WO2010072043A1 - 熔炼炉和炼钢设备以及炼钢工艺 - Google Patents

熔炼炉和炼钢设备以及炼钢工艺 Download PDF

Info

Publication number
WO2010072043A1
WO2010072043A1 PCT/CN2009/001038 CN2009001038W WO2010072043A1 WO 2010072043 A1 WO2010072043 A1 WO 2010072043A1 CN 2009001038 W CN2009001038 W CN 2009001038W WO 2010072043 A1 WO2010072043 A1 WO 2010072043A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
slag
steel
oxygen
iron
Prior art date
Application number
PCT/CN2009/001038
Other languages
English (en)
French (fr)
Inventor
董杰
李丰功
曾晖
王学斌
王博
Original Assignee
莱芜钢铁集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 莱芜钢铁集团有限公司 filed Critical 莱芜钢铁集团有限公司
Priority to EP09833996.3A priority Critical patent/EP2380995B1/en
Priority to JP2011541056A priority patent/JP5619021B2/ja
Publication of WO2010072043A1 publication Critical patent/WO2010072043A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/004Making spongy iron or liquid steel, by direct processes in a continuous way by reduction from ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/04Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/04Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of multiple-hearth type; of multiple-chamber type; Combinations of hearth-type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of steel metallurgy and relates to a process and a device for steelmaking using iron-containing materials, in particular to the production of molten steel using iron-containing materials. Background technique
  • a method for recycling iron-containing dust generated in the current steelmaking processes such as sintering, iron making, converter steelmaking, and electric steelmaking is sought.
  • steelmaking can be divided into short and long processes according to the process.
  • a typical long process begins with iron ore, sintering (or pelletizing), coking, blast furnace ironmaking, converter blowing of molten steel, and refining furnace steelmaking.
  • Coke is an indispensable raw material for long processes. Due to limited coking coal resources, coking coal only accounts for the total amount of coal.
  • the most commonly used are the Middlexex, HYL method using natural gas as a reducing agent, and the rotary kiln method using a coal as a reducing agent, a shaft furnace method, a rotary hearth furnace method, and the like.
  • the rotary hearth furnace has been perfected after more than 30 years of development.
  • the main processes include: 1978 Canadian International Nickel Group's INMETCO process, the use of metallurgical plant waste and simultaneous Zn, Ni, Cr and other metal recovery rotary furnace; Fastmelt process, Developed by the famous American direct reduction company Midrex in the 1960s, in the 1980s, it turned to the use of rotary hearth furnace ironmaking, and submerged arc electric furnace (mineral furnace) to form a two-step smelting reduction process to produce molten iron; IDP, powered by the United States The steel company developed a natural gas-fired rotary hearth furnace; the Redsmelt process developed by Mannes Demag, Germany, plans to supply molten iron to the steel-making electric arc furnace of the NSM strip mill (1.5 million tons of steel per year) Hot loaded.
  • smelting reduction is the main process used in non-coking coal production of molten iron-converter steelmaking processes.
  • COREX, FINEX, AUSIRON, HISMELT, DIOS, ROMELT, CCF, AISI, CLEANMELT, etc. are known. Most of the smelting reduction process is still in the research and development stage. Only COREX ironmaking process has built 5 production lines, and has been in operation for more than 10 years in Pohang, South Africa, India, etc., especially in South Africa's COREX-2000, South Korea's Pohang's FINEX coal consumption reaches 720 kg, China Baosteel's COREX -3000 was put into operation in November 2007.
  • the fuel ratio was 1054 kg, of which coke was 26.25%. It still could not get rid of coke and produced molten iron.
  • the core technology of the HISMELT smelting reduction process is the SRV smelting reduction furnace, and the HISMELT process has been developed. An 800,000 ton plant was built in Kunna, Australia, which is currently in trial operation.
  • the SRV smelting reduction furnace produces only a carbon content of 4.3.
  • the molten iron of about % can not directly produce the steelmaking refining process requirement that meets the carbon content of less than 0.1%, and there is also the problem of low heat transfer efficiency.
  • CN02116882.2 discloses a coal-iron ore wave reduction-electric furnace direct steelmaking method and equipment, which has low production efficiency and is difficult to scale production.
  • CN86105494 discloses a lignite pre-reduced ore directly steel-rolled product, wherein the ore is first made into sponge iron, then steel is electro-furnace, and then rolled into steel, energy utilization efficiency and production efficiency.
  • CN200610040303.1 discloses a method for directly making steel by using an induction furnace, which has high energy consumption and low production efficiency.
  • CN200610040696.6 discloses a method for directly making steel by using a converter of a mixture of iron ore fines and anthracite powder
  • CN200610040838.9 discloses a method for directly making steel by using an electric furnace of a mixture of iron oxide powder and anthracite powder
  • CN87101210 discloses A method for direct steelmaking of iron ore, which relates to a method for steelmaking from iron concentrate, non-coking coal and solvent without adding any reduced cold-solidified pellets to a modern industrial melting furnace, Among these methods, iron ore has low reduction efficiency, high energy consumption, and low production efficiency.
  • CN92113519.X discloses a method and a device for directly steel-making with ore, wherein the ore is first reduced to a sponge iron by a reducing gas, and then the high-temperature sponge iron is sent to the melting chamber to be melted in isolation from the outside atmosphere, and then slag is added.
  • the method of removing harmful elements has high energy consumption and low production efficiency, and no industrialization has been reported.
  • CN86106417 relates to continuous continuous steelmaking and steel production in blast furnace Further, an improved blast furnace using pure oxygen and pressurized gasification gas as a fuel and a method of directly reducing steel by adding a reducing agent have been proposed, but the processes of sintering, pelleting, and the like have not been removed, and industrialization has not been reported.
  • CN87104957.0 relates to a continuous steelmaking process and equipment for a trough furnace, wherein a front furnace, a trough furnace and a post furnace are provided, and the raw materials used are still blast furnace molten iron, which has low efficiency and high cost. Summary of the invention
  • the present invention provides a melting furnace, a continuous steel making apparatus, and a steel making process, whereby the disadvantages of low steelmaking efficiency and high energy consumption in the prior art can be overcome.
  • the present invention provides a melting furnace comprising a furnace body for containing molten steel and steel slag, a charging mechanism for adding iron-containing material to the furnace body, and a tapping port for discharging molten steel from the furnace body, wherein A foam slag boiling zone is formed in the steel slag above the water, and the smelting furnace further comprises at least one coal lance, the muzzle of the lance being inserted in the steel slag for injecting oxygen into the steel slag and The carbonaceous material, and thereby the foaming slag boiling zone is formed in the steel slag, the charging mechanism being arranged such that the ferrous material is added to the foaming slag boiling zone.
  • the taphole is preferably a siphon tap.
  • the muzzle of the lance is preferably arranged to be embedded in the steel slag in such a manner that the flame in which the oxygen and the carbonaceous material are burned is buried in the steel slag.
  • the flames in which the oxygen and carbonaceous materials are burned are buried in the steel slag because the heat generated by the combustion can be efficiently absorbed by the steel slag.
  • a oxy-lance is well known and should be understood as a general mechanism for injecting carbonaceous materials and oxygen, and those skilled in the art can employ any suitable coal-oxygen input mechanism to input carbonaceous materials and oxygen.
  • the lance is for example replaceable.
  • the lance is of the casing type, with a central conduit for transporting carbonaceous material and an external conduit for transporting oxygen.
  • the carbonaceous material and oxygen can also be delivered separately by two side-by-side water-cooled pipes, which can also be referred to as a lance.
  • the ratio of oxygen and carbonaceous material injected into the lance can be adjusted.
  • the carbon concentration in the steel slag can be maintained at a suitable concentration by adjusting the ratio of oxygen to the carbonaceous material, preferably 3-12% by weight.
  • the lance of the lance is inserted at a height of 1/3 to 1/5 above the bottom of the steel slag.
  • the furnace body of the smelting furnace preferably has a cylindrical shape.
  • the lance is arranged to be inclined at an angle ⁇ downward with respect to the horizontal plane and its projection on the horizontal plane is opposite to the normal direction of the inner surface of the furnace at the insertion point
  • the angle ⁇ where the angle ⁇ is in the range of 15° to 60°, and the angle ⁇ is in the range of 0 to 45°.
  • the lance is arranged at an angle a to spray the carbonaceous material and oxygen obliquely downward, which facilitates the dynamic performance of the reaction.
  • the coal lance is arranged at a beta angle to blow the steel slag to rotate, which further improves the dynamic performance of the reaction. According to the arrangement of the beta angle of the lance, the steel slag can be rotated clockwise, counterclockwise, or not.
  • a plurality of coal lances are provided, and the lances may be arranged to be inserted into the steel slag from the side wall of the furnace body around the furnace body.
  • these coal lances can also be non-uniformly distributed. It is particularly advantageous that the lance is evenly arranged and arranged at a beta angle as described above because the steel slag floating on the steel water can be better blown to provide higher reaction dynamic performance.
  • the feeding mechanism includes a spray gun that is inserted into the foaming slag boiling zone for injection into the ferrous material.
  • the charging mechanism can include a stringer hopper positioned above the foam slag boiling zone and aligned with the foam slag boiling zone for applying the ferrous material to the foam slag boiling zone.
  • a gas combustion lance which is inserted into the furnace body in such a manner that the muzzle is located above the steel slag. It will be appreciated that the lance is used to inject high temperature oxygen or oxygen enriched air to burn the gas (CO and 3 ⁇ 4) in the furnace chamber above the smelting furnace, transferring heat to the slag, and accelerating the melting of the ferrous material and the flux material.
  • an oxygen-blowing permeable brick is provided at the bottom of the smelting furnace.
  • the oxygen-blowing ventilating brick of the melting furnace continuously blows oxygen into the molten steel to decarburize the molten steel, raise the temperature of the molten steel and act as a molten pool.
  • the oxygen permeable permeable bricks may comprise oxygen permeable permeable bricks disposed at a central location at the bottom of the furnace body and a furnace bottom location adjacent the taphole.
  • Two to four oxygen permeable bricks can be set depending on the size of the melting furnace. Those skilled in the art can optimize the design/selection of the number and location of the oxygen permeable tiles according to actual needs.
  • the smelting furnace may also include at least one inert gas lance, preferably an argon gun, immersed in the molten steel.
  • the argon gun can be inserted into the molten steel from any suitable location on the side wall of the furnace body.
  • the argon gun is preferably replaceable.
  • the smelting furnace has a tap opening on the side wall of the furnace body at the upper limit of the steel slag layer.
  • the tapping port includes a siphon tapping port provided at the lower part of the furnace body to ensure slag-free tapping.
  • the bottom of the melting furnace is provided with a steel discharge port for use in equipment overhaul.
  • the lower shell of the smelting furnace containing the molten steel and steel slag parts and the outer casing including the tapping port adopt a water-cooled furnace wall structure, which advantageously prolongs the service life of the smelting furnace and even makes the smelting furnace have a service life of more than 20 years.
  • the smelting furnace preferably has a gas output mechanism at the upper portion thereof for recovering and recycling the exhaust gas generated in the steel making process.
  • the invention also proposes a continuous steelmaking apparatus, comprising: a pre-reduction device for pre-reducing iron-containing materials; a melting furnace according to the invention, wherein the feeding mechanism is used for the iron-containing material pre-reduced by the pre-reduction device It is added to the furnace body of the smelting furnace; and a molten steel processing vessel which communicates with the tapping port of the smelting furnace for receiving the molten steel from the smelting furnace and dephosphorizing the molten steel.
  • the steel making apparatus further comprises a refining furnace for refining the molten steel treated by the molten steel processing vessel.
  • the prereduction device comprises a rotary hearth furnace and/or a suspension prereduction furnace.
  • the device is provided. , ' , ; , ';
  • the pre-reduction device is a rotary hearth furnace comprising a rotary hearth screw discharge machine.
  • the feeding device comprises a rotary hearth discharge bin, a first-stage screw conveyor, an intermediate storage tank, a secondary screw conveyor, which are sequentially connected, and the feeding device and the screw discharging machine and the feeding mechanism of the rotary hearth furnace respectively
  • a flux bin is preferred.
  • the pre-reduction device is a rotary hearth furnace
  • the rotary hearth furnace comprises a rotary hearth screw discharge machine.
  • the feeding device comprises a rotary hearth discharging bin, a conveying trolley, a conveying trolley track and a discharging bin, wherein the pre-reduced high-temperature iron-containing material is sent to the rotary hearth discharging bin through the spiral discharging machine, and passes through
  • the discharge bin is loaded into the delivery trolley, which is fed into the discharge bin through the conveyor trolley track, and the discharge bin is connected to the string canister.
  • a flux bin can be placed above the bunker discharge bin.
  • the prereduction device is a suspension prereduction furnace.
  • the feed device may be a high temperature dense phase transfer bed comprising a transfer tank and a transfer line connected in series, and the transfer line preferably leads to the upper portion of the feed mechanism (serch type distributor).
  • the pre-reduction device is still a suspension pre-reduction furnace
  • the feeding mechanism is a spray gun inserted into the steel slag for spraying the pre-reduced iron-containing material, and the other end of the spray gun is
  • the suspension prereduction furnace is connected, so that the feeding mechanism and the feeding device are integrated into one, and are in the form of a spray gun.
  • a molten steel processing vessel for oxygen decarburization, desulfurization and dephosphorization includes an oxygen blowing furnace, and the oxygen blowing furnace includes a mechanism for blowing oxygen, such as an oxygen lance.
  • the oxygen blowing furnace can be provided with a bottom blowing oxygen permeable brick at the bottom for the molten steel. Continuously weakly blowing oxygen to stabilize the decarburization of molten steel, prevent large boiling, splashing, etc. of molten steel, and increase the temperature of molten steel.
  • 1 to 3 bottom-blown oxygen permeable bricks can be set and the installation position can be optimized.
  • the oxygen blasting furnace is provided with an oxygen lance inserted from above to blow the molten steel so that the carbon content in the molten steel and the molten steel temperature reach the requirements of the refining furnace feed.
  • a taphole is provided in the lower part of the side wall of the oxygen blowing furnace for slag-free tapping. Further, a slag opening is provided at a certain height position on the side wall of the oxygen blast furnace. When the molten steel reaches the height, a certain amount of steel slag is discharged first, and then the steel is discharged.
  • the oxygen blowing furnace is preferably provided with a steel discharge port at the bottom for overhauling the converting furnace.
  • the oxygen blast furnace casing containing the molten steel adopts a water-cooled furnace wall structure.
  • the oxygen blowing furnace preferably also includes means for adding a flux.
  • the oxygen blowing furnace is preferably provided with a gas output mechanism at the top to recycle the exhaust gas discharged.
  • the gas output mechanism above the melting furnace is preferably coupled to the gas output mechanism at the top of the oxygen furnace to achieve pressure equalization.
  • the refining furnace comprises an RH or LF refining furnace.
  • the invention provides a steelmaking process comprising:
  • a carbonaceous material is injected into the steel slag to react with oxygen, and the generated gas and the oxygen blown into the molten steel cause the steel slag to form a foamed slag containing 4 ⁇ of bubbles.
  • This form is advantageous for the improvement of the dynamic performance of the reaction.
  • step ii) comprises causing the flame generated by the combustion exothermic reaction to be buried in the steel slag.
  • the ratio of oxygen and carbonaceous material injected into the lance can be adjusted.
  • the carbon in the steel slag can be kept at a certain concentration, preferably 3-12% by weight.
  • the foamed slag boiling zone acts as a cloth zone for the ferrous material.
  • the melting and reduction reactions of the iron-containing material added to the smelting furnace are all completed in the steel slag and the steel slag interface, thereby avoiding the problem that a large amount of carbonaceous material enters the molten steel and causes a large amount of molten steel to become molten iron, which is particularly advantageous. Because of this process, molten steel having a carbon content of not more than 3.5% by weight can be obtained easily and with low energy consumption.
  • the temperature of the molten steel initially charged in the bath is in the range of 1350 °C to 1550 °C.
  • the exothermic reaction of the carbonaceous material and oxygen in the steel slag in step ii) causes the steel slag temperature to reach 1500 ° C to 1650 ° C, while the molten steel temperature below the steel slag reaches 1500 ° C to 1550 ° C .
  • the thickness of the molten steel layer in step i) is from 500 mm to 1000 mm, and the thickness of the steel slag layer is from 500 mm to 1500 mm.
  • the step ii) comprises blowing the carbonaceous material and oxygen at a height of 1/3 to 1/5 above the bottom of the steel slag with a lance.
  • the carbonaceous material is preferably one or more of coal powder, coke powder, natural gas, combustible ice, coke oven gas, gas generation, and the like.
  • Combustible ice is a natural gas hydrate that is a white solid crystalline material formed by the interaction of a gas or a volatile liquid with water under certain conditions (appropriate temperature, pressure, gas saturation, water salinity, pH, etc.). , looks like ice.
  • a oxy-lance is well known and should be understood as a general mechanism for injecting carbonaceous materials and oxygen, and those skilled in the art can employ any suitable coal-oxygen input mechanism to input carbonaceous materials and oxygen.
  • the lance is for example replaceable.
  • the lance is of the casing type, with a central conduit for transporting carbonaceous material and an external conduit for transporting oxygen.
  • the carbonaceous material and oxygen can also be delivered separately by two parallel water-cooled pipes, which can also be collectively referred to as a oxy-lance.
  • the coal to oxygen ratio of the coal lance is controlled to reduce carbon addition to the steel while maintaining a certain concentration of carbon in the steel slag (preferably 3-12% by weight).
  • 2 to 16 lances can be provided, which are placed at appropriate locations around the wall to provide sufficient physical and chemical reaction kinetics for the rapid melting of the ferrous material and to dissipate heat. .
  • Those skilled in the art can select the number and location of the lance according to actual needs.
  • said step ii) comprises inserting a plurality of lances into the steel slag in a manner uniformly distributed around the circumference of the furnace wall and blowing said carbonaceous material and oxygen.
  • the plurality of lances may be inserted in a manner that is unevenly distributed.
  • the step ii) comprises bringing the lance to a level
  • the surface is angled downwardly into the steel slag and sprayed with the carbonaceous material and oxygen, wherein ⁇ ranges from 0 to 90.
  • ranges from 0 to 90.
  • the angle ⁇ is in the range of 15° to 60°.
  • the step ii) comprises inserting the lance into the steel slag in a manner that the projection on the horizontal surface is at an angle ⁇ to the normal direction of the inner surface of the smelting furnace at the insertion point and sprays The carbonaceous material and oxygen are blown, wherein the beta angle ranges from 0 to 45°.
  • the steel slag does not rotate, and when ⁇ ⁇ 0, the steel slag swirl can be blown.
  • the angle of ⁇ is preferably in the range of 0 to 45. .
  • the lance is configured to rotate the steel slag clockwise or to rotate the steel slag counterclockwise. According to the arrangement of the angle ⁇ , the steel slag can be rotated, thereby improving the dynamic performance of the reaction.
  • said step ii) comprises the step of causing the lance to be at an angle a to the horizontal and its projection on a horizontal plane at an angle ⁇ to the normal to the surface of the furnace at the point of insertion.
  • the steel slag is inserted obliquely downward and is sprayed with carbonaceous material and oxygen to swirl the steel slag, wherein the angle ⁇ is in the range of 15° to 60°, and the angle ⁇ is in the range of 0 to 45°. It is particularly advantageous that the lance is sprayed obliquely to swirl the clockwise or counterclockwise direction of the foam slag boiling zone, in which case the physical and chemical reaction kinetics are further promoted.
  • the tapping port comprises a siphon tapping port, thereby realizing slag-free tapping from the melting furnace.
  • the process is also advantageous in that the gas produced by the reduction reaction of the iron-containing material in the foamed slag acts on the foamed slag to help form the foaming slag boiling zone (clothing zone) and/or to enhance the physical and chemical reaction dynamics.
  • the high temperature generated by combustion and combustion is transferred to the slag to accelerate the melting of the iron-containing material and the flux.
  • the temperature at which the gas is blown is preferably 1200 ° C to 1250 ° C.
  • the method further includes blowing an inert gas into the molten pool to agitate the molten pool molten steel.
  • the inert gas preferably comprises nitrogen and/or argon.
  • the inert gas acts to agitate the molten pool of the smelting furnace.
  • an argon gun is provided to blow in argon gas, any suitable from the side wall of the smelting furnace The position is inserted into the molten steel, and the argon gun can be 1 to 3 pieces.
  • the argon gun is replaceable.
  • the method further comprises blowing oxygen into the molten steel by blowing oxygen permeable bricks at the bottom of the smelting furnace for decarburization, raising the temperature of the molten steel, and agitating the molten steel.
  • the oxygen permeable baffles may be from 2 to 4, which may be placed near the siphon outlet of the smelting furnace bottom, at the center of the smelting furnace bottom or at other suitable locations on the bottom of the smelting furnace.
  • the iron-containing material is introduced into the foaming slag boiling zone (clothing zone) of the melting furnace by a can-type hopper, or the ferrous material is sprayed into the foaming slag boiling zone of the steel slag by a spray gun.
  • the iron-containing material sprayed by the spray gun is preferably finely powdered.
  • a flux slag can be added to the smelting furnace to take off the molten steel.
  • the flux is preferably one or more of quicklime, dolomite, and fluorite.
  • the flux is preferably formed into a powder of, for example, 1 to 3 mm in thickness and added to the iron-containing material, which is then fed into the cloth area of the melting furnace through a stringer or spray gun.
  • the process further comprises the step of pre-reducing the iron-containing material with a pre-reduction unit prior to adding the iron-containing material to the foaming slag boiling zone.
  • the prereduction device preferably comprises a rotary hearth furnace and/or a suspension prereduction furnace.
  • the iron-containing material having a pre-reduction metallization rate of 80 to 97% by weight is melted into molten steel, enters the molten steel below the steel slag layer, and 3 to 20% by weight of the unpre-reduced iron-containing material is melted.
  • the liquid iron oxide is rapidly reduced by the carbon in the foamed slag to obtain molten steel. Therefore, the carbon content of the molten steel in the present process can be controlled to 3.5% by weight or less, usually 2.0 to 3.0% by weight.
  • the iron-containing material is formed into pellets prior to being added to the rotary hearth furnace.
  • the iron-containing material is made into ⁇ ⁇ ⁇ to 40 ⁇ ⁇ fine powder and then added to the suspension prereduction furnace.
  • the temperature of the iron-containing material pre-reduced by the suspension prereduction furnace ranges from 400 to 800 °C.
  • the temperature of the iron-containing material pre-reduced by the rotary kiln is in the range of 900-1200 °C.
  • the iron-containing material may be selected from one or more of the group consisting of iron ore, iron oxide scale, iron-containing dust, and/or iron-containing dust.
  • the process of the present invention further comprises an oxygen blowing treatment of the molten steel flowing from the melting furnace into the oxygen blowing furnace through the tapping port by an oxygen blowing furnace.
  • the oxygen blowing furnace is connected to the tapping port of the melting furnace, that is, the molten steel initially charged in the melting furnace is flown into the oxygen blowing furnace, so that the amount of molten steel in the oxygen blowing furnace reaches 1/3 to 2 /3.
  • the oxygen blowing can be performed by blowing the oxygen permeable brick at the bottom of the oxygen blowing furnace.
  • an appropriate amount of oxygen is blown through the top-blown oxygen lance to further adjust the steel.
  • the carbon content and temperature in the water, thereby obtaining molten steel having a desired carbon content (C: 0.01 to 0.40% by weight) and temperature (1580 ° C to 1680 ° C), are directly used in the refining furnace.
  • the method further comprises adding a flux to the oxygen blowing furnace for slagging and desulfurization and dephosphorization, and controlling the alkalinity of the slag to be in the range of 3.0 to 3.5 to obtain a carbon content of 0.01 to 0.40% by weight of molten steel, which can be used directly in LF or RH refining furnaces.
  • the alkalinity of the slag the binary alkalinity calculation method, that is, the ratio of CaO/Si02, is often used in the production site.
  • the flux can be added in an amount of 40 kg to 70 kg per ton of molten steel.
  • the molten steel is used for desulfurization and dephosphorization of molten steel and further adjusting the carbon content, thereby obtaining molten steel having a carbon content of 0.01% by weight to 0.40% by weight and meeting the refining conditions, which is particularly advantageous for production.
  • the high-temperature gas produced by the smelting furnace reaction can preferably be used for power generation by heat recovery from a waste heat boiler, or for preheating raw materials, or as a reducing gas for a gas or suspension prereduction furnace of a rotary hearth furnace.
  • the present invention provides a continuous steelmaking process that includes:
  • the heat generated by the exothermic reaction of the carbonaceous material and oxygen is absorbed by the steel slag to improve the reaction dynamic performance, thereby improving the reaction efficiency and energy efficiency of the process.
  • ii) includes causing the flame generated by the combustion exothermic reaction to be buried in the steel slag.
  • the continuous steelmaking process further comprises refining the obtained molten steel having a carbon content of 0.01 to 0.40% by weight after the step iv).
  • a steel slag bath is formed in advance in the smelting furnace, the slag layer having a thickness of 500 mm to 1500 mm, wherein at least one lance is used above the bottom of the slag 1
  • the carbonaceous material and oxygen are injected into the position of /3 to 1/5.
  • the carbonaceous material and the oxygen are burned and exothermicly reacted, and the exothermic heat is absorbed by the molten slag, and the impact of the jet of the coal lance is a gas produced by the reaction of a carbonaceous material with oxygen, and a reduction reaction of an iron-containing material
  • the gases act together to form a foaming slag boiling zone (clothing zone).
  • the high temperature sustained pre-reduction 400-800 ° C, pre-reduction of the rotary hearth 900-1200 ° C
  • the suspension pre-reduction furnace is added to the foaming slag boiling zone.
  • the pre-reduced portion (metallization rate 80 to 97% by weight) in the high-temperature iron-containing material is quickly melted into molten steel (carbon content 1.0 to 2.0% by weight) into the slag layer; other small portions (3 to 20% by weight)
  • the iron-containing material that has not been pre-reduced is melted into liquid iron oxide, and is rapidly reduced into molten steel by the high-temperature carbonaceous material in the steel slag.
  • the molten steel is carburized by the high temperature carbon in the slag during the process of entering the molten steel layer through the slag layer, and the carbon at the interface of the steel slag is also continuously infiltrated into the molten steel to obtain molten steel having a carbon content of 1.0 to 3.5% by weight.
  • Two gas oxygen combustion guns are arranged in the space above the steel slag layer to replenish the slag to accelerate the melting of the iron-containing material.
  • the argon air gun is immersed in the molten steel to agitate the molten pool of the melting furnace, enhance the reaction kinetic conditions, and make the temperature and composition hook.
  • the oxygen continuously blown into the oxygen-permeable ventilating brick at the bottom of the smelting furnace serves to decarburize the molten steel, to raise the temperature of the molten steel, to agitate the molten steel, to enhance the reaction kinetic conditions, and to increase the temperature and composition of the molten pool.
  • the molten steel is discharged into the oxygen blowing furnace continuously from the siphon outlet in the melting furnace, and an appropriate amount of slag forming agent is added to the oxygen blowing furnace, which simultaneously acts as a desulfurization and dephosphorization, and simultaneously increases the molten steel while blowing oxygen and decarburization.
  • the temperature is obtained to obtain molten steel having a desired carbon content (0.01 to 0.40% by weight) and temperature, and is directly used for refining in an RH or LF refining furnace.
  • the tapping at the bottom of the oxygen blowing furnace achieves slag-free tapping.
  • the high temperature gas in the smelting furnace and the oxygen blast furnace can be used for recovering sensible heat power or preheating raw materials through a waste heat boiler, or as a reducing gas for a gas or suspension prereduction furnace of a rotary hearth furnace.
  • the carbonaceous material and oxygen are sprayed into the molten steel slag to form steel slag in the form of foamed slag.
  • the heat generated by the rapid combustion reaction of carbon and oxygen is absorbed by the interface between the foamed slag and the slag steel, and the heat efficiency is high; the impact of the coal lance spray jet
  • the gas generated by the reaction of the carbonaceous material with oxygen and the gas produced by the reduction reaction of the iron-containing material together form a foam slag boiling zone, and the reaction kinetic conditions are good;
  • the invention has high productivity and high waste heat utilization efficiency, which is superior to the existing blast furnace-converter process, COREX smelting reduction iron-smelting process, Hismelt-converter process, and also superior to some patents for continuous steelmaking or one-step refining Steel method
  • the invention fully utilizes the heat of the high-temperature pre-reduction iron-containing material provided by the rotary hearth furnace or the suspension pre-reduction furnace and the heat of combustion of the gas combustion lance provided by the melting furnace to compensate the heat required for the melting and reduction reaction, and accelerates the iron content Melting of materials to further increase productivity;
  • the carbon content (0.01 to 0.40% by weight) and the molten steel which are directly supplied to the RH or LF refining furnace can be directly smelted, and the continuous steelmaking is realized;
  • the invention realizes the direct production of qualified molten steel from ore or iron-containing materials by using a continuous rotary steel furnace or a suspension pre-reduction furnace, a smelting furnace and an oxygen-sintering furnace, which is compared with the existing long process, equipment and
  • the capital investment will save more than 60%, save more than 2/3 of the land, and the logistics will be fully integrated.
  • the energy saving and emission reduction will be more than 60%. It is easy to realize the continuous and automatic control of the production.
  • the life of the furnace can be more than 20 years. It is the steel metallurgy. A revolutionary technological change.
  • Figure 1 is a schematic view of Embodiment 1 of the present invention.
  • Figure 2 shows a plan view of the interior of a melting furnace in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic view of Embodiment 2 of the present invention.
  • Figure 4 is a schematic view of Embodiment 4 of the present invention.
  • Figure 5 is a schematic view of Embodiment 5 of the present invention.
  • Figure 6 is a schematic view of an embodiment of the present invention.
  • FIG. 7 is a schematic view of Embodiment 6 of the present invention.
  • FIG. 8 is a schematic view of Embodiment 7 of the present invention. List of reference signs
  • Oxygen blowing furnace cover 26.
  • Oxygen blowing furnace Slag outlet 27.
  • Oxidation furnace outlet 28.
  • Oxygen furnace steel discharge 29.
  • Oxygen furnace water cooling furnace wall 30.
  • Oxygen furnace refractory furnace wall 31.
  • Oxygen blowing ventilation Brick 32 and 33 smelting furnace oxygen blowing permeable brick, 34.
  • high temperature conveying trolley 35. conveying trolley track Road, 36. Unloading silo, 37. Suspension prereduction furnace, 38. Transmitting tank, 39.
  • Conveying pipeline 40.
  • Iron powder spray gun 41. Steel, 42. Steel slag, 91. High temperature storage silo, 92.
  • Sending tank 93.
  • Conveying pipe 94. Collecting tank, 95.
  • Iron-containing material pellets formed by iron ore fine powder, binder, etc.
  • Carbonaceous materials coal powder.
  • a molten pool having a lower layer of molten steel 41 and an upper layer of steel slag 42 is formed in the melting furnace.
  • the apparatus includes a melting furnace 9 and an oxygen blowing furnace 21, and the melting furnace 9 and the oxygen blowing furnace 21 are connected through a siphon tapping port 18 of the melting furnace.
  • the upper part of the melting furnace 9 is equipped with a gas-oxygen combustion gun 11, a coal lance 12, and an argon gas gun 13.
  • the lower part of the melting furnace is provided with a smelting furnace slag opening 14 and a smelting furnace bottom.
  • the smelting furnace siphoning the steel outlet 18, the smelting furnace siphoning the steel outlet water wall 19, the smelting furnace siphon outlet refractory wall 20, the smelting furnace bottom blowing oxygen permeable bricks 32 and 33.
  • the oxygen blowing furnace 21 is equipped with an oxygen blowing furnace oxygen lance 22, an oxygen blowing furnace flux adding system 24, an oxygen blowing furnace cover 25, an oxygen blowing furnace slag opening 26, an oxygen blowing furnace tapping port 27, and an oxygen blowing furnace bottom.
  • the steel discharge port 28, the water-cooling furnace water-cooling furnace wall 29, the oxygen-burning furnace refractory furnace wall 30, and the oxygen-blowing furnace bottom blowing oxygen permeable brick 31 are set features and components known in the prior art as needed.
  • the high-temperature pre-reduction pellet passes through the rotary hearth furnace 1, specifically through the rotary hearth furnace screw discharge machine 2, the rotary hearth furnace discharge bin 3 is directly loaded into the high-temperature feed trolley 34
  • the feed trolley track 35 is fed into the discharge bin 36, and the discharge bin 36 is connected to the melting furnace cover 19 via the stringer distributor 8.
  • a flux bin 4 is provided above the rotary kiln discharge bin 3.
  • the rotary hearth furnace 1 passes through the rotary hearth furnace discharge machine 2, and the rotary hearth furnace discharge bin 3 (the bottom furnace discharge bin 3)
  • the flux silo 4), the high-temperature transport cart 34 and the transport trolley rail 35 are arranged to feed the material into the unloading bin 36, and the unloading bin 36 is connected to the melting furnace lid 19 via the stringer distributor 8 to pre-restore the ball.
  • the mass is fed to the foam slag boiling zone of the smelting furnace through the stringer hopper 8, i.e., the cloth zone.
  • the high temperature flames of the two gas oxygen burners 11 on the furnace walls above the melting furnace are sprayed onto the cloth area on the steel slag to heat the pre-reduced iron ore and the flux.
  • the injection of the lance has formed a foam slag boiling zone in the slag layer, where the lance is arranged at an angle ⁇ as described above to rotate the foam slag boiling zone counterclockwise.
  • the angle ⁇ of the lance can be adjusted so that the foam slag boiling zone does not rotate or rotate clockwise.
  • the foamed slag boiling zone provides sufficient physical and chemical reaction kinetic conditions, as well as heat of fusion, for the pre-reduction of the iron-containing material and flux.
  • the slag opening 14 in the upper portion of the furnace wall is located at the upper limit of the steel slag layer for continuous slag tapping.
  • the argon gun 13 of the bath is inserted into the bath for agitating the bath.
  • the smelting furnace bottom blowing oxygen permeable bricks 32 and 33 continuously blow oxygen to the molten steel to achieve decarburization, raise the molten steel temperature and stir the molten pool.
  • the siphon tapping port 18 at the lower part of the furnace wall outside the melting furnace ensures continuous slag-free tapping into the oxygen blowing furnace 21.
  • the lance 24 above the oxygen blasting furnace 21 is used to blow oxygen to blow the molten steel so that the carbon content of the molten steel (0.01 to 0.40% by weight) and the temperature of the molten steel reach the requirements of the RH or LF refining furnace.
  • Oxygen blowing furnace Adding system 24 Add slag-forming agent such as quicklime and fluorite to the oxygen blowing furnace, and further remove sulfur and phosphorus from the molten steel while keeping warm.
  • slag-forming agent such as quicklime and fluorite
  • the molten pool of the melting furnace has a water depth of about 700 mm to 800 mm and a temperature of about 1450 ° C to 1550 ° C.
  • the slag layer has a thickness of about 800 to 1000 mm and a temperature of about 1550 ° C to 1650 ° C.
  • the amount of sulfur and phosphorus contained in the pulverized coal injected into the slag by the coal lance should be as low as possible, and the fixed carbon content is generally 77% by weight or more.
  • a part of the pulverized coal is burned with the injected oxygen to generate a large amount of heat for melting the pre-reduced iron ore and the flux, a part of which continuously reduces the reaction with the liquid FeO in the steel slag, and a part of which enters the molten iron to carburize the molten iron.
  • Pulverized coal and oxygen are simultaneously sprayed into the middle of the steel slag to mix the high-temperature slag with the pre-reduced iron ore, flux powder and carbon powder.
  • the flux is added to the oxygen blowing furnace at a standard of 40 to 70 kg per ton of steel to carry out slagging and de-phosphorization, slag alkalinity Control is in the range of 3.0-3.5.
  • the carbon content and temperature of the molten steel are respectively required to reach the RH or LF refining furnace, and the following molten steel composition is obtained, C is 0.01 to 0.40%, Si ⁇ 0.01%, Mn ⁇ 0.02%, S, P ⁇ 0.010%,
  • the molten steel temperature is from 1580 ° C to 1680 ° C.
  • the CO produced by the combustion and reduction reaction of the pulverized coal in the smelting furnace slag is transferred to the pre-reduction pellets and flux of the foam slag boiling zone by radiation and heat conduction, further accelerating the melting rate of the raw material. .
  • Example 2 The residual heat of the exhaust gas generated by the melting furnace 9 and the oxygen blowing furnace 21 is recovered for power generation, and the gas can be used for preheating raw materials, for use in a rotary hearth fuel, etc., and C02 is recycled. Steel slag is used to produce cement, steel slag powder and so on.
  • Example 2 The residual heat of the exhaust gas generated by the melting furnace 9 and the oxygen blowing furnace 21 is recovered for power generation, and the gas can be used for preheating raw materials, for use in a rotary hearth fuel, etc., and C02 is recycled. Steel slag is used to produce cement, steel slag powder and so on.
  • Example 2 Example 2:
  • Iron-containing materials iron ore fines 50%, iron-containing metallurgical dust 50%; carbonaceous materials: coal powder.
  • Composition of iron-containing metallurgical dust iron oxide scale, blast furnace dust ash, converter dust ash, electric furnace dust ash, sintered pellet dust ash, etc.
  • 50% of iron ore fines, 50% of iron-containing metallurgical dust, binder, etc. are made into pellets, which are added to the melting furnace together with the raw limestone and dolomite flux after preheating in the rotary hearth furnace.
  • the pre-reduction pellets of the rotary hearth furnace 1 are conveyed to the rotary blast furnace discharge bin 3 through the rotary hearth screw discharge machine 2, and pass through the first-stage high-temperature screw conveyor 5, the intermediate storage tank 6,
  • the second-stage high-temperature screw feeder 7 transports pre-reduction pellets of 800 ⁇ 900 °C and fluxes such as quicklime and dolomite to the stringer distributor 8 above the melting furnace 9, and is added to the melting furnace by the stringer 8 Slag cloth area.
  • a flux bin 4 is disposed above the bunker discharge bin 3 .
  • Iron-containing materials iron-containing metallurgical dust 100%
  • Carbonaceous materials One or more of coke oven gas, blast furnace gas, natural gas, and gas generation.
  • the oxy-coal gun 12 is injected into one or more of coke oven gas, blast furnace gas, natural gas, and gas generation.
  • the lance 12 on the side wall of the smelting furnace is at 45 with the horizontal plane.
  • Others are the same as in the first embodiment.
  • Example 4
  • Iron-containing material iron ore fine powder
  • Carbonaceous materials coal powder.
  • the suspension prereduction furnace 37 is substituted for the rotary hearth furnace 1.
  • the high temperature conveying bed connected to the suspension prereduction furnace 37 comprises a sending tank 38 and a high temperature conveying pipe 39 connected to the string tank hopper 8 to have a metallization rate of 85% and a temperature of 600 V to 800 °C.
  • the pre-reduced iron-containing fine powder is supplied to the melting furnace 9, that is, the foaming slag boiling zone of the melting furnace. Others are the same as in the first embodiment.
  • Iron-containing material iron ore fine powder
  • Carbonaceous materials coal powder.
  • the suspension prereduction furnace 37 replaces the rotary hearth furnace 1, wherein the iron-containing material fine powder spray gun 40 has a metallization rate of 85% and a temperature of 600 ° C to 800.
  • the pre-reduced iron-containing fine powder of °C is sprayed into the foaming slag boiling zone of the melting furnace 9.
  • Iron-containing materials iron ore fine powder
  • carbonaceous material coal powder.
  • this embodiment employs a high temperature dense phase transport bed and a string tank distributor.
  • the continuous steelmaking apparatus of the present invention comprises: a high temperature storage silo 91, a sending tank 92, a conveying pipeline 93, a collecting tank 94, a string tanker 95, which are mixed with a ferrous material and a flux connected to the suspension prereduction furnace, Melting furnace 96, gas output device 97, molten pool oxygen gun 98, CO oxygen burning gun 99, carbonaceous material spray gun 911, melting furnace oxygen gun 912, melting furnace slag opening 913, melting furnace siphon tapping port 914, melting furnace Bottom steel discharge port 915; oxygen blowing furnace 916, oxygen furnace oxygen lance 917, oxygen furnace carbonaceous material combustion gun 918, oxygen furnace flux addition system 919, oxygen furnace outlet 920, oxygen furnace slag outlet 921, the bottom of the oxygen blowing furnace 922, the top of the oxygen blowing furnace is provided with a gas output device 923; the melting furnace 96 and the oxygen blowing furnace 916 are cylindrical furnaces, and the longitudinal section is as shown in Fig.
  • the smelting furnace 9.6 and the oxygen blasting furnace 916 include a refractory system, a water cooling system, an exhaust gas treatment, and a waste heat recovery system.
  • the difference between Fig. 6 and Fig. 7 is that Fig. 6 uses a spray gun to inject iron-containing material and flux into the steel slag in addition to the iron-containing material.
  • the canister hopper 95 is added to the cloth area on the slag surface in the smelting furnace by the hopper 95; the high temperature flame of the two CO oxy-combustion guns 98 on the furnace walls above the smelting furnace is sprayed onto the slag surface Heating the iron ore fine powder and the flux micropowder; the carbonaceous material spray gun 911 on the side wall of the melting furnace is arranged above and below the smelting furnace oxygen lance, and the two are arranged at an angle of 15-60 degrees with the horizontal plane of the slag layer; The angle is 0-45 degrees, and is inserted into the slag in the slag zone to form the ⁇ angle as shown in Fig. 2.
  • the angle of the spray gun can be adjusted to make the boiling zone not rotate, or clockwise. Or counterclockwise rotation, the boiling zone provides sufficient physical and chemical reaction kinetic conditions for the iron ore fine powder and the flux micropowder; the upper slag opening 913 of the melting furnace wall is at the upper limit of the slag layer, and continuous slag can be realized; Pool oxygen gun 98 is inserted into the molten pool siphon In the molten steel in front of the steel port 914, oxygen is blown into the molten steel to further reduce the carbon content in the molten steel, and at the same time, the temperature of the molten steel is increased, and the generated CO gas acts to agitate the melting pool of the melting furnace; the outer wall of the molten steel smelting 913 melting furnace The lower siphon tapping port 914 is to ensure continuous slag-free tapping to the oxygen blowing furnace 916; the oxygen lance 917 above the oxygenating furnace 916 blows the molten steel
  • the iron ore fine powder and the quicklime and dolomite are finely ground by a ball mill to obtain micro-powder of 10-40 ⁇ , and the iron ore fine powder is pre-reduced in the suspension pre-reduction furnace at 600-1000 ° C to obtain a pre-reduction rate of 85-97 %.
  • Iron ore fine powder The mixing ratio of pre-reduced iron ore fine powder and limestone and dolomite is determined according to the control of slag composition of several materials in the smelting process. Generally, the alkalinity of the slag is 1-1.5, A1203 13%-16%, MgO 8%- 10%, FeO 0.5% or less, CaO 38%-40%, Si02 32%-34%.
  • the slag layer in the smelting furnace has a thickness of about 700-1000 mm, a temperature of about 1450 ° C to 1550 ° C, and a molten steel bath depth of about 700 mm. After the mixture of iron ore fine powder and flux is added, it is melted into the slag in 5 to 30 seconds.
  • the pulverized coal sulphur phosphorus injected into the slag by the water-cooled spray gun with N2 or CO as the carrier gas is as low as possible, and the fixed carbon content is generally above 77%.
  • a part of the injected coal powder is burned by the injected oxygen to generate a large amount of heat to melt the pre-reduced iron ore fine powder and the fine powder of the flux, and a part of the continuous continuous reduction reaction with the liquid FeO in the slag, and a small part of the molten iron into the molten iron to carburize.
  • Pulverized coal and oxygen are simultaneously sprayed to the slag
  • the upper part of the layer makes the high-temperature slag and the pre-reduced iron ore fine powder, the flux fine powder and the carbon powder are vigorously mixed, which creates a good power for the rapid reduction of the pre-reduced iron ore fine powder, the flux fine powder and the continuous reduction reaction of the carbon reduced liquid iron oxide. Learning conditions.
  • the dissolved carbon in the molten iron also continuously reduces the FeO in the slag at the mixed interface of the slag steel.
  • the CO produced by the combustion and reduction reaction of the pulverized coal in the smelting furnace slag is transferred to the pre-reduced iron ore fine powder and the flux fine powder in the cloth area by radiation and heat conduction, thereby further accelerating the melting of the raw material fine powder. speed.
  • the waste heat from the melting furnace 96 and the oxygen blowing furnace 916 is recovered for power generation, and after adsorption of C02, it is used for preheating pre-reduction of iron ore fine powder, and C02 is recycled.
  • Steel slag is used to produce cement, steel slag powder and so on.
  • Iron-containing materials iron ore fine powder 80%, iron-containing metallurgical dust 20%, carbonaceous material: coal powder.
  • the iron-containing material and the flux are sprayed into the furnace using a spray gun.
  • Composition of iron-containing metallurgical dust iron oxide scale, blast furnace dust ash, converter dust ash, electric furnace dust ash, sintered pellet dust ash, etc.
  • the continuous steelmaking apparatus of the present invention comprises: a melting furnace 96, a gas output device 97, a molten pool oxygen gun 98, a CO oxygen burning gun 99, a ferrous material and a flux spray gun 910, a carbonaceous material spray gun 911 melting furnace oxygen lance 912, The smelting furnace slag opening 913, the smelting furnace siphon tapping port 914, the smelting furnace bottom steel discharging port 915; the oxygen blowing furnace 916, the oxygen blowing furnace oxygen lance 917, the oxygen blowing furnace carbonaceous material burning gun 918, the oxygen blowing furnace flux are added System 919, oxygen furnace outlet 920, oxygen furnace slag outlet 921, oxygen blowing furnace bottom discharge port 922, gas output device 23; smelting furnace 96 and oxygen blowing furnace 916 are cylindrical furnaces, longitudinal section 8 is shown.
  • the smelting furnace 96 and the oxygen blasting furnace 916 include a refractory system, a water cooling system, an exhaust gas treatment
  • Iron-containing materials iron ore fine powder 10% ⁇ 90%, iron-containing metallurgical dust 90% ⁇ 10%, carbonaceous material: one or more of natural gas, combustible ice, coke oven gas, gas generation.
  • the iron-containing material and the flux are sprayed into the furnace using a spray gun.
  • Slag layer carbonaceous material spray gun 911 is injected with one or more of natural gas, combustible ice, coke oven gas, and coal gas. Others are the same as in the embodiment 7.
  • the preferred embodiments of the present invention have been described above in conjunction with the drawings, but those skilled in the art should be able to make modifications, improvements and substitutions in the embodiments of the invention and combinations of several embodiments without departing from the scope of the invention, particularly The description of the number of features in the specification (such as 1 or 2), if not specifically limited, is usually only for the purpose of illustration and not limitation, and those skilled in the art can set a suitable number of features according to the technical suggestion of the present invention. Therefore, all of the above embodiments, as well as modifications, improvements, substitutions and combinations of the embodiments, are included in the appended claims, and the scope of the invention is defined only by the appended claims and their equivalents.

Description

熔炼炉和炼钢设备以及炼钢工艺 技术领域
本发明属于钢铁冶金技术领域, 涉及用含铁物料进行炼钢的工艺和设 备,尤其涉及用含铁物料的钢水生产。 背景技术
随着世界钢铁工业的飞速发展和国际社会对环保的日益重视, 铁矿 石、 废钢铁、 焦炭等资源的短缺, 焦煤资源的短缺尤为突出, 人们不断寻 找一种不用焦煤的炼铁炼钢方法,寻求一种能再利用在目前的烧结、炼铁、 转炉炼钢、 电炉炼钢等炼钢过程中产生的含铁粉尘的方法。 通常, 炼钢按 工艺流程可分为短流程和长流程两种。 典型的长流程是从铁矿石开始, 进 行烧结 (或球团)、 炼焦、 高炉炼铁、 转炉吹炼钢水和精炼炉炼钢。 焦炭 是长流程不可缺少的重要原料, 由于炼焦煤资源有限, 焦煤仅占煤总量的
5%至 10%,现有技术可经济开发的焦煤只占 1.5%至 4%,使依赖炼焦煤的 长流程面临煤资源匮乏的局面。 此外, 长流程规模庞大, 投资高, 占用土 地面积大, 生产周期长, 吨钢能耗高, 环境污染严重, 尤其是炼焦系统污 染是传统长流程无法克服的弊端。 现有的短流程是以废钢、 直接还原铁 ( DRI、 海绵铁) 等为原料, 通过电炉熔化, 氧化成粗钢水, 经精炼炉炼 出成品钢, 不需要焦炭。 短流程通常首先需要对原料进行还原, 最普遍采 用的是以天然气为还原剂的 Midrex、 HYL 法以及以煤为还原剂的回转窑 法、 竖炉法、 转底炉法等。 转底炉经过 30 多年的发展而日趋完善, 主要 工艺包括: 1978年加拿大国际镍集团的 INMETCO工艺, 利用冶金厂废弃 物并同时进行 Zn、 Ni、 Cr等金属回收的转底炉; Fastmelt工艺, 由著名的 美国直接还原公司 Midrex于 60年代开发, 80年代转向利用转底炉炼铁, 与埋弧电炉 (矿热炉) 双联, 形成两步法熔融还原过程生产铁水; IDP, 由美国动力钢公司开发, 是以天然气为燃料的转底炉; 由德国曼内斯德马 格公司开发的 Redsmelt工艺, 计划为 NSM 带钢厂(年产钢 150万吨)的炼 钢电弧炉提供铁水热装。 在出了转底炉后, DRI被趁热(900°C)加入电炉, 获得铁水, 计算成本为每吨铁水 168.85美元, 低于同等条件下的高炉和其 它熔融还原的铁水。 Itmk3 "第三代炼铁法" 是日本神户制铁与美国米德 兰 (Midrex)公司联合开发的转底炉直接还原新工艺(Fastmet),在 20世纪 90 年代中后期取得突破性进展, 使金属化球团(直接还原铁, DRI, 海绵铁) 在转底炉中还原时轻度熔化, 生成铁块, 同时脉石也熔化, 形成渣铁初步 分离。 此法的成功将解脱 DRI对原料品位的苛求, 能用普通的高炉用铁矿 为电炉提供优质铁料, 因此意义重大, 被命名为 "第三代炼铁法"(Itmk3)。 在行业中, 高炉被称为第一代炼铁法, 产品属高碳液态铁水, 直接还原被 称为第二代炼铁法, 产品属低碳固态铁, 第三代炼铁法的产品介于二者之 间, 属中碳准熔化 (或半熔)状态。
因而,熔融还原是非焦煤生产铁水 -转炉炼钢流程主要采用的工艺,现 已知有 COREX、 FINEX、 AUSIRON、 HISMELT、 DIOS、 ROMELT、 CCF、 AISI、 CLEANMELT 等, 大多数熔融还原工艺还处于研发阶段, 只有 COREX炼铁工艺建成了 5条生产线, 在浦项、 南非、 印度等一些厂已经 运行十年以上,尤其是南非的 COREX-2000,韩国浦项的 FINEX煤耗达到 720公斤,中国宝钢的 COREX-3000于 2007年 11月投产, 2008年燃料比 1054公斤,其中焦碳 26.25%,仍然不能摆脱焦碳,生产的是铁水。 HISMELT 熔融还原工艺的核心技术为 SRV熔融还原炉, 而 HISMELT工艺已开发成 熟, 在澳大利亚昆纳建设了一座 80 万吨的工厂, 目前正在试运行, SRV 熔融还原炉生产出的只是碳含量在 4.3%左右的铁水,不能直接生产出满足 碳含量小于 0.1%的炼钢精炼工艺要求, 还存在着传热效率低的问题。
CN02116882.2公开一种煤 -铁矿 波还原-电炉直接炼钢方法及设备, 这种方法生产效率低, 难以规模化生产。 CN86105494 公开了褐煤预还原 矿石直接炼钢轧材, 其中矿石先被制成海绵铁, 再由电炉炼钢, 再轧成钢 材, 能源利用效率和生产效率氏。 CN200610040303.1公开了用感应炉直接 炼钢的方法, 其能耗高、 生产效率低。 CN200610040696.6公开了用铁矿粉 与无烟煤粉的混合料块用转炉直接炼钢的方法, CN200610040838.9公开了 用氧化铁皮与无烟煤粉的混合料用电炉直接炼钢的方法, 以及 CN87101210公开了一种铁矿石直接炼钢的方法, 它们都涉及将由铁精矿、 非焦煤和溶剂做成的未经任何还原的冷固结球团加到现代工业熔炼炉中 来炼钢的方法, 在这些方法中, 铁矿石还原效率低, 能耗高, 生产效率低。 CN92113519.X 公开了用矿石直接炼钢的方法及设备, 其中先将矿石用还 原气体还原成海绵铁, 然后将高温海绵铁在与外界大气隔离的情况下送入 熔化室内熔化,再加入造渣剂去除有害元素的方法, 能耗高, 生产效率低, 未见到产业化的报道。 CN86106417 涉及高炉连续炼钢与制钢生产的连续 化, 并且提出改进的高炉用纯氧和加压气化煤气作燃料以及加入还原剂直 接炼钢的方法,但仍然未去掉烧结、球团等工序并且未见到产业化的报道。
CN87104957.0涉及槽式炉连续炼钢工艺及设备,其中设有前炉、槽式炉和 后炉, 所用原料仍然是高炉铁水, 其效率低, 成本高。 发明内容
针对现有技术的不足, 本发明提供一种熔炼炉、 一种连续炼钢设备及 炼钢工艺, 借此可以克服现有技术中的炼钢效率低、 能耗大的缺点。
为此, 本发明提供一种熔炼炉, 包括用于容纳钢水和钢渣的炉体、 用 于将含铁物料加入炉体的加料机构、 以及将钢水从炉体排出的出钢口, 其 中在钢水上方的钢渣中形成有泡沫渣沸腾区, 其特点是, 该熔炼炉还包括 至少一支煤氧枪, 该煤氧枪的枪口插埋在钢渣中, 用于向钢渣中喷吹氧气 和含碳物料, 并由此在钢渣中形成泡沫渣沸腾区, 加料机构被布置成使含 铁物料被加入该泡沫渣沸腾区。
所述出钢口优选为虹吸出钢口。
该煤氧枪的枪口优选被布置成以这样的方式被插埋在钢渣中, 即使得 氧气和含碳物料燃烧的火焰被埋在钢渣内。 对于本发明来说, 所述氧气和 含碳物料燃烧的火焰被埋在钢渣中是特别有利的, 因为燃烧所产生的热量 能被钢渣高效吸收。
对于本领域技术人员来说, 煤氧枪是公知的且应理解为用于喷入含碳 物料和氧气的通用机构, 本领域技术人员可以采用任何合适的煤氧输入机 构以输入含碳物料和氧气。 煤氧枪例如是可更换的。 一种优选方案中, 煤 氧枪是套管型的, 其中心管道用于输送含碳物料, 其外部管道用于输送氧 气。 作为替代, 含碳物料和氧气也可以分别用两个并列的水冷管道输送, 这也可称为煤氧枪。
该煤氧枪喷入的氧气和含碳物料比例是可以调整的, 通过调整氧气和 含碳物料比例可以使钢渣中碳保持在适宜的浓度, 优选为 3— 12重量%。
根据本发明的一个优选实施例, 煤氧枪枪口插埋在钢渣底部以上 1/3 至 1/5高度处。
熔炼炉的炉体优选呈圓柱形。
根据本发明的另一个优选实施例, 煤氧枪被布置成相对水平面向下倾 斜 α角且其在水平面上的投影相对炉体内表面在插入点处的法线方向成 β角, 其中 α角的范围为 15°至 60°, β角的范围为 0至 45°。 在优选实施 例中, 煤氧枪以 α角布置以使其斜向下喷吹含碳物料和氧气, 这有利于反 应的动力性能。 而且, 煤氧枪以 β角布置可以吹动钢渣使其旋转, 这进一 步改善了反应的动力性能。根据煤氧枪的 β角的布置,可以使钢渣顺时针、 逆时针旋转, 或者不旋转。
优选设置多支煤氧枪, 这些煤氧枪可被布置成围绕炉体均勾分布地从 炉体侧壁插入钢渣中。 当然, 这些煤氧枪也可以是非均勾分布的。 煤氧枪 均匀布置并且如上述按 β角布置是特别有利的, 因为可以更好地吹动浮在 钢水上的钢渣旋转, 以提供更高的反应动力性能。
根据本发明的又一个优选实施例, 加料机构包括插入泡沫渣沸腾区以 便喷入含铁物料的喷枪。 作为替代方式, 加料机构可以包括位于泡沫渣沸 腾区上方且对准泡沫渣沸腾区的串罐式布料器, 用于将含铁物料布施在泡 沫渣沸腾区中。
根据本发明的又一个优选实施例, 还设有以枪口位于钢渣上方的方式 插入炉体中的煤气燃烧氧枪。 可以理解, 氧枪用于喷入高温氧气或富氧空 气, 以燃烧熔炼炉上方炉腔内的煤气(CO 和 ¾ ), 把热量传到熔渣, 加 速含铁物料和熔剂物料的熔化。
根据本发明的另一个优选实施例, 在熔炼炉底部装有吹氧透气砖。 熔 炼炉的吹氧透气砖向钢水连续吹氧, 使钢水脱碳, 提高钢水温度并起到熔 池搅拌作用。 特别优选的是, 吹氧透气砖可以包括分别布置在炉体底部的 中心位置和靠近出钢口的炉底位置的吹氧透气砖。
可依据熔炼炉的大小设置 2至 4块吹氧透气砖。 本领域技术人员可以 根据实际需要优化设计 /选择吹氧透气砖的数量和位置。
熔炼炉还可以包括浸没于钢水中的至少一支惰性气体喷枪, 优选为氩 气枪。 氩气枪最好可以从炉体侧壁的任何合适位置插没于钢水中。 氩气枪 最好是可更换的。
熔炼炉最好具有位于炉体侧壁上且在钢渣层的上限部位处的出渣口。 出钢口包括设置在炉体下部的虹吸出钢口, 以确保无渣出钢。 优选的是, 熔炼炉底部设有放钢口, 供设备大修时使用。
容纳有钢水和钢渣部分的熔炼炉下部外壳以及包括出钢口的外壳均 采用水冷炉壁结构, 这有利地延长了熔炼炉的使用寿命, 甚至可使熔炼炉 的使用寿命达 20年以上。 熔炼炉最好在其上部具有煤气输出机构, 用于将炼钢过程中所产生的 废气回收再利用。
本发明还提出一种连续的炼钢设备, 包括: 用于预还原含铁物料的预 还原装置; 根据本发明的熔炼炉, 其中加料机构用于将通过预还原装置被 预还原的含铁物料加入熔炼炉的炉体内; 和钢水处理容器, 它与熔炼炉的 出钢口相连通, 用于接纳来自熔炼炉的钢水并对钢水进行脱 脱磷。
根据本发明进一步的实施例, 该炼钢设备还包括对经过钢水处理容器 处理的钢水进行精炼的精炼炉。
根据本发明, 预还原装置包括转底炉和 /或悬浮预还原炉。 此外, 该设 装置。 、 ' 、 ; 、 ';
根据本发明的一个具体实施例, 预还原装置是转底炉, 其包括转底炉 螺旋出料机。 送料装置包括依次连接的转底炉出料仓、 一级螺旋输料机、 中间储料罐、 二级螺旋输料机, 并且该送料装置分别与转底炉的螺旋出料 机和加料机构 (这里是串罐式布料器)相连。 在转底炉出料仓的上方, 优 选设有熔剂料仓。
根据本发明的另一个具体实施例, 预还原装置为转底炉, 转底炉包括 转底炉螺旋出料机。 而送料装置包括转底炉出料仓、 输料小车、 输料小车 轨道和卸料仓, 其中, 经预还原的高温含铁物料经螺旋出料机送到转底炉 出料仓中, 通过出料仓被装入输料小车中, 该输料小车通过输料小车轨道 被送入卸料仓, 而卸料仓与串罐式布料器相连。 同样地, 在转底炉出料仓 的上方, 可以设置有熔剂料仓。
根据本发明一个具体实施例, 预还原装置是悬浮预还原炉。 送料装置 可以为高温密相输送床, 该输送床包括依次连接的发送罐和输送管道, 并 且该输送管道优选通到加料机构 (串罐式布料器) 的上部。
根据本发明的一个优选实施例, 所述预还原装置仍为悬浮预还原炉, 所述加料机构是插入到钢渣中用于喷入经预还原的含铁物料的喷枪, 该喷 枪的另一端与悬浮预还原炉相连, 从而该加料机构与送料装置是集成为一 体, 呈现喷枪形式。
根据本发明的另一个实施例, 用于吹氧脱碳、 脱硫脱磷的钢水处理容 器包括吹氧炉, 吹氧炉包括用于吹入氧气的机构如氧枪。
作为吹氧机构, 吹氧炉在底部可以设有底吹氧透气砖, 用于对钢水进 行连续弱吹氧, 使钢水稳定脱碳, 防止钢液出现大沸腾、 喷溅等, 并提高 钢水温度。 依据吹氧炉的大小, 可以设置 1至 3块底吹氧透气砖并对安装 位置进行优化设计。
根据本发明的一个实施例, 吹氧炉设有从上方插入的氧枪来吹炼钢 水, 使钢水中的碳含量和钢水温度达到精炼炉进料的要求。
在吹氧炉的侧壁下部设有出钢口, 用于实现无渣出钢。 而且, 在吹氧 炉侧壁上的一定高度位置设有出渣口, 当钢水达到该高度时, 先放出一定 量的钢渣, 然后再出钢。 吹氧炉在底部优选设有放钢口, 供吹炼炉大修使 用。 优选的是, 容纳钢水的吹氧炉外壳采用水冷炉壁结构。
吹氧炉优选还包括用于加入熔剂的机构。
吹氧炉在顶部优选设有煤气输出机构, 以便循环利用排出的废气。 在 熔炼炉上方的煤气输出机构最好与吹氧炉顶部的煤气输出机构相联, 以达 到压力平衡。
根据本发明又一个实施例, 所述精炼炉包括 RH或 LF精炼炉。
本发明提出一种炼钢工艺, 其包括:
i )在熔炼炉中形成下层为钢水上层为钢渣的熔池;
ϋ ) 用至少一支煤氧枪插埋在钢渣中的情况下向熔炼炉内的钢渣中喷 吹含碳物料和氧气, 所述含碳物料和氧气在钢渣中燃烧放热反应, 该燃烧 放热反应产生的气体以及煤氧枪喷吹形成的沖击力共同作用于钢渣, 从而 在其中形成泡沫渣沸腾区;
iii )将含铁物料加入泡沫渣沸腾区中;
iv ) 出 4¾口出 4冈。
在本工艺中, 往钢渣中喷吹含碳物料和氧气发生反应, 所产生的气体 以及被喷吹入的氧气使钢渣形成含 4艮多气泡的泡沫渣。 这种形式对于反应 的动力性能的提升是有利的。
此外, 含碳物料和氧气燃烧放热反应所产生的热量被钢渣吸收对于提 升反应动力性能, 进而提升本工艺的反应效率和能效。 特别地, 步骤 ii ) 包括使得该燃烧放热反应产生的火焰被埋在钢渣中。
该煤氧枪喷入的氧气和含碳物料比例是可以调整的, 通过调整氧气和 含碳物料比例可以使钢渣中碳保持一定的浓度, 优选为 3— 12重量%。
根据本工艺, 本领域技术人员应理解, 所述泡沫渣沸腾区即作为含铁 物料的布料区。 在本工艺中, 加入熔炼炉的含铁物料的熔化和还原反应全部在钢渣中 和钢渣界面完成, 避免了含碳物料大量进入钢水而造成钢水大量增碳变成 铁水的问题, 这是特别有利的, 因为通过该工艺, 可以很容易且低能耗地 获得碳含量不高于 3.5重量%的钢水。
根据本发明的优选实施例, 熔池中初始加入的钢水温度在 1350 °C至 1550°C的范围中。
根据进一步的实施例, 在步骤 ii ) 中的含碳物料和氧气在钢渣中的放 热反应使钢渣温度达到 1500°C至 1650°C , 同时钢渣下面的钢水温度达到 1500°C至 1550°C。
优选的是, 在步骤 i ) 中的熔池钢水层的厚度为 500mm至 1000mm, 钢渣层的厚度为 500mm ~ 1500mm。
根据本发明进一步的实施例, 所述步骤 ii ) 包括用煤氧枪在钢渣底部 以上 1/3至 1/5 高度处喷吹所述含碳物料和氧气。 所述含碳物料优选是煤 粉、 焦粉、 天然气、 可燃冰、 焦炉煤气、 发生煤气等中的一种或几种。 可 燃冰是天然气水合物, 是在一定条件 (合适的温度、 压力、 气体饱和度、 水的盐度、 PH值等) 下由气体或挥发性液体与水相互作用过程中形成的 白色固态结晶物质, 外观像冰。
对于本领域技术人员来说, 煤氧枪是公知的且应理解为用于喷入含碳 物料和氧气的通用机构, 本领域技术人员可以采用任何合适的煤氧输入机 构以输入含碳物料和氧气。 煤氧枪例如是可更换的。 一种优选方案中, 煤 氧枪是套管型的, 其中心管道用于输送含碳物料, 其外部管道用于输送氧 气。 作为替代, 含碳物料和氧气也可以分别用两个并列的水冷管道输送, 这也可统称为煤氧枪。 优选的是, 可控制煤氧枪喷吹的煤氧比以减少向钢 水中增碳, 同时保持碳在钢渣具有一定浓度(优选为 3— 12重量% )。 根据 熔炼炉的大小和冶炼需要, 可以设有 2到 16支煤氧枪, 它们布置在炉壁 周围的合适位置上, 为含铁物料快速熔化提供充分的物理和化学反应动力 学条件以及熔化热量。 本领域技术人员可以根据实际需要来选择煤氧枪的 数量和位置。
更优选的是, 所述步骤 ii ) 包括使多支煤氧枪以围绕炉壁周向均匀布 置的方式插入钢渣中并喷吹所述含碳物料和氧气。 或者, 所述多支煤氧枪 也可以不均匀分布的方式插入。
根据本发明的一个实施例, 所述步骤 ii ) 包括使所述煤氧枪以与水平 面成 α角的方式斜向下插埋在钢渣中并喷吹所述含碳物料和氧气, 其中 α 的范围是 0至 90。, 这有利于煤氧燃烧产生的热量被钢渣高效吸收, 有利 于反应动力性能的改进。根据本发明的一个优选实施例, α角的范围是 15° 至 60 °。
根据本发明又一个实施例, 所述步骤 ii ) 包括使煤氧枪以在水平面上 的投影与熔炼炉炉体内表面在插入点处的法线方向成 β角的方式插埋在 钢渣中并喷吹所述含碳物料和氧气, 其中 β角的范围是 0至 45°。 特别是, 当 β =0时, 钢渣不转动, 而当 β ≠0时, 可以吹动钢渣旋流。 在这里, β 角的范围优选为 0至 45。。 在此情况下优选规定, 所述煤氧枪被配置成使 钢渣顺时针旋转流动, 或者使钢渣逆时针旋转流动。 按照 β角的布置能使 钢渣旋转, 从而改善了反应的动力性能。
根据本发明的一个特别优选实施例, 所述步骤 ii ) 包括使煤氧枪以与 水平面成 α角且其在水平面上的投影与炉体内表面在插入点处的法线方 向成 β角的方式斜向下插埋在钢渣中并喷吹含碳物料和氧气以使钢渣旋 流, 其中 α角的范围为 15°至 60 °, β角的范围为 0至 45°。 煤氧枪倾斜喷 吹以使泡沫渣沸腾区顺时针或逆时针旋流是特别有利的, 在此情况下, 进 一步促进了物理和化学的反应动力。
特别是, 当设有多支煤氧枪且它们按照上述方式均勾分布地插入钢渣 中时, 且在煤氧枪按照不等于 0的上述 β角布置的情况下, 可以更利于钢 渣的旋转流动, 从而提供更高的反应动力性能。
优选地, 所述步骤 iv )所述出钢口包括虹吸出钢口, 从而实现了从熔 炼炉的无渣出钢。
本工艺有益之处还在于, 含铁物料在泡沫渣中的还原反应所产生的气 体作用于泡沫渣, 以帮助形成泡沫渣沸腾区(布料区)和 /或提升物理和化 学反应动力性能。
根据本发明的一个特别优选的实施例, 还包括优选通过煤气燃烧氧枪 向熔炼炉的钢渣层上方的气相空间吹入高温氧气或富氧空气, 与熔炼炉所 产生的煤气(CO和 H2 ) 燃烧, 燃烧产生的高温传至渣中, 加速含铁物料 和熔剂的熔化。 吹入气体的温度优选为 1200°C至 1250°C。
根据本发明另一优选实施例, 还包括向熔池中吹入惰性气体以搅拌熔 池钢水。惰性气体优选包括氮气和 /或氩气。惰性气体起到搅拌熔炼炉熔池 的作用。 优选设置氩气枪来吹入氩气, 该氩气枪从熔炼炉侧壁的任何合适 位置插入钢水中, 氩气枪可以是 1至 3支。 优选氩气枪是可更换的。
根据本发明又一个优选实施例, 还包括通过熔炼炉底吹氧透气砖向熔 池钢水吹入氧气, 用于脱碳、 提升钢水温度和搅拌熔池钢水。 所述吹氧透 气砖可以为 2至 4块, 其可布置在熔炼炉底的虹吸出钢口附近处、 熔炼炉 底中心处或在熔炼炉底的其它合适位置上。
优选的是, 用串罐式布料器将含铁物料加入熔炼炉的泡沫渣沸腾区 (布料区), 或用喷枪将含铁物料喷入钢渣的泡沫渣沸腾区中。 被喷枪喷 入的含铁物料优选为微粉状的。
根据本发明的一个优选的实施例, 可以在熔炼炉中加入熔剂造渣, 对 钢水脱直脱騎。
熔剂优选为生石灰、 白云石、 萤石中的一种或几种。
熔剂优选被制成例如 1至 3mm粗细的粉末并被加入含铁物料中, 随 其一起通过串罐布料器或喷枪被加入熔炼炉的布料区中。
根据本发明的一个优选实施例, 该工艺还包括在将含铁物料加入泡沫 渣沸腾区之前用预还原装置预还原含铁物料的步骤。
预还原装置最好包括转底炉和 /或悬浮预还原炉。
在本发明的工艺中,已被预还原金属化率 80— 97重量%的含铁物料熔 化成钢水, 进入钢渣层下面的钢水中, 3至 20重量%的未被预还原的含铁 物料熔化成液态铁氧化物, 被泡沫渣中的碳快速还原, 得到钢水。 因此, 本工艺中的钢水含碳量可控制在 3.5重量%以下,通常为 2.0至 3.0重量%。
更优选的是, 含铁物料在被加入转底炉之前被制成球团。 或者, 含铁 物料被制成 Ι μ ηι至 40 μ ηι微粉, 然后被加入悬浮预还原炉。 优选, 经悬 浮预还原炉所预还原的含铁物料温度范围在 400-800 °C。 或者优选, 经转底 炉所预还原的含铁物料的温度范围在 900-1200 °C。
含铁物料可以选自含铁矿石、 氧化铁皮、含铁粉尘和 /或含铁尘泥中的 一种或几种。
根据本发明的另一个优选实施例, 本发明的工艺还包括用吹氧炉对通 过出钢口从熔炼炉中流入吹氧炉的钢水进行吹氧处理。 优选的是, 吹氧炉 如此与熔炼炉的出钢口相连通, 即, 熔炼炉中最初所装的钢水要流入到吹 氧炉内, 使吹氧炉内的钢水量达到 1/3至 2/3。
装入最初的钢水后,通过吹氧炉底部的吹氧透气砖,可以进行弱吹氧。 根据本发明的一个优选实施例, 通过顶吹氧枪适量吹氧, 以进一步调整钢 水中的碳含量和温度, 从而获得具有期望碳含量(C: 0.01至 0.40重量%) 和温度( 1580°C至 1680°C ) 的钢水, 直接供精炼炉使用。
根据本发明的另一个优选实施例, 还包括加入熔剂到吹氧炉内, 以进 行造渣和脱硫脱磷, 并使炉渣的碱度控制在 3.0至 3.5范围内, 以获得碳 含量为 0.01至 0.40重量%的钢水,从而可以直接供 LF或 RH精炼炉使用。 关于渣的碱度, 生产现场多采用二元碱度计算法, 即 CaO/Si02 的比值。 在这里, 可以按每吨钢水 40公斤至 70公斤的量加入熔剂。
在本工艺中, 使用吹氧炉对钢水脱硫脱磷并进一步调整碳含量, 由此 获得碳含量为 0.01重量%至 0.40重量%且符合精炼条件的钢水,这对生产 是特别有利的。
熔炼炉反应产生的高温煤气优选可以用于经余热锅炉回收显热来发 电,或用于预热原材料,或用作转底炉的燃气或悬浮预还原炉的还原气体。
本发明提出一种连续的炼钢工艺, 该工艺包括:
i )在熔炼炉中形成下层为钢水上层为钢渣的熔池;
ii ) 用至少一支煤氧枪在熔炼炉侧壁插埋在钢渣中的情况下向熔炼炉 内的钢渣中喷吹含碳物料和氧气, 所述含碳物料和氧气在钢渣中燃烧放热 反应, 并且所述燃烧放热反应所产生的气体以及煤氧枪喷吹形成的沖击力 共同作用于钢渣, 从而在钢渣中形成泡沫渣沸腾区;
iii )将经预还原装置预还原的含铁物料加入该泡沫渣沸腾区中; iv )对从出钢口流入到吹氧炉中的钢水进行脱硫脱磷处理, 从而获得 碳含量为 0.01至 0.40重量 %的钢水。
其中, 含碳物料和氧气燃烧放热反应所产生的热量被钢渣吸收从而提 升反应动力性能, 进而提升本工艺的反应效率和能效。 特别地, ii ) 包括 使得该燃烧放热反应产生的火焰被埋在钢渣中。
根据进一步的实施例, 该连续炼钢工艺还包括在步骤 iv )后对获得的 碳含量为 0.01至 0.40重量%的钢水进行精炼。 为此, 优选采用 RH精炼炉 或 LF精炼炉。
在根据本发明的连续炼钢工艺的一个特别优选实施例中, 在熔炼炉内 预先已形成钢渣熔池, 渣层厚度为 500mm至 1500mm, 其中用至少一支煤 氧枪向熔渣底部以上 1/3至 1/5位置喷入含碳物料和氧气, 此时, 含碳物 料和氧气燃烧放热反应, 其放热被熔渣高效吸收, 而且, 煤氧枪喷吹射流 的沖击力、 含碳物料与氧反应产生的气体、 以及含铁物料还原反应产生的 气体共同作用, 形成泡沫渣沸腾区 (布料区)。 被转底炉或悬浮预还原炉 预还原后的高温 (悬浮预还原 400-800 °C , 转底炉预还原 900-1200°C )含 铁物料和熔剂被加入该泡沫渣沸腾区。 高温含铁物料中已预还原部分(金 属化率 80至 97重量% )很快熔化成钢水(含碳量 1.0至 2.0重量% )而进 入熔渣层; 其它少量部分( 3至 20重量% )未被预还原的含铁物料熔化成 液态铁氧化物, 被钢渣中的高温含碳物料快速还原成钢水。 钢水在通过渣 层进入钢水层的过程中被熔渣中的高温碳渗碳, 同时在钢渣界面的碳也不 断渗到钢水中,得到碳含量 1.0至 3.5重量%的钢水。在钢渣层上方的空间 内设有两支煤气氧燃烧枪, 给熔渣补充热量, 以加速含铁物料熔化。 氩气 枪浸没于钢水中, 对熔炼炉的熔池起到搅拌作用, 增强反应动力学条件, 使温度和成分均勾。 熔炼炉底吹氧透气砖连续吹入的氧气起到对熔池钢水 脱碳、 提升钢水温度、 搅拌熔池的钢水、 增强反应动力学条件、 均勾熔池 温度和成分的作用。 钢水从熔炼炉内的虹吸出口被连续无渣地排入吹氧炉 中, 向吹氧炉加入适量的造渣剂, 其同时起到脱硫脱磷作用, 在吹氧脱碳 的同时, 提高钢水温度, 以获得具有期望的碳含量 (0.01至 0.40重量%) 和温度的钢水, 直接供 RH或 LF精炼炉精炼使用。 吹氧炉底部出钢实现 了无渣出钢。 熔炼炉和吹氧炉中的高温煤气可以用于经余热锅炉回收显热 发电或预热原材料, 或用作转底炉的燃气或悬浮预还原炉的还原气体。
需要提出的是, 在本文中除非另作说明, 否则所提到的百分比均为重 量百分比 (;重量%:)。
本发明的优点体现在:
向熔炼炉钢渣中喷吹含碳物料和氧气, 形成泡沫渣形式的钢渣, 碳和 氧快速燃烧反应产生的热量被泡沫渣和渣钢界面吸收, 热效率高; 煤氧枪 喷吹射流沖击力、 含碳物料与氧反应产生的气体、 含铁物料还原反应产生 的气体共同作用形成泡沫渣沸腾区, 反应动力学条件好;
充分利用了转底炉或悬浮预还原炉预还原输出的高预还原(金属化率 80至 97重量% )、 高温 ( 400 °C至 1200°C )含铁物料在泡沫渣沸腾区能快 速熔化成钢水, 同时少量( 3至 20重量% )未被预还原的熔融含铁物料被 还熔渣中的高温碳快速还原,得到碳含量为 1.0至 3.5重量%的钢水。本发 明的生产率高, 余热利用效率高, 这一点优于现有的高炉 -转炉流程、 COREX 熔融还原炼铁 -转炉流程, Hismelt-转炉流程, 同时也优于一些专 利提出连续炼钢或一步炼钢方法; 本发明充分利用了转底炉或悬浮预还原炉提供的高温预还原含铁物 料的热量和熔炼炉提供的煤气燃烧氧枪燃烧热用于补偿熔化和还原反应 所需的热量, 加速了含铁物料的熔化, 进而进一步提高生产力;
根据本发明可直接冶炼出碳含量(0.01至 0.40重量%)和温度均符合 直接供 RH或 LF精炼炉的钢水, 实现了全连续炼钢;
本发明用紧凑的转底炉或悬浮预还原炉、 熔炼炉、 吹氧炉组成的连续 炼钢设备实现了从矿石或含铁物料直接生产合格钢水, 与现有的长流程相 比, 设备和基建投资节省 60%以上, 节约土地 2/3以上, 物流得到充分筒 化, 节能减排约 60%以上, 易于实现生产的连续化和自动控制, 炉子寿命 可长达 20年以上, 是钢铁冶金的一个革命性工艺变革。 附图说明
以下, 结合附图来详细说明本发明的实施例, 其中:
图 1是本发明实施例 1的示意图;
图 2示出了根据本发明的实施例的熔炼炉内部的俯视图;
图 3是本发明实施例 2的示意图;
图 4是本发明实施例 4的示意图;
图 5是本发明实施例 5的示意图;
图 6是本发明一实施例的示意图;
图 7是本发明实施例 6的示意图
图 8是本发明实施例 7的示意图。 附图标记列表
1.转底炉, 2.转底炉螺旋出料机, 3.转底炉出料仓, 4.熔剂料仓, 5.—级螺 旋输料机, 6.中间储料罐, 7.二级螺旋输料机, 8.串罐式布料器, 9.熔炼炉, 10.煤气输出机构, 11.煤气氧燃烧枪, 12.煤氧枪, 13.氩气枪, 14.熔炼炉出 渣口, 15.熔炼炉底部放钢口, 16.熔炼炉水冷炉壁, 17.熔炼炉耐火材料炉 壁; 18.虹吸出钢口, 19.虹吸出钢口水冷炉壁, 20.虹吸出钢口耐火材料壁, 21.吹氧炉, 22.吹氧炉氧枪, 23.吹氧炉的煤气输出机构, 24.吹氧炉熔剂加 入机构, 25.吹氧炉炉盖, 26.吹氧炉出渣口, 27.吹氧炉出钢口, 28.吹氧炉 放钢口, 29.吹氧炉水冷炉壁, 30.吹氧炉耐火材料炉壁, 31.吹氧炉的吹氧 透气砖, 32和 33熔炼炉的吹氧透气砖, 34.高温输料小车, 35.输料小车轨 道, 36.卸料仓, 37.悬浮预还原炉, 38.发送罐, 39.输送管道, 40.含铁物料 微粉喷枪, 41.钢水, 42.钢渣, 91.高温储料仓, 92.发送罐, 93.输送管道, 94.集料罐, 95.串罐式布料器, 96.熔炼炉, 97.煤气输出装置, 98.熔池氧枪, 99.CO氧燃烧枪, 910.喷枪, 911.含碳物料喷枪, 912.熔炼炉氧枪, 913.熔 炼炉出渣口, 914.熔炼炉虹吸出钢口, 915.熔炼炉底部放钢口, 916.吹氧炉, 917.吹氧炉氧枪, 918.吹氧炉含碳物料燃烧枪, 919.吹氧炉熔剂加入系统, 920.吹氧炉出钢口, 921.吹氧炉出渣口, 922.吹氧炉底部放钢口, 923.吹氧 炉煤气输出装置。 具体实施方式
结合以下实施例对本发明做进一步的说明, 但本发明并不局限于这些 实施例。
实施例 1 :
含铁物料: 铁矿微粉、 粘结剂等形成的球团;
含碳物料: 煤粉。
如图 1所示, 在本发明的连续炼钢设备中, 在熔炼炉中形成下层为钢 水 41、 上层为钢渣 42的熔池。 该设备包括熔炼炉 9和吹氧炉 21 , 熔炼炉 9和吹氧炉 21通过熔炼炉的虹吸出钢口 18相连通。 熔炼炉 9的上方有高 温加料系统, 熔炼炉 9的上部装有煤气氧燃烧枪 11、 煤氧枪 12、 氩气枪 1 3 , 熔炼炉的下部设有熔炼炉出渣口 14、 熔炼炉底部放钢口 15、 熔炼炉水 冷炉壁 16、 熔炼炉耐火材料炉壁 17、 熔炼炉炉盖 19。 熔炼炉虹吸出钢口 18、 熔炼炉虹吸出钢口水冷壁 19、 熔炼炉虹吸出钢口耐火材料壁 20、 熔 炼炉底吹氧透气砖 32和 33。 在吹氧炉 21上安装有吹氧炉氧枪 22、 吹氧 炉熔剂加入系统 24、吹氧炉炉盖 25、 吹氧炉出渣口 26、 吹氧炉出钢口 27、 吹氧炉底部放钢口 28、 吹氧炉水冷炉壁 29、 吹氧炉耐火材料炉壁 30和吹 氧炉底吹氧透气砖 31。本领域技术人员还可以根据需要设置在现有技术中 已知的特征和零部件。
如图 1的纵剖面图所示, 高温预还原球团通过转底炉 1 , 确切说是通 过转底炉螺旋出料机 2、 转底炉出料仓 3被直接装入高温输料小车 34 , 通 过输料小车轨道 35被送入卸料仓 36,卸料仓 36经串罐式布料器 8与熔炼 炉炉盖 19相连。 转底炉出料仓 3的上方设有熔剂料仓 4。
转底炉 1依次通过转底炉出料机 2、转底炉出料仓 3 (转底炉出料仓 3 上方设置熔剂料仓 4 )、高温输料小车 34和输料小车轨道 35将物料送入卸 料仓 36, 卸料仓 36经串罐式布料器 8与熔炼炉炉盖 19相连, 预还原球团 通过串罐布料器 8被加入熔炼炉的泡沫渣沸腾区, 即布料区。
在熔炼炉的上方两侧炉壁上的两个煤气氧燃烧枪 11 的高温火焰喷射 到钢渣上的布料区, 加热预还原铁矿和熔剂。 熔炼炉侧壁的四支煤氧枪 1 2与钢渣层的水平面成 25度夹角 α , 即如图 1所示的 α =25°。 同时, 与熔 炼炉炉体内表面的法向方向成 15度夹角 β,向下插入钢渣中,如图 2所示, β =15。。 煤氧枪的喷吹在渣层中形成了泡沫渣沸腾区, 在这里, 煤氧枪按 上述角度 β布置使泡沫渣沸腾区逆时针旋转。 但可以想到的是, 可调整喷 枪的角度 β以使泡沫渣沸腾区不转动或顺时针转动。 泡沫渣沸腾区为预还 原含铁物料和熔剂提供充分的物理和化学反应动力学条件、 以及熔化热 量。 在熔炼炉炉壁上部的出渣口 14位于钢渣层的上限位置, 用于实现连 续出渣。 熔池的氩气枪 13 插入熔池中, 用于搅拌熔池。 熔炼炉底吹氧透 气砖 32和 33对钢水连续吹氧, 以实现脱碳、 提升钢水温度和搅拌熔池。 熔炼炉外侧炉壁下部的虹吸出钢口 18 保证了无渣连续出钢到吹氧炉 21 中。 在吹氧炉 21上方的氧枪 24用于吹氧吹炼钢水, 使钢水的碳含量 (0. 01至 0.40重量% ) 和钢水温度达到 RH或 LF精炼炉的要求。 吹氧炉熔剂 加入系统 24 为吹氧炉添加生石灰、 萤石等造渣剂, 在保温的同时, 进一 步脱除钢水中的硫和磷。 当钢水接近吹氧炉壁上部的出渣口 26的高度时, 可以先放出一定量的渣, 然后从吹氧炉壁下部的出钢口 27实现无渣出钢。
熔炼炉的熔池钢水深度约 700mm至 800mm、 温度约 1450°C至 1550 °C。 熔渣层厚度约 800至 1000mm、 温度约 1550°C至 1650°C。
煤氧枪向熔渣喷入的煤粉所含的硫磷量应尽量低, 一般固定碳含量在 77重量%以上。 喷入煤粉的一部分与喷入的氧气燃烧, 产生大量的热量, 用于熔化预还原铁矿和熔剂,一部分连续与钢渣中的液态 FeO发生还原反 应, 少部分进入铁水中向铁水渗碳。 煤粉和氧气被同时喷吹到钢渣中部, 使高温熔渣与预还原铁矿、 熔剂粉、 碳粉剧烈混合, 为预还原铁矿、 熔剂 的快速熔化和碳还原液态铁氧化物的连续还原反应创造良好的动力学条 件。 铁水中的溶解碳也在渣钢混合界面不断还原熔渣中的 FeO。 通过调整 煤氧枪的煤氧比,控制熔渣和钢水的氧化性,得到碳含量 2.0至 3.0重量%、 磷含量 <0.020重量%、 硫含量 <0.05重量%的钢水。 在吹氧炉中, 按每吨钢 40至 70公斤的标准加入熔剂到吹氧炉内, 进行造渣和脱直脱磷, 渣碱度 控制在 3.0-3.5范围内。 通过吹氧, 使钢水的碳含量和温度分别达到 RH或 LF精炼炉的要求, 得到以下钢水成分, C为 0.01至 0.40 %, Si < 0.01 %, Mn < 0.02 % , S、 P < 0.010 %, 钢水温度为 1580°C至 1680°C。
熔炼炉熔渣中煤粉的燃烧和还原反应产生的 CO, 通过二次燃烧产生 的热量以辐射和热传导的方式传递给泡沫渣沸腾区的预还原球团和熔剂, 进一步加速了原料的熔化速度。
熔炼炉 9和吹氧炉 21所产生的废气余热被回收用于发电, 煤气可用 被用于预热原料、 用于转底炉燃料等, C02回收利用。 钢渣用于生产水泥、 钢渣微粉等。 实施例 2:
含铁物料: 铁矿粉 50%、 含铁冶金粉尘 50%; 含碳物料: 煤粉。
含铁冶金粉尘组成: 氧化铁皮、 高炉除尘灰、 转炉除尘灰、 电炉除尘 灰、 烧结球团除尘灰等。
铁矿粉 50%、 含铁冶金粉尘 50%、 粘结剂等制成球团, 经转底炉预还 原后和生灰石、 白云石熔剂一起加入熔炼炉。
如图 3所示, 转底炉 1预还原球团通过转底炉螺旋出料机 2输送到转 底炉出料仓 3 , 在通过一级高温螺旋输料机 5、 中间储料罐 6、 二级高温螺 旋输料机 7把 800 ~ 900 °C预还原球团和生石灰、白云石等熔剂输送到熔炼 炉 9上方的串罐布料器 8 , 通过串罐布料器 8加入到熔炼炉沸腾熔渣布料 区。 转底炉出料仓 3上方设置有熔剂料仓 4。
熔炼炉侧壁的煤氧枪 12与渣层水平面成 30度夹角, 即如图 1所示 α 角。 同时与在插入点处的熔炼炉直径方向成 0度夹角地插入渣区中层的渣 中, 即 β =0。 其它同实施例 1。 实施例 3
含铁物料: 含铁冶金粉尘 100%;
含碳物料: 焦炉煤气、 高炉煤气、 天然气、 发生煤气中的一种或几种。 煤氧枪 12 喷入的是焦炉煤气、 高炉煤气、 天然气、 发生煤气中的一 种或几种。 熔炼炉侧壁的煤氧枪 12与水平面成 45。夹角即 α =45。、 且同时 与在插入点处的熔炼炉炉体内表面的法线方向成 30。夹角地斜向下插入钢 渣中部, 如图 2所示 β =30。 , 其它同实施例 1。 实施例 4
含铁物料: 铁矿微粉;
含碳物料: 煤粉。
如图 4所示,本发明的连续炼钢设备,悬浮预还原炉 37代替转底炉 1。 与悬浮预还原炉 37相连的高温输送床包括发送罐 38和高温输送管道 39 , 高温输送管道 39与串罐式布料器 8相连, 把金属化率为 85%、 温度 600 V至 800 °C的预还原含铁微粉加入熔炼炉 9 , 即熔炼炉的泡沫渣沸腾区。 其它同实施例 1。 实施例 5
含铁物料: 铁矿微粉;
含碳物料: 煤粉。
如图 5所示, 在本发明的连续炼钢设备中, 悬浮预还原炉 37代替了 转底炉 1 , 其中, 含铁物料微粉喷枪 40把金属化率为 85%、 温度 600°C至 800 °C的预还原含铁微粉喷入熔炼炉 9的泡沫渣沸腾区。 其它同实施例 1。 实施例 6
含铁物料: 铁矿微粉, 含碳物料: 煤粉。 其中该实施例采用了高温密 相输送床和串罐布料器。
本发明的连续炼钢设备, 包括: 与悬浮预还原炉相连的含铁物料和熔 剂混合的高温储料仓 91、 发送罐 92、 输送管道 93、 集料罐 94、 串罐式布 料器 95、 熔炼炉 96、 煤气输出装置 97、 熔池氧枪 98、 CO氧燃烧枪 99、 含碳物料喷枪 911、 熔炼炉氧枪 912、 熔炼炉出渣口 913、 熔炼炉虹吸出钢 口 914、 熔炼炉底部放钢口 915; 吹氧炉 916、 吹氧炉氧枪 917、 吹氧炉含 碳物料燃烧枪 918、 吹氧炉熔剂加入系统 919、 吹氧炉出钢口 920、 吹氧炉 出渣口 921、 吹氧炉底部放钢口 922、 吹氧炉顶部设有煤气输出装置 923 ; 熔炼炉 96和吹氧炉 916是圓柱形炉子, 纵剖面如图 6或 7所示。 熔炼炉 9 6和吹氧炉 916包括耐材系统, 水冷系统, 废气处理和余热回收系统。 其 中图 6与图 7的不同在于, 图 6除了用串罐式布料器加入含铁物料之外, 还用喷枪向钢渣中喷入含铁物料及熔剂。
用高温密相输送床与悬浮预还原炉相连的含铁物料和熔剂混合的高 温储料仓 91、 发送罐 92、 输送管道 93和集料罐 94把悬浮预还原炉提供 的 400 ~ 800 °C预还原铁矿微粉和生石灰、 白云石熔剂微粉输送到熔炼炉 9 6上方的串罐布料器 95 , 通过布料器 95加入到熔炼炉中渣面上的布料区; 熔炼炉的上方两侧炉壁上的 2个 CO氧燃烧枪 98的高温火焰喷射到渣面上 的布料区加热铁矿石微粉和熔剂微粉; 熔炼炉侧壁的含碳物料喷枪 911在 熔炼炉氧枪正上方, 上下排列, 二者与渣层水平面成 15-60度夹角; 同时 与熔炼炉直径方向成 0-45度夹角,并分别插入渣区中的渣中成如图 2所示 β角, 喷吹时使渣层形成沸腾区, 调整喷枪的角度可使沸腾区不转动, 或 顺时针或逆时针转动, 沸腾区为铁矿微粉和熔剂微粉提供充分的物理和化 学反应动力学条件; 熔炼炉炉壁中上部的出渣口 913在渣层的上限部位, 可实现连续出渣; 熔池氧枪 98插入到熔池中虹吸出钢口 914的前面钢水 中, 对钢水吹氧进一步降低钢水中的碳含量, 同时提高钢水的温度、 产生 的 CO气体对熔炼炉熔池起到搅拌作用; 虹吸出钢口 913熔炼炉外侧炉壁 下部的虹吸出钢口 914 , 以保证无渣连续出钢到吹氧炉 916; 吹氧炉 916 上方的氧枪 917吹炼钢水, 使钢中的 C含量 ( 0.01-0.40% ) 和钢水的温度 达到 RH或 LF精炼炉的要求; 吹氧炉含碳物料燃烧枪 918燃烧熔炼炉产 生的 CO或可燃气体, 为保持或提高吹氧炉中钢水的温度提供热量; 吹氧 炉熔剂加入系统 919为吹氧炉添加生石灰、 萤石等造渣剂保温的同时进一 步脱除钢水中的硫磷; 当钢水达到吹氧炉壁上部的出渣口 921的高度时, 先放出一定量的渣, 然后从吹氧炉壁下部的出钢口 920实现无渣出钢。
铁矿精粉和生石灰、 白云石用球磨机细磨得到 10-40μηι的微粉, 将铁 矿微粉在悬浮预还原炉中 600-1000°C预还原,得到预还原率是 85-97 %的预 还原铁矿微粉。 预还原铁矿微粉和石灰石、 白云石的混合配比根据几种物 料在冶炼过程中渣成分控制来确定, 一般取渣的碱度为 1-1.5 , A1203 13 %-16%, MgO 8%-10%, FeO 0.5%以下, CaO 38%-40%, Si02 32%-34%。
熔炼炉内渣层厚度约 700-1000mm、 温度约 1450°C-1550°C , 熔池钢水 深度约 700mm, 铁矿微粉和熔剂的混合物加入后, 5到 30秒即被熔化进 入渣中。
用 N2或 CO作为载气通过水冷喷枪向熔渣中喷入的煤粉硫磷尽量低, 一般固定碳含量在 77%以上。 喷入的煤粉一部分被喷入的氧气燃烧产生大 量的热量熔化预还原铁矿微粉和熔剂微粉, 一部分连续与渣中的液态 FeO 发生还原反应, 少部分进入铁水中向铁水渗碳。 煤粉和氧气同时喷吹到渣 层的中上部使高温熔渣与预还原铁矿微粉、 熔剂微粉、 碳粉剧烈混合, 为 预还原铁矿微粉、 熔剂微粉的快速熔化和碳还原液态铁氧化物的连续还原 反应创造良好的动力学条件。 铁水中的溶解碳也在渣钢混合界面不断还原 熔渣中的 FeO。 通过对熔渣和钢水吹氧, 控制熔渣和钢水的氧化性, 得到 碳含量 1.0%-3.5%的钢水; 在吹氧炉中按每吨钢 40-70公斤加入熔剂到吹 氧炉内造渣脱硫、脱磷, 渣碱度控制在 3.0-3.5范围内, 通过吹氧使钢水的 C含量和温度分别达到 RH或 LF精炼炉的要求, 得到钢水成分 C 0.01-0. 40%,Si < 0.05%, Mn < 0.30%,S、 P < 0.010%, 钢水温度为 1580-1680°C。
熔炼炉熔渣中煤粉的燃烧和还原反应产生的 CO, 通过二次燃烧产生 的热量以辐射和热传导的方式传递给布料区的预还原铁矿微粉、 熔剂微 粉, 进一步加速了原料微粉的熔化速度。
熔炼炉 96和吹氧炉 916产生的废气余热回收用于发电, 吸附 C02后 用于铁矿微粉的预热预还原等, C02回收利用。 钢渣用于生产水泥、 钢渣 微粉等。 实施例 7
含铁物料: 铁矿微粉 80%、 含铁冶金粉尘 20%, 含碳物料: 煤粉。 含 铁物料及熔剂采用喷枪喷入炉内。
含铁冶金粉尘组成: 氧化铁皮、 高炉除尘灰、 转炉除尘灰、 电炉除尘 灰、 烧结球团除尘灰等。
将铁矿微粉、 氧化铁皮、 高炉除尘灰、 转炉除尘灰、 电炉除尘灰、 烧 结球团除尘灰两种或两种以上和生灰石、白云石细磨成 10 ~ 40μηι的 粉。
本发明的连续炼钢设备, 包括: 熔炼炉 96、 煤气输出装置 97、 熔池 氧枪 98、 CO氧燃烧枪 99、 含铁物料及熔剂喷枪 910、 含碳物料喷枪 911 熔炼炉氧枪 912、 熔炼炉出渣口 913、 熔炼炉虹吸出钢口 914、 熔炼炉底部 放钢口 915; 吹氧炉 916、 吹氧炉氧枪 917、 吹氧炉含碳物料燃烧枪 918、 吹氧炉熔剂加入系统 919、 吹氧炉出钢口 920、 吹氧炉出渣口 921、 吹氧炉 底部放钢口 922、 煤气输出装置 23 ; 熔炼炉 96和吹氧炉 916是圓柱形炉 子, 纵剖面如图 8所示。 熔炼炉 96和吹氧炉 916包括耐材系统, 水冷系 统, 废气处理和余热回收系统。
其它同实施例 6。 实施例 8
含铁物料: 铁矿微粉 10% ~ 90%、 含铁冶金粉尘 90% ~ 10%, 含碳物 料: 天然气、 可燃冰、 焦炉煤气、 发生煤气中的一种或几种。 含铁物料及 熔剂采用喷枪喷入炉内。
渣层含碳物料喷枪 911喷入的是天然气、 可燃冰、 焦炉煤气、 发生煤 气中的一种或几种。 其它同实施例 7。 以上结合附图描述了本发明的优选实施例, 但本领域技术人员应该能 根据本发明实施例做出修改、 改进和替换以及对几个实施例结合而不超出 本发明的范围, 特别是本说明书中对于特征个数的描写 (如 1个或 2个), 如果没有进行特别限定的话通常只是用于举例而不是为了限定, 本领域技 术人员根据本发明的技术启示可以设置合适数目的特征, 因此以上的所有 这些实施例、 以及对这些实施例的修改、 改进、 替换和结合均被包括在所 附的权利要求书中, 本发明范围仅由该所附权利要求书及其等同所限定。

Claims

权 利 要 求
1. 一种熔炼炉, 包括用于容纳钢水和在钢水上方的钢渣的炉体、 用于 将含铁物料加入该炉体内的加料机构、 以及将钢水从该炉体排出的出钢 口, 其特征是, 该熔炼炉还包括至少一支煤氧枪, 该煤氧枪的枪口插埋在 该钢渣中, 用于向钢渣中喷吹氧气和含碳物料并由此在钢渣中形成泡沫渣 沸腾区, 该加料机构被布置成使含铁物料被加入到该泡沫渣沸腾区中。
2. 根据权利要求 1所述的熔炼炉, 其特征是, 所述煤氧枪被布置成其 枪口插埋在钢渣底部以上 1/5至 1/3高度处。
3. 根据权利要求 1所述的熔炼炉, 其特征是, 该煤氧枪被布置成相对 于水平面向下倾斜 α角且其在水平面上的投影相对于插入点处的炉体内 表面的法线方向成 β角,其中 α角范围为 15°至 60°, β角范围为 0至 45°。
4. 根据权利要求 1或 3所述的熔炼炉, 其特征是, 所述至少一支煤氧 枪包括多支煤氧枪, 所述多支煤氧枪以围绕炉体均布的方式布置。
5. 根据权利要求 1所述的熔炼炉, 其特征是, 还包括以枪口位于钢渣 上方的方式插入该炉体中的至少一支煤气燃烧氧枪。
6. 根据权利要求 1所述的熔炼炉, 其特征是, 该加料机构包括被插入 该泡沫渣沸腾区用于喷入含铁物料的喷枪和 /或对准该泡沫渣沸腾区加入 含铁物料的串罐式布料器。
7. 一种连续的炼钢设备, 其特征是, 包括:
用于预还原含铁物料的预还原装置;
根据权利要求 1至 6中任一项所述的熔炼炉, 其中该加料机构用于将 通过该预还原装置被预还原的含铁物料加入该熔炼炉的炉体内; 和
钢水处理容器, 与该熔炼炉的出钢口相连通, 用于接纳来自该熔炼炉 的钢水并对该钢水进行脱碳、 脱直和脱騎处理。
8. 根据权利要求 7所述的炼钢设备, 其特征是, 该预还原装置包括转 底炉和 /或悬浮预还原炉。
9. 根据权利要求 7所述的炼钢设备, 其特征是, 所述钢水处理容器包 括带有吹氧枪的吹氧炉。
10. 一种炼钢工艺, 其特征是, 包括以下步骤:
i )在具有出钢口的熔炼炉中形成下层为钢水上层为钢渣的熔池; ii ) 用至少一支煤氧枪在枪口插埋在钢渣中的情况下向该熔炼炉内的 钢渣喷吹含碳物料和氧气, 其中所述含碳物料和氧气在该钢渣中燃烧放热 反应, 且该燃烧放热反应所产生的气体以及该煤氧枪喷吹形成的沖击力共 同作用于钢渣, 从而在钢渣中形成泡沫渣沸腾区;
iii )将含铁物料加入该泡沫渣沸腾区中;
iv )通过该出钢口从该熔炼炉中出钢。
11. 根据权利要求 10所述的工艺, 其特征是, 步骤 ii ) 中煤氧燃烧火 焰埋在钢渣中以使反应所放出的热量被熔渣吸收; 其中, 步骤 iv )所述出 钢口包括虹吸出钢口。
12. 根据权利要求 10所述的工艺, 其特征是, 熔炼炉中钢水深度范 围为 500mm-1000mm, 钢渣的厚度范围为 500mm-1500mm。
13. 根据权利要求 10所述的工艺, 其特征是, 所述步骤 ii ) 包括用所 述煤氧枪在钢渣底部以上 1/3至 1/5 高度处喷吹所述含碳物料和氧气, 且 该煤氧枪喷入的氧气和含碳物料比例是可以调整的, 其中调整氧气和含碳 物料比例从而使钢渣中碳含量保持 3重量%-12重量%。
14. 根据权利要求 10所述的工艺, 其特征是, 所述步骤 ii ) 包括使所 述煤氧枪以与水平面成 α角且在水平面上的投影与在插入点处的熔炼炉 钢渣旋转,其中所述 α角的范围为 15°至 60 °,所述 β角的范围为 0至 45°。
15. 根据权利要求 10至 14中任一项所述的工艺, 其特征是, 还包括 在将含铁物料加入泡沫渣沸腾区中之前用预还原装置预还原含铁物料。
16. 根据权利要求 15所述的工艺, 其特征是, 被预还原的所述含铁物 料的金属化率为 80重量%至 97重量%。
17. 根据权利要求 15所述的工艺, 其特征是, 所述预还原装置包括悬 浮预还原炉和 /或转底炉, 其中, 用悬浮预还原炉预还原的所述含铁物料的 温度范围在 400°C -800°C , 用所述转底炉预还原的含铁物料的温度范围在 900°C -1200°C。
18. 根据权利要求 10至 15中任一项所述的工艺, 其特征是, 还包括 用吹氧炉对通过出钢口从熔炼炉中流入的钢水进行吹氧以进行脱石克脱磷。
19. 一种连续炼钢工艺, 其特征是, 包括:
i )在具有出钢口的熔炼炉中形成下层为钢水上层为钢渣的熔池; ii ) 用至少一支煤氧枪在枪口插埋在钢渣中的情况下向熔炼炉内的钢 渣中喷吹含碳物料和氧气, 其中所述含碳物料和氧气在钢渣中燃烧放热反 应, 并且所述燃烧放热反应所产生的气体以及煤氧枪喷吹形成的沖击力共 同作用于钢渣, 从而在钢渣中形成泡沫渣沸腾区;
iii )将被预还原装置预还原的含铁物料加入该泡沫渣沸腾区中; iv )对从该出钢口中出来的钢水进行脱硫脱磷处理, 从而获得碳含量 为 0.01重量%至 0.40重量%的钢水。
PCT/CN2009/001038 2008-12-22 2009-09-16 熔炼炉和炼钢设备以及炼钢工艺 WO2010072043A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09833996.3A EP2380995B1 (en) 2008-12-22 2009-09-16 Smelting vessel, steel making plant and steel production method
JP2011541056A JP5619021B2 (ja) 2008-12-22 2009-09-16 製錬炉、製鋼設備、及び製鋼方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810238696.6 2008-12-22
CN2008102386966A CN101445848B (zh) 2008-12-22 2008-12-22 一种含铁物料连续炼钢工艺方法及装置

Publications (1)

Publication Number Publication Date
WO2010072043A1 true WO2010072043A1 (zh) 2010-07-01

Family

ID=40741723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001038 WO2010072043A1 (zh) 2008-12-22 2009-09-16 熔炼炉和炼钢设备以及炼钢工艺

Country Status (5)

Country Link
EP (1) EP2380995B1 (zh)
JP (1) JP5619021B2 (zh)
KR (1) KR101561930B1 (zh)
CN (1) CN101445848B (zh)
WO (1) WO2010072043A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015042691A1 (en) * 2013-09-27 2015-04-02 Nsgi Smelting apparatus and method of using the same
EP2673387A4 (en) * 2011-02-09 2017-06-21 Technological Resources Pty Limited Direct smelting process
CN108660287A (zh) * 2018-07-02 2018-10-16 邯郸钢铁集团有限责任公司 一种lf炉废钢添加装置及添加方法
CN111378809A (zh) * 2020-05-06 2020-07-07 江苏必瑞驰科技有限公司 一种利用氧燃枪进行电弧炉炼钢的设备与方法
WO2021099598A1 (en) * 2019-11-22 2021-05-27 Metallo Belgium Improved plasma induced fuming furnace
CN113789420A (zh) * 2021-08-10 2021-12-14 赵晓 一种含铁粉料在还原性气氛中直接炼钢装置及使用方法
CN114657386A (zh) * 2022-03-20 2022-06-24 北京首钢国际工程技术有限公司 一种钢铁厂固体废料的处理装置及其方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445848B (zh) * 2008-12-22 2010-08-11 莱芜钢铁集团有限公司 一种含铁物料连续炼钢工艺方法及装置
CN101598500B (zh) * 2009-06-30 2011-04-06 莱芜钢铁集团有限公司 一种连续炼钢炉无渣出钢口
CN101748234B (zh) * 2009-09-28 2011-12-28 莱芜钢铁集团有限公司 一种悬浮预还原短流程连续炼钢方法
CN102002546B (zh) * 2010-08-30 2012-07-25 莱芜钢铁集团有限公司 一种含铁物料悬浮还原装置及工艺
CN103936431B (zh) * 2013-01-22 2015-08-26 宝山钢铁股份有限公司 一种熔融还原炉出铁口用捣打料
US11635257B2 (en) * 2013-09-27 2023-04-25 Nsgi Steel Inc. Smelting apparatus and metallurgical processes thereof
CN104141019B (zh) * 2014-06-30 2017-02-15 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 含铁熔渣的改质方法及其专用设备
AT517370B1 (de) * 2015-06-29 2021-01-15 Urbangold Gmbh Vorrichtung und Anordnung zur metallurgischen Behandlung von Elektro- und/oder Elektronikschrott bzw. -komponenten sowie deren Verwendungen und Verfahren zur metallurgischen Behandlung von Elektro- und/oder Elektronikschrott bzw. -komponenten
CN105177195A (zh) * 2015-10-08 2015-12-23 宝钢发展有限公司 一种直接用粉状含铁尘泥冶炼铁水工艺
CN105296699B (zh) * 2015-10-29 2017-07-18 东北大学 一种避免预还原矿再氧化的熔融还原炼铁装置及方法
JP6427829B2 (ja) 2016-03-31 2018-11-28 大陽日酸株式会社 冷鉄源の溶解・精錬炉、及び溶解・精錬炉の操業方法
CN109266866A (zh) * 2017-08-30 2019-01-25 铜陵有色金属集团股份有限公司金冠铜业分公司 铜精矿熔池熔炼工艺
CN109439915B (zh) * 2018-09-17 2020-04-17 华北理工大学 一种利用高炉高温熔渣显热在线处理含锌粉尘的方法及其应用
KR20210142090A (ko) * 2019-03-22 2021-11-24 타타 스틸 네덜란드 테크날러지 베.뷔. 야금용기에서 철을 제조하는 방법
CN110229942B (zh) * 2019-05-09 2021-02-09 安徽工业大学 一种利用电炉除尘灰制备的铁水保温覆盖剂及制备方法
CN112344748A (zh) * 2019-08-07 2021-02-09 中国瑞林工程技术股份有限公司 利用侧吹熔炼炉进行熔炼的方法
CN110671934B (zh) * 2019-10-09 2021-12-28 西藏克瑞斯科技有限公司 多室竖炉式中频炉
CN111394534B (zh) 2020-02-21 2021-05-18 东北大学 一种连续熔融还原炼铁的方法
CN111100968B (zh) * 2020-02-24 2021-01-15 北京科技大学 一种全废钢连续炼钢系统及冶炼工艺
CN111961773A (zh) * 2020-08-22 2020-11-20 范佳旭 一种钢铁炼钢及提炼加工工艺
CN112048586B (zh) * 2020-08-27 2022-02-25 山东墨龙石油机械股份有限公司 适用于铁浴熔融还原中泡沫渣炉况的控制方法及装置
CN112048349B (zh) * 2020-09-09 2021-10-22 鞍钢股份有限公司 一种高炉喷吹煤粉助燃剂及制备、使用方法
CN112708713A (zh) * 2020-12-23 2021-04-27 山东墨龙石油机械股份有限公司 一种利用熔融还原工艺处理固体废弃物的方法及系统
CN114959157B (zh) * 2022-04-22 2024-04-09 中国恩菲工程技术有限公司 高磷还原铁生产低磷铁水的方法及装置
CN114905045B (zh) * 2022-05-16 2024-03-29 哈尔滨工业大学 一种金属粉末制备用双熔炼炉对接装置
CN115976394B (zh) * 2022-12-15 2024-04-05 宁波吉威盛机械有限公司 一种低碳合金钢的生产工艺
CN116182558A (zh) * 2023-02-24 2023-05-30 浙江华友钴业股份有限公司 一种富氧熔池化料炉及热耗型物料熔炼方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105494A (zh) 1986-08-27 1987-07-08 昆明工学院 褐煤预还原矿石直接炼钢轧材
CN86106417A (zh) 1986-11-05 1987-12-30 刘国成 高炉连续炼钢与制钢生产的连续化
CN87101210A (zh) 1987-12-26 1988-08-24 吕美竺 一种铁矿石直接炼钢的方法
CN1099418A (zh) * 1994-08-02 1995-03-01 冶金工业部钢铁研究总院 一种冷固结含碳球团熔融还原炼铁的装置及方法
CN1141345A (zh) * 1995-02-13 1997-01-29 霍戈文斯·斯塔尔公司 生产生铁水的方法及装置
WO2000014285A1 (en) * 1998-09-04 2000-03-16 Technological Resources Pty Ltd A direct smelting process
WO2001081637A1 (en) * 2000-04-17 2001-11-01 Technological Resources Pty Ltd A direct smelting process and apparatus
CN101445848A (zh) * 2008-12-22 2009-06-03 莱芜钢铁集团有限公司 一种含铁物料连续炼钢工艺方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU71435A1 (zh) * 1974-12-06 1976-11-11
JPH01205014A (ja) * 1988-02-09 1989-08-17 Nkk Corp 溶融還元法及び装置
JPH0625727A (ja) * 1992-07-06 1994-02-01 Nippon Steel Corp 鉄浴式溶融還元炉における炭素質固体の燃焼方法
WO1997038141A1 (fr) * 1996-04-05 1997-10-16 Nippon Steel Corporation Appareil de reduction par fusion et procede de mise en oeuvre
JP3771728B2 (ja) * 1997-12-24 2006-04-26 新日本製鐵株式会社 高炉への微粉炭と還元ガスの吹き込み方法
AUPQ076399A0 (en) * 1999-06-04 1999-06-24 Technological Resources Pty Limited A direct smelting process and apparatus
JP2001303114A (ja) * 2000-04-27 2001-10-31 Nkk Corp 金属浴型溶融還元炉及び金属製錬設備
AUPQ783100A0 (en) * 2000-05-30 2000-06-22 Technological Resources Pty Limited Apparatus for injecting solid particulate material into a vessel
US20060011013A1 (en) * 2004-02-23 2006-01-19 Issaak Bourovoi Process and device for direct production of steel from iron-containing materials
EP1774050B1 (en) * 2004-07-30 2011-09-07 Posco Apparatus for manufacturing molten irons by injecting fine coals into a melter-gasifier and the method using the same.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105494A (zh) 1986-08-27 1987-07-08 昆明工学院 褐煤预还原矿石直接炼钢轧材
CN86106417A (zh) 1986-11-05 1987-12-30 刘国成 高炉连续炼钢与制钢生产的连续化
CN87101210A (zh) 1987-12-26 1988-08-24 吕美竺 一种铁矿石直接炼钢的方法
CN1099418A (zh) * 1994-08-02 1995-03-01 冶金工业部钢铁研究总院 一种冷固结含碳球团熔融还原炼铁的装置及方法
CN1141345A (zh) * 1995-02-13 1997-01-29 霍戈文斯·斯塔尔公司 生产生铁水的方法及装置
WO2000014285A1 (en) * 1998-09-04 2000-03-16 Technological Resources Pty Ltd A direct smelting process
WO2001081637A1 (en) * 2000-04-17 2001-11-01 Technological Resources Pty Ltd A direct smelting process and apparatus
CN101445848A (zh) * 2008-12-22 2009-06-03 莱芜钢铁集团有限公司 一种含铁物料连续炼钢工艺方法及装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2673387A4 (en) * 2011-02-09 2017-06-21 Technological Resources Pty Limited Direct smelting process
WO2015042691A1 (en) * 2013-09-27 2015-04-02 Nsgi Smelting apparatus and method of using the same
CN108660287A (zh) * 2018-07-02 2018-10-16 邯郸钢铁集团有限责任公司 一种lf炉废钢添加装置及添加方法
WO2021099598A1 (en) * 2019-11-22 2021-05-27 Metallo Belgium Improved plasma induced fuming furnace
CN111378809A (zh) * 2020-05-06 2020-07-07 江苏必瑞驰科技有限公司 一种利用氧燃枪进行电弧炉炼钢的设备与方法
CN113789420A (zh) * 2021-08-10 2021-12-14 赵晓 一种含铁粉料在还原性气氛中直接炼钢装置及使用方法
CN113789420B (zh) * 2021-08-10 2022-05-31 赵晓 一种含铁粉料在还原性气氛中直接炼钢装置及使用方法
CN114657386A (zh) * 2022-03-20 2022-06-24 北京首钢国际工程技术有限公司 一种钢铁厂固体废料的处理装置及其方法

Also Published As

Publication number Publication date
JP2012513007A (ja) 2012-06-07
KR20110114590A (ko) 2011-10-19
CN101445848A (zh) 2009-06-03
EP2380995B1 (en) 2020-07-01
EP2380995A4 (en) 2017-07-26
EP2380995A1 (en) 2011-10-26
CN101445848B (zh) 2010-08-11
KR101561930B1 (ko) 2015-10-20
JP5619021B2 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2010072043A1 (zh) 熔炼炉和炼钢设备以及炼钢工艺
AU676203B2 (en) A method for intensifying the reactions in metallurgical reaction vessels
CA2138718C (en) Converter process for the production of iron
US4089677A (en) Metal refining method and apparatus
EP1067201B1 (en) Start-up procedure for direct smelting process
JP4837856B2 (ja) 直接製錬法
CA2338592C (en) A direct smelting process and apparatus
KR101606255B1 (ko) 용선의 정련 방법
JPH0433841B2 (zh)
JP2001500243A (ja) 金属溶融物の製造のためのプラントおよびプロセス
CN101696460B (zh) 一种含铁物料转底炉双联连续炼钢工艺方法及装置
CN201351168Y (zh) 一种含铁物料连续炼钢设备
CN101665849B (zh) 一种铁矿石连续炼钢工艺
CN101956038B (zh) 一种铁矿石熔融还原低碳炼铁和炼钢工艺方法及装置
EP1320633A1 (en) A direct smelting process and apparatus
CN101956035B (zh) 一种含铁物料渣浴熔融还原炼钢工艺方法及装置
CN102127610B (zh) 一种铁矿石直接熔融还原炼铁设备及炼钢工艺
US6214085B1 (en) Method for direct steelmaking
JP2002509194A (ja) 酸化鉄と固体廃棄物の効果的直接還元による持続可能製鋼方法
RU2548871C2 (ru) Способ прямого получения металла из содержащих оксиды железа материалов (варианты) и устройство для его осуществления
WO2023054345A1 (ja) 溶銑製造方法
AU2001100182A4 (en) Start-up procedure for direct smelting process.
JPH01162711A (ja) 溶融還元法
JP2023068358A (ja) 転炉における溶銑の精錬方法
JPS646242B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833996

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009833996

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011541056

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117016982

Country of ref document: KR

Kind code of ref document: A