WO2010072173A1 - 一种叠加网系统中接收信号的方法、叠加网系统以及装置 - Google Patents

一种叠加网系统中接收信号的方法、叠加网系统以及装置 Download PDF

Info

Publication number
WO2010072173A1
WO2010072173A1 PCT/CN2009/076035 CN2009076035W WO2010072173A1 WO 2010072173 A1 WO2010072173 A1 WO 2010072173A1 CN 2009076035 W CN2009076035 W CN 2009076035W WO 2010072173 A1 WO2010072173 A1 WO 2010072173A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal
transceiver module
antenna
overlay network
Prior art date
Application number
PCT/CN2009/076035
Other languages
English (en)
French (fr)
Inventor
熊立群
赵东
彭卫红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010072173A1 publication Critical patent/WO2010072173A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for receiving signals in an overlay network system, an overlay network system, and a device. Background technique
  • CDMA Code Division Multiple Access
  • Embodiments of the present invention provide a method for receiving signals in an overlay network system, an overlay network system, and an overlay network device, so that the overlay device has better reliability.
  • An embodiment of the present invention provides a method for receiving a signal in an overlay network system, including: acquiring, by a second base station, a signal received on an antenna;
  • the second base station amplifies the acquired signal
  • the second base station transmits the amplified signal to the first base station.
  • the embodiment of the present invention further provides an overlay network system, including: a first base station, a second base station, and an antenna 1;
  • a second base station configured to acquire a signal received on the antenna, and put the acquired signal Large, transmitting the amplified signal to the first base station;
  • the first base station is configured to receive the amplified signal sent by the second base station.
  • the embodiment of the invention further provides an overlay network device, including:
  • a coupler configured to send the signal amplified by the second base station to the first base station.
  • one base station in a case where the base station is dual-transmitted, one base station amplifies and outputs the received signal to another base station, and receives the input signal as a main set of one transceiver module in the other base station, which is provided by the embodiment of the present invention.
  • the technical solution improves the reliability of the stacked network device because the stacked device does not include active components.
  • FIG. 1 is a device diagram for implementing superposition of new and old network devices in an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for receiving a signal in an overlay network system according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a method for receiving a signal in an overlay network system according to an embodiment of the present invention
  • FIG. 4 is a block diagram of an overlay network system according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of an overlay network system according to an embodiment of the present invention.
  • FIG. 6 is a block diagram of a superimposed network device according to an embodiment of the present invention.
  • FIG. 7 is a block diagram of a overlay network system according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a method for receiving a signal in a overlay network system, an overlay network system, and a device. The details are described below separately.
  • the base station 1 is an old network device, and the base station 2 is a new network device, wherein the base station 1 has two separate A radio frequency interface for receiving or transmitting signals, the base station 2 has a radio frequency interface that can be used to receive or transmit signals, and a radio frequency interface for receiving information; the two base stations realize a common two antennas through an overlapping device, that is, an antenna 1 and antenna 2.
  • the superposition device includes at least: 2 duplexers (Duplexer 1 and Duplexer 2), 2 low noise amplifiers (LNA, Low Noi Se Ampl ifier) (LNA1 and LNA2), 1 combiner .
  • LNA Low Noise Se Ampl ifier
  • a signal transmitted by the base station 1 passes through the Txl/Rxl radio frequency interface, enters the superimposing device, passes through the duplexer 1, and is transmitted by the antenna 1;
  • the antenna 1 receives the signal and passes through the duplexer 1 and then is amplified by the LNA1.
  • the amplified signal is filtered, and the filtered signal is divided into two paths.
  • One of the two signals is input through the Txl/Rxl radio frequency interface of the base station 1.
  • another signal is input to the base station 2 through the RxD radio frequency interface of the base station 2.
  • the signal received by the antenna 2 passes through the duplexer 2, and then amplified by the LNA2, and the amplified signal is filtered, and then the signal is divided into two paths, and one signal is input to the base station 1 through the Tx2/Rx2 radio frequency interface of the base station 1, The other signal is input to the base station 2 through the Tx/RxM radio frequency interface of the base station 2.
  • the communication system also includes filters and components for making transmission line matching, such as resistors.
  • the embodiment of the present invention further provides a method for receiving a signal in an overlay network system.
  • the system includes at least: a first base station, a second base station, and a first An antenna connected to the second base station; the antenna includes at least a receiving function.
  • the first base station can be considered to be the old base station in the overlay network system, and the second base station is considered to be the new base station that gradually replaces the old base station.
  • the method includes: Step A1: The second base station acquires a signal received on the antenna;
  • Step A2 The second base station amplifies the obtained signal
  • Step A3 The second base station sends the amplified signal to the first base station.
  • the method receives the signal through the second base station, amplifies the signal, and then sends the signal to the first base station, so that the active device is not required to be added between the antenna and the second base station, so that the method can be made
  • the first and second base stations can respectively obtain the signals received on the antenna, thereby improving the reliability of the system.
  • the antenna is an antenna having a transceiving function. Therefore, there is an overlay network device between the antenna and the second base station.
  • an active device for amplifying a signal may not be added to the overlay network device. , improve the reliability of the overlay network equipment.
  • the embodiment of the present invention provides a method for receiving signals in an overlay network system.
  • the method is similar to the method provided in the previous embodiment, and the difference is that the method provided in this embodiment is based on the present There is a principle that the network equipment is minimally modified, and at the same time, the purpose of improving the reliability of the overlay network device is achieved, that is, compared with the previous embodiment, the antenna sharing unit is added in this embodiment.
  • the ASU implements a radio interface that does not increase the first base station, and can obtain a signal after the second base station is amplified.
  • the radio interface of the first base station that specifically receives the signal sent by the second base station is required, and the existing network is modified more. The specific description of the embodiment will be given below.
  • the method includes:
  • Step B1 The second base station acquires a signal received on the antenna
  • Step B2 the second base station amplifies the obtained signal
  • Step B3 The second base station sends the amplified signal to the antenna sharing unit (ASU, At tena Sharing Uni t);
  • Step B4 The ASU couples the received signals and sends them to the first base station.
  • an antenna has a receiving and transmitting function.
  • an ASU is provided between the base station and the antenna, and the ASU is generally used to combine two transmission signals of two base stations. Send out all the way signals.
  • the method for receiving signals in the overlay network system provided by the embodiment of the present invention is to use the existing network architecture, and does not increase the radio interface of the first base station.
  • the second base station sends the second base station through the ASU.
  • the amplified signal is then transmitted to the first base station via the ASU coupling. Therefore, the RF interface of the first base station is not added, and the modification of the network is small.
  • the active component is not included in the overlay network device ASU, which improves the reliability of the overlay network device.
  • the embodiment of the present invention provides a method for receiving a signal in an overlay network system.
  • the purpose of this embodiment is to implement a superposition in a case where the first base station is a dual-issue base station, that is, the first base station has two transceiver modules.
  • the overlay network system includes: at least two antennas, the two antennas are two transceiver antennas, a first base station, a second base station, and One antenna sharing unit ASU.
  • the first base station includes at least two transceiver modules, that is, a third transceiver module and a second transceiver module, and the second base station includes at least one transceiver.
  • the transmitting module that is, the first transceiver module.
  • the first base station is physically connected to one of the antennas, and the other antenna is connected to the ASU-end.
  • the ASU is also physically connected to the first base station and the second base station, respectively.
  • Step 1 The second base station acquires a signal received on one antenna
  • the antenna in step 2 is different from the antenna in step 1. It should also be understood that, in reality, when the hardware is implemented, an ASU needs to be connected between the second base station and the antenna, and the role of the ASU is used to isolate the transmitted signal when receiving the signal, so as to obtain a better receiving effect.
  • Step 2 The second base station amplifies the acquired signal
  • Step 3 The second base station sends the amplified signal to the second transceiver module in the first base station.
  • the signal sent by the second base station to the second transceiver module in the first base station in step 3 can be forwarded by the ASU.
  • Step 4 The second transceiver module in the first base station receives the signal sent by the second base station.
  • the signal sent by the second base station received by the first base station in step 4 may be an input signal received as a primary set of the second transceiver module in the first base station.
  • the first step to the fourth step of the second base station and the second transceiver module of the first base station respectively obtain the signals received on one of the antennas, and the first base station is a dual-transmitted base station, and the first base station includes the third The transceiver module needs to acquire the signal received on the other antenna. Therefore, the method further includes:
  • Step 5 The third transceiver module in the first base station acquires the signal received on the other antenna;
  • Step 6 The third transceiver module in the first base station amplifies the received signal;
  • Step 7 The third transceiver module in the first base station sends the amplified signal to the second base station and the second transceiver module in the first base station.
  • the third transceiver module in the first base station in step 7 divides the amplified signal into two physical signals, which are respectively sent to the second base station and the second transceiver module in the first base station, which may be an increase in the coupler Couper. Realized.
  • the second base station acquires a signal received by an antenna in the overlay network system, and the signal is amplified and output to the first base station, where the method for receiving a signal in the overlay network system is provided by the embodiment of the present invention.
  • An active device used as an amplified signal in the second base station such as an LNA, It can be monitored by the second base station, and has higher reliability than the prior art that the signal received on one antenna is divided into two signals by the LNA and input to the two base stations respectively.
  • An embodiment of the present invention provides an overlay network system, as shown in FIG. 4, including: a first base station 401, a second base station 402, and an antenna one 403;
  • the second base station 402 is configured to acquire a signal received on the antenna 403, amplify the acquired signal, and send the amplified signal to the first base station 401;
  • the first base station 401 is configured to receive the amplified signal sent by the second base station 402.
  • the second base station 402 receives the signal, amplifies the signal, and then sends the signal to the first base station 401, so that the antenna 403 and the second base station 402 are not needed.
  • the first and second base stations can respectively obtain the signals received on the antenna, thereby improving the reliability of the system.
  • the embodiment of the present invention provides another overlay network system.
  • the overlay network system provided by the embodiment and the overlay network system provided in the previous embodiment belong to the same invention, and the specific description is as follows:
  • the overlay network system may include: a first base station 401, a second base station 402, an antenna one 403, and an antenna sharing unit ASU 404;
  • the second base station 402 is configured to acquire a signal received on the antenna 1, and amplify the acquired signal, and send the amplified signal to the ASU 404;
  • the ASU 404 is configured to receive the amplified signal sent by the second base station 402, and couple the signal to the first base station 401;
  • the first base station 401 is configured to receive a signal transmitted by the antenna sharing unit ASU 404.
  • the ASU 404 is generally used to combine two channels of transmit signals of two base stations into one signal for transmission.
  • An overlay network system provided by the embodiment of the present invention utilizes an existing network architecture, and does not increase the radio interface of the first base station 401.
  • the ASU 404 receives the amplified signal sent by the second base station 402, and then the amplified signal is amplified.
  • the signal is coupled to the first base station 401 via the ASU 404. Therefore, the radio interface of the first base station is not increased, and the transformation of the network is small.
  • the embodiment of the present invention further provides an overlay network system.
  • the method includes: a first base station 10, a second base station 20, an antenna 40, and an antenna 50.
  • the first base station 10 includes at least a third transceiver module 101 and a second transceiver module 102.
  • the second base station 20 includes at least: a first transceiver module 201 and Amplifying unit 203.
  • the first base station is an old base station in the overlay network system
  • the second base station is a new base station in the overlay network system to gradually bring the old base station.
  • the first base station 10 is configured to acquire a signal received by the antenna 40, and receive a signal sent by the second base station 20.
  • the third transceiver module 101 of the first base station 10 is configured to acquire a signal received by the antenna 40.
  • the second transceiver module 103 in the first base station 10 is configured to receive a signal sent by the second base station;
  • the second base station 20 is configured to acquire the signal received on the antenna 50, amplify the signal, and send the signal to the second transceiver module 103 in the first base station 10 to receive the input signal MRI as the main set of the second transceiver module 103.
  • the first transceiver module 201 in the second base station 20 is configured to acquire the signal received on the antenna 50.
  • the signal received on the antenna 50 acquired by the first transceiver module 201 in FIG. 5 is required to be described.
  • the ASU 30 passes through the ASU 30. In fact, the ASU 30 can be regarded as a transmission line and does not process the receiving signal.
  • the amplifying unit 203 is configured to amplify the acquired signal.
  • the first transceiver module 201 is configured to send the amplified signal to the first The second transceiver module 103 in the base station 10. It should be understood that the amplifying unit 203 can be physically implemented by an LNA. It should be noted that the amplified signal sent by the first transceiver module 201 is the main set amplified output signal MR0.
  • the ASU 30 is configured to receive the amplified signal sent by the first transceiver module 201, and send the amplified signal to the second transceiver module 103.
  • the method of forwarding the amplified signal of the first transceiver module 203 to the second transceiver module is performed by the ASU 30.
  • An embodiment of the present invention provides an overlay network system, in which the second base station 20 acquires a signal received on the antenna 50, and amplifies the signal to the first base station 10, where the second base station
  • the active device used as the amplified signal in 20 can be monitored by the second base station 20, and the active device used as the amplified signal is usually an LNA; and the signal received on one antenna is passed through the LNA in the prior art. Compared with the practice of inputting two signals to two base stations separately, it has higher reliability.
  • the third transceiver module 101 in the first base station 10 in the overlay network system provided by the embodiment of the present invention is further configured to transmit a signal through the antenna 40, and output the acquired main set amplified output signal to the first The transceiver module 103 and the first transceiver module 201.
  • the process of dividing the main set amplified output signal outputted in the third transceiver module 101 into two signals in the first base station 10 may be Implemented by the coupler Coupler 05. Therefore, the first base station 10 further includes a coupler 105 for separately transmitting the main set amplified output signals acquired by the third transceiver module 101 into the second transceiver module 103 and the first transceiver module 201.
  • the second transceiver module 103 of the first base station 10 is further configured to transmit a signal, which is combined with the signal sent by the second base station 20 to form a signal, which is sent out through the antenna 50. Therefore, the overlay network system should also include an ASU 30 for synthesizing the signal sent by the second transceiver module 103 and the signal sent by the second base station 20, and transmitting the signal through the antenna 50.
  • the second transceiver module 103 is further configured to send the obtained main set amplified output signal to the third transceiver module 101 as a diversity receiving input signal of the third transceiver module 101.
  • the amplified signal sent by the second base station 20, which is also acquired by the second transceiver module 103 is amplified and output as the main set amplified output signal MR0 of the second transceiver module 103 to the third transceiver.
  • the module 101 receives the input signal DR I as a diversity of the third transceiver module 101.
  • the first transceiver module 201 of the second base station 20 is further configured to send a signal, which is combined with a signal sent by the second transceiver module 103 to generate a signal, which is sent out through the antenna 50.
  • the ASU 30 is further configured to receive the amplified signal sent by the first transceiver module 201, and send the amplified signal to the second transceiver module 103. Performing the method of forwarding the amplified signal of the first transceiver module 203 to the second transceiver module through the ASU 30 can ensure the minimum modification of the existing first base station, without adding redundant RF interfaces, thereby ensuring the signal on the line. The loss is minimal.
  • the second base station 20 acquires the signal received on the antenna 50, and the signal is amplified and output to the first base station 10, where the second base station 20 is obtained by the above description of the overlay network system provided by the embodiment of the present invention.
  • the active device used as the amplified signal such as the LNA, can be monitored by the second base station 20.
  • the signal received on one antenna is divided into two signals by the LNA and input to the two base stations. Compared with the practice, it has higher reliability.
  • the embodiment of the present invention provides an overlay network device, which may also be referred to as an antenna sharing unit (ASU, Antenna Sharing Uni t).
  • ASU antenna sharing unit
  • the following example refers to an overlay network device as an antenna sharing unit, see FIG. 6
  • the ASU can include: a first duplexer 100, a second duplexer 200, a combiner 300, a coupler 400, a radio frequency interface 1, a radio frequency interface 2, a radio frequency interface 3, and a radio frequency interface 4.
  • the device After the device receives the signal through the external antenna, it sequentially passes through the first duplexer 100 and the second duplexer 200, and the signal is output by the second duplexer 200 to the base station independent of the device, the base station Usually new devices added to the network.
  • the base station 1 is an old device in the network
  • the base station 2 is a new device in the network.
  • the signal transmitted by the base station 2 enters the overlay network device through the radio frequency interface 3, passes through the second duplexer 200 in the overlay network device, and the base station
  • the signals transmitted by the radio frequency interface 1 into the overlay network device are combined into one signal in the combiner 300, and the combined signal passes through the first duplexer 100, and is output from the overlay network device through the radio frequency interface 4, the signal It is transmitted through an antenna connected to the radio frequency interface 4.
  • the received signal of the main set received by the base station 2 is amplified to form a main set amplified output MR0 signal, which is transmitted to the ASU through the radio frequency interface of the base station 2, and the MR0 signal is passed through the ASU as shown in FIG.
  • the coupler 400 coupled to the base station 1 and the line connected to the combiner 100 in the ASU, receives input as a primary set in the base station 1. That is, the coupler 400 and the RF interface 1 connected to the base station 1 in the ASU are connected to the RF interface 2 in the ASU.
  • a filter is also included in the ASU, and the MR0 signal output from the base station 2 is input to the Tx2 / Rx2 radio frequency interface in the base station 1 with an optimal effect. That is, a filter is added between the RF interface 2 and the coupler 400, and the filter is used to prevent the signal transmitted from the base station 1 from being input to the base station 2.
  • the ASU can input signals received from the antenna to the old and new base stations respectively, and the ASU can input the signal received and outputted by the main base station of the new base station to the radio frequency interface of the old base station.
  • the signal is received as the main set of the old base station.
  • Active devices are not included in the ASU and are more reliable than existing stacked devices.
  • the embodiment of the present invention further provides a communication system.
  • the communication system includes: a third base station 61, a fourth base station 62, an antenna sharing unit ASU63, an antenna 64, and an antenna 65.
  • the third base station 61 can be considered as an old device in a network
  • the fourth base station 62 can be considered as a new device in the network.
  • the third base station 61 can include two transceiver modules, including: a third transceiver module 611, a second transceiver module 613, and a coupler 615.
  • the frequency of the signal transmitted by the third transceiver module 611 The rate can be any combination of two consecutive frequency points, ie frequency point F3 and / or? 4;
  • the frequency of the signal transmitted in the second transceiver module 61 3 can also be any combination of two consecutive frequency points, namely frequency points F1 and/or F2. That is, the third transceiver module 611 and the second transceiver module 613 are two modules that process signals of different frequencies.
  • the third transceiver module 611 in the third base station 61 transmits the signal to be transmitted through the antenna 64 connected to the Tx1/Rx1 radio frequency interface; the second transceiver module 612 in the third base station 61 transmits the signal to be transmitted by the Tx2/Rx2 radio frequency interface.
  • the first transceiver module 621 in the fourth base station 62 sends the signal to be sent to the ASU 63 through the Tx/RxM radio interface.
  • the frequency of the signal transmitted in the first transceiver module 621 can be three consecutive frequency points. Any combination of F5, F6 and / or? 7.
  • the combiner 300 in the ASU 63 combines the signal transmitted by the second transceiver module 612 in the third base station 61 and the signal transmitted by the first transceiver module 621 in the fourth base station 20 into a signal, which passes through the ASU 63.
  • a duplexer 100 is then transmitted by the antenna 65.
  • the above is a process for transmitting signals to the third base station 61 and the fourth base station 62 in the communication system, and the modules in the communication system will be described.
  • the following describes the modules in the communication system for the process of receiving signals by the communication system.
  • the antenna 64 receives the signal, and the received signal is input to the third transceiver module 611 of the third base station 61 through the Tx 1 /Rx 1 radio frequency interface, and the third transceiver module 611 amplifies the received signal and inputs the signal to the third.
  • the second transceiver module 613 in the base station 61 and the first transceiver module 621 in the fourth base station 62 receive input as diversity of the second transceiver module 613 and the first transceiver module 621.
  • the signal amplified by the third transceiver module 611 that is, the main set amplification output MR0 of the third transceiver module 611 is realized by the coupler Couple 615 in the third base station 61 to divide one signal into two signals and input them separately.
  • the second transceiver module 613 and the first transceiver module 621 are provided.
  • the antenna 65 receives the signal, inputs the received signal into the ASU 63, and the signal sequence is transmitted to the Tx/RxM radio interface of the fourth base station 62 through the first duplexer 100 and the second duplexer 200 in the ASU 63.
  • the first transceiver module 621, the first transceiver module 621 receives the input MRI signal as the main set, and the first transceiver module 621 amplifies the main set receiving input MRI signal to output the ASU, and the signal is coupled to the third base station 61, as The main set of the second transceiver module 613 receives the input MRI signal.
  • first transceiver module 621 can also directly output the MR I signal to the first
  • the second transceiver module 613 serves as an MRI signal of the second transceiver module 613.
  • the second transceiver module 613 amplifies the received MRI signal and outputs it as a main set amplification output MR0 signal to the third transceiver module 611.
  • the second transceiver module 613 receives the main set amplification output signal sent by the third transceiver module as the second transceiver.
  • the diversity of module 613 receives the input signal.
  • the first transceiver module 621 receives the main set amplified output signal sent by the third transceiver module 611 as the diversity receiving input signal of the first transceiver module 621.
  • the two signals with discontinuous frequency points are usually selected for combining, that is, transmitted by the second transceiver module 613.
  • the signal is combined with the signal transmitted by the first transceiver module 621. At this time, the energy lost by combining the two signals into one signal is small.
  • the third base station 61 in the communication system is directly connected to the antenna 64, except for the transmission line, there is no redundant component causing insertion loss; the signal received by the antenna 65 in the ASU 63
  • the fourth base station 62 transmits the received signal to the second transceiver module 613 of the third base station 61 via the ASU, and the ASU transmits the signal sent by the third base station 61 and the fourth base station 62.
  • the signals are combined into one signal that is transmitted via antenna 65.
  • the ASU in the overlay network system does not contain active components, which enhances the reliability of the system; the ASU uses fewer components than the prior art, and the cost of composing the system is low; the antenna 64 and the third base station The insertion loss is reduced between 61, and the system can achieve better transmission and reception signals.
  • the third base station 61 described in this embodiment may also be an existing network device, and the fourth base station 62 may be a new device superimposed in the network.
  • receiving in the embodiment of the present invention may be understood as being actively acquired from other modules or receiving information transmitted by other modules.
  • modules in the apparatus in the embodiment may be described in the apparatus distributed in the embodiment according to the embodiment, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种叠加网系统中接收信号的方法、 叠加网系统以及装置
本申请要求于 2008 年 12 月 26 日提交中国专利局、 申请号为 200810188815. 发明名称为 "一种叠加网系统中接收信号的方法、 叠加 网系统以及装置" 的中国专利申请的优先权, 其全部内容通过引用结合在 本申请中。 技术领域
本发明涉及通信技术领域, 具体涉及一种叠加网系统中接收信号的方 法、 叠加网系统以及装置。 背景技术
随着码分多址(CDMA , Code - Divi s ion Mul t i ple Acces s )技术的不 断发展, 在 CDMA网络中一些网络设备逐渐因为功能陈旧, 而被一些功能更 加强大的网络设备所取代。 而新网络设备取代旧网络设备的过程不是简单 的取代。 由于直接将旧的网络设备搬移, 将带来很大的风险, 同时, 初期 的资金投入也是巨大的, 为了解决这个问题, 通常的做法是将新网络设备 与旧的网络设备同时使用, 增加叠加设备来使得新旧网络设备都可以提供 服务。
发明人在实现本发明的过程中发现, 如何提高新旧网络设备的可靠性, 是现有技术有待解决的问题。 发明内容
本发明实施例提供一种叠加网系统中接收信号的方法、 叠加网系统以 及叠加网装置, 使得叠加设备有更好的可靠性。
本发明实施例提供了一种叠加网系统中接收信号的方法, 包括: 第二基站获取天线上接收到的信号;
所述第二基站将所述获取到的信号放大;
所述第二基站将放大后的信号发送给第一基站。
本发明实施例还提供了一种叠加网系统, 包括: 第一基站、 第二基站 和天线一; 其中,
第二基站, 用于获取天线一上接收到的信号, 将所述获取到的信号放 大, 将放大后的信号发送给所述第一基站;
第一基站, 用于接收所述第二基站发送的放大后的信号。
本发明实施例还提供了一种叠加网装置, 包括:
耦合器, 用于将第二基站放大后的信号耦合发送给第一基站。
本发明实施例采用在基站双发的情况下, 一个基站将其接收到的信号 放大输出给另一个基站, 作为该另一个基站中一个收发模块的主集接收输 入信号, 本发明实施例提供的技术方案由于叠加网装置中不包含有有源元 件, 因此, 提高了叠加网装置的可靠型。 附图说明
图 1是本发明实施例中一种实现新旧网络设备叠加的装置图;
图 2是本发明实施例提供的一种叠加网系统中接收信号的方法的流程 简图;
图 3是本发明实施例提供的一种叠加网系统中接收信号的方法的流程 简图;
图 4是本发明实施例提供的一种叠加网系统的模块图;
图 5是本发明实施例提供的一种叠加网系统的模块图;
图 6是本发明实施例提供的一种叠加网装置的模块图;
图 7是本发明实施例提供的一种叠加网系统的模块图。 具体实施方式
本发明实施例提供一种叠加网系统中接收信号的方法、 叠加网系统以 及装置。 以下分别进行详细说明。
实现新旧网络设备共存, 且都能提供各自服务的方法, 可以参照图 1 所示的设备硬件模块图, 基站 1是旧网络设备, 基站 2是新网络设备, 其 中, 基站 1有两个分别可以用于接收或发射信号的射频接口, 基站 2有一 个可以用于接收或者发射信号的射频接口, 和一个用于接收信息的射频接 口; 两个基站通过一个叠加设备实现共用两个天线, 即天线 1和天线 2。 该 叠加设备中至少包括: 2个双工器(双工器 1和双工器 2 )、 2个低噪声放大 器(LNA, Low Noi se Ampl if ier ) ( LNA1和 LNA2 )、 1个合路器。 下面根据 信号的流向对基站 1、 基站 2、 叠加设备、 天线 1和天线 2的工作流程做说 明。
基站 1发射的一路信号经过 Txl/Rxl射频接口, 进入叠加设备中, 经 过双工器 1, 再由天线 1发射出去;
基站 1发射的经过 Tx2/Rx2射频接口的信号, 与基站 2发射的经过基 站 2的 Tx/RxM射频接口的信号, 经过叠加设备中的合路器合成一路信号, 进入叠加设备中的双工器 2, 再由天线 2发射出去;
天线 1接收到信号经过双工器 1再由 LNA1放大, 对放大后的信号进行 滤波,将滤波后的信号分为两路,两路中其中一路信号通过基站 1的 Txl/Rxl 射频接口输入给基站 1,另一路信号通过基站 2的 RxD射频接口输入给基站 2。
天线 2接收到的信号经过双工器 2, 再有 LNA2放大, 对放大后的信号进 行滤波, 再将信号分为两路, 一路信号通过基站 1的 Tx2/Rx2射频接口输入 到基站 1中, 另一路信号通过基站 2的 Tx/RxM射频接口输入到基站 2中。 该通 信系统中还包括滤波器和用于做传输线路匹配的元件, 如电阻等。
本发明实施例还提供一种叠加网系统中接收信号的方法, 为了便于理 解该方法, 首先需要对该接收系统的组成架构做说明, 该系统至少包括: 第一、 二基站, 和一个与第二基站相连的一个天线; 该天线至少包括接收 功能。 还需要理解的是, 通常在叠加网系统中可以将第一基站认为是旧基 站, 第二基站认为是逐渐代替旧基站的新基站。参加图 2所示,该方法包括: 步骤 A1 : 第二基站获取天线上接收到的信号;
步骤 A2: 第二基站将获取到的信号放大;
步骤 A3: 第二基站将放大后的信号发送给第一基站。
通过以上步骤 A1至步骤 A3的说明, 该方法通过第二基站接收信号, 将 信号放大后再发送给第一基站, 使得不需要在天线与第二基站之间增加有 源器件, 就可以使得第一、 二基站分别可以获取到该天线上接收到的信号, 提高了系统的可靠性。 通常天线是具有收发功能的天线, 因此, 在天线与 第二基站之间有叠加网设备, 采用本发明实施例提供的方法, 可以不需要 在叠加网设备中增加用于放大信号的有源设备, 提高了叠加网设备的可靠 性。 本发明实施例提供了一种叠加网系统中接收信号方法, 需要说明的是, 该方法与前一实施例中提供的方法相似, 其不同之处在于, 本实施例提供 的方法是基于对现有网络设备改造最小的原则, 同时达到提高叠加网设备 可靠性的目的, 即与前一实施例相比较, 该实施例中增加了天线共享单元
ASU , 该 ASU实现了不增加第一基站的射频接口, 且可以获取到第二基站放 大后的信号。 而前一实施例中提供的方法中, 需要第一基站中有专门接收 第二基站发送的信号的射频接口, 对现网的改造较多。 下面对本实施例的 具体描述。
该方法包括:
步骤 B1 : 第二基站获取天线上接收到的信号;
步骤 B2 : 第二基站将获取到的信号放大;
步骤 B3: 第二基站将放大后的信号发送给天线共享单元(ASU , At tena Shar ing Uni t );
步骤 B4 : 该 ASU将接收到的信号耦合后发送给第一基站。
其中, 需要说明的是, 通常天线具有接收和发送功能, 对于有两个基 站共用一个天线的情况, 在基站与天线之间具有 ASU , 该 ASU通常用于将两 个基站的两路发射信号合并为一路信号发送出去。 本发明实施例提供的一 种叠加网系统中接收信号的方法是利用现有的网络架构, 不增加第一基站 射频接口的原则上, 由步骤 B3和 B4中, 通过 ASU接收第二基站发送的放大后 的信号, 再将该放大后的信号通过 ASU耦合发送给第一基站。 因此, 没有增 加第一基站的射频接口, 对网络的改造小, 同时, 叠加网设备 ASU中不包括 有源元件, 提高了叠加网设备的可靠性。
本发明实施例提供了一种叠加网系统中接收信号的方法, 本实施例的 目的是针对第一基站为双发基站, 即第一基站有两个收发模块的情况下, 具体实施一种叠加网系统中接收信号的方法。
在对本发明实施例做说明前, 对执行该方法的物理实体做简要说明, 该叠加网系统中包括: 至少两根天线, 该两根天线是两根收发天线, 第一 基站、 第二基站和一个天线共享单元 ASU。 其中, 第一基站中至少包括两个 收发模块, 即第三收发模块和第二收发模块, 第二基站中至少包括一个收 发模块, 即第一收发模块。 第一基站与其中一根天线物理相连, 另一根天 线与 ASU—端相连, ASU还分别与第一基站和第二基站物理相连。
下面对该方法做说明, 参加图 3所示, 包括:
步骤 1 : 第二基站获取一个天线上接收到的信号;
其中, 需要说明的是, 步骤 2中的天线是与步骤 1中天线是不同的。 还 需要理解的是, 实际上, 在硬件实现时, 第二基站与天线之间还需要连接 ASU , 该 ASU的作用在接收信号时用于与发送的信号隔离, 获取更好的接收 效果。
步骤 2 : 第二基站将获取的信号放大;
步骤 3: 第二基站将放大后的信号发送给第一基站中的第二收发模块; 其中, 步骤 3中第二基站中发送给第一基站中第二收发模块的信号, 可 以通过 ASU转发给第一基站。
步骤 4: 第一基站中的第二收发模块接收第二基站发送的信号。
其中, 步骤 4中第一基站接收到的第二基站发送的信号, 可以是作为第 一基站中第二收发模块的主集接收输入信号。
以上步骤 1至步骤 4实现了第二基站和第一基站中的第二收发模块分别 获取到其中一个天线上接收到的信号, 由于第一基站为双发基站, 该第一 基站中包括第三收发模块需要获取到另一个天线上接收到的信号, 因此, 该方法还包括:
步骤 5 : 第一基站中的第三收发模块获取另一个天线上接收到的信号; 步骤 6 : 第一基站中第三收发模块将接收到的信号放大;
步骤 7: 第一基站中第三收发模块将放大的信号发送给第二基站和第一 基站中的第二收发模块。
其中, 步骤 7中第一基站中第三收发模块将放大的信号分为两路分别发 送给第二基站和第一基站中的第二收发模块的物理实现, 可以是增加耦合 器 Coup l er来实现的。
通过以上对本发明实施例提供的一种叠加网系统中接收信号的方法的 说明, 该叠加网系统中第二基站获取一根天线上接收到的信号, 将该信号 放大输出给第一基站,其中, 第二基站中用作放大信号的有源设备,如 LNA, 可以由第二基站来监控, 与现有技术中将一根天线上接收到的信号通过 LNA 分为两路信号分别输入给两个基站的做法相比, 具有更高的可靠性。
本发明实施例提供一种叠加网系统,参见图 4所示,包括:第一基站 401、 第二基站 402和天线一 403;
其中, 第二基站 402, 用于获取天线一 403上接收到的信号, 将获取的 信号放大, 将放大后的信号发送给第一基站 401 ;
第一基站 401, 用于接收第二基站 402发送的放大后的信号。
通过以上对该实施例提供的一种叠加网系统的说明, 其中, 第二基站 402接收信号, 将信号放大后再发送给第一基站 401, 使得不需要在天线一 403与第二基站 402之间增加有源器件, 就可以使得第一、 二基站分别可以 获取到该天线上接收到的信号, 提高了系统的可靠性。
本发明实施例提供了另一种叠加网系统, 仍然参见图 4所示, 该实施例 提供的叠加网系统与前一实施例提供的叠加网系统是属于同一个发明构 思, 具体说明如下:
该叠加网系统可以包括: 第一基站 401、 第二基站 402、 天线一 403和天 线共享单元 ASU404;
其中, 第二基站 402用于获取天线一上接收到的信号, 将所述获取到的 信号放大, 将放大后的信号发送给 ASU404;
ASU404用于接收第二基站 402发送的放大后的信号, 并将所述信号耦合 后发送给第一基站 401 ;
第一基站 401用于接收所述天线共享单元 ASU404发送的信号。
其中, 需要说明的是, ASU404通常用于将两个基站的两路发射信号合并为 一路信号发射出去。 本发明实施例提供的一种叠加网系统是利用现有的网 络架构, 不增加第一基站 401射频接口的原则上, 通过 ASU404接收第二基站 402发送的放大后的信号, 再将该放大后的信号通过 ASU404耦合发送给第一 基站 401。 因此, 没有增加第一基站的射频接口, 对网络的改造小。
本发明实施例还提供了一种叠加网系统, 参加图 5所示, 包括: 第一基 站 10、 第二基站 20、 天线 40、 天线 50。 其中, 第一基站 10至少包括第三收 发模块 101、 第二收发模块 102; 第二基站 20至少包括: 第一收发模块 201和 放大单元 203。 通常, 第一基站为叠加网系统中的旧基站, 第二基站为叠加 网系统中要逐渐带来旧基站的新基站。
其中, 第一基站 10, 用于获取天线 40上接收到的信号, 接收第二基站 20发送的信号; 其中, 第一基站 10中的第三收发模块 101用于获取天线 40接 收到的信号; 第一基站 10中的第二收发模块 103用于接收第二基站发送的信 号;
第二基站 20, 用于获取天线 50上接收到的信号, 将该信号放大, 发送 给第一基站 10中的第二收发模块 103, 作为第二收发模块 103的主集接收输 入信号 MRI。
其中, 第二基站 20中的第一收发模块 201用于获取天线 50上接收到的信 号, 其中, 需要说明的是, 在图 5中第一收发模块 201获取的天线 50上接收 到的信号, 是经过了 ASU30, 事实上, ASU30对接收信号可以认为是传输线 路, 不做处理; 放大单元 203, 用于将获取的信号放大; 第一收发模块 201 用于将该放大的信号发送给第一基站 10中的第二收发模块 103。 需要理解的 是, 该放大单元 203在物理上可以是 LNA来实现的。 还需要说明的是, 第一 收发模块 201发送的放大的信号为主集放大输出信号 MR0。
ASU30用于接收第一收发模块 201发送的放大后的信号, 将放大后的信 号发送给第二收发模块 103。 通过 ASU 30执行转发第一收发模块 203放大后的 信号给第二收发模块的做法。
通过以上本发明实施例提供了一种叠加网系统的说明, 该叠加网系统 中第二基站 20获取天线 50上接收到的信号, 将该信号放大输出给第一基站 10, 其中, 第二基站 20中用作放大信号的有源设备, 可以由第二基站 20来 监控, 用作放大信号的该有源设备通常是 LNA; 与现有技术中将一根天线上 接收到的信号通过 LNA分为两路信号分别输入给两个基站的做法相比, 具有 更高的可靠性。
需要理解的是, 本发明实施例提供的一种叠加网系统中第一基站 10中 的第三收发模块 101还用于经过天线 40将信号发射出去, 将获取的主集放大 输出信号输出给第二收发模块 103和第一收发模块 201。 在第一基站 10中将 第三收发模块 101中输出的主集放大输出信号分为两路信号的过程可以是 由耦合器 Coupler l 05实现的。 因此, 第一基站 10中还包括耦合器 105, 用于 将第三收发模块 101获取的主集放大输出信号分为两路分别发送给第二收 发模块 103和第一收发模块 201。
第一基站 10中的第二收发模块 103还用于发送信号, 该信号与第二基站 20发送的信号合成一路信号, 经过天线 50发送出去。 因此, 该叠加网系统 还应该包括 ASU30 , 用于将第二收发模块 103发送的信号和第二基站 20发送 的信号合成一路, 经过天线 50发送出去。
第二收发模块 103还用于将获得的主集放大输出信号发送给第三收发 模块 101, 作为第三收发模块 101的分集接收输入信号。 其中, 还需要说明 的是, 第二收发模块 103中还将获取的第二基站 20发送的放大后的信号, 再 放大, 作为第二收发模块 103的主集放大输出信号 MR0输出给第三收发模块 101, 作为第三收发模块 101的分集接收输入信号 DR I。
第二基站 20中的第一收发模块 201还用于发送信号, 该信号与第二收发 模块 103中发送的信号合成一路信号, 经过天线 50发送出去。
其中, 还需要说明的是 ASU30还用于接收第一收发模块 201发送的放大 后的信号, 将放大后的信号发送给第二收发模块 103。 通过 ASU30执行转发 第一收发模块 203放大后的信号给第二收发模块的做法, 可以在保证对现有 第一基站的改造最小的目的, 不用增加多余射频接口, 从而也可以确保信 号在线路上的损耗最小。
通过以上对本发明实施例提供的一种叠加网系统的说明, 该叠加网系 统第二基站 20获取天线 50上接收到的信号, 将该信号放大输出给第一基站 10 , 其中, 第二基站 20中用作放大信号的有源设备, 如 LNA, 可以由第二基 站 20来监控, 与现有技术中将一根天线上接收到的信号通过 LNA分为两路信 号分别输入给两个基站的做法相比, 具有更高的可靠性。
本发明实施例提供了一种叠加网装置, 该装置也可以称为天线共享单 元(ASU, Antenna Shar ing Uni t ), 为了便于说明以下文字中将叠加网装 置称为天线共享单元, 参见图 6所示, 该 ASU可以包括: 第一双工器 100、 第 二双工器 200、 合路器 300、 耦合器 400、 射频接口 1、 射频接口 2、 射频接口 3、 和射频接口 4。 其中, 当该装置通过外接的天线接收到信号后, 顺序的经过第一双工 器 100和第二双工器 200, 信号由第二双工器 200输出给独立于该装置的基 站, 该基站通常是网络中增加的新的设备。 为了便于对本发明实施例做说 明, 可以理解为基站 1为网络中的旧设备, 基站 2为网络中的新设备。
当基站 1和基站 2要同时发送信号, 且两个基站需要共用一个天线时, 基站 2发射的信号通过射频接口 3进入叠加网装置, 经过叠加网装置中的第 二双工器 200, 与基站 1发射的、 由射频接口 1进入叠加网装置的信号在合路 器 300中合并为一路信号, 合并后的信号经过第一双工器 100后, 通过射频 接口 4从叠加网设备输出, 该信号通过与射频接口 4相连的天线发射出去。
还需要说明的是, 基站 2接收到的主集接收信号, 经过放大后形成主集 放大输出 MR0信号, 通过基站 2的射频接口发射给 ASU, 由图 6所示, 在 ASU中 将 MR0信号通过耦合器 400, 耦合到基站 1与 ASU中合路器 100相连的线路上, 作为基站 1中的一个主集接收输入。 即耦合器 400与 ASU中与基站 1相连的射 频接口 1与 ASU中射频接口 2相连。
需要说明的是, 在 ASU内部还包括一个滤波器, 将基站 2输出的 MR0信号 以最优的效果输入给基站 1中 Tx2 /Rx2射频接口处。 即在射频接口 2与耦合器 400之间增加滤波器, 该滤波器的作用是防止基站 1发送的信号输入到基站 2 中。
通过以上对本实施例提供的 ASU的说明, 该 ASU可以将从天线接收到的 信号分别输入给新旧两个基站, 该 ASU可以将新基站主集接收输出的信号输 入到旧基站的射频接口处, 作为旧基站的主集接收信号。 在该 ASU中不包含 有源器件, 比现有叠加设备有更高的可靠性。
本发明实施例还提供了一种通信系统,参加图 7所示,该通信系统包括: 第三基站 61、 第四基站 62、 天线共享单元 ASU63、 天线 64和天线 65。
其中, 需要说明的是, 第三基站 61可以认为是一个网络中的旧的设备, 而第四基站 62可以认为是网络中的新设备。
首先, 针对两个基站发射信号的过程, 对该通信系统中各组成部分工 作做说明。第三基站 61可以包括两个收发模块, 即包括: 第三收发模块 611、 第二收发模块 613和耦合器 615。 其中, 第三收发模块 611中发射的信号的频 率可以是两个连续的频点的任意组合,即频点 F3和 /或?4;第二收发模块 61 3 中发射的信号的频率也可以是两个连续的频点的任意组合, 即频点 F1和 /或 F2。 即第三收发模块 611与第二收发模块 613是两个处理不同频率的信号的 模块。
第三基站 61中的第三收发模块 611将要发射的信号通过与 Txl/Rxl射频 接口相连的天线 64发射出去; 第三基站 61中的第二收发模块 612将要发射的 信号由 Tx2/Rx2射频接口发送给 ASU63; 第四基站 62中的第一收发模块 621将 要发送的信号通过 Tx/RxM射频接口发送给 ASU63 , 其中, 第一收发模块 621 中发射的信号的频率可以是三个连续的频点的任意组合,即 F5、 F6和 /或?7。
ASU63中的合路器 300将第三基站 61中第二收发模块 612发射的信号, 和 第四基站 20中第一收发模块 621发射的信号, 合并成为一路信号, 该路信号 经过 ASU63中的第一双工器 100, 再由天线 65发射出去。
以上是针对该通信系统中的第三基站 61和第四基站 62发射信号的过 程, 对该通信系统中各模块做说明。 下面针对该通信系统接收信号的过程, 对通信系统中各模块做说明。
天线 64接收信号, 将接收到的信号通过 Tx 1 /Rx 1射频接口输入给第三基 站 61的第三收发模块 611, 第三收发模块 611将接收到的信号, 进行放大, 分别输入给第三基站 61中的第二收发模块 613和第四基站 62中的第一收发 模块 621,作为第二收发模块 613和第一收发模块 621的分集接收输入。其中, 第三收发模块 611中放大输出的信号, 即第三收发模块 611的主集放大输出 MR0 , 是通过第三基站 61中的耦合器 Couple615来实现将一路信号分为两路 信号, 分别输入给第二收发模块 613和第一收发模块 621。
天线 65接收信号, 将接收到的信号输入到 ASU63中, 信号顺序的经过 ASU63中的第一双工器 100和第二双工器 200, 传输到第四基站 62的 Tx/RxM射 频接口, 进入第一收发模块 621, 第一收发模块 621将该信号作为主集接收 输入 MRI信号, 第一收发模块 621将主集接收输入 MRI信号放大输出该 ASU , 该信号耦合到第三基站 61中, 作为第二收发模块 613的主集接收输入 MRI信 号。
需要说明的是, 第一收发模块 621也可以将 MR I信号放大直接输出给第 二收发模块 613, 作为第二收发模块 613的 MRI信号。
第二收发模块 613将接收到的 MRI信号放大, 作为主集放大输出 MR0信号 输出给第三收发模块 611; 第二收发模块 613接收第三收发模块发送的主集 放大输出信号, 作为第二收发模块 613的分集接收输入信号。
还需要说明的是, 第一收发模块 621接收第三收发模块 611发送的主集 放大输出信号, 作为第一收发模块 621的分集接收输入信号。
为了使得天线 65发射的信号能有更大的覆盖面积, 即减小两路发射信 号合并后的插入损耗, 通常选择频点不连续的两路信号进行合并, 即由第 二收发模块 613发射的信号与第一收发模块 621中发射的信号进行合并, 此 时, 两路信号合并为一路信号后损耗的能量较小。
通过以上对该通信系统的说明, 该通信系统中第三基站 61直接与天线 64相连,二者之间除了传输线路,没有多余的造成插入损耗的元件;在 ASU63 中将天线 65接收到的信号发送给第四基站 62, 第四基站 62将接收到的信号 经由 ASU耦合, 输入到第三基站 61的第二收发模块 613中; ASU将第三基站 61 发送的信号和第四基站 62发送的信号合并为一路信号经由天线 65发射出 去。该叠加网系统中的 ASU中不包含有源元件,增强了系统的可靠性; 该 ASU 中使用比现有技术更少的元件, P争低了组成该系统的成本; 天线 64与第三 基站 61之间减少了插入损耗, 通过该系统可以实现较好的发射和接收信号 的效果。
为了统一全文的名称, 在本实施例中所说明的第三基站 61也可以是现 有网络设备, 而第四基站 62可以是网络中叠加的新设备。
以上对本发明实施例所提供一种叠加网系统中接收方法、 叠加网系统 以及叠加网装置进行了详细介绍, 本文中应用了具体个例对本发明的原理 及实施方式进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方 法及其核心思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容 不应理解为对本发明的限制。
本发明实施例中的 "接收" 一词可以理解为主动从其他模块获取也可 以是接收其他模块发送来的信息。
本领域技术人员可以理解附图只是一个优选实施例的示意图, 附图中 的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描 述分布于实施例的装置中, 也可以进行相应变化位于不同于本实施例的一 个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以进一步 拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
权利要求的内容记载的方案也是本发明实施例的保护范围。
本领域普通技术人员可以理解上述实施例方法中的全部或部分处理是 可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机 可读存储介质中。
以上所述仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种叠加网系统中接收信号的方法, 所述叠加网系统包括第一基站 和第二基站, 其特征在于, 包括:
第二基站获取天线上接收到的信号;
所述第二基站将所述获取到的信号放大;
所述第二基站将放大后的信号发送给第一基站。
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 所述第二基站将放大后的信号发送给天线共享单元, 用于所述天线共 享单元将信号耦合后发送给所述第一基站。
3、 一种叠加网系统, 其特征在于, 包括: 第一基站、 第二基站和天线 —; 其中,
第二基站, 用于获取天线一上接收到的信号, 将所述获取到的信号放 大, 将放大后的信号发送给所述第一基站;
第一基站, 用于接收所述第二基站发送的放大后的信号。
4、 根据权利要求 3所述的系统, 其特征在于, 所述系统还包括: 天线共享单元 ASU, 用于接收第二基站发送的放大后的信号, 并将所述 信号耦合后发送给第一基站;
所述第二基站通过所述 ASU将放大的信号发送给所述第一基站; 所述第一基站用于接收所述天线共享单元 ASU发送的信号。
5、根据权利要求 3或 4所述的系统, 其特征在于, 所述第二基站包括: 第一收发模块, 用于获取天线一上接收到的信号, 将放大后的信号发 送给所述第一基站或者所述 ASU;
放大单元, 用于将所述第一收发模块获取到的信号放大, 再将放大后 的信号发送给所述第一收发模块。
6、 根据权利要求 5所述的系统, 其特征在于, 所述放大单元为低噪声 放大器 LNA。
7、 根据权利要求 5所述的系统, 其特征在于, 所述叠加网系统还包括 与第一基站相连的天线二, 所述第一基站包括第二收发模块和第三收发模 块:
第三收发模块, 用于获取天线二上接收到的信号, 将所述信号放大后 发送给所述第二收发模块和 /或第一收发模块;
第二收发模块, 用于接收所述第二基站或者所述 ASU发送的放大后的 信号, 和 /或接收所述第三收发模块发送的放大后的信号。
8、 根据权利要求 7所述的系统, 其特征在于, 所述第一基站还包括耦 合器, 用于将所述第三收发模块放大后的信号发送给第二收发模块和第二 基站的第一收发模块。
9、 一种叠加网装置, 其特征在于, 包括:
耦合器, 用于将第二基站放大后的信号耦合发送给第一基站。
1 0、 ^居权利要求 9 所述的叠加网装置, 其特征在于, 所述叠加网装 置还包括:
合路器, 用于将第一基站和第二基站发送的信号合并为一路信号。
11、 根据权利要求 9或 10所述的叠加网装置, 其特征在于, 所述叠加网 装置还包括滤波器, 所述滤波器与所述耦合器相连, 用于阻止所述第一基 站发送的信号输入到所述第二基站中。
PCT/CN2009/076035 2008-12-26 2009-12-25 一种叠加网系统中接收信号的方法、叠加网系统以及装置 WO2010072173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810188815.1 2008-12-26
CN2008101888151A CN101459986B (zh) 2008-12-26 2008-12-26 一种叠加网系统中收发信号的方法、叠加网系统

Publications (1)

Publication Number Publication Date
WO2010072173A1 true WO2010072173A1 (zh) 2010-07-01

Family

ID=40770541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076035 WO2010072173A1 (zh) 2008-12-26 2009-12-25 一种叠加网系统中接收信号的方法、叠加网系统以及装置

Country Status (2)

Country Link
CN (1) CN101459986B (zh)
WO (1) WO2010072173A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278721A1 (en) * 2009-06-30 2011-01-26 Huawei Device Co., Ltd. Apparatus, system, and method for sharing antenna and feeder

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459986B (zh) * 2008-12-26 2011-07-06 华为技术有限公司 一种叠加网系统中收发信号的方法、叠加网系统
CN101895890B (zh) * 2010-05-06 2013-03-20 华为技术有限公司 对多系统信号的进行处理的方法、装置及系统
CN106304106B (zh) * 2015-06-26 2019-05-28 华为技术有限公司 信号传输装置及系统
CN105530039B (zh) * 2015-12-23 2019-05-28 通号通信信息集团上海有限公司 合路器、合路装置和信号合路系统
CN110767985B (zh) * 2019-09-24 2023-03-17 深圳三星通信技术研究有限公司 基站天线及基站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1294045A1 (en) * 2001-09-17 2003-03-19 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Sharing of antennas by base station nodes of telecommunications network
CN1409932A (zh) * 1999-11-08 2003-04-09 高通股份有限公司 基站非带限天线共享方法和设备
CN101459986A (zh) * 2008-12-26 2009-06-17 华为技术有限公司 一种叠加网系统中接收信号的方法、叠加网系统以及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1409932A (zh) * 1999-11-08 2003-04-09 高通股份有限公司 基站非带限天线共享方法和设备
EP1294045A1 (en) * 2001-09-17 2003-03-19 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Sharing of antennas by base station nodes of telecommunications network
CN101459986A (zh) * 2008-12-26 2009-06-17 华为技术有限公司 一种叠加网系统中接收信号的方法、叠加网系统以及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278721A1 (en) * 2009-06-30 2011-01-26 Huawei Device Co., Ltd. Apparatus, system, and method for sharing antenna and feeder
EP2541779A2 (en) 2009-06-30 2013-01-02 Huawei Technologies Co., Ltd. Apparatus and Method for Sharing Antenna and Feeder
EP2541779A3 (en) * 2009-06-30 2013-06-05 Huawei Technologies Co., Ltd. Apparatus and Method for Sharing Antenna and Feeder

Also Published As

Publication number Publication date
CN101459986A (zh) 2009-06-17
CN101459986B (zh) 2011-07-06

Similar Documents

Publication Publication Date Title
JP6907289B2 (ja) トランスミッタシステム、高周波モジュールおよび無線装置
US10135482B2 (en) Wireless transceiver with remote frontend
WO2010072173A1 (zh) 一种叠加网系统中接收信号的方法、叠加网系统以及装置
WO2022028303A1 (zh) 射频电路和电子设备
WO2013189404A1 (zh) 一种多工器
EP2761773A2 (en) Point-to-multipoint microwave communication
WO2011076076A1 (zh) 一种多路接收装置、接收机和基站
CN109195140A (zh) 一种射频模块、d2d通信方法及移动终端
US20210167810A1 (en) Radio Frequency Front End for a Full Duplex or Half Duplex Transceiver
WO2011131092A1 (zh) 射频信号环回方法及室外单元
WO2013063923A1 (zh) 射频前端模块、多模终端和多模终端发送信号的方法
EP3065317B1 (en) Co-frequency range combiner/splitter and multi-system combining platform
CN113366761A (zh) 高频前端电路和通信装置
WO2022143453A1 (zh) 射频电路及电子设备
US9800301B2 (en) Antenna sharing device for wireless access node systems in wireless communication network
WO2024067406A1 (zh) 射频电路和电子设备
US9698859B2 (en) Device for transmitting and receiving carrier aggregation signal
WO2024001132A1 (zh) 一种射频前端器件及电子设备
WO2023280159A1 (zh) 信号发射方法及无线通信装置
CN100388825C (zh) 一种信号合路装置及利用其实现的基站共天馈系统
US7733814B1 (en) Separation and combination of multiple channels in a bi-directional time-division communication system
JP4865870B2 (ja) アンテナシステムにおける受信信号を導く装置及び方法
WO2023020134A1 (zh) 时分双工系统、芯片和信号放大器
KR101911356B1 (ko) 시분할 복신 및 주파수 분할 복신 방식을 사용하는 rf 중계장치
KR100957028B1 (ko) 이동통신 중계기의 양방향 신호의 경로 단일화 회로장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834126

Country of ref document: EP

Kind code of ref document: A1