived from a strain of the filamentous fungus genus Aspergillus, preferably Aspergillus niger or Aspergillus aculeatus (WO 94/25576).
  • WO 93/24622 discloses a mannanase isolated from Trichoderma reseei. Mannanases have also been isolated from several bacteria, including Bacillus organisms. For example, Talbot et al., Appl. Environ. Microbiol., Vol.56, No. 11 , pp.
  • JP-A-03047076 discloses a beta- mannanase derived from Bacillus sp.
  • JP-A-63056289 describes the production of an alkaline, thermostable beta-mannanase.
  • JP-A-63036775 relates to the Bacillus microorganism FERM P-8856 which produces beta-mannanase and beta- mannosidase.
  • JP-A-08051975 discloses alkaline beta-mannanases from alkalophilic Bacillus sp. AM-001.
  • a purified mannanase from Bacillus amyloliquefaciens is disclosed in WO 97/11164.
  • WO 91/18974 describes a hemicellulase such as a glucanase, xylanase or mannanase active.
  • mannanases derived from Bacillus agaradhaerens, Bacillus licheniformis, Bacillus halodurans, Bacillus clausii, Bacillus sp., and Humicola insolens disclosed in WO 99/64619.
  • Bacillus sp. mannanases concerned in the Examples in WO 99/64619 which document is hereby incorporated by reference.
  • Examples of commercially available mannanases include MannawayTM available from Novozymes A/S Denmark.
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • hydrophilicity generally means a compound with the ability to increase the solubilities, preferably aqueous solubilities, of certain slightly soluble organic compounds.
  • hydrotropes examples include sodium xylene sulfonate, SCM.
  • the composition may comprise a solvent such as water or an organic solvent such as isopropyl alcohol or glycol ethers. Solvents may be present in liquid or gel compositions.
  • Metal Chelation Agents :
  • the composition may contain a metal chelating agent such as carbonates, bicarbonates, and sesquicarbonates.
  • the metal chelating agent can be a bleach stabiliser (i.e. heavy metal sequestrant).
  • Suitable bleach stabilisers include ethylenediamine tetraacetate (EDTA), diethylenethamine pentaacetate (DTPA), ethylenediamine disuccinate (EDDS), and the polyphosphonates such as the Dequests (Trade Mark), ethylenediamine tetramethylene phosphonate (EDTMP) and diethylenetriamine pentamethylene phosphate (DETPMP).
  • EDTA ethylenediamine tetraacetate
  • DTPA diethylenethamine pentaacetate
  • EDDS ethylenediamine disuccinate
  • the polyphosphonates such as the Dequests (Trade Mark), ethylenediamine tetramethylene phosphonate (EDTMP) and diethylenetriamine pentamethylene phosphate (DETPMP).
  • Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium thpolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A- 0,384,070.
  • zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A- 0,384,070.
  • the composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenethamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nithlotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenethamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nithlotriacetic acid or the other builders mentioned below.
  • Many builders are bleach-stabilising agents by virtue of their ability to complex metal ions.
  • the compositions may suitably contain less than 7%wt, preferably less than 10% by weight, and most preferably less than 10%wt of detergency builder.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w.
  • Aluminosilicates are materials having the general formula:
  • M is a monovalent cation, preferably sodium.
  • M a monovalent cation, preferably sodium.
  • These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
  • the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • carbonate including bicarbonate and sesquicarbonate
  • citrate may be employed as builders.
  • the composition may comprise one or more polymers.
  • examples are carboxymethylcellulose, poly(vinylpyrrolidone), poly (ethylene glycol), polyvinyl alcohol), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Modern detergent compositions typically employ polymers as so-called 'dye- transfer inhibitors'. These prevent migration of dyes, especially during long soak times.
  • Any suitable dye-transfer inhibition agents may be used in accordance with the present invention.
  • such dye-transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of
  • N-vinylpyrrolidone and N-vinylimidazole N-vinylpyrrolidone and N-vinylimidazole, manganese pthalocyanine, peroxidases, and mixtures thereof.
  • Nitrogen-containing, dye binding, DTI polymers are preferred. Of these polymers and co-polymers of cyclic amines such as vinyl pyrrolidone, and/or vinyl imidazole are preferred.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • the amine oxide unit of the polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferably pKa ⁇ 6.
  • Any polymer backbone can be used provided the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamides, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N- oxide and the other monomer type is an N-oxide.
  • the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1 :1 ,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymehzation or by an appropriate degree of N-oxidation.
  • the polyamine oxides can be obtained in almost any degree of polymerization.
  • the average molecular weight is within the range of 500 to 1 ,000,000; more preferably 1 ,000 to 500,000; most preferably 5,000 to 100,000.
  • This preferred class of materials is referred to herein as "PVNO".
  • a preferred polyamine N-oxide is poly(4-vinylpyhdine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1 :4.
  • Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers are also preferred.
  • the PVPVI has an average molecular weight range from 5,000 to 1 ,000,000, more preferably from 5,000 to 70,000, and most preferably from 10,000 to 7,000, as determined by light scattering as described in Barth, et al., Chemical Analysis, Vol. 113. "Modern
  • the preferred PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 :1 to 0.2:1 , more preferably from 0.8:1 to 0.3:1 , most preferably from 0.6:1 to 0.4:1. These copolymers can be either linear or branched. Suitable PVPVI polymers include Sokalan (TM) HP56, available commercially from BASF, Ludwigshafen, Germany.
  • PVP polyvinylpyrrolidone polymers
  • PVP's are disclosed for example in EP-A-262,897 and EP-A-256,696.
  • Suitable PVP polymers include Sokalan (TM) HP50, available commercially from BASF.
  • Compositions containing PVP can also contain polyethylene glycol (“PEG”) having an average molecular weight from about 500 to about 100,000, preferably from about 1 ,000 to about 10,000.
  • PEG polyethylene glycol
  • the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50:1 , and more preferably from about 3:1 to about 10:1.
  • modified polyethyleneimine polymers are water-soluble or dispersible, modified polyamines.
  • Modified polyamines are further disclosed in US-A-4,548,744; US-A- 4,597,898; US-A- 4,877,896; US-A- 4,891 , 160; US-A- 4,976,879; US-A-5,415,807; GB-A-1 ,537,288; GB-A-1 ,498,57; DE-A-28 29022; and JP-A-06313271.
  • composition according to the present invention comprises a dye transfer inhibition agent selected from polyvinylpyrridine N-oxide (PVNO), polyvinyl pyrrolidone (PVP), polyvinyl imidazole, N-vinylpyrrolidone and N- vinylimidazole copolymers (PVPVI), copolymers thereof, and mixtures thereof.
  • a dye transfer inhibition agent selected from polyvinylpyrridine N-oxide (PVNO), polyvinyl pyrrolidone (PVP), polyvinyl imidazole, N-vinylpyrrolidone and N- vinylimidazole copolymers (PVPVI), copolymers thereof, and mixtures thereof.
  • the amount of dye transfer inhibition agent in the composition according to the present invention will be from 0.01 to 10 %, preferably from 0.02 to 5 %, more preferably from 0.03 to 2 %, by weight of the composition.
  • composition may also contain other conventional detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors (anti- foams), anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, further dyes, anti-microbials, optical brighteners, tarnish inhibitors, or perfumes.
  • fabric conditioners including clays, foam boosters, suds suppressors (anti- foams), anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, further dyes, anti-microbials, optical brighteners, tarnish inhibitors, or perfumes.
  • Figure 1 shows a packaged laundry product according to one embodiment of the invention.
  • the product 1 comprises a flowable laundry composition 3 contained in a package 5, the high viscosity laundry composition 3 according to Example A or B detailed below.
  • the package comprises a squeeze-operated compressible container, in this example a plastic bottle 7 storing the flowable, high viscosity laundry composition 3 and a dispensing device 9 and a fabric stain treatment device 11.
  • the dispensing device 9 is located at the base 13 of the container 7 and is enclosed by a dosing closure device 14.
  • the closure 14 comprises the supportive base 13 of the package 5.
  • the bottle 7 and a stain treatment device 11 are attached to each other by threaded connection.
  • the stain treatment device comprises projections (not shown).
  • it is a sponge, and in a further embodiment it is thin annular section around the orifice 25 (described below).
  • the closure 14 is attached to the bottle also by a threaded connection. (Threaded connections not shown).
  • the closure 14 is connected to the bottle 7 using a snap-on connection, which negates the requirement to rotate the bottle/closure to open shut.
  • the bottle 7 is fabricated from a flexible plastic material comprising polyethylene terephthalate.
  • the top 21 of the bottle is curved to discourage storage top-down.
  • the closure 14 includes an enlarged (with respect to at least the neck region of the bottle) flat, generally planar bottom surface 15. By providing an enlarged flat top surface 15, the surface allows the closure 14 to function as a supportive base with the bottle 7 in an inverted position thereby allowing the high viscosity gel 3 to accumulate (under gravity) during storage at the dispensing device 9.
  • the closure 14 incorporates a reservoir portion 17 in which the stain treatment device 11 is shown enclosed.
  • the closure 14 has a tapered outer shape, wherein the tapering is outward in the direction of the base, to provide a stable base area 15 as described about.
  • the stain treatment device projects into the reservoir by approximately 60% of the depth of the reservoir (the depth being measured along a longitudinal line X-Y. This affords the advantage that the stain treatment device can be inserted into the reservoir and contact the dispensed composition so as to be easily loaded with this, without the screw threads engaging, even when the reservoir is not filled to the top with composition.
  • the dispensing device 9 comprises an orifice 25 through which dispensing may occur.
  • the orifice includes a valve 22 in fluid communication with duct 23.
  • the valve 22 comprises a membrane extending across orifice 25.
  • the orifice/membrane are located further downstream in the duct. In the extreme examples, it is an the end, as shown in figure ref. 32
  • the membrane has an arcuate portion (not shown) directed toward the container 7.
  • the arcuate portion of the membrane is provided with a intersecting slits to define a plurality of generally triangular leaves.
  • the triangular leaves bend toward the open end of the orifice 25 allowing product to pass through the orifice 25.
  • the triangular leaves spring back to their original position and operate to block passage of product through the orifice 25.
  • the leaves of the valve are sufficiently resilient that they do not bend open unless the applied pressure exceeds the hydraulic static head pressure generated by a full of condiment.
  • the fluid is pressurised to flow past and partially collect at the base of the bottle 7 ready for squeeze-operated dispensing into the reservoir. Any of the fluid which remains on the stain treatment device 11 , drips into the reservoir, for later use. This reduces waste of product.
  • composition A is according to the invention
  • Borax Sodium tetraborate (10aq) nonionic surfactant: ethoxylated alcohol with on average 9 ethylene oxide groups.
  • composition A The gel detergent composition exemplified by composition A was found to be shear thinning and stable. Furthermore, typical detergent particles of density between 0.8 and 0.9 g/cm3 and having a diameter up to 5000 microns could be stable suspended in this composition for more than 2 weeks without any observable net movement of the particles.
  • Viscosity was measured at varying shear rates from very low shear up to a shear regime in excess of 100 s "1 . Two situations are shown: the viscosity measured at relatively low shear (20 s "1 ) and that measured at much higher shear (100 s "1 ). It can be seen that the viscosity of composition A at high shear is much lower than that obtained at low shear, whereas composition B shows almost equal viscosity's for high and low shear. In other words composition A is clearly shear thinning, whereas composition B is not.
  • Borax Sodium tetraborate (10aq) nonionic surfactant: ethoxylated alcohol with on average 9 ethylene oxide groups
  • Sodium alcohol EO sulphate ethoxylated alcohol sulphate with on average 3 ethylene oxide groups.
  • Composition B was is a stable, transparent, pourable shear thinning liquid, capable of stable suspending typical detergent particles having a density of between 0.8 and 0.9 g/cm3 and a diameter of up to 5000 microns, for more than 2 weeks without any observable net movement of the particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

A packaged laundry product comprising a flowable laundry composition contained in a package, wherein: (i) the flowable laundry composition has a viscosity of at least 100 Pa. s. (and preferably at least 500 Pa. s) when in rest or up to a shear stress of 10 Pa and comprising at least one surfactant; and (ii) the package comprises a squeeze-operated compressible container in which the flowable laundry composition is stored and a dispensing device and stain treatment device both located at the base of the compressible container; (iii) a reservoir providing a supportive base portion and configured to receive the dispensed flowable laundry composition from the dispensing device and also receive at least a portion of the stain treatment device.

Description

A FLOWABLE LAUNDRY COMPOSITION AND PACKAGING THEREFOR
The present invention concerns a viscous laundry product and packaging therefore.
An objective is to provide an improved pre-treatment device for the precise pre- treatment of laundry stains.
Accordingly, in a first aspect, the present invention provides a packaged laundry product comprising a flowable laundry composition contained in a package, wherein:
(i) the flowable laundry composition has a viscosity of at least 100 Pa. s. (and preferably at least 500 Pa. s) when in rest or up to a shear stress of 10 Pa and comprising at least one surfactant; and
(ii) the package comprises a squeeze-operated compressible container in which the flowable laundry composition is stored and a dispensing device and stain treatment device both located at the base of the compressible container;
(iii) a reservoir providing a supportive base portion and configured to receive the dispensed flowable laundry composition from the dispensing device and also receive at least a portion of the stain treatment device.
In a second aspect the invention provides a method of treating a stain on a fabric using the device of the first aspect, the method comprising the steps of:
(i) squeezing the compressible container to dispense the flowable laundry composition into the reservoir; (ii) inserting the at least a portion of the stain treatment device into the dispensed flowable laundry composition within the reservoir; and
(iii) treating the stain by applying the flowable laundry composition on the at least one portion of the stain treatment device to the stain.
Steps (ii) and (iii) may be repeated at least once e.g. for larger stains, where repeated loading of the stain treatment device is needed.
The advantage of the above arrangement is that it offers great ease in a high viscosity composition vis-a-vis stained areas. Highly viscous liquids or gels are desirable for treating as they do not spread out so much after application and so can be restricted to the stain area. However, stain treating with such high viscosity fluids using squeeze-operated hand-held products can be difficult ergonomically. One particular problem is how to dispense a high viscosity composition onto the stain treatment device so it may be applied to the stain. Various devices are known, such as sponge applicators downstream of a dispensing orifice, whereby dispensing the fluid forces it through the sponge, however this is difficult with high viscosity fluids to get large amounts onto the stain treatment device.
The arrangement of invention allows the composition to be dispensed in the reservoir, such that it can be applied to the stain treatment device very easily and repeatedly for repeated loading with the composition which is useful for larger stains.
Importantly, as a consequence of the dispensing/stain treatment part being positioned at the base of the reservoir, means the user does not need to invert the package to dispense and treat stains as gravity maintains the composition at the bottom of the container, ready for dispensing. The dispensing device need not involve complicated and expensive seal/valves as the reservoir encloses the stain treatment device any drips are collected in the reservoir for later use. This also allows efficient emptying of the bottle when the composition is nearly all used up.
The stained area may present in any form such as discolouration, fading, darkening and may be due to soil or dirt or any other stain-creating substance. Generally stains affect localised areas (as opposed to the whole garment being affected) but can be quite large.
The treatment may precede a further operation such as a main washing operation. However it may also incorporate a rinsing process whereby the stain is simply treated and the stained area or whole fabric/article rinsed without a main wash.
The dispensing device may comprise a channel or duct or valve or aperture or any combination thereof.
The reservoir may be part of a closure and may also be used as a dosing device which can be placed in a washing machine along with the stained fabric (for a main wash or for a rinse etc) which has been pre-treated using the stain treatment device.
The reservoir preferably receives the stain treatment device to such a degree that the stain treatment device projects into the reservoir by more than 50% of the depth of the reservoir, and more preferably by more than 60%, even more preferably by more than 75% and most preferably by more than 90%.
The depth of the reservoir would preferably be the depth measured from the centre of the reservoir base to the top level of the reservoir sides at its highest point. For example in the case of a generally hemispherical reservoir the depth would be measured along the longitudinal axis from the centre of the base which is the deepest part to the level of the sides - in Fig 1 this is shown from X to Y. - A -
This feature means that the stain treatment device projects sufficiently deeply into the reservoir such that the stain treatment device is easily loaded with the composition. Where the reservoir forms part of a closure device, this is especially advantageous, since it minimises the risk that inserting the stain treater into the reservoir activates any closure mechanism (e.g. by snap-fit engagement or screw- on screw-off) as screw-threads or snap-fit members become engaged by accident.
The stain treatment device may comprise a device allowing mechanical cleaning, such as a body with multiple projections. The projections may be flexible so that they move during cleaning providing a light cleaning action. Alternatively some or all of the projections may be semi-rigid or rigid so as to provide a harsher mechanical cleaning action. The projections may be thin e.g. bristles to provide a brush-like device, or thicker so as to provide finger like projections.
In one embodiment the stain treatment device comprises a generally hemispherical body with multiple projections extending radially therefrom.
The stain treatment device may itself be an extension of the dispensing device. So it may be continuous with e.g. a dispensing aperture, valve etc. It may comprise a surface surrounding said aperture or valve etc. so that it can be loaded with, so as to carry the composition which is then applied to the stained area without any scrubbing action as might be used with the above described devices containing projections. The surface may be a ring (full or partial e.g. annular section) around the dispensing aperture.
The package may have a convex, preferably a curved e.g. hemispherical top to deter users from storing the bottle top-down. In this way the package is more likely to be stored in a stain treatment device - loading position i.e. with the flowable laundry composition accumulated by gravity in the base of the package. The composition is preferably a shear thinning gel-type composition. The viscosity under shear stress may be less than 300 Pa. s, preferably less than 100 Pa. s and more preferably less than 5 Pa. s, even more preferably it is at most 1 Pa. s and most preferably it is at most 0.5 Pa. s.
Shear thinning compositions may comprise a polymer gum, e.g. Xanthan gum or other gum capable of forming stable continuous gum networks which can suspend particles.
Other external structurants e.g. hydrogenated castor oil, micro crystalline cellulose may be used.
Another method useful is to change a non-gelled formulation so as to form an internal structure therein where the structure gives the desired properties to the thus-formed gel-type detergent. The composition may comprise a soap or fatty acid in combination with sodium sulphate and one or more surfactants may be used to form a gelled structure by the formation of lamellar phases.
The composition may comprise a lamellar phase dispersions from a micellar surfactant systems, and additionally a structurant for establishing the lamellar phase, whereby said structurant may be a fatty alcohol.
The composition of invention contains one or more surfactants and/or optionally other ingredients such that the composition is fully functional as a laundry cleaning and/or care composition. A composition of the invention may be provided in solid or liquid form. If in a solid form, the composition may be rehydrated and/or dissolved in a solvent, including water, before use. The composition may be provided in a concentrated form to be diluted or may be a ready-to-use (in-use) composition. The present invention is suitable for use in industrial or domestic fabric wash compositions. The present invention can also be applied to industrial or domestic non-detergent based fabric care compositions.
Other contemplated ingredients including hydrotropes, preservatives, fillers, builders, complexing agents, polymers, stabilizers, perfumes per se, other conventional detergent ingredients, or combinations of one or more thereof are discussed below.
Surfactants:
Fabric wash compositions according to the present invention comprise a fabric wash detergent material selected from non-soap anionic surfactant, nonionic surfactants, soap, amphoteric surfactants, zwitterionic surfactants and mixtures thereof.
Detergent compositions suitable for use in domestic or industrial automatic fabric washing machines generally contain anionic non-soap surfactant or nonionic surfactant, or combinations of the two in suitable ratio, as will be known to the person skilled in the art, optionally together with soap.
The surfactants may be present in the composition at a level of from 0.1 % to 60% by weight.
Suitable anionic surfactants include alkyl benzene sulphonate, primary and secondary alkyl sulphates, particularly Cs-Ci5 primary alkyl sulphates; alkyl ether sulphates; olefin sulphonates; alkyl xylene sulphonates, dialkyl sulphosuccinates; ether carboxylates; isethionates; sarcosinates; fatty acid ester sulphonates and mixtures thereof. The sodium salts are generally preferred. When included therein the composition usually contains from about 1 % to about 50%, preferably 10 wt%-40 wt% based on the fabric treatment composition of an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap. Preferred surfactants are alkyl ether sulphates and blends of alkoxylated alkyl nonionic surfactants with either alkyl sulphonates or alkyl ether sulphates.
Preferred alkyl ether sulphates are C8-C15 alkyl and have 2-10 moles of ethoxlation. Preferred alkyl sulphates are alkylbenzene sulphonates, particularly linear alkylbenzene sulphonates having an alkyl chain length of Cs-Ci5. The counter ion for anionic surfactants is typically sodium, although other counter-ions such as TEA or ammonium can be used. Suitable anionic surfactant materials are available in the marketplace as the 'Genapol'™ range from Clariant.
Nonionic surfactants include primary and secondary alcohol ethoxylates, especially Cs-C7 aliphatic alcohol ethoxylated with an average of from 1 to 7 moles of ethylene oxide per mole of alcohol, and more especially the C10-C15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol. Non-ethoxylated nonionic surfactants include alkyl polyglycosides, glycerol monoethers and polyhydroxy amides (glucamide). Mixtures of nonionic surfactant may be used. When included therein the composition usually contains from about 0.2% to about 40%, preferably 1 to 7 wt%, more preferably 5 to 15 wt% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine ("glucamides").
Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the Cs-C7 aliphatic alcohols ethoxylated with an average of from 1 to 35 moles of ethylene oxide per mole of alcohol, and more especially the Cio-Ci5 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
Enzymes:
The composition may comprise one or more enzymes may be in any suitable. It is to be understood that enzyme variants (produced, for example, by recombinant techniques) are included within the meaning of the term "enzyme". Examples of such enzyme variants are disclosed, e.g., in EP 251 ,446 (Genencor), WO 91/00345 (Novo Nordisk), EP 525,610 (Solvay) and WO 94/02618 (Gist- Brocades NV).
The types of enzymes which may appropriately be incorporated in granules of the invention include oxidoreductases, transferases hydrolases, lyases, isomerases and ligases, that is, respectively (EC 1.-.-.-), (EC 2.-.-.-),
(EC 3.-.-.-), (EC 4.-.-.-), (EC 5.-.-.-), (EC 6.-.-.-), wherein such enzyme classification is in accordance with Recommendations (1992) of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, Academic Press, Inc., 1992.
Especially contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof. Most preferred enzymes are proteases.
Suitable proteases include those of animal, vegetable or microbial origin.
Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of alkaline proteases are subtilisins, especially those derived from Bacillus, e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279). Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusahum protease described in WO 89/06270 and WO 94/25583.
Examples of useful proteases are the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946, especially the variants with substitutions in one or more of the following positions: 27, 36, 57, 76, 87, 97, 101 , 104, 120, 123, 167, 170, 194, 206, 218, 222, 224, 235 and 274. Preferred commercially available protease enzymes include Alcalase™, Savinase™, Primase™, Duralase™, Dyrazym™, Esperase™, Everlase™, Polarzyme™, and Kannase™, (Novozymes A/S), Maxatase™, Maxacal™, Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.).
Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or
P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and
WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).
Other examples are lipase variants such as those described in WO 92/05249, WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202.
Preferred commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™ (Novozymes A/S). The method of the invention may be carried out in the presence of cutinase. Classified in EC 3.1.1.74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
Cutinases are enzymes which are able to degrade cutin. In a preferred embodiment, the cutinase is derived from a strain of Aspergillus, in particular Aspergillus oryzae, a strain of Alternaria, in particular Alternaria brassiciola, a strain of Fusahum, in particular Fusahum solani, Fusarium solani pisi, Fusahum roseum culmorum, or Fusarium roseum sambucium, a strain of Helminthosporum, in particular Helminthosporum sativum, a strain of Humicola, in particular Humicola insolens, a strain of Pseudomonas, in particular Pseudomonas mendocina, or Pseudomonas putida, a strain of Rhizoctonia, in particular Rhizoctonia solani, a strain of Streptomyces, in particular Streptomyces scabies, or a strain of Ulocladium, in particular Ulocladium consortiale. In a most preferred embodiment the cutinase is derived from a strain of Humicola insolens, in particular the strain Humicola insolens DSM 1800. Humicola insolens cutinase is described in WO 96/13580 which is herby incorporated by reference. The cutinase may be a variant, such as one of the variants disclosed in WO 00/34450 and WO 01/92502, which are hereby incorporated by reference. Preferred cutinase variants include variants listed in Example 2 of WO 01/92502, which is hereby specifically incorporated by reference.
Preferred commercial cutinases include NOVOZYM™ 51032 (available from Novozymes A/S, Denmark).
The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids. Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol estehfied with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid. Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively.
The term phospholipase includes enzymes with phospholipase activity, e.g., phospholipase A (Ai or A2), phospholipase B activity, phospholipase C activity or phospholipase D activity. The term "phospholipase A" used herein in connection with an enzyme of the invention is intended to cover an enzyme with Phospholipase Ai and/or Phospholipase A2 activity. The phospholipase activity may be provided by enzymes having other activities as well, such as, e.g., a lipase with phospholipase activity. The phospholipase activity may, e.g., be from a lipase with phospholipase side activity. In other embodiments of the invention the phospholipase enzyme activity is provided by an enzyme having essentially only phospholipase activity and wherein the phospholipase enzyme activity is not a side activity.
The phospholipase may be of any origin, e.g., of animal origin (such as, e.g., mammalian), e.g. from pancreas (e.g., bovine or porcine pancreas), or snake venom or bee venom. Preferably the phospholipase may be of microbial origin, e.g., from filamentous fungi, yeast or bacteria, such as the genus or species Aspergillus, e.g., A. niger; Dictyostelium, e.g., D. discoideum; Mucor, e.g. M. javanicus, M. mucedo, M. subtilissimus; Neurospora, e.g. N. crassa; Rhizomucor, e.g., R. pusillus; Rhizopus, e.g. R. arrhizus, R. japonicus, R. stolonifer; Sclerotinia, e.g., S. libertiana; Trichophyton, e.g. T. rubrum; Whetzelinia, e.g., W. sclerotiorum; Bacillus, e.g., B. megaterium, B. subtilis; Citrobacter, e.g., C. freundii; Enterobacter, e.g., E. aerogenes, E. cloacae Edwardsiella, E. tarda; Erwinia, e.g., E. herbicola; Escherichia, e.g., E. coli; Klebsiella, e.g., K. pneumoniae; Proteus, e.g., P. vulgaris; Providencia, e.g., P. stuartii; Salmonella, e.g. S. typhimurium; Serratia, e.g., S. liquefasciens, S. marcescens; Shigella, e.g., S. flexneh; Streptomyces, e.g., S. violeceoruber; Yersinia, e.g., Y. enterocolitica. Thus, the phospholipase may be fungal, e.g., from the class Pyrenomycetes, such as the genus Fusarium, such as a strain of F. culmorum, F. heterosporum, F. solani, or a strain of F. oxysporum. The phospholipase may also be from a filamentous fungus strain within the genus Aspergillus, such as a strain of
Aspergillus awamori, Aspergillus foetidus, Aspergillus japonicus, Aspergillus niger or Aspergillus oryzae.
Preferred phospholipases are derived from a strain of Humicola, especially Humicola lanuginosa. The phospholipase may be a variant, such as one of the variants disclosed in WO 00/32758, which are hereby incorporated by reference. Preferred phospholipase variants include variants listed in Example 5 of WO 00/32758, which is hereby specifically incorporated by reference. In another preferred embodiment the phospholipase is one described in WO 04/111216, especially the variants listed in the table in Example 1.
In another preferred embodiment the phospholipase is derived from a strain of Fusarium, especially Fusarium oxysporum. The phospholipase may be the one concerned in WO 98/026057 derived from Fusarium oxysporum DSM 2672, or variants thereof.
In a preferred embodiment of the invention the phospholipase is a phospholipase Ai (EC. 3.1.1.32). In another preferred embodiment of the invention the phospholipase is a phospholipase A2 (EC.3.1.1.4.). Examples of commercial phospholipases include LECITASE™ and LECITASE™ ULTRA, YIELSMAX, or LIPOPAN F (available from Novozymes A/S, Denmark).
Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060.
Examples of useful amylases are the variants described in WO 94/02597,
WO 94/18314, WO 96/23873, WO 97/43424, WO 01/066712, WO 02/010355, WO 02/031124 and PCT/DK2005/000469 (which references all incorporated by reference.
Commercially available amylases are Duramyl™, Termamyl™, Termamyl Ultra™, Natalase™, Stainzyme™, Fungamyl™ and BAN™ (Novozymes A/S), Rapidase™ and Purastar™ (from Genencor International Inc.).
Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 ,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
Especially suitable cellulases are the alkaline or neutral cellulases having color care benefits. Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940. Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US 5,763,254, WO 95/24471 , WO 98/12307 and PCT/DK98/00299.
Commercially available cellulases include Celluzyme™, Carezyme™, Endolase™, Renozyme™ (Novozymes A/S), Clazinase™ and Puradax HA™ (Genencor International Inc.), and KAC-500(B)™ (Kao Corporation).
Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include Guardzyme™ and Novozym™ 51004 (Novozymes A/S).
Examples of pectate lyases include pectate lyases that have been cloned from different bacterial genera such as Erwinia, Pseudomonas, Klebsiella and Xanthomonas, as well as from Bacillus subtilis (Nasser et al. (1993) FEBS Letts. 335:319-326) and Bacillus sp. YA-14 (Kim et al. (1994) Biosci. Biotech. Biochem. 58:947-949). Purification of pectate lyases with maximum activity in the pH range of 8-10 produced by Bacillus pumilus (Dave and Vaughn (1971 ) J. Bacteriol. 108:166-174), B. polymyxa (Nagel and Vaughn (1961 ) Arch. Biochem. Biophys. 93:344-352), B. stearothermophilus (Karbassi and Vaughn (1980) Can. J. Microbiol. 26:377-384), Bacillus sp. (Hasegawa and Nagel (1966) J. Food Sci. 31 :838-845) and Bacillus sp. RK9 (Kelly and Fogarty (1978) Can. J. Microbiol. 24:1164-1172) have also been described. Any of the above, as well as divalent cation-independent and/or thermostable pectate lyases, may be used in practicing the invention. In preferred embodiments, the pectate lyase comprises the amino acid sequence of a pectate lyase disclosed in Heffron et al., (1995) MoI. Plant- Microbe Interact. 8: 331 -334 and Henrissat et al., (1995) Plant Physiol. 107: 963- 976. Specifically contemplated pectatel lyases are disclosed in WO 99/27083 and WO 99/27084. Other specifically contemplates pectate lyases derived from Bacillus licheniformis is disclosed in US patent no. 6,284,524 (which document is hereby incorporated by reference). Specifically contemplated pectate lyase variants are disclosed in WO 02/006442, especially the variants disclosed in the Examples in WO 02/006442 (which document is hereby incorporated by reference).
Examples of commercially available alkaline pectate lyases include BIOPREP™ and SCOURZYME™ L from Novozymes A/S, Denmark.
Examples of mannanases (EC 3.2.1.78) include mannanases of bacterial and fungal origin. In a specific embodiment the mannanase is derived from a strain of the filamentous fungus genus Aspergillus, preferably Aspergillus niger or Aspergillus aculeatus (WO 94/25576). WO 93/24622 discloses a mannanase isolated from Trichoderma reseei. Mannanases have also been isolated from several bacteria, including Bacillus organisms. For example, Talbot et al., Appl. Environ. Microbiol., Vol.56, No. 11 , pp. 3505-3510 (1990) describes a beta- mannanase derived from Bacillus stearothermophilus. Mendoza et al., World J. Microbiol. Biotech., Vol. 10, No. 5, pp. 551-555 (1994) describes a beta- mannanase derived from Bacillus subtilis. JP-A-03047076 discloses a beta- mannanase derived from Bacillus sp. JP-A-63056289 describes the production of an alkaline, thermostable beta-mannanase. JP-A-63036775 relates to the Bacillus microorganism FERM P-8856 which produces beta-mannanase and beta- mannosidase. JP-A-08051975 discloses alkaline beta-mannanases from alkalophilic Bacillus sp. AM-001. A purified mannanase from Bacillus amyloliquefaciens is disclosed in WO 97/11164. WO 91/18974 describes a hemicellulase such as a glucanase, xylanase or mannanase active. Contemplated are the alkaline family 5 and 26 mannanases derived from Bacillus agaradhaerens, Bacillus licheniformis, Bacillus halodurans, Bacillus clausii, Bacillus sp., and Humicola insolens disclosed in WO 99/64619. Especially contemplated are the Bacillus sp. mannanases concerned in the Examples in WO 99/64619 which document is hereby incorporated by reference. Examples of commercially available mannanases include Mannaway™ available from Novozymes A/S Denmark.
Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
Hydrotropes:
The term "hydrotrope" generally means a compound with the ability to increase the solubilities, preferably aqueous solubilities, of certain slightly soluble organic compounds.
Examples of hydrotropes include sodium xylene sulfonate, SCM.
Solvents:
The composition may comprise a solvent such as water or an organic solvent such as isopropyl alcohol or glycol ethers. Solvents may be present in liquid or gel compositions. Metal Chelation Agents:
The composition may contain a metal chelating agent such as carbonates, bicarbonates, and sesquicarbonates. The metal chelating agent can be a bleach stabiliser (i.e. heavy metal sequestrant). Suitable bleach stabilisers include ethylenediamine tetraacetate (EDTA), diethylenethamine pentaacetate (DTPA), ethylenediamine disuccinate (EDDS), and the polyphosphonates such as the Dequests (Trade Mark), ethylenediamine tetramethylene phosphonate (EDTMP) and diethylenetriamine pentamethylene phosphate (DETPMP). In general metal chelating agents will not be present in the part (a) of the composition as microbial function may be impaired if metal ions are made unavailable.
Builders or Complexing Agents:
Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium thpolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A- 0,384,070.
The composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenethamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nithlotriacetic acid or the other builders mentioned below. Many builders are bleach-stabilising agents by virtue of their ability to complex metal ions.
Where builder is present, the compositions may suitably contain less than 7%wt, preferably less than 10% by weight, and most preferably less than 10%wt of detergency builder. The composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w. Aluminosilicates are materials having the general formula:
0.8-1 .5 M2O. AI2O3. 0.8-6 SiO2
where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 SiO2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term 'phosphate' embraces diphosphate, triphosphate, and phosphonate species. Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
For low cost formulations carbonate (including bicarbonate and sesquicarbonate) and/or citrate may be employed as builders.
Polymers:
The composition may comprise one or more polymers. Examples are carboxymethylcellulose, poly(vinylpyrrolidone), poly (ethylene glycol), polyvinyl alcohol), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers. Modern detergent compositions typically employ polymers as so-called 'dye- transfer inhibitors'. These prevent migration of dyes, especially during long soak times. Any suitable dye-transfer inhibition agents may be used in accordance with the present invention. Generally, such dye-transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of
N-vinylpyrrolidone and N-vinylimidazole, manganese pthalocyanine, peroxidases, and mixtures thereof.
Nitrogen-containing, dye binding, DTI polymers are preferred. Of these polymers and co-polymers of cyclic amines such as vinyl pyrrolidone, and/or vinyl imidazole are preferred.
Polyamine N-oxide polymers suitable for use herein contain units having the following structural formula: R-Ax-P; wherein P is a polymerizable unit to which an N-O group can be attached or the N-O group can form part of the polymerizable unit; A is one of the following structures: -NC(O)-, -C(O)O-, -S-, -O-, -N=; x is O or 1 ; and R is an aliphatic, ethoxylated aliphatic, aromatic, heterocyclic or alicyclic group or combination thereof to which the nitrogen of the N-O group can be attached or the N-O group is part of these groups, or the N-O group can be attached to both units. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof. The N-O group can be represented by the following general structures: N(O)(R')o-3 , or =N(O)(R')o-i , wherein each R' independently represents an aliphatic, aromatic, heterocyclic or alicylic group or combination thereof; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups. The amine oxide unit of the polyamine N-oxides has a pKa<10, preferably pKa<7, more preferably pKa<6.
Any polymer backbone can be used provided the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamides, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N- oxide and the other monomer type is an N-oxide. The amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1 :1 ,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymehzation or by an appropriate degree of N-oxidation. The polyamine oxides can be obtained in almost any degree of polymerization.
Typically, the average molecular weight is within the range of 500 to 1 ,000,000; more preferably 1 ,000 to 500,000; most preferably 5,000 to 100,000. This preferred class of materials is referred to herein as "PVNO". A preferred polyamine N-oxide is poly(4-vinylpyhdine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1 :4.
Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers (as a class, referred to as "PVPVI") are also preferred. Preferably the PVPVI has an average molecular weight range from 5,000 to 1 ,000,000, more preferably from 5,000 to 70,000, and most preferably from 10,000 to 7,000, as determined by light scattering as described in Barth, et al., Chemical Analysis, Vol. 113. "Modern
Methods of Polymer Characterization". The preferred PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 :1 to 0.2:1 , more preferably from 0.8:1 to 0.3:1 , most preferably from 0.6:1 to 0.4:1. These copolymers can be either linear or branched. Suitable PVPVI polymers include Sokalan(TM) HP56, available commercially from BASF, Ludwigshafen, Germany.
Also preferred as dye transfer inhibition agents are polyvinylpyrrolidone polymers ("PVP") having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 700,000, and more preferably from about 5,000 to about 50,000. PVP's are disclosed for example in EP-A-262,897 and EP-A-256,696. Suitable PVP polymers include Sokalan(TM) HP50, available commercially from BASF. Compositions containing PVP can also contain polyethylene glycol ("PEG") having an average molecular weight from about 500 to about 100,000, preferably from about 1 ,000 to about 10,000. Preferably, the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50:1 , and more preferably from about 3:1 to about 10:1.
Also suitable as dye transfer inhibiting agents are those from the class of modified polyethyleneimine polymers, as disclosed for example in WO-A-0005334. These modified polyethyleneimine polymers are water-soluble or dispersible, modified polyamines. Modified polyamines are further disclosed in US-A-4,548,744; US-A- 4,597,898; US-A- 4,877,896; US-A- 4,891 , 160; US-A- 4,976,879; US-A-5,415,807; GB-A-1 ,537,288; GB-A-1 ,498,57; DE-A-28 29022; and JP-A-06313271.
Preferably the composition according to the present invention comprises a dye transfer inhibition agent selected from polyvinylpyrridine N-oxide (PVNO), polyvinyl pyrrolidone (PVP), polyvinyl imidazole, N-vinylpyrrolidone and N- vinylimidazole copolymers (PVPVI), copolymers thereof, and mixtures thereof.
The amount of dye transfer inhibition agent in the composition according to the present invention will be from 0.01 to 10 %, preferably from 0.02 to 5 %, more preferably from 0.03 to 2 %, by weight of the composition.
Other Detergent Ingredients:
The composition may also contain other conventional detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors (anti- foams), anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, further dyes, anti-microbials, optical brighteners, tarnish inhibitors, or perfumes. Various non-limiting embodiments of the invention will now be more particularly described with reference to the following figure in which:
Figure 1 shows a packaged laundry product according to one embodiment of the invention.
Referring to the drawing, a packaged laundry product 1 is shown. The product 1 comprises a flowable laundry composition 3 contained in a package 5, the high viscosity laundry composition 3 according to Example A or B detailed below.
The package comprises a squeeze-operated compressible container, in this example a plastic bottle 7 storing the flowable, high viscosity laundry composition 3 and a dispensing device 9 and a fabric stain treatment device 11. The dispensing device 9 is located at the base 13 of the container 7 and is enclosed by a dosing closure device 14. The closure 14 comprises the supportive base 13 of the package 5.
The bottle 7 and a stain treatment device 11 are attached to each other by threaded connection. The stain treatment device comprises projections (not shown). In an alternative embodiment it is a sponge, and in a further embodiment it is thin annular section around the orifice 25 (described below).
The closure 14 is attached to the bottle also by a threaded connection. (Threaded connections not shown). In a separate embodiment the closure 14 is connected to the bottle 7 using a snap-on connection, which negates the requirement to rotate the bottle/closure to open shut.
The bottle 7 is fabricated from a flexible plastic material comprising polyethylene terephthalate.
The top 21 of the bottle is curved to discourage storage top-down. The closure 14 includes an enlarged (with respect to at least the neck region of the bottle) flat, generally planar bottom surface 15. By providing an enlarged flat top surface 15, the surface allows the closure 14 to function as a supportive base with the bottle 7 in an inverted position thereby allowing the high viscosity gel 3 to accumulate (under gravity) during storage at the dispensing device 9.
The closure 14 incorporates a reservoir portion 17 in which the stain treatment device 11 is shown enclosed. The closure 14 has a tapered outer shape, wherein the tapering is outward in the direction of the base, to provide a stable base area 15 as described about.
The stain treatment device projects into the reservoir by approximately 60% of the depth of the reservoir (the depth being measured along a longitudinal line X-Y. This affords the advantage that the stain treatment device can be inserted into the reservoir and contact the dispensed composition so as to be easily loaded with this, without the screw threads engaging, even when the reservoir is not filled to the top with composition.
The dispensing device 9 comprises an orifice 25 through which dispensing may occur. The orifice includes a valve 22 in fluid communication with duct 23. The valve 22 comprises a membrane extending across orifice 25.
In an alternative embodiments the orifice/membrane are located further downstream in the duct. In the extreme examples, it is an the end, as shown in figure ref. 32
In one embodiment, the membrane has an arcuate portion (not shown) directed toward the container 7. The arcuate portion of the membrane is provided with a intersecting slits to define a plurality of generally triangular leaves. When contents of the container are pressurized for dispensing, the triangular leaves bend toward the open end of the orifice 25 allowing product to pass through the orifice 25. When the dispensing pressure is released, the triangular leaves spring back to their original position and operate to block passage of product through the orifice 25. The leaves of the valve are sufficiently resilient that they do not bend open unless the applied pressure exceeds the hydraulic static head pressure generated by a full of condiment. In use, the fluid is pressurised to flow past and partially collect at the base of the bottle 7 ready for squeeze-operated dispensing into the reservoir. Any of the fluid which remains on the stain treatment device 11 , drips into the reservoir, for later use. This reduces waste of product.
Exemplary Laundry Formulation A.
The following gel laundry detergent compositions were prepared, of which composition A is according to the invention
Component: Wt %
Propylene glycol 8.0 sodium citrate 3.9
Borax 3.0
NaOH (50%) 1.1 Monoethanolamine 1.0
LAS-acid 4.4
Coconut fatty acid 1.5
Nonionic surfactant 11.1
Oleic acid 2.3 1 -Dodecanol 5.0
Protease enzyme 0.3
Lipase enzyme 0.5
Perfume 0.2
Water balance to 100 wherein:
Borax : Sodium tetraborate (10aq) nonionic surfactant: ethoxylated alcohol with on average 9 ethylene oxide groups.
The gel detergent composition exemplified by composition A was found to be shear thinning and stable. Furthermore, typical detergent particles of density between 0.8 and 0.9 g/cm3 and having a diameter up to 5000 microns could be stable suspended in this composition for more than 2 weeks without any observable net movement of the particles.
Figure imgf000027_0001
For obtaining the values shown in the above table, all rheological measurements were carried out at 25 0C using a Cammed CSL100 rheometer with a cone and plate geometry specially roughed to prevent slip.
Viscosity was measured at varying shear rates from very low shear up to a shear regime in excess of 100 s"1. Two situations are shown: the viscosity measured at relatively low shear (20 s"1) and that measured at much higher shear (100 s"1). It can be seen that the viscosity of composition A at high shear is much lower than that obtained at low shear, whereas composition B shows almost equal viscosity's for high and low shear. In other words composition A is clearly shear thinning, whereas composition B is not.
In addition, the critical stress is shown. This parameter represents the stress at which the material leaves the upper Newtonian plateau and thins under increasing shear. Also, "Eta 0"-values are shown, referring to the viscosity calculated for zero shear from creep flow measurements. Finally, "Tan delta" values are shown, referring to the ratio of loss over storage moduli (G1VG') and reflecting the dominance of viscous over elastic properties such that materials giving very low "Tan delta"-values (tending to zero, such as composition A in the above table), will be much more elastic than those giving higher "Tan delta" values (tending to 90).
Exemplary Laundry Formulation B
The following gel laundry detergent compositions were prepared of which composition C is according to the invention and composition D is a comparative composition according to the prior art:
Component: Wt %
Propylene glycol 4.75 sodium citrate 2.8
Borax 2.3
NaOH (50%) 0.43
Monoethanolamine 0.23
LAS-acid 6.0
Coconut fatty acid 0.77
Sodium alcohol EO sulphate 10.5
Nonionic surfactant 6.6
1 -Decanol 6.0
Protease enzyme 0.45
Lipase enzyme 0.25
Perfume 0.2
Water balance to 100
wherein:
Borax : Sodium tetraborate (10aq) nonionic surfactant: ethoxylated alcohol with on average 9 ethylene oxide groups
Sodium alcohol EO sulphate: ethoxylated alcohol sulphate with on average 3 ethylene oxide groups.
Composition B was is a stable, transparent, pourable shear thinning liquid, capable of stable suspending typical detergent particles having a density of between 0.8 and 0.9 g/cm3 and a diameter of up to 5000 microns, for more than 2 weeks without any observable net movement of the particles.
Critical rheological parameters for the two compositions are shown below.
Figure imgf000029_0001
For clarification of the rheological values shown in this table, reference is made to the description concerning the similar table shown in above example A.
It is of course to be understood that the invention is not intended to be restricted to the details of the above embodiment which are described by way of example only.

Claims

1. A packaged laundry product comprising a flowable laundry composition contained in a package, wherein:
(i) the flowable laundry composition has a viscosity of at least 100 Pa. s. (and preferably at least 500 Pa. s) when in rest or up to a shear stress of 10 Pa and comprising at least one surfactant; and
(ii) the package comprises a squeeze-operated compressible container in which the flowable laundry composition is stored and a dispensing device and stain treatment device both located at the base of the compressible container ; and
(iii) a reservoir providing a supportive base portion and configured to receive the dispensed flowable laundry composition from the dispensing device and also receive at least a portion of the stain treatment device.
2. A packaged laundry product according to claim 1 , wherein the reservoir forms part of a closure.
3. A packaged laundry product according to any preceding claim wherein the reservoir receives the stain treatment device to such a degree that the stain treatment device projects into the reservoir by more than 50% of the depth of the reservoir.
4. A packaged laundry product according to any preceding claim wherein the stain treatment device comprises a device allowing mechanical cleaning, such as a body with multiple projections.
5. A packaged laundry product according to claim 4 wherein the projections are flexible so that they move during cleaning.
6. A packaged laundry product according to claim 4 or 5 wherein some or all of the projections are semi-rigid or rigid.
7. A packaged laundry product according to any preceding claim wherein the package has a curved top.
8. A packaged laundry product according to any preceding claim wherein the stain treatment device comprises an area surrounding the dispensing device.
9. A packaged laundry product according to any preceding claim wherein the composition is a shear thinning gel-type composition having viscosity under shear stress less than 300 Pa. s.
10. A method of treating a stain on a fabric using the device of any of claims 1 -8, the method comprising the steps of:
(i) squeezing the compressible container to dispense the flowable laundry composition into the reservoir;
(ii) inserting the at least a portion of the stain treatment device into the dispensed flowable laundry composition within the reservoir; and
(iii) treating the stain by applying the flowable laundry composition on the at least one portion of the stain treatment device to the stain.
11. The method of claim 9 wherein steps (ii) and (iii) are repeated at least once.
PCT/EP2009/066286 2008-12-23 2009-12-03 A flowable laundry composition and packaging therefor WO2010072529A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801519713A CN102264887A (en) 2008-12-23 2009-12-03 A flowable laundry composition and packaging therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08172828.9 2008-12-23
EP08172828A EP2202290A1 (en) 2008-12-23 2008-12-23 A flowable laundry composition and packaging therefor

Publications (1)

Publication Number Publication Date
WO2010072529A1 true WO2010072529A1 (en) 2010-07-01

Family

ID=40637898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/066286 WO2010072529A1 (en) 2008-12-23 2009-12-03 A flowable laundry composition and packaging therefor

Country Status (5)

Country Link
EP (1) EP2202290A1 (en)
CN (1) CN102264887A (en)
AR (1) AR074851A1 (en)
CL (1) CL2009002189A1 (en)
WO (1) WO2010072529A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492595A (en) * 2011-07-08 2013-01-09 Maristela Forbeck Deformable soap reservoir
US10584434B2 (en) 2016-11-18 2020-03-10 Midea Group Co., Ltd. Stain removal tool for a laundry washing machine
US10767298B2 (en) 2016-11-18 2020-09-08 Midea Group Co., Ltd. Stain removal tool for a laundry washing machine
US10844336B2 (en) 2018-01-16 2020-11-24 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscous cleaning composition
US10934510B2 (en) 2018-01-16 2021-03-02 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscoelastic cleaning composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200199801A1 (en) * 2017-06-09 2020-06-25 Conopco, Inc., D/B/A Unilever Laundry liquid dispensing system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947015A (en) * 1958-10-16 1960-08-02 Hugh M Burt Liquid shoe polish dispenser
WO1995015710A1 (en) * 1993-12-07 1995-06-15 Colville Lomax & Co. Ltd. Applicator
WO1997020099A1 (en) * 1995-11-27 1997-06-05 The Procter & Gamble Company Cleaning method for textile fabrics
WO1998016148A1 (en) * 1996-10-15 1998-04-23 The Procter & Gamble Company Hand-held container for predissolving detergent composition
WO2002079369A1 (en) * 2001-04-02 2002-10-10 Unilever N.V. Fabric cleaning
WO2004002843A1 (en) * 2002-06-27 2004-01-08 1731 Brandhaus, Inc. Bottom-dispensing liquid soap dispenser
WO2007130569A2 (en) * 2006-05-05 2007-11-15 The Procter & Gamble Company Concentrated compositions contained in bottom dispensing containers
WO2007130568A2 (en) * 2006-05-05 2007-11-15 The Procter & Gamble Company Fabric treatment dispensing package
WO2007149286A2 (en) * 2006-06-19 2007-12-27 S. C. Johnson & Son, Inc. Instant stain removing device, formulation and absorbent means

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB149857A (en) 1919-10-02 1920-08-26 Tom Shave Improvements in nut and bolt clamps
GB1296839A (en) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
DE2613790A1 (en) 1975-04-02 1976-10-14 Procter & Gamble LAUNDRY DETERGENT
DE2829022A1 (en) 1978-07-01 1980-01-10 Henkel Kgaa Soil-release rinsing of washed textiles - with soln. contg. ethoxylated amine salt and opt. quat. amine salt finish and polymer stiffener
DK187280A (en) 1980-04-30 1981-10-31 Novo Industri As RUIT REDUCING AGENT FOR A COMPLETE LAUNDRY
US4597898A (en) 1982-12-23 1986-07-01 The Proctor & Gamble Company Detergent compositions containing ethoxylated amines having clay soil removal/anti-redeposition properties
US4891160A (en) 1982-12-23 1990-01-02 The Proctor & Gamble Company Detergent compositions containing ethoxylated amines having clay soil removal/anti-redeposition properties
US4548744A (en) 1983-07-22 1985-10-22 Connor Daniel S Ethoxylated amine oxides having clay soil removal/anti-redeposition properties useful in detergent compositions
US4933287A (en) 1985-08-09 1990-06-12 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
SG30639G (en) 1986-04-30 1995-09-01 Genencor Int Non-human carbonyl hydrolase mutants DNA sequences and vectors encoding same and hosts transformed with said vectors
JPS6356289A (en) 1986-07-30 1988-03-10 Res Dev Corp Of Japan Beta-mannanase and production thereof
GB8618635D0 (en) 1986-07-30 1986-09-10 Unilever Plc Detergent composition
JPS6336775A (en) 1986-07-31 1988-02-17 Res Dev Corp Of Japan Novel alkalophilic strain of bacillus genus capable of producing beta-mannanase and beta-mannosidase and use thereof
ES2058119T3 (en) 1986-08-29 1994-11-01 Novo Nordisk As ENZYMATIC DETERGENT ADDITIVE.
NZ221627A (en) 1986-09-09 1993-04-28 Genencor Inc Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios
US4954292A (en) 1986-10-01 1990-09-04 Lever Brothers Co. Detergent composition containing PVP and process of using same
ES2076939T3 (en) 1987-08-28 1995-11-16 Novo Nordisk As RECOMBINANT LUMPY OF HUMICOLA AND PROCEDURE FOR THE PRODUCTION OF RECOMBINANT LIPAS OF HUMICOLA.
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
US4976879A (en) 1987-10-05 1990-12-11 The Procter & Gamble Company Sulfoaroyl end-capped ester oligomers suitable as soil-release agents in detergent compositions and fabric-conditioner articles
US4877896A (en) 1987-10-05 1989-10-31 The Procter & Gamble Company Sulfoaroyl end-capped ester of oligomers suitable as soil-release agents in detergent compositions and fabric-conditioner articles
JP2624859B2 (en) 1988-01-07 1997-06-25 ノボ‐ノルディスク アクティーゼルスカブ Enzyme detergent
DK6488D0 (en) 1988-01-07 1988-01-07 Novo Industri As ENZYMES
JP3079276B2 (en) 1988-02-28 2000-08-21 天野製薬株式会社 Recombinant DNA, Pseudomonas sp. Containing the same, and method for producing lipase using the same
EP0406314B1 (en) 1988-03-24 1993-12-01 Novo Nordisk A/S A cellulase preparation
US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
CA2001927C (en) 1988-11-03 1999-12-21 Graham Thomas Brown Aluminosilicates and detergent compositions
DK316989D0 (en) 1989-06-26 1989-06-26 Novo Nordisk As ENZYMES
GB8915658D0 (en) 1989-07-07 1989-08-23 Unilever Plc Enzymes,their production and use
JPH0347076A (en) 1989-08-25 1991-02-28 Res Dev Corp Of Japan Beta-mannase and production thereof
ES2055601T3 (en) 1990-04-14 1994-08-16 Kali Chemie Ag BACILLUS ALKALINE LIPASES, DNA SEQUENCES THAT CODE THEM, AS WELL AS BACILLI PRODUCED BY THESE LIPASES.
DK115890D0 (en) 1990-05-09 1990-05-09 Novo Nordisk As ENZYME
AU639570B2 (en) 1990-05-09 1993-07-29 Novozymes A/S A cellulase preparation comprising an endoglucanase enzyme
WO1991018974A1 (en) 1990-05-29 1991-12-12 Chemgen Corporation HEMICELLULASE ACTIVE AT EXTREMES OF pH AND TEMPERATURE AND THE MEANS FOR THE PRODUCTION THEREOF
ATE169671T1 (en) 1990-09-13 1998-08-15 Novo Nordisk As LIPASE VARIANTS
ES2174820T3 (en) 1991-01-16 2002-11-16 Procter & Gamble COMPOSITIONS OF COMPACT DETERGENTS WITH HIGH ACTIVITY CELL.
DK0583420T3 (en) 1991-04-30 1996-07-29 Procter & Gamble Builder-containing liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
EP0511456A1 (en) 1991-04-30 1992-11-04 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
DK0583339T3 (en) 1991-05-01 1999-04-19 Novo Nordisk As Stabilized enzymes and detergent compositions
EP0995801A1 (en) 1991-07-27 2000-04-26 Genencor International GmbH Process for increasing the stability of enzymes and stabilized enzymes
JP2626662B2 (en) 1991-10-09 1997-07-02 科学技術振興事業団 Novel β-mannanase and method for producing the same
FI931193A0 (en) 1992-05-22 1993-03-17 Valtion Teknillinen MANNANASENZYMER, GENER SOM KODAR FOER DEM OCH FOERFARANDEN FOER ISOLERINGAV GENERNA SAMT FOERFARANDE FOER BLEKNING AV LIGNOCELLULOSAHALTIG MASSA
DK72992D0 (en) 1992-06-01 1992-06-01 Novo Nordisk As ENZYME
DK88892D0 (en) 1992-07-06 1992-07-06 Novo Nordisk As CONNECTION
PT717778E (en) 1992-07-17 2008-01-16 Genencor Int High alkaline serine proteases.
ATE444356T1 (en) 1992-07-23 2009-10-15 Novozymes As MUTATED -G(A)-AMYLASE, DETERGENT AND DISHWASHING DETERGENT
EP0663950B1 (en) 1992-10-06 2004-03-17 Novozymes A/S Cellulase variants
EP0867504B2 (en) 1993-02-11 2011-05-18 Genencor International, Inc. Oxidation-stable alpha-amylase
JPH06313271A (en) 1993-04-27 1994-11-08 Unitika Ltd Method for antistaining cellulose textile
CA2138519C (en) 1993-04-27 2007-06-12 Jan Metske Van Der Laan New lipase variants for use in detergent applications
DK48693D0 (en) 1993-04-30 1993-04-30 Novo Nordisk As ENZYME
DK52393D0 (en) 1993-05-05 1993-05-05 Novo Nordisk As
US5415807A (en) 1993-07-08 1995-05-16 The Procter & Gamble Company Sulfonated poly-ethoxy/propoxy end-capped ester oligomers suitable as soil release agents in detergent compositions
JP2859520B2 (en) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ Lipase, microorganism producing the same, method for producing lipase, and detergent composition containing lipase
KR100338786B1 (en) 1993-10-13 2002-12-02 노보자임스 에이/에스 H2o2-stable peroxidase variants
JPH07143883A (en) 1993-11-24 1995-06-06 Showa Denko Kk Lipase gene and mutant lipase
BR9506861A (en) 1994-02-22 1997-09-23 Novo Nordisk As Process for preparing and producing a variant of an original lipolytic enzyme variant of liplitic enzyme construction of DNA vector host cell detergent additive and detergent composition
ES2251717T3 (en) 1994-03-08 2006-05-01 Novozymes A/S NEW ALKALINE CELLS.
DE69534464T2 (en) 1994-03-29 2006-09-28 Novozymes A/S ALKALIC AMYLASE FROM BACELLUS
US6017866A (en) 1994-05-04 2000-01-25 Genencor International, Inc. Lipases with improved surfactant resistance
AU2884595A (en) 1994-06-20 1996-01-15 Unilever Plc Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
ATE389012T1 (en) 1994-10-06 2008-03-15 Novozymes As AN ENZYME PREPARATION WITH ENDOGLUCANASE ACTIVITY
BE1008998A3 (en) 1994-10-14 1996-10-01 Solvay Lipase, microorganism producing the preparation process for the lipase and uses thereof.
AU3697995A (en) 1994-10-26 1996-05-23 Novo Nordisk A/S An enzyme with lipolytic activity
AR000862A1 (en) 1995-02-03 1997-08-06 Novozymes As VARIANTS OF A MOTHER-AMYLASE, A METHOD TO PRODUCE THE SAME, A DNA STRUCTURE AND A VECTOR OF EXPRESSION, A CELL TRANSFORMED BY SUCH A DNA STRUCTURE AND VECTOR, A DETERGENT ADDITIVE, DETERGENT COMPOSITION, A COMPOSITION FOR AND A COMPOSITION FOR THE ELIMINATION OF
JPH08228778A (en) 1995-02-27 1996-09-10 Showa Denko Kk New lipase gene and production of lipase using the same
CN101955921A (en) 1995-03-17 2011-01-26 诺沃奇梅兹有限公司 Novel endoglucanases
EP0839186B1 (en) 1995-07-14 2004-11-10 Novozymes A/S A modified enzyme with lipolytic activity
DE69632538T2 (en) 1995-08-11 2005-05-19 Novozymes A/S NOVEL LIPOLYTIC ENZYMES
ATE242802T1 (en) 1995-09-20 2003-06-15 Genencor Int MANNASE OF BACILLUS AMYLOLIQUEFACIENS AND METHOD FOR THEIR PREPARATION
US5763385A (en) 1996-05-14 1998-06-09 Genencor International, Inc. Modified α-amylases having altered calcium binding properties
AU3938997A (en) 1996-08-26 1998-03-19 Novo Nordisk A/S A novel endoglucanase
AU4200797A (en) 1996-09-17 1998-04-14 Novo Nordisk A/S Cellulase variants
WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
JP4044143B2 (en) 1996-11-04 2008-02-06 ノボザイムス アクティーゼルスカブ Subtilase variants and compositions
CA2270180C (en) 1996-11-04 2011-01-11 Novo Nordisk A/S Subtilase variants and compositions
AR010340A1 (en) 1996-12-09 2000-06-07 Novozymes As COMPOSITION FOR BAKING, USE OF SUCH COMPOSITION AND USE OF THE POLYPEPTIDE OF SUCH COMPOSITION.
WO1998034946A1 (en) 1997-02-12 1998-08-13 Massachusetts Institute Of Technology Daxx, a novel fas-binding protein that activates jnk and apoptosis
KR20010032382A (en) 1997-11-24 2001-04-16 피아 스타르 Novel pectate lyases
WO1999027083A1 (en) 1997-11-24 1999-06-03 Novo Nordisk A/S PECTIN DEGRADING ENZYMES FROM $i(BACILLUS LICHENIFORMIS)
US6124127A (en) 1997-11-24 2000-09-26 Novo Nordisk A/S Pectate lyase
WO2000034450A1 (en) 1998-12-04 2000-06-15 Novozymes A/S Cutinase variants
BRPI9911086B1 (en) 1998-06-10 2016-08-02 Novozymes As cleaning composition, process for treating machine tissues, and use of a mannanase
WO2000005334A1 (en) 1998-07-23 2000-02-03 The Procter & Gamble Company Laundry detergent composition
EP1131416B1 (en) 1998-11-27 2009-09-02 Novozymes A/S Lipolytic enzyme variants
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
CN100482790C (en) 2000-03-08 2009-04-29 诺维信公司 Variants with altered properties
WO2001092502A1 (en) 2000-06-02 2001-12-06 Novozymes A/S Cutinase variants
ATE421579T1 (en) 2000-07-19 2009-02-15 Novozymes As CELL WALL DEGRADING ENZYME VARIANTS
CA2702204C (en) 2000-08-01 2011-09-06 Novozymes A/S Alpha-amylase mutants with altered properties
AU2002210380A1 (en) 2000-10-13 2002-04-22 Novozymes A/S Alpha-amylase variant with altered properties
US20060251763A1 (en) 2003-06-19 2006-11-09 Patkar Shamkant A Phospholipase variants

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947015A (en) * 1958-10-16 1960-08-02 Hugh M Burt Liquid shoe polish dispenser
WO1995015710A1 (en) * 1993-12-07 1995-06-15 Colville Lomax & Co. Ltd. Applicator
WO1997020099A1 (en) * 1995-11-27 1997-06-05 The Procter & Gamble Company Cleaning method for textile fabrics
WO1998016148A1 (en) * 1996-10-15 1998-04-23 The Procter & Gamble Company Hand-held container for predissolving detergent composition
WO2002079369A1 (en) * 2001-04-02 2002-10-10 Unilever N.V. Fabric cleaning
WO2004002843A1 (en) * 2002-06-27 2004-01-08 1731 Brandhaus, Inc. Bottom-dispensing liquid soap dispenser
WO2007130569A2 (en) * 2006-05-05 2007-11-15 The Procter & Gamble Company Concentrated compositions contained in bottom dispensing containers
WO2007130568A2 (en) * 2006-05-05 2007-11-15 The Procter & Gamble Company Fabric treatment dispensing package
WO2007149286A2 (en) * 2006-06-19 2007-12-27 S. C. Johnson & Son, Inc. Instant stain removing device, formulation and absorbent means

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492595A (en) * 2011-07-08 2013-01-09 Maristela Forbeck Deformable soap reservoir
US10584434B2 (en) 2016-11-18 2020-03-10 Midea Group Co., Ltd. Stain removal tool for a laundry washing machine
US10767298B2 (en) 2016-11-18 2020-09-08 Midea Group Co., Ltd. Stain removal tool for a laundry washing machine
US10844336B2 (en) 2018-01-16 2020-11-24 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscous cleaning composition
US10934510B2 (en) 2018-01-16 2021-03-02 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscoelastic cleaning composition
US11427793B2 (en) 2018-01-16 2022-08-30 The Procter & Gamble Company Cleaning product comprising an inverted container assembly and a viscous cleaning composition

Also Published As

Publication number Publication date
EP2202290A1 (en) 2010-06-30
CN102264887A (en) 2011-11-30
CL2009002189A1 (en) 2010-07-23
AR074851A1 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
EP2294174B1 (en) A viscous laundry product and packaging therefor
WO2010012552A1 (en) A viscous laundry product and packaging therefor
WO2010028941A1 (en) Dispenser and pretreater for viscous liquids
US8628765B2 (en) Bacteria cultures and compositions comprising bacteria cultures
EP3146033B1 (en) Aqueous liquid detergent formulation comprising enzyme particles
EP2202290A1 (en) A flowable laundry composition and packaging therefor
US20190136162A1 (en) Laundry products
WO2013092052A1 (en) Isotropic liquid detergents comprising soil release polymer
EP2173845B1 (en) Sequential enzyme delivery system
EP3013934B1 (en) Stain treatment device and process
WO2010069799A1 (en) A flowable laundry composition and packaging therefor
WO2009019076A1 (en) Enzyme delivery device
WO2019038186A1 (en) Improvements relating to fabric cleaning
WO2019038187A1 (en) Improvements relating to fabric cleaning

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151971.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09764510

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1137/MUMNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09764510

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0923543

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0923543

Country of ref document: BR

Free format text: IDENTIFIQUE O SIGNATARIO DA PETICAO 020110066132 DE 22/06/2011 E COMPROVE QUE O MESMO TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS. .

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0923543

Country of ref document: BR