WO2010070925A1 - 無線通信システム、及び無線通信方法 - Google Patents

無線通信システム、及び無線通信方法 Download PDF

Info

Publication number
WO2010070925A1
WO2010070925A1 PCT/JP2009/007021 JP2009007021W WO2010070925A1 WO 2010070925 A1 WO2010070925 A1 WO 2010070925A1 JP 2009007021 W JP2009007021 W JP 2009007021W WO 2010070925 A1 WO2010070925 A1 WO 2010070925A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
unit
transmission
signal
subcarriers
Prior art date
Application number
PCT/JP2009/007021
Other languages
English (en)
French (fr)
Inventor
増野淳
杉山隆利
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to KR1020137020129A priority Critical patent/KR101535559B1/ko
Priority to US13/133,312 priority patent/US8644404B2/en
Priority to JP2010542888A priority patent/JP5399412B2/ja
Priority to KR1020117013026A priority patent/KR101331252B1/ko
Priority to CN200980149147.4A priority patent/CN102246444B/zh
Priority to EP09833232.3A priority patent/EP2348655B1/en
Publication of WO2010070925A1 publication Critical patent/WO2010070925A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0066Interference mitigation or co-ordination of narrowband interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a wireless communication system and a wireless communication method.
  • This application claims priority based on Japanese Patent Application No. 2008-324412 filed in Japan on December 19, 2008 and Japanese Patent Application No. 2009-049785 filed in Japan on March 3, 2009. The contents are incorporated herein.
  • FIG. 18 is a conceptual diagram showing the entire two wireless LAN (Local Area Network) systems having different frequency channels as an example of a combination of wireless communication systems sharing a frequency band.
  • LAN Local Area Network
  • the wireless communication system includes wireless LAN base stations 10a and 10b and a receiving device 20a.
  • the wireless LAN base station 10a communicates using the frequency band of the channel CH1 that is the center frequency fa.
  • the wireless LAN base station 10b performs communication using the frequency band of the channel CH5 having the center frequency fb (fa ⁇ fb).
  • the receiving device 20a is arranged at a position where the wireless signals of both the wireless LAN base stations 10a and 10b reach, and receives a signal in which the wireless signal of the center frequency fa and the wireless signal of the communication frequency fb partially interfere with each other. .
  • the receiving device 20a accurately detects the presence of an interference signal that overlaps the frequency band of the desired signal in order to efficiently perform error correction and improve frequency use efficiency. It is necessary to detect.
  • the above-described technology for detecting an interference signal has a problem in that the data transmission efficiency is lowered or the followability to the transmission path fluctuation is poor.
  • an object of the present invention is to provide a wireless communication system and a wireless communication method that can detect an interference signal while suppressing a decrease in data transmission efficiency.
  • One aspect of the present invention is a wireless communication system including a transmission device and a reception device used for transmission of a radio signal composed of a plurality of subcarriers, wherein the transmission device is configured to transmit data to be transmitted.
  • Error correction coding is performed and error correction coding is performed by setting a null subcarrier in which the amplitude value of at least one subcarrier is zero among the plurality of subcarriers used for transmission of data obtained by error correction coding.
  • the obtained data is transmitted, the receiving device receives the signals of the plurality of subcarriers from the transmitting device, performs error correction decoding on the received signal to obtain the transmission target data, and the null sub
  • the receiving device receives the signals of the plurality of subcarriers from the transmitting device, performs error correction decoding on the received signal to obtain the transmission target data, and the null sub
  • a received power exceeding a predetermined reference value is detected in a subcarrier using a carrier, it is determined that interference has occurred in the subcarrier.
  • the subcarrier set as the null subcarrier is changed for each time slot divided at a constant time interval.
  • the null subcarriers are set in order from a subcarrier having the highest frequency to a subcarrier having a center frequency among the plurality of subcarriers.
  • the null subcarriers are set in order from a subcarrier having the lowest frequency to a subcarrier having a center frequency among the plurality of subcarriers.
  • the null subcarrier is randomly set to a subcarrier of the plurality of subcarriers.
  • the number of null subcarriers set in the plurality of subcarriers is a coding rate in a forward error correction code or the transmission apparatus It is determined according to a propagation path characteristic between the receiver and the receiver.
  • the reception device transmits interference wave detection information indicating a subcarrier in which the interference wave is detected to the transmission device, and the transmission device However, the null subcarrier is set according to the transmitted interference wave detection information.
  • the interference wave is continuous in any subcarrier among the plurality of subcarriers based on interference wave detection information in the continuous time slot. It is estimated which time slot of the time slot is present, and the transmission target data is demodulated without using the modulation symbol of the subcarrier in which the interference wave exists.
  • the transmission apparatus applies a forward error code to the transmission target data to be transmitted, and the transmission target data is subjected to forward error coding.
  • a modulation unit that modulates the signal and outputs a modulation signal; and transmission of the modulation signal that is allocated to a subcarrier set as the null subcarrier among the plurality of subcarriers with respect to the modulation signal output from the modulation unit And a puncturing processing unit for reducing power to zero.
  • the reception apparatus can use a reception signal in a subcarrier set as the null subcarrier as an invalid signal without using the reception signal. Demodulation and error correction decoding are performed.
  • the transmission apparatus performs error correction encoding on the transmission target data and generates an error correction encoded bit.
  • a first modulation unit that modulates the error correction coding bits to generate a plurality of modulation symbols, and a block coding unit that performs block coding such that a part of the amplitude value is zero for the plurality of modulation symbols
  • a second modulation unit that arranges block-coded modulation symbols on each subcarrier to generate a modulation signal, and a transmission unit that generates and transmits a transmission signal from the modulation signal, and the reception device includes: A receiving unit that receives the transmission signal; a second demodulating unit that acquires the block-coded modulation symbol for each subcarrier from the received transmission signal; and the block-coded modulation symbol
  • a block decoding unit that performs block decoding according to the block encoding of the block encoding unit, and a demodulator that performs demodulation according to the
  • the determination unit performs the same error correction coding as the error correction coding unit on the transmission target data, and the first modulation And performing the same modulation as the block coding unit and performing the same block coding as the block coding unit, thereby determining the frequency band of the subcarrier having an amplitude value of zero in the transmission signal generated by the transmission unit.
  • the reception device in the above wireless communication system, the reception device generates interference band information representing a subcarrier in which interference occurs based on a detected interference signal, and transmits the transmission An interference band information signal transmission unit for transmitting to the device, wherein the error correction coding unit or the first modulation unit of the transmission device determines a coding rate or a modulation scheme based on the interference band information signal It is characterized by that.
  • An aspect of the present invention is a wireless communication method in a wireless communication system including a transmission device and a reception device used for transmission of a wireless signal including a plurality of subcarriers, wherein the transmission device transmits Error correction coding is performed on the data to be transmitted, and a null subcarrier in which an amplitude value of at least one subcarrier among the plurality of subcarriers used for transmission of data obtained by error correction coding is made zero is set. Transmitting the data obtained by error correction coding, and the receiving apparatus receives the signals of the plurality of subcarriers from the transmitting apparatus, performs error correction decoding on the received signals, and transmits the data.
  • the transmission apparatus after data to be transmitted is error correction encoded, a part of subcarriers transmitting the error correction encoded transmission data is transmitted as null subcarriers having an amplitude value of zero.
  • the receiving apparatus detects a signal in the frequency band of the null subcarrier as an interference signal from the received signal, and decodes transmission data by performing error correction decoding. Therefore, according to the present invention, null subcarriers are generated without adding data for generating null subcarriers to data to be transmitted, so that interference signals are detected without reducing transmission data transmission efficiency. be able to.
  • FIG. 1 is a schematic block diagram illustrating the configuration of the wireless communication system 1 according to the first embodiment and the configurations of the transmission device 10 and the reception device 20.
  • the wireless communication system 1 includes a transmission device 10 that transmits data and a reception device 20 that receives data from the transmission device 10.
  • a case will be described in which an OFDM (Orthogonal Frequency Division Multiplexing) method is used as multicarrier communication and a multicarrier superimposed transmission method is applied.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the multicarrier superimposed transmission method is one of the techniques for improving the frequency utilization efficiency.
  • 2A and 2B are conceptual diagrams for explaining multicarrier superimposed transmission.
  • a wireless communication system that performs communication using a plurality of adjacent frequency bands avoids mutual interference by providing a guard band between the used frequency bands.
  • the guard band is not used for any communication and is one of the causes that hinders the improvement of frequency utilization efficiency.
  • the transmitting apparatus 10 includes a data modulation unit 101, an S / P (serial / parallel) conversion unit 102, a puncture pattern generation unit 103, a puncturing processing unit 104, an IFFT (Inverse Fast Fourier Transform) unit 105, a P / S (parallel-parallel).
  • Modulation section 101 receives bit data to be transmitted, applies forward error correction (FEC) to the input bit data, and modulates modulation symbols obtained by modulating bit data that has been subjected to forward error correction coding. The data is output to the S / P converter 102.
  • FEC forward error correction
  • the modulation unit 101 uses, for example, a convolutional code, a turbo code, a low density parity check code (LDPC), or the like for forward error correction coding, and for example, a QPSK (Quadrature Phase) for modulation. Shift Keying (quadrature phase shift keying), 16QAM (16-position quadrature amplitude modulation), 64QAM (64-position quadrature amplitude modulation), etc. are used.
  • the S / P conversion unit 102 performs serial-parallel conversion on the modulation symbol output from the modulation unit 101 and outputs the result to the puncturing processing unit 104.
  • the puncture pattern generation unit 103 generates null pattern information indicating a subcarrier to which a null (Null) whose transmission power is zero is assigned to any subcarrier among subcarriers used for communication, and puncturing processing is performed on the generated null pattern information. Output to the unit 104.
  • Puncturing processing section 104 uses the modulation symbols specified by the null pattern information output from puncture pattern generation section 103 among the modulation symbols output from S / P conversion section 102 and subjected to serial-parallel conversion (serial-parallel conversion). Is changed to zero and is output to IFFT section 105.
  • IFFT section 105 converts the modulation symbol output from puncturing processing section 104 into a time-domain signal by inverse FFT processing, and outputs the converted signal to P / S conversion section 106.
  • the P / S conversion unit 106 performs parallel-serial conversion on the signal output from the IFFT unit 105 and outputs the result to the wireless communication unit 107.
  • the radio communication unit 107 is connected to an antenna, up-converts a parallel-serial (parallel-serial conversion) signal output from the P / S conversion unit 106 to a frequency band of a carrier wave, and transmits the signal to the reception device 20.
  • the reception apparatus 20 includes a wireless communication unit 201, an S / P conversion unit 202, an FFT (Fast Fourier Transform) unit 203, a P / S conversion unit 204, an interference band detection unit 205, and a demodulation unit 206.
  • Radio communication unit 201 is connected to an antenna, receives a signal transmitted from transmitting apparatus 10, down-converts the received signal from the frequency band of the carrier wave, and outputs a modulation symbol to S / P conversion unit 202.
  • S / P conversion section 202 performs serial-parallel conversion on the modulation symbol received by wireless communication section 201 and outputs the result to FFT section 203.
  • the FFT unit 203 converts the series-parallel modulation symbols output from the S / P conversion unit 202 into frequency-domain modulation symbols by FFT processing and outputs the modulation symbols to the P / S conversion unit 204.
  • the P / S conversion unit 204 outputs a modulation symbol obtained by parallel-serial conversion of the converted modulation symbol output from the FFT unit 203 to the interference band detection unit 205 and the demodulation unit 206.
  • interference band detection section 205 stores null pattern information indicating a subcarrier assigned to a null subcarrier and detects a signal exceeding a predetermined reception power from a modulation symbol corresponding to the subcarrier set to the null subcarrier. Then, the presence of an interference wave in the subcarrier is detected, and interference band information indicating the subcarrier determined to be affected by the interference wave is output to the demodulation unit 206. Further, the interference band detection unit 205 detects the received power of the detected interference wave.
  • the detection of the interference wave is performed, for example, when the interference band detection unit 205 detects the reception power of the null subcarrier according to the null pattern information selected by the control signal or the like.
  • demodulation section 206 does not use the modulation symbols corresponding to subcarriers that are indicated to be affected by the interference wave from the interference band information output from interference band detection section 205.
  • bit data obtained by performing error correction decoding and demodulation is output.
  • Demodulation section 206 treats the received signal received from the subcarrier set to the null subcarrier as an invalid signal, and performs error correction decoding and demodulation without using the received signal.
  • FIG. 3 is a conceptual diagram of a transmission frame showing an example of the arrangement of null subcarriers.
  • the horizontal axis indicates the subcarrier (frequency), and the vertical axis indicates the time slot (time).
  • Each transmission frame includes 10 subcarriers provided at different frequencies, and includes 4 time slots divided by a predetermined time interval.
  • the puncture pattern generation unit 103 sets null subcarriers to subcarriers (subcarriers 2, 4, 7, and 9) determined in advance in each transmission frame.
  • the interference band detection unit 205 detects a subcarrier affected by the interference wave as follows. In time slot 1, interference band detecting section 205 determines that there is no interference band in the time slot because power exceeding a predetermined reference value is not detected from the modulation symbols corresponding to the arranged null subcarriers. .
  • the predetermined reference value is a value that is statistically or empirically determined as to how much received power is detected when an interference wave is present. The power value is determined.
  • the interference band detecting unit 205 detects a modulation symbol having a received power exceeding a predetermined reference value in the null subcarrier 9 due to the presence of an interference wave. Accordingly, when applying the multicarrier superimposed transmission method, the interference band detection unit 205 estimates that interference waves are also present in the subcarrier 10 because interference bands are likely to occur at both ends of the communication band. Further, since the reception power exceeding the reference value is not detected in subcarrier 7, interference band detection section 205 determines that the boundary of the interference band is in subcarrier 8 or subcarrier 9, and subcarriers 8 to 10 Are determined to be subcarriers affected by the interference wave, and interference band information is output to the demodulation unit 206.
  • the interference band detection unit 205 determines that the subcarrier 8 is an interference band affected by the interference wave, but may determine that the subcarriers 9 to 10 are interference bands. As shown in the figure, when the interference band detection unit 205 detects an interference wave in the subcarrier 9 and does not detect an interference wave in the subcarrier 7, the boundary of the interference band is either the subcarrier 8 or the subcarrier 9. Exists. In addition, even if the interference band detection unit 205 makes a determination different from the actual one, the bit data can often be correctly decoded by error correction decoding. Further, although the interference band detection unit 205 determines the interference band for each time slot, the interference band detection unit 205 may determine it for each transmission frame.
  • FIG. 4 is a conceptual diagram of a transmission frame showing an example in which the arrangement of null subcarriers is different.
  • the horizontal axis indicates subcarriers
  • the vertical axis indicates time slots.
  • FIG. 4 shows that an interference wave exists in the subcarriers surrounded by the broken line I2.
  • the transmission frame is composed of 10 subcarriers and 4 time slots.
  • the puncture pattern generation unit 103 is different for each time slot, and sets a null subcarrier as a predetermined subcarrier.
  • the puncture pattern generation unit 103 sets null subcarriers for subcarriers 1 and 10 in time slot 1, and sets null subcarriers for subcarriers 2 and 9 in time slot 2.
  • null subcarriers are set in subcarriers 3 and 8, and in time slot 4, null subcarriers are set in subcarriers 4 and 7.
  • the puncture pattern generation unit 103 arranges null subcarriers at different positions for each time slot from both ends of the frequency band used for communication toward the center of the frequency band used for communication. In this way, if the interference band detector 205 determines the boundary of the interference band in units of transmission frames, and the interference band does not change significantly in the transmission frame, the boundary of the interference band in the transmission frame is subcarrier. 8, and outputs interference band information indicating that subcarriers 8 to 10 are interference bands to demodulation section 206 in time slots 1 to 4.
  • the puncture pattern generation unit 103 places null subcarriers in each slot in order from the both ends of the frequency band used for communication toward the center, so that the interference band detection unit 205 can detect which subframe of the transmission frame. It becomes easy to estimate whether an interference wave has affected a carrier, and in particular, in a wireless communication system to which a multi-carrier superposition transmission method is applied, it is possible to improve the tracking ability to detect a frequency band in which an interference wave occurs. .
  • FIG. 5 is a conceptual diagram of a transmission frame showing an example of a different arrangement of null subcarriers.
  • the horizontal axis indicates subcarriers
  • the vertical axis indicates slots.
  • the transmission frame includes 10 subcarriers and 4 slots.
  • the puncture pattern generation unit 103 is different for each slot and sets a null subcarrier to a predetermined subcarrier.
  • the puncture pattern generation unit 103 sets null subcarriers to subcarriers 2, 5, and 8 in slot 1, and sets null subcarriers to subcarriers 1, 4, 7, and 10 in slot 2, In slot 3, null subcarriers are set in subcarriers 3, 7, and 9, and in slot 4, null subcarriers are set in subcarriers 4, 5, and 8.
  • the puncture pattern generation unit 103 arranges null subcarriers in a comb shape, so that interference waves can be detected for the entire subcarriers in the transmission frame, and any of the frequency bands used for communication can be detected. Even if an interference band is generated in each subcarrier, it can be detected.
  • the interference band detection unit 205 determines the interference band that is the subcarrier affected by the interference wave based on the reception power of the modulation symbol corresponding to the null subcarrier, and sets the interference band information 206 indicating the determination result. Output to.
  • the demodulation unit 206 performs error correction decoding and demodulation without using a modulation symbol that is affected by the interference wave or that may have been affected by the interference wave, thereby improving the error correction capability. It becomes possible. Further, since the interference wave and the interference band are detected for each slot in the transmission frame, it is possible to detect the interference wave with good followability with respect to the generation of the interference wave.
  • a null subcarrier may be arrange
  • the number of null subcarriers set in each slot is set according to the coding rate in the forward error correction code. Even if there is a modulation symbol that is not transmitted by being set as a null subcarrier, the null subcarrier may be set within a range in which the receiving apparatus 20 can correctly perform error correction decoding on bit data. At this time, it is preferable to determine the number of null subcarriers according to the propagation path characteristics between the transmission device 10 and the reception device 20.
  • FIG. 6 is a schematic block diagram illustrating the configuration of the wireless communication system 3 and the configurations of the transmission device 12 and the reception device 22 in the second embodiment.
  • the wireless communication system 3 includes a transmission device 12 that transmits data and a reception device 22 that receives data from the transmission device 12. Note that the wireless communication system 3 will be described in the same way as the wireless communication system 1 in the first embodiment using the OFDM scheme as the multicarrier communication and applying the multicarrier superimposed transmission scheme.
  • the transmission apparatus 12 includes a modulation unit 101, an S / P conversion unit 102, a puncturing processing unit 104, an IFFT unit 105, a P / S conversion unit 106, a wireless communication unit 127, a timer unit 123, and a puncture pattern generation unit 124.
  • the transmission device 12 is different from the transmission device 10 of the first embodiment in the puncture pattern generation unit 124, the timer unit 123, and the wireless communication unit 127, and the other configurations are the same.
  • the same reference numerals (101, 102, 104 to 106) are attached, and description thereof is omitted.
  • the timer unit 123 is reset in response to the start of transmission of bit data, and thereafter counts a certain time interval, for example, one transmission frame time interval, several frame time intervals, or real time according to communication characteristics, When the period expires, information indicating that a certain time interval has elapsed is output to the puncture pattern generation unit 124, reset, and counting starts again.
  • the puncture pattern generation unit 124 assigns, to the same operation as the puncture pattern generation unit 103 of the first embodiment, which subcarrier among communication subcarriers is assigned a null (Null) with zero transmission power.
  • the generated null pattern information is output to the puncturing processing unit 104, and further, according to the feedback of the interference wave detection information from the receiving device 22, the null pattern information for setting the null subcarrier is generated, The generated null pattern information is output to the puncturing processing unit 104.
  • the radio communication unit 127 receives the operation of the radio communication unit 107 of the first embodiment, the antenna is connected, and up-converts the parallel-serial signal output from the P / S conversion unit 106 to the frequency band of the carrier wave. 22, and further receives interference wave detection information indicating that reception power exceeding a predetermined reference value is detected in the null subcarrier from the reception device 22, and generates the puncture pattern of the received interference wave detection information. To the unit 124.
  • the receiving device 22 includes a wireless communication unit 221, an S / P conversion unit 202, an FFT unit 203, a P / S conversion unit 204, an interference band detection unit 225, a timer unit 227, and a demodulation unit 206.
  • the receiving device 22 is different from the receiving device 20 of the first embodiment in that the receiving device 22 includes a wireless communication unit 221 and an interference band detecting unit 225, and the other configurations are the same. Reference numerals (202 to 204, 206) are given and description thereof is omitted.
  • the timer unit 227 operates in synchronization with the timer unit 123 of the transmission device 12 and is reset in response to the start of transmission of bit data.
  • the real time according to the characteristics of communication is counted, and when the count expires, the timing information indicating the passage of a fixed time interval is output to the interference band detection unit 225, and the counter is reset and starts counting again.
  • a control signal for starting bit data transmission is used.
  • the interference band detection unit 225 stores null pattern information, and a signal exceeding the predetermined reception power from the modulation symbol corresponding to the subcarrier set to the null subcarrier. Is detected, the presence of an interference wave in the subcarrier is detected, and interference band information indicating the subcarrier determined to be affected by the interference wave is output to the demodulation unit 206, and the detected interference wave is detected. The received power of is detected. Furthermore, the interference band detection unit 225 initializes the switching of the null pattern information in accordance with the timing information output from the timer unit 227.
  • the wireless communication unit 221 receives a signal transmitted from the transmission device 12 with an antenna connected thereto, down-converts the received signal from the frequency band of the carrier wave, and performs modulation symbols. Is output to the S / P converter 202. Further, the wireless communication unit 221 transmits the interference wave detection information output from the interference band detection unit 225 to the transmission device 12 as a control channel, a control signal, or the like.
  • FIG. 7 is a conceptual diagram of a transmission frame showing an example of a different arrangement of null subcarriers in the transmission frame in the same embodiment.
  • subcarriers 8 to 10 surrounded by a broken line I3 are interference bands.
  • FIG. 8 is a sequence diagram illustrating operations of the transmission device 12 and the reception device 22.
  • the timer units 123 and 227 are configured to expire after one transmission frame and reset.
  • the timer unit 123 is reset in response to the transmission of bit data (step S11), and the timer unit 227 is reset in synchronization with the timer unit 123 (step S12).
  • puncture pattern generation section 124 outputs pattern 1 with subcarriers 1 and 10 as null subcarriers to puncturing processing section 104 (step S13).
  • the puncturing processing unit 104 sets a null subcarrier according to the pattern 1 input from the puncture pattern generation unit 124, and the modulation symbol in which the null subcarrier is set is an IFFT unit 105, a P / S conversion unit 106, a radio
  • the communication unit 127 sequentially processes and transmits the signal of time slot 1 to the receiving device 22 (step S14).
  • the wireless communication unit 221 receives the signal transmitted from the transmission device 12, and the received signal is processed in the order of the S / P conversion unit 202, the FFT unit 203, and the P / S conversion unit 204.
  • the interference band detection unit 225 detects reception power exceeding the reference value in the subcarrier 10 from the modulation symbol corresponding to the subcarrier 10 set to the null symbol (step S15), and there is an interference wave in the subcarrier 10 Is output to the demodulation unit 206 and the wireless communication unit 221.
  • the wireless communication unit 221 transmits the interference wave detection information output from the interference band detection unit 225 to the transmission device 12 (step S16).
  • the wireless communication unit 127 receives the interference wave detection information from the reception device 22 and outputs the received interference wave detection information to the puncture pattern generation unit 124.
  • the puncture pattern generation unit 124 transmits the null subcarrier to the center frequency side of the band in order to detect the boundary of the interference band.
  • the pattern 2 is arranged and the subcarriers 3 and 8 are null subcarriers, and is output to the puncturing processing unit 104 (step S17).
  • Puncturing processing section 104 sets a null subcarrier according to pattern 2 output from puncture pattern generation section 124, and IFFT section 105 converts the modulation symbol in which the null subcarrier is set by inverse FFT, and P /
  • the S conversion unit 106 parallel-serializes the modulation symbol subjected to the inverse FFT process, and the wireless communication unit 127 transmits the modulation symbol parallel-serialized to the reception device 22 (step S18).
  • the wireless communication unit 221 receives the signal transmitted from the transmission device 12, and the received signal is processed in the order of the S / P conversion unit 202, the FFT unit 203, and the P / S conversion unit 204.
  • Interference band detection section 225 detects reception power exceeding the reference value in subcarrier 8 from the modulation symbol corresponding to subcarrier 8 set to the null symbol (step S19), and there is an interference wave in subcarrier 10 Is output to the demodulation unit 206 and the wireless communication unit 221.
  • the wireless communication unit 221 transmits the interference wave detection information output from the interference band detection unit 225 to the transmission device 12 (step S20).
  • the wireless communication unit 127 receives the interference wave detection information from the reception device 22, and outputs the received interference wave detection information to the puncture pattern generation unit 124.
  • the puncture pattern generation unit 124 further arranges a null subcarrier on the center frequency side of the band so as to prevent the interference band boundary.
  • pattern 3 with subcarriers 5 and 8 as null subcarriers is output to puncturing processing section 104 (step S21).
  • Puncturing processing section 104 sets null subcarriers according to pattern 3 output from puncture pattern generation section 124, and IFFT section 105 converts the modulation symbols set with null subcarriers by inverse FFT, and performs P /
  • the S conversion unit 106 parallel-serializes the modulation symbol subjected to the inverse FFT process, and the wireless communication unit 127 transmits the modulation symbol parallel-serialized to the reception device 22 (step S22).
  • the wireless communication unit 221 receives the signal transmitted from the transmission device 12, and the received signal is processed in the order of the S / P conversion unit 202, the FFT unit 203, and the P / S conversion unit 204.
  • the interference band detection unit 225 detects reception power exceeding the reference value in the subcarrier 8 from the modulation symbol corresponding to the subcarrier 8 set to the null symbol (step S23), and an interference wave exists in the subcarrier 10 Is output to the demodulation unit 206 and the wireless communication unit 221.
  • the wireless communication unit 221 transmits the interference wave detection information output from the interference band detection unit 225 to the transmission device 12 (step S24).
  • the wireless communication unit 127 receives the interference wave detection information from the reception device 22 and outputs the received interference wave detection information to the puncture pattern generation unit 124.
  • puncture pattern generation section 124 assumes that the boundary of the interference band is one of subcarriers 6-8, and subcarriers 6 and 7 Is output to the puncturing processing unit 104 (step S25).
  • Puncturing processing section 104 sets null subcarriers according to pattern 4 output from puncture pattern generation section 124, and IFFT section 105 converts modulation symbols set with null subcarriers by inverse FFT, and performs P /
  • the S conversion unit 106 performs parallel serialization (parallel-serial conversion) on the modulation symbols subjected to the inverse FFT processing, and the wireless communication unit 127 transmits the parallel serialized modulation symbols to the reception device 22 (step S26).
  • the wireless communication unit 221 receives the signal transmitted from the transmission device 12, and the received signal is processed in the order of the S / P conversion unit 202, the FFT unit 203, and the P / S conversion unit 204.
  • the interference band detector 225 and the demodulator 206 are input to the interference band detector 225 and the demodulator 206.
  • the interference band detection unit 225 detects that no received power exceeding the reference value is detected from the modulation symbols corresponding to the subcarriers 6 and 7 set to the null symbol (step S27), and that no interference wave exists in the subcarrier 10.
  • the interference wave detection information shown is output to the demodulation unit 206 and the wireless communication unit 221.
  • the wireless communication unit 221 transmits the interference wave detection information output from the interference band detection unit 225 to the transmission device 12 (step S28).
  • the timer unit 123 expires the count and notifies the puncture pattern generation unit 124 that the transmission of one transmission frame is completed (step S29). Thereafter, the transmission apparatus 12 operates in the same manner as in the above-described steps. However, which subcarrier is set as the null subcarrier differs depending on the subcarrier in which the interference wave is detected.
  • the timer unit 227 expires the count, and notifies the interference band detecting unit 225 that the transmission for one transmission frame is completed (step S29a).
  • the interference band detection unit 225 determines that there is an interference band boundary in the subcarrier 8 from the sequence of interference wave detection positions in the transmission frame, and interference band information in which the subcarriers 8 to 10 are interference bands in the transmission frame. Is output to the demodulator 206 (step S30). Demodulator 206 performs error correction decoding and demodulation in time slots 1 to 4 without using the modulation symbols of subcarriers 8 to 10 to detect bit data (step S31).
  • the interference band detection unit 225 of the reception device 22 feeds back the information of the subcarrier in which the interference wave is detected to the puncture pattern generation unit 124 of the transmission device 12, thereby efficiently specifying the interference band. Can be done efficiently. Further, when notified of the presence of the interference wave, the puncture pattern generation unit 124 can detect the boundary of the interference band with a small number of interference wave detections by arranging many null subcarriers.
  • the demodulation unit 206 performs error correction decoding and demodulation without using a modulation symbol corresponding to a subcarrier that is indicated by interference band information to be affected by an interference wave.
  • the modulation symbol may be weighted as a modulation symbol with low reliability with respect to the modulation symbol corresponding to the subcarrier not affected by the interference wave, and used for error correction decoding and modulation.
  • the operation not using the modulation symbol corresponding to the subcarrier affected by the interference wave is when the reliability for the modulation symbol is zero.
  • the weighting coefficient may be a fixed value or may be changed according to the detected received power of the interference wave.
  • the number of subcarriers set as null subcarriers may be increased by lowering the coding rate in modulation section 101. This makes it possible to detect in detail the subcarrier in which the interference wave is generated and the period in which the interference wave is generated in an environment in which the interference wave is frequently generated, and increase the followability to the generation of the interference wave. It becomes possible. Further, whether or not the environment is such that an interference wave is frequently generated may be dynamically detected depending on how much interference wave is detected in the reception apparatus and fed back to the transmission apparatus.
  • the interference band detection units 205 and 225 have described the configuration in which the subcarriers set as null subcarriers are stored. You may make it transmit the null pattern information which shows the subcarrier set with a null subcarrier in the control signal etc. which are transmitted. At this time, null pattern information for setting a null subcarrier may be generated according to the received power of the interference wave detected by the interference band detection units 205 and 225.
  • the transmission device and the reception device of the first embodiment and the second embodiment described above may have a computer system inside.
  • the process of setting the null subcarrier and the process of detecting the interference band are stored in a computer-readable recording medium in the form of a program, and the computer reads and executes the program.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • FIG. 9 is a schematic diagram illustrating an outline of the wireless communication system 5 that transmits and receives signals by multicarrier transmission in the third embodiment.
  • the wireless communication system 5 is a wireless communication system according to the present invention, and includes a transmission device 50 and a reception device 60. Further, the number of transmission devices 50 and reception devices 60 included in the wireless communication system 5 is not limited to one each as shown in FIG. 9, and a plurality of transmission devices 50 and reception devices 60 may be included.
  • the transmission device 50 is a base station device and the reception device 60 is a wireless communication terminal. Conversely, the transmission device 50 may be a wireless communication terminal and the reception device 60 may be a base station device.
  • a wireless communication terminal is a terminal device that performs wireless communication with a base station device, such as a mobile phone, a wireless LAN (Local Area Network) terminal, or a WiMAX (registered trademark) (Worldwide Interoperability for Microwave Access) terminal. is there.
  • the base station device is a device that performs wireless communication with a plurality of wireless communication terminals, such as a base station device in a mobile phone network, a wireless LAN router, or a WiMAX (registered trademark) base station.
  • the transmission device 50 and the reception device 60 perform wireless communication by a multicarrier transmission method. More specifically, the transmission device 50 and the reception device 60 perform wireless communication by, for example, OFDM (Orthogonal frequency division multiplex).
  • FIG. 10 is a block diagram illustrating a functional configuration of the transmission device 50 according to the embodiment.
  • the transmission apparatus 50 includes an FEC encoding unit 501, a first modulation unit 502, a block encoding unit 503, a serial-parallel conversion unit 504, a second modulation unit 505, a transmission unit 506, and an antenna 507.
  • the FEC encoding unit 501 performs error correction encoding on a bit string of data to be transmitted according to FEC (Forward Error Correction) to generate error correction encoded bits.
  • FEC Forward Error Correction
  • the first modulation unit 502 generates a plurality of modulation symbols by performing modulation processing (mapping processing) on the error correction coded bits.
  • the first modulation unit 502 performs modulation processing according to a modulation scheme such as BPSK (Binary Phase Shift Shift Keying), QPSK (Quadrature Phase Shift Keying), 8PSK (Octuple Phase Shift Keying), and the amplitude according to the error correction coded bits.
  • BPSK Binary Phase Shift Shift Keying
  • QPSK Quadadrature Phase Shift Keying
  • 8PSK Orthogonal Phase Shift Keying
  • the block encoding unit 503 performs block encoding processing on the modulation symbol generated by the first modulation unit 502.
  • the block coding unit 503 is applied with a block coding method that can perform a reversible operation (block decoding) and that the amplitude of a part of the signal after block coding becomes zero.
  • the block encoding unit 503 performs block encoding processing using a Hadamard matrix that is a kind of orthogonal matrix such as Equation 1.
  • Equation 1 and d 2 represent modulation symbols, respectively
  • b 1 and b 2 represent modulation symbols after block coding (block coded modulation symbols), respectively.
  • the block encoding unit 503 is not limited to the Hadamard matrix, and may use an M sequence or a scramble code.
  • FIG. 11 is a schematic diagram showing the appearance probability of each constellation point after block coding, where the vertical axis Q represents the orthogonal component and the horizontal axis I represents the in-phase component.
  • FIG. 11 shows an example in which a modulation symbol modulated by equal power QPSK (4 constellation points) is block-coded by a 2 ⁇ 2 Hadamard matrix. In this case, there are 16 combinations of modulation symbols d 1 and d 2 . Further, there are nine constellation points of the block coded modulation symbols b 1 and b 2 , and the appearance probability of the constellation point (0, 0) having an amplitude of zero is 25%.
  • serial / parallel conversion unit 504 performs serial / parallel conversion (serial / parallel conversion) on the plurality of block-coded modulation symbols generated by the block coding unit 503.
  • the second modulation unit 505 arranges each block coded modulation symbol parallelized by the serial-parallel conversion unit 504 in each subcarrier, and performs IFFT (Inverse Fast Fourier Transform) or parallel-serial conversion (parallel / serial). Conversion) and insertion of a guard interval to generate a modulated signal.
  • IFFT Inverse Fast Fourier Transform
  • parallel-serial conversion parallel-serial / serial. Conversion
  • the transmission unit 506 generates a transmission signal by performing processing such as digital / analog conversion, power amplification, and up-conversion on the modulated signal.
  • the antenna 507 transmits the transmission signal generated by the transmission unit 506 wirelessly.
  • FIG. 12A and 12B are schematic diagrams illustrating an outline of a transmission signal.
  • the horizontal axis represents frequency and the vertical axis represents amplitude.
  • 12A shows a transmission signal generated according to a conventional multicarrier scheme (QPSK modulation, OFDM), and
  • FIG. 12B shows a transmission signal generated by the transmission apparatus 50.
  • the amplitude of each of the plurality of subcarriers is a1 and is uniform, and there is no subcarrier in which the amplitude is zero (hereinafter, such a subcarrier is referred to as a “null subcarrier”).
  • null subcarrier such a subcarrier is referred to as a “null subcarrier”.
  • Null subcarriers are subcarriers that exist in the frequency band indicated by the upward arrow in FIG. 12B and in which block-coded modulation symbols whose amplitude values have become zero in block coding section 503 are arranged.
  • FIG. 13 is a flowchart illustrating the procedure of the transmission process of the transmission device 50.
  • the FEC encoding unit 501 performs error correction encoding on a bit string of data to be transmitted in accordance with FEC to generate error correction encoded bits (step S101).
  • the first modulation unit 502 modulates the error correction coded bits to generate a modulation symbol (step S102).
  • the block coding unit 503 performs block coding processing on the modulation symbols (step S103).
  • the serial-parallel conversion unit 504 performs serial-parallel conversion on the block-coded modulation symbol (step S104).
  • the second modulation unit 505 performs IFFT processing (step S105), and performs parallel-serial conversion and insertion of guard intervals (step S106).
  • the transmission unit 506 generates a transmission signal (step S107).
  • the antenna 507 transmits the transmission signal wirelessly (step S108), and the transmission process shown in this flowchart ends.
  • FIG. 14 is a block diagram illustrating a functional configuration of the receiving device 60 in the embodiment.
  • the receiving device 60 includes an antenna 601, a receiving unit 602, a second demodulating unit 603, a parallel-serial converting unit 604, a block decoding unit 605, a first demodulating unit 606, an FEC decoding unit 607, and a null subcarrier determining unit. 608 and an interference signal detection unit 609 are provided.
  • the antenna 601 receives a reception signal in which a transmission signal transmitted by the transmission device 50 and an interference signal transmitted by another transmission device are combined.
  • the receiving unit 602 performs down-conversion on the received received signal, further performs analog / digital conversion, and generates a modulated signal.
  • the second demodulator 603 performs a plurality of block codes by performing guard domain removal, serial parallel conversion, FFT (Fast Fourier Transform), frequency domain equalization processing using preamble information, and the like on the modulated signal. Generate modulated modulation symbols.
  • the parallel / serial conversion unit 604 performs parallel / serial conversion on a plurality of block-coded modulation symbols arranged in parallel.
  • the block decoding unit 605 performs block decoding processing corresponding to the block coding processing by the block coding unit 503 of the transmission device 50 on the block coded modulation symbol, and generates a modulation symbol. For example, when the block encoding unit 503 performs block encoding processing using a Hadamard matrix such as Equation 1, the block decoding unit 605 uses a inverse matrix of Hadamard matrix such as Equation 2 to perform block decoding processing. I do.
  • the first demodulating unit 606 generates error correction coded bits by performing demodulation processing (demapping processing) on the modulation symbol in accordance with the modulation processing by the first modulation unit 502 of the transmission device 50.
  • the FEC decoding unit 607 generates data to be transmitted by performing error correction processing and decoding processing according to FEC on the error correction encoded bits.
  • the null subcarrier determination unit 608 determines the frequency band in which the null subcarrier is arranged in the transmission signal. Specifically, a replica signal is generated by performing the same processing as the FEC encoding unit 501, the first modulation unit 502, and the block encoding unit 503 of the transmission device 50 on the data generated by the FEC decoding unit 607.
  • the frequency band in which the null subcarrier is arranged (hereinafter referred to as “null frequency band”) is determined.
  • Interference signal detector 609 measures a signal component in the null frequency band from the received signal and detects an interference signal. For example, the interference signal detection unit 609 measures the amplitude of the signal component in the null frequency band from the received signal, and determines that there is an interference signal in the null frequency band if the measurement result is equal to or greater than a predetermined threshold. Further, the interference signal detection unit 609 may store the presence / absence and amplitude of the interference signal detected in each null frequency band as a detection result in association with the frequency band. In this case, when detection results are obtained in all frequency bands of the signal received by the receiving device 60, the interference signal detection unit 609 outputs the detection results of the number of frequency bands stored as the detection results of the interference signals. Also good.
  • FIG. 15 is a flowchart illustrating a procedure of reception processing of the reception device 60.
  • the antenna 601 receives a received signal (step S201), and the receiving unit 602 generates a modulated signal from the received signal (step S202).
  • the second demodulator 603 performs guard interval removal and serial / parallel conversion on the modulated signal (step S203).
  • the second demodulator 603 performs block FFT to generate a block-coded modulation symbol (step S204).
  • the parallel / serial conversion unit 604 performs parallel / serial conversion on the block-coded modulation symbol (step S205).
  • the block decoding unit 605 performs a block decoding process on the block-coded modulation symbol to generate a modulation symbol (step S206).
  • the first demodulator 606 demodulates the modulation symbols to generate error correction coded bits (step S207).
  • the FEC decoding unit 607 performs error correction decoding on the error correction encoded bits and generates data to be transmitted (step S208).
  • the null subcarrier determining unit 608 generates a replica signal (step S209) and determines the null frequency band (step S210).
  • the interference signal detection unit 609 detects an interference signal in the null frequency band (step S211).
  • the block coding unit 503 of the transmission device 50 performs block coding processing, so that transmission is performed in a transmission signal without intentionally providing a null subcarrier that does not include transmission data.
  • Null subcarriers having a portion of target data can be generated. Therefore, it is possible to generate a transmission signal having null subcarriers without reducing the amount of data included in the transmission signal. Therefore, by determining the frequency band of the null subcarrier (null frequency band) in the receiving device 60 and performing signal measurement in this frequency band, it is possible to detect an interference signal while suppressing a decrease in data transmission efficiency. Become.
  • the reception device 60 can detect and measure an interference signal only in the null frequency band.
  • the frequency band of the null subcarrier generated in the transmission signal is not constant and changes for each transmission signal, the reception device 60 receives the transmission signal a plurality of times and detects the interference signal in each of the radio communication systems 5.
  • the transmission device 50 In response to such a problem, in the wireless communication system 5 configured as described above, the transmission device 50 always performs block coding processing to generate a transmission signal, thereby improving the followability to fluctuations in transmission path characteristics. It becomes possible.
  • FIGS. 16 and 17 are block diagrams illustrating functional configurations of the transmission device 50 and the reception device 60 of the wireless communication system 5 in the modification of the third embodiment.
  • the transmission device 50 may be configured to further include an interference band information signal reception unit 508.
  • the reception device 60 may be configured to further include an interference band information signal transmission unit 610.
  • the transmission device 50 receives the interference band information transmitted from the reception device 60, and operates based on the interference band information.
  • the transmission device 50 and the reception device 60 configured as described above will be described.
  • the interference band information signal transmission unit 610 generates interference band information based on the detection result of the interference signal detection unit 609.
  • the interference band information is information related to an interference signal in wireless communication between the transmission device 50 and the reception device 60. For example, information indicating a subcarrier in which interference has occurred and information indicating the amplitude of the interference signal. It is.
  • the interference band information also includes information on the error rate calculated in the error correction decoding process of the FEC decoding unit 607.
  • the interference band information signal transmission unit 610 performs radio signal (interference band information signal) by performing processing such as error correction coding processing, modulation processing, digital / analog conversion processing, and up-conversion processing on the interference band information. Is transmitted from the antenna 601 to the transmission device 50.
  • the interference band information signal receiving unit 508 performs processing such as down-conversion processing, analog / digital conversion processing, demodulation processing, and error correction decoding processing on the interference band information signal received by the antenna 507, and performs interference band information processing. Interference band information is acquired from the signal.
  • the FEC encoding unit 501 in the modification of the third embodiment changes the encoding rate by performing adaptive modulation processing based on the error rate included in the interference band information.
  • adaptive modulation processing is possible with existing technology. For example, when the error rate is high, the FEC encoding unit 501 sets the encoding rate lower than the currently applied encoding rate to increase resistance to interference, and conversely, when the error rate is low, The coding rate is set higher than the currently applied coding rate to reduce the resistance to interference.
  • the first modulation unit 502 in the modification of the third embodiment generates a plurality of modulation symbols by performing adaptive modulation processing based on the error rate included in the interference band information.
  • adaptive modulation processing is possible with existing technology. For example, when the error rate is high, the first modulation unit 502 generates a modulation symbol by a modulation method that has a lower modulation multi-level number and higher resistance to interference than the currently applied modulation method, and conversely, the error rate. Is low, modulation symbols are generated by a modulation method having a higher modulation multi-level number and lower resistance to interference than the currently applied modulation method.
  • the transmission device 50 includes a part of data to be transmitted without intentionally providing subcarriers that do not include transmission data and have an amplitude value of zero.
  • a subcarrier having an amplitude value of zero is generated as a subcarrier.
  • the receiving device 60 detects a signal in the frequency band of the subcarrier whose amplitude value is zero in the transmitting device 50 from the received signal as an interference signal. Therefore, according to the present invention, it is possible to detect an interference signal while suppressing a decrease in data transmission efficiency.
  • the detection result of the interference signal by the reception device 60 is used for generating the interference band information signal to the transmission device 50.
  • the use of the detection result of the interference signal is not limited to this, and the existing It may be applied to other uses.
  • the receiving apparatus 60 may be configured to realize demodulation processing according to the interference signal by feeding back the detection result of the interference signal to the second demodulation unit 603 and improve the accuracy of the demodulation processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 複数のサブキャリアからなる無線信号の伝送に用いられる送信装置及び受信装置を含む無線通信システムは、前記送信装置が、送信すべき送信対象データに対して誤り訂正符号化を行い、誤り訂正符号化により得られたデータの送信に用いる前記複数のサブキャリアのうち少なくとも1つのサブキャリアの振幅値を零にしたヌルサブキャリアにして誤り訂正符号化により得られたデータを送信し、前記受信装置が、前記複数のサブキャリアの信号を前記送信装置から受信し、受信した信号に対して誤り訂正復号を行い前記送信対象データを得るとともに、前記ヌルサブキャリアを用いたサブキャリアにおいて予め定めた基準値を超える受信電力を検出した場合、該サブキャリアに干渉が生じていると判定する。

Description

無線通信システム、及び無線通信方法
 本発明は、無線通信システム、及び無線通信方法に関する。
 本願は、2008年12月19日に日本に出願された特願2008-324412号、及び2009年3月3日に日本に出願された特願2009-049785号に基づき優先権を主張し、その内容をここに援用する。
 近年、無線通信分野において、有限な周波数資源の枯渇問題が深刻になっており、周波数利用効率の向上が望まれている。周波数利用効率を向上させる技術として、周波数共用型の無線通信がある。図18は、周波数帯域を共用する無線通信システムの組み合わせの一例として、周波数チャネルが異なる2つの無線LAN(Local Area Network)システム全体を示す概念図である。
 無線通信システムは、図示するように、無線LAN基地局10a、10bと、受信装置20aとを備えている。無線LAN基地局10aは、中心周波数faであるチャネルCH1の周波数帯域を用いて通信する。無線LAN基地局10bは、中心周波数fb(fa<fb)であるチャネルCH5の周波数帯域を用いて通信する。
 受信装置20aは、無線LAN基地局10a、10bの双方の無線信号が到達する位置に配置され、中心周波数faの無線信号と通信周波数fbの無線信号とが互いに部分的に干渉した信号を受信する。
 なお、周波数帯域を互いに共用する他の例として、無線LANシステムとBluetooth(登録商標)とWiMAX(登録商標)との組み合わせなどがあり、異なる通信方式のシステム同士が周波数を共用する場合もある。
 このように、例えば、無線LAN基地局10aを通信対象とする場合、中心周波数faである希望信号の送信周波数帯域と、中心周波数fbである無線LAN基地局10bからの干渉信号の送信周波数帯域とが、部分的にオーバーラップ(干渉)する。このような周波数共用型の無線通信において、受信装置20aは、誤り訂正などを効率的に行って周波数利用効率を向上させるために、希望信号の周波数帯域にオーバーラップする干渉信号の存在を正確に検出することが必要となる。
 干渉信号の存在を検出するための技術として、例えばトレーニング信号、サウンディング信号のような既知パターンの信号を用いて干渉信号の測定を行う技術が提案されている(特許文献1参照)。また、バースト伝送における非送信区間やデータ区間に意図的に設けられたヌル信号区間を用いて干渉信号の測定を行う技術も提案されている。
特開2007-282120号公報
 しかしながら、上述のような干渉信号を検出する技術では、データの伝送効率を低下させてしまう、あるいは伝送路変動への追従性が悪いという問題が生じていた。
 上記事情に鑑み、本発明は、データの伝送効率の低下を抑止しつつ干渉信号を検出することを可能とする無線通信システム、及び無線通信方法を提供することを目的としている。
 [1]本願発明の一態様は、複数のサブキャリアからなる無線信号の伝送に用いられる送信装置及び受信装置を含む無線通信システムであって、前記送信装置が、送信すべき送信対象データに対して誤り訂正符号化を行い、誤り訂正符号化により得られたデータの送信に用いる前記複数のサブキャリアのうち少なくとも1つのサブキャリアの振幅値を零にしたヌルサブキャリアにして誤り訂正符号化により得られたデータを送信し、前記受信装置が、前記複数のサブキャリアの信号を前記送信装置から受信し、受信した信号に対して誤り訂正復号を行い前記送信対象データを得るとともに、前記ヌルサブキャリアを用いたサブキャリアにおいて予め定めた基準値を超える受信電力を検出した場合、該サブキャリアに干渉が生じていると判定することを特徴とする無線通信システムである。
 [2]また、本発明の一態様は、上記の無線通信システムにおいて、一定時間間隔で区切られたタイムスロット毎に、前記ヌルサブキャリアに設定する前記サブキャリアを変更することを特徴とする。
 [3]また、本発明の一態様は、上記の無線通信システムにおいて、前記複数のサブキャリアのうちいずれのサブキャリアを前記ヌルサブキャリアに設定するか否かは、予め定められていることを特徴とする。
 [4]また、本発明の一態様は、上記の無線通信システムにおいて、前記複数のサブキャリアのうち周波数が最も高いサブキャリアから中心周波数のサブキャリアに向かって順に前記ヌルサブキャリアが設定されると共に、前記複数のサブキャリアのうち周波数が最も低いサブキャリアから中心周波数のサブキャリアに向かって順に前記ヌルサブキャリアが設定されることを特徴とする。
 [5]また、本発明の一態様は、上記の無線通信システムにおいて、前記ヌルサブキャリアは、前記複数のサブキャリアのうちのサブキャリアにランダムに設定されることを特徴とする。
 [6]また、本発明の一態様は、上記の無線通信システムにおいて、前記複数のサブキャリアに設定される前記ヌルサブキャリアの数は、前方誤り訂正符号における符号化率、又は、前記送信装置と前記受信装置との間の伝搬路特性に応じて定められることを特徴とする。
 [7]また、本発明の一態様は、上記の無線通信システムにおいて、前記受信装置が、前記干渉波が検出されたサブキャリアを示す干渉波検出情報を前記送信装置に送信し、前記送信装置が、送信された前記干渉波検出情報に応じて前記ヌルサブキャリアを設定することを特徴とする。
 [8]また、本発明の一態様は、上記の無線通信システムにおいて、連続する前記タイムスロットにおける干渉波検出情報から、前記複数のサブキャリアのうちいずれのサブキャリアに前記干渉波が前記連続するタイムスロットのいずれのタイムスロットに存在したかを推定し、該干渉波が存在したサブキャリアの変調シンボルを使用せずに前記送信対象データの復調を行うことを特徴とする。
 [9]また、本発明の一態様は、上記の無線通信システムにおいて、前記送信装置が、送信する前記送信対象データに対して前方誤り符号を適用し、前方誤り符号化された前記送信対象データを変調して変調信号を出力する変調部と、前記変調部が出力する前記変調信号に対して前記複数のサブキャリアのうち前記ヌルサブキャリアに設定されたサブキャリアに割り当てられる前記変調信号の送信電力をゼロにするパンクチャリング処理部とを備えることを特徴とする。
 [10]また、本発明の一態様は、上記の無線通信システムにおいて、前記受信装置が、前記ヌルサブキャリアと設定されたサブキャリアにおける受信信号を無効な信号として、該受信信号を用いずに復調及び誤り訂正復号を行うことを特徴とする。
 [11]また、本発明の一態様は、上記の無線通信システムにおいて、前記送信装置が、前記送信対象データに対し誤り訂正符号化を行い、誤り訂正符号化ビットを生成する誤り訂正符号化部と、誤り訂正符号化ビットを変調し複数の変調シンボルを生成する第一変調部と、複数の変調シンボルに対し、一部の振幅値がゼロとなるようなブロック符号化を行うブロック符号化部と、ブロック符号化された変調シンボルを各サブキャリアに配置し変調信号を生成する第二変調部と、前記変調信号から送信信号を生成し送信する送信部と、を備え、前記受信装置が、前記送信信号を受信する受信部と、受信した送信信号からサブキャリア毎に前記ブロック符号化された変調シンボルを取得する第二復調部と、前記ブロック符号化された変調シンボルに対し、前記ブロック符号化部のブロック符号化に応じたブロック復号化を行うブロック復号部と、ブロック復号化された前記変調シンボルに対し、前記第一変調部の変調に応じた復調を行う第一復調部と、復調後の値を用いて前記誤り訂正符号化部の誤り訂正符号化に応じた誤り訂正処理及び復号処理を行うことによって前記送信対象データを生成する誤り訂正復号部と、前記送信対象データに基づいて、前記送信部が生成した送信信号において振幅値がゼロとなっていたサブキャリアの周波数帯域を判定する判定部と、前記受信した送信信号から、前記判定部によって振幅値がゼロとなっていたと判定されたサブキャリアの周波数帯域の信号を干渉信号として検出する検出部とを備えることを特徴とする。
 [12]また、本発明の一態様は、上記の無線通信システムにおいて、前記判定部が、前記送信対象データに対し、前記誤り訂正符号化部と同じ誤り訂正符号化を行い、前記第一変調部と同じ変調を行い、前記ブロック符号化部と同じブロック符号化を行うことによって、前記送信部が生成した送信信号において振幅値がゼロとなるサブキャリアの周波数帯域を判定することを特徴とする。
 [13]また、本発明の一態様は、上記の無線通信システムにおいて、前記受信装置が、検出された干渉信号に基づいて干渉が生じているサブキャリアを表す干渉帯域情報を生成し、前記送信装置に送信する干渉帯域情報信号送信部、をさらに備え、前記送信装置の前記誤り訂正符号化部又は前記第一変調部は、前記干渉帯域情報信号に基づいて符号化率又は変調方式を決定することを特徴とする。
 [14]また、本発明の一態様は、複数のサブキャリアからなる無線信号の伝送に用いられる送信装置及び受信装置を含む無線通信システムにおける無線通信方法であって、前記送信装置が、送信すべき送信対象データに対して誤り訂正符号化を行い、誤り訂正符号化により得られたデータの送信に用いる前記複数のサブキャリアのうち少なくとも1つのサブキャリアの振幅値を零にしたヌルサブキャリアにして誤り訂正符号化により得られたデータを送信する過程と、前記受信装置が、前記複数のサブキャリアの信号を前記送信装置から受信し、受信した信号に対して誤り訂正復号を行い前記送信対象データを得るとともに、前記ヌルサブキャリアを用いたサブキャリアにおいて予め定めた基準値を超える受信電力を検出した場合、該サブキャリアに干渉が生じていると判定する過程とを有することを特徴とする無線通信方法である。
 本発明では、送信装置において、送信すべきデータを誤り訂正符号化した後に、誤り訂正符号化した送信データを送信するサブキャリアの一部を振幅値がゼロのヌルサブキャリアとして送信する。そして、受信装置は、受信した信号からヌルサブキャリアの周波数帯域の信号を干渉信号として検出するとともに、誤り訂正復号を行うことにより送信データを復号する。そのため、本発明によれば、送信すべきデータにヌルサブキャリアを生成するためのデータを加えることなくヌルサブキャリアを生成するので、送信データの伝送効率を低下させることなく、干渉信号を検出することができる。
第1実施形態による無線通信システムの構成と、送信装置及び受信装置の構成とを示す概略ブロック図である。 マルチキャリア重畳伝送を示す概念図である。 マルチキャリア重畳伝送を示す概念図である。 同実施形態におけるヌルサブキャリアの配置の一例を示す送信フレームの概念図である。 同実施形態におけるヌルサブキャリアの配置の異なる一例を示す送信フレームの概念図である。 同実施形態におけるヌルサブキャリアの配置の異なる一例を示す送信フレームの概念図である。 第2実施形態における無線通信システムの構成と、送信装置及び受信装置の構成とを示す概略ブロック図である。 同実施形態におけるヌルサブキャリアの配置の異なる一例を示す送信フレームの概念図である。 同実施形態における送信装置と受信装置との動作を示すシーケンス図である。 第3実施形態におけるマルチキャリア伝送によって信号の送受信を行う無線通信システムの概略を表す概略図である。 同実施形態における送信装置の機能構成を表すブロック図である。 同実施形態におけるブロック符号化後の各コンスタレーションポイントの出現確率を表す概略図である。 送信信号の概略を表す概略図である。 送信信号の概略を表す概略図である。 同実施形態における送信装置の送信処理の手順を示すフローチャートである。 同実施形態における受信装置の機能構成を表すブロック図である。 同実施形態における受信装置の受信処理の手順を示すフローチャートである。 第3実施形態における送信装置の変形例の機能構成を表すブロック図である。 第3実施形態における受信装置の変形例の機能構成を表すブロック図である。 周波数帯域を共用する無線通信システムの組み合わせの一例のシステム全体を示す概念図である。
 以下、本発明の実施形態による無線通信システムを図面を参照して説明する。
<第1実施形態>
 図1は、第1実施形態による無線通信システム1の構成と、送信装置10及び受信装置20の構成とを示す概略ブロック図である。無線通信システム1は、データを送信する送信装置10と、送信装置10からデータを受信する受信装置20とを有している。
 なお、本実施形態の無線通信システム1では、マルチキャリア通信としてOFDM(Orthogonal Frequency Division Multiplexing;直交周波数分割多重)方式を用い、マルチキャリア重畳伝送方式を適用している場合を説明する。
 マルチキャリア重畳伝送方式とは、周波数利用効率を向上させる技術の1つである。図2A及び図2Bは、マルチキャリア重畳伝送を説明するための概念図である。図2Aに図示するように、一般的に、近接する複数の周波数帯域を使用して通信を行う無線通信システムは、使用する周波数帯域の間にガードバンドを設けて、相互干渉を避けている。
 しかしながら、ガードバンドは、いずれの通信にも用いられず、周波数利用効率の向上を阻害する原因の1つとなっている。
 そこで、図2Bに示すようにガードバンドを設けずに、互いの信号が干渉するのを前提に通信を行う周波数帯域の一部を重畳させて配置し、相互干渉が発生した場合には、相互干渉の影響を受けない信号を活用した誤り訂正復号を行うことにより、無線通信システムが占有する周波数帯域を削減して、周波数利用効率を改善する。
 図1に戻り、送信装置10と受信装置20との構成について説明する。
 送信装置10は、データ変調部101、S/P(シリアル/パラレル)変換部102、パンクチャパタン生成部103、パンクチャリング処理部104、IFFT(Inverse Fast Fourier Transform)部105、P/S(パラレル-シリアル)変換部106、及び、無線通信部107を備える。
 変調部101は、送信するビットデータが入力され、入力されたビットデータに対して前方誤り訂正符合(Forwarding Error Correction;FEC)を適用し、前方誤り訂正符号化したビットデータを変調した変調シンボルをS/P変換部102に出力する。ここで、変調部101は、前方誤り訂正符号化に、例えば、畳み込み符号、ターボ符号、低密度パリティ検査符号(LDPC:Low Density Parity Check Code)などを用い、変調に、例えば、QPSK(Quadrature Phase Shift Keying;四位相偏移変調)や16QAM(16-position Quadrature Amplitude Modulation;16点直交振幅変調)や、64QAM(64-position Quadrature Amplitude Modulation;64点直交振幅変調)などを用いる。
 S/P変換部102は、変調部101から出力された変調シンボルをシリアル-パラレル変換してパンクチャリング処理部104に出力する。パンクチャパタン生成部103は、通信に使用するサブキャリアのうちいずれのサブキャリアに送信電力を零とするヌル(Null)を割り当てるサブキャリアを示すヌルパタン情報を生成し、生成したヌルパタン情報をパンクチャリング処理部104に出力する。パンクチャリング処理部104は、S/P変換部102が出力する直並列化(シリアル-パラレル変換)された変調シンボルのうち、パンクチャパタン生成部103が出力するヌルパタン情報により指定された変調シンボルを電力が零のヌルに変更して、IFFT部105に出力する。
 IFFT部105は、パンクチャリング処理部104が出力する変調シンボルに逆FFT処理により時間領域の信号に変換し、変換した信号をP/S変換部106に出力する。
 P/S変換部106は、IFFT部105が出力した信号に対してパラレル-シリアル変換を行い無線通信部107に出力する。無線通信部107は、アンテナが接続され、P/S変換部106が出力する並直列化(パラレル-シリアル変換)された信号を搬送波の周波数帯域にアップコンバートして受信装置20に送信する。
 続いて、受信装置20は、無線通信部201、S/P変換部202、FFT(Fast Fourier Transform)部203と、P/S変換部204、干渉帯域検出部205、及び、復調部206を備える。無線通信部201は、アンテナが接続され、送信装置10が送信した信号を受信し、受信した信号を搬送波の周波数帯域からダウンコンバートして変調シンボルをS/P変換部202に出力する。
 S/P変換部202は、無線通信部201が受信する変調シンボルをシリアル-パラレル変換してFFT部203に出力する。FFT部203は、S/P変換部202が出力する直並列化した変調シンボルをFFT処理により周波数領域の変調シンボルに変換してP/S変換部204に出力する。
 P/S変換部204は、FFT部203が出力する変換した変調シンボルをパラレル-シリアル変換した変調シンボルを干渉帯域検出部205と復調部206とに出力する。干渉帯域検出部205は、ヌルサブキャリアに割り当てられるサブキャリアを示すヌルパタン情報を記憶し、ヌルサブキャリアに設定されたサブキャリアに対応する変調シンボルから予め定めた受信電力を超える信号を検出したとき、当該サブキャリアに干渉波が存在することを検出し、干渉波の影響を受けていると判断したサブキャリアを示す干渉帯域情報を復調部206に出力する。また、干渉帯域検出部205は、検出した干渉波の受信電力を検出する。ここで、干渉波の検出は、例えば、制御信号などで選択されたヌルパタン情報に応じて、干渉帯域検出部205がヌルサブキャリアの受信電力を検出することにより行う。
 復調部206は、P/S変換部204が出力した変調シンボルのうち、干渉帯域検出部205が出力する干渉帯域情報により干渉波の影響があると示されるサブキャリアに対応する変調シンボルを用いずに、誤り訂正復号と復調とを行って得られたビットデータを出力する。また、復調部206は、ヌルサブキャリアに設定されたサブキャリアから受信した受信信号を無効な信号として、当該受信信号を用いずに誤り訂正復号と復調とを行う。
 次に、ヌルサブキャリアの設定と干渉波の検出について説明する。
 図3は、ヌルサブキャリアの配置の一例を示す送信フレームの概念図である。横軸はサブキャリア(周波数)を示し、縦軸はタイムスロット(時間)を示す。各送信フレームは、それぞれが異なる周波数に設けられるサブキャリアを10つ含み、予め定められた一定の時間間隔で区切られたタイムスロットを4つ含み構成される。図示するように、パンクチャパタン生成部103が、それぞれの送信フレームに予め定めたサブキャリア(サブキャリア2、4、7、9)にヌルサブキャリアを設定する。
 破線I1で囲まれたサブキャリアに干渉波が存在するとき、干渉帯域検出部205は、次のように干渉波の影響を受けるサブキャリアを検出する。
 タイムスロット1において、干渉帯域検出部205は、配置したヌルサブキャリアそれぞれに対応する変調シンボルからは予め定められた基準値を超える電力が検出されないので、当該タイムスロットに干渉帯域がないと判定する。ここで、予め定められた基準値とは、どの程度の受信電力が検出されると干渉波が存在するかを統計的、あるいは、経験的に定めた値であり、ホワイトノイズなどを考慮して定められる電力値である。
 タイムスロット2~4では、干渉帯域検出部205は、干渉波が存在することにより、受信電力が予め定めた基準値を超える受信電力を有する変調シンボルをヌルサブキャリア9に検出する。これにより、干渉帯域検出部205は、マルチキャリア重畳伝送方式を適用する場合、通信帯域の両端に干渉帯域が発生しやすいので、サブキャリア10にも干渉波が存在していると推定する。また、干渉帯域検出部205は、サブキャリア7には基準値を超える受信電力が検出されないことから、干渉帯域の境界が、サブキャリア8又はサブキャリア9にあると判定し、サブキャリア8~10を干渉波の影響を受けたサブキャリアと判定して干渉帯域情報を復調部206に出力する。
 なお、ここでは、干渉帯域検出部205は、サブキャリア8を干渉波の影響を受けた干渉帯域であると判定したが、サブキャリア9~10を干渉帯域と判定してもよい。図示するように、干渉帯域検出部205がサブキャリア9に干渉波を検出し、サブキャリア7に干渉波を検出しない場合、干渉帯域の境界が、サブキャリア8、又は、サブキャリア9のいずれかに存在する。また、干渉帯域検出部205が実際と異なった判定をしても、誤り訂正復号により正しくビットデータを復号できることが多いからである。
 また、干渉帯域検出部205は、タイムスロット毎に干渉帯域を判定したが、送信フレーム単位で判定してもよい。
 次に、図4は、ヌルサブキャリアの配置の異なる一例を示す送信フレームの概念図である。図3と同様に、横軸方向はサブキャリアを示し、縦軸方向はタイムスロットを示す。また、図4は、破線I2で囲まれたサブキャリアに干渉波が存在することを示している。
 送信フレームは、10のサブキャリアと4つのタイムスロットから構成され、図示するように、パンクチャパタン生成部103が、タイムスロット毎に異なり、予め定めたサブキャリアにヌルサブキャリアを設定する。図示する例において、パンクチャパタン生成部103は、タイムスロット1では、サブキャリア1、10にヌルサブキャリアを設定し、タイムスロット2では、サブキャリア2、9にヌルサブキャリアを設定し、タイムスロット3では、サブキャリア3、8にヌルサブキャリアを設定し、タイムスロット4では、サブキャリア4、7にヌルサブキャリアを設定する。
 図示するように、パンクチャパタン生成部103は、ヌルサブキャリアを通信に使用する周波数帯域の両端から、通信に使用する周波数帯域の中央に向かってタイムスロット毎に異なる位置に配置する。このようにすると、干渉帯域検出部205が、送信フレーム単位で干渉帯域の境界を判断することにより、送信フレーム中に干渉帯域が大きく変化しないとすれば、送信フレームにおいて干渉帯域の境界がサブキャリア8にあると判定し、タイムスロット1~4において、サブキャリア8~10が干渉帯域であることを示す干渉帯域情報を復調部206に出力する。
 図示するような、パンクチャパタン生成部103が、通信に用いる周波数帯域の両端から中央に向かってヌルサブキャリアを順に各スロットに配置することにより、干渉帯域検出部205が、送信フレームのいずれのサブキャリアに干渉波が影響していたかを推定することが容易になり、特に、マルチキャリア重畳伝送方式を適用した無線通信システムでは、干渉波が生じる周波数帯域を検出する追従性を改善することができる。
 図5は、ヌルサブキャリアの配置の異なる一例を示す送信フレームの概念図である。図3と同様に、横軸方向はサブキャリアを示し、縦軸方向はスロットを示す。送信フレームは、10のサブキャリアと4つのスロットから構成され、図示するように、パンクチャパタン生成部103が、スロット毎に異なり、予め定めたサブキャリアにヌルサブキャリアを設定する。図示する例において、パンクチャパタン生成部103は、スロット1ではサブキャリア2、5、8にヌルサブキャリアを設定し、スロット2ではサブキャリア1、4、7、10にヌルサブキャリアを設定し、スロット3ではサブキャリア3、7、9にヌルサブキャリアを設定し、スロット4ではサブキャリア4、5、8にヌルサブキャリアを設定する。
 このように、パンクチャパタン生成部103がヌルサブキャリアをくし形状に配置することに、送信フレーム中のサブキャリア全体に対して干渉波の検出を行うことができ、通信に使用する周波数帯域のいずれのサブキャリアに干渉帯域が生じても検出することができる。
 上述のように、干渉帯域検出部205が、ヌルサブキャリアに対応する変調シンボルの受信電力により干渉波の影響を受けたサブキャリアである干渉帯域を判定し、判定結果を示す干渉帯域情報を206に出力する。これにより、復調部206は、干渉波の影響を受けた、あるいは、干渉波の影響を受けた可能性のある変調シンボルを用いずに誤り訂正復号と復調とを行うので誤り訂正能力を向上させることが可能になる。
 また、送信フレーム中のスロット毎に干渉波及び干渉帯域の検出を行うので、干渉波の発生に対して追従性よく干渉波の検出を行うことが可能である。
 なお、ヌルサブキャリアを配置する3つの例を示したが、上述の配置以外のパターンでヌルサブキャリアを配置してもよく、ランダムに配置してもよい。
 また、各スロットに設定するヌルサブキャリア数は、前方誤り訂正符号における符号化率に応じて設定される。ヌルサブキャリアとして設定されることで送信されない変調シンボルが存在しても、受信装置20がビットデータを正しく誤り訂正復号を行える範囲でヌルサブキャリアを設定してもよい。このとき、送信装置10と受信装置20との間の伝搬路特性に応じてヌルサブキャリア数を定めるのが好適である。
<第2実施形態>
 図6は、第2実施形態における無線通信システム3の構成と、送信装置12及び受信装置22の構成とを示す概略ブロック図である。無線通信システム3は、データを送信する送信装置12と、送信装置12からデータを受信する受信装置22とを有している。なお、無線通信システム3は、第1の実施形態における無線通信システム1と同様に、マルチキャリア通信としてOFDM方式を用い、マルチキャリア重畳伝送方式を適用している場合について説明する。
 送信装置12は、変調部101、S/P変換部102、パンクチャリング処理部104、IFFT部105、P/S変換部106、無線通信部127、タイマ部123、及び、パンクチャパタン生成部124を備えている。なお、送信装置12は、第1実施形態の送信装置10に比べ、パンクチャパタン生成部124、タイマ部123、及び、無線通信部127が異なり、他の構成は同じであるので、対応する部分に同一の符号(101、102、104~106)を付して、説明を省略する。
 タイマ部123は、ビットデータの伝送の開始に応じてリセットされ、以降、一定時間間隔、例えば、1送信フレーム時間間隔、数フレーム時間間隔や、通信の特性に合わせた実時間をカウントし、カウントが満了すると、パンクチャパタン生成部124に一定時間間隔経過を示す情報を出力すると共に、リセットし再びカウントを開始する。
 パンクチャパタン生成部124は、第1実施形態のパンクチャパタン生成部103と同様の動作に、通信に使用するサブキャリアのうちいずれのサブキャリアに送信電力を零とするヌル(Null)を割り当てるかを示すヌルパタン情報を生成し、生成したヌルパタン情報をパンクチャリング処理部104に出力し、更に、受信装置22からの干渉波検出情報のフィードバックに応じて、ヌルサブキャリアを設定するヌルパタン情報を生成し、生成したヌルパタン情報をパンクチャリング処理部104に出力する。
 無線通信部127は、第1実施形態の無線通信部107の動作、アンテナが接続され、P/S変換部106が出力する並直列化された信号を搬送波の周波数帯域にアップコンバートして受信装置22に送信し、更に、受信装置22からヌルサブキャリアに予め定められた基準値を超える受信電力が検出されたことを示す干渉波検出情報を受信し、受信した干渉波検出情報をパンクチャパタン生成部124に出力する。
 受信装置22は、無線通信部221、S/P変換部202、FFT部203、P/S変換部204、干渉帯域検出部225、タイマ部227、及び、復調部206を備える。なお、受信装置22は、第1の実施形態の受信装置20に比べ、無線通信部221、干渉帯域検出部225を備える点が異なり、他の構成は同じであるので、対応する部分に同一の符号(202~204、206)を付して説明を省略する。
 タイマ部227は、送信装置12のタイマ部123と同期して動作し、ビットデータの伝送の開始に応じてリセットされ、以降、一定時間間隔、例えば、1送信フレーム時間間隔、数フレーム時間間隔や、通信の特性に合わせた実時間をカウントし、カウントが満了すると、干渉帯域検出部225に一定時間間隔経過を示すタイミング情報を出力すると共に、リセットし再びカウントを開始する。なお、タイマ部227とタイマ部123とを同期させるには、例えば、ビットデータ伝送を開始するときの制御信号などを用いて行う。
 干渉帯域検出部225は、第1実施形態の干渉帯域検出部205と同様に、ヌルパタン情報を記憶し、ヌルサブキャリアに設定されたサブキャリアに対応する変調シンボルから予め定めた受信電力を超える信号を検出したとき、当該サブキャリアに干渉波が存在することを検出し、干渉波の影響を受けていると判断したサブキャリアを示す干渉帯域情報を復調部206に出力すると共に、検出した干渉波の受信電力を検出する。
 更に、干渉帯域検出部225は、タイマ部227が出力するタイミング情報に応じて、ヌルパタン情報の切り替えを初期化する。
 無線通信部221は、第1実施形態の無線通信部201と同様に、アンテナが接続され、送信装置12が送信した信号を受信し、受信した信号を搬送波の周波数帯域からダウンコンバートして変調シンボルをS/P変換部202に出力する。更に、無線通信部221は、干渉帯域検出部225が出力した干渉波検出情報を送信装置12に制御チャネルや、制御信号などとして送信する。
 次に、図7及び図8を用いて無線通信システム3の動作を説明する。図7は、同実施形態における送信フレームのヌルサブキャリアの配置の異なる一例を示す送信フレームの概念図である。図7に示すように、タイムスロット1~4において、破線I3で囲まれたサブキャリア8~10が干渉帯域となっている。
 また、図8は、送信装置12と受信装置22との動作を示すシーケンス図である。なお、本実施形態において、タイマ部123、227は、1送信フレームでカウントを満了し、リセットする構成とする。
 まず、タイマ部123は、ビットデータの伝送に応じてリセットされる(ステップS11)、また、タイマ部227は、タイマ部123に同期してリセットされる(ステップS12)。
 パンクチャパタン生成部124は、ビットデータの送信が開始されると、サブキャリア1と10とをヌルサブキャリアとするパターン1をパンクチャリング処理部104に出力する(ステップS13)。
 パンクチャリング処理部104が、パンクチャパタン生成部124から入力されたパターン1に応じてヌルサブキャリアを設定し、ヌルサブキャリアが設定された変調シンボルがIFFT部105、P/S変換部106、無線通信部127において順に処理されて、タイムスロット1の信号を受信装置22に送信される(ステップS14)。
 受信装置22において、無線通信部221が、送信装置12から送信された信号を受信し、受信された信号が、S/P変換部202、FFT部203、P/S変換部204の順に処理されて、干渉帯域検出部225及び復調部206に入力される。
 干渉帯域検出部225は、ヌルシンボルに設定されたサブキャリア10に対応する変調シンボルから基準値を超える受信電力をサブキャリア10に検出し(ステップS15)、サブキャリア10に干渉波が存在することを示す干渉波検出情報を復調部206と無線通信部221とに出力する。無線通信部221は、干渉帯域検出部225が出力した干渉波検出情報を送信装置12に送信する(ステップS16)。
 送信装置12において、無線通信部127は、受信装置22から干渉波検出情報を受信し、受信した干渉波検出情報をパンクチャパタン生成部124に出力する。パンクチャパタン生成部124は、サブキャリア10に干渉波があることを示す干渉波検出情報が入力されると、干渉帯域の境界を検出するために、ヌルサブキャリアを通信は帯域の中心周波数側に配置し、サブキャリア3、8をヌルサブキャリアとするパターン2をパンクチャリング処理部104に出力する(ステップS17)。
 パンクチャリング処理部104は、パンクチャパタン生成部124が出力したパターン2に応じてヌルサブキャリアを設定し、IFFT部105は、ヌルサブキャリアが設定された変調シンボルを逆FFTにより変換し、P/S変換部106は、逆FFT処理された変調シンボルを並直列化し、無線通信部127は、並直列化した変調シンボルを受信装置22に送信する(ステップS18)。
 受信装置22において、無線通信部221が、送信装置12から送信された信号を受信し、受信された信号が、S/P変換部202、FFT部203、P/S変換部204の順に処理されて、干渉帯域検出部225及び復調部206に入力される。
 干渉帯域検出部225は、ヌルシンボルに設定されたサブキャリア8に対応する変調シンボルから基準値を超える受信電力をサブキャリア8に検出し(ステップS19)、サブキャリア10に干渉波が存在することを示す干渉波検出情報を復調部206と無線通信部221とに出力する。無線通信部221は、干渉帯域検出部225が出力した干渉波検出情報を送信装置12に送信する(ステップS20)。
 送信装置12において、無線通信部127は、受信装置22から干渉波検出情報を受信し、受信した干渉波検出情報をパンクチャパタン生成部124に出力する。パンクチャパタン生成部124は、サブキャリア8に干渉波があることを示す干渉波検出情報が入力されると、更に、ヌルサブキャリアを通信は帯域の中心周波数側に配置して干渉帯域の境界に対する探索範囲を狭くし、干渉帯域の境界を検出するためにサブキャリア5、8をヌルサブキャリアとするパターン3をパンクチャリング処理部104に出力する(ステップS21)。
 パンクチャリング処理部104は、パンクチャパタン生成部124が出力したパターン3に応じてヌルサブキャリアを設定し、IFFT部105は、ヌルサブキャリアが設定された変調シンボルを逆FFTにより変換し、P/S変換部106は、逆FFT処理された変調シンボルを並直列化し、無線通信部127は、並直列化した変調シンボルを受信装置22に送信する(ステップS22)。
 受信装置22において、無線通信部221が、送信装置12から送信された信号を受信し、受信された信号が、S/P変換部202、FFT部203、P/S変換部204の順に処理されて、干渉帯域検出部225及び復調部206に入力される。
 干渉帯域検出部225は、ヌルシンボルに設定されたサブキャリア8に対応する変調シンボルから基準値を超える受信電力をサブキャリア8に検出し(ステップS23)、サブキャリア10に干渉波が存在することを示す干渉波検出情報を復調部206と無線通信部221とに出力する。無線通信部221は、干渉帯域検出部225が出力した干渉波検出情報を送信装置12に送信する(ステップS24)。
 送信装置12において、無線通信部127は、受信装置22から干渉波検出情報を受信し、受信した干渉波検出情報をパンクチャパタン生成部124に出力する。パンクチャパタン生成部124は、サブキャリア8に干渉波があることを示す干渉波検出情報が入力されると、干渉帯域の境界がサブキャリア6~8のいずれかにあるとして、サブキャリア6、7をヌルサブキャリアとするパターン4をパンクチャリング処理部104に出力する(ステップS25)。
 パンクチャリング処理部104は、パンクチャパタン生成部124が出力したパターン4に応じてヌルサブキャリアを設定し、IFFT部105は、ヌルサブキャリアが設定された変調シンボルを逆FFTにより変換し、P/S変換部106は、逆FFT処理された変調シンボルを並直列化(パラレル-シリアル変換)し、無線通信部127は、並直列化した変調シンボルを受信装置22に送信する(ステップS26)。
 受信装置22において、無線通信部221が、送信装置12から送信された信号を受信し、受信された信号が、S/P変換部202、FFT部203、P/S変換部204の順に処理されて、干渉帯域検出部225及び復調部206に入力される。
 干渉帯域検出部225は、ヌルシンボルに設定されたサブキャリア6,7に対応する変調シンボルから基準値を超える受信電力が検出されず(ステップS27)、サブキャリア10に干渉波が存在しないことを示す干渉波検出情報を復調部206と無線通信部221とに出力する。無線通信部221は、干渉帯域検出部225が出力した干渉波検出情報を送信装置12に送信する(ステップS28)。
 1送信フレームの4タイムスロットを送信が完了すると、タイマ部123がカウントを満了し、1送信フレームの送信が完了したことをパンクチャパタン生成部124に通知する(ステップS29)。
 以降、送信装置12は、上述のステップと同様に動作するが、ヌルサブキャリアをいずれのサブキャリアに設定するかは、干渉波が検出されたサブキャリアに応じて異なる。
 また、受信装置22において、タイマ部227がカウントを満了し、1送信フレーム分の送信が完了したことを干渉帯域検出部225に通知する(ステップS29a)。
 干渉帯域検出部225は、本送信フレームの干渉波検出位置の系列から、サブキャリア8に干渉帯域の境界があると判定し、本送信フレームにおいてサブキャリア8~10を干渉帯域とする干渉帯域情報を復調部206に出力する(ステップS30)。
 復調部206は、タイムスロット1~4において、サブキャリア8~10の変調シンボルを用いずに誤り訂正復号と復調を行いビットデータを検出する(ステップS31)。
 上述のように、受信装置22の干渉帯域検出部225が、送信装置12のパンクチャパタン生成部124に、干渉波を検出したサブキャリアの情報をフィードバックすることにより、効率的に干渉帯域の特定を効率的に行うことができる。また、パンクチャパタン生成部124は、干渉波の存在を通知されたときに、ヌルサブキャリアを多く配置することにより、少ない干渉波の検出回数で干渉帯域の境界を検出することができる。
 なお、上述の第1実施形態及び第2実施形態において、復調部206は、干渉帯域情報により干渉波の影響があると示されるサブキャリアに対応する変調シンボルを用いずに、誤り訂正復号と復調とをするとしたが、当該変調シンボルを干渉波の影響がないサブキャリアに対応する変調シンボルに対して信頼度の低い変調シンボルとして重み付けを行い、誤り訂正復号と変調とに用いてもよい。上述のように、干渉波の影響を受けたサブキャリアに対応する変調シンボルを用いない動作は、当該変調シンボルに対する信頼度が零の場合である。また、変調シンボルに重み付けを行う場合、重み付け係数は固定値でもよいし、検出した干渉波の受信電力に応じて変化させてもよい。
 また、変調部101における符号化率を低くすることにより、ヌルサブキャリアとして設定するサブキャリア数を増やしてもよい。これにより、干渉波が頻繁に発生する環境において、干渉波の発生したサブキャリア、及び、干渉波の発生した期間を詳細に検出することができ、干渉波の発生に対して追従性を高くすることが可能となる。また、干渉波が頻繁に発生する環境か否かは、受信装置においてどの程度の干渉波が検出されたかにより動的に検出し、送信装置にフィードバックしてもよい。
 また、第1実施形態及び第2実施形態において、干渉帯域検出部205、225は、ヌルサブキャリアに設定されるサブキャリアを記憶している構成を説明したが、送信装置10、11、12から送信される制御信号などにヌルサブキャリアと設定されるサブキャリアを示すヌルパタン情報を送信するようにしてもよい。その際、干渉帯域検出部205、225が検出した干渉波の受信電力に応じてヌルサブキャリアを設定するヌルパタン情報を生成してもよい。
 上述の第1実施形態及び第2実施形態の送信装置と受信装置とは内部に、コンピュータシステムを有していてもよい。その場合、上述したヌルサブキャリアを設定する処理、及び、干渉帯域を検出する処理過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われることになる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
<第3実施形態>
 図9は、第3実施形態におけるマルチキャリア伝送によって信号の送受信を行う無線通信システム5の概略を表す概略図である。無線通信システム5は、本発明による無線通信システムであり、送信装置50及び受信装置60を備える。また、無線通信システム5に含まれる送信装置50及び受信装置60の台数は、図9のようにそれぞれ1台に限定されず、それぞれ複数台含まれても良い。また、図9では送信装置50が基地局装置であり受信装置60が無線通信端末であるが、逆に送信装置50が無線通信端末であり受信装置60が基地局装置となっても良い。
 無線通信端末は、基地局装置と無線通信を行う端末装置であり、例えば携帯電話機や、無線LAN(Local Area Network)端末や、WiMAX(登録商標)(Worldwide Interoperability for Microwave Access)端末などの装置である。基地局装置は、複数の無線通信端末と無線通信を行う装置であり、例えば携帯電話ネットワークにおける基地局装置や、無線LANルータや、WiMAX(登録商標)基地局などの装置である。送信装置50と受信装置60とは、マルチキャリア伝送方式によって無線通信を行う。より具体的には、送信装置50と受信装置60とは、例えばOFDM(Orthogonal frequency division multiplex:直交周波数分割多重方式)によって無線通信を行う。
 図10は、同実施形態における送信装置50の機能構成を表すブロック図である。図示するように、送信装置50は、FEC符号化部501、第一変調部502、ブロック符号化部503、直並列変換部504、第二変調部505、送信部506、アンテナ507を備える。
 FEC符号化部501は、送信対象のデータのビット列をFEC(Forward Error Correction:前方誤り訂正)に従って誤り訂正符号化し、誤り訂正符号化ビットを生成する。
 第一変調部502は、誤り訂正符号化ビットに対して変調処理(マッピング処理)を行うことによって複数の変調シンボルを生成する。第一変調部502は、例えばBPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)、8PSK(Octuple Phase Shift Keying)等の変調方式によって変調処理を行い、誤り訂正符号化ビットに応じた振幅値及び位相値の組み合わせ(変調シンボル)を生成する。
 ブロック符号化部503は、第一変調部502によって生成された変調シンボルに対しブロック符号化処理を行う。ブロック符号化部503には、可逆演算(ブロック復号)可能であり、ブロック符号化後の信号の一部の振幅がゼロとなるようなブロック符号化手法が適用される。例えば、ブロック符号化部503は、式1のような直交行列の一種であるアダマール行列を用いてブロック符号化処理を行う。式1において、d、dはそれぞれ変調シンボルを表し、b、bはそれぞれブロック符号化後の変調シンボル(ブロック符号化変調シンボル)を表す。なお、ブロック符号化部503は、アダマール行列に限らず、M系列やスクランブル符号を用いてもよい。
Figure JPOXMLDOC01-appb-M000001
 図11は、ブロック符号化後の各コンスタレーションポイント(constellation point)の出現確率を表す概略図であり、縦軸Qは直交成分を表し横軸Iは同相成分を表す。図11は、等電力QPSK(4コンスタレーションポイント)によって変調された変調シンボルが、2×2アダマール行列によってブロック符号化された場合の例を表す。この場合、変調シンボルd、dの組み合わせは16種である。また、ブロック符号化変調シンボルb、bのコンスタレーションポイントは9種であり、そのうち振幅がゼロとなるコンスタレーションポイント(0,0)の出現確率は25%となる。
 図10に戻って送信装置50の説明を続ける。直並列変換部504は、ブロック符号化部503によって生成された複数のブロック符号化変調シンボルに対し直並列変換(シリアル/パラレル変換)を行う。
 第二変調部505は、直並列変換部504によって並列にされた各ブロック符号化変調シンボルを各サブキャリアに配置し、IFFT(Inverse Fast Fourier Transform:逆フーリエ変換)や並直列変換(パラレル/シリアル変換)やガードインターバルの挿入を行うことによって変調信号を生成する。
 送信部506は、変調信号に対しデジタル/アナログ変換や電力増幅やアップコンバート等の処理を行うことによって送信信号を生成する。
 アンテナ507は、送信部506によって生成された送信信号を無線により送信する。
 図12A及び図12Bは、送信信号の概略を表す概略図である。図12Aにおいて、横軸は周波数を表し、縦軸は振幅を表す。図12Aは従来のマルチキャリア方式(QPSK変調、OFDM)に従って生成される送信信号を表し、図12Bは送信装置50によって生成される送信信号を表す。
図12Aでは、複数のサブキャリアそれぞれの振幅はa1で均一であり、振幅がゼロとなるサブキャリア(以下、このようなサブキャリアを「ヌルサブキャリア」という)は無い。
 これに対し、図12Bでは、振幅が相対的に大きいa2のサブキャリアと、振幅が相対的に小さいa1のサブキャリアと、振幅がゼロのヌルサブキャリアとが存在する。ヌルサブキャリアは、図12Bの上向き矢印が示す周波数帯域に存在し、ブロック符号化部503において振幅値がゼロとなったブロック符号化変調シンボルが配置されたサブキャリアである。
 次に、送信装置50の動作及び処理手順について説明する。図13は、送信装置50の送信処理の手順を示すフローチャートである。
 図13に示すように、まずFEC符号化部501が送信対象のデータのビット列をFECに従って誤り訂正符号化し、誤り訂正符号化ビットを生成する(ステップS101)。次に、第一変調部502が、誤り訂正符号化ビットを変調し変調シンボルを生成する(ステップS102)。次に、ブロック符号化部503が変調シンボルに対しブロック符号化処理を行う(ステップS103)。次に、直並列変換部504がブロック符号化変調シンボルに対し直並列変換を行う(ステップS104)。次に、第二変調部505がIFFT処理を行い(ステップS105)、並直列変換やガードインターバルの挿入を行う(ステップS106)。次に、送信部506が送信信号を生成する(ステップS107)。そして、アンテナ507が送信信号を無線により送信し(ステップS108)、このフローチャートに表される送信処理が終了する。
 次に、受信装置60の機能構成について説明する。
 図14は、同実施形態における受信装置60の機能構成を表すブロック図である。図示するように、受信装置60は、アンテナ601、受信部602、第二復調部603、並直列変換部604、ブロック復号部605、第一復調部606、FEC復号部607、ヌルサブキャリア判定部608、干渉信号検出部609を備える。
 アンテナ601は、送信装置50によって送信された送信信号と、他の送信装置によって送信された干渉信号とが合成された受信信号を受信する。
 受信部602は、受信された受信信号に対し、ダウンコンバートを行い、さらにアナログ/デジタル変換を行い、変調信号を生成する。
 第二復調部603は、変調信号に対しガードインターバルの除去や直並列変換やFFT(Fast Fourier Transform:フーリエ変換)やプリアンブル情報を用いた周波数領域等化処理などを行うことによって、複数のブロック符号化変調シンボルを生成する。
 並直列変換部604は、並列に並んだ複数のブロック符号化変調シンボルに対し並直列変換を行う。
 ブロック復号部605は、ブロック符号化変調シンボルに対し、送信装置50のブロック符号化部503によるブロック符号化処理に応じたブロック復号化処理を行い、変調シンボルを生成する。例えば、ブロック符号化部503が式1のようなアダマール行列を用いてブロック符号化処理を行う場合には、ブロック復号部605は式2のようなアダマール行列の逆行列を用いてブロック復号化処理を行う。
Figure JPOXMLDOC01-appb-M000002
 第一復調部606は、送信装置50の第一変調部502による変調処理に応じた復調処理(デマッピング処理)を変調シンボルに対して行うことによって、誤り訂正符号化ビットを生成する。
 FEC復号部607は、誤り訂正符号化ビットに対しFECに従った誤り訂正処理及び復号化処理を行うことによって送信対象となっていたデータを生成する。
 ヌルサブキャリア判定部608は、送信信号においてヌルサブキャリアが配置されていた周波数帯域を判定する。具体的には、FEC復号部607によって生成されたデータに対し、送信装置50のFEC符号化部501、第一変調部502、ブロック符号化部503と同様の処理を行うことによってレプリカ信号を生成し、ヌルサブキャリアが配置されていた周波数帯域(以下、「ヌル周波数帯域」という)を判定する。
 干渉信号検出部609は、受信信号からヌル周波数帯域における信号成分を測定し、干渉信号を検出する。例えば、干渉信号検出部609は受信信号からヌル周波数帯域における信号成分の振幅を測定し、測定結果が所定の閾値以上であればヌル周波数帯域に干渉信号が存在すると判定する。さらに、干渉信号検出部609は、各ヌル周波数帯域において検出された干渉信号の有無や振幅を周波数帯域と対応付けて検出結果として記憶しても良い。この場合、受信装置60が受信する信号の全ての周波数帯域において検出結果が得られると、干渉信号検出部609は干渉信号の検出結果として記憶していた各周波数帯域数の検出結果を出力しても良い。
 次に、受信装置60の動作及び処理手順について説明する。図15は、受信装置60の受信処理の手順を示すフローチャートである。
 図15に示すように、まずアンテナ601が受信信号を受信し(ステップS201)、受信部602が受信信号から変調信号を生成する(ステップS202)。次に、第二復調部603が変調信号に対しガードインターバルの除去や直並列変換を行う(ステップS203)。次に、第二復調部603がFFTを行うことによってブロック符号化変調シンボルを生成する(ステップS204)。次に、並直列変換部604がブロック符号化変調シンボルに対し並直列変換を行う(ステップS205)。次に、ブロック復号部605がブロック符号化変調シンボルに対しブロック復号化処理を行い変調シンボルを生成する(ステップS206)。次に、第一復調部606が変調シンボルを復調することによって誤り訂正符号化ビットを生成する(ステップS207)。次に、FEC復号部607が誤り訂正符号化ビットを誤り訂正復号化し、送信対象となっていたデータを生成する(ステップS208)。
 次に、ヌルサブキャリア判定部608が、レプリカ信号を生成し(ステップS209)、ヌル周波数帯域を判定する(ステップS210)。次に、干渉信号検出部609が、ヌル周波数帯域において干渉信号を検出する(ステップS211)。
 このように構成された無線通信システム5では、送信装置50のブロック符号化部503がブロック符号化処理を行うため、送信データを含まないヌルサブキャリアを意図的に設けることなく、送信信号において送信対象のデータの一部を有するヌルサブキャリアを発生させることができる。そのため、送信信号に含まれるデータ量を減らすことなく、ヌルサブキャリアを有する送信信号を生成することができる。したがって、受信装置60においてヌルサブキャリアの周波数帯域(ヌル周波数帯域)を判定しこの周波数帯域において信号測定を行うことによって、データの伝送効率の低下を抑止しつつ干渉信号を検出することが可能となる。
 また、このように構成された無線通信システム5では、受信装置60においてヌル周波数帯域でしか干渉信号を検出し測定することはできない。しかし、送信信号に発生するヌルサブキャリアの周波数帯域は一定ではなく送信信号毎に変化するため、受信装置60において送信信号を複数回受信しそれぞれで干渉信号を検出することによって、無線通信システム5や受信装置60で使用される周波数帯域全体における干渉信号を検出することが可能となる。
 また、従来のようにバースト伝送における非送信区間やデータ区間に意図的に設けられたヌル信号区間を用いて干渉信号の測定を行う技術では、干渉信号の測定が間欠的になってしまうため伝送路特性の変動に対する追従性が悪いという問題もあった。このような問題に対し、上記のように構成された無線通信システム5では、送信装置50が常にブロック符号化処理を行って送信信号を生成することによって、伝送路特性変動に対する追従性を向上させることが可能となる。
<第3実施形態の変形例>
 図16及び図17は、第3実施形態の変形例における無線通信システム5の送信装置50及び受信装置60の機能構成を表すブロック図である。送信装置50は、干渉帯域情報信号受信部508をさらに備えるように構成されても良い。また、受信装置60は、干渉帯域情報信号送信部610をさらに備えるように構成されても良い。この場合、送信装置50は、受信装置60から送信される干渉帯域情報を受信し、干渉帯域情報に基づいて動作する。以下、このように構成された場合の送信装置50及び受信装置60について説明する。
 干渉帯域情報信号送信部610は、干渉信号検出部609の検出結果に基づいて干渉帯域情報を生成する。干渉帯域情報とは、送信装置50と受信装置60との間の無線通信における干渉信号に関する情報であり、例えば干渉が発生してしまっているサブキャリアを表す情報や、干渉信号の振幅を表す情報である。また、干渉帯域情報は、FEC復号部607の誤り訂正復号化処理において算出された誤り率の情報も含む。そして、干渉帯域情報信号送信部610は、干渉帯域情報に対し誤り訂正符号化処理や変調処理やデジタル/アナログ変換処理やアップコンバート処理などの処理を実行することによって無線信号(干渉帯域情報信号)を生成し、アンテナ601から送信装置50に送信する。
 干渉帯域情報信号受信部508は、アンテナ507によって受信された干渉帯域情報信号に対し、ダウンコンバート処理やアナログ/デジタル変換処理や復調処理や誤り訂正復号化処理などの処理を実行し、干渉帯域情報信号から干渉帯域情報を取得する。
 第3実施形態の変形例におけるFEC符号化部501は、干渉帯域情報に含まれる誤り率に基づいた適応変調処理を行うことによって符号化率を変更する。なお、適応変調処理は、既存の技術により可能である。例えば、FEC符号化部501は、誤り率が高い場合には、現在適用されている符号化率よりも符号化率を低く設定し干渉に対する耐性を高め、逆に誤り率が低い場合には、現在適用されている符号化率よりも符号化率を高く設定し干渉に対する耐性を低くする。
 第3実施形態の変形例における第一変調部502は、干渉帯域情報に含まれる誤り率に基づいた適応変調処理を行うことによって複数の変調シンボルを生成する。なお、適応変調処理は、既存の技術により可能である。例えば、第一変調部502は、誤り率が高い場合には、現在適用されている変調方法よりも変調多値数が低く干渉に対する耐性が高い変調方法によって変調シンボルを生成し、逆に誤り率が低い場合には、現在適用されている変調方法よりも変調多値数が高く干渉に対する耐性が低い変調方法によって変調シンボルを生成する。
 上述の第3実施形態及び第3実施形態の変形例では、送信装置50において、送信データを含まず振幅値がゼロのサブキャリアを意図的に設けることなく、送信対象のデータの一部を有するサブキャリアとして振幅値がゼロのサブキャリアが生成される。そして、受信装置60は、受信した信号から、送信装置50において振幅値がゼロとなっていたサブキャリアの周波数帯域の信号を干渉信号として検出する。そのため、本発明によれば、データの伝送効率の低下を抑止しつつ干渉信号を検出することが可能となる。
 なお、上記の説明では、受信装置60による干渉信号の検出結果は送信装置50への干渉帯域情報信号の生成のために用いられたが、干渉信号の検出結果の用途はこれに限定されず既存の他の用途に適用されても良い。例えば、干渉信号の検出結果を第二復調部603などにフィードバックすることによって干渉信号に応じた復調処理を実現し、復調処理の精度を向上させるように受信装置60が構成されても良い。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 1、3、5 無線通信システム
 10、12、50 送信装置
 10a、10b 無線LAN基地局
 20、22、20a、60 受信装置
 101 変調部
 102 S/P変換部
 103 パンクチャパタン生成部
 104 パンクチャリング処理部
 105 IFFT部
 106 P/S変換部、107 無線通信部
 123 タイマ部
 124 パンクチャパタン生成部
 127 無線通信部
 201 無線通信部
 202 S/P変換部
 203 FFT部
 204 P/S変換部
 205 干渉帯域検出部
 206 復調部
 221 無線通信部
 225 干渉帯域検出部
 227 タイマ部
 501 FEC符号化部
 502 第一変調部
 503 ブロック符号化部
 504 直並列変換部
 505 第二変調部
 506 送信部
 507、601 アンテナ
 508 干渉帯域情報信号受信部
 602 受信部
 603 第二復調部
 604 並直列変換部
 605 ブロック復号部
 606 第一復調部
 607 FEC復号部
 608 ヌルサブキャリア判定部
 609 干渉信号検出部
 610 干渉帯域情報信号送信部

Claims (14)

  1.  複数のサブキャリアからなる無線信号の伝送に用いられる送信装置及び受信装置を含む無線通信システムであって、
     前記送信装置が、送信すべき送信対象データに対して誤り訂正符号化を行い、誤り訂正符号化により得られたデータの送信に用いる前記複数のサブキャリアのうち少なくとも1つのサブキャリアの振幅値を零にしたヌルサブキャリアにして誤り訂正符号化により得られたデータを送信し、
     前記受信装置が、前記複数のサブキャリアの信号を前記送信装置から受信し、受信した信号に対して誤り訂正復号を行い前記送信対象データを得るとともに、前記ヌルサブキャリアを用いたサブキャリアにおいて予め定めた基準値を超える受信電力を検出した場合、該サブキャリアに干渉が生じていると判定する
     ことを特徴とする無線通信システム。
  2.  一定時間間隔で区切られたタイムスロット毎に、前記ヌルサブキャリアに設定する前記サブキャリアを変更する
     ことを特徴とする請求項1に記載の無線通信システム。
  3.  前記複数のサブキャリアのうちいずれのサブキャリアを前記ヌルサブキャリアに設定するか否かは、予め定められている
     ことを特徴とする請求項1又は請求項2のいずれかに記載の無線通信システム。
  4.  前記複数のサブキャリアのうち周波数が最も高いサブキャリアから中心周波数のサブキャリアに向かって順に前記ヌルサブキャリアが設定されると共に、
     前記複数のサブキャリアのうち周波数が最も低いサブキャリアから中心周波数のサブキャリアに向かって順に前記ヌルサブキャリアが設定される
     ことを特徴とする請求項2又は請求項3のいずれかに記載の無線通信システム。
  5.  前記ヌルサブキャリアは、前記複数のサブキャリアのうちのサブキャリアにランダムに設定される
     ことを特徴とする請求項2又は請求項3のいずれかに記載の無線通信システム。
  6.  前記複数のサブキャリアに設定される前記ヌルサブキャリアの数は、前方誤り訂正符号における符号化率、又は、前記送信装置と前記受信装置との間の伝搬路特性に応じて定められる
     ことを特徴とする請求項1から請求項5いずれか1項に記載の無線通信システム。
  7.  前記受信装置が、
     前記干渉波が検出されたサブキャリアを示す干渉波検出情報を前記送信装置に送信し、
     前記送信装置が、
     送信された前記干渉波検出情報に応じて前記ヌルサブキャリアを設定する
     ことを特徴とする請求項1又は請求項2のいずれかに記載の無線通信システム。
  8.  前記受信装置が、
     連続する前記タイムスロットにおける干渉波検出情報から、前記複数のサブキャリアのうちいずれのサブキャリアに前記干渉波が前記連続するタイムスロットのいずれのタイムスロットに存在したかを推定し、該干渉波が存在したサブキャリアの変調シンボルを使用せずに前記送信対象データの復調を行う
     ことを特徴とする請求項1から請求項7のいずれか1項に記載の無線通信システム。
  9.  前記送信装置が、
     送信する前記送信対象データに対して前方誤り符号を適用し、前方誤り符号化された前記送信対象データを変調して変調信号を出力する変調部と、
     前記変調部が出力する前記変調信号に対して前記複数のサブキャリアのうち前記ヌルサブキャリアに設定されたサブキャリアに割り当てられる前記変調信号の送信電力をゼロにするパンクチャリング処理部と
     を備える
     ことを特徴とする請求項1から請求項8のいずれか1項に記載の無線通信システム。
  10.  前記受信装置が、
     前記ヌルサブキャリアと設定されたサブキャリアにおける受信信号を無効な信号として、該受信信号を用いずに復調及び誤り訂正復号を行う
     ことを特徴とする請求項1から請求項9のいずれか1項に記載の無線通信システム。
  11.  前記送信装置が、
     前記送信対象データに対し誤り訂正符号化を行い、誤り訂正符号化ビットを生成する誤り訂正符号化部と、
     誤り訂正符号化ビットを変調し複数の変調シンボルを生成する第一変調部と、
     複数の変調シンボルに対し、一部の振幅値がゼロとなるようなブロック符号化を行うブロック符号化部と、
     ブロック符号化された変調シンボルを各サブキャリアに配置し変調信号を生成する第二変調部と、
     前記変調信号から送信信号を生成し送信する送信部と、
     を備え、
     前記受信装置が、
     前記送信信号を受信する受信部と、
     受信した送信信号からサブキャリア毎に前記ブロック符号化された変調シンボルを取得する第二復調部と、
     前記ブロック符号化された変調シンボルに対し、前記ブロック符号化部のブロック符号化に応じたブロック復号化を行うブロック復号部と、
     ブロック復号化された前記変調シンボルに対し、前記第一変調部の変調に応じた復調を行う第一復調部と、
     復調後の値を用いて前記誤り訂正符号化部の誤り訂正符号化に応じた誤り訂正処理及び復号処理を行うことによって前記送信対象データを生成する誤り訂正復号部と、
     前記送信対象データに基づいて、前記送信部が生成した送信信号において振幅値がゼロとなっていたサブキャリアの周波数帯域を判定する判定部と、
     前記受信した送信信号から、前記判定部によって振幅値がゼロとなっていたと判定されたサブキャリアの周波数帯域の信号を干渉信号として検出する検出部と
     を備えることを特徴とする請求項1に記載の無線通信システム。
  12.  前記判定部が、前記送信対象データに対し、前記誤り訂正符号化部と同じ誤り訂正符号化を行い、前記第一変調部と同じ変調を行い、前記ブロック符号化部と同じブロック符号化を行うことによって、前記送信部が生成した送信信号において振幅値がゼロとなるサブキャリアの周波数帯域を判定する
     ことを特徴とする請求項11に記載の無線通信システム。
  13.  前記受信装置が、検出された干渉信号に基づいて干渉が生じているサブキャリアを表す干渉帯域情報を生成し、前記送信装置に送信する干渉帯域情報信号送信部、をさらに備え、
     前記送信装置の前記誤り訂正符号化部又は前記第一変調部は、前記干渉帯域情報信号に基づいて符号化率又は変調方式を決定する
     ことを特徴とする請求項11又は請求項12のいずれかに記載の無線通信システム。
  14.  複数のサブキャリアからなる無線信号の伝送に用いられる送信装置及び受信装置を含む無線通信システムにおける無線通信方法であって、
     前記送信装置が、送信すべき送信対象データに対して誤り訂正符号化を行い、誤り訂正符号化により得られたデータの送信に用いる前記複数のサブキャリアのうち少なくとも1つのサブキャリアの振幅値を零にしたヌルサブキャリアにして誤り訂正符号化により得られたデータを送信する過程と、
     前記受信装置が、前記複数のサブキャリアの信号を前記送信装置から受信し、受信した信号に対して誤り訂正復号を行い前記送信対象データを得るとともに、前記ヌルサブキャリアを用いたサブキャリアにおいて予め定めた基準値を超える受信電力を検出した場合、該サブキャリアに干渉が生じていると判定する過程と
     を有することを特徴とする無線通信方法。
PCT/JP2009/007021 2008-12-19 2009-12-18 無線通信システム、及び無線通信方法 WO2010070925A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137020129A KR101535559B1 (ko) 2008-12-19 2009-12-18 무선 통신 시스템 및 무선 통신 방법
US13/133,312 US8644404B2 (en) 2008-12-19 2009-12-18 Wireless communication system and wireless communication method
JP2010542888A JP5399412B2 (ja) 2008-12-19 2009-12-18 無線通信システム、及び無線通信方法
KR1020117013026A KR101331252B1 (ko) 2008-12-19 2009-12-18 무선 통신 시스템 및 무선 통신 방법
CN200980149147.4A CN102246444B (zh) 2008-12-19 2009-12-18 无线通信系统及无线通信方法
EP09833232.3A EP2348655B1 (en) 2008-12-19 2009-12-18 Wireless communication system and method of communicating wirelessly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-324412 2008-12-19
JP2008324412 2008-12-19
JP2009049785 2009-03-03
JP2009-049785 2009-03-03

Publications (1)

Publication Number Publication Date
WO2010070925A1 true WO2010070925A1 (ja) 2010-06-24

Family

ID=42268605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007021 WO2010070925A1 (ja) 2008-12-19 2009-12-18 無線通信システム、及び無線通信方法

Country Status (6)

Country Link
US (1) US8644404B2 (ja)
EP (2) EP2348655B1 (ja)
JP (2) JP5399412B2 (ja)
KR (2) KR101331252B1 (ja)
CN (1) CN102246444B (ja)
WO (1) WO2010070925A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468914A (zh) * 2010-11-16 2012-05-23 华为技术有限公司 预编码方法及装置
WO2015045585A1 (ja) * 2013-09-24 2015-04-02 三菱電機株式会社 無線通信装置、送信装置および受信装置
US9628303B2 (en) 2012-12-26 2017-04-18 Panasonic Corporation Receiver apparatus and frequency selectivity interference correction method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2348655B1 (en) * 2008-12-19 2015-08-26 Nippon Telegraph And Telephone Corporation Wireless communication system and method of communicating wirelessly
US9509417B2 (en) * 2011-10-13 2016-11-29 Lg Electronics Inc. Method in which a terminal transceives a signal in a wireless communication system and apparatus for same
KR101871362B1 (ko) * 2011-11-11 2018-06-27 삼성전자주식회사 직교 진폭 변조 심볼 매핑 장치 및 방법
WO2014124661A1 (en) * 2013-02-12 2014-08-21 Nokia Solutions And Networks Oy Zero insertion for isi free ofdm reception
JP2015032992A (ja) * 2013-08-02 2015-02-16 株式会社東芝 受信装置および受信方法
US9548836B2 (en) * 2013-11-26 2017-01-17 Broadcom Corporation Upstream burst noise detection
EP2916506B1 (en) 2014-03-07 2019-07-31 Vodafone GmbH Walsh-Hadamard transformed GFDM radio transmission
US9673905B1 (en) * 2014-03-18 2017-06-06 Marvell International Ltd. Method and device for demarcating data bursts
WO2015176271A1 (zh) * 2014-05-22 2015-11-26 华为技术有限公司 一种信号发送、接收的方法、装置及系统
US10958391B2 (en) * 2014-11-18 2021-03-23 Qualcomm Incorporated Tone plans for wireless communication networks
EP3211948B1 (en) 2014-11-24 2019-07-24 Huawei Technologies Co., Ltd. Signal transmission apparatus and method
US9686114B2 (en) * 2015-06-26 2017-06-20 Futurewei Technologies, Inc. Apparatus, method, and computer program for communicating one or more symbols with multiple pilot signals and nulls
TWI577159B (zh) * 2015-08-13 2017-04-01 宏碁股份有限公司 資料分配方法、訊號接收方法、無線傳送及接收裝置
EP3537678B1 (en) * 2018-03-08 2022-05-04 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Pseudo-guard intervals insertion in an fbmc transmitter
EP3570467A1 (en) * 2018-05-17 2019-11-20 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Receiver and method for reducing the influence of narrowband spurs during an ofdm signal reception
WO2019234932A1 (ja) * 2018-06-08 2019-12-12 三菱電機株式会社 無線送信装置、無線受信装置、無線通信装置、無線通信システムおよび無線送信方法
CN115244861B (zh) * 2020-03-10 2024-04-09 三菱电机株式会社 无线通信装置和无线通信系统
US11611459B1 (en) * 2021-08-25 2023-03-21 Qualcomm Incorporated Symbol configuration for single-carrier for frequency domain equalization waveform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129249A (ja) * 2002-09-12 2004-04-22 Matsushita Electric Ind Co Ltd 無線送信装置、無線受信装置、および送信キャンセルサブキャリアの選択方法
JP2007282120A (ja) 2006-04-11 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> Ofdm信号受信装置
JP2007312114A (ja) * 2006-05-18 2007-11-29 Toshiba Corp 無線通信システム及び無線通信方法
WO2008099785A1 (ja) * 2007-02-15 2008-08-21 Mitsubishi Electric Corporation 通信装置および伝送制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3486576B2 (ja) * 1999-05-18 2004-01-13 シャープ株式会社 Ofdm受信装置及びその周波数オフセット補償方法
CN1659817B (zh) 2002-09-12 2010-06-09 松下电器产业株式会社 无线电发送设备、无线电接收设备和选择发送对消副载波的方法
JP3697521B2 (ja) * 2003-04-21 2005-09-21 独立行政法人情報通信研究機構 受信装置、受信方法、ならびに、プログラム
WO2007014310A2 (en) * 2005-07-27 2007-02-01 Wionics Research Tone sensing and nulling in frequency-hopped multicarrier system
JP4575318B2 (ja) 2006-03-09 2010-11-04 株式会社東芝 基地局、無線端末および無線通信方法
EP2352351B1 (en) 2008-12-04 2015-02-25 Nippon Telegraph And Telephone Corporation Control station apparatus, transmitter station apparatus and communication method
EP2348657B1 (en) 2008-12-18 2013-09-11 Nippon Telegraph And Telephone Corporation Communications system, transmission device and method of communication
EP2348655B1 (en) * 2008-12-19 2015-08-26 Nippon Telegraph And Telephone Corporation Wireless communication system and method of communicating wirelessly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129249A (ja) * 2002-09-12 2004-04-22 Matsushita Electric Ind Co Ltd 無線送信装置、無線受信装置、および送信キャンセルサブキャリアの選択方法
JP2007282120A (ja) 2006-04-11 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> Ofdm信号受信装置
JP2007312114A (ja) * 2006-05-18 2007-11-29 Toshiba Corp 無線通信システム及び無線通信方法
WO2008099785A1 (ja) * 2007-02-15 2008-08-21 Mitsubishi Electric Corporation 通信装置および伝送制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2348655A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468914A (zh) * 2010-11-16 2012-05-23 华为技术有限公司 预编码方法及装置
CN102468914B (zh) * 2010-11-16 2015-01-21 华为技术有限公司 预编码方法及装置
US9628303B2 (en) 2012-12-26 2017-04-18 Panasonic Corporation Receiver apparatus and frequency selectivity interference correction method
WO2015045585A1 (ja) * 2013-09-24 2015-04-02 三菱電機株式会社 無線通信装置、送信装置および受信装置
JP6022071B2 (ja) * 2013-09-24 2016-11-09 三菱電機株式会社 無線通信装置および受信装置
US9780899B2 (en) 2013-09-24 2017-10-03 Mitsubishi Electric Corporation Radio communication apparatus, transmission apparatus, and reception apparatus

Also Published As

Publication number Publication date
EP2863563A1 (en) 2015-04-22
KR101535559B1 (ko) 2015-07-09
EP2348655B1 (en) 2015-08-26
JP2014053904A (ja) 2014-03-20
EP2348655A1 (en) 2011-07-27
JPWO2010070925A1 (ja) 2012-05-24
EP2863563B1 (en) 2017-01-11
JP5399412B2 (ja) 2014-01-29
JP5634582B2 (ja) 2014-12-03
US20110243268A1 (en) 2011-10-06
CN102246444A (zh) 2011-11-16
KR20110088557A (ko) 2011-08-03
KR101331252B1 (ko) 2013-11-19
CN102246444B (zh) 2015-08-26
KR20130093690A (ko) 2013-08-22
US8644404B2 (en) 2014-02-04
EP2348655A4 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5634582B2 (ja) 無線通信システム、及び無線通信方法
US20210075572A1 (en) Method and apparatus for generating pilot tone in orthogonal frequency division multiplexing access system, and method and apparatus for estimating channel using it
US8811507B2 (en) Systems and methods for wireless communication in sub gigahertz bands
US9386585B2 (en) Systems and methods for a data scrambling procedure
EP3289689B1 (en) Method and system for low data rate transmission
US8189516B2 (en) Apparatus and method for transmitting/receiving packet data control channel in an OFDMA wireless communication system
JP5676596B2 (ja) 無線システムのための上りリンク制御信号の設計
US20090074094A1 (en) Beacon symbols with multiple active subcarriers for wireless communication
US20090075664A1 (en) Multiplexed beacon symbols for a wireless communication system
JP5706527B2 (ja) 誤り制御符号化コードブックのサブコードブックの生成及び適用
US20130179755A1 (en) Systems and methods for low density parity check tone mapping
US10050820B2 (en) Apparatus and method for modulation/demodulation for transmitting and receiving signal in wireless communication system
JP2011023942A (ja) 無線基地局装置及び変調・符号化方式選択方法
US20050007946A1 (en) Multi-carrier transmission
JP5886993B2 (ja) 誤り制御符号化コードブックのサブコードブックの生成及び適用
JP5004982B2 (ja) マルチキャリア無線通信システム及びマルチキャリア無線通信方法
JP2016140073A (ja) 誤り制御符号化コードブックのサブコードブックの生成及び適用
KR20120000658A (ko) 무선통신 시스템에서 변조 방식을 결정하기 위한 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149147.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833232

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010542888

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117013026

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13133312

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009833232

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE