WO2010071377A2 - 건설기계의 냉각장치 - Google Patents

건설기계의 냉각장치 Download PDF

Info

Publication number
WO2010071377A2
WO2010071377A2 PCT/KR2009/007583 KR2009007583W WO2010071377A2 WO 2010071377 A2 WO2010071377 A2 WO 2010071377A2 KR 2009007583 W KR2009007583 W KR 2009007583W WO 2010071377 A2 WO2010071377 A2 WO 2010071377A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
oil
switching valve
flow
hydraulic line
Prior art date
Application number
PCT/KR2009/007583
Other languages
English (en)
French (fr)
Other versions
WO2010071377A3 (ko
Inventor
조윤수
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to EP09833655.5A priority Critical patent/EP2390423B1/en
Priority to CN200980151398.6A priority patent/CN102257220B/zh
Priority to US13/140,524 priority patent/US8579595B2/en
Publication of WO2010071377A2 publication Critical patent/WO2010071377A2/ko
Publication of WO2010071377A3 publication Critical patent/WO2010071377A3/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0866Engine compartment, e.g. heat exchangers, exhaust filters, cooling devices, silencers, mufflers, position of hydraulic pumps in the engine compartment
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0875Arrangement of valve arrangements on superstructures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • F01P5/043Pump reversing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/044Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using hydraulic drives

Definitions

  • the present invention relates to a cooling device for a construction machine, and more particularly, to a cooling device for cooling a radiator and an oil cooler of a construction machine by a cooling fan.
  • construction machinery such as wheel loaders or fork lanes forcibly suck external air through a cooling fan to cool the radiator and the oil cooler disposed in front of it.
  • a cooling fan to cool the radiator and the oil cooler disposed in front of it.
  • the hydraulic motor driving the cooling fan is always rotated in one direction (forward rotation)
  • dust is attached to the radiator and the worker should periodically perform cleaning.
  • a device has been used to switch the direction of rotation of the hydraulic motor through a switching valve to reverse the cooling fan to remove dust accumulated by the blowing of the cooling fan.
  • Korean Patent No. 840044 owned by the applicant discloses a cooling fan drive control device for heavy construction equipment.
  • the disclosed drive control device includes a hydraulic pump, a hydraulic motor driven by pressure oil supplied through a hydraulic line from the hydraulic pump, and a cooling fan driven by a hydraulic motor, wherein the hydraulic motor is operated by forward rotation or reverse rotation. It is composed of a motor, on the hydraulic line connected to the hydraulic motor from the hydraulic pump is configured to include a switching valve for switching the supply direction of the hydraulic oil, and the switching valve electrical switch.
  • the present invention has been made to solve the above problems of the prior art, and an object of the present invention is to provide a cooling device for a construction machine that enables a plurality of cooling fans to simultaneously change the direction by a single switching valve. .
  • the present invention is to provide a cooling device for a construction machine to automatically replenish the pressure to the pressure drop region generated in the rear of the hydraulic motor when the direction change.
  • Cooling apparatus of the construction machine according to the present invention for achieving the object as described above is capable of forward and reverse rotation corresponding to the supply direction of the pressure oil, and rotates the cooling fan (20a, 20b) connected to each Two or more hydraulic motors 30a and 30b;
  • a switching valve 40 for changing the rotational direction of the two or more hydraulic motors by switching the supply direction of the hydraulic oil supplied from the hydraulic pump 60 to the two or more hydraulic motors 30a and 30b;
  • a flow replenishment valve for controlling a separate flow rate supplied upstream of the two or more hydraulic motors when a pressure drop occurs upstream of the two or more hydraulic motors 30a and 30b based on the supply direction of the hydraulic oil. makeup valve) 50a, 50b.
  • the flow supplement valves (50a, 50b) is provided with two or more to supplement the flow rate to each of the pressure drop region of the two or more hydraulic motors (30a, 30b).
  • the two or more flow supplement valves 50a and 50b receive a flow rate from the oil tank 70, and at least one 50a of the two or more flow supplement valves is the hydraulic pump 60 and the switching. It is installed on the hydraulic line (L1) for connecting the valve 40 and the hydraulic line (L4) for connecting the oil tank (70).
  • hydraulic line (L2) for guiding the pressure oil drained from the switching valve 40 to the oil tank may be further included, and at least one (50a) of the two or more flow supplement valve is installed hydraulic line ( L4) is a hydraulic line connecting a hydraulic line L2 connecting the switching valve 40 and the oil tank and a hydraulic line L1 connecting the hydraulic pump 60 and the switching valve 40 to each other. .
  • the two or more flow supplement valves (50a, 50b) may be supplied with a flow rate from the oil tank 70, at least one (50b) of the two or more flow supplement valves is the oil tank 70 and the It can be installed on the hydraulic line (L5) for connecting two or more hydraulic motors (30a, 30b).
  • the hydraulic line (L2) for guiding the pressure oil drained from the switching valve 40 to the oil tank may be further included, and at least one (50b) of the two or more flow fill valves are installed L5 is connected to the hydraulic line (L2) for connecting the switching valve 40 and the oil tank and the hydraulic line (L3) for interconnecting the two or more hydraulic motors (30a, 30b).
  • the plurality of cooling fans have the effect of enabling the direction change of the forward and reverse rotation at the same time by a single switching valve.
  • FIG. 1 is a hydraulic circuit diagram when a plurality of cooling fans in the forward rotation of the cooling device of a construction machine according to an embodiment of the present invention.
  • FIG. 2 is a hydraulic circuit diagram when a plurality of cooling fans in the reverse rotation in the cooling device of the construction machine according to an embodiment of the present invention.
  • Figure 3 is a hydraulic circuit diagram showing the flow of replenishment oil at stop after forward rotation in the cooling device of the construction machine according to an embodiment of the present invention.
  • Figure 4 is a hydraulic circuit diagram showing the flow of replenishment oil at the stop after the reverse rotation in the cooling device of the construction machine according to an embodiment of the present invention.
  • FIG. 1 illustrates a hydraulic circuit diagram when a plurality of cooling fans rotates forward in a cooling apparatus of a construction machine according to an embodiment of the present invention
  • FIG. 2 illustrates a hydraulic circuit diagram when reverse rotation is performed.
  • a radiator and an oil cooler 10 are basically provided to two cooling fans 20a and 20b.
  • the writer and the oil cooler 10 may be arranged laterally to be individually cooled by each cooling fan 20a or 20b, or may be arranged in front and rear to be simultaneously cooled by two cooling fans 20a and 20b.
  • the two cooling fans 20a and 20b are respectively driven by two hydraulic motors 30a and 30b, and the two hydraulic motors 30a and 30b are connected in series by hydraulic lines.
  • a single switching valve 40 is provided on the hydraulic line connected to the hydraulic motors 30a and 30b from the hydraulic pump 60.
  • the switching valve 40 switches the supply direction of the hydraulic oil and sequentially supplies the two hydraulic motors 30a and 30b to convert the rotation directions of the hydraulic motors 30a and 30b into forward rotation or reverse rotation.
  • the switching valve 40 is a solenoid type having a solenoid portion 41 on one side to receive a control signal from the control unit 90.
  • the switching valve 40 is supplied with a flow rate by the hydraulic pump 60 driven by the engine or the electric motor.
  • the hydraulic pump 60 has a swash plate 61 and has a configuration in which the flow rate discharged according to the angle of the swash plate 61 is variable.
  • the flow rate is controlled by the control unit 90, the control unit 90 receives the temperature signal from the temperature sensor mounted on the radiator and the oil cooler 10 to adjust the rotational speed of the cooling fans (20a, 20b) required based on this. Control the flow rate by judging.
  • the control unit 90 also transmits a forward or reverse rotation signal to the switching valve 40 via the solenoid unit 41.
  • the reverse rotation signal for cleaning may be set to detect reverse contamination of the radiator and the like 10 so that the reverse rotation drive occurs automatically when it exceeds a predetermined level, or may be set to occur periodically at predetermined time intervals. On the other hand, it may be configured so that the reverse rotation drive occurs manually by a separate external operation switch.
  • An adjusting unit 80 is mounted between the control unit 90 and the hydraulic pump 60 to adjust the supply flow rate by adjusting the angle of the swash plate 61 of the hydraulic pump 60.
  • the adjusting unit 80 may be configured to detect the actual flow rate supplied from the hydraulic pump 60 to feedback control the pressure of the hydraulic pump 60.
  • Two makeup valves 50a and 50b are provided at the front end of the switching valve 40.
  • the two flow supplement valves 50a and 50b pull up the hydraulic oil from the oil tank 70 to replenish the flow rate to each pressure drop region of the two hydraulic motors 30a and 30b.
  • the first flow supplement valve 50a connects the first hydraulic line L1 and the oil tank 70 and the switching valve 40 to connect the hydraulic pump 60 and the switching valve 40. Is mounted between the second hydraulic line (L2). That is, the first flow supplement valve 50a is installed on the hydraulic line L4 connecting the first hydraulic line L1 and the second hydraulic line L2.
  • the second flow supplement valve 50b is the third hydraulic pressure connecting the second hydraulic line (L2) and the two hydraulic motors (30a, 30b) connecting the oil tank 70 and the switching valve 40 It is mounted between the lines L3. That is, the second flow supplement valve 50b is installed on the hydraulic line L5 connecting the second hydraulic line L2 and the third hydraulic line L2.
  • FIG 3 is a hydraulic circuit diagram showing the flow of the replenishment oil when stopped after the forward rotation in the cooling device of the construction machine according to an embodiment of the present invention
  • Figure 4 is a hydraulic circuit diagram showing the flow of replenishment oil when stopped after the reverse rotation.
  • the replenishment oil is distributed left and right in the drawing by two flow supplement valves 50a and 50b so that the left flow ( ⁇ ⁇ ) is supplied to the rear of the first hydraulic motor 30a via the switching valve 40 and the right side.
  • the flow ( ⁇ ⁇ ) is supplied to the rear of the second hydraulic motor 30a via a separate supply line.
  • the supply of replenishment oil to the rear of each of the hydraulic motors 30a and 30b eliminates the instantaneous pressure difference inside the motor and prevents damage to the mechanism.
  • the replenishment oil is distributed left and right in the drawing by two flow supplement valves 50a and 50b so that the left flow ( ⁇ ⁇ ) is supplied to the rear of the second hydraulic motor 30b via the switching valve 40 and the right side.
  • Flow (->) is supplied to the rear of the first hydraulic motor (30a) via a separate supply line.
  • the supply of replenishment oil to the rear of each of the hydraulic motors 30a and 30b eliminates the instantaneous pressure difference inside the motor and prevents damage to the mechanism.
  • the present invention can be applied to any construction machine driven by a hydraulic fan, as well as excavators or wheel loaders.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

본 발명에 따른 건설기계의 냉각장치는 압유의 공급 방향에 대응하여 정회전 및 역회전이 가능하며, 그 각각에 연결된 냉각팬(20a, 20b)을 회전구동시키는 2개 이상의 유압모터(30a, 30b); 유압펌프(60)로부터 상기 2개 이상의 유압모터(30a, 30b)에 공급되는 압유의 공급 방향을 절환시킴으로써 상기 2개 이상의 유압모터의 회전방향을 변경시키는 절환밸브(40); 및 상기 압유의 공급방향을 기준으로 상기 2개 이상의 유압모터(30a, 30b)의 상류에서 압력강하가 발생될 경우 상기 2개 이상의 유압모터의 상류에 공급되는 별도의 유량을 단속하는 유량보충밸브 (makeup valve)(50a, 50b);를 포함한다.

Description

건설기계의 냉각장치
본 발명은 건설기계의 냉각장치에 관한 것으로, 보다 상세하게는 건설기계의 라디에이터 및 오일냉각기를 냉각팬에 의해 냉각시키는 냉각장치에 관한 것이다.
일반적으로 휠로더나 포크레인과 같은 건설기계는 냉각팬을 통해 외부공기를 강제흡입하여 그 전방에 배치된 라이에디터 및 오일냉각기를 냉각시키게 된다. 그런데 냉각팬을 구동하는 유압모터가 항상 한 방향으로만 회전(정회전)하게 될 경우에는 라디에이터 등에 먼지가 부착되어 작업자가 주기적으로 청소를 수행하여야 하는 불편함이 있다. 이에 최근에는 절환밸브를 통해 유압모터의 회전 방향을 절환하여 냉각팬을 역회전시킴으로써 냉각팬의 송풍으로 쌓인 먼지를 떨어내게 하는 장치가 이용되고 있다.
이와 관련하여, 출원인 소유의 대한민국 등록특허 제840044호는, 건설중장비의 냉각팬 구동제어장치에 관해 개시한다. 개시된 구동제어장치는, 유압펌프와, 유압펌프에서 유압라인을 통하여 공급되는 압유에 의해 구동되는 유압모터와, 유압모터에 의해 구동되는 냉각팬을 구비하고, 유압모터는 정회전 또는 역회전하는 유압모터로 구성되고, 유압펌프에서 유압모터로 연결된 유압라인상에는 압유의 공급방향을 전환시키는 절환밸브와, 절환밸브를 전기적 스위치를 포함하도록 구성된다.
이러한 종래기술에서는 일반적으로 단일 냉각팬을 채용하도록 하고 있다. 그러나, 냉각효율을 높이기 위하여 복수의 냉각팬을 구비하게 될 경우에는, 각 냉각팬의 회전 방향 변경이 가능하도록 복수의 절환밸브를 구비하여야 하므로 장치가 복잡하고 부품의 배치효율이 저해되는 문제점이 있다.
또한, 정회전 또는 역회전 중인 냉각팬이 절환밸브에 의해 반대 방향으로 방향을 변환하거나 동작을 중단하기 위하여 냉각팬의 작동이 순간적으로 중지될 때에는 관성으로 인해 유압모터의 후방, 즉 압유의 유동 방향을 기준으로 압유가 유압모터에 입력되는 지점에 급격한 압력 강하 영역, 즉, "캐비티(cavity)"가 발생하게 된다. 이러한 캐비티는 기구 내에 큰 압력차를 야기하여 유압모터의 성능을 저해하는 요인이 된다.
본 발명은 이와 같은 종래기술의 제반 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 복수의 냉각팬을 단일 절환밸브에 의해 동시에 방향 변환이 가능하도록 한 건설기계의 냉각장치를 제공하는 데 있다.
또한, 본 발명은 방향 변환시 유압모터의 후방에 발생되는 압력 강하 영역에 자동으로 압력을 보충하도록 한 건설기계의 냉각장치를 제공하는데 있다.
전술한 바와 같은 목적을 달성하기 위한 본 발명에 따른 건설기계의 냉각장치는 압유의 공급 방향에 대응하여 정회전 및 역회전이 가능하며, 그 각각에 연결된 냉각팬(20a, 20b)을 회전구동시키는 2개 이상의 유압모터(30a, 30b); 유압펌프(60)로부터 상기 2개 이상의 유압모터(30a, 30b)에 공급되는 압유의 공급 방향을 절환시킴으로써 상기 2개 이상의 유압모터의 회전방향을 변경시키는 절환밸브(40); 및 상기 압유의 공급방향을 기준으로 상기 2개 이상의 유압모터(30a, 30b)의 상류에서 압력강하가 발생될 경우 상기 2개 이상의 유압모터의 상류에 공급되는 별도의 유량을 단속하는 유량보충밸브 (makeup valve)(50a, 50b);를 포함한다.
본 발명의 일 실시예에 의하면, 상기 유량보충밸브(50a, 50b)는 2개 이상으로 구비되어 상기 2개 이상의 유압모터(30a, 30b)의 각 압력 강하 영역에 각각 유량을 보충한다.
또한, 상기 2개 이상의 유량보충밸브(50a, 50b)는 오일탱크(70)로부터 유량을 공급받으며, 상기 2개 이상의 유량보충밸브 중 적어도 하나(50a)는, 상기 유압펌프(60)와 상기 절환밸브(40)를 연결하는 유압라인(L1)과 상기 오일탱크(70)를 연결하는 유압라인(L4)상에 설치된다.
또한, 상기 절환밸브(40)로부터 드레인되는 압유를 상기 오일탱크로 안내하는 유압라인(L2)을 더 포함할 수 있으며, 상기 2개 이상의 유량보충밸브 중 적어도 하나(50a)가 설치되는 유압라인(L4)은, 상기 절환밸브(40)와 상기 오일탱크를 연결하는 유압라인(L2)과 상기 유압펌프(60)와 상기 절환밸브(40)를 연결하는 유압라인(L1)을 연결하는 유압라인이다.
한편, 상기 2개 이상의 유량보충밸브(50a, 50b)는 오일탱크(70)로부터 유량을 공급받을 수 있으며, 상기 2개 이상의 유량보충밸브 중 적어도 하나(50b)는 상기 오일탱크(70)와 상기 2개 이상의 유압모터(30a, 30b)를 연결하는 유압라인(L5)상에 설치될 수 있다.
또한, 상기 절환밸브(40)로부터 드레인되는 압유를 상기 오일탱크로 안내하는 유압라인(L2)을 더 포함할 수 있으며, 상기 2개 이상의 유량보충밸브 중 적어도 하나(50b)가 설치되는 유압라인(L5)은, 상기 절환밸브(40)와 상기 오일탱크를 연결하는 유압라인(L2)과 상기 2개 이상의 유압모터(30a, 30b)를 상호 연결시키는 유압라인(L3)을 연결시킨다.
본 발명에 따른 건설기계의 냉각장치에 의하면, 복수의 냉각팬을 단일 절환밸브에 의해 정회전 및 역회전의 방향 변환이 동시에 가능하도록 한 효과를 지닌다.
또한, 본 발명에 의하면, 방향 변환시 유압모터의 후방에 발생되는 압력 강하 영역에 자동으로 보충유를 제공하여 압력을 보충함으로써 모터 내부의 압력차로 인한 기구 손상을 방지하는 효과를 지닌다.
도 1은 본 발명의 일 실시예에 따른 건설기계의 냉각장치에서 복수의 냉각팬이 정회전할 때의 유압 회로도.
도 2는 본 발명의 일 실시예에 따른 건설기계의 냉각장치에서 복수의 냉각팬이 역회전할 때의 유압 회로도.
도 3은 본 발명의 일 실시예에 따른 건설기계의 냉각장치에서 정회전 후 정지시 보충유의 흐름을 나타낸 유압 회로도.
도 4는 본 발명의 일 실시예에 따른 건설기계의 냉각장치에서 역회전 후 정지시 보충유의 흐름을 나타낸 유압 회로도이다.
이하, 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 건설기계의 냉각장치에서 복수의 냉각팬이 정회전할 때의 유압 회로도를 나타내고, 도 2는 역회전할 때의 유압 회로도를 나타낸다.
본 발명의 일 실시예에 따른 건설기계의 냉각장치는, 도 1 및 2에 도시된 바와 같이, 기본적으로, 라디에이터 및 오일냉각기(oil cooler)(10)를 2개의 냉각팬(20a, 20b)에 의해 냉각시키는 구성을 지닌다. 라이에이터 및 오일냉각기(10)는 측방으로 배열되어 각 냉각팬(20a, 20b)에 의해 개별적으로 냉각될 수 있고, 전후방으로 배치되어 2개의 냉각팬(20a, 20b)에 의해 동시에 냉각될 수도 있다. 2개의 냉각팬(20a, 20b)은 각각 2개의 유압모터(30a, 30b)에 의해 구동되며, 2개의 유압모터(30a, 30b)는 유압라인에 의해 직렬 연결된다.
유압펌프(60)로부터 유압모터(30a, 30b)에 연결된 유압라인 상에는 단일 절환밸브(40)가 구비된다. 절환밸브(40)는 압유의 공급 방향을 절환하여 2개의 유압모터(30a, 30b)에 차례로 공급함으로써 유압모터(30a, 30b)의 회전 방향을 정회전 또는 역회전으로 변환하게 된다. 일 실시예에서 절환밸브(40)는 솔레노이드형이며 일측에 솔레노이드부(41)를 구비하여 제어부(90)로부터의 제어신호를 수신한다.
절환 밸브(40)에는 엔진 또는 전기모터에 의해 구동되는 유압펌프(60)에 의해 유량이 공급된다. 유압펌프(60)는 사판(61)을 구비하여 사판(61)의 각도에 따라 토출되는 유량이 가변되는 구성을 지닌다.
유량은 제어부(90)에 의해 제어되는데, 제어부(90)는 라디에이터 및 오일냉각기(10)에 장착된 온도센서로부터 온도신호를 수신하여 이를 기초로 요구되는 냉각팬(20a, 20b)의 회전 속도를 판단하여 유량을 제어한다. 제어부(90)는 또한 솔레노이드부(41)를 통해 절환밸브(40)에 정방향 또는 역방향 회전 신호를 송신한다. 청소를 위한 역방향 회전 신호는 라디에이터 등(10)의 오염 정도를 검출하여 정해진 정도를 초과하였을 때 자동으로 역회전 구동이 일어나도록 설정될 수 있고, 정해진 시간 간격마다 주기적으로 일어나도록 설정될 수도 있다. 한편, 별도의 외부 작동 스위치에 의해 수동으로 역회전 구동이 일어나도록 구성될 수도 있다.
제어부(90)와 유압펌프(60) 사이에는 조절부(80)가 장착되어 유압펌프(60)의 사판(61)의 각도를 조절하여 공급 유량을 조절하게 된다. 조절부(80)는 유압펌프(60)로부터 공급되는 실제 유량을 검출하여 유압펌프(60)의 압력을 피드백 제어하도록 구성될 수 있다.
절환밸브(40)의 전단에는 2개의 유량보충밸브(makeup valve)(50a, 50b)가 구비된다. 2개의 유량보충밸브(50a, 50b)는 오일탱크(70)로부터 압유를 끌어올려 2개의 유압모터(30a, 30b)의 각 압력 강하 영역에 유량을 보충한다. 일 실시예에서, 제1 유량보충밸브(50a)는 유압펌프(60)와 절환밸브(40)를 연결하는 제1 유압라인(L1)및 오일탱크(70)와 상기 절환밸브(40)를 연결하는 제2 유압라인(L2) 사이에 장착된다. 즉, 상기 제1 유량보충밸브(50a)는 상기 제1 유압라인(L1)과 상기 제2 유압라인(L2)을 연결하는 유압라인(L4)상에 설치된다. 한편, 제2 유량보충밸브(50b)는 오일탱크(70)와 상기 절환밸브(40)를 연결하는 상기 제2 유압라인(L2) 및 2개의 유압모터(30a, 30b)를 연결하는 제3 유압라인(L3) 사이에 장착된다. 즉, 상기 제2 유량보충밸브(50b)는 상기 제2 유압라인(L2)과 상기 제3 유압라인(L2)을 연결하는 유압라인(L5)상에 설치된다.
이하, 도면을 참조하여 각 회전 상태별 압유의 흐름 및 회전 방향 변경시 보충유의 흐름을 살펴본다.
도 3은 본 발명의 일 실시예에 따른 건설기계의 냉각장치에서 정회전 후 정지시 보충유의 흐름을 나타낸 유압회로도이고, 도 4는 역회전 후 정지시 보충유의 흐름을 나타낸 유압회로도이다.
도 1에 도시된 바와 같이, 냉각팬(20a, 20b)이 정회전하여 라디에이터 및 오일냉각기(10)의 냉각을 실시하는 경우에는, 유압펌프(60)로부터 공급된 유량이 절환밸브(40)를 통과하여 제1 유압모터(30a)를 거친 후 제2 유압모터(30b)에 공급되고 다시 절환밸브(40)를 거쳐 오일탱크(70)로 배출된다.
정회전 중이던 냉각팬(20a, 20b)이 역회전 또는 작동중지를 위해 순간적으로 정지될 경우, 유압펌프(60)에서 공급되던 유량의 흐름은 멈추게 되고, 관성으로 인해 유압모터(30a, 30b)의 후방, 즉 압유의 유동 방향 기준으로 압유가 각 유압모터(30a, 30b)에 입력되는 지점(도면 상 각 유압모터의 좌측)에 급격한 압력 강하 영역, 즉, "캐비티(cavity)"가 발생하게 된다. 압력 강하 영역의 발생으로 인해 각 유압모터(30a, 30b)와 오일탱크(70) 사이에는 압력차가 발생하게 되어, 도 3에 도시된 바와 같이, 오일탱크(70)에 배유된 유량 중 일부, 즉, 보충유가 끌어올려지게 된다. 보충유는 2개의 유량보충밸브(50a, 50b)에 의해 도면상 좌우로 배분되어 좌측 흐름(--▷)은 절환밸브(40)를 거쳐 제1 유압모터(30a)의 후방에 공급되고, 우측흐름(--▶)은 별도의 공급라인을 거쳐 제2 유압모터(30a)의 후방에 공급된다. 각 유압모터(30a, 30b)의 후방으로의 보충유의 공급은 모터 내부의 순간적인 압력차를 해소하여 기구 손상을 방지하게 된다.
한편, 도 2에 도시된 바와 같이, 냉각팬(20a, 20b)이 역회전하여 라디에이터 및 오일냉각기(10)의 청소를 실시하는 경우에는, 유압펌프(60)로부터 공급된 유량이 절환밸브(40)를 통과하여 제2 유압모터(30b)를 거친 후 제1 유압모터(30a)에 공급되고 다시 절환밸브(40)를 거쳐 오일탱크(70)로 배출된다.
역회전 중이던 냉각팬(20a, 20b)이 정회전 또는 작동중지를 위해 순간적으로 정지될 경우, 유압펌프(60)에서 공급되던 유량의 흐름은 멈추게 되고, 관성으로 인해 압유의 유동 방향 기준으로 압유가 각 유압모터(30a, 30b)에 입력되는 지점(도면상 각 유압모터의 우측)에 급격한 압력 강하 영역이 발생하게 된다. 압력 강하 영역의 발생으로 인해 각 유압모터(30a, 30b)와 오일탱크(70) 사이에는 압력차가 발생하게 되어, 도 4에 도시된 바와 같이, 오일탱크(70)로부터 보충유가 끌어올려지게 된다. 보충유는 2개의 유량보충밸브(50a, 50b)에 의해 도면상 좌우로 배분되어 좌측 흐름(--▷)은 절환밸브(40)를 거쳐 제2 유압모터(30b)의 후방에 공급되고, 우측흐름(--▶)은 별도의 공급라인을 거쳐 제1 유압모터(30a)의 후방에 공급된다. 각 유압모터(30a, 30b)의 후방으로의 보충유의 공급은 모터 내부의 순간적인 압력차를 해소하여 기구 손상을 방지하게 된다.
한편, 본 발명은 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시예가 가능하다는 점을 이해할 것인바, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위에 의하여 정해져야 할 것이다.
본 발명은 굴삭기나 휠로더는 물론 유압모터에 의해 냉각팬이 구동되는 모든 건설기계에 적용될 수 있다.

Claims (6)

  1. 건설기계의 냉각장치에 있어서,
    압유의 공급 방향에 대응하여 정회전 및 역회전이 가능하며, 그 각각에 연결된 냉각팬(20a, 20b)을 회전구동시키는 2개 이상의 유압모터(30a, 30b);
    유압펌프(60)로부터 상기 2개 이상의 유압모터(30a, 30b)에 공급되는 압유의 공급 방향을 절환시킴으로써 상기 2개 이상의 유압모터의 회전방향을 변경시키는 절환밸브(40); 및
    상기 압유의 공급방향을 기준으로 상기 2개 이상의 유압모터(30a, 30b)의 상류에서 압력강하가 발생될 경우 상기 2개 이상의 유압모터의 상류에 공급되는 별도의 유량을 단속하는 유량보충밸브 (makeup valve)(50a, 50b);를 포함하는 건설기계의 냉각장치.
  2. 제1항에 있어서,
    상기 유량보충밸브(50a, 50b)는 2개 이상으로 구비되어 상기 2개 이상의 유압모터(30a, 30b)의 각 압력 강하 영역에 각각 유량을 보충하는 것인 건설기계의 냉각장치.
  3. 제2항에 있어서,
    상기 2개 이상의 유량보충밸브(50a, 50b)는 오일탱크(70)로부터 유량을 공급받으며,
    상기 2개 이상의 유량보충밸브 중 적어도 하나(50a)는, 상기 유압펌프(60)와 상기 절환밸브(40)를 연결하는 유압라인(L1)과 상기 오일탱크(70)를 연결하는 유압라인(L4)상에 설치되는 것을 특징으로 하는 건설기계의 냉각장치.
  4. 제 3 항에 있어서,
    상기 절환밸브(40)로부터 드레인되는 압유를 상기 오일탱크로 안내하는 유압라인(L2)을 더 포함하며,
    상기 2개 이상의 유량보충밸브 중 적어도 하나(50a)가 설치되는 유압라인(L4)은, 상기 절환밸브(40)와 상기 오일탱크를 연결하는 유압라인(L2)과 상기 유압펌프(60)와 상기 절환밸브(40)를 연결하는 유압라인(L1)을 연결하는 유압라인인 것을 특징으로 하는 건설기계의 냉각장치.
  5. 제2항에 있어서,
    상기 2개 이상의 유량보충밸브(50a, 50b)는 오일탱크(70)로부터 유량을 공급받으며,
    상기 2개 이상의 유량보충밸브 중 적어도 하나(50b)는 상기 오일탱크(70)와 상기 2개 이상의 유압모터(30a, 30b)를 연결하는 유압라인(L5)상에 설치되는 것을 특징으로 하는 건설기계의 냉각장치.
  6. 제 5 항에 있어서,
    상기 절환밸브(40)로부터 드레인되는 압유를 상기 오일탱크로 안내하는 유압라인(L2)을 더 포함하며,
    상기 2개 이상의 유량보충밸브 중 적어도 하나(50b)가 설치되는 유압라인(L5)은, 상기 절환밸브(40)와 상기 오일탱크를 연결하는 유압라인(L2)과 상기 2개 이상의 유압모터(30a, 30b)를 상호 연결시키는 유압라인(L3)을 연결시키는 것을 특징으로 하는 건설기계의 냉각장치.
PCT/KR2009/007583 2008-12-18 2009-12-18 건설기계의 냉각장치 WO2010071377A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09833655.5A EP2390423B1 (en) 2008-12-18 2009-12-18 Cooling device for construction machinery
CN200980151398.6A CN102257220B (zh) 2008-12-18 2009-12-18 工程机械的冷却装置
US13/140,524 US8579595B2 (en) 2008-12-18 2009-12-18 Cooling device for construction machinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0129039 2008-12-18
KR1020080129039A KR101527218B1 (ko) 2008-12-18 2008-12-18 건설기계의 냉각장치

Publications (2)

Publication Number Publication Date
WO2010071377A2 true WO2010071377A2 (ko) 2010-06-24
WO2010071377A3 WO2010071377A3 (ko) 2010-08-19

Family

ID=42269254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007583 WO2010071377A2 (ko) 2008-12-18 2009-12-18 건설기계의 냉각장치

Country Status (5)

Country Link
US (1) US8579595B2 (ko)
EP (1) EP2390423B1 (ko)
KR (1) KR101527218B1 (ko)
CN (1) CN102257220B (ko)
WO (1) WO2010071377A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605822A (zh) * 2011-01-20 2012-07-25 斗山英维高株式会社 重型设备的冷却扇-制动器控制方法
CN103459726A (zh) * 2011-03-15 2013-12-18 日立建机株式会社 工程机械

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010031835A1 (de) * 2010-07-22 2012-01-26 Liebherr-Werk Nenzing Gmbh Lüfterregelung
KR101752503B1 (ko) * 2011-01-12 2017-06-30 두산인프라코어 주식회사 휠로더의 유압 펌프 제어 방법
WO2014192172A1 (ja) * 2013-09-19 2014-12-04 株式会社小松製作所 作業車両
GB2521350B (en) * 2013-12-06 2016-01-27 Jaguar Land Rover Ltd Vehicle cooling system
JP6432219B2 (ja) * 2014-08-29 2018-12-05 コベルコ建機株式会社 建設機械
US10006334B2 (en) 2016-04-29 2018-06-26 Caterpillar Inc. Hydraulic driven fan system
CN106050816B (zh) * 2016-06-30 2018-06-26 中联重科股份有限公司渭南分公司 液压散热控制方法、装置和系统
US11286843B2 (en) 2019-08-20 2022-03-29 Engineered Machined Products, Inc. System for fan control
GB2592989B (en) * 2020-03-13 2022-07-13 Caterpillar Sarl Flow sharing control for multiple hydraulic fan motors
US11560826B2 (en) * 2020-08-15 2023-01-24 Kubota Corporation Working machine
CN112177091A (zh) * 2020-10-14 2021-01-05 徐州徐工矿业机械有限公司 一种液压挖掘机用独立散热系统及控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840044B1 (ko) 2001-12-31 2008-06-19 두산인프라코어 주식회사 건설중장비의 냉각팬 구동제어장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980136A (en) * 1959-06-25 1961-04-18 Cessna Aircraft Co Hydraulic flow control system and valve with anti-cavitation feature
US3992883A (en) * 1975-10-01 1976-11-23 Lucas Industries Limited Fan drive systems
US4036432A (en) * 1975-11-03 1977-07-19 George Albert L Variable speed fan drive system
EP0797727A1 (de) * 1994-12-14 1997-10-01 MANNESMANN REXROTH GmbH Hydraulikanlage fur ein kraftfahrzeug
JPH1068142A (ja) 1996-08-28 1998-03-10 Shin Caterpillar Mitsubishi Ltd 建設機械の冷却装置
US6076488A (en) * 1997-03-17 2000-06-20 Shin Caterpillar Mitsubishi Ltd. Cooling device for a construction machine
JPH11351147A (ja) * 1998-06-11 1999-12-21 Hitachi Constr Mach Co Ltd 油圧駆動発電機の制御装置
DE19981395T1 (de) * 1998-07-23 2000-10-12 Sauer Inc Hydraulisches Gebläseantriebssystem mit einer nichtspeziellen Fördermengenquelle
US6463891B2 (en) * 1999-12-17 2002-10-15 Caterpillar Inc. Twin fan control system and method
US6681568B2 (en) * 2002-03-28 2004-01-27 Caterpillar Inc Fluid system for two hydraulic circuits having a common source of pressurized fluid
US6750623B1 (en) * 2002-12-17 2004-06-15 Caterpillar Inc. Reversible automatic fan control system
JP4439287B2 (ja) * 2004-02-19 2010-03-24 株式会社小松製作所 建設機械の冷却装置
JP2006037863A (ja) * 2004-07-28 2006-02-09 Hitachi Constr Mach Co Ltd 建設機械の冷却装置
KR20060112340A (ko) * 2005-04-26 2006-11-01 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 재생유를 이용한 중장비의 냉각시스템
KR101290402B1 (ko) * 2006-12-19 2013-07-26 두산인프라코어 주식회사 중장비의 소음저감용 냉각시스템
US7937938B2 (en) * 2008-04-23 2011-05-10 Caterpillar Inc. Hydraulic reversing fan valve and machine using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840044B1 (ko) 2001-12-31 2008-06-19 두산인프라코어 주식회사 건설중장비의 냉각팬 구동제어장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605822A (zh) * 2011-01-20 2012-07-25 斗山英维高株式会社 重型设备的冷却扇-制动器控制方法
CN103459726A (zh) * 2011-03-15 2013-12-18 日立建机株式会社 工程机械
CN103459726B (zh) * 2011-03-15 2016-06-01 日立建机株式会社 工程机械

Also Published As

Publication number Publication date
KR20100070479A (ko) 2010-06-28
EP2390423A4 (en) 2014-03-26
WO2010071377A3 (ko) 2010-08-19
EP2390423A2 (en) 2011-11-30
EP2390423B1 (en) 2017-04-19
CN102257220B (zh) 2015-04-15
US20120057989A1 (en) 2012-03-08
CN102257220A (zh) 2011-11-23
KR101527218B1 (ko) 2015-06-10
US8579595B2 (en) 2013-11-12

Similar Documents

Publication Publication Date Title
WO2010071377A2 (ko) 건설기계의 냉각장치
US6959671B2 (en) Cooling system for work machine
US8162086B2 (en) Variable pitch radiator fan control system
CN104024610B (zh) 作业车辆
JP2009097722A (ja) 建設機械用油圧回路
US9441646B2 (en) Hydraulic system for construction machine including emergency control unit for electric hydraulic pump
WO2013094794A1 (ko) 건설기계용 유압 팬 구동 제어시스템
EP1795657B1 (en) Hydraulic circuit for heavy construction equipment
JP5666233B2 (ja) 航空機アクチュエータの油圧装置
CN101376338B (zh) 具有冷却系统的机器和方法
WO2011074781A2 (ko) 건설기계의 유압시스템
CN111664143A (zh) 一种独立散热系统及工程机械
JP4900625B2 (ja) 冷却用ファンの駆動制御装置
JP2008126843A (ja) 作業機械の冷却装置
WO2012023755A2 (ko) 건설기계의 비상 조향 장치
CN212272729U (zh) 一种独立散热系统及工程机械
JP7065925B1 (ja) 建設機械の冷却装置
JP2000249111A (ja) 油冷却装置
JP2020122315A (ja) 建設機械
WO2022119257A1 (ko) 유압 시스템
CN117013408B (zh) 一种便于安装的智能电气柜
EP4023889B1 (en) Fan drive system
KR101383895B1 (ko) 복수 개의 액추에이터들을 구동하는 유압 시스템
WO2016093393A1 (ko) 건설기계의 유압 회로
JP2006009833A (ja) 建設機械の作動流体供給システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151398.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833655

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13140524

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009833655

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009833655

Country of ref document: EP