WO2010072337A2 - Verfahren zur nutzung des aus einem vergaser stammenden synthesegases - Google Patents

Verfahren zur nutzung des aus einem vergaser stammenden synthesegases Download PDF

Info

Publication number
WO2010072337A2
WO2010072337A2 PCT/EP2009/008864 EP2009008864W WO2010072337A2 WO 2010072337 A2 WO2010072337 A2 WO 2010072337A2 EP 2009008864 W EP2009008864 W EP 2009008864W WO 2010072337 A2 WO2010072337 A2 WO 2010072337A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fed
gas turbine
burner
compressed
Prior art date
Application number
PCT/EP2009/008864
Other languages
English (en)
French (fr)
Other versions
WO2010072337A3 (de
WO2010072337A4 (de
Inventor
Domenico Pavone
Ralf Abraham
Original Assignee
Uhde Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to UAA201109106A priority Critical patent/UA105651C2/uk
Priority to CA2745227A priority patent/CA2745227C/en
Priority to RU2011130188/05A priority patent/RU2011130188A/ru
Priority to NZ593060A priority patent/NZ593060A/xx
Priority to CN200980151734.7A priority patent/CN102405340B/zh
Priority to US12/998,863 priority patent/US9410480B2/en
Application filed by Uhde Gmbh filed Critical Uhde Gmbh
Priority to EP09795332A priority patent/EP2435669A2/de
Priority to AU2009331944A priority patent/AU2009331944B2/en
Publication of WO2010072337A2 publication Critical patent/WO2010072337A2/de
Priority to ZA2011/05376A priority patent/ZA201105376B/en
Publication of WO2010072337A3 publication Critical patent/WO2010072337A3/de
Publication of WO2010072337A4 publication Critical patent/WO2010072337A4/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention is directed to a method of utilizing the gas from a gasification synthesis gas (H 2 + CO).
  • IGCC CCS power plant a large-scale separation possibilities is described, whereby “IGCC” means integrated gasification combined cycle (combined power plant with integrated coal gasification).
  • CCS Carbon Capture and Storage.
  • the gasification of coal is combined with a CO 2 separation and generates electricity in a downstream gas and steam turbine.
  • the coal is first converted in a carburetor at high temperatures under pressure of about 35 bar in a combustible crude gas with the main components CO and H 2 .
  • the gas is purified and the carbon monoxide is converted into CO 2 and H 2 O in CO shift with the help of water vapor.
  • the CO 2 is separated, compressed and fed to storage, the remaining hydrogen is burned in a gas turbine, which drives a generator for power generation.
  • the starting point of the present invention is also a fuel gasification for the production of synthesis gas, wherein any kind of gasification is included here.
  • synthesis gas should then be more economical and optimal Be used manner, in particular for power generation, in which case simultaneously occurring CO 2 storage should be supplied.
  • the invention uses in a simple way by the combustion of the synthesis gas, the immediate one or two-stage compression of the C0 2 -Gastromes to pressures that makes possibly a storage of CO 2 possible after further compression.
  • the feeding of the compressed CO 2 gas into streams leading to the burner can take place at different positions. Either directly into the synthesis gas stream supplied to the burner or else into the oxygen stream from the air separation plant fed to the burner.
  • a further optimization of the procedure according to the invention consists in removing heat from the gas turbine via a heat exchanger for the operation of a steam turbine, wherein the steam turbine can be used to drive a generator.
  • a further refinement is that the stream leaving the gas turbine is subjected to a separation of CO 2 and water vapor, such that pure CO 2 acts on the compressor coupled to the gas turbine.
  • a fuel is fed in addition to additives 2 to a grinding and drying and to a pressure space, which is denoted by 3.
  • the fuel may be slurry, rock or lignite, biomass, petroleum coke, oil sands, orimulsion, processed waste and the like. like. act.
  • This fuel is then fed to a gasification plant 4 together with oxygen (line 5) from an air separation plant 6, wherein, for example, nitrogen is fed via the line 7 to the area grinding, drying and compression 3.
  • the crude gas coming from the gasification plant 4 is first introduced into the quench 5 serving for the dedusting of the gas.
  • the ammonia present in gas and the hydrogen cyanide are almost completely washed out and the hydrogen sulphide partially washed out of the dust.
  • the product is then fed to the subsequent CO 2 conversion 6, this step serving to increase the synthesis gas temperature and to convert COS into H 2 S and HCN into NH 3 and CO.
  • the conversion 6 joins the hydrolysis 7 to the carbonoxysulfide removal.
  • the carbon oxysulfide present in the gas which is difficult to wash with water and other customary solvents, is converted into hydrogen sulphide by catalytic hydrolysis, the carbon dioxide oxide in the gas phase being mixed with steam according to the reaction equation COS + H 2 O - ⁇ H 2 S + CO 2 reacts.
  • H 2 S scrubbing 8 follows, in which case the hydrogen sulfide present in the gas is adsorbed with a selectively acting scrubbing solution. It should be noted that other possibilities of H 2 S separation are also possible, such as high-temperature dry desulphurisation.
  • the gas has sufficient purity in order to be able to be supplied to the combustion chamber designated 9 of a gas turbine 10.
  • the combustion chamber 9 is also fed from the air separation plant 6 originating oxygen via the line 11.
  • a gas turbine 10 not only a generator 12 generating the power, but also a gas compressor 13 is coupled, which compresses the gas leaving the gas turbine according to line 14, which is according to the invention is a CO 2 densifier.
  • the gas leaving the gas turbine 10 exhaust gas is passed through a heat exchanger 15 for generating steam, wherein the resulting vapor is fed to another gas turbine 16 with generator 17 for generating electricity.
  • the gas stream 14 is subsequently passed behind the heat exchanger 15 via a CO 2 / water vapor separation, generally designated 18.
  • the leaving the CO 2 compressor 13 CO 2 is then passed via the line 19 to a CO 2 storage, which is indicated by the line 20.
  • the CO 2 compressor 13 leaving CO 2 -GaS partially in particular also for temperature control in the burner chamber 9 are supplied to this, either according to arrow 21 the synthesis gas stream or via line 22 from the air separation plant originating 0 2 stream 11.
  • any type of carburetor can be used here, in the field of CO conversion can possibly also be provided a gas / gas heat exchanger to reach the temperature for the hydrolysis u. like. more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Air Supply (AREA)

Abstract

Ein aus einem Vergaser stammendes Synthesegas (H2+CO) soll in wirtschaftlicher und optimaler Weise genutzt werden, insbesondere zur Stromerzeugung, wobei dann gleichzeitig anfallendes CO2 einer Lagerung zugeführt werden soll. Dies wird dadurch erreicht, - dass das Synthesegas (H2+CO) und Sauerstoff (O2) aus einer Luftzerlegungsanlage in einem Brenner verbrannt und über eine Gasturbine (unter Antrieb eines Generators) entspannt wird, - dass CO2 im Abgasstrom separiert und einem von der Gasturbine angetriebenen Verdichter zugeführt wird und - als verdichtetes CO2 einer CO2-Speicherung zugeführt wird.

Description

"Verfahren zur Nutzung des aus einem Vergaser stammenden Svnthesegases"
Die Erfindung richtet sich auf ein Verfahren zur Nutzung des aus einem Vergaser stammenden Synthesegases (H2+CO) .
Bei der Nutzung fossiler Brennstoffe fällt zwangsläufig CO2 an. Um dies nicht in die Atmosphäre bei derartigen Verbrennungsprozessen abgeben zu müssen, ist man bemüht, das CO2 abzutrennen und zu speichern.
In einer Publikation der Firma RWE AG "IGCC-CCS-Kraftwerk" wird eine großtechnische Abtrennungsmöglichkeiten beschrieben, wobei "IGCC" Integrated Gasification Combined Cycle (Kombikraftwerk mit integrierter Kohlevergasung) bedeutet. Das Kürzel "CCS" bedeutet Carbon Capture and Storage.
Bei dem beschriebenen Verfahren wird die Vergasung von Kohle mit einer CO2-Abtrennung kombiniert und Strom in einer nachgeschalteten Gas- und Dampfturbine erzeugt. Dabei wird die Kohle zunächst in einem Vergaser bei hohen Temperaturen unter Druck von ca. 35 bar in ein brennbares Rohgas mit den Hauptbestandteilen CO und H2 umgewandelt. Das Gas wird gereinigt und das Kohlenmonoxid in CO-Shift mit Hilfe von Wasserdampf zu CO2 und H2O umgewandelt. Nach der Entschwefelung wird das CO2 abgetrennt, verdichtet und der Speicherung zugeführt, wobei der verbleibende Wasserstoff in einer Gasturbine verbrannt wird, die einen Generator zur Stromerzeugung antreibt .
Ausgangspunkt der vorliegenden Erfindung ist ebenfalls eine BrennstoffVergasung zur Erzeugung von Synthesegas, wobei hier jegliche Art von Vergasung miterfasst ist. Ein solches Synthesegas sollte dann in wirtschaftlicher und optimaler Weise genutzt werden, insbesondere zur Stromerzeugung, wobei dann gleichzeitig anfallendes CO2 einer Lagerung zugeführt werden soll.
Mit einem Verfahren der eingangs bezeichneten Art wird diese Aufgabe gemäß der Erfindung dadurch gelöst,
- dass das Synthesegas (H2+CO) und Sauerstoff (O2) aus einer Luftzerlegungsanlage in einem Brenner verbrannt und über eine Gasturbine (unter Antrieb eines Generators) entspannt wird,
- dass CO2 im Abgasstrom separiert und einem von der Gasturbine angetriebenen Verdichter zugeführt wird und
- als verdichtetes CO2 einer CO2-Speicherung zugeführt wird.
Die Erfindung nutzt auf einfachem Wege durch die Verbrennung des Synthesegases die unmittelbare ein- oder zweistufige Komprimierung des C02-Gastromes auf Drücke, die ggf. nach einer weiteren Kompression eine Lagerung des CO2 möglich macht.
In der US 5 724 805 ist ein Verfahren bekannt, indem unter anderem flüssiges CO2 in einem Tank gesammelt wird. Dabei erfolgt der Abzug des zur Sequestierung geführten CO2 auf der drucklosen Seite der Gasturbine nach dem Abhitzedampferzeuger. Damit muss die volle Kompressionsleistung für die Sequestierung separat erzeugt werden, während bei der vorliegenden Erfindung eine Vorkompremierung durch den Verdichter der Gasturbine selbst wie oben angegeben erfolgt. Hier wird somit die volle Kompressionsleistung der Gasturbine ausgenutzt. Eine Verflüssigung des CO2 findet nicht statt.
Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen. Dabei kann vorgesehen sein, dass ein Teil des verdichteten CO2-Gases dem Brenner zur TemperaturSteuerung zugeführt wird.
Die Zuführung des verdichteten CO2-Gases in zum Brenner führende Ströme kann an unterschiedlichen Positionen erfolgen. Entweder unmittelbar in den dem Brenner zugeführten Synthesegasstrom oder aber auch in den dem Brenner zugeführten Sauerstoffström aus der Luftzerlegungsanlage.
Eine weitere Optimierung der erfindungsgemäßen Verfahrensweise besteht darin, dass dem Abgasstrom aus der Gasturbine über einen Wärmetauscher Wärme zum Betrieb einer Dampfturbine entzogen wird, wobei die Dampfturbine zum Antrieb eines Generators heranziehbar ist.
Eine weitere Ausgestaltung besteht darin, dass der die Gasturbine verlassende Strom einer Trennung von CO2 und Wasserdampf unterworfen wird, derart, dass reines CO2 den mit der Gasturbine gekoppelten Verdichter beaufschlagt.
Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus dem nachfolgend beschriebenen Beispiel anhand des Prinzipschaubildes einer erfindungsgemäßen Anlage .
Ein allgemein mit 1 bezeichneter Brennstoff wird neben Adi- tiven 2 einer Mahlung und Trocknung und einem Druckraum zugeführt, was mit 3 bezeichnet ist. Bei dem Brennstoff kann es sich um Slurry, Stein oder Braunkohle, um Biomasse, Pe- trokoks, Ölsand, Orimulsion, aufbereiteten Müll u. dgl . handeln. Dieser Brennstoff wird dann einer Vergasungsanlage 4 aufgegeben zusammen mit Sauerstoff (Leitung 5) aus einer Luftzerlegungsanlage 6, wobei z.B. Stickstoff über die Leitung 7 dem Bereich Mahlung, Trocknung und Verdichtung 3 aufgegeben wird. Das von der Vergasungsanlage 4 kommende Rohgas wird zunächst in den der Entstaubung des Gases dienenden Quench 5 eingeleitet. Hier werden dem Staub gleichzeitig das in Gas vorhandene Ammoniak und der CyanwasserStoff nahezu vollständig sowie der Schwefelwasserstoff teilweise ausgewaschen. Das Produkt wird dann der nachfolgenden C02-Konver- tierung 6 aufgegeben, wobei dieser Schritt zur Erhöhung der Synthesegastemperatur und der Umsetzung von COS in H2S und HCN in NH3 und CO dient. Bekannt sind z.B. die Hochtemperaturkonvertierung und die Mittel- und Tieftemperaturkonver- tierung, wobei auch andere Verfahren eingesetzt werden können. Der Konvertierung 6 schließt sich im dargestellten Beispiel die Hydrolyse 7 an zur Kohlenoxisulfid-Entfer- nung. Hier wird das im Gas vorhandene Kohlenoxisulfid, das mit Wasser und anderen üblichen Lösungmittel nur schwer aufzuwaschen ist, durch katalytische Hydrolyse in Schwefelwasserstoff übergeführt, wobei das Kohlensul- fidoxid in der Gasphase mit Wasserdampf gemäß der Reaktionsgleichung COS + H2O —► H2S + CO2 reagiert.
Schließlich folgt noch eine H2S-Wäsche 8, wobei hier der im Gas vorhandene Schwefelwasserstoff adsorbtiv mit einer selektiv wirkenden Waschlösung ausgewaschen wird. Dabei ist zu beachten, dass auch andere Möglichkeiten der H2S-Abschei- dung in Frage kommen, wie beispielsweise Hochtemperatur- Trockenentschwefelung .
Nach diesen Behandlungsschritten weist das Gas eine ausreichende Reinheit auf, um der mit 9 bezeichneten Brennkammer einer Gasturbine 10 zugeführt werden zu können.
Wie aus dem Prinzipschaltbild erkennbar, wird der Brennkammer 9 auch aus der Luftzerlegungsanlage 6 stammender Sauerstoff über die Leitung 11 aufgegeben. Mit der Gasturbine 10 ist nicht nur ein Stromerzeugender Generator 12, sondern auch ein Gasverdichter 13 gekoppelt, der das die Gasturbine verlassende Gas gemäß Leitung 14 komprimiert, wobei es sich erfindungsgemäß um einen CO2-Ver- dichter handelt. Das die Gasturbine 10 verlassende Abgas wird über einen Wärmetauscher 15 zur Dampferzeugung geführt, wobei der entstehende Dampf einer weiteren Gasturbine 16 mit Generator 17 zur Stromerzeugung zugeleitet wird.
Der Gasstrom 14 wird hinter dem Wärmetauscher 15 nachfolgend über eine CO2- /Wasserdampftrennung, allgemein mit 18 bezeichnet, geführt. Das den CO2-Verdichter 13 verlassende CO2 wird über die Leitung 19 dann zu einer CO2-Lagerung geleitet, was mit der Leitung 20 angedeutet ist.
Wie in der Figur ebenfalls noch dargestellt, kann das den CO2-Verdichter 13 verlassende CO2-GaS teilweise insbesondere auch zur Temperaturregelung in der Brennerkammer 9 dieser zugeleitet werden, entweder gemäß Pfeil 21 dem Synthesegasstrom oder über die Leitung 22 dem aus der Luftzerlegungsanlage stammenden 02-Strom 11.
Natürlich ist das beschriebene Ausführungsbeispiel noch in vielfacher Hinsicht abzuändern, ohne den Grundgedanken zu verlassen. So ist, wie oben schon angedeutet, jede Art von Vergaser hier einsetzbar, im Bereich der CO-Konvertierung kann evtl. auch ein Gas-/Gas -Wärmetauscher vorgesehen sein, um die Temperatur für die Hydrolyse zu erreichen u. dgl . mehr.

Claims

Patentansprüche :
1. Verfahren zur Nutzung des aus einem Vergaser stammenden Synthesegases (H2+CO) , dadurch gekennzeichnet,
- dass das Synthesegas (H2+CO) und Sauerstoff (O2) aus einer Luftzerlegungsanlage in einem Brenner verbrannt und über eine Gasturbine (unter Antrieb eines Generators) entspannt wird,
- dass CO2 im Abgasstrom separiert und einem von der Gasturbine angetriebenen Verdichter zugeführt wird und
- als verdichtetes CO2 einer CO2-Speicherung zugeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein Teil des verdichteten CO2-Gases dem Brenner zur Temperatursteuerung zugeführt wird.
3. Verfahren nach Anspruch 2 , dadurch gekennzeichnet, dass der Teil des verdichteten CO2-Gases dem Synthesegas - ström oder dem 02-Strom aus der Luftzerlegungsanlage vor dem Brenner zugeführt wird.
4. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass dem Abgasstrom aus der Gasturbine über einen Wärmetauscher Wärme zum Betrieb einer Dampfturbine (mit Generator) entzogen wird.
PCT/EP2009/008864 2008-12-23 2009-12-11 Verfahren zur nutzung des aus einem vergaser stammenden synthesegases WO2010072337A2 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2745227A CA2745227C (en) 2008-12-23 2009-12-11 Method for use of the synthesis gas that comes from a gasifier
RU2011130188/05A RU2011130188A (ru) 2008-12-23 2009-12-11 Способ использования получаемого в газогенераторе синтез-газа
NZ593060A NZ593060A (en) 2008-12-23 2009-12-11 Method for use of the synthesis gas that comes from a gasifier
CN200980151734.7A CN102405340B (zh) 2008-12-23 2009-12-11 利用来自气化器的合成气的方法
US12/998,863 US9410480B2 (en) 2008-12-23 2009-12-11 Method for use of the synthesis gas that comes from a gasifier
UAA201109106A UA105651C2 (uk) 2008-12-23 2009-12-11 Спосіб використання одержуваного у газогенераторі синтез-газу
EP09795332A EP2435669A2 (de) 2008-12-23 2009-12-11 Verfahren zur nutzung des aus einem vergaser stammenden synthesegases
AU2009331944A AU2009331944B2 (en) 2008-12-23 2009-12-11 Process for utilizing the sythesis gas originating from a gasifier
ZA2011/05376A ZA201105376B (en) 2008-12-23 2011-07-21 Process for utilizing the synthesis gas originating from a gasifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008063055.1 2008-12-23
DE102008063055A DE102008063055A1 (de) 2008-12-23 2008-12-23 Verfahren zur Nutzung des aus einem Vergaser stammenden Synthesegases

Publications (3)

Publication Number Publication Date
WO2010072337A2 true WO2010072337A2 (de) 2010-07-01
WO2010072337A3 WO2010072337A3 (de) 2012-07-05
WO2010072337A4 WO2010072337A4 (de) 2012-09-07

Family

ID=42288174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/008864 WO2010072337A2 (de) 2008-12-23 2009-12-11 Verfahren zur nutzung des aus einem vergaser stammenden synthesegases

Country Status (13)

Country Link
US (1) US9410480B2 (de)
EP (1) EP2435669A2 (de)
KR (1) KR20110114546A (de)
CN (1) CN102405340B (de)
AU (1) AU2009331944B2 (de)
CA (1) CA2745227C (de)
DE (1) DE102008063055A1 (de)
NZ (1) NZ593060A (de)
RU (1) RU2011130188A (de)
TW (1) TW201033458A (de)
UA (1) UA105651C2 (de)
WO (1) WO2010072337A2 (de)
ZA (1) ZA201105376B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559271A (zh) * 2010-11-22 2012-07-11 通用电气公司 从合成气体中移除气态副产物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8881659B2 (en) * 2009-12-04 2014-11-11 Kinetix Ag Folding table for attachment to the rear side of a vehicle seat part
US20130133337A1 (en) * 2011-11-30 2013-05-30 General Electric Company Hydrogen assisted oxy-fuel combustion
EP2657469A1 (de) * 2012-04-25 2013-10-30 Burmeister & Wain Energy A/S Biomassen-kraftstoffbetriebenes Stromerzeugungssystem
JP2013241923A (ja) * 2012-05-23 2013-12-05 Babcock Hitachi Kk 炭素系燃料のガス化発電システム
JP6057674B2 (ja) * 2012-11-08 2017-01-11 三菱日立パワーシステムズ株式会社 高水分固体燃料のガス化システム
CN103388497B (zh) * 2013-08-09 2015-05-20 中国能源建设集团广东省电力设计研究院 用于改进igcc发电设施性能的预热清洁合成气方法及系统
JP6746689B2 (ja) 2015-09-01 2020-08-26 8 リバーズ キャピタル,エルエルシー 入れ子式のco2サイクルを用いる電力生産のためのシステムおよび方法
DE102015218502A1 (de) * 2015-09-25 2017-03-30 Siemens Aktiengesellschaft Dampfturbinenkraftwerk mit Wasserstoffverbrennung unter Einbindung einer Vergasungseinrichtung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1546077A (en) 1975-06-13 1979-05-16 Novo Industri As Chemical compounds process for preparing said compounds and process for preparing 6-(p-hydroxyphenyl-glycylamido)-penam or 7-(p-hydroxyphenyl-glycylamido)-cephem compounds
DE3501456A1 (de) * 1985-01-17 1986-07-17 Linde Ag, 6200 Wiesbaden Verfahren zur reduzierung des so(pfeil abwaerts)2(pfeil abwaerts)- und no(pfeil abwaerts)x(pfeil abwaerts)- gehaltes von gasen
CA2081189C (en) * 1992-10-22 1998-12-01 Tony E. Harras Co2 recycle for a gas-fired turbogenerator
US5388395A (en) * 1993-04-27 1995-02-14 Air Products And Chemicals, Inc. Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output
US5724805A (en) 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
EP0831205B1 (de) * 1996-09-20 2004-05-12 Kabushiki Kaisha Toshiba Kraftwerk mit Trennung und Rückgewinnung von Kohlenstoffdioxid
US6025403A (en) 1997-07-07 2000-02-15 Mobil Oil Corporation Process for heat integration of an autothermal reformer and cogeneration power plant
WO1999040304A1 (en) 1998-02-04 1999-08-12 Texaco Development Corporation Combined cryogenic air separation with integrated gasifier
JP4509267B2 (ja) 1999-11-15 2010-07-21 日揮株式会社 石油燃料燃焼複合発電設備及びその方法
EP1268985A1 (de) 2000-03-31 2003-01-02 NORTHERN RESEARCH & ENGINEERING CORPORATION Festbrennstoff - krafterzeugungssystem mit kohlendioxidabscheidung
US20030008183A1 (en) 2001-06-15 2003-01-09 Ztek Corporation Zero/low emission and co-production energy supply station
JP4818109B2 (ja) 2004-07-15 2011-11-16 大日本印刷株式会社 半導体装置及び半導体装置製造用基板並びに半導体装置製造用基板の製造方法
US7691714B2 (en) 2005-01-25 2010-04-06 Texas Instruments Incorporated Semiconductor device having a dislocation loop located within a boundary created by source/drain regions and a method of manufacture therefor
DE102007022168A1 (de) * 2007-05-11 2008-11-13 Siemens Ag Verfahren zur Erzeugung motorischer Energie aus fossilen Brennstoffen mit Abführung von reinem Kohlendioxid
US20090084035A1 (en) * 2007-09-28 2009-04-02 General Electric Company Polygeneration systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559271A (zh) * 2010-11-22 2012-07-11 通用电气公司 从合成气体中移除气态副产物

Also Published As

Publication number Publication date
KR20110114546A (ko) 2011-10-19
WO2010072337A3 (de) 2012-07-05
CA2745227A1 (en) 2010-07-01
CA2745227C (en) 2016-07-12
US20110248513A1 (en) 2011-10-13
NZ593060A (en) 2012-11-30
RU2011130188A (ru) 2013-01-27
AU2009331944B2 (en) 2015-03-05
US9410480B2 (en) 2016-08-09
DE102008063055A1 (de) 2010-08-05
ZA201105376B (en) 2012-12-27
TW201033458A (en) 2010-09-16
CN102405340B (zh) 2015-06-03
WO2010072337A4 (de) 2012-09-07
CN102405340A (zh) 2012-04-04
UA105651C2 (uk) 2014-06-10
AU2009331944A1 (en) 2011-06-23
EP2435669A2 (de) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2010072337A2 (de) Verfahren zur nutzung des aus einem vergaser stammenden synthesegases
AT508523B1 (de) Reformgasbasiertes reduktionsverfahren und vorrichtung mit decarbonisierung des brenngases für den reformer
DE60019102T2 (de) Wasserstoffrückführung und entfernung von sauren gasen unter verwendung einer membran
CN109072104B (zh) 用于包括甲烷化处理的发电系统和方法
WO2008058636A1 (de) Verfahren zur gewinnung von kohlendioxid
JP2007254270A (ja) 水素及び二酸化炭素を含むガス混合物の処理方法
AT504863A1 (de) Verfahren und anlage zur erzeugung von elektrischer energie in einem gas- und dampfturbinen (gud) - kraftwerk
CH697901B1 (de) Polygenerationsanordnung.
DE10334590A1 (de) Verfahren zur Gewinnung von Wasserstoff aus einem methanhaltigen Gas, insbesondere Erdgas und Anlage zur Durchführung des Verfahrens
CN102284228A (zh) 用于集成酸性气体去除与碳捕集的系统
AT508250A4 (de) Verfahren zur entfernung von co2 aus abgasen, wie abgase aus anlagen zur roheisenherstellung oder abgase aus synthesegasanlagen
DE10393892T5 (de) Verwendung eines chemischen Lösungsmittels zum Abtrennen von Co2 aus einem H2S-reichen Strom
WO2011039059A1 (de) Verfahren zum betrieb eines igcc-kraftwerkprozesses mit integrierter co2-abtrennung
WO2014047685A1 (en) Power production from ucg product gas with carbon capture
EP2126006A1 (de) Verfahren und vorrichtung zur herstellung von energie, treibstoffen oder chemischen rohstoffen unter einsatz von co2-neutralen biogenen einsatzstoffen
CN203847251U (zh) 使用经改性的合成气进料发电的系统
DE102007022168A1 (de) Verfahren zur Erzeugung motorischer Energie aus fossilen Brennstoffen mit Abführung von reinem Kohlendioxid
DE102010024429A1 (de) CO2 freies IGCC Kraftwerk mit Heißgasreinigung und optimierter CO2 Abtrennung
Zhu et al. Integrated gasification combined cycle (IGCC) systems
EP2481705A1 (de) Verfahren und Vorrichtung zur stofflichen und/oder energetischen Verwertung von biogenen Reststoffen
RU74915U1 (ru) Комбинированная установка газификации топлив и генерации электроэнергии
AU2015100328A4 (en) Power production from ucg product gas with carbon capture
US20120217148A1 (en) Method for operating a coke oven arrangement
Arienti et al. IGCC plants to meet the refinery needs of hydrogen and electric power
EP2177589A1 (de) Synthesegasaufbereitungsanlage sowie ein Verfahren zum Betrieb einer solchen Anlage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151734.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 593060

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2745227

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12998863

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2561/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009331944

Country of ref document: AU

Date of ref document: 20091211

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117014624

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009795332

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009795332

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: a201109106

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2011130188

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09795332

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0923129

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0923129

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110622