WO2023280159A1 - 信号发射方法及无线通信装置 - Google Patents

信号发射方法及无线通信装置 Download PDF

Info

Publication number
WO2023280159A1
WO2023280159A1 PCT/CN2022/103909 CN2022103909W WO2023280159A1 WO 2023280159 A1 WO2023280159 A1 WO 2023280159A1 CN 2022103909 W CN2022103909 W CN 2022103909W WO 2023280159 A1 WO2023280159 A1 WO 2023280159A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
antenna
signal
combiner
processing circuit
Prior art date
Application number
PCT/CN2022/103909
Other languages
English (en)
French (fr)
Inventor
刘畅
黄菲
孙天慧
师平洋
钟文浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22836908.8A priority Critical patent/EP4351029A1/en
Publication of WO2023280159A1 publication Critical patent/WO2023280159A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to a signal transmitting method and a wireless communication device.
  • 5G (5th Generation Mobile Communication Technology, fifth-generation mobile communication technology) terminal devices are in a scenario of EN-DC (LTE (Long Term Evolution, long-term evolution)-NR (New Redio, new air interface) dual connection)
  • 4G (4th Generation Mobile Communication Technology, fourth generation mobile communication technology) communication and 5G communication can be carried out.
  • 4 antennas are set in the terminal device, 2 antennas are used for transmitting and receiving 4G signals, and 2 antennas are used for transmitting and receiving 5G signals.
  • 5G supports SRS (Sounding Reference Signal, channel sounding reference signal) rotation: 1T2R SRS ("T” transmit, send; “R” receive, receive), that is, send SRS signals on two receiving antennas in rotation; and 1T4R SRS, That is, the SRS signals are sent in turn on the four receiving antennas.
  • 1T4R SRS Sounding Reference Signal, channel sounding reference signal
  • the base station can obtain the uplink channel information sent by all four antennas; compared with 1T2R SRS, the uplink channel information obtained by the base station is more comprehensive, and the channel estimation of the base station is more accurate, so that more accurate Downlink resource allocation to increase the downlink peak rate.
  • the terminal equipment adopts 1T4R SRS, although it can increase the downlink peak rate, it will occupy the antennas for 4G signal transmission and reception, making the two antennas unable to transmit 4G signals, interrupting LTE services, resulting in a drop in LTE service rate, or even disconnection. If 1T2R SRS is used, although it will not occupy the antenna used for 4G signal transmission and reception, it will reduce the peak downlink rate.
  • the present application provides a signal transmission method and a wireless communication device; the method can achieve 4-way transmission of the SRS of the first network in turn without interrupting the services of the second network.
  • the embodiment of the present application provides a wireless communication device, including:
  • An antenna group including: a first antenna, a second antenna, a third antenna, a fourth antenna and a fifth antenna;
  • the radio frequency front-end module includes a combiner, and the combiner is coupled to the first antenna;
  • the transmitter transmits a first signal and a second signal from the first antenna; wherein, the first signal is a channel sounding reference signal SRS of the first network, and the second signal is a signal of the second network.
  • the first antenna, the third antenna, the fourth antenna, and the fifth antenna can be used to implement 4-way transmission of SRS in turn, thereby increasing the downlink peak rate.
  • the wireless communication device is about to send the SRS of the first network through the first antenna, the wireless communication device is also sending the signal of the second network from the first antenna.
  • the SRS signal of the first network can be combined by the combiner. Synthesize one signal with the signal of the second network and transmit it from the first antenna, which can realize the transmission of the signal of the second network without interrupting the transmission of the signal of the second network during the 4-way transmission of the SRS of the first network, so as to realize the non-interruption of the second network business.
  • the radio frequency front-end module further includes: a first switch and a second switch; the combiner is coupled to the first switch, and the first switch is coupled to the first antenna and the second antenna; the second switch is coupled to the third An antenna, a fourth antenna, a fifth antenna, and a combiner; a processing circuit, also coupled to the first switch and the second switch, for controlling the state of the second switch, and transmitting from the third antenna, the fourth antenna, and the fifth antenna in turn The first signal; control the state of the second switch, send the first signal to the combiner, and send the second signal to the combiner; and control the state of the first switch, sequentially through the combiner and the first switch from The first antenna transmits a first signal and a second signal.
  • the radio frequency front-end module further includes a third switch, and the third switch is coupled to the first switch and the combiner; the processing circuit is also coupled to the third switch, used When in the first communication scene, control the state of the third switch, and send the second signal to the combiner; the processing circuit is also used to control the state of the third switch and the first switch in the second communication scene, sequentially The second signal is transmitted from the first antenna through the third switch, and the first switch. Furthermore, by controlling the state of the third switch, in the first communication scenario, the second signal is sent to the combiner, and the transmission of the signal of the second network is not interrupted during the SRS process of the 4-way transmission of the first network . And in the second communication scenario, the second signal is directly sent to the first switch to be transmitted from the first antenna, so that the second signal does not need to pass through the combiner, reducing the loss of the transmitted signal.
  • the third switch is coupled to the first switch and the combiner
  • the processing circuit is also coupled to the third switch, used When in the first communication scene, control the
  • the processing circuit is further configured to control the states of the third switch and the first switch in the first communication scenario, and sequentially pass through the first switch, combiner and The third switch receives a third signal from the first antenna; in the second communication scenario, controlling the states of the third switch and the first switch, and receiving a fourth signal from the first antenna through the first switch and the third switch in sequence; wherein, The third signal and the fourth signal are signals of the second network.
  • the signal received by the processing circuit does not need to pass through the combiner, thereby reducing the loss of the received signal.
  • the first communication scenario includes an EN-DC scenario; the second communication scenario includes a scenario where only a 4G network exists.
  • the embodiment of the present application provides a signal transmitting method.
  • the method is applied to a wireless communication device, the device includes a processing circuit, a radio frequency front-end module and an antenna group, the radio frequency front-end module includes: a combiner, and the antenna group includes: a first antenna, a second antenna, a third antenna, a fourth antenna antenna and the fifth antenna, the method includes: the processing circuit transmits the first signal from the third antenna, the fourth antenna and the fifth antenna in turn; The first antenna transmits a first signal and a second signal; wherein, the first signal is a channel sounding reference signal SRS of the first network, and the second signal is a signal of the second network.
  • SRS channel sounding reference signal
  • the radio frequency front-end module further includes: a first switch and a second switch; the processing circuit transmits the first signal from the third antenna, the fourth antenna and the fifth antenna in turn, including: the processing circuit controls the state of the second switch , the third antenna, the fourth antenna and the fifth antenna transmit the first signal in turn; the first signal and the second signal are sent to the combiner, and the first signal and the second signal are transmitted from the first antenna through the combiner, including : The processing circuit controls the state of the second switch, sends the first signal to the combiner, and sends the second signal to the combiner; and controls the state of the first switch, sequentially passes through the combiner and the first switch from the first An antenna transmits a first signal and a second signal.
  • the processing circuit transmits the first signal from the third antenna, the fourth antenna and the fifth antenna in turn, including: the processing circuit controls the state of the second switch , the third antenna, the fourth antenna and the fifth antenna transmit the first signal in turn; the first signal and the second signal are sent to the combiner, and the first
  • the radio frequency front-end module further includes a third switch; sending the second signal to the combiner includes: when the wireless communication device is in the first communication scene, The processing circuit controls the state of the third switch, and sends the second signal to the combiner; the method further includes: when the wireless communication device is in the second communication scene, the processing circuit controls the states of the third switch and the first switch, sequentially passing The third switch and the first switch transmit the second signal from the first antenna.
  • the processing circuit controls the states of the third switch and the first switch, and sequentially passes through the first switch, the combiner and a third switch receiving a third signal from the first antenna;
  • the processing circuit controls the states of the third switch and the first switch, and sequentially receives a fourth signal from the first antenna through the first switch and the third switch;
  • the third signal and the fourth signal are signals of the second network.
  • the first communication scenario includes an EN-DC scenario; the second communication scenario includes a scenario where only a 4G network exists.
  • the second aspect and any implementation manner of the second aspect correspond to the first aspect and any implementation manner of the first aspect respectively.
  • technical effects corresponding to the second aspect and any implementation manner of the second aspect reference may be made to the technical effects corresponding to the above-mentioned first aspect and any implementation manner of the first aspect, and details are not repeated here.
  • the embodiment of the present application provides a radio frequency front-end module, including: a first switch, a second switch, a third switch and a combiner; the second switch is connected with the processing circuit, the third antenna, and the fourth antenna respectively , the fifth antenna and the combiner are coupled to receive the first signal from the processing circuit in the first communication scenario, and send the first signal to the third antenna, the fourth antenna, and the fifth antenna in turn according to the control of the processing circuit and a combiner; a third switch, respectively coupled to the processing circuit, the combiner and the first switch, for receiving the second signal from the processing circuit in the first communication scenario, and sending the second signal according to the control of the processing circuit to the combiner; and for receiving the second signal from the processing circuit in the second communication scenario, and sending the second signal to the first switch according to the control of the processing circuit; the combiner, respectively, with the first switch and the second The switch is coupled to the third switch, and is used for receiving the second signal from the third switch and the first signal from the second switch in the first communication
  • the third aspect and any implementation manner of the third aspect correspond to the first aspect and any implementation manner of the first aspect respectively.
  • technical effects corresponding to the third aspect and any implementation manner of the third aspect reference may be made to the technical effects corresponding to the above-mentioned first aspect and any implementation manner of the first aspect, and details are not repeated here.
  • the embodiment of the present application provides a chip.
  • the chip includes: at least one processor and an interface, and optionally a memory; the processor is coupled to the radio frequency front-end module through the interface.
  • At least one processor is configured to invoke instructions stored in the memory to execute the second aspect and the steps executed by the processing circuit in any one implementation manner of the second aspect.
  • the fourth aspect and any implementation manner of the fourth aspect correspond to the second aspect and any implementation manner of the second aspect respectively.
  • the technical effects corresponding to the fourth aspect and any one of the implementation manners of the fourth aspect refer to the above-mentioned second aspect and the technical effects corresponding to any one of the implementation manners of the second aspect, and details are not repeated here.
  • the embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is run on the computer or the processor, the computer or the processor is made to execute the second aspect or the method in any possible implementation manner of the second aspect.
  • the fifth aspect and any implementation manner of the fifth aspect correspond to the second aspect and any implementation manner of the second aspect respectively.
  • the technical effects corresponding to the fifth aspect and any one of the implementation manners of the fifth aspect refer to the above-mentioned second aspect and the technical effects corresponding to any one of the implementation manners of the second aspect, which will not be repeated here.
  • the embodiment of the present application provides a computer program product.
  • the computer program product includes a software program, and when the software program is executed by a computer or a processor, the method in the second aspect or any possible implementation manner of the second aspect is executed.
  • the sixth aspect and any implementation manner of the sixth aspect correspond to the second aspect and any implementation manner of the second aspect respectively.
  • the technical effects corresponding to the sixth aspect and any one of the implementation manners of the sixth aspect refer to the above-mentioned second aspect and the technical effects corresponding to any one of the implementation manners of the second aspect, and details are not repeated here.
  • FIG. 1 is an exemplary application scenario diagram of an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram showing the state of switches corresponding to the 4-way SRS of the wireless communication device by way of example;
  • FIG. 4 is a schematic structural diagram of another wireless communication device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of yet another wireless communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of yet another wireless communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an exemplary device
  • FIG. 8 is a schematic structural diagram of the chip shown exemplarily.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than describing a specific order of the target objects.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • the embodiments of the present application may be applied in an LTE-NR scenario.
  • this embodiment of the present application may be applied to an EN-DC scenario (a scenario in an LTE-NR scenario).
  • FIG. 1 exemplarily shows an application scenario diagram of the embodiment of the present application.
  • the wireless communication system 100 in the EN-DC scenario may include: a 4G core network 110 , a 4G base station 120 , a 5G base station 130 and a terminal device 140 .
  • the 4G base station 120 is connected to the 4G core network 110 as a primary base station
  • the 5G base station 130 is connected to the 4G base station 120 as a secondary base station
  • the terminal device 140 can be connected to the 4G base station 120 and the 5G base station 130 respectively.
  • the terminal device can perform 4G communication and 5G communication at the same time.
  • the terminal device 140 can transmit 5G SRS to the 5G base station 130.
  • the 5G base station 130 can perform uplink channel estimation according to the 5G SRS, and then perform downlink resource allocation according to the uplink channel estimation result.
  • the terminal device supports two rotation strategies of 1T2R and 1T4R. Compared with the 1T2R rotation strategy, the downlink peak rate is higher when using the 1T4R rotation strategy.
  • two antennas of a 4-antenna terminal device in the prior art are used for 4G communication, and two antennas are used for 5G communication. If the 1T4R rotation strategy is adopted, 4G services will be interrupted. Therefore, in order to avoid the impact on the 4G service of the terminal equipment when the 1T4R transmission strategy is adopted, the 4-antenna terminal equipment usually adopts the 1T2R transmission strategy, so that the peak downlink rate of the terminal equipment will be affected.
  • the 6-antenna terminal device In addition, in the prior art, 2 antennas are added on the basis of 4 antennas to obtain a 6-antenna terminal device. Two antennas of the 6-antenna terminal device are used for 4G communication, and 4 antennas are used for 5G communication, so the 6-antenna terminal device can adopt the 1T4R rotation mechanism.
  • the space of the terminal equipment is limited, adding two antennas will result in a smaller space for the two antennas, poor antenna performance, and will increase the cost of the terminal equipment.
  • the embodiment of the present application provides a wireless communication device, which can be set in the terminal device 140, and can transmit SRS by using the 1T4R round-robin strategy without interrupting the 4G service. Guaranteed downlink peak rate.
  • FIG. 2 exemplarily shows a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • the wireless communication device 200 shown in FIG. 2 is only an example of a wireless communication device, and the wireless communication device 200 may have more or fewer components than those shown in the figure, two or more components may be combined, or Different component configurations are possible.
  • the various components shown in Figure 2 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the wireless communication device 200 may include: a processing circuit 210 , a radio frequency front-end module 220 and an antenna group 230 .
  • the processing circuit 210 may be coupled to the radio frequency front-end module 220 , and the radio frequency front-end module 220 may be coupled to the antenna group 230 .
  • the processing circuit 210 may include a radio frequency processing circuit such as a transceiver, which may be used to receive a baseband signal from the baseband processing circuit and perform radio frequency modulation on the baseband signal to obtain a radio frequency modulated signal and send it to the radio frequency front-end module.
  • the radio frequency processing circuit can also be used to receive a signal from the radio frequency front-end module, perform radio frequency demodulation on the signal, obtain the demodulated signal and send it to the baseband processing circuit for processing.
  • the processing circuit 210 may include a baseband processing circuit and a radio frequency processing circuit.
  • the baseband processing circuit is coupled to the radio frequency processing circuit, and the baseband processing circuit can be used to receive the original signal from the central processing circuit, perform baseband modulation on the original signal, obtain the baseband signal and send it to the radio frequency processing circuit.
  • the radio frequency processing circuit can be used to receive the baseband signal from the baseband processing circuit, perform radio frequency modulation on the baseband signal, obtain the radio frequency modulated signal and send it to the radio frequency front-end module 220 .
  • the radio frequency processing circuit can be used to receive a signal from the radio frequency front-end module 220, perform radio frequency demodulation on the signal, obtain the radio frequency demodulated signal and send it to the baseband processing circuit.
  • the baseband processing circuit can also be used to receive the radio frequency demodulated signal from the radio frequency processing circuit, perform baseband demodulation on the radio frequency demodulated signal, obtain the baseband demodulated signal and send it to the central processing unit circuit for processing.
  • the processing circuit 210 may include a central processing circuit, a baseband processing circuit, and a radio frequency processing circuit.
  • the central processing circuit can be coupled to the baseband processor, and the baseband processing circuit can be coupled to the radio frequency processing circuit.
  • the central processing circuit can be used to generate or acquire raw signals and send them to the baseband processing circuit.
  • the baseband processing circuit can be used to receive the original signal from the central processing circuit and perform baseband modulation on the original signal to obtain the baseband signal and send it to the radio frequency processing circuit.
  • the radio frequency processing circuit can be used to perform radio frequency modulation on the baseband signal, obtain the radio frequency modulated signal and send it to the radio frequency front-end module 220 .
  • the radio frequency processing circuit can also be used to receive a signal from the radio frequency front-end module 220, perform radio frequency demodulation on the signal, obtain the radio frequency demodulated signal and send it to the baseband processing circuit.
  • the baseband processing circuit can also be used to perform baseband demodulation on the radio frequency demodulated signal, obtain the baseband demodulated signal and send it to the central processing unit circuit.
  • the central processing circuit can also be used to process and output the baseband demodulated signal.
  • the wireless communication device 200 is a terminal device
  • the baseband demodulated signal is a voice signal
  • the central processing circuit can output the voice signal to a speaker for playback.
  • the baseband demodulated signal is text/picture
  • the central processing circuit can output the text/picture to the display component for display, and so on.
  • the antenna group 230 may be used to send and receive radio frequency signals.
  • the antenna group 230 may include: a first antenna 231 , a second antenna 232 , a third antenna 233 , a fourth antenna 234 and a fifth antenna 235 .
  • the radio frequency front-end module 220 can be used to receive signals from the processing circuit 210 and convert the received signals into radio frequency signals, and then transmit them through the antenna; it can also be used to receive radio frequency signals from the antenna and filter the signals, processing such as amplification, and input the processed signal into the processing circuit 210 .
  • the radio frequency front-end module 220 may include: a combiner 221 , a first switch 222 and a second switch 223 .
  • the combiner 221 may include multiple bidirectional ports, which may be used for input and output of signals.
  • the combiner 221 may include two groups of ports: a first group of ports and a second group of ports.
  • first set of ports When the first set of ports is used for input, the second set of ports is used for output.
  • second set of ports When the second set of ports is used for input, the first set of ports is used for output.
  • first set of ports when wireless communication device 200 transmits a signal, a first set of ports may be used for input and a second set of ports may be used for output.
  • the second set of ports can be used for input and the first set of ports can be used for output.
  • the combiner 221 can combine signals input from multiple ports to obtain one signal and use it for output port output.
  • the combiner 221 can receive signals from one port used for input and output signals from the output port respectively. Multiple port outputs.
  • the combiner 221 includes but is not limited to one of the following: frequency synthesizers (such as Diplexer (duplexer), Triplexer (three-plexer), Extractor (extractor), etc.) ) function switch.
  • frequency synthesizers such as Diplexer (duplexer), Triplexer (three-plexer), Extractor (extractor), etc.
  • the first switch 222 may include a data port (such as port p1 , port p2 and port p3 in FIG. 2 ) and a control port (not shown in FIG. 2 ).
  • the data port may include multiple bidirectional ports, which may be used to input and output interaction signals between the wireless communication device 200 and other devices.
  • the control port can be used to input a control signal for the first switch 222 , and the control signal can be used to control the state of the first switch 222 .
  • the data ports of the first switch 222 may include two groups: a third group of ports and a fourth group of ports. While the third set of ports is used for input, the fourth set of ports is used for output. When the fourth set of ports is used for input, the third set of ports is used for output. For example, when the wireless communication device 200 transmits a signal, the third set of ports may be used for input and the fourth set of ports may be used for output. When a signal is received by the antenna of the wireless communication device 200, the fourth set of ports may be used for input and the third set of ports may be used for output.
  • the third group of ports may include multiple data ports, and the fourth group of ports may also include multiple data ports.
  • the number of data ports included in the third group of ports and the number of data ports included in the fourth group of ports may be the same or different, and may be determined according to actual requirements, which is not limited in this embodiment of the present application.
  • the third group of ports may include one data port such as port p1
  • the fourth group of ports may include two data ports such as ports p2 and p3.
  • Each data port included in the third group of ports can be respectively connected to each data port included in the fourth group of ports.
  • the state of the first switch 222 may refer to a state in which the data ports in the third group of ports are connected to the data ports in the fourth group of ports.
  • the states of the first switch 222 may include multiple types, and two different states correspond to different data ports in at least one of the two pairs of ports that are turned on.
  • the first switch 222 in FIG. 2 may include two states.
  • the first state may be: the data port coupled to the combiner 221 in the third group of ports and the port coupled to the first antenna 231 in the fourth group of ports are turned on, that is, the ports p1 and p2 are turned on.
  • the second state may be: the data port coupled to the combiner 221 in the third group of ports and the port coupled to the second antenna 232 in the fourth group of ports are turned on, that is, the ports p1 and p3 are turned on.
  • the second switch 223 may include a data port (such as port p4, port p5, port p6, port p7 and port p8 in FIG. 2) and a control port (not shown in FIG. 2).
  • the data ports of the second switch 223 may include two groups: a fifth group of ports (for example, including port p4 ) and a sixth group of ports (for example, including ports p5 , p6 , p7 and p8 ). While the fifth group of ports is used for input, the sixth group of ports is used for output. When the sixth group of ports is used for input, the fifth group of ports is used for output.
  • the above description of the first switch 222 may be cited, and will not be repeated here.
  • 4 antennas may be allocated for the first network communication, and 2 antennas may be allocated for the second network communication; wherein, one antenna is multiplexed for the first network communication and the second network communication.
  • the first antenna 231 and the second antenna 232 may be allocated for the second network communication, and the first antenna 231, the third antenna 233, the fourth antenna 234 and the fifth antenna 235 may be allocated for First network communication. That is to say, the communication of the first network and the communication of the second network multiplex the first antenna 231 .
  • the first antenna 231 and the second antenna 232 may also be allocated for the second network communication, and the second antenna 232, the third antenna 233, the fourth antenna 234 and the fifth antenna 235 may be allocated for the second network communication.
  • - network communication That is to say, the first network communication and the second network communication multiplex the second antenna 232, which is not limited in this embodiment of the present application.
  • the first network and the second network are two networks using different mobile communication technologies; for example, the first network is a 5G network, and the second network is a 4G network.
  • Frequency bands corresponding to the first network and the second network may be different.
  • the corresponding frequency band may be 2515-2675 MHz (the corresponding frequency band number is n41)
  • the corresponding frequency band may be such as 1710-2690 MHz
  • the corresponding frequency band may be MHB (MB (Medium Frequency, intermediate frequency) & HB (High Frequency, high frequency), medium and high frequency)
  • the corresponding frequency band number can include B3, B39).
  • the first network and the second network may frequency-division multiplex the first antenna 231 or the second antenna 232 .
  • the processing circuit 210 may be coupled to the combiner 221 , the second antenna 232 , the third antenna 233 , the fourth antenna 234 and the fifth antenna 235 .
  • the combiner 221 is coupled to the first antenna 231 .
  • the processing circuit 210 may be configured to transmit the first signal from the third antenna 233, the fourth antenna 234 and the fifth antenna 235 in turn, and The first signal and the second signal are sent to the combiner, and the first signal and the second signal are transmitted from the first antenna 231 through the combiner 221 .
  • the first signal is the SRS of the first network
  • the second signal is the signal of the second network.
  • the processing circuit 210 may be configured to transmit the first signal from the third antenna 233, the fourth antenna 234 and the fifth antenna 235 in turn, And the first signal and the second signal are sent to the combiner, and the first signal and the second signal are transmitted from the second antenna 232 through the combiner 221 .
  • the processing circuit 210 may determine whether the performance of the first antenna 231 is better than that of the second antenna 232 when transmitting the second signal and transmitting the first signal alternately. If the performance of the first antenna 231 is better than that of the second antenna 232 , the first signal and the second signal are transmitted from the first antenna 231 through the combiner 221 . If the performance of the second antenna 232 is better than that of the first antenna 231 , the first signal and the second signal are transmitted from the second antenna 232 through the combiner 221 .
  • the processing circuit 210 may be coupled to the first switch 222, the second switch 223 and the combiner 221, wherein different ports of the processing circuit 210 may be connected to the combiner 221, the first switch 222 and the second switch 223 respectively. coupling.
  • the second switch 223 can be coupled to the third antenna 233, the fourth antenna 234, the fifth antenna 235 and the combiner 221, wherein the different ports of the second switch 223 can be connected to the third antenna 233, the fourth antenna 234, the Five antennas 235 are coupled to the combiner 221 .
  • the combiner 221 may be coupled to a first switch 222 .
  • the first switch 222 can be coupled to the first antenna 231 and the second antenna 232 , wherein different ports of the first switch 222 can be coupled to the first antenna 231 and the second antenna 232 respectively.
  • different ports of the processing circuit 210 may be respectively coupled to the first group of ports of the combiner 221 , the control port of the first switch 222 , the control port and the data port of the second switch 223 .
  • a port of the processing circuit 210 may be coupled to a fifth set of ports of the second switch 223, such as port p4.
  • a port in the second group of ports of the combiner 221 may be coupled to a port in the third group of ports of the first switch 222, such as port p1.
  • two data ports of the fourth group of ports of the first switch 222 may be coupled to the first antenna 231 and the second antenna 232 respectively.
  • the four data ports of the sixth group of ports of the second switch 223, such as ports p5, p6, p7 and p8, may be respectively coupled to the third antenna 233, the fourth antenna 234, the fifth antenna 235 and the combiner 221 port in the first set of ports.
  • the processing circuit 210 may be used to control the state of the second switch 223 to alternate between the third antenna 233, the fourth antenna 234 and the fifth antenna 235 transmits the first signal, and controls the state of the second switch 223, sends the first signal to the combiner 221, and sends the second signal to the combiner 221, and controls the first switch 222 state, the first signal and the second signal are transmitted from the first antenna 231 through the combiner 221 and the first switch 222 in sequence.
  • the processing circuit 210 may be used to control the state of the second switch 223 to alternate between the third antenna 233, the fourth antenna 234 and the fifth antenna 235 transmits the first signal, and controls the state of the second switch 223, sends the first signal to the combiner 221, and sends the second signal to the combiner 221, and controls the state of the first switch 222 , transmitting the first signal and the second signal from the second antenna 232 through the combiner 221 and the first switch 222 in sequence.
  • the processing circuit 210 may determine whether the performance of the first antenna 231 is better than that of the second antenna 232 when transmitting the second signal and transmitting the first signal alternately.
  • the processing circuit 210 can be used to control the states of the first switch 222 and the second switch 223, and sequentially pass through the second switch 223, the combiner 221 and the first switch 222 transmit the first signal and the second signal from the first antenna 231 . If the performance of the second antenna 232 is better than that of the first antenna 231, the processing circuit 210 can be used to control the states of the first switch 222 and the second switch 223, and sequentially pass through the second switch 223, the combiner 221 and the first switch 222 transmit the first and second signals from the second antenna 232 .
  • FIG. 3 exemplarily shows a schematic diagram of a switch state corresponding to a 4-way SRS transmission in a wireless communication device according to an embodiment of the present application.
  • the wireless communication device 200 may transmit the SRS in turn through the following four paths:
  • Path 31 processing circuit 210 ⁇ second switch 223 ⁇ third antenna 233;
  • Path 32 processing circuit 210 ⁇ second switch 223 ⁇ fourth antenna 234;
  • Path 33 processing circuit 210 ⁇ second switch 223 ⁇ fifth antenna 235;
  • Pathway 34 processing circuit 210 ⁇ second switch 223 ⁇ combiner 221 ⁇ first switch 222 ⁇ first antenna 231.
  • the first signal may be transmitted from the third antenna 233 through the path 31 .
  • the processing circuit 210 can send the first signal to the second switch 223, and can send the first control signal to the second switch 223, so that the second switch 223 can send the second switch 223 according to the first control signal.
  • the port p6 of the second switch 223 coupled with the third antenna 233 and the port p4 of the second switch 223 coupled with the processing circuit 210 are turned on.
  • the second switch 223 can transmit the first signal received from the processing circuit 210 from the third antenna 233 .
  • the first signal can be transmitted from the fourth antenna 234 through the channel 22 .
  • the processing circuit 210 sends the first signal to the second switch 223, and can send the second control signal to the second switch 223, so that the second switch 223 sends the second switch 223 according to the second control signal.
  • the port p7 of the switch 223 coupled with the fourth antenna 234 and the port p4 of the second switch 223 coupled with the processing circuit 210 are turned on.
  • the second switch 223 can transmit the first signal received from the processing circuit 210 from the fourth antenna 234 .
  • the first signal can be transmitted from the fifth antenna 235 through the path 23 .
  • the processing circuit 210 sends the first signal to the second switch 223, and can send the third control signal to the second switch 223, so that the second switch 223 according to the third control signal, the second The port p8 of the switch 223 coupled with the fifth antenna 235 and the port p4 of the second switch 223 coupled with the processing circuit 210 are turned on.
  • the second switch 223 can transmit the first signal received from the processing circuit 210 from the fifth antenna 235 .
  • the first signal may be transmitted from the first antenna 231 through the channel 24 .
  • the processing circuit 210 sends the first signal to the second switch 223 .
  • the fourth control signal can be sent to the second switch 223, so that the second switch 223 can connect the port p5 coupled with the combiner 221 in the second switch 223 to the processing circuit 210 in the second switch 223 according to the control signal
  • the coupled port p4 is turned on.
  • the fifth control signal may be sent to the first switch 222, so that the first switch 222, according to the fifth control signal, connects the port p2 coupled with the first antenna 231 in the first switch 222 to the combined port p2 in the first switch 222
  • the input port p1 coupled with the circuit breaker 221 is turned on.
  • the second switch 223 can send the first signal to the combiner 221, and the combiner 221 can send the first signal to the first switch 222, and then the first switch 222 can transmit the first signal from the first antenna 231 .
  • the timing at which the processing circuit 210 sends the control signal to the second switch 223 can be set according to requirements, which is not limited in this embodiment of the present application. Wherein, it may be any time between the processing circuit 210 acquiring the first signal and sending the first signal to the second switch 223 .
  • the timing at which the processing circuit 210 sends the control signal to the first switch 222 may be set according to requirements, which is not limited in this embodiment of the present application. Wherein, it may be any time between the processing circuit 210 acquiring the first signal and sending the first signal to the first switch 222 .
  • the embodiment of the present application does not limit the order in which the wireless communication device sends the first signal in turn, which can be set according to requirements, and the embodiment of the present application does not limit this.
  • the first antenna 231 , the third antenna 233 , the fourth antenna 234 , and the fifth antenna 235 may be rotated in order, that is, the SRS is transmitted sequentially through the path 34 , the path 31 , the path 32 , and the path 33 .
  • the third antenna 233, the fourth antenna 234, the fifth antenna 235, and the first antenna 231 are sequentially transmitted, that is, the SRS is sequentially transmitted through the path 31, the path 32, the path 33, and the path 34, and so on.
  • the wireless communication device When the wireless communication device sends a signal of the second network (for the convenience of subsequent description, it may be referred to as a second signal), the second signal can be converted to It is transmitted from the first antenna 231.
  • a signal of the second network for the convenience of subsequent description, it may be referred to as a second signal
  • the second signal can be converted to It is transmitted from the first antenna 231.
  • the processing circuit 210 may send the second signal to the combiner 221 , and control the state of the first switch 222 to transmit the second signal from the first antenna 231 .
  • the processing circuit 210 may send the second signal to the combiner 221, and send the sixth control signal to the first switch 222, so that the first switch 222 may transmit the second signal to the combiner 221 according to the sixth control signal.
  • the combiner 221 can send the second signal to the first switch 222 , and then the first switch 222 can transmit the second signal from the first antenna 231 .
  • the process of the wireless communication device sending the first signal and the second signal at this time can refer to FIG. 3 34 in:
  • the combiner 221 can receive the processed signal through the port coupled with the second switch 223
  • the first signal sent by the circuit 210 and the second signal sent by the processing circuit 210 are received through the port coupled with the processing circuit 210 .
  • the combiner 221 can combine the first signal and the second signal to obtain a combined signal, and input it to the first switch 222 .
  • the first switch 222 After the first switch 222 conducts the port p2 coupled with the first antenna 231 in the first switch 222 and the port p1 coupled with the combiner 221 in the first switch 222 according to the fifth control signal sent by the processing circuit 210 , the first switch 222 can transmit the combined signal through the first antenna 231 . Furthermore, it is realized that both the first signal and the second signal are transmitted from the first antenna 231 . In this way, the SRS of the first network can be sent in turn from four channels, and the peak downlink rate can be increased without interrupting the services of the second network, thereby improving user experience.
  • the combiner 221 may directly transmit the first signal received from the second switch 223 to the first antenna 231.
  • a signal is sent to the first switch 222 and the first signal is transmitted from the first antenna 231 .
  • the first signal may be transmitted from the first antenna 231 according to 34 in FIG. 3 .
  • the 5-antenna wireless communication device in the embodiment of the present application can realize 4-way SRS transmission in turn, and can increase the downlink peak rate.
  • terminal devices of different grades have different rules for SRS rotation.
  • a terminal device with a higher gear has higher requirements on the SRS transmission rule of the wireless communication device (that is, more antennas that transmit SRS in rotation).
  • the terminal equipment with 4 antennas in the prior art cannot meet the high-end requirements, but the terminal equipment using the wireless communication device according to the embodiment of the present application can meet the high-end requirements.
  • the embodiment of the present application implements 4-channel SRS transmission by a 5-antenna wireless communication device. Due to the space limitation of the terminal equipment, the embodiment of the present application adds 1 antenna, which occupies a larger space than the 2 antennas added in the prior art 6-antenna terminal equipment, so that the performance of the antenna can be improved. , to ensure mobile data services.
  • An application scenario of the embodiment of the present application may be: the first network is 5G, the second network is 4G, the first signal is 5G SRS, and the second signal is 4G signal.
  • the first antenna 231 and the second antenna 232 are used for 4G communication
  • the first antenna 231, the third antenna 233, the fourth antenna 234 and the fifth antenna 235 can be used for 5G communication
  • the first antenna 231 is for 4G communication and 5G communication.
  • Antennas for communication multiplexing Referring again to FIG.
  • the process for the wireless communication device to transmit 5G SRS in turn may be as follows: the processing circuit 210 may send the 5G SRS to the second switch 223, and then control the port p4 of the second switch 223 to communicate with port p6, port p7 and port p6 in turn.
  • the port p8 is turned on, and the 5G SRS is transmitted from the third antenna 233, the fourth antenna 234 and the fifth antenna 235 in turn.
  • the combiner 221 can receive the 4G signal and the 5G SRS.
  • the combiner 221 can combine the 4G and 5G SRS to obtain a combined signal, and input it to the first switch 222.
  • the processing circuit 210 can control the ports p1 and p2 of the first switch 222 to be turned on, and transmit the combined signal through the first antenna 231 .
  • both 4G signals and 5G SRS can be transmitted, so that 5G SRS can be sent in turn from four channels, and the peak downlink rate of 5G can be increased without interrupting 4G services.
  • the first antenna 231 may be a main antenna
  • the second antenna 232 may be a diversity antenna
  • the third antenna 233 and the fourth antenna 234 may be MIMO (multiple-in multipleout, multiple-input-multiple-out) antennas.
  • the wireless communication device may transmit the signal of the second network from the first antenna 231, or transmit the signal of the second network from the second antenna 232, which is specifically determined according to the performance of the first antenna 231 and the second antenna 232.
  • the application embodiment does not limit this. If the performance of the second antenna 232 is better than that of the first antenna 231 , the second antenna 232 may transmit the signal of the second network. If the performance of the first antenna 231 is better than that of the second antenna 232 , the signal of the second network may be transmitted from the first antenna 231 . And the signal of the second network can be received from the first antenna 231 and the second antenna 232 .
  • the wireless communication device may transmit other signals of the first network from the third antenna 233, and may also transmit other signals of the first network from the fourth antenna 234, which is specifically determined according to the performance of the third antenna 233 and the fourth antenna 234. , which is not limited in this embodiment of the present application. If the performance of the third antenna 233 is better than that of the fourth antenna 234 , other signals of the first network may be transmitted from the third antenna 233 . If the performance of the fourth antenna 234 is better than that of the third antenna 233 , other signals of the first network may be transmitted from the fourth antenna 234 . And other signals of the first network may be received from the first antenna 231 , the third antenna 233 , the fourth antenna 234 and the fifth antenna 235 . The other signals of the first network may include signals other than the SRS of the first network.
  • FIG. 4 exemplarily shows a schematic structural diagram of another wireless communication device according to an embodiment of the present application.
  • the wireless communication device 200 shown in FIG. 4 is only an example of a wireless communication device, and the wireless communication device 200 may have more or fewer components than those shown in the figure, two or more components may be combined, or Different component configurations are possible.
  • the various components shown in Figure 4 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the wireless communication device 200 may include: a processing circuit 210 , a radio frequency front-end module 220 and an antenna group 230 .
  • the processing circuit 210 may be coupled to the radio frequency front-end module 220 , and the radio frequency front-end module 220 may be coupled to the antenna group 230 .
  • the antenna group 230 may include: a first antenna 231 , a second antenna 232 , a third antenna 233 , a fourth antenna 234 and a fifth antenna 235 .
  • the radio frequency front-end module 220 may include: a combiner 221 , a first switch 222 and a second switch 223 .
  • the processing circuit 210 may be coupled to the second switch 223 , the first switch 222 and the combiner 221 .
  • the second switch 223 may be coupled to the third antenna 233 , the fourth antenna 234 , the fifth antenna 235 and the combiner 221 .
  • the combiner 221 may be coupled to the first switch 222 , and the first switch 222 may be coupled to the first antenna 231 and the second antenna 232 .
  • the first switch 222 may be an antenna switching switch, and may be referred to as a first antenna switching switch.
  • the second switch 223 may include a second antenna switching switch 2231 , an SRS switch 2232 and a transceiving switch 2233 .
  • the second antenna switching switch 2231 is coupled to the third antenna 233 and the SRS switch 2232
  • the SRS switch 2232 is coupled to the fourth antenna 234
  • the transceiver switch 2233 is coupled to the fifth antenna 235 .
  • different ports of the SRS switch 2232 may be respectively coupled to the fourth antenna 234 , the transceiver switch 2233 and the combiner 221 .
  • the second antenna switching switch 2231 may include data ports (such as ports p4, p6 and p9 in FIG. 4) and control ports (not shown in FIG. 4).
  • the data ports of the second antenna switching switch 2231 may include two groups: the seventh group of ports (eg, including port p4 ) and the eighth group of ports (eg, including ports p6 and p9 ). When the seventh group of ports is used for input, the eighth group of ports is used for output. When the eighth group of ports is used for input, the seventh group of ports is used for output.
  • the above description of the first switch 222 can be cited, and will not be repeated here.
  • the SRS switch 2232 may include data ports (such as ports p5, p7, p10 and p11 in FIG. 4) and control ports (not shown in FIG. 4).
  • the data port may include multiple bidirectional ports, which may be used to input and output interaction signals between the wireless communication device 200 and other devices.
  • the control port can be used to input a control signal for the SRS switch 2232 , and the control signal can be used to control the state of the SRS switch 2232 .
  • the data ports of the SRS switch 2232 may include two groups: a ninth group of ports and a tenth group of ports.
  • the ninth group of ports is used for input
  • the tenth group of ports is used for output.
  • the ninth group of ports is used for output.
  • the wireless communication device 200 transmits a signal
  • the ninth group of ports may be used for input
  • the tenth group of ports may be used for output.
  • the antenna of the wireless communication device 200 receives a signal
  • the tenth group of ports can be used for input and the ninth group of ports can be used for output.
  • the ninth group of ports may include multiple data ports, and the tenth group of ports may also include multiple data ports.
  • the number of data ports included in the ninth group of ports and the number of data ports included in the tenth group of ports may be the same or different, and may be determined according to actual requirements, which is not limited in this embodiment of the present application.
  • the ninth group of ports may include 1 data port such as port p10, and the tenth group of ports may include 3 data ports such as ports p5, p7 and p11.
  • Each data port included in the ninth group of ports can be respectively connected to each data port included in the tenth group of ports.
  • the state of the SRS switch 2232 may refer to the state in which the data port in the ninth group of ports is connected to the data port in the tenth group of ports.
  • the state of the SRS switch 2232 may include multiple types, and the two different states correspond to the two pairs of ports that are connected. At least one of the data ports is different.
  • the SRS switch 2232 in FIG. 4 can include 3 states: the first state can be: the data port coupled with the second antenna switching switch 2231 in the ninth group of ports and coupled with the fourth antenna 234 in the eighteenth group of ports The port is connected, that is, the port p10 is connected to the port p7.
  • the second state may be: the data port in the ninth group of ports coupled to the second antenna 232 is switched on, and the port coupled to the transceiver switch 2233 in the tenth group of ports is turned on, that is, the port p10 and the port p11 are turned on.
  • the third state may be: the data port coupled to the second antenna switching switch 2231 in the ninth group of ports is connected to the port coupled to the combiner 221 in the tenth group of ports, that is, the port p10 is connected to the port p5.
  • the transceiver switch 2233 may include a data port (such as ports p8, p12 and p13 in Figure 4) and a control port (not shown in Figure 4); wherein, the data port may be used for input and/or output wireless communication Interaction signals between the device 200 and other devices.
  • the control port can be used to input a control signal for the transceiver switch 2233 , and the control signal can be used to control the state of the transceiver switch 2233 .
  • the transceiver switch 2233 includes a data port coupled with the fifth antenna 235, such as port p8, which may be a bidirectional port; furthermore, when the wireless communication device 200 transmits a signal, this port can be used for output, when the antenna of the wireless communication device 200 When a signal is received, this port can be used for input.
  • the transceiver switch 2233 also includes a data port coupled with the SRS switch 2232 such as port p12, which can be a unidirectional port or a bidirectional port, and is used to receive signals sent by the SRS switch 2232.
  • the transceiver switch 2233 can also include a data port coupled with the processing circuit 210, such as port p13, which can be a unidirectional port or a bidirectional port, for sending signals to the processing circuit 210 (not shown in FIG. 4 out).
  • a data port coupled with the processing circuit 210, such as port p13, which can be a unidirectional port or a bidirectional port, for sending signals to the processing circuit 210 (not shown in FIG. 4 out).
  • the processing circuit 210 may be coupled to the second antenna switching switch 2231 .
  • the processing circuit 210 may be coupled to the seventh group of ports of the second antenna switching switch 2231 such as the port p4, and may be coupled to the control port of the second antenna switching switch 2231 .
  • the processing circuit 210 may be coupled to the SRS switch 2232 . Wherein, the processing circuit 210 may be coupled to a control port of the SRS switch 2232 .
  • the processing circuit 210 may be coupled to the transceiver switch 2233 . Wherein, the processing circuit 210 may be coupled to the control port of the transceiver switch 2233 .
  • two ports in the sixth group of ports of the second antenna switching switch 2231 may be respectively coupled to the third antenna 233 and a port in the seventh group of ports of the SRS switch 2232, such as p10.
  • Three ports in the eighth group of ports of the SRS switch 2232 such as ports p7 , p11 and p5 , may be coupled to the fourth antenna 234 , port p12 of the transceiving switch 2233 and ports in the first group of ports of the combiner 221 .
  • the 4 transmission paths corresponding to the 4-way round-robin SRS can be respectively:
  • Processing circuit 210 second antenna switching switch 2231 ⁇ SRS switch 2232 ⁇ combiner 221 ⁇ first switch 222 ⁇ first antenna 231.
  • the first signal may be transmitted from the third antenna 233 through the path of the processing circuit 210 ⁇ the second antenna switching switch 2231 ⁇ the third antenna 233 .
  • the process may be as follows: the processing circuit 210 may send the first signal to the second antenna switching switch 2231, and may send the first antenna switching control signal to the second antenna switching switch 2231, so that the second antenna switching switch 2231 according to the first
  • the antenna switching control signal turns on the port p6 of the second antenna switching switch 2231 coupled with the third antenna 233 and the port p4 of the second antenna switching switch 2231 coupled with the processing circuit 210 .
  • the second antenna switching switch 2231 can transmit the first signal received from the processing circuit 210 from the third antenna 233 .
  • the first signal can be transmitted from the fourth antenna 234 through the path of processing circuit 210 ⁇ second antenna switching switch 2231 ⁇ SRS switch 2232 ⁇ fourth antenna 234 .
  • the process may be as follows: the processing circuit 210 sends the first signal to the second antenna switching switch 2231 .
  • the second antenna switching control signal can be sent to the second antenna switching switch 2231, so that the second antenna switching switch 2231 can connect the port p9 coupled with the SRS switch 2232 in the second antenna switching switch 2231 according to the second antenna switching control signal , and the port p4 coupled with the processing circuit 210 in the second antenna switching switch 2231 is turned on.
  • the first SRS state control signal can be sent to the SRS switch 2232, so that the SRS switch 2232 connects the port p7 coupled with the fourth antenna 234 in the SRS switch 2232 and the port p7 coupled with the fourth antenna 234 in the SRS switch 2232 according to the first SRS state control signal.
  • the port p10 coupled with the second antenna switching switch 2231 is turned on.
  • the second antenna switching switch 2231 can send the first signal to the SRS switch 2232 , and the SRS switch 2232 can transmit the first signal from the fourth antenna 234 .
  • the first signal can be transmitted from the fifth antenna 235 through the path of processing circuit 210 ⁇ second antenna switching switch 2231 ⁇ SRS switch 2232 ⁇ transceiving switch 2233 ⁇ fifth antenna 235.
  • the process may be as follows: the processing circuit 210 sends the first signal to the second antenna switching switch 2231 .
  • the third antenna switching control signal can be sent to the second antenna switching switch 2231, so that the second antenna switching switch 2231 can connect the port p9 coupled with the SRS switch 2232 in the second antenna switching switch 2231 according to the third antenna switching control signal , and the port p4 coupled with the processing circuit 210 in the second antenna switching switch 2231 is turned on.
  • the second SRS state control signal can be sent to the SRS switch 2232, so that the SRS switch 2232 connects the port p11 coupled with the transceiver switch 2233 in the SRS switch 2232 to the port p11 coupled with the SRS switch 2232 and the first SRS switch 2232 according to the second SRS state control signal.
  • the port p10 coupled with the two-antenna switching switch 2231 is turned on.
  • the second antenna switching switch 2231 can send the first signal to the SRS switch 2232, and then the SRS switch 2232 can send the first signal to the transceiver switch 2233, and the transceiver switch 2233 transmits the first signal from the fifth antenna 235.
  • the first signal can be transmitted from the first antenna 231 through the path of processing circuit 210 ⁇ second antenna switching switch 2231 ⁇ SRS switch 2232 ⁇ combiner 221 ⁇ first antenna switching switch ⁇ first antenna 231 .
  • the process may be as follows: the processing circuit 210 sends the first signal to the second antenna switching switch 2231 .
  • the fourth antenna switching control signal can be sent to the second antenna switching switch 2231, so that the second antenna switching switch 2231 can connect the port p9 coupled with the SRS switch 2232 in the second antenna switching switch 2231 according to the fourth antenna switching control signal , and the port p4 coupled with the processing circuit 210 in the second antenna switching switch 2231 is turned on.
  • the third SRS state control signal can be sent to the SRS switch 2232, so that the SRS switch 2232 can connect the port p5 coupled with the combiner 221 in the SRS switch 2232 to the port p5 coupled with the combiner 221 in the SRS switch 2232 according to the third SRS state control signal.
  • the port p10 coupled with the second antenna switching switch 2231 is turned on.
  • the fifth antenna switching control signal may be sent to the first antenna switching switch, so that the first antenna switching switch will connect the port p2 coupled with the first antenna 231 in the first antenna switching switch according to the fifth antenna switching control signal, and
  • the port p1 coupled with the combiner 221 in the first antenna switching switch is turned on.
  • the second antenna switching switch 2231 can send the first signal to the SRS switch 2232 , and the SRS switch 2232 sends the first signal to the combiner 221 .
  • the combiner 221 then sends the first signal to the first antenna switch, and then the first antenna switch can transmit the first signal from the first antenna 231 .
  • the timing at which the processing circuit 210 sends the control signal to the second antenna switching switch 2231 may be set according to requirements, which is not limited in this embodiment of the present application. Wherein, it may be any time between the processing circuit 210 acquiring the first signal and sending the first signal to the second antenna switching switch 2231 .
  • the timing at which the processing circuit 210 sends the control signal to the first switch 222 may be set according to requirements, which is not limited in this embodiment of the present application. Wherein, it may be any time between the processing circuit 210 acquiring the first signal and sending the first signal to the first switch 222 .
  • the timing at which the processing circuit 210 sends the control signal to the SRS switch 2232 can be set according to requirements, which is not limited in this embodiment of the present application. Wherein, it may be any time between the processing circuit 210 acquiring the first signal and sending the first signal to the SRS switch 2232 .
  • the timing at which the processing circuit 210 sends the control signal to the transceiver switch 2233 can be set according to requirements, which is not limited in this embodiment of the present application. Wherein, it may be any time between the processing circuit 210 acquiring the first signal and sending the first signal to the transceiver switch 2233 .
  • the embodiment of the present application does not limit the order in which the wireless communication device 200 sends the first signal in turn, which can be set according to requirements, and the embodiment of the present application does not limit this.
  • the transmission may be performed in rotation according to the order of the first antenna 231 , the third antenna 233 , the fourth antenna 234 and the fifth antenna 235 .
  • the transmission may be performed in rotation according to the order of the third antenna 233 , the fourth antenna 234 , the fifth antenna 235 , and the first antenna 231 , and so on.
  • FIG. 5 exemplarily shows a schematic structural diagram of another wireless communication device according to an embodiment of the present application.
  • the wireless communication device 200 shown in FIG. 5 is only one example of a wireless communication device, and the wireless communication device may have more or fewer components than shown in the figure, may combine two or more components, or may with different part configurations.
  • the various components shown in Figure 5 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the wireless communication device 200 may include: a processing circuit 210 , a radio frequency front-end module 220 and an antenna group 230 .
  • the processing circuit 210 may be coupled to the radio frequency front-end module 220 , and the radio frequency front-end module 220 may be coupled to the antenna group 230 .
  • the antenna group 230 may include: a first antenna 231 , a second antenna 232 , a third antenna 233 , a fourth antenna 234 and a fifth antenna 235 .
  • the radio frequency front-end module 220 may include: a combiner 221 , a first switch 222 , a second switch 223 and a third switch 224 .
  • the processing circuit 210 may be coupled to the second switch 223 , the first switch 222 and the third switch 224 .
  • the second switch 223 may be coupled to the third antenna 233 , the fourth antenna 234 , the fifth antenna 235 and the combiner 221 , and the third switch 224 may be coupled to the combiner 221 and the first switch 222 .
  • the combiner 221 may be coupled to the first switch 222
  • the first switch 222 may be coupled to the first antenna 231 and the second antenna 232 .
  • the third switch 224 may be used to select a signal frequency band, and may also be used to select a signal transmission channel.
  • the corresponding transmission channels may include: channel 51: third switch 224 ⁇ combiner 221 ⁇ first switch 222 ⁇ first antenna 231; channel 52: third switch 224 ⁇ The first switch 222 ⁇ the first antenna 231 .
  • the third switch 224 may include data ports (such as ports p15 and p16 in FIG. 5 ), control ports (not shown in FIG. 5 ), and frequency band ports (such as f1, f2, f3 in FIG. 5 (such as 1710 ⁇ 1785MHz), f4 (such as 1800 ⁇ 1920MHz), f5, f6, f7 and f8).
  • the data port may be a bidirectional port, which may be used for inputting and outputting interaction signals between the wireless communication device 200 and other devices.
  • the ports p15 and p16 can be used for output when the wireless communication device 200 transmits a signal
  • the ports p15 and p16 can be used for input when the antenna of the wireless communication device 200 receives a signal.
  • the data port and the frequency band port are connected to realize the selection of the frequency band, and when different data ports are connected to the frequency band port, the selection of the signal communication channel can be realized.
  • the control port can be used to input a control signal, and the control signal can be used to control the state of the third switch 224 .
  • the state of the third switch 224 may include: a state in which the frequency band port and the data port are turned on, and two different states correspond to at least one data port in the two pairs of ports that are turned on.
  • the third switch 224 in FIG. 5 may include 16 states.
  • the first state may be: the port p15 is connected to the port f1.
  • the second state may be: the port p15 is connected to the port f2 . . .
  • the eighth state may be: the port p15 is connected to the port f8.
  • the ninth state may be: the port p16 is connected to the port f1.
  • the tenth state may be: the port p16 is connected to the port f2 . . .
  • the sixteenth state may be: the port p16 is connected to the port f8.
  • the wireless communication device 200 when the wireless communication device 200 is in a scenario in which the first network and the second network can be detected, such as the EN-DC scenario, the wireless communication device 200 can perform the first network communication and the second network communication at the same time. At this time, the wireless communication device 200 can transmit the second signal through the third switch 224 ⁇ the combiner 221 ⁇ the first switch 222 ⁇ the first antenna 231, so that the wireless communication device 200 does not interrupt when sending the first signal in turn. Emission of the second signal.
  • the wireless communication device 200 can transmit the second signal through the third switch 224 ⁇ the first switch 222 ⁇ the first antenna 231, and then the second signal does not need to go through The combiner 221 reduces the loss of the second signal.
  • first communication scenario the scenario in which the first network and the second network can be detected
  • second communication scenario the scenario in which only the second network is detected
  • the processing circuit 210 may send the second signal to the third switch 224 . And send the first frequency band control signal to the third switch 224, so that the third switch 224 combines the frequency band port of the corresponding frequency band in the third switch 224, such as port f4, with the third switch 224 according to the first frequency band control signal
  • the port to which the device 221 is coupled, such as the port p16, is turned on.
  • the seventh control signal can be sent to the first switch 222, so that the first switch 222 connects the port connected to the first antenna 231 in the first switch 222, such as port p2, to the port in the first switch 222 according to the seventh control signal.
  • the port coupled to the combiner 221 such as the port p1 is turned on.
  • the processing circuit 210 can also send the first signal to the second switch 223, and can also send the eighth control signal to the second switch 223, so that the second switch 223 can switch the second switch 223 according to the eighth control signal.
  • the port p5 coupled with the combiner 221 in the second switch 223 and the port p4 coupled with the processing circuit 210 in the second switch 223 are turned on.
  • the third switch 224 can perform frequency band selection on the second signal, and send the second signal after frequency band selection to the combiner 221 , and the second switch 223 can send the first signal to the combiner 221 .
  • the combiner 221 may receive the second signal after frequency band selection and the first signal, and then combine the second signal after frequency band selection with the first signal to obtain a combined signal. Then the combiner 221 may send the combined signal to the first switch 222 , and the first switch 222 transmits the second signal obtained by frequency band selection from the first antenna 231 .
  • the processing circuit 210 may send the second signal to the third switch 224, and control The state of the third switch 224 sends the second signal to the combiner 221 , and controls the state of the first switch 222 to send the second signal from the first antenna 231 .
  • the processing circuit 210 may send the second signal to the third switch 224 . And send the first frequency band control signal to the third switch 224, so that the third switch 224 combines the frequency band port of the corresponding frequency band in the third switch 224, such as port f4, with the third switch 224 according to the first frequency band control signal
  • the port to which the device 221 is coupled, such as the port p16, is turned on.
  • the ninth control signal can be sent to the first switch 222, so that the first switch 222 connects the port connected to the first antenna 231 in the first switch 222, such as port p2, to the port in the first switch 222 according to the ninth control signal.
  • the port coupled to the combiner 221 such as the port p1 is turned on.
  • the third switch 224 may perform frequency band selection on the second signal, and send the second signal after the frequency band selection to the combiner 221 . After the combiner 221 receives the second signal after the frequency band selection, the second signal can be sent to the first switch 222 , and the first switch 222 transmits the second signal obtained by the frequency band selection from the first antenna 231 .
  • the processing circuit 210 may send the second signal to the third switch 224, and control the third switch 224 to send the second signal to the third switch 224.
  • a switch 222 and controlling the state of the first switch 222 , transmits the second signal from the first antenna 231 .
  • the processing circuit 210 may send the second signal to the third switch 224 . And send the second frequency band control signal to the third switch 224, so that the third switch 224 combines the frequency band port of the corresponding frequency band in the third switch 224, such as port f2, with the third switch 224 according to the first frequency band control signal
  • the port to which the device 221 is coupled, such as the port p15, is turned on.
  • the tenth control signal can be sent to the first switch 222, so that the first switch 222 connects the port connected to the first antenna 231 in the first switch 222, such as port p2, to the port in the first switch 222 according to the tenth control signal.
  • the input port connected to the third switch 224 is connected to port p14.
  • the third switch 224 selects the frequency band of the second signal, it can send the second signal after the frequency band selection to the first switch 222 .
  • the first switch 222 can transmit the second signal obtained by frequency band selection from the first antenna 231 .
  • the base station may respond and generate and transmit a signal corresponding to the response.
  • the base station can also actively transmit signals to the wireless communication device 200 .
  • the wireless communication device 200 may receive the signal transmitted by the base station through the antenna.
  • the signal transmitted by the base station of the second network may be referred to as a third signal.
  • the signal transmitted by the base station of the second network is called the fourth signal.
  • the path through which the wireless communication device 200 receives the third signal corresponds to the path through which the wireless communication device 200 transmits the second signal when it is in the first communication scenario, and may be: first antenna 231 ⁇ first switch 222 ⁇ close Router 221 ⁇ third switch 224 ⁇ processing circuit 210.
  • the path through which the wireless communication device 200 receives the fourth signal corresponds to the path through which the wireless communication device 200 transmits the second signal in the second communication scenario, which may be: first antenna 231 ⁇ first switch 222 ⁇ third switch 224 ⁇ processing
  • the circuit 210 acquires a fourth signal.
  • the first antenna 231 of the wireless communication device 200 may receive a third signal transmitted by the base station, and then may send the third signal to the first switch 222. Since the wireless communication device 200 is in the first communication scenario, the port coupled with the combiner 221 in the first switch 222, such as port p1, and the port coupled with the first antenna 231 in the first switch 222, such as port p2, are turned on. Therefore, the combiner 221 can receive the third signal through the first switch 222 . The combiner 221 may then send the third signal to the third switch 224 .
  • the port coupled with the combiner 221 in the third switch 224, such as port p16, and the frequency band port in the third switch 224, such as port f4, are turned on, and the third switch 224 may acquire the third signal from the combiner 221 , perform frequency band selection on the third signal, and send the third signal after the frequency band selection to the processing circuit 210 .
  • the processing circuit 210 processes the third signal after frequency band selection, such as radio frequency demodulation, baseband demodulation, and the like.
  • the first antenna 231 of the wireless communication device 200 may receive the fourth signal transmitted by the base station, and then may send the fourth signal to the first switch 222 .
  • the port of the first switch 222 coupled with the port of the third switch 224 (such as p15) is such as p14, and the port of the first switch 222 coupled with the first antenna 231 is such as p2 is conducting, and in the third switch 224, the port p15 coupled with the first switch 222 port such as p14, and the frequency band port (such as port f2) in the third switch 224 is conducting, so the third switch 224 can
  • the fourth signal is received through the first switch 222 .
  • the frequency band selected fourth signal is sent to the processing circuit 210 .
  • the processing circuit 210 processes the fourth signal after frequency band selection, such as radio frequency demodulation, baseband demodulation, and the like.
  • the wireless communication device 200 when the wireless communication device 200 is in the first communication scene, the wireless communication device 200 may also receive the third signal through the second antenna 232 . Then, the third signal is sent to the processing circuit 210 through the second antenna 232 ⁇ the first switch 222 ⁇ the combiner 221 ⁇ the third switch 224 ⁇ the processing circuit 210, which will not be repeated here. And when the wireless communication device 200 is in the second communication scene, the wireless communication device 200 can also receive the fourth signal through the second antenna 232. Then, the fourth signal is sent to the processing circuit 210 through the second antenna 232 ⁇ the first switch 222 ⁇ the third switch 224 ⁇ the processing circuit 210, which will not be repeated here. Specifically, it may be determined according to the performance of the first antenna 231 and the second antenna 232, which is not limited in this embodiment of the present application.
  • FIG. 6 exemplarily shows a schematic structural diagram of another wireless communication device according to an embodiment of the present application.
  • the wireless communication device 200 shown in FIG. 6 is only an example of a wireless communication device, and the wireless communication device 200 may have more or fewer components than those shown in the figure, two or more components may be combined, or Different component configurations are possible.
  • the various components shown in Figure 6 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • TX transmit, send
  • RX receive channel
  • the wireless communication device 200 includes: a processing circuit 210, a radio frequency front-end module and an antenna group.
  • the antenna group includes: a first antenna 231 , a second antenna 232 , a third antenna 233 , a fourth antenna 234 and a fifth antenna 235 .
  • the RF front-end module includes: power amplifiers PA1 (2281) and PA2 (2285), duplexers 226, combiners M1 (225) and M2 (221), third switches 224, and first antenna switching switches 222, low noise amplifier LNA1 (2282), LNA2 (2283), LNA3 (2284), LNA4 (2286), LNA5 (2287) and LNA6 (2288), filter LB1 (2291), LB2 (2292), LB3 (2293 ), LB4 (2294), LB5 (2295), LB6 (2296), transceiver switches TR1 (227) and TR2 (2233), second antenna switch 2231 and SRS switch 2232.
  • the first antenna switching switch 222 may be a double-pole four-throw switch.
  • the power amplifiers PA1 (2281) and PA2 (2285) are respectively set on two TX paths.
  • the low noise amplifiers LNA1 (2282), LNA2 (2283), LNA3 (2284), LNA4 (2286), LNA5 (2287) and LNA6 (2288) are respectively arranged on six RX channels.
  • the filters LB1 (2291), LB2 (2292), LB4 (2294), LB5 (2295), and LB6 (2296) are respectively arranged on five RX paths; the filter LB3 (2293) and the power amplifier PA2 (2285) set on the same TX path.
  • the processing circuit 210 is respectively coupled to PA1 (2281), LNA1 (2282), LNA2 (2283), LNA3 (2284), PA2 (2285), LNA4 (2286), LNA5 (2287) and LNA6 (2288).
  • PA1 (2281) is coupled to the duplexer 226, the duplexer 226 is coupled to the combiner M1 (225), the combiner M1 (225) is coupled to the third switch 224, and the third switch 224 is coupled to the combiner Router M2 (221) and the first antenna switching switch 222, the first antenna switching switch 222 is coupled to the first antenna 231 and the second antenna 232.
  • LNA1 ( 2282 ) is coupled to duplexer 226 .
  • LNA2 (2283) is coupled to filter LB1 (2291), which is coupled to combiner M1 (225).
  • LNA3 ( 2284 ) is coupled to filter LB2 ( 2292 ), which is coupled to first antenna switch 222 .
  • PA2 (2285) is coupled to filter LB3 (2293), filter LB3 (2293) is coupled to transceiver switch TR1 (227), and transceiver switch TR1 (227) is coupled to the second antenna switching switch 2231, the second antenna
  • the switch 2231 is coupled to the SRS switch 2232 and the third antenna 233 .
  • the SRS switch 2232 is coupled to the fourth antenna 234, the transceiving switch TR2 (2233) and the combiner M2 (221).
  • the transceiver switch TR2 ( 2233 ) is coupled to the fifth antenna 235 .
  • LNA4 (2286) is coupled to filter LB4 (2294), which is coupled to transceiver switch TR1 (227).
  • LNA5 ( 2287 ) is coupled to filter LB5 ( 2295 ), which is coupled to second antenna switch 2231 .
  • LNA6 (2288) is coupled to filter LB6 (2296), which is coupled to transceiver switch TR2 (2233).
  • processing circuit 210 can also be coupled to the control port of the third switch 224, the control port of the first antenna switch 222, the control port of the transceiver switch TR1 (227), the control port of the second antenna switch 2231, The control port of the SRS switch 2232 and the control port of the transceiver switch TR2 (2233).
  • the states of these switches can be controlled by sending control signals to these switches through the control port, but it is not shown in FIG. 6 .
  • the four transmission channels corresponding to the wireless communication device 200 sending the SRS in four rounds may be respectively:
  • Processing circuit 210 ⁇ PA2 (2285) ⁇ LB3 (2293) ⁇ transceiver switch TR1 (227) ⁇ second antenna switch 2231 ⁇ third antenna 233;
  • Processing circuit 210 ⁇ PA2 (2285) ⁇ LB3 (2293) ⁇ transceiver switch TR1 (227) ⁇ second antenna switch 2231 ⁇ SRS switch 2232 ⁇ fourth antenna 234;
  • Processing circuit 210 ⁇ PA2 (2285) ⁇ LB3 (2293) ⁇ transceiver switch TR1 (227) ⁇ second antenna switch 2231 ⁇ SRS switch 2232 ⁇ transceiver switch TR2 (2233) ⁇ fifth antenna 235;
  • Processing circuit 210 PA2(2285) ⁇ LB3(2293) ⁇ transmitting switch TR1(227) ⁇ second antenna switching switch 2231 ⁇ SRS switch 2232 ⁇ combiner M2(221) ⁇ first antenna switching switch 222 ⁇ first antenna 231.
  • the first signal can be transmitted from the third antenna 233 launched.
  • the process may be as follows: the processing circuit 210 sends the first signal (which may be referred to as signal S11 for the convenience of subsequent description) to PA2 (2285).
  • the transceiver switch TR1 (227) adjusts the transceiver switch TR1 (227) to the transmitting state according to the second transceiver state control signal, that is, the transceiver switch TR1 (
  • the port p17 in 227) coupled with the second antenna switching switch 2231 and the port p18 in the transceiver switch TR1 (227) coupled with the filter LB3 (2293) are turned on.
  • the interface p4 coupled with the transceiver switch TR1 (227) in the second antenna switching switch 2231 is turned on.
  • PA2 (2285) may amplify signal S11 to obtain signal S12, and send signal S12 to filter LB3 (2293).
  • the filter LB3 (2293) can filter the signal S12 to obtain the signal S13 and send the signal S13 to the transceiver switch TR1 (227).
  • the transceiver switch TR1 ( 227 ) sends the signal S13 to the second antenna switch 2231 , and then the second antenna switch 2231 transmits the signal S13 from the third antenna 233 .
  • the first signal can be It is transmitted from the fourth antenna 234 .
  • the process may be as follows: the processing circuit 210 sends the first signal (which may be referred to as signal S11 for the convenience of subsequent description) to PA2 (2285).
  • the transceiver switch TR1 (227) adjusts the transceiver switch TR1 (227) to the transmitting state according to the third transceiver state control signal, that is, the transceiver switch TR1 (227 ) in the port p17 coupled with the second antenna switching switch 2231, and the port p18 in the transceiver switch TR1 (227) coupled with the filter LB3 (2293) are turned on.
  • the seventh antenna switching control signal can be sent to the second antenna switching switch 2231, so that the second antenna switching switch 2231 can switch the second antenna switching switch 2231 coupled with the SRS switch 2232 according to the seventh antenna switching control signal
  • the port p9 and the port p4 coupled with the transceiver switch TR1 (227) in the second antenna switching switch 2231 are conducted.
  • the fourth SRS state control signal can be sent to the SRS switch 2232, so that the SRS switch 2232 connects the port p7 coupled with the fourth antenna 234 in the SRS switch 2232 and the port p7 coupled with the fourth antenna 234 in the SRS switch 2232 according to the fourth SRS state control signal.
  • the port p10 coupled with the second antenna switching switch 2231 is turned on.
  • PA2 (2285) may amplify signal S11 to obtain signal S12, and send signal S12 to filter LB3 (2293).
  • the filter LB3 (2293) can filter the signal S12 to obtain the signal S13 and send the signal S13 to the transceiver switch TR1 (227).
  • the transceiver switch TR1 ( 227 ) sends the signal S13 to the second antenna switch 2231 .
  • the second antenna switching switch 2231 can send the signal S13 to the SRS switch 2232 , and the SRS switch 2232 can transmit the signal S13 from the fourth antenna 234 .
  • the first signal can be transmitted from the fifth antenna 235 .
  • the process may be as follows: the processing circuit 210 sends the first signal (which may be referred to as signal S11 for the convenience of subsequent description) to PA2 (2285).
  • the transceiver switch TR1 (227) adjusts the transceiver switch TR1 (227) to the transmitting state according to the fourth transceiver state control signal, that is, the transceiver switch TR1 (227 ), the port p17 coupled with the second antenna switching switch 2231, and the port p18 coupled with the filter LB3 (2293) in the transceiver switch TR1 (227) are turned on.
  • the seventh antenna switching control signal can be sent to the second antenna switching switch 2231, so that the second antenna switching switch 2231 can switch the second antenna switching switch 2231 coupled with the SRS switch 2232 according to the seventh antenna switching control signal
  • the port p9 and the port p4 coupled with the transceiver switch TR1 (227) in the second antenna switching switch 2231 are conducted.
  • the fifth SRS state control signal can be sent to the SRS switch 2232, so that the SRS switch 2232 connects the port p11 coupled with the transceiver switch TR2 (2233) in the SRS switch 2232 to the SRS switch 2232 according to the fifth SRS state control signal.
  • the port p10 coupled with the second antenna switching switch 2231 is turned on.
  • the fifth transceiver state control signal can be sent to the transceiver switch TR2 (2233), so that the transceiver switch TR2 (2233) adjusts the transceiver switch TR2 (2233) to the transmitting state according to the fifth transceiver state control signal, that is, the transceiver switch TR2
  • the port p8 in (2233) coupled with the switching switch of the fifth antenna 235 and the port p12 coupled with the SRS switch 2232 in the transceiver switch TR2 (2233) are turned on.
  • PA2 (2285) may amplify signal S11 to obtain signal S12, and send signal S12 to filter LB3 (2293).
  • the filter LB3 (2293) can filter the signal S12 to obtain the signal S13 and send the signal S13 to the transceiver switch TR1 (227).
  • the transceiver switch TR1 ( 227 ) sends the signal S13 to the second antenna switch 2231 .
  • the second antenna switching switch 2231 can send the signal S13 to the SRS switch 2232, and the SRS switch 2232 can send the signal S13 to the transceiver switch TR2 (2233), and the signal S13 is transmitted from the fifth antenna 235 by the transceiver switch TR2 (2233).
  • processing circuit 210 PA2(2285) ⁇ LB3(2293) ⁇ transceiving switch TR1(227) ⁇ second antenna switch 2231 ⁇ SRS switch 2232 ⁇ combiner M2(221) ⁇ first antenna switch
  • the path 222 ⁇ the first antenna 231 can transmit the first signal from the first antenna 231 .
  • the process can be as follows: the processing circuit 210 sends the first signal (referred to as signal S11 for convenience of subsequent description) to PA2 (2285), and sends the sixth transceiver state control signal to the transceiver switch TR1 (227), so that the transceiver switch TR1 (227) According to the sixth transceiver state control signal, the transceiver switch TR1 (227) is adjusted to the transmitting state, that is, the port p17 coupled with the second antenna switch 2231 in the transceiver switch TR1 (227), and the transceiver switch TR1 (227) The port p18 coupled with the filter LB3 (2293) is turned on.
  • the processing circuit 210 sends the first signal (referred to as signal S11 for convenience of subsequent description) to PA2 (2285), and sends the sixth transceiver state control signal to the transceiver switch TR1 (227), so that the transceiver switch TR1 (227)
  • the transceiver switch TR1 (227) is adjusted to the transmitting state,
  • the seventh antenna switching control signal can be sent to the second antenna switching switch 2231, so that the second antenna switching switch 2231 can switch the second antenna switching switch 2231 coupled with the SRS switch 2232 according to the seventh antenna switching control signal
  • the port p9 and the port p4 coupled with the transceiver switch TR1 (227) in the second antenna switching switch 2231 are conducted.
  • the sixth SRS state control signal can be sent to the SRS switch 2232, so that the SRS switch 2232 connects the port p5 coupled with the combiner M2 (221) in the SRS switch 2232 to the SRS switch 2232 according to the sixth SRS state control signal.
  • the port p10 in 2232 coupled with the second antenna switching switch 2231 is turned on.
  • the tenth antenna switching control signal can be sent to the first antenna switching switch 222, so that the first antenna switching switch 222 switches the port coupled with the first antenna 231 in the first antenna switching switch 222 according to the tenth antenna switching control signal p2, and the port p1 coupled with the combiner M2 (221) in the first antenna switching switch 222 are conducted.
  • PA2 (2285) may amplify signal S11 to obtain signal S12, and send signal S12 to filter LB3 (2293).
  • the filter LB3 (2293) can filter the signal S12 to obtain the signal S13 and send the signal S13 to the transceiver switch TR1 (227).
  • the transceiver switch TR1 ( 227 ) sends the signal S13 to the second antenna switch 2231 .
  • the second antenna switching switch 2231 can send the signal S13 to the SRS switch 2232, and the SRS switch 2232 can send the signal S13 to the combiner M2 (221).
  • the combiner M2 (221) then sends the signal S13 to the first antenna switch 222; then the first antenna switch 222 can transmit the signal S13 from the first antenna 231.
  • the timing at which the processing circuit 210 sends the control signal to the transceiver switch TR1 (227) can be set according to requirements, which is not limited in this embodiment of the present application. Wherein, it may be any time between the processing circuit 210 acquiring the first signal and sending the first signal to the transceiver switch TR1 (227).
  • the timing at which the processing circuit 210 sends the control signal to the transceiver switch TR2 (2233) can be set according to requirements, which is not limited in this embodiment of the present application. Wherein, it may be any time between the processing circuit 210 acquiring the first signal and sending the first signal to the transceiver switch TR2 (2233).
  • the timing at which the processing circuit 210 sends the control signal to the second antenna switching switch 2231 may be set according to requirements, which is not limited in this embodiment of the present application. Wherein, it may be any time between the processing circuit 210 acquiring the first signal and sending the first signal to the receiving second antenna switching switch 2231 .
  • the timing at which the processing circuit 210 sends the control signal to the first antenna switching switch 222 may be set according to requirements, which is not limited in this embodiment of the present application. Wherein, it may be any time between the processing circuit 210 acquiring the first signal and sending the first signal to the first antenna switching switch 222 .
  • the timing at which the processing circuit 210 sends the control signal to the SRS switch 2232 can be set according to requirements, which is not limited in this embodiment of the present application. Wherein, it may be any time between the processing circuit 210 acquiring the first signal and sending the first signal to the transceiver switch SRS switch 2232 .
  • the embodiment of the present application does not limit the order in which the wireless communication device 200 sends the first signal in turn, which can be set according to requirements, and the embodiment of the present application does not limit this.
  • the transmission may be performed in rotation according to the order of the first antenna 231 , the third antenna 233 , the fourth antenna 234 and the fifth antenna 235 .
  • the transmission may be performed in rotation according to the order of the third antenna 233 , the fourth antenna 234 , the fifth antenna 235 , and the first antenna 231 , and so on.
  • the wireless communication device 200 may transmit the second signal through the following two channels:
  • Processing circuit 210 PA1 ( 2281 ) ⁇ duplexer 226 ⁇ combiner M1 ( 225 ) ⁇ third switch 224 ⁇ combiner M2 ( 221 ) ⁇ first antenna switching switch 222 ⁇ first antenna 231 .
  • the processing circuit 210 may send a second signal (for convenience of description. It may be referred to as signal S21 hereinafter) to PA1 (2281). And send the third frequency band state control signal to the third switch 224, so that the third switch 224 connects the data port p16 coupled with the combiner M2 (221) in the third switch 224 according to the third frequency band state control signal , and the frequency band port f4 of the third switch 224 is turned on.
  • the eleventh antenna switching control signal can be sent to the first antenna switching switch 222, so that the first antenna switching switch 222 connects the first antenna switching switch 222 to the first antenna 231 according to the eleventh antenna switching control signal
  • the port p2 of the first antenna switching switch 222 is connected to the input port p1 connected to the combiner M2 (221).
  • PA1 ( 2281 ) can amplify the signal S21 to obtain the signal S22 and send the signal S22 to the duplexer 226 . After the duplexer 226 filters the signal S22, the signal S23 can be obtained, and then the signal S23 is sent to the combiner M1 (225), and the combiner M1 (225) sends the signal S23 to the third switch 224.
  • the processing circuit 210 may also send the first signal (referred to as signal S11 for the convenience of subsequent description) to PA2 (2285), and send the sixth Transceiver state control signal to the transceiver switch TR1 (227), so that the transceiver switch TR1 (227) adjusts the transceiver switch TR1 (227) to the transmitting state according to the sixth transceiver state control signal, that is, the transceiver switch TR1 (227) is connected to the sixth transceiver switch TR1 (227).
  • the port p17 coupled with the two-antenna switching switch 2231 is connected to the port p18 coupled with the filter LB3 (2293) in the transceiver switch TR1 (227).
  • the seventh antenna switching control signal can be sent to the second antenna switching switch 2231, so that the second antenna switching switch 2231 can switch the second antenna switching switch 2231 coupled with the SRS switch 2232 according to the seventh antenna switching control signal.
  • the port p9 and the port p4 coupled with the transceiver switch TR1 (227) in the second antenna switching switch 2231 are conducted.
  • the sixth SRS state control signal can be sent to the SRS switch 2232, so that the SRS switch 2232 connects the port p5 coupled with the combiner M2 (221) in the SRS switch 2232 to the SRS switch 2232 according to the sixth SRS state control signal.
  • the port p10 coupled with the second antenna switching switch 2231 in 2232 is turned on; and the tenth antenna switching control signal can be sent to the first antenna switching switch 222, so that the first antenna switching switch 222 switches the control signal according to the tenth antenna, Turn on the port p2 coupled with the first antenna 231 in the first antenna switch 222 and the port p1 coupled with the combiner M2 ( 221 ) in the first antenna switch 222 .
  • PA2 (2285) may amplify signal S11 to obtain signal S12, and send signal S12 to filter LB3 (2293).
  • the filter LB3 (2293) can filter the signal S12 to obtain the signal S13 and send the signal S13 to the transceiver switch TR1 (227).
  • the transceiver switch TR1 ( 227 ) sends the signal S13 to the second antenna switch 2231 .
  • the second antenna switching switch 2231 can send the signal S13 to the SRS switch 2232, and the SRS switch 2232 can send the signal S13 to the combiner M2 (221).
  • the combiner M2 (221) can receive the signals S13 and S24, and combine the signals S13 and S24 to obtain a combined signal; then send the signal S24 to the first antenna switching switch 222, and the first antenna switching switch 222 transmits the frequency band converted signal S24 from the first antenna 231 .
  • the second signal when the wireless communication device 200 is in the second scene, the second signal may be transmitted through the first channel.
  • the process of the wireless communication device 200 transmitting the second signal may be as follows: the processing circuit 210 may send the second signal (for convenience of description, it may be referred to as signal S21 in the following) to PA1 (2281). And send the fourth frequency band state control signal to the third switch 224, so that the third switch 224 connects the frequency band port f2 in the third switch 224 and the third switch 224 to the third switch 224 according to the fourth frequency band state control signal.
  • a port p15 coupled with an antenna switching switch 222 is turned on.
  • the twelfth antenna switching switch control signal can be sent to the first antenna switching switch 222, so that the first antenna switching switch 222 connects the first antenna switching switch 222 with the first antenna switching switch according to the twelfth antenna switching switch control signal.
  • the port p2 connected to 231 is connected to the input port p14 connected to the third switch 224 in the first antenna switching switch 222 .
  • PA1 ( 2281 ) can amplify the signal S21 to obtain the signal S22 and send the signal S22 to the duplexer 226 .
  • the signal S23 can be obtained, and then the signal S23 is sent to the combiner M1 (225), and the combiner M1 (225) sends the signal S23 to the third switch 224.
  • the third switch 224 selects the frequency band of the signal S23, obtains the signal S24 and sends the signal S24 to the first antenna switch 222, and the first antenna switch 222 transmits the frequency-switched signal S24 from the first antenna 231.
  • the wireless communication device 200 may pass the first antenna 231 ⁇ the first antenna switching switch 222 ⁇ the combiner M2 (221) ⁇ the third switch 224 ⁇ the combiner M1 (225) ⁇ duplexer 226 ⁇ LNA1 (2282) ⁇ processing circuit 210, to acquire the third signal.
  • the first antenna 231 of the wireless communication device 200 may receive a third signal transmitted by the base station (for convenience of description, it may be referred to as S31 later), and then the signal S31 may be transmitted to sent to the first antenna switching switch 222. Since the wireless communication device 200 is in the first communication scenario, the port p1 coupled with the combiner M2 (221) in the first antenna switch 222 and the port p2 coupled with the first antenna 231 in the first antenna switch 222 is turned on, so the combiner M2 ( 221 ) can receive the signal S31 through the first antenna switching switch 222 .
  • the combiner M2 ( 221 ) can send the signal S31 to the third switch 224 , and the third switch 224 performs frequency band selection on the signal S31 to obtain the signal S32 and send the signal S32 to the combiner M1 ( 225 ).
  • the combiner M1 (225) can send the signal S32 to the duplexer 226, and the duplexer 226 filters the signal S32 to obtain a signal S33 and send it to the LNA1 (2282).
  • LNA1 (2282) amplifies the signal S33 to obtain the signal S34, and then sends the signal S34 to the processing circuit 210, and then the processing circuit 210 processes the third signal, such as radio frequency demodulation, baseband demodulation, etc.
  • the wireless communication device 200 may pass the first antenna 231 ⁇ the first antenna switching switch 222 ⁇ the third switch 224 ⁇ the combiner M1 (225) ⁇ the duplexer 226 ⁇ LNA1 (2282) ⁇ processing circuit 210, obtain the fourth signal.
  • the first antenna 231 of the wireless communication device 200 may receive a fourth signal transmitted by the base station (for ease of description, it may be referred to as S41 later), and then the signal S41 may be transmitted to sent to the first antenna switching switch 222. Since the wireless communication device 200 is in the second communication scenario, the port p14 coupled with the third switch 224 in the first antenna switching switch 222 and the port p2 coupled with the first antenna 231 in the first antenna switching switch 222 are turned on.
  • the third switch 224 can receive the signal S41 through the first antenna switching switch 222 . Then the third switch 224 can select the frequency band of the signal S41 to obtain the signal S42 and send the signal S42 to the combiner M1 (225).
  • the combiner M1 (225) can send the signal S42 to the duplexer 226, and the duplexer 226 filters the signal S42 to obtain a signal S43 and send it to the LNA1 (2282).
  • LNA1 (2282) amplifies the signal S43 to obtain the signal S44, and then sends the signal S44 to the processing circuit 210, and then the processing circuit 210 processes the third signal, such as radio frequency demodulation, baseband demodulation, etc.
  • the path for the wireless communication device 200 to receive the third signal or the fourth signal may further include: the second antenna 232 ⁇ the first antenna switch 222 ⁇ LB2 (2292) ⁇ LNA3 (2284) ⁇ the processing circuit 210, to obtain the second antenna Three-signal or fourth-signal.
  • the path for the wireless communication device 200 to receive other signals of the first network may include:
  • the third antenna 233 ⁇ the second antenna switch 2231 ⁇ the transceiver switch TR1 (227) ⁇ LB4 (2294) ⁇ LNA4 (2286) ⁇ the processing circuit 210;
  • Fourth antenna 234 ⁇ SRS switch 2232 ⁇ second antenna switch 2231 ⁇ LB5 (2295) ⁇ LNA5 (2287) ⁇ processing circuit 210;
  • the fifth antenna 235 ⁇ the transceiver switch TR2 ( 2233 ) ⁇ LB6 ( 2296 ) ⁇ LNA6 ( 2288 ) ⁇ the processing circuit 210 .
  • the states of other switches are similar to the states of other switches when the wireless communication device transmits the first signal and the second signal from the first antenna 231 in the first communication scenario, and will not be repeated here.
  • the wireless communication device when the wireless communication device is in the second communication scenario, if it is necessary to realize the transmission of the second signal from the second antenna 232, in addition to controlling the conduction between the port p14 and the port p3 of the first switch 222, the states of other switches The states of other switches are similar to when the above wireless communication device is in the second communication scenario and the second signal is sent from the first antenna 231 , and will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communications device 700 may include: a processor 701 , a transceiver 705 , and optionally a memory 702 .
  • the transceiver 705 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 705 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • Computer program or software code or instructions 704 may be stored in memory 702, which may also be referred to as firmware.
  • the processor 701 can control the MAC layer and the PHY layer by running the computer program or software code or instruction 703 therein, or by calling the computer program or software code or instruction 704 stored in the memory 702, so as to implement the following aspects of the present application.
  • the processor 701 can be a central processing unit (central processing unit, CPU), a baseband processor, and a radio frequency processor
  • the memory 702 can be, for example, a read-only memory (read-only memory, ROM), or a random access memory ( random access memory, RAM).
  • the processor 701 and transceiver 705 described in this application can be implemented in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (application specific integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), electronic equipment, etc.
  • integrated circuit integrated circuit, IC
  • analog IC analog IC
  • radio frequency integrated circuit RFIC mixed signal IC
  • application specific integrated circuit application specific integrated circuit
  • PCB printed circuit board
  • electronic equipment etc.
  • the above-mentioned communication device 700 may further include an antenna 706, and each module included in the communication device 700 is only an example for illustration, and this application is not limited thereto.
  • the communication device described in the above embodiments may be a terminal, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 7 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the implementation form of the communication device may be:
  • the device 700 can be the Wi-Fi chip in the above embodiment
  • the implementation form of the communication device is a chip or a chip system
  • the chip shown in FIG. 8 includes a processor 801 and an interface 802 .
  • the number of processors 801 may be one or more, and the number of interfaces 802 may be more than one.
  • the chip or chip system may include a memory 803 .
  • the processing circuit and the radio frequency front-end module are integrated on the chip, and other devices, including the antenna, are arranged outside the chip.
  • the processing circuit is integrated on the chip, and the antenna and the radio frequency front-end module are arranged outside the chip.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program contains at least one piece of code, and the at least one piece of code can be executed by a terminal device to control
  • the terminal device is used to implement the foregoing method embodiments.
  • the embodiments of the present application further provide a computer program, which is used to implement the foregoing method embodiments when the computer program is executed by a terminal device.
  • the program may be stored in whole or in part on a storage medium packaged with the processor, or stored in part or in whole in a memory not packaged with the processor.
  • the embodiments of the present application further provide a processor, which is configured to implement the foregoing method embodiments.
  • the aforementioned processor may be a chip.
  • the steps of the methods or algorithms described in connection with the disclosure of the embodiments of the present application may be implemented in the form of hardware, or may be implemented in the form of a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), erasable programmable read-only memory ( Erasable Programmable ROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • RAM Random Access Memory
  • ROM read-only memory
  • erasable programmable read-only memory Erasable Programmable ROM, EPROM
  • Electrically Erasable Programmable Read-Only Memory Electrically Erasable Programmable Read-Only Memory
  • registers hard disk, removable hard disk, CD-ROM, or any other form
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC. Additionally, the ASIC may be located in a network device. Of course, the processor and the storage medium may also exist in the network device as discrete components.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

本申请实施例提供了一种信号发射方法及无线通信装置。该无线通信装置中布设有五根天线,四根天线用于第一网络通信,两根天线用于第二网络通信,第一网络和第二网络复用一根天线。该方法包括:轮流从第三天线、第四天线和第五天线这三根天线发射第一网络的SRS;以及将SRS和第二网络的第二信号输入至合路器,由合路器将两路信号合路后从复用的第一天线发射出去;进而实现4路轮发SRS。且当即将通过第一天线轮发SRS时,无线通信装置也在从第一天线发送第二信号,通过合路器将SRS和第二网络的信号合成一路信号从第一天线发射出去,能够保证在4路轮发第一网络的SRS过程中,不打断第二信号的发射,从而不打断第二网络业务。

Description

信号发射方法及无线通信装置
本申请要求于2021年07月09日提交中国国家知识产权局、申请号为202110780804.8、申请名称为“信号发射方法及无线通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种信号发射方法及无线通信装置。
背景技术
目前,很多5G(5th Generation Mobile Communication Technology,第五代移动通信技术)终端设备处于EN-DC(LTE(Long Term Evolution,长期演进)-NR(New Redio,新空口)双连接的一种场景)场景时,可进行4G(4th Generation Mobile Communication Technology,第四代移动通信技术)通信和5G通信。其中,终端设备中设置4根天线,2根天线用于4G信号的收发,2根天线用于5G信号的收发。5G支持SRS(Sounding Reference Signal,信道探测参考信号)轮发:1T2R SRS(“T”transmit,发送;“R”receive,接收),即在2根接收天线上轮发SRS信号;以及1T4R SRS,即在4根接收天线上轮发SRS信号。其中,采用1T4R SRS时,基站能够获取到全部的4根天线发送的上行信道信息;相对于采用1T2R SRS,基站获取的上行信道信息更全面,进而基站信道估计更准确,从而能够进行更准确的下行资源分配,提升下行峰值速率。
若终端设备采用1T4R SRS,虽然能够提升下行峰值速率;但是会占用4G信号收发的天线,使得这两根天线无法发送4G信号,打断LTE业务,导致LTE业务速率下降,甚至断连。若采用1T2R SRS,虽然不会占用用于4G信号收发的天线,但是会降低下行峰值速率。
发明内容
为了解决上述技术问题,本申请提供一种信号发射方法及无线通信装置;该方法能够在实现4路轮发第一网络的SRS的同时,不打断第二网络的业务。
第一方面,本申请实施例提供一种无线通信装置,包括:
天线组,包括:第一天线、第二天线、第三天线、第四天线和第五天线;
射频前端模组,包括合路器,合路器耦合至第一天线;
处理电路,耦合至合路器和天线组,用于轮流从第三天线、第四天线和第五天线发射第一信号;以及将第一信号和第二信号发送至合路器,通过合路器从第一天线发射第一信号和第二信号;其中,第一信号为第一网络的信道探测参考信号SRS,第二信号为第二网络的信号。这样,能够通过第一天线、第三天线、第四天线和第五天线,实现4路轮发SRS,进而提升下行峰值速率。且当无线通信装置即将通过第一天线轮发第一网 络的SRS时,无线通信装置也在从第一天线发送第二网络的信号,此时,可以通过合路器将第一网络的SRS信号和第二网络的信号合成一路信号从第一天线发射出去,能够实现在4路轮发第一网络的SRS过程中,不打断第二网络的信号的发射,从而实现不打断第二网络业务。
根据第一方面,射频前端模组,还包括:第一开关和第二开关;合路器耦合至第一开关,第一开关耦合至第一天线和第二天线;第二开关耦合至第三天线、第四天线、第五天线和合路器;处理电路,还耦合至第一开关和第二开关,用于控制第二开关的状态,轮流从第三天线、第四天线和第五天线发射第一信号;控制第二开关的状态,将第一信号发送至合路器,以及将第二信号发送至合路器;并控制第一开关的状态,依次通过合路器和第一开关从第一天线发射第一信号和第二信号。
根据第一方面,或者以上第一方面的任意一种实现方式,射频前端模组还包括第三开关,第三开关耦合至第一开关和合路器;处理电路,还耦合至第三开关,用于处于第一通信场景时,控制第三开关的状态,将第二信号发送至合路器;处理电路,还用于处于第二通信场景时,控制第三开关和第一开关的状态,依次通过第三开关、和第一开关从第一天线发射第二信号。进而通过控制第三开关的状态,实现在第一通信场景时,将第二信号发送至合路器,实现4路轮发第一网络的SRS过程中,不打断第二网络的信号的发射。以及在第二通信场景时,直接将第二信号发送至第一开关从第一天线发射出去,进而第二信号无需通过合路器,减少发射信号的损耗。
根据第一方面,或者以上第一方面的任意一种实现方式处理电路,还用于处于第一通信场景时,控制第三开关和第一开关的状态,依次通过第一开关、合路器和第三开关从第一天线接收第三信号;处于第二通信场景时,控制第三开关和第一开关的状态,依次通过第一开关和第三开关从第一天线接收第四信号;其中,第三信号和第四信号为第二网络的信号。这样,在处于第二通信场景时,处理电路接收到的信号也无需通过合路器,减少接收信号的损耗。
根据第一方面,或者以上第一方面的任意一种实现方式,第一通信场景包括EN-DC场景;第二通信场景包括仅存在4G网络的场景。
第二方面,本申请实施例提供一种信号发射方法。该方法应用于无线通信装置,该装置包括处理电路、射频前端模组和天线组,射频前端模组包括:合路器,天线组包括:第一天线、第二天线、第三天线、第四天线和第五天线,该方法包括:处理电路轮流从第三天线、第四天线和第五天线发射第一信号;以及将第一信号和第二信号发送至合路器,通过合路器从第一天线发射第一信号和第二信号;其中,第一信号为第一网络的信道探测参考信号SRS,第二信号为第二网络的信号。
根据第二方面,射频前端模组还包括:第一开关和第二开关;处理电路轮流从第三天线、第四天线和第五天线发射第一信号,包括:处理电路控制第二开关的状态,轮流第三天线、第四天线和第五天线发射第一信号;将第一信号和第二信号发送至合路器,通过合路器从第一天线发射第一信号和第二信号,包括:处理电路控制第二开关的状态,将第一信号发送至合路器,以及将第二信号发送至合路器;并控制第一开关的状态,依次通过合路器和第一开关从第一天线发射第一信号和第二信号。
根据第二方面,或者以上第二方面的任意一种实现方式,射频前端模组还包括第三开关;将第二信号发送至合路器,包括:当无线通信装置处于第一通信场景时,处理电路控制第三开关的状态,将第二信号发送至合路器;的方法还包括:当无线通信装置处于第二通信场景时,处理电路控制第三开关和第一开关的状态,依次通过第三开关和第一开关从第一天线发射第二信号。
根据第二方面,或者以上第二方面的任意一种实现方式,当无线通信装置处于第一通信场景时,处理电路控制第三开关和第一开关的状态,依次通过第一开关、合路器和第三开关从第一天线接收第三信号;
当无线通信装置处于第二通信场景时,处理电路控制第三开关和第一开关的状态,依次通过第一开关和第三开关从第一天线接收第四信号;
其中,第三信号和第四信号为第二网络的信号。
根据第二方面,或者以上第二方面的任意一种实现方式,第一通信场景包括EN-DC场景;第二通信场景包括仅存在4G网络的场景。
第二方面以及第二方面的任意一种实现方式分别与第一方面以及第一方面的任意一种实现方式相对应。第二方面以及第二方面的任意一种实现方式所对应的技术效果可参见上述第一方面以及第一方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第三方面,本申请实施例提供了一种射频前端模组,包括:第一开关、第二开关、第三开关和合路器;第二开关,分别与处理电路、第三天线、第四天线、第五天线和合路器相耦合,用于在第一通信场景中从处理电路接收第一信号,并根据处理电路的控制将第一信号轮流发送至第三天线、第四天线、第五天线和合路器;第三开关,分别与处理电路、合路器和第一开关相耦合,用于在第一通信场景中从处理电路接收第二信号,并根据处理电路的控制将第二信号发送至合路器;以及用于在第二通信场景中从处理电路接收第二信号,并根据处理电路的控制将第二信号发送至第一开关;合路器,分别与第一开关、第二开关和第三开关耦合,用于在第一通信场景中,从第三开关接收第二信号和从第二开关接收第一信号,以及将第一信号和第二信号合路,并将合路得到的合路信号发送至第一开关;第一开关,分别与合路器、第三开关、第一天线和第二天线相耦合,用于在第一通信场景中接收合路信号,并根据处理电路的控制从第一天线发射合路信号;以及在第二通信场景中接收第二信号,并根据处理电路的控制从第一天线发射第 二信号。
第三方面以及第三方面的任意一种实现方式分别与第一方面以及第一方面的任意一种实现方式相对应。第三方面以及第三方面的任意一种实现方式所对应的技术效果可参见上述第一方面以及第一方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第四方面,本申请实施例提供一种芯片。该芯片包括:至少一个处理器和接口,可选地还包括存储器;处理器通过接口耦合至射频前端模组。至少一个处理器被配置为调用存储在存储器中的指令,以执行第二方面以及第二方面的任意一种实现方式中的处理电路执行的步骤。
第四方面以及第四方面的任意一种实现方式分别与第二方面以及第二方面的任意一种实现方式相对应。第四方面以及第四方面的任意一种实现方式所对应的技术效果可参见上述第二方面以及第二方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第五方面,本申请实施例提供一种计算机可读存储介质。计算机可读存储介质存储有计算机程序,当计算机程序运行在计算机或处理器上时,使得计算机或处理器执行第二方面或第二方面的任一种可能的实现方式中的方法。
第五方面以及第五方面的任意一种实现方式分别与第二方面以及第二方面的任意一种实现方式相对应。第五方面以及第五方面的任意一种实现方式所对应的技术效果可参见上述第二方面以及第二方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第六方面,本申请实施例提供一种计算机程序产品。计算机程序产品包含软件程序,当软件程序被计算机或处理器执行时,使得第二方面或第二方面的任一种可能的实现方式中的方法被执行。
第六方面以及第六方面的任意一种实现方式分别与第二方面以及第二方面的任意一种实现方式相对应。第六方面以及第六方面的任意一种实现方式所对应的技术效果可参见上述第二方面以及第二方面的任意一种实现方式所对应的技术效果,此处不再赘述。
附图说明
图1为示例性示出的本申请实施例的应用场景图;
图2为示例性示出的本申请实施例的一种无线通信装置的结构示意图;
图3为示例性示出的无线通信装置4路轮发SRS对应开关状态示意图;
图4为示例性示出的本申请实施例的另一种无线通信装置的结构示意图;
图5为示例性示出的本申请实施例的又一种无线通信装置的结构示意图;
图6为示例性示出的本申请实施例的再一种无线通信装置的结构示意图;
图7为示例性示出的装置的结构示意图;
图8为示例性示出的芯片的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
本申请实施例可以应用于LTE-NR场景中。示例性的,本申请实施例可以应用于EN-DC场景(LTE-NR场景中的一种场景)。
图1示例性示出的本申请实施例的应用场景图。EN-DC场景中的无线通信系统100可以包括:4G核心网110、4G基站120、5G基站130和终端设备140。其中,4G基站120作为主基站接入4G核心网110,5G基站130作为辅基站与4G基站120连接,终端设备140可以分别与4G基站120和5G基站130连接。
在终端设备处于EN-DC场景时,终端设备可以同时进行4G通信和5G通信。终端设备140在进行5G通信的过程中,可以向5G基站130发射5G SRS。5G基站130接收到终端设备140发射的5G SRS之后,可以根据5G SRS进行上行信道估计,然后根据上行信道估计结果进行下行资源分配。
其中,终端设备支持1T2R和1T4R两种轮发策略。而采用1T4R轮发策略相对于采用1T2R轮发策略而言,下行峰值速率更高。通常,现有技术的4天线终端设备的2根天线用于4G通信,2根天线用于5G通信。若采用1T4R轮发策略,则会打断4G业务。因此为了避免采用1T4R轮发策略时,对终端设备4G业务的影响,4天线终端设备通常采用1T2R的轮发策略,这样终端设备的下行峰值速率会受到影响。此外,现有技术还在4根天线的基础上新增2根天线,得到6天线终端设备。6天线终端设备的2根天线用于4G通信,4根天线用于5G通信,因此6天线终端设备可以采用1T4R的轮发机制。然而终端设备的空间有限,新增2根天线会导致这两根天线空间较小,天线性能较差,且还会增加终端设备的成本。
进而针对现有技术的缺陷,本申请实施例提供了无线通信装置,该无线通信装置可以设置在终端设备140中,可以在不打断4G业务的前提下,采用1T4R轮发策略来发射SRS,保证下行峰值速率。
图2示例性示出的本申请实施例的一种无线通信装置的结构示意图。图2所示无线通信装置200仅是无线通信装置的一个范例,并且无线通信装置200可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图2中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
无线通信装置200可以包括:处理电路210、射频前端模组220和天线组230。
示例性的,处理电路210可以耦合至射频前端模组220,射频前端模组220可以耦合至天线组230。
示例性的,处理电路210可以包括射频处理电路如收发器,可以用于从基带处理电路接收基带信号并对基带信号进行射频调制,得到射频调制后的信号并发送至射频前端模组。射频处理电路还可以用于从射频前端模组接收信号,对该信号进行射频解调,得到射频解调后的信号并发送至基带处理电路进行处理。
示例性的,处理电路210可以包括基带处理电路和射频处理电路。基带处理电路耦合至射频处理电路,基带处理电路可以用于从中央处理电路接收原始信号,并对原始信号进行基带调制,得到基带信号并发送给射频处理电路。射频处理电路可以用于从基带处理电路接收基带信号,并对基带信号进行射频调制,得到射频调制后的信号并发送至射频前端模组220。射频处理电路可以用于从射频前端模组220接收信号,对该信号进行射频解调,得到射频解调后的信号并发送至基带处理电路。基带处理电路还可以用于从射频处理电路接收射频解调后的信号,并对射频解调后的信号进行基带解调,得到基带解调的信号并发送至中央处理器电路进行处理。
示例性的,处理电路210可以包括中央处理电路、基带处理电路和射频处理电路。中央处理电路可以耦合至基带处理器,基带处理电路可以耦合至射频处理电路。中央处理电路可以用于生成或获取原始信号并发送至基带处理电路。基带处理电路可以用于从中央处理电路接收原始信号并对原始信号进行基带调制,得到基带信号并发送给射频处理电路。射频处理电路可以用于对基带信号进行射频调制,得到射频调制后的信号并发送至射频前端模组220。射频处理电路还可以用于从射频前端模组220接收信号,对该信号进行射频解调,得到射频解调后的信号并发送至基带处理电路。基带处理电路还可以用于对射频解调后的信号进行基带解调,得到基带解调的信号并发送中央处理器电路。中央处理电路还可以用于对基带解调后的信号进行处理并输出。例如,无线通信装置200为终端设备,基带解调后的信号为语音信号,中央处理电路可以将语音信号输出至扬声器进行播放。又例如,基带解调后的信号为文本/图片,中央处理电路可以将文本/图片输出至显示组件进行显示,等等。
示例性的,天线组230可以用于收发射频信号。
示例性的,天线组230可以包括:第一天线231、第二天线232、第三天线233、第四天线234和第五天线235。
示例性的,射频前端模组220,可以用于从处理电路210中接收信号并将接收的信号转换为射频信号,然后通过天线发射;还可以用于从天线接收射频信号并对信号进行过滤、放大等处理,并将处理后的信号输入至处理电路210中。
示例性的,射频前端模组220可以包括:合路器221、第一开关222和第二开关223。
示例性的,合路器221可以包括多个双向端口,可以用于信号的输入与输出。
示例性的,合路器221可以包含两组端口:第一组端口和第二组端口。当第一组端口用于输入时,第二组端口用于输出。当第二组端口用于输入时,第一组端口用于输出。例如,当无线通信装置200发射信号时,第一组端口可以用于输入,第二组端口可以用于输出。当无线通信装置200的天线接收到信号时,第二组端口可以用于输入,第一组端口可以用于输出。
示例性的,当合路器221中作为输入的端口有多个,作为输出的端口为一个时,合路器221可以将多个端口输入的信号进行合路,得到一路信号并从用于输出的端口输出。
示例性的,当合路器221中作为输出的端口有多个,作为输入的端口为一个时,合路器221可以将从用于输入的一个端口接收到的信号,分别从用于输出的多个端口输出。
示例性的,合路器221包括但不限于以下一种:频率合成器(如Diplexer(双工器),Triplexer(三工器),Extractor(提取器)等)和具备Multi-On(多开)功能的开关。
示例性的,第一开关222可以包括数据端口(如图2中的端口p1、端口p2和端口p3)和控制端口(图2中未示出)。其中,数据端口可以包括多个双向端口,可以用于输入与输出无线通信装置200与其它装置的交互信号。控制端口可以用于输入针对第一开关222的控制信号,控制信号可以用于控制第一开关222的状态。
示例性的,第一开关222的数据端口可以包含两组:第三组端口和第四组端口。当第三组端口用于输入时,第四组端口用于输出。当第四组端口用于输入时,第三组端口用于输出。例如,当无线通信装置200发射信号时,第三组端口可以用于输入,第四组端口可以用于输出。当无线通信装置200的天线接收到信号时,第四组端口可以用于输入,第三组端口可以用于输出。
示例性的,第三组端口中可以包含多个数据端口,第四组端口中也可以包括多个数据端口。第三组端口中所包含的数据端口的数量和第四组端口中所包含的数据端口的数量可以相同,也可以不同,具体可以按照实际需求确定,本申请实施例对此不作限制。例如,图2中,第三组端口可以包含1个数据端口如端口p1,第四组端口可以包含2个数据端口如端口p2和p3。第三组端口中所包含的每一个数据端口,均可以分别与第四组端口中所包含的每个数据端口导通。第一开关222的状态可以是指第三组端口中数据端口与第四组端口中数据端口导通的状态。第一开关222的状态可以包含多种,不同的两种状态对应导通的两对端口中至少一个数据端口不同。例如,图2中第一开关222可以包括两种状态。第一种状态可以是:第三组端口中与合路器221耦合的数据端口和第四组端口中与第一天线231耦合的端口导通,即端口p1和p2导通。第二种状态可以是:第三组端口中与合路器221耦合的数据端口和第四组端口中与第二天线232耦合的端口导通,即端口p1和p3导通。
示例性的,第二开关223可以包括数据端口(如图2中的端口p4、端口p5、端口p6、端口p7和端口p8)和控制端口(图2中未示出)。示例性的,第二开关223的数据端口可以包含两组:第五组端口(如包括端口p4)和第六组端口(如包括端口p5、p6、p7和p8)。当第五组端口用于输入时,第六组端口用于输出。当第六组端口用于输入时,第 五组端口用于输出。其中,针对第二开关223的说明,可以援引上文第一开关222的描述,在此不再赘述。
示例性的,无线通信装置200中可以分配4根天线用于第一网络通信,分配2根天线用于第二网络通信;其中,第一网络通信与第二网络通信复用一根天线。
示例性的,可以将第一天线231和第二天线232,分配为用于第二网络通信,将第一天线231、第三天线233、第四天线234和第五天线235,分配为用于第一网络通信。也就是说,第一网络通信与第二网络通信复用第一天线231。当然,也可以将第一天线231和第二天线232,分配为用于第二网络通信,将第二天线232、第三天线233、第四天线234和第五天线235,分配为用于第一网络通信。也就是说,第一网络通信与第二网络通信复用第二天线232,本申请实施例对此不作限制。
示例性的,第一网络和第二网络是两种采用不同移动通信技术的网络;例如,第一网络为5G网络,第二网络为4G网络。第一网络和第二网络对应的频段可以不同。例如,第一网络为5G网络时对应的频段可以如2515~2675MHz(对应的频段号为n41),第二网络为4G网络时对应的频段可以如1710-2690MHz(对应可以是MHB(MB(Medium Frequency,中频)&HB(High Frequency,高频),中高频),对应的频段号可以包括B3、B39)。第一网络和第二网络可以频分复用第一天线231或第二天线232。
示例性的,处理电路210可以耦合至合路器221、第二天线232、第三天线233、第四天线234和第五天线235。合路器221耦合至第一天线231。
示例性的,若第一网络通信和第二网络通信复用第一天线231,则处理电路210可以用于轮流从第三天线233、第四天线234和第五天线235发射第一信号,以及将第一信号和第二信号发送至合路器,通过合路器221从第一天线231发射第一信号和第二信号。其中,第一信号为第一网络的SRS,第二信号为第二网络的信号。
示例性的,若第一网络通信和第二网络通信复用第二天线232,则处理电路210,可以用于轮流从第三天线233、第四天线234和第五天线235发射第一信号,以及将第一信号和第二信号发送至合路器,通过合路器221从第二天线232发射所述第一信号和第二信号。其中,处理电路210可以在发射第二信号和轮发第一信号时,判断第一天线231的性能是否优于第二天线232的性能。若第一天线231的性能优于第二天线232的性能,则通过合路器221从第一天线231发射第一信号和第二信号。若第二天线232的性能优于第一天线231的性能,则通过合路器221从第二天线232发射第一信号和第二信号。
示例性的,处理电路210可以耦合至第一开关222、第二开关223和合路器221,其中,处理电路210不同的端口,可以分别与合路器221、第一开关222和第二开关223耦合。第二开关223可以耦合至第三天线233、第四天线234、第五天线235和合路器221,其中,第二开关223不同的端口,可以分别与第三天线233、第四天线234、第五天线235和合路器221耦合。合路器221可以耦合至第一开关222。第一开关222可以耦合至第一天线231和第二天线232,其中,第一开关222不同的端口,可以分别与第一天线231和第二天线232耦合。
示例性的,处理电路210的不同端口,可以分别耦合至合路器221的第一组端口、第一开关222的控制端口、第二开关223的控制端口和数据端口。例如处理电路210的 一端口,可以耦合至第二开关223的第五组端口如端口p4。
示例性的,合路器221的第二组端口中的端口,可以耦合至第一开关222的第三组端口中的端口如端口p1。
示例性的,第一开关222第四组端口的两个数据端口如端口p2和端口p3,可以分别耦合至第一天线231和第二天线232。
示例性的,所述第二开关223第六组端口的四个数据端口如端口p5、p6、p7和p8,可以分别耦合至第三天线233、第四天线234、第五天线235和合路器221的第一组端口中的端口。
示例性的,若第一网络通信和第二网络通信复用第一天线231,则处理电路210,可以用于控制第二开关223的状态轮流第三天线233、第四天线234和第五天线235发射所述第一信号,以及控制所述第二开关223的状态,将第一信号发送至合路器221,以及将第二信号发送至所述合路器221,并控制第一开关222的状态,依次通过合路器221和第一开关222从第一天线231发射所述第一信号和第二信号。
示例性的,若第一网络通信和第二网络通信复用第二天线232,则处理电路210,可以用于控制第二开关223的状态轮流第三天线233、第四天线234和第五天线235发射所述第一信号,以及控制所述第二开关223的状态,将第一信号发送至合路器221,以及将第二信号发送至合路器221,并控制第一开关222的状态,依次通过合路器221和第一开关222从第二天线232发射所述第一信号和第二信号。其中,处理电路210可以在发射第二信号和轮发第一信号时,判断第一天线231的性能是否优于第二天线232的性能。若第一天线231的性能优于第二天线232的性能,则处理电路210可以用于控制所述第一开关222和第二开关223的状态,依次通过所述第二开关223、合路器221和第一开关222从第一天线231发射所述第一信号和第二信号。若第二天线232的性能优于第一天线231的性能,则处理电路210可以用于控制所述第一开关222和第二开关223的状态,依次通过所述第二开关223、合路器221和第一开关222从第二天线232发射所述第一信号和第二信号。
为了便于本领域技术人员的理解,以下均以从第一天线231发射第一信号和第二信号为例进行说明。
可参照图3,图3示例性的示出了本申请实施例的无线通信装置4路轮发SRS对应开关状态示意图。示例性的,无线通信装置200可以通过如下4条通路轮发SRS:
通路31:处理电路210→第二开关223→第三天线233;
通路32:处理电路210→第二开关223→第四天线234;
通路33:处理电路210→第二开关223→第五天线235;
通路34:处理电路210→第二开关223→合路器221→第一开关222→第一天线231。
示例性的,可以通过通路31将第一信号从第三天线233发射出去。可参照图3的31:处理电路210可以将第一信号发送至第二开关223,以及可以将第一控制信号发送至第二开关223,以使第二开关223根据第一控制信号,将第二开关223中与第三天线233耦合的端口p6,和第二开关223中与处理电路210耦合的端口p4导通。进而第二开关223可以将从处理电路210接收到的第一信号从第三天线233发射出去。
示例性的,可以通过通路22将第一信号从第四天线234发射出去。可参照图3的32:处理电路210将第一信号发送至第二开关223,以及可以将第二控制信号发送至第二开关223,以使第二开关223根据第二控制信号,将第二开关223中与第四天线234耦合的端口p7,和第二开关223中与处理电路210耦合的端口p4导通。进而第二开关223可以将从处理电路210接收到的第一信号从第四天线234发射出去。
示例性的,可以通过通路23将第一信号从第五天线235发射出去。可参照图3的33:处理电路210将第一信号发送至第二开关223,以及可以将第三控制信号发送至第二开关223,以使第二开关223根据第三控制信号,将第二开关223中与第五天线235耦合的端口p8,和第二开关223中与处理电路210耦合的端口p4导通。进而第二开关223可以将从处理电路210接收到的第一信号从第五天线235发射出去。
示例性的,可以通过通路24将第一信号从第一天线231发射出去。可参照图3的34:处理电路210将第一信号发送至第二开关223。以及可以将第四控制信号发送至第二开关223,以使第二开关223根据控制信号,将第二开关223中与合路器221耦合的端口p5,和第二开关223中与处理电路210耦合的端口p4导通。以及可以将第五控制信号发送至第一开关222,以使第一开关222根据第五控制信号,将第一开关222中与第一天线231耦合的端口p2,和第一开关222中与合路器221耦合的输入端口p1导通。进而第二开关223可以将第一信号发送至合路器221,合路器221再将第一信号发送至第一开关222,然后第一开关222可以将第一信号从第一天线231发射出去。
示例性的,处理电路210向第二开关223发送控制信号的时机,可以按照需求设置,本申请实施例对此不作限制。其中,可以是处理电路210获取第一信号至将第一信号发送至第二开关223期间的任一时间。
示例性的,处理电路210向第一开关222发送控制信号的时机,可以按照需求设置,本申请实施例对此不作限制。其中,可以是处理电路210获取第一信号至将第一信号发送至第一开关222期间的任一时间。
需要说明的是,本申请实施例不限制无线通信装置轮发第一信号的顺序,可以按照需求设置,本申请实施例对此不作限制。例如,可以是按照第一天线231、第三天线233、第四天线234和第五天线235的顺序轮发,即依次通过通路34、通路31、通路32和通路33,轮发SRS。又例如按照第三天线233、第四天线234、第五天线235和第一天线231的顺序轮发,即依次通过通路31、通路32、通路33和通路34,轮发SRS等等。
当无线通信装置发送第二网络的信号(为了便于后续说明,可以称为第二信号)时,可以通过处理电路210→合路器221→第一开关222→第一天线231,将第二信号从第一天线231发射出去。
示例性的,处理电路210可以发送第二信号至合路器221,并控制所述第一开关222的状态从所述第一天线231发射第二信号。例如,可以参照图3中的34:可以由处理电路210将第二信号发送至合路器221,以及将第六控制信号发送至第一开关222,以使第一开关222根据第六控制信号,将第一开关222中与第一天线231耦合的端口p2,和第一开关222中与合路器221耦合的端口p1导通。然后合路器221可以将第二信号发送至第一开关222,进而第一开关222可以将第二信号从第一天线231发射出去。
示例性的,当无线通信装置即将轮发第一信号至第一天线231时,若无线通信装置正在发射第二信号,此时无线通信装置发送第一信号和第二信号的过程可以参照图3中的34:当无线通信装置即将轮发第一信号至第一天线231时,若无线通信装置正在发射第二信号,此时合路器221可以通过与第二开关223耦合的端口接收到处理电路210发送的第一信号,以及通过与处理电路210耦合的端口接收到处理电路210发送的第二信号。然后合路器221可以将第一信号与第二信号进行合路,得到合路信号,并输入至第一开关222。待第一开关222根据处理电路210发送的第五控制信号,将第一开关222中与第一天线231耦合的端口p2,和第一开关222中与合路器221耦合的端口p1导通后,第一开关222可以将合路信号通过第一天线231发射出去。进而实现将第一信号和第二信号均从第一天线231被发射出去。从而实现从四路轮发第一网络的SRS,提升下行峰值速率,且不会打断第二网络的业务,提高用户体验。
示例性的,当无线通信装置即将轮发第一信号到第一天线231时,若无线通信装置并未发送第二网络的信号,则合路器221可以直接将从第二开关223接收到第一信号发送至第一开关222,从第一天线231发射第一信号。例如,可以按照图3中的34,从第一天线231发射第一信号。
相对于现有技术4天线的无线通信装置实现2路轮发SRS而言,本申请实施例的5天线无线通信装置能够实现4路轮发SRS,能够提升下行峰值速率。
此外,不同档位(例如价格)的终端设备,对SRS轮发规则不同。档位越高的终端设备,对其中的无线通信装置的SRS轮发规则要求越高(即轮发SRS的天线越多)。采用现有技术4天线终端设备无法满足高档位要求,而采用本申请实施例的无线通信装置的终端设备可以满足高档位要求。
相对于现有技术6天线的无线通信装置实现4路轮发SRS而言,本申请实施例为5天线的无线通信装置实现4路轮发SRS。由于终端设备的空间限制,本申请实施例新增1根天线,比现有技术6天线的终端设备中新增的2根天线中每根天线所占用的空间大,从而能够使得天线性能更好,保证移动数据业务。
本申请实施例的一个应用场景可以是:第一网络为5G,第二网络为4G,第一信号为5G SRS,第二信号为4G信号。其中,第一天线231和第二天线232用于4G通信,第一天线231、第三天线233、第四天线234和第五天线235可以用于5G通信,第一天线231为4G通信和5G通信复用的天线。再次参照图3,无线通信装置轮发5G SRS的过程可以是:可以由处理电路210将5G SRS发送至第二开关223,然后控制第二开关223的端口p4,依次与端口p6、端口p7和端口p8导通,轮流从第三天线233、第四天线234和第五天线235将5G SRS发射出去。以及控制第二开关223的端口p4与端口p5导通,将5G SRS发送到合路器221。此时,若无线通信装置正在发送4G信号,则合路器221可以接收到4G信号和5G SRS。然后合路器221可以将4G与5G SRS进行合路,得到合路信号,并输入至第一开关222。然后处理电路210可以通过控制第一开关222的端口p1与p2导通,将合路信号通过第一天线231发射出去。进而4G信号和5G SRS均可以被发射出去,从而实现从四路轮发5G SRS,提升5G的下行峰值速率;且不会打断4G 业务。
示例性的,第一天线231可以是主天线,第二天线232可以是分集天线,第三天线233和第四天线234可以MIMO(multiple-in multipleout,多入多出)天线。
示例性的,无线通信装置可以从第一天线231发射第二网络的信号,也可以从第二天线232发送第二网络的信号,具体根据第一天线231和第二天线232的性能确定,本申请实施例对此不作限制。若第二天线232的性能优于第一天线231,则可以从第二天线232发射第二网络的信号。若第一天线231的性能优于第二天线232,则可以从第一天线231发射第二网络的信号。以及可以从第一天线231和第二天线232接收第二网络的信号。
示例性的,无线通信装置可以从第三天线233发射第一网络的其它信号,也可以从第四天线234发射第一网络的其它信号,具体根据第三天线233和第四天线234的性能确定,本申请实施例对此不作限制。若第三天线233的性能优于第四天线234,则可以从第三天线233发射第一网络的其它信号。若第四天线234的性能优于第三天线233,则可以从第四天线234发射第一网络的其它信号。以及可以从第一天线231、第三天线233、第四天线234和第五天线235接收第一网络的其它信号。所述第一网络的其它信号可以包括除第一网络的SRS之外的信号。
图4示例性示出的本申请实施例的另一种无线通信装置的结构示意图。图4所示无线通信装置200仅是无线通信装置的一个范例,并且无线通信装置200可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图4中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
无线通信装置200可以包括:处理电路210、射频前端模组220和天线组230。
示例性的,处理电路210可以耦合至射频前端模组220,射频前端模组220可以耦合至天线组230。
示例性的,天线组230可以包括:第一天线231、第二天线232、第三天线233、第四天线234和第五天线235。
示例性的,射频前端模组220可以包括:合路器221、第一开关222和第二开关223。
示例性的,处理电路210可以耦合至第二开关223、第一开关222和合路器221。第二开关223可以耦合至第三天线233、第四天线234、第五天线235和合路器221。合路器221可以耦合至第一开关222,第一开关222可以耦合至第一天线231和第二天线232。
示例性的,第一开关222可以为天线切换开关,可以称为第一天线切换开关。第二开关223可以包括第二天线切换开关2231、SRS开关2232和收发开关2233。其中,第二天线切换开关2231耦合至第三天线233和SRS开关2232,SRS开关2232耦合至第四天线234、收发开关2233和合路器221,收发开关2233耦合至第五天线235。其中,SRS开关2232的不同端口,可以分别耦合至第四天线234、收发开关2233和合路器221。
示例性的,第二天线切换开关2231可以包括数据端口(如图4中的端口p4、p6和p9)和控制端口(图4中未示出)。第二天线切换开关2231的数据端口可以包含两组:第七组端口(如包括端口p4)和第八组端口(如包括端口p6和p9)。当第七组端口用于 输入时,第八组端口用于输出。当第八组端口用于输入时,第七组端口用于输出。其中,针对第二天线切换开关2231的说明,可以援引上文第一开关222的描述,在此不再赘述。
示例性的,SRS开关2232可以包括数据端口(如图4中的端口p5、p7、p10和p11)和控制端口(图4中未示出)。其中,数据端口可以包括多个双向端口,可以用于输入与输出无线通信装置200与其它装置的交互信号。控制端口可以用于输入针对SRS开关2232的控制信号,控制信号可以用于控制SRS开关2232的状态。
示例性的,SRS开关2232的数据端口可以包含两组:第九组端口和第十组端口。当第九组端口用于输入时,第十组端口用于输出。当第十组端口用于输入时,第九组端口用于输出。例如,当无线通信装置200发射信号时,第九组端口可以用于输入,第十组端口可以用于输出。当无线通信装置200的天线接收到信号时,第十组端口可以用于输入,第九组端口可以用于输出。
示例性的,第九组端口中可以包含多个数据端口,第十组端口中也可以包括多个数据端口。第九组端口中所包含的数据端口的数量和第十组端口中所包含的数据端口的数量可以相同,也可以不同,具体可以按照实际需求确定,本申请实施例对此不作限制。例如,图4中,第九组端口可以包含1个数据端口如端口p10,第十组端口可以包含3个数据端口如端口p5、p7和p11。第九组端口中所包含的每一个数据端口,均可以分别与第十组端口中所包含的每个数据端口导通。SRS开关2232的状态可以是指第九组端口中数据端口与第十组端口中数据端口导通的状态,SRS开关2232的状态可以包含多种,不同的两种状态对应导通的两对端口中至少一个数据端口不同。例如,图4中SRS开关2232可以包括3种状态:第一种状态可以是:第九组端口中与第二天线切换开关2231耦合的数据端口和第十八组端口中与第四天线234耦合的端口导通,即端口p10与端口p7导通。第二种状态可以是:第九组端口中与第二天线232切换耦合的数据端口和第十组端口中与收发开关2233耦合的端口导通,即端口p10与端口p11导通。第三种状态可以是:第九组端口中与第二天线切换开关2231耦合的数据端口和与第十组端口中合路器221耦合的端口导通,即端口p10与端口p5导通。
示例性的,收发开关2233可以包括数据端口(如图4中的端口p8、p12和p13)和控制端口(图4中未示出);其中,数据端口可以用于输入和/或输出无线通信装置200与其它装置的交互信号。控制端口可以用于输入针对收发开关2233的控制信号,控制信号可以用于控制收发开关2233的状态。
示例性的,收发开关2233包含与第五天线235耦合的数据端口如端口p8,可以为双向端口;进而当无线通信装置200发射信号时,该端口可以用于输出,当无线通信装置200的天线接收到信号时,该端口可以用于输入。收发开关2233还包含与SRS开关2232耦合的数据端口如端口p12,该数据端口可以为单向端口也可以为双向端口,用于接收SRS开关2232发送的信号。此外,收发开关2233还可以包含与处理电路210耦合的数据端口如端口p13,该数据端口可以为单向端口也可以为双向端口,用于将信号发送至处理电路210(在图4中未示出)。
示例性的,处理电路210可以耦合至第二天线切换开关2231。其中,处理电路210可以耦合至第二天线切换开关2231的第七组端口如端口p4,以及可以耦合至第二天线切 换开关2231的控制端口。
示例性的,处理电路210可以耦合至SRS开关2232。其中,处理电路210可以耦合至SRS开关2232的控制端口。
示例性的,处理电路210可以耦合至收发开关2233。其中,处理电路210可以耦合至收发开关2233的控制端口。
示例性的,第二天线切换开关2231的第六组端口中的两个端口如端口p6和p9,可以分别耦合至第三天线233和SRS开关2232第七组端口中的端口如p10。SRS开关2232第八组端口中的三个端口如端口p7、p11和p5,可以分别耦合至第四天线234、收发开关2233的端口p12和合路器221的第一组端口中的端口。
示例性的,4路轮发SRS对应的4个发送通路可以分别为:
处理电路210→第二天线切换开关2231→第三天线233;
处理电路210→第二天线切换开关2231→SRS开关2232→第四天线234;
处理电路210→第二天线切换开关2231→SRS开关2232→收发开关2233→第五天线235;
处理电路210→第二天线切换开关2231→SRS开关2232→合路器221→第一开关222→第一天线231。
示例性的,通过处理电路210→第二天线切换开关2231→第三天线233这一通路,可以将第一信号从第三天线233发射出去。过程可以如下:处理电路210可以将第一信号发送至第二天线切换开关2231,以及可以将第一天线切换控制信号发送至第二天线切换开关2231,以使第二天线切换开关2231根据第一天线切换控制信号,将第二天线切换开关2231中与第三天线233耦合的端口p6,和第二天线切换开关2231中与处理电路210耦合的端口p4导通。进而第二天线切换开关2231可以将从处理电路210接收到的第一信号从第三天线233发射出去。
示例性的,通过处理电路210→第二天线切换开关2231→SRS开关2232→第四天线234这一通路,可以将第一信号从第四天线234发射出去。过程可以如下:处理电路210将第一信号发送至第二天线切换开关2231。以及可以将第二天线切换控制信号发送至第二天线切换开关2231,以使第二天线切换开关2231根据第二天线切换控制信号,将第二天线切换开关2231中与SRS开关2232耦合的端口p9,和第二天线切换开关2231中与处理电路210耦合的端口p4导通。以及可以将第一SRS状态控制信号发送至SRS开关2232,以使SRS开关2232根据第一SRS状态控制信号,将SRS开关2232中与第四天线234耦合的端口p7,和与SRS开关2232中与第二天线切换开关2231耦合的端口p10导通。进而第二天线切换开关2231可以将第一信号发送至SRS开关2232,SRS开关2232可以将第一信号从第四天线234发射出去。
示例性的,通过处理电路210→第二天线切换开关2231→SRS开关2232→收发开关2233→第五天线235这个通路,可以将第一信号从第五天线235发射出去。过程可以如下:处理电路210将第一信号发送至第二天线切换开关2231。以及可以将第三天线切换控制信号发送至第二天线切换开关2231,以使第二天线切换开关2231根据第三天线切换控制信号,将第二天线切换开关2231中与SRS开关2232耦合的端口p9,和第二天线切 换开关2231中与处理电路210耦合的端口p4导通。以及可以将第二SRS状态控制信号发送至SRS开关2232,以使SRS开关2232根据第二SRS状态控制信号,将SRS开关2232中与收发开关2233耦合的端口p11,和与SRS开关2232中与第二天线切换开关2231耦合的端口p10导通。以及将第一收发状态控制信号发送至收发开关2233,以使收发开关2233根据第一收发状态控制信号,将收发开关2233中与SRS开关2232耦合的端口p12,和收发开关2233中与第五天线235耦合的端口p8导通。进而第二天线切换开关2231可以将第一信号发送至SRS开关2232,然后SRS开关2232可以将第一信号发送给收发开关2233,由收发开关2233将第一信号从第五天线235发射出去。
示例性的,通过处理电路210→第二天线切换开关2231→SRS开关2232→合路器221→第一天线切换开关→第一天线231这个通路,可以将第一信号从第一天线231发射出去。过程可以如下:处理电路210将第一信号发送至第二天线切换开关2231。以及可以将第四天线切换控制信号发送至第二天线切换开关2231,以使第二天线切换开关2231根据第四天线切换控制信号,将第二天线切换开关2231中与SRS开关2232耦合的端口p9,和第二天线切换开关2231中与处理电路210耦合的端口p4导通。以及可以将第三SRS状态控制信号发送至SRS开关2232,以使SRS开关2232根据第三SRS状态控制信号,将SRS开关2232中与合路器221耦合的端口p5,和与SRS开关2232中与第二天线切换开关2231耦合的端口p10导通。以及可以将第五天线切换控制信号发送至第一天线切换开关,以使第一天线切换开关根据第五天线切换控制信号,将第一天线切换开关中与第一天线231耦合的端口p2,和第一天线切换开关中与合路器221耦合的端口p1导通。进而第二天线切换开关2231可以将第一信号发送至SRS开关2232,SRS开关2232再将第一信号发送至合路器221。合路器221再将第一信号发送至第一天线切换开关,然后第一天线切换开关可以将第一信号从第一天线231发射出去。
示例性的,处理电路210向第二天线切换开关2231发送控制信号的时机,可以按照需求设置,本申请实施例对此不作限制。其中,可以是处理电路210获取第一信号至将第一信号发送至第二天线切换开关2231期间的任一时间。
示例性的,处理电路210向第一开关222发送控制信号的时机,可以按照需求设置,本申请实施例对此不作限制。其中,可以是处理电路210获取第一信号至将第一信号发送至第一开关222期间的任一时间。
示例性的,处理电路210向SRS开关2232发送控制信号的时机,可以按照需求设置,本申请实施例对此不作限制。其中,可以是处理电路210获取第一信号至将第一信号发送至SRS开关2232期间的任一时间。
示例性的,处理电路210向收发开关2233发送控制信号的时机,可以按照需求设置,本申请实施例对此不作限制。其中,可以是处理电路210获取第一信号至将第一信号发送至收发开关2233期间的任一时间。
需要说明的是,本申请实施例不限制无线通信装置200轮发第一信号的顺序,可以按照需求设置,本申请实施例对此不作限制。例如,可以是按照第一天线231、第三天线233、第四天线234和第五天线235的顺序轮发。又例如,可以是按照第三天线233、第四天线234、第五天线235和第一天线231的顺序轮发,等等。
图5示例性示出的本申请实施例的又一种无线通信装置的结构示意图。图5所示无线通信装置200仅是无线通信装置的一个范例,并且无线通信装置可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图5中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
无线通信装置200可以包括:处理电路210、射频前端模组220和天线组230。
示例性的,处理电路210可以耦合至射频前端模组220,射频前端模组220可以耦合至天线组230。
示例性的,天线组230可以包括:第一天线231、第二天线232、第三天线233、第四天线234和第五天线235。
示例性的,射频前端模组220可以包括:合路器221、第一开关222、第二开关223和第三开关224。
示例性的,处理电路210可以耦合至第二开关223、第一开关222和第三开关224。第二开关223可以耦合至第三天线233、第四天线234、第五天线235和合路器221,第三开关224可以耦合至合路器221和第一开关222。合路器221可以耦合至第一开关222,第一开关222可以耦合至第一天线231和第二天线232。
示例性的,第三开关224可以用于选择信号频段,以及还可以用于选择信号发射通道。例如,无线通信装置200发射第二信号,则对应的发射通道可以包括:通道51:第三开关224→合路器221→第一开关222→第一天线231;通道52:第三开关224→第一开关222→第一天线231。
示例性的,第三开关224可以包括数据端口(如图5中的端口p15和p16)、控制端口(图5中未示出)和频段端口(如图5中的f1、f2、f3(如1710~1785MHz)、f4(如1800~1920MHz)、f5、f6、f7和f8)。其中,数据端口可以是双向端口,可以用于输入与输出无线通信装置200与其它装置的交互信号。例如,当无线通信装置200发射信号时,端口p15和p16可以用于输出,当无线通信装置200的天线接收到信号时,端口p15和p16可以用于输入。数据端口与频段端口导通,可以实现频段选择,不同的数据端口与频段端口导通时,可以实现信号通信通道的选择。控制端口可以用于输入控制信号,控制信号可以用于控制第三开关224的状态。第三开关224的状态可以包括:频段端口和数据端口导通的状态,不同的两种状态对应导通的两对端口中至少一个数据端口不同。例如,图5中第三开关224可以包括16种状态。第一种状态可以是:端口p15与端口f1导通。第二种状态可以是:端口p15与端口f2导通......。第八种状态可以是:端口p15与端口f8导通。第九种状态可以是:端口p16与端口f1导通。第十种状态可以是:端口p16与端口f2导通.....。第十六种状态可以是:端口p16与端口f8导通。
示例性的,当无线通信装置200处于可以检测到第一网络和第二网络的场景如EN-DC场景时,无线通信装置200可以同时进行第一网络通信和第二网络通信。此时,无线通信装置200可以通过第三开关224→合路器221→第一开关222→第一天线231发射第二信号,进而使得无线通信装置200在轮发第一信号时,不打断第二信号的发射。以及当无线通信装置200处于其他场景如仅有第二网络的场景时,无线通信装置200可 以通过第三开关224→第一开关222→第一天线231发射第二信号,进而第二信号无需经过合路器221,降低第二信号的损失。
为了便于说明,可以将可以检测到第一网络和第二网络的场景,称为第一通信场景;以及可以将仅检测第二网络的场景,称为第二通信场景。
示例性的,当无线通信装置200处于第一通信场景时,若无线通信装置200即将将第一信号轮发至第一天线231,则处理电路210可以将第二信号发送至第三开关224。以及将第一频段控制信号发送至第三开关224,以使第三开关224依据第一频段控制信号将第三开关224中对应频段的频段端口如端口f4,和第三开关224中与合路器221耦合的端口如端口p16导通。以及可以将第七控制信号发送至第一开关222,以使第一开关222依据第七控制信号,将第一开关222中与第一天线231连接的端口如端口p2,和第一开关222中与合路器221耦合的端口如端口p1导通。同时,处理电路210还可以将第一信号发送至第二开关223,以及还可以将第八控制信号发送至第二开关223,以使第二开关223根据第八控制信号,将第二开关223中与合路器221耦合的端口p5,和第二开关223中与处理电路210耦合的端口p4导通。进而第三开关224可以对第二信号进行频段选择,并将频段选择后的第二信号发送至合路器221,以及第二开关223可以将第一信号发送至合路器221。合路器221可以接收到频段选择后的第二信号和第一信号,然后将频段选择后的第二信号和第一信号合路,得到合路信号。然后合路器221可以将合路信号发送至第一开关222,第一开关222将频段选择得到的第二信号从第一天线231发射出去。
示例性的,当无线通信装置200处于第一通信场景时,若第一信号未轮发到第一天线231上,则处理电路210可以将第二信号发送至所述第三开关224,并控制所述第三开关224的状态将所述第二信号发送至合路器221,以及控制第一开关222的状态从所述第一天线231发送所述第二信号。
示例性的,当无线通信装置200处于第一通信场景时,若无线通信装置200未将第一信号轮发至第一天线231,则处理电路210可以将第二信号发送至第三开关224。以及将第一频段控制信号发送至第三开关224,以使第三开关224依据第一频段控制信号将第三开关224中对应频段的频段端口如端口f4,和第三开关224中与合路器221耦合的端口如端口p16导通。以及可以将第九控制信号发送至第一开关222,以使第一开关222依据第九控制信号,将第一开关222中与第一天线231连接的端口如端口p2,和第一开关222中与合路器221耦合的端口如端口p1导通。进而第三开关224可以对第二信号进行频段选择,并将频段选择后的第二信号发送至合路器221。合路器221接收到频段选择后的第二信号后,可以将第二信号发送至第一开关222,第一开关222将频段选择得到的第二信号从第一天线231发射出去。
示例性的,当无线通信装置200处于第二通信场景时,处理电路210可以将第二信号发送至所述第三开关224,并控制所述第三开关224将所述第二信号发送至第一开关222,以及控制所述第一开关222的状态,从所述第一天线231发射所述第二信号。
示例性的,处理电路210可以将第二信号发送至第三开关224。以及将第二频段控制信号发送至第三开关224,以使第三开关224依据第一频段控制信号将第三开关224中对应频段的频段端口如端口f2,和第三开关224中与合路器221耦合的端口如端口p15导 通。以及可以将第十控制信号发送至第一开关222,以使第一开关222根据第十控制信号,将第一开关222中与第一天线231连接的端口如端口p2,和第一开关222中与第三开关224连接的输入端口导通如端口p14。进而第三开关224对第二信号进行频段选择后,可以将频段选择后的第二信号发送至第一开关222。然后第一开关222可以将频段选择得到的第二信号从第一天线231发射出去。
示例性的,基站在接收到无线通信装置200发射的信号后,可以进行响应并生成对应响应的信号并发射。此外,基站也可以主动向无线通信装置200发射信号。进而无线通信装置200可以通过天线接收到基站发射的信号。其中,为了便于说,可以将无线通信装置200处于第一通信场景时,第二网络的基站发射的信号称为第三信号。以及将无线通信装置200处于第二通信场景时,第二网络的基站发射的信号称为第四信号。
示例性的,无线通信装置200接收第三信号的通路,与无线通信装置200处于第一通信场景时发射第二信号的通路是对应的,可以是:第一天线231→第一开关222→合路器221→第三开关224→处理电路210。无线通信装置200接收第四信号的通路,与无线通信装置200处于第二通信场景发射第二信号的通路是对应的,可以是:第一天线231→第一开关222→第三开关224→处理电路210,获取第四信号。
可参照图5,示例性的,无线通信装置200处于第一通信场景时,无线通信装置200的第一天线231可以接收到基站发射的第三信号,然后可以将第三信号发送至第一开关222。由于无线通信装置200在处于第一通信场景时,第一开关222中与合路器221耦合的端口如端口p1,和第一开关222中与第一天线231耦合的端口如端口p2是导通的,因此合路器221可以经过第一开关222接收第三信号。然后合路器221可以将第三信号发送至第三开关224。由于无线通信装置200在处于第一通信场景时,第三开关224中与合路器221耦合的端口如端口p16,和第三开关224中频段端口如端口f4是导通的,进而第三开关224可以从合路器221获取第三信号,并对第三信号进行频段选择后,将频段选择后的第三信号发送至处理电路210。再由处理电路210对频段选择后的第三信号进行处理,如射频解调、基带解调等。
示例性的,无线通信装置200处于第二通信场景时,无线通信装置200的第一天线231可以接收到基站发射的第四信号,然后可以将第四信号发送至第一开关222。由于无线通信装置200在处于第一通信场景时,第一开关222中与第三开关224的端口(如p15)耦合的端口如p14,和第一开关222中与第一天线231耦合的端口如p2是导通的,以及第三开关224中与第一开关222端口如p14耦合的如端口p15,和第三开关224中频段端口(如端口f2)是导通的,因此第三开关224可以经过第一开关222接收第四信号。并对第四信号进行频段选择后,将频段选择后的第四信号发送至处理电路210。再由处理电路210对频段选择后的第四信号进行处理,如射频解调、基带解调等。
需要说明的是,本申请实施例中,在无线通信装置200处于第一通信场景时,无线通信装置200也可以通过第二天线232接收第三信号。然后通过第二天线232→第一开关222→合路器221→第三开关224→处理电路210,将第三信号发送至处理电路210,在此不再赘述。以及在无线通信装置200处于第二通信场景时,无线通信装置200也可以通 过第二天线232接收第四信号。然后通过第二天线232→第一开关222→第三开关224→处理电路210,将第四信号发送至处理电路210,在此不再赘述。具体可以根据第一天线231和第二天线232的性能确定,本申请实施例对此不作限制。
图6示例性示出的本申请实施例的再一种无线通信装置的结构示意图。图6所示无线通信装置200仅是无线通信装置的一个范例,并且无线通信装置200可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图6中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
其中,图6中TX(transmit,发送)可以是指发送通路(以下简称TX),RX(receive,接收)可以是指接收通路(以下简称RX)。
无线通信装置200包括:处理电路210、射频前端模组和天线组。
示例性的,天线组包括:第一天线231、第二天线232、第三天线233、第四天线234和第五天线235。
示例性的,射频前端模组包括:功率放大器PA1(2281)和PA2(2285),双工器226,合路器M1(225)和M2(221),第三开关224,第一天线切换开关222,低噪声放大器LNA1(2282)、LNA2(2283)、LNA3(2284)、LNA4(2286)、LNA5(2287)和LNA6(2288),滤波器LB1(2291)、LB2(2292)、LB3(2293)、LB4(2294)、LB5(2295)、LB6(2296),收发开关TR1(227)和TR2(2233),第二天线切换开关2231和SRS开关2232。
示例性的,第一天线切换开关222可以是双刀四掷开关。
示例性的,功率放大器PA1(2281)和PA2(2285),分别设置于两个TX通路上。
示例性的,低噪声放大器LNA1(2282)、LNA2(2283)、LNA3(2284)、LNA4(2286)、LNA5(2287)和LNA6(2288),分别设置于六个RX通路上。
示例性的,滤波器LB1(2291)、LB2(2292)、LB4(2294)、LB5(2295)、LB6(2296),分别设置于五个RX通路上;滤波器LB3(2293)与功率放大器PA2(2285)设置在同一个TX通路上。
示例性的,处理电路210分别耦合至PA1(2281)、LNA1(2282)、LNA2(2283)、LNA3(2284)、PA2(2285)、LNA4(2286)、LNA5(2287)和LNA6(2288)。
示例性的,PA1(2281)耦合至双工器226,双工器226耦合至合路器M1(225),合路器M1(225)耦合至第三开关224,第三开关224耦合至合路器M2(221)和第一天线切换开关222,第一天线切换开关222耦合至第一天线231和第二天线232。LNA1(2282)耦合至双工器226。LNA2(2283)耦合至滤波器LB1(2291),滤波器LB1(2291)耦合至合路器M1(225)。LNA3(2284)耦合至滤波器LB2(2292),滤波器LB2(2292)耦合至第一天线切换开关222。
示例性的,PA2(2285)耦合至滤波器LB3(2293),滤波器LB3(2293)耦合至收发开关TR1(227),收发开关TR1(227)耦合至第二天线切换开关2231,第二天线切换开关2231耦合至SRS开关2232和第三天线233。SRS开关2232耦合至第四天线234、 收发开关TR2(2233)和合路器M2(221)。收发开关TR2(2233)耦合至第五天线235。LNA4(2286)耦合至滤波器LB4(2294),滤波器LB4(2294)耦合至收发开关TR1(227)。LNA5(2287)耦合至滤波器LB5(2295),滤波器LB5(2295)耦合至第二天线切换开关2231。LNA6(2288)耦合至滤波器LB6(2296),滤波器LB6(2296)耦合至收发开关TR2(2233)。
需要说明的是,处理电路210还可以耦合至第三开关224的控制端口、第一天线切换开关222的控制端口、收发开关TR1(227)的控制端口、第二天线切换开关2231的控制端口、SRS开关2232的控制端口和收发开关TR2(2233)的控制端口。以通过控制端口向这些开关发送控制信号,来控制这些开关的状态,但图6中并未示出。
示例性的,无线通信装置200通过4路轮发SRS对应的4个发射通道可以分别为:
处理电路210→PA2(2285)→LB3(2293)→收发开关TR1(227)→第二天线切换开关2231→第三天线233;
处理电路210→PA2(2285)→LB3(2293)→收发开关TR1(227)→第二天线切换开关2231→SRS开关2232→第四天线234;
处理电路210→PA2(2285)→LB3(2293)→收发开关TR1(227)→第二天线切换开关2231→SRS开关2232→收发开关TR2(2233)→第五天线235;
处理电路210→PA2(2285)→LB3(2293)→收发开关TR1(227)→第二天线切换开关2231→SRS开关2232→合路器M2(221)→第一天线切换开关222→第一天线231。
示例性的,通过处理电路210→PA2(2285)→LB3(2293)→收发开关TR1(227)→第二天线切换开关2231→第三天线233这一通路,可以将第一信号从第三天线233发射出去。过程可以如下:处理电路210将第一信号(为了便于后续说明可以称为信号S11)发送至PA2(2285)。以及将第二收发状态控制信号发送至收发开关TR1(227),以使收发开关TR1(227)根据第二收发状态控制信号,将收发开关TR1(227)调整为发射状态,即收发开关TR1(227)中与第二天线切换开关2231耦合的端口p17,和收发开关TR1(227)中与滤波器LB3(2293)耦合的端口p18导通。以及发送第六天线切换控制信号至第二天线切换开关2231,以使第二天线切换开关2231根据第六天线切换控制信号,控制第二天线切换开关2231中与第三天线233耦合的端口p6,和第二天线切换开关2231中与收发开关TR1(227)耦合的接口p4导通。PA2(2285)接收到第一信号后,可以对信号S11进行放大得到信号S12,并将信号S12发送至滤波器LB3(2293)。滤波器LB3(2293)可以对信号S12进行滤波,得到信号S13并信号S13发送至收发开关TR1(227)。收发开关TR1(227)将信号S13发送至第二天线切换开关2231,然后第二天线切换开关2231将信号S13从第三天线233发射出去。
示例性的,通过处理电路210→PA2(2285)→LB3(2293)→收发开关TR1(227)→第二天线切换开关2231→SRS开关2232→第四天线234这一通路,可以将第一信号从第四天线234发射出去。过程可以如下:处理电路210将第一信号(为了便于后续说明可以称为信号S11)发送至PA2(2285)。以及发送第三收发状态控制信号至收发开关TR1(227),以使收发开关TR1(227)根据第三收发状态控制信号,将收发开关TR1(227)调整为发射状态,即收发开关TR1(227)中与第二天线切换开关2231耦合的端口p17, 和收发开关TR1(227)中与滤波器LB3(2293)耦合的端口p18导通。以及可以将第七天线切换控制信号发送至第二天线切换开关2231,以使第二天线切换开关2231根据第七天线切换控制信号,将第二天线切换开关2231中与SRS开关2232耦合的端口p9,和第二天线切换开关2231中与收发开关TR1(227)耦合的端口p4导通。以及可以将第四SRS状态控制信号发送至SRS开关2232,以使SRS开关2232根据第四SRS状态控制信号,将SRS开关2232中与第四天线234耦合的端口p7,和与SRS开关2232中与第二天线切换开关2231耦合的端口p10导通。PA2(2285)接收到第一信号后,可以对信号S11进行放大得到信号S12,并将信号S12发送至滤波器LB3(2293)。滤波器LB3(2293)可以对信号S12进行滤波,得到信号S13并信号S13发送至收发开关TR1(227)。收发开关TR1(227)将信号S13发送至第二天线切换开关2231。第二天线切换开关2231可以将信号S13发送至SRS开关2232,SRS开关2232可以将信号S13从第四天线234发射出去。
示例性的,通过处理电路210→PA2(2285)→LB3(2293)→收发开关TR1(227)→第二天线切换开关2231→SRS开关2232→收发开关TR2(2233)→第五天线235这个通路,可以将第一信号从第五天线235发射出去。过程可以如下:处理电路210将第一信号(为了便于后续说明可以称为信号S11)发送至PA2(2285)。以及发送第四收发状态控制信号至收发开关TR1(227),以使收发开关TR1(227)根据第四收发状态控制信号,将收发开关TR1(227)调整为发射状态,即收发开关TR1(227)中与第二天线切换开关2231耦合的端口p17,和收发开关TR1(227)中与滤波器LB3(2293)耦合的端口p18导通。以及可以将第七天线切换控制信号发送至第二天线切换开关2231,以使第二天线切换开关2231根据第七天线切换控制信号,将第二天线切换开关2231中与SRS开关2232耦合的端口p9,和第二天线切换开关2231中与收发开关TR1(227)耦合的端口p4导通。以及可以将第五SRS状态控制信号发送至SRS开关2232,以使SRS开关2232根据第五SRS状态控制信号,将SRS开关2232中与收发开关TR2(2233)耦合的端口p11,和与SRS开关2232中与第二天线切换开关2231耦合的端口p10导通。以及可以将第五收发状态控制信号发送至收发开关TR2(2233),以使收发开关TR2(2233)根据第五收发状态控制信号,将收发开关TR2(2233)调整为发射状态,即收发开关TR2(2233)中与第五天线235切换开关耦合的端口p8,和收发开关TR2(2233)中与SRS开关2232耦合的端口p12导通。PA2(2285)接收到第一信号后,可以对信号S11进行放大得到信号S12,并将信号S12发送至滤波器LB3(2293)。滤波器LB3(2293)可以对信号S12进行滤波,得到信号S13并信号S13发送至收发开关TR1(227)。收发开关TR1(227)将信号S13发送至第二天线切换开关2231。第二天线切换开关2231可以将信号S13发送至SRS开关2232,SRS开关2232可以将信号S13发送给收发开关TR2(2233),由收发开关TR2(2233)将信号S13从第五天线235发射出去。
示例性的,通过处理电路210→PA2(2285)→LB3(2293)→收发开关TR1(227)→第二天线切换开关2231→SRS开关2232→合路器M2(221)→第一天线切换开关222→第一天线231这个通路,可以将第一信号从第一天线231发射出去。过程可以如下:处理电路210将第一信号(为了便于后续说明可以称为信号S11)发送至PA2(2285),以 及发送第六收发状态控制信号至收发开关TR1(227),以使收发开关TR1(227)根据第六收发状态控制信号,将收发开关TR1(227)调整为发射状态,即收发开关TR1(227)中与第二天线切换开关2231耦合的端口p17,和收发开关TR1(227)中与滤波器LB3(2293)耦合的端口p18导通。以及可以将第七天线切换控制信号发送至第二天线切换开关2231,以使第二天线切换开关2231根据第七天线切换控制信号,将第二天线切换开关2231中与SRS开关2232耦合的端口p9,和第二天线切换开关2231中与收发开关TR1(227)耦合的端口p4导通。以及可以将第六SRS状态控制信号发送至SRS开关2232,以使SRS开关2232根据第六SRS状态控制信号,将SRS开关2232中与合路器M2(221)耦合的端口p5,和与SRS开关2232中与第二天线切换开关2231耦合的端口p10导通。以及可以将第十天线切换控制信号发送至第一天线切换开关222,以使第一天线切换开关222根据第十天线切换控制信号,将第一天线切换开关222中与第一天线231耦合的端口p2,和第一天线切换开关222中与合路器M2(221)耦合的端口p1导通。PA2(2285)接收到第一信号后,可以对信号S11进行放大得到信号S12,并将信号S12发送至滤波器LB3(2293)。滤波器LB3(2293)可以对信号S12进行滤波,得到信号S13并信号S13发送至收发开关TR1(227)。收发开关TR1(227)将信号S13发送至第二天线切换开关2231。第二天线切换开关2231可以将信号S13发送至SRS开关2232,SRS开关2232可以将信号S13发送给合路器M2(221)。合路器M2(221)再将信号S13发送至第一天线切换开关222;然后第一天线切换开关222可以将信号S13从第一天线231发射出去。
示例性的,处理电路210向收发开关TR1(227)发送控制信号的时机,可以按照需求设置,本申请实施例对此不作限制。其中,可以是处理电路210获取到第一信号至将第一信号发送至收发开关TR1(227)之间的任一时间。
示例性的,处理电路210向收发开关TR2(2233)发送控制信号的时机,可以按照需求设置,本申请实施例对此不作限制。其中,可以是处理电路210获取到第一信号至将第一信号发送至收发开关TR2(2233)之间的任一时间。
示例性的,处理电路210向第二天线切换开关2231发送控制信号的时机,可以按照需求设置,本申请实施例对此不作限制。其中,可以是处理电路210获取到第一信号至将第一信号发送至收第二天线切换开关2231之间的任一时间。
示例性的,处理电路210向第一天线切换开关222发送控制信号的时机,可以按照需求设置,本申请实施例对此不作限制。其中,可以是处理电路210获取到第一信号至将第一信号发送至第一天线切换开关222之间的任一时间。
示例性的,处理电路210向SRS开关2232发送控制信号的时机,可以按照需求设置,本申请实施例对此不作限制。其中,可以是处理电路210获取到第一信号至将第一信号发送至收发开关SRS开关2232之间的任一时间。
需要说明的是,本申请实施例不限制无线通信装置200轮发第一信号的顺序,可以按照需求设置,本申请实施例对此不作限制。例如,可以是按照第一天线231、第三天线233、第四天线234和第五天线235的顺序轮发。又例如,可以是按照第三天线233、第四天线234、第五天线235和第一天线231的顺序轮发,等等。
示例性的,参照图6,无线通信装置200可以通过如下两个通道发射第二信号:
处理电路210→PA1(2281)→双工器226→合路器M1(225)→第三开关224→第一天线切换开关222→第一天线231;
处理电路210→PA1(2281)→双工器226→合路器M1(225)→第三开关224→合路器M2(221)→第一天线切换开关222→第一天线231。
示例性的,在无线通信装置200处于第一场景时,处理电路210可以将第二信号(为了便于说明。后续可以称为信号S21)发送PA1(2281)。以及发送第三频段状态控制信号至所述第三开关224,以使所述第三开关224根据第三频段状态控制信号将第三开关224中与合路器M2(221)耦合的数据端口p16,和第三开关224中频段端口f4导通。以及可以将第十一天线切换控制信号发送至第一天线切换开关222,以使第一天线切换开关222依据第十一天线切换控制信号,将第一天线切换开关222中与第一天线231连接的端口p2,和第一天线切换开关222中与合路器M2(221)连接的输入端口p1导通。进而PA1(2281)可以对信号S21进行放大,得到信号S22并将信号S22发送至双工器226。双工器226对信号S22进行滤波后,可以得到信号S23,然后将信号S23发送至合路器M1(225),由合路器M1(225)将信号S23发送至第三开关224。第三开关224对信号S23进行频段选择后,得到信号S24并将信号S24发送至合路器M2(221)。若无线通信装置200即将将第一信号轮发至第一天线231,则处理电路210还可以将第一信号(为了便于后续说明可以称为信号S11)发送至PA2(2285),以及发送第六收发状态控制信号至收发开关TR1(227),以使收发开关TR1(227)根据第六收发状态控制信号,将收发开关TR1(227)调整为发射状态,即收发开关TR1(227)中与第二天线切换开关2231耦合的端口p17,和收发开关TR1(227)中与滤波器LB3(2293)耦合的端口p18导通。以及可以将第七天线切换控制信号发送至第二天线切换开关2231,以使第二天线切换开关2231根据第七天线切换控制信号,将第二天线切换开关2231中与SRS开关2232耦合的端口p9,和第二天线切换开关2231中与收发开关TR1(227)耦合的端口p4导通。以及可以将第六SRS状态控制信号发送至SRS开关2232,以使SRS开关2232根据第六SRS状态控制信号,将SRS开关2232中与合路器M2(221)耦合的端口p5,和与SRS开关2232中与第二天线切换开关2231耦合的端口p10导通;以及可以将第十天线切换控制信号发送至第一天线切换开关222,以使第一天线切换开关222根据第十天线切换控制信号,将第一天线切换开关222中与第一天线231耦合的端口p2,和第一天线切换开关222中与合路器M2(221)耦合的端口p1导通。PA2(2285)接收到第一信号后,可以对信号S11进行放大得到信号S12,并将信号S12发送至滤波器LB3(2293)。滤波器LB3(2293)可以对信号S12进行滤波,得到信号S13并信号S13发送至收发开关TR1(227)。收发开关TR1(227)将信号S13发送至第二天线切换开关2231。第二天线切换开关2231可以将信号S13发送至SRS开关2232,SRS开关2232可以将信号S13发送给合路器M2(221)。进而合路器M2(221)可以接收到信号S13和S24,并将信号S13和S24进行合路,得到合路信号;然后再将信号S24发送至第一天线切换开关222,第一天线切换开关222将频段转换后的信号S24从第一天线231发射出去。
示例性的,在无线通信装置200处于第二场景时,可以将第二信号从第一通道发射出去。无线通信装置200发射第二信号的过程可以如下:处理电路210可以将第二信号(为了便于说明。后续可以称为信号S21)发送PA1(2281)。以及发送第四频段状态控制信号至所述第三开关224,以使所述第三开关224根据第四频段状态控制信号,将第三开关224中频段端口f2,和第三开关224中与第一天线切换开关222耦合的端口p15导通。以及可以将第十二天线切换开关控制信号发送至第一天线切换开关222,以使第一天线切换开关222依据第十二天线切换开关控制信号,将第一天线切换开关222中与第一天线231连接的端口p2,和第一天线切换开关222中与第三开关224连接的输入端口p14导通。进而PA1(2281)可以对S21信号进行放大,得到信号S22并将信号S22发送至双工器226。双工器226对信号S22进行滤波后,可以得到信号S23,然后将信号S23发送至合路器M1(225),由合路器M1(225)将信号S23发送至第三开关224。第三开关224对信号S23进行频段选择后,得到信号S24并将信号S24发送至第一天线切换开关222,第一天线切换开关222将频段转换后的信号S24从第一天线231发射出去。
示例性的,无线通信装置200处于第一通信场景时,无线通信装置200可以通过第一天线231→第一天线切换开关222→合路器M2(221)→第三开关224→合路器M1(225)→双工器226→LNA1(2282)→处理电路210,获取第三信号。
示例性的,无线通信装置200处于第一通信场景时,无线通信装置200的第一天线231可以接收到基站发射的第三信号(为了便于说明,后续可以称为S31),然后可以将信号S31发送至第一天线切换开关222。由于无线通信装置200在处于第一通信场景时,第一天线切换开关222中与合路器M2(221)耦合的端口p1,和第一天线切换开关222中与第一天线231耦合的端口p2是导通的,因此合路器M2(221)可以经过第一天线切换开关222接收信号S31。然后合路器M2(221)可以将信号S31发送至第三开关224,由第三开关224对信号S31进行频段选择后,得到信号S32并将信号S32发送至合路器M1(225)。合路器M1(225)可以将信号S32发送至双工器226,双工器226对信号S32进行滤波后,得到信号S33并发送给LNA1(2282)。LNA1(2282)对信号S33进行放大,得到信号S34,然后将信号S34发送给处理电路210,再由处理电路210对第三信号进行处理,如射频解调、基带解调等。
示例性的,无线通信装置200处于第二通信场景时,无线通信装置200可以通过第一天线231→第一天线切换开关222→第三开关224→合路器M1(225)→双工器226→LNA1(2282)→处理电路210,获取第四信号。
示例性的,无线通信装置200处于第二通信场景时,无线通信装置200的第一天线231可以接收到基站发射的第四信号(为了便于说明,后续可以称为S41),然后可以将信号S41发送至第一天线切换开关222。由于无线通信装置200在处于第二通信场景时,第一天线切换开关222中与第三开关224耦合的端口p14,和第一天线切换开关222中与第一天线231耦合的端口p2是导通的,以及第三开关224中频段端口f2,和第三开关224中与第一天线切换开关222耦合的端口p15是导通的,因此第三开关224可以经过第一天线切换开关222接收信号S41。然后第三开关224可以对信号S41进行频段选择后, 得到信号S42并将信号S42发送至合路器M1(225)。合路器M1(225)可以将信号S42发送至双工器226,双工器226对信号S42进行滤波后,得到信号S43并发送给LNA1(2282)。LNA1(2282)对信号S43进行放大,得到信号S44,然后将信号S44发送给处理电路210,再由处理电路210对第三信号进行处理,如射频解调、基带解调等。
示例性的,无线通信装置200接收第三信号或第四信号的通路还可以包括:第二天线232→第一天线切换开关222→LB2(2292)→LNA3(2284)→处理电路210,获取第三信号或第四信号。
示例性的,无线通信装置200接收第一网络的其它信号的通路可以包括:
第一天线231→第一天线切换开关222→合路器M2(221)→第三开关224→合路器M1(225)→LB1(2291)→LNA2(2283)→处理电路210(或者第二天线232→第一天线切换开关222→合路器M2(221)→第三开关224→合路器M1(225)→LB1(2291)→LNA2(2283)→处理电路210);
第三天线233→第二天线切换开关2231→收发开关TR1(227)→LB4(2294)→LNA4(2286)→处理电路210;
第四天线234→SRS开关2232→第二天线切换开关2231→LB5(2295)→LNA5(2287)→处理电路210;
第五天线235→收发开关TR2(2233)→LB6(2296)→LNA6(2288)→处理电路210。
需要说明的是,在无线通信装置处于第一通信场景时,若需要实现从第二天线232发射第一信号和第二信号,则除了控制第一开关222的端口p1与端口p3导通之外,其他开关的状态与上述无线通信装置处于第一通信场景中从第一天线231发送第一信号和第二信号时,其他开关的状态类似,在此不再赘述。
示例性的,在无线通信装置处于第二通信场景时,若需要实现从第二天线232发射第二信号,则除了控制第一开关222的端口p14与端口p3导通之外,其他开关的状态与上述无线通信装置处于第二通信场景中从第一天线231发送第二信号时,其他开关的状态类似,在此也不再赘述。
下面介绍本申请实施例提供的一种装置。如图7所示:
图7为本申请实施例提供的一种通信装置的结构示意图。如图7所示,该通信装置700可包括:处理器701、收发器705,可选的还包括存储器702。
所述收发器705可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器705可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
存储器702中可存储计算机程序或软件代码或指令704,该计算机程序或软件代码或指令704还可称为固件。处理器701可通过运行其中的计算机程序或软件代码或指令703,或通过调用存储器702中存储的计算机程序或软件代码或指令704,对MAC层和PHY层进行控制,以实现本申请下述各实施例提供的OM协商方法。其中,处理器701可以 为中央处理器(central processing unit,CPU)、基带处理器和射频处理器,存储器702例如可以为只读存储器(read-only memory,ROM),或为随机存取存储器(random access memory,RAM)。
本申请中描述的处理器701和收发器705可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
上述通信装置700还可以包括天线706,该通信装置700所包括的各模块仅为示例说明,本申请不对此进行限制。
如前所述,以上实施例描述中的通信装置可以是终端,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图7的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置的实现形式可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;例如装置700可以为上文实施例中的Wi-Fi芯片(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;(3)可嵌入在其他设备内的模块;(4)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;(5)其他等等。
对于通信装置的实现形式是芯片或芯片系统的情况,可参见图8所示的芯片的结构示意图。图8所示的芯片包括处理器801和接口802。其中,处理器801的数量可以是一个或多个,接口802的数量可以是多个。可选的,该芯片或芯片系统可以包括存储器803。
在一种可能的实现方式中,处理电路和射频前端模组集成在芯片上,其它器件,包括天线等设置在芯片外。
在另一种可能的实现方式中,处理电路集成在芯片上,天线和射频前端模组设置在芯片外。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
基于相同的技术构思,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由终端设备执行,以控制终端设备用以实现上述方法实施例。
基于相同的技术构思,本申请实施例还提供一种计算机程序,当该计算机程序被终端设备执行时,用以实现上述方法实施例。
所述程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
基于相同的技术构思,本申请实施例还提供一种处理器,该处理器用以实现上述方法实施例。上述处理器可以为芯片。
结合本申请实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable  ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (14)

  1. 一种无线通信装置,其特征在于,包括:
    天线组,包括:第一天线、第二天线、第三天线、第四天线和第五天线;
    射频前端模组,包括合路器,所述合路器耦合至所述第一天线;
    处理电路,耦合至所述合路器和所述天线组,用于轮流从所述第三天线、所述第四天线和所述第五天线发射第一信号;以及将所述第一信号和第二信号发送至所述合路器,通过所述合路器从所述第一天线发射所述第一信号和所述第二信号;
    其中,所述第一信号为第一网络的信道探测参考信号SRS,所述第二信号为第二网络的信号。
  2. 根据权利要求1所述的无线通信装置,其特征在于,
    所述射频前端模组,还包括:第一开关和第二开关;所述合路器耦合至所述第一开关,所述第一开关耦合至所述第一天线和所述第二天线;所述第二开关耦合至所述第三天线、所述第四天线、所述第五天线和所述合路器;
    所述处理电路,还耦合至所述第一开关和所述第二开关,用于控制所述第二开关的状态,轮流从所述第三天线、所述第四天线和所述第五天线发射所述第一信号;控制所述第二开关的状态,将所述第一信号发送至所述合路器,以及将所述第二信号发送至所述合路器;并控制所述第一开关的状态,依次通过所述合路器和所述第一开关从所述第一天线发射所述第一信号和所述第二信号。
  3. 根据权利要求2所述的无线通信装置,其特征在于,
    所述射频前端模组还包括第三开关,所述第三开关耦合至所述第一开关和所述合路器;
    所述处理电路,还耦合至所述第三开关,用于
    处于第一通信场景时,控制所述第三开关的状态,将所述第二信号发送至所述合路器;
    所述处理电路,还用于
    处于第二通信场景时,控制所述第三开关和第一开关的状态,依次通过所述第三开关、和所述第一开关从所述第一天线发射所述第二信号。
  4. 根据权利要求3所述的无线通信装置,其特征在于,
    所述处理电路,还用于
    处于所述第一通信场景时,控制所述第三开关和第一开关的状态,依次通过所述第一开关、所述合路器和所述第三开关从所述第一天线接收第三信号;
    处于所述第二通信场景时,控制所述第三开关和第一开关的状态,依次通过所述第一开关和所述第三开关从所述第一天线接收第四信号;
    其中,所述第三信号和第四信号为第二网络的信号。
  5. 根据权利要求3所述的无线通信装置,其特征在于,
    所述第一通信场景包括EN-DC场景;
    所述第二通信场景包括仅存在4G网络的场景。
  6. 一种信号发射方法,其特征在于,所述方法应用于无线通信装置,所述装置包括处理电路、射频前端模组和天线组,所述射频前端模组包括:合路器,所述天线组包括:第一天线、第二天线、第三天线、第四天线和第五天线,所述方法包括:
    所述处理电路轮流从所述第三天线、所述第四天线和所述第五天线发射第一信号;以及将所述第一信号和第二信号发送至所述合路器,通过所述合路器从所述第一天线发射所述第一信号和第二信号;
    其中,所述第一信号为第一网络的信道探测参考信号SRS,所述第二信号为第二网络的信号。
  7. 根据权利要求6所述的方法,其特征在于,所述射频前端模组还包括:第一开关和第二开关;
    所述处理电路轮流从所述第三天线、所述第四天线和所述第五天线发射第一信号,包括:
    所述处理电路控制所述第二开关的状态,轮流所述第三天线、所述第四天线和所述第五天线发射所述第一信号;
    所述将所述第一信号和第二信号发送至所述合路器,通过所述合路器从所述第一天线发射所述第一信号和第二信号,包括:
    所述处理电路控制所述第二开关的状态,将所述第一信号发送至所述合路器,以及将所述第二信号发送至所述合路器;并控制所述第一开关的状态,依次通过所述合路器和所述第一开关从所述第一天线发射所述第一信号和第二信号。
  8. 根据权利要求7所述的方法,其特征在于,所述射频前端模组还包括第三开关;
    所述将所述第二信号发送至所述合路器,包括:
    当所述无线通信装置处于第一通信场景时,所述处理电路控制所述第三开关的状态,将所述第二信号发送至所述合路器;
    所述的方法还包括:
    当所述无线通信装置处于第二通信场景时,所述处理电路控制所述第三开关和第一开关的状态,依次通过所述第三开关和所述第一开关从所述第一天线发射所述第二信号。
  9. 根据权利要求8所述的方法,其特征在于,所述的方法还包括:
    当所述无线通信装置处于第一通信场景时,所述处理电路控制所述第三开关和第一开关的状态,依次通过所述第一开关、所述合路器和所述第三开关从所述第一天线接收第三信号;
    当所述无线通信装置处于第二通信场景时,所述处理电路控制所述第三开关和第一 开关的状态,依次通过所述第一开关和所述第三开关从所述第一天线接收第四信号;
    其中,所述第三信号和第四信号为第二网络的信号。
  10. 根据权利要求8所述的方法,其特征在于,
    所述第一通信场景包括EN-DC场景;
    所述第二通信场景包括仅存在4G网络的场景。
  11. 一种射频前端模组,其特征在于,包括:第一开关、第二开关、第三开关和合路器;
    所述第二开关,分别与处理电路、第三天线、第四天线、第五天线和所述合路器相耦合,用于在第一通信场景中从所述处理电路接收第一信号,并根据所述处理电路的控制将所述第一信号轮流发送至所述第三天线、所述第四天线、所述第五天线和所述合路器;
    所述第三开关,分别与所述处理电路、所述合路器和所述第一开关相耦合,用于在所述第一通信场景中从所述处理电路接收第二信号,并根据所述处理电路的控制将所述第二信号发送至所述合路器;以及用于在第二通信场景中从所述处理电路接收第二信号,并根据所述处理电路的控制将所述第二信号发送至所述第一开关;
    所述合路器,分别与所述第一开关、所述第二开关和所述第三开关耦合,用于在所述第一通信场景中,从所述第三开关接收所述第二信号和从所述第二开关接收第一信号,以及将所述第一信号和所述第二信号合路,并将合路得到的合路信号发送至所述第一开关;
    所述第一开关,分别与所述合路器、所述第三开关、所述第一天线和所述第二天线相耦合,用于在所述第一通信场景中接收所述合路信号,并根据所述处理电路的控制从所述第一天线发射所述合路信号;以及在所述第二通信场景中接收所述第二信号,并根据所述处理电路的控制从所述第一天线发射所述第二信号。
  12. 一种芯片,其特征在于,包括:至少一个处理器,存储器和接口;
    所述处理器通过所述接口耦合至射频前端模组;所述至少一个处理器被配置为调用存储在所述存储器中的指令,以执行如权利要求6至10任一项所述的方法中的信号发射执行的步骤。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序运行在计算机或处理器上时,使得所述计算机或所述处理器执行如权利要求6至10任一项所述的方法中的处理电路执行的步骤。
  14. 一种计算机程序产品,其特征在于,所述计算机程序产品包含软件程序,当所述软件程序被计算机或处理器执行时,使得权利要求6至10任一项所述的方法中的处理电路执行的步骤被执行。
PCT/CN2022/103909 2021-07-09 2022-07-05 信号发射方法及无线通信装置 WO2023280159A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22836908.8A EP4351029A1 (en) 2021-07-09 2022-07-05 Signal transmission method and wireless communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110780804.8A CN115603786A (zh) 2021-07-09 2021-07-09 信号发射方法及无线通信装置
CN202110780804.8 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023280159A1 true WO2023280159A1 (zh) 2023-01-12

Family

ID=84801278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103909 WO2023280159A1 (zh) 2021-07-09 2022-07-05 信号发射方法及无线通信装置

Country Status (3)

Country Link
EP (1) EP4351029A1 (zh)
CN (1) CN115603786A (zh)
WO (1) WO2023280159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116709364A (zh) * 2023-08-09 2023-09-05 广州天奕技术股份有限公司 室分网络检测装置及其优化方法与相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204761429U (zh) * 2015-06-24 2015-11-11 陈林 一种终端设备
CN110336577A (zh) * 2019-07-08 2019-10-15 维沃移动通信有限公司 一种射频电路及终端设备
CN112533257A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 信号发送装置、方法及电子设备
CN112688715A (zh) * 2020-12-21 2021-04-20 维沃移动通信有限公司 天线电路及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204761429U (zh) * 2015-06-24 2015-11-11 陈林 一种终端设备
CN110336577A (zh) * 2019-07-08 2019-10-15 维沃移动通信有限公司 一种射频电路及终端设备
CN112533257A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 信号发送装置、方法及电子设备
CN112688715A (zh) * 2020-12-21 2021-04-20 维沃移动通信有限公司 天线电路及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116709364A (zh) * 2023-08-09 2023-09-05 广州天奕技术股份有限公司 室分网络检测装置及其优化方法与相关设备
CN116709364B (zh) * 2023-08-09 2023-10-13 广州天奕技术股份有限公司 室分网络检测装置及其优化方法与相关设备

Also Published As

Publication number Publication date
EP4351029A1 (en) 2024-04-10
CN115603786A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US11258430B2 (en) Apparatus and method for selecting frequency band
CN109274379B (zh) 射频系统及相关产品
CN105846849B (zh) 一种载波聚合电路实现方法、实现系统及移动终端
US10129010B2 (en) Dual-mode radio system having a full-duplex mode and a half-duplex mode
JP4765924B2 (ja) 受信ダイバーシティー回路
EP3739762B1 (en) Terminal device
CN112042133B (zh) 发射模组、天线切换控制方法及相关产品
WO2004105263A1 (en) Multi-band and multi-mode mobile terminal for wireless communication systems
JP2009284412A (ja) 無線通信装置
CN103348600A (zh) 在两个相邻频带中工作的同时接入的双频带终端
US9014750B2 (en) Wireless communication device
CN114726384A (zh) 一种天线的切换电路和电子设备
CN102882573A (zh) 多输入多输出的信号传输实现方法、装置及系统
WO2023280159A1 (zh) 信号发射方法及无线通信装置
CN116599542A (zh) 一种实现天线复用的控制方法和电子设备
WO2022042169A1 (zh) 一种用于传输多频段信号的射频电路
JP3751205B2 (ja) 通信装置、及び通信制御方法
US9380527B2 (en) Method for reducing the energy consumption in a wireless communication terminal and communication terminal implementing said method
CN111107460B (zh) 无线耳机通信方法及无线耳机
US8718705B2 (en) Dual mode communications device and method of improving data rate thereof
CN213213464U (zh) 射频结构和电子设备
JP2003332940A (ja) 移動体通信装置
CN114499572A (zh) 一种射频收发系统、电子设备和实现天线切换的方法
CN110768755B (zh) 多载波合成传输方法、装置、设备以及存储介质
CN111490813A (zh) 天线复用射频装置以及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022836908

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022836908

Country of ref document: EP

Effective date: 20240102

NENP Non-entry into the national phase

Ref country code: DE