WO2010070917A1 - 画像表示装置 - Google Patents

画像表示装置 Download PDF

Info

Publication number
WO2010070917A1
WO2010070917A1 PCT/JP2009/006992 JP2009006992W WO2010070917A1 WO 2010070917 A1 WO2010070917 A1 WO 2010070917A1 JP 2009006992 W JP2009006992 W JP 2009006992W WO 2010070917 A1 WO2010070917 A1 WO 2010070917A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarized
color
liquid crystal
image
Prior art date
Application number
PCT/JP2009/006992
Other languages
English (en)
French (fr)
Inventor
佐藤嘉高
Original Assignee
カラーリンク・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カラーリンク・ジャパン株式会社 filed Critical カラーリンク・ジャパン株式会社
Priority to US13/130,314 priority Critical patent/US20110222022A1/en
Priority to JP2010542882A priority patent/JPWO2010070917A1/ja
Publication of WO2010070917A1 publication Critical patent/WO2010070917A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/13355Polarising beam splitters [PBS]

Definitions

  • the present invention relates to an image display device.
  • the polarization control type liquid crystal light valve used in the liquid crystal projector includes a transmission type and a reflection type, and a projector of a three-plate type, a two-plate type or a single-plate type is used for each.
  • white light is separated into red, green, and blue wavelength bands by two dichroic mirrors, combined with a liquid crystal light valve corresponding to each color to form a color image, and then a projection lens is used. Enlarge and project on the screen. According to this method, high color reproducibility and high resolution can be obtained, but there is a problem that the size increases due to an increase in the number of parts.
  • the single plate method has an advantage of being small and light because the liquid crystal light valve modulates red, green and blue.
  • the liquid crystal light valve modulates red, green and blue.
  • 2/3 of the light is always blocked, so there is a drawback that the resolution and brightness are reduced to 1/3.
  • FIG. 5 shows an image display apparatus using a two-plate projector disclosed in Patent Document 1.
  • temporary modulator 120 selectively polarizes certain spectral elements 125 of the light.
  • the first filter 130 rotates the polarization direction of the first spectral element 135 out of the spectral element 125, while the remaining second spectral element 136 transmits the first filter 130 as it is.
  • the first spectral element 135 and the second spectral element 136 are separated by the reflection / transmission surface 145 of the beam splitter 140 and are separately incident on the panels 150 and 160.
  • the first spectral element 135 rotates the polarization direction back and forth by ⁇ / 2 in the panel 150 and then returns to the reflection / transmission surface 145 of the beam splitter 140 to recombine with the second spectral element 136 from the panel 160. To do.
  • the recombined light is displayed on the screen through the projection lens 180 after the polarization direction is rotated by the second optical polarization element 170.
  • the two-plate method described above can be said to be an eclectic method of the three-plate method and the single-plate method.
  • the image display device described in Patent Document 1 is a device that displays a two-dimensional image.
  • the right-eye image and the left-eye image may be displayed alternately on the screen.
  • An observer sees a three-dimensional image by wearing glasses using a liquid crystal shutter, and alternately opening and closing the right and left eye liquid crystal shutters in synchronization with the timing of switching between left and right images. Can do.
  • the right-eye image and the left-eye image are alternately displayed for each field, and the polarization angles of the left and right eye images are adjusted using a liquid crystal shutter that is turned on and off for each field by the polarizing plate and the control device. Make it 90 degrees different.
  • the observer can also see a three-dimensional image by viewing the image with polarized glasses corresponding to the left and right eyes and having polarization angles different from each other by 90 °.
  • the present invention has been made in view of these points. That is, according to the present invention, when three-dimensional display is performed, it is not necessary to alternately switch between the right eye image and the left eye image, and the light use efficiency is substantially changed between the two-dimensional display and the three-dimensional display. There is no image display device.
  • the image display device of the present invention forms a P-polarized image from a light source, a parallel light generating means for converting the light from the light source into parallel light, a separating means for separating the parallel light into S-polarized light and P-polarized light.
  • the first polarized image forming means receives the first reflective liquid crystal element that receives the image information of the first color of the S-polarized light, and the image information of the second color and the third color of the S-polarized light.
  • a second reflective liquid crystal element to receive, two polarization direction control means for controlling the polarization directions of the first color light, the second color light and the third color light, and the first color light; Is reflected (or transmitted) toward the first reflective liquid crystal element, and the second color light and the third color light are transmitted (or reflected) toward the second reflective liquid crystal element.
  • a light splitting and coupling unit that couples the light reflected by the first reflective liquid crystal element and the light reflected by the second reflective liquid crystal element;
  • the second polarized image forming means receives the third reflective liquid crystal element that receives the image information of the first color of the P-polarized light, and the image information of the second color and the third color of the P-polarized light.
  • a fourth reflective liquid crystal element to receive, two polarization direction control means for controlling the polarization directions of the first color light, the second color light and the third color light, and the first color light; Is reflected (or transmitted) toward the third reflective liquid crystal element, and the second color light and the third color light are transmitted (or reflected) toward the fourth reflective liquid crystal element.
  • a light splitting and coupling unit that couples the light reflected by the third reflective liquid crystal element and the light reflected by the fourth reflective liquid crystal element;
  • the image information can be selectively switched to either one of two-dimensional image information and three-dimensional image information.
  • the light source is preferably an LED light source having no polarization characteristics.
  • the light source emits the light of the second color and the light of the third color by separating the times, and the light sources configured so that the respective emission times are different from each other. It is preferable to do.
  • the parallel light generating means is preferably a means configured using a collimator lens.
  • the parallel light generating means is preferably a means configured using a light tunnel.
  • the second reflective liquid crystal element receives the image information of the second and third colors, forms an image according to the image information of the second color, and an image according to the image information of the third color. It is preferable that the image forming process is performed at different times, and the image forming period according to the second color image information is different from the image forming period according to the third color image information.
  • the fourth reflective liquid crystal element receives the image information of the second color and the image information of the third color separately, and the image information of the second color. It is preferable that the length of time for receiving the image information is different from the length of time for receiving the image information of the third color.
  • the left-eye image is formed by one polarized image forming unit, and the other polarized image forming unit is formed.
  • the image display apparatus will be described with reference to FIG.
  • the arrow in a figure represents the advancing direction of light.
  • the image display device 1 condenses parallel light that has passed through the collimator lens 3, an LED light source 2 that does not have polarization characteristics, a collimator lens 3 that serves as parallel light generation means that converts light from the LED light source 2 into parallel light.
  • the LED light source 2 has a red LED 2R, a green LED 2G, and a blue LED 2B.
  • the LED light source 2 is controlled by a light source driving circuit 201.
  • the light source driving circuit 201 is connected to the timing calculation control unit 203 via the illumination color switching control unit 202.
  • the green LED 2G always emits light.
  • the red LED 2R and the blue LED 2B emit light alternately in a time division manner. That is, the timing calculation control unit 203 and the illumination color switching control unit 202 are controlled so that the red LED 2R and the blue LED 2B emit light alternately at a frequency of 60 Hz.
  • the form of light emission of each color is not limited to this.
  • the red LED 2R and the blue LED 2B it is possible to control the red LED 2R and the blue LED 2B to emit light alternately in the same period, but considering the balance of the emission intensity of the red LED 2R and the blue LED 2B, those It is also possible to adjust and control so that the light emission periods are not equal.
  • the light emission power may vary depending on the characteristics of the LED used, and if it is attempted to emit light in the same period without considering these characteristics, brightness differences may occur depending on the display color. Therefore, when one of the red LED 2R and the blue LED 2B has a larger light emission power than the other, the longer light extinction period is lengthened, that is, the light emission period is shortened compared to the other, thereby red and blue It is possible to suppress the brightness difference between the two.
  • one frame which is a time unit for displaying one image, includes a period in which modulation is performed based on image information of red light and a period in which modulation is performed based on image information of blue light. It is not necessary to fix the same period, and the respective periods may be adjusted based on the light emission powers of the red LED and the blue LED.
  • the sub-frame period in which the red light image is formed and the sub-frame period in which the blue light image is formed are unequally spaced according to the brightness difference of each LED, and can be adjusted within one frame period. It is. By doing so, the light emission periods of the red LED and the blue LED in one frame period can be set without waste, and higher brightness image formability can be realized.
  • a light source that generates white light such as an extra-high pressure mercury lamp, a metal halide lamp, or a xenon lamp
  • white light such as an extra-high pressure mercury lamp, a metal halide lamp, or a xenon lamp
  • known color separation means for separating white light into red light, green light and blue light is required.
  • a mirror, a third dichroic mirror that separates blue light from light from the second dichroic mirror, and a mirror that reflects the separated light in a predetermined direction are required. Therefore, it is preferable to use an LED light source from the viewpoint of making the image display device compact.
  • the light emitted from the LED light source 2 passes through the collimator lens 3 and becomes parallel light. Thereafter, the parallel light is condensed by the condenser lens 10 and then polarized and separated by the polarizing prism 4 into S-polarized light and P-polarized light having polarization axes orthogonal to each other. The separated S-polarized light and P-polarized light are incident on the first polarized image forming means 5 and the second polarized image forming means 6, respectively.
  • a light tunnel can be used in addition to or in combination with the collimator lens 3 described above.
  • a light tunnel is a kind of light pipe (also called a homogenizer), and is an optical element used to obtain a uniform surface light source by reflecting light multiple times on the side of a polygonal cylinder or a polygonal pyramid. is there.
  • a light tunnel has a structure in which a polygonal column is made of a transparent material such as glass and the total reflection on the side surface is utilized, and the inside is hollow and the side surface is configured by a mirror. Therefore, in this light tunnel, when light is incident on the inside, the incident light is emitted to the outside from the exit surface after correcting the diffusion angle to be small by repeating reflection inside the light tunnel. That is, the light tunnel has a unique basic axis. When light is incident from an oblique direction with respect to the basic axis, the light tunnel is corrected to light close to parallel to the basic axis and emitted.
  • the first polarized image forming means 5 includes a first reflective liquid crystal element 501 that receives image information of green light of S-polarized light, and a second image of image information of red light and blue light of S-polarized light.
  • the reflective liquid crystal element 502, the polarization conversion elements 503 and 504 as polarization direction control means for controlling the polarization direction of red, green and blue light, and the green light are reflected toward the first reflective liquid crystal element 501.
  • the red light and the blue light are transmitted toward the second reflective liquid crystal element 502, and the green light reflected by the first reflective liquid crystal element 501 and the second reflective liquid crystal element 502 are reflected.
  • a polarization beam splitter 505 as a light splitting and coupling means for coupling red light or blue light.
  • first reflective liquid crystal element 501 and the second reflective liquid crystal element 502 those having a high liquid crystal response speed and a high frame speed are used.
  • a polarization shielded smectic liquid crystal (PSS) element capable of high-speed response and wide viewing angle display is preferably used.
  • PSS polarization shielded smectic liquid crystal
  • this liquid crystal element see, for example, Patent Document: US Patent Application Publication No. 2004/196428.
  • Another example is “0.61 type high frame rate full HD SXRD” manufactured by Sony Corporation, which can display a frame rate at 120 Hz.
  • the first and second reflective liquid crystal elements 501 and 502 include a polarization shielding smectic liquid crystal (PSS) element (PSS-LCD), a TN liquid crystal element, an IPS liquid crystal element, a VA liquid crystal element, and an MVA type.
  • PSS polarization shielding smectic liquid crystal
  • a liquid crystal element, an OCB type liquid crystal element, a ferroelectric liquid crystal element, an antiferroelectric liquid crystal element, a thresholdless antiferroelectric liquid crystal element, a liquid crystal element using blue phase liquid crystal, or the like can also be used.
  • the polarization conversion elements 503 and 504 have a function of converting red light and blue light from S-polarized light to P-polarized light and transmitting green light as it is without changing the polarization direction.
  • Specific examples of the polarization conversion elements 503 and 504 include Color Select (registered trademark) manufactured by Color Link Japan Co., Ltd.
  • FIG. 2 shows the spectral characteristics of the color select (product name: MG11).
  • the solid line shows the spectral characteristics when two deflecting plates are arranged in crossed Nicols and a color select is arranged between them.
  • the dotted line shows the spectral characteristics when two deflecting plates are arranged in parallel Nicols and a color select is arranged between them.
  • the polarization beam splitter 505 is formed by joining the oblique sides of two right-angle prisms, and forming a polarization separation layer made of a dielectric multilayer film having a function of reflecting S-polarized light and transmitting P-polarized light on the joint surface.
  • the S-polarized light reflected by the polarizing prism 4 enters the polarization conversion element 503.
  • the S-polarized light is a combination of green light and red light, or a combination of green light and blue light.
  • the green light of the S-polarized light is transmitted through the polarization conversion element 503 as it is, reflected by the polarization beam splitter 505, and then applied to the first reflective liquid crystal element 501. Incident.
  • the S-polarized green light incident on the first reflective liquid crystal element 501 is modulated based on the image information of the green light. Then, when the light is reflected by the first reflective liquid crystal element 501, the polarization direction is rotated in accordance with the modulation to become P-polarized light.
  • the P-polarized green light passes through the polarization beam splitter 505 and then enters the polarization conversion element 504. Since the polarization conversion element 504 does not act on the green light, the green light passes through the polarization conversion element 504 as it is P-polarized light and enters the polarization prism 7.
  • the red light is rotated by 90 degrees in the polarization direction by the polarization conversion element 503 and becomes P-polarized light. Thereafter, the light passes through the polarizing beam splitter 505 and enters the second reflective liquid crystal element 502.
  • the P-polarized red light incident on the second reflective liquid crystal element 502 is modulated based on the image information of the red light.
  • the polarization direction is rotated in accordance with the modulation to become S-polarized light.
  • the S-polarized red light is reflected by the polarization beam splitter 505 and then enters the polarization conversion element 504. Then, the polarization direction is rotated by 90 degrees by the polarization conversion element 504, and becomes P-polarized red light and enters the polarizing prism 7.
  • the second polarized image forming means 6 includes a third reflective liquid crystal element 601 that receives image information of green light of P-polarized light, and a fourth image of image information of red light and blue light of P-polarized light.
  • the reflective liquid crystal element 602, the polarization conversion elements 603 and 604 as polarization direction control means for controlling the polarization direction of red, green and blue light, and the green light are reflected toward the third reflective liquid crystal element 601.
  • the red light and the blue light are transmitted toward the fourth reflective liquid crystal element 602, and the green light reflected by the third reflective liquid crystal element 601 and the fourth reflective liquid crystal element 602 are reflected.
  • a polarization beam splitter 605 as a light splitting and coupling unit for coupling red light or blue light.
  • the third reflective liquid crystal element 601 and the fourth reflective liquid crystal element 602 those having a high liquid crystal response speed and a high frame speed are used.
  • a polarization shielded smectic liquid crystal (PSS) element capable of high-speed response and wide viewing angle display is preferably used.
  • PPS polarization shielded smectic liquid crystal
  • this liquid crystal element see, for example, Patent Document: US Patent Application Publication No. 2004/196428.
  • Another example is “0.61 type high frame rate full HD SXRD” manufactured by Sony Corporation, which can display a frame rate at 120 Hz.
  • the third reflective liquid crystal element 601 and the fourth reflective liquid crystal element 602 include a polarization shielding smectic liquid crystal (PSS) element (PSS-LCD), a TN liquid crystal element, an IPS liquid crystal element, and a VA liquid crystal.
  • PSS polarization shielding smectic liquid crystal
  • An element, an MVA liquid crystal element, an OCB liquid crystal element, a ferroelectric liquid crystal element, an antiferroelectric liquid crystal element, a thresholdless antiferroelectric liquid crystal element, or a liquid crystal element using a blue phase liquid crystal may be used. Is possible.
  • the polarization conversion elements 603 and 604 have a function of converting green light from P-polarized light to S-polarized light and transmitting red light and blue light as they are without changing the polarization direction.
  • Specific examples of the polarization conversion elements 603 and 604 include Color Select (registered trademark) manufactured by Color Link Japan Co., Ltd.
  • FIG. 3 shows the spectral characteristics of the color select (product name: GM44).
  • the solid line shows the spectral characteristics when two deflecting plates are arranged in crossed Nicols and a color select is arranged between them.
  • the dotted line shows the spectral characteristics when two deflecting plates are arranged in parallel Nicols and a color select is arranged between them.
  • the polarization beam splitter 605 is formed by joining the oblique sides of two right-angle prisms and forming a polarization separation layer made of a dielectric multilayer film having a function of reflecting S-polarized light and transmitting P-polarized light on the joint surface.
  • the P-polarized light transmitted through the polarizing prism 4 enters the polarization conversion element 603.
  • the P-polarized light is a combination of green light and red light, or a combination of green light and blue light.
  • the polarization conversion element 603 rotates the polarization direction of green light by 90 degrees to make S-polarized light.
  • the S-polarized green light is reflected by the polarization beam splitter 605 and then enters the third reflective liquid crystal element 601.
  • the S-polarized green light incident on the third reflective liquid crystal element 601 is modulated based on the image information of the green light.
  • the polarization direction is rotated in accordance with the modulation to become P-polarized light.
  • the P-polarized green light passes through the polarization beam splitter 605 and then enters the polarization conversion element 604. Since the polarization conversion element 604 rotates the polarization direction of the green light by 90 degrees, the green light becomes S-polarized light and enters the polarizing prism 7.
  • the red light passes through the polarization conversion element 603 while remaining P-polarized light. Thereafter, the light passes through the polarization beam splitter 605 and enters the fourth reflective liquid crystal element 602.
  • the P-polarized red light incident on the fourth reflective liquid crystal element 602 is modulated based on the image information of the red light.
  • the polarization direction is rotated according to the modulation to become S-polarized light.
  • the S-polarized red light is reflected by the polarization beam splitter 605 and then enters the polarization conversion element 604. Since the polarization conversion element 604 does not act on red light, the red light passes through the polarization conversion element 604 while being S-polarized light and enters the polarization prism 7.
  • the blue light is transmitted through the polarization conversion element 603 as P-polarized light, and further transmitted through the polarization beam splitter 605 and is incident on the fourth reflective liquid crystal element 602.
  • the P-polarized blue light incident on the fourth reflective liquid crystal element 602 is modulated based on the image information of the blue light.
  • the polarization direction is rotated according to the modulation to become S-polarized light.
  • the S-polarized blue light is reflected by the polarization beam splitter 605 and then enters the polarization conversion element 604, passes through the polarization conversion element 604 while being S-polarized, and enters the polarization prism 7.
  • P-polarized green light and red light, or P-polarized green light and blue light are emitted from the first polarized image forming means 5 and enter the polarizing prism 7.
  • S-polarized green light and red light, or S-polarized green light and blue light are emitted and incident on the polarizing prism 7.
  • the polarizing prism 7 combines the P-polarized image from the first polarized image forming unit 5 and the S-polarized image from the second polarized image Heisei unit 6.
  • the synthesized image is projected onto a screen 9 via a projection lens 8 as a projection means for projecting the image.
  • the image information can be selectively switched to either one of the two-dimensional image information and the three-dimensional image information. That is, when two-dimensional image information is input to the first reflective liquid crystal element 501, the second reflective liquid crystal element 502, the third reflective liquid crystal element 601, and the fourth reflective liquid crystal element 602. A two-dimensional image is projected on the screen 9. Specifically, the P-polarized image and the S-polarized image are all images having the same parallax. On the other hand, the first reflective liquid crystal element 501, the second reflective liquid crystal element 502, the third reflective liquid crystal element 601, and the fourth reflective liquid crystal element 602 have a three-dimensional displacement having a parallax shift between the left and right eyes.
  • an observer can view a stereoscopic image by observing the image projected on the screen 9 with polarizing glasses equipped with polarizing plates corresponding to the left and right polarization directions. Can do.
  • the P-polarized image can be a left-eye image
  • the S-polarized image can be a right-eye image.
  • the left-eye image is formed by one polarized image forming unit and the right-eye image is formed by the other polarized image forming unit.
  • the right eye image and the left eye image are formed by the other polarized image forming unit.
  • two-dimensional image display or three-dimensional image display can be performed only by selectively switching image information input to the reflective liquid crystal element to either one of two-dimensional image information and three-dimensional image information. It is possible to obtain an image display device in which the light use efficiency is not substantially changed between the two-dimensional display and the three-dimensional display.
  • the image display device of the present embodiment compared with the method of alternately projecting the left-eye image and the right-eye image on the screen using a liquid crystal shutter, a stereoscopic display with no flicker and good moving image characteristics can be achieved. It becomes possible.
  • incident light may be incident from a direction different from that in FIG.
  • An example is shown in FIG.
  • the same reference numerals as those in FIG. 1 are the same as those in FIG.
  • the light emitted from the LED light source enters the image display device 1 'from two directions. That is, the incident direction from the green LED 2G is the same as that in FIG. 1, but the red LED 2R and the blue LED 2B are incident from a direction of 90 degrees with respect to the incident direction from the green LED 2G.
  • the green LED 2G always emits light, and the red LED 2R and the blue LED 2B emit light alternately in a time division manner as in the example of FIG.
  • the red LED 2R and the blue LED 2B are controlled so as to alternately emit light at a frequency of 60 Hz by the timing calculation control unit 203 and the illumination color switching control unit 202, respectively.
  • the form of light emission of each color is not limited to this.
  • the red LED 2R and the blue LED 2B may emit light alternately in the same period, and the light emission period may be different in consideration of the balance of the emission intensity.
  • the light emitted from the green LED 2G passes through the collimator lens 3 and becomes parallel light. Thereafter, the parallel light is condensed by the condenser lens 10 and then polarized and separated by the polarizing prism 4 into S-polarized light and P-polarized light having polarization axes orthogonal to each other. The separated S-polarized light and P-polarized light are incident on the first polarized image forming means 5 and the second polarized image forming means 6, respectively.
  • the light emitted from the red LED 2R and the blue LED 2B becomes parallel light by passing through the collimator lens 3 '. Thereafter, the parallel light is collected by the condenser lens 10 ′ and then polarized and separated by the polarizing prism 4 into S-polarized light and P-polarized light having polarization axes orthogonal to each other. The separated P-polarized light and S-polarized light are incident on the first polarized image forming means 5 and the second polarized image forming means 6, respectively.
  • the first polarized image forming means 5 includes a first reflective liquid crystal element 501 that receives green S-polarized image information, a second reflective liquid crystal element 502 that receives red and blue P-polarized image information, A polarization conversion element 504 serving as a polarization direction control means for controlling the polarization directions of red, green and blue light, and reflects green light toward the first reflective liquid crystal element 501 and supplies red light and blue light to the second.
  • the green light reflected by the first reflective liquid crystal element 501 and the red light or blue light reflected by the second reflective liquid crystal element 502 are combined.
  • a polarization beam splitter 505 as a light splitting and coupling means.
  • first reflective liquid crystal element 501 and the second reflective liquid crystal element 502 those having a high liquid crystal response speed and a high frame speed are used.
  • a polarization shielded smectic liquid crystal (PSS) element capable of high-speed response and wide viewing angle display is preferably used.
  • the polarization conversion element 504 converts red light and blue light from S-polarized light to P-polarized light, and transmits green light as it is without changing the polarization direction.
  • the polarization beam splitter 505 is formed by joining the oblique sides of two right-angle prisms, and forming a polarization separation layer made of a dielectric multilayer film having a function of reflecting S-polarized light and transmitting P-polarized light on the joint surface.
  • the S-polarized green light reflected by the polarizing prism 4 is reflected by the polarizing beam splitter 505 and then enters the first reflective liquid crystal element 501.
  • the S-polarized green light incident on the first reflective liquid crystal element 501 is modulated based on the image information of the green light. Then, when the light is reflected by the first reflective liquid crystal element 501, the polarization direction is rotated in accordance with the modulation to become P-polarized light.
  • the P-polarized green light passes through the polarization beam splitter 505 and then enters the polarization conversion element 504. Since the polarization conversion element 504 does not act on the green light, the green light passes through the polarization conversion element 504 as it is P-polarized light and enters the polarization prism 7.
  • the P-polarized red light transmitted through the polarizing prism 4 passes through the polarizing beam splitter 505 and then enters the second reflective liquid crystal element 502.
  • the P-polarized red light incident on the second reflective liquid crystal element 502 is modulated based on the image information of the red light.
  • the polarization direction is rotated in accordance with the modulation to become S-polarized light.
  • the S-polarized red light is reflected by the polarization beam splitter 505 and then enters the polarization conversion element 504.
  • the polarization direction is rotated by 90 degrees by the polarization conversion element 504, and becomes P-polarized red light and enters the polarizing prism 7.
  • the second polarized image forming means 6 includes a third reflective liquid crystal element 601 that receives red and blue S-polarized image information, a fourth reflective liquid crystal element 602 that receives green P-polarized image information, A polarization conversion element 604 serving as a polarization direction control means for controlling the polarization directions of red, green and blue light, and reflects red light and blue light toward the third reflective liquid crystal element 601 and outputs green light to the fourth.
  • the red light and blue light reflected by the third reflective liquid crystal element 601 and the green light reflected by the fourth reflective liquid crystal element 602 are transmitted.
  • a polarization beam splitter 605 as a light splitting and coupling means.
  • the third reflective liquid crystal element 601 and the fourth reflective liquid crystal element 602 those having a high liquid crystal response speed and a high frame speed are used.
  • a polarization shielded smectic liquid crystal (PSS) element capable of high-speed response and wide viewing angle display is preferably used.
  • the polarization conversion element 604 has a function of converting red light and blue light from P-polarized light to S-polarized light and transmitting green light as it is without changing the polarization direction.
  • the polarization beam splitter 605 is formed by joining the oblique sides of two right-angle prisms and forming a polarization separation layer made of a dielectric multilayer film having a function of reflecting S-polarized light and transmitting P-polarized light on the joint surface.
  • the P-polarized green light that has passed through the polarizing prism 4 passes through the polarizing beam splitter 605 and enters the fourth reflective liquid crystal element 602.
  • the P-polarized green light incident on the fourth reflective liquid crystal element 602 is modulated based on the image information of the green light. Then, when the light is reflected by the fourth reflective liquid crystal element 602, the polarization direction is rotated according to the modulation to become S-polarized light.
  • the S-polarized green light is reflected by the polarization beam splitter 605 and then enters the polarization conversion element 604. Since the polarization conversion element 604 does not act on the green light, the green light passes through the polarization conversion element 604 as it is S-polarized light and enters the polarization prism 7.
  • the S-polarized red light reflected by the polarizing prism 4 is reflected by the polarization beam splitter 605 and then enters the third reflective liquid crystal element 601.
  • the S-polarized red light incident on the third reflective liquid crystal element 601 is modulated based on the image information of the red light.
  • the polarization direction is rotated in accordance with the modulation to become P-polarized light.
  • the P-polarized red light passes through the polarization beam splitter 605 and then enters the polarization conversion element 604. Since the polarization conversion element 604 rotates the polarization direction of the red light by 90 degrees, the red light becomes S-polarized light and enters the polarizing prism 7.
  • the S-polarized blue light is reflected by the polarization beam splitter 605 and enters the third reflective liquid crystal element 601.
  • the S-polarized blue light incident on the third reflective liquid crystal element 601 is modulated based on the image information of the blue light.
  • the polarization direction is rotated in accordance with the modulation to become P-polarized light.
  • the P-polarized blue light passes through the polarization beam splitter 605 and then enters the polarization conversion element 604. Since the polarization conversion element 604 rotates the polarization direction of the blue light by 90 degrees, the blue light becomes S-polarized light and enters the polarizing prism 7.
  • P-polarized green light and red light, or P-polarized green light and blue light are emitted from the first polarized image forming means 5 and enter the polarizing prism 7.
  • S-polarized green light and red light, or S-polarized green light and blue light are emitted and incident on the polarizing prism 7.
  • the polarizing prism 7 combines the P-polarized image from the first polarized image forming unit 5 and the S-polarized image from the second polarized image Heisei unit 6.
  • the synthesized image is projected onto a screen 9 via a projection lens 8 as a projection means for projecting the image.
  • the polarization conversion elements 503 and 603 required in FIG. 1 become unnecessary.
  • the light use efficiency can be improved by reducing the light emitting area of the light source. That is, in the present invention, the combination of red light, blue light, and green light can be arbitrarily changed in accordance with the light emission characteristics of the light source.
  • transmissive liquid crystal element can be used instead of the reflective liquid crystal element.
  • the polarizing beam splitter has a function of reflecting S-polarized light and transmitting P-polarized light.
  • a polarizing beam splitter having a function of reflecting P-polarized light and transmitting S-polarized light is used. May be.
  • the polarization beam splitters 505 and 605 in FIG. 1 are polarization beam splitters 505 ′ and 605 ′ (not shown)
  • the S-polarized green light is transmitted through the polarization beam splitter 505 ′, and the S-polarized red light and The blue light is converted into P-polarized light by the polarization conversion element 503 and then reflected by the polarization beam splitter 505 ′.
  • the P-polarized green light is converted to S-polarized light by the polarization conversion element 603, and then transmitted through the polarization beam splitter 605 '.
  • the P-polarized red light and blue light are reflected by the polarization beam splitter 605'. Therefore, it is necessary to exchange the positions of the third liquid crystal optical element 601 and the fourth liquid crystal optical element 602 in FIG.
  • an absorbing polarizing plate is inserted between the polarizing prism 7 and the first polarized image forming means 5 and the second polarized image forming means 6 so that the light whose polarization state is disturbed is inserted. It may be cut. Thereby, the crosstalk at the time of displaying a three-dimensional image can be prevented.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

3次元表示した場合に、右眼画像と左眼画像を交互に切り替えて表示する必要がなく、また、2次元表示と3次元表示とで光利用効率が実質的に変わらない画像表示装置を提供する。 画像表示装置1は、偏光特性を有しないLED光源2と、LED光源2からの光を平行光にするコリメータレンズ3と、コリメータレンズ3を透過した平行光を集光するコンデンサレンズ10と、コンデンサレンズ10を透過した光をS偏光とP偏光に分離する偏光プリズム4と、偏光プリズム4で反射されたS偏光からP偏光画像を形成する第1の偏光画像形成手段5と、偏光プリズム4を透過したP偏光からS偏光画像を形成する第2の偏光画像形成手段6と、P偏光画像とS偏光画像を合成する偏光プリズム7と、合成された画像を投影する投影レンズ8およびスクリーン9を備える。

Description

画像表示装置
 本発明は、画像表示装置に関する。
 液晶プロジェクタに使用される偏光制御型の液晶ライトバルブには、透過型と反射型があり、それぞれに、3板方式、2板方式または単板方式のプロジェクタが用いられている。
 3板方式では、2枚のダイクロイックミラーによって白色光を赤色、緑色および青色の各波長帯に分離し、それぞれの色に対応した液晶ライトバルブで合成しカラー画像とした後、投影レンズを用いてスクリーンに拡大投影する。この方式によれば、高い色再現性と高解像度が得られるが、部品点数が増えることによって大型化するという問題がある。
 これに対して、単板方式は、赤色、緑色および青色の変調を1つの液晶ライトバルブで行うので、小型で軽量という利点を有する。一例として、液晶ライトバルブの3つの画素に赤色、緑色および青色の各色を割り当てる方式が挙げられる。しかし、この方式では、常時、光の2/3が遮られてしまうので、解像度と明るさが1/3に落ちてしまうという欠点がある。
 一方、2板方式は、2色の光を1つの液晶ライトバルブで変調し、残りの1色の光をもう1つの液晶ライトバルブで変調するものである。
 図5は、特許文献1に開示されている2板方式のプロジェクタを用いた画像表示装置である。この装置では、白色光110が暫定変調器120に入射すると、暫定変調器120は光の特定のスペクトル要素125を選択的に偏光する。次いで、第1のフィルタ130によって、スペクトル要素125の中から第1のスペクトル要素135の偏光方向が回転する一方、残りの部分である第2のスペクトル要素136は第1のフィルタ130をそのまま透過する。次に、第1のスペクトル要素135と第2のスペクトル要素136は、ビームスプリッタ140の反射・透過面145によって分離され、それぞれ別個にパネル150、160に入射する。第1のスペクトル要素135は、パネル150において偏光方向を往復でπ/2だけ回転した後、ビームスプリッタ140の反射・透過面145に戻って、パネル160からの第2のスペクトル要素136と再結合する。再結合した光は、第2の光学的偏光素子170によって偏光方向が回転された後、投写レンズ180を通ってスクリーンに表示される。
特開2002-40367号公報
 上記した2板方式は、3板方式と単板方式との折衷的な方式と言える。ここで、特許文献1に記載の画像表示装置は2次元の画像を表示する装置である。この装置で3次元の画像を表示するには、右眼用画像と左眼用画像が交互にスクリーンに映し出されるようにすればよい。観察者は、液晶シャッタを用いた眼鏡をかけ、左右の画像を切り換えて表示するタイミングに同期させて右眼用と左目用の液晶シャッタを交互に開閉することにより、3次元の画像を見ることができる。
 また、右眼用画像と左眼用画像とをフィールドごとに交互に表示し、偏光板と制御装置によってフィールド毎にON/OFFされる液晶シャッタを用いて、左右各眼の映像の偏光角を90度異ならせる。左右各眼に対応し互いに偏光角が90°異なる偏光眼鏡をかけてこの画像を目視することによっても、観察者は立体画像を見ることができる。
 しかしながら、液晶シャッタを用いた上記方法では、左右の画像のクロストークが発生しやすく、フリッカも生じるといった問題があった。また、左眼画像と右眼画像の両方を交互に表示するため、明るさが半分になってしまうという問題もあった。
 本発明は、こうした点に鑑みてなされたものである。すなわち、本発明は、3次元表示した場合に、右眼画像と左眼画像を交互に切り替えて表示する必要がなく、また、2次元表示と3次元表示とで光利用効率が実質的に変わらない画像表示装置を提供することにある。
 本発明の画像表示装置は、光源と、この光源からの光を平行光にする平行光生成手段と、平行光をS偏光とP偏光に分離する分離手段と、S偏光からP偏光画像を形成する第1の偏光画像形成手段と、P偏光からS偏光画像を形成する第2の偏光画像形成手段と、P偏光画像とS偏光画像を合成する合成手段と、合成された画像を投影する投影手段とを備える。
 第1の偏光画像形成手段は、S偏光の内の第1の色の画像情報を受け取る第1の反射型液晶素子と、S偏光の内の第2の色および第3の色の画像情報を受け取る第2の反射型液晶素子と、第1の色の光、第2の色の光および第3の色の光の偏光方向を制御する2つの偏光方向制御手段と、第1の色の光を第1の反射型液晶素子に向けて反射(または透過)し、第2の色の光および第3の色の光を第2の反射型液晶素子に向けて透過(または反射)するとともに、第1の反射型液晶素子で反射された光と、第2の反射型液晶素子で反射された光とを結合する光分割結合手段とを有する。
 第2の偏光画像形成手段は、P偏光の内の第1の色の画像情報を受け取る第3の反射型液晶素子と、P偏光の内の第2の色および第3の色の画像情報を受け取る第4の反射型液晶素子と、第1の色の光、第2の色の光および第3の色の光の偏光方向を制御する2つの偏光方向制御手段と、第1の色の光を第3の反射型液晶素子に向けて反射(または透過)し、第2の色の光および第3の色の光を第4の反射型液晶素子に向けて透過(または反射)するとともに、第3の反射型液晶素子で反射された光と、第4の反射型液晶素子で反射された光とを結合する光分割結合手段とを有する。
 本発明の画像表示装置では、画像情報が2次元の画像情報および3次元の画像情報のいずれか一方に選択的に切り替えられるようにすることができる。
 本発明の画像表示装置において、光源は偏光特性を有しないLED光源とすることが好ましい。
 本発明の画像表示装置において、光源は、第2の色の光と第3の色の光とを時間を分離して放射するとともに、それぞれの放射時間の長さが異なるよう構成された光源とすることが好ましい。
 本発明の画像表示装置において、平行光生成手段は、コリメータレンズを用いて構成された手段とすることが好ましい。
 本発明の画像表示装置において、平行光生成手段は、ライトトンネルを用いて構成された手段とすることが好ましい。
 本発明の画像表示装置において、第2の反射型液晶素子は、第2および第3の色の画像情報を受け取り、第2の色の画像情報に従う画像形成と第3の色の画像情報に従う画像形成とを時間を分けて行うものであり、且つ、第2の色の画像情報に従う画像形成の期間と第3の色の画像情報に従う画像形成の期間とが異なることが好ましい。
 本発明の画像表示装置において、第4の反射型液晶素子は、第2の色の画像情報と第3の色の画像情報とを時間を分けて受け取るものであり、第2の色の画像情報を受け取る時間の長さと第3の色の画像情報を受け取る時間の長さが異なることが好ましい。
 本発明の画像表示装置によれば、第1の偏光画像形成手段と第2の偏光画像形成手段を有するので、一方の偏光画像形成手段によって左眼用画像を形成し、他方の偏光画像形成手段によって右眼用画像を形成することにより、3次元表示した場合に右眼画像と左眼画像を交互に切り替えて表示する必要がなく、2次元表示と3次元表示とで光利用効率が実質的に変わらないという効果が得られる。
本実施の形態による画像表示装置の説明図である。 偏光変換素子の分光特性の例である。 偏光変換素子の分光特性の例である。 本実施の形態による他の画像表示装置の説明図である。 従来の画像表示装置の説明図である。
 図1を用いて、本実施の形態の画像表示装置を説明する。尚、図中の矢印は、光の進行方向を表している。
 画像表示装置1は、偏光特性を有しないLED光源2と、LED光源2からの光を平行光にする平行光生成手段としてのコリメータレンズ3と、コリメータレンズ3を透過した平行光を集光するコンデンサレンズ10と、コンデンサレンズ10を透過した光をS偏光とP偏光に分離する分離手段としての偏光プリズム4と、偏光プリズム4で反射されたS偏光からP偏光画像を形成する第1の偏光画像形成手段5と、偏光プリズム4を透過したP偏光からS偏光画像を形成する第2の偏光画像形成手段6と、P偏光画像とS偏光画像を合成する合成手段としての偏光プリズム7と、合成された画像を投影する投影手段としての投影レンズ8およびスクリーン9を備えている。
 LED光源2は、赤色LED2Rと、緑色LED2Gと、青色LED2Bとを有する。LED光源2は、光源駆動回路201によって制御される。光源駆動回路201は、照明色切替制御部202を介してタイミング演算制御部203に接続している。本実施の形態では、緑色LED2Gは常時発光している。一方、赤色LED2Rと青色LED2Bは、交互に時分割で発光する。すなわち、タイミング演算制御部203と照明色切替制御部202によって、赤色LED2Rと青色LED2Bがそれぞれ60Hzの周波数で交互に発光するように制御されている。但し、各色の発光の形態はこれに限られるものではない。
 本実施の形態では、赤色LED2Rと青色LED2Bが、それぞれ同じ期間で交互に発光するように制御することが可能であるが、赤色LED2Rと青色LED2Bの発光強度のバランスなどを考慮して、それらの発光期間を等しくしないように調整して制御することも可能である。
 例えば、使用するLEDの特性によっては発光パワーが異なることがあり、こうした特性について何ら考慮することなく同じ期間で発光させようとすると、表示色により明度差が発生してしまうことがある。そこで、赤色LED2Rと青色LED2Bのうち一方が他方に対して発光パワーが大きい場合には、その大きい方の消灯期間を長くする、すなわち、発光期間を他方に比べて短くすることで、赤色と青色間の明度差の発生を抑制することが可能である。
 赤色LED2Rと青色LED2Bの発光期間を調整する場合、それに対応するよう、後述する第2の反射型液晶素子502と第4の反射型液晶素子602における赤色光と青色光の変調期間を調整することが好ましい。すなわち、1つの画像を表示する時間的単位である1フレームは、赤色光の画像情報に基づいて変調を行う期間と、青色光の画像情報に基づいて変調を行う期間とからなるが、それぞれを同じ期間として固定すること必要はなく、赤色LEDと青色LEDの発光パワーに基づいて、それぞれ適当な期間となるよう調整してもよい。つまり、赤色光画像の形成を行うサブフレーム期間と、青色光画像の形成を行うサブフレーム期間とを、各LEDの明度差に応じて不等間隔とし、1フレーム期間内で調整することも可能である。このようにすることにより、1フレーム期間における赤色LEDと青色LEDの発光期間を無駄なく設定することができ、より高輝度の画像形性を実現できる。
 尚、LED光源2に代えて、超高圧水銀ランプ、メタルハライドランプおよびキセノンランプなどの白色光を発生する光源を用いてもよい。但し、この場合には、白色光を赤色光、緑色光および青色光に分離する公知の色分離手段が必要になる。具体的には、白色光を赤色光とそれ以外の光とに分離する第1のダイクロイックミラーと、第1のダイクロイックミラーからの光を緑色光とそれ以外の光とに分離する第2のダイクロイックミラーと、第2のダイクロイックミラーからの光から青色光を分離する第3のダイクロイックミラーと、分離した光を所定の方向に反射させるミラーなどが必要になる。したがって、画像表示装置をコンパクトにする点からは、LED光源を用いることが好ましい。
 LED光源2から出射された光は、コリメータレンズ3を透過することによって平行光になる。その後、この平行光は、コンデンサレンズ10によって集光された後、偏光プリズム4によって、互いに直交する偏光軸を有するS偏光とP偏光に偏光分離される。分離されたS偏光とP偏光は、それぞれ、第1の偏光画像形成手段5と第2の偏光画像形成手段6に入射する。
 LED光源2から出射された光を平行光に変換する手段としては、上述のコリメータレンズ3を用いる以外に、またはそれと併用して、ライトトンネルを使用することも可能である。
 ライトトンネルは、ライトパイプ(ホモジナイザーとも称される。)の一種であって、多角柱または多角錐の側面で複数回光を反射させることで均一な面光源を得るのに使用される光学素子である。ライトトンネルは、ガラスなどの透明な物質で多角柱を作成して側面での全反射を利用するロッドに対し、内部を中空にして側面をミラーで構成した構造を備える。したがって、このライトトンネルでは、内部に光が入射された場合、入射光はライトトンネルの内部で反射を繰り返すことによって拡散角度を小さく矯正された後、出射面から外部に射出される。つまり、ライトトンネルは、固有の基本軸を有しており、その基本軸に対して斜めの方向から光が入射された場合、その光を基本軸と平行に近い光に矯正して射出する。
 第1の偏光画像形成手段5は、S偏光の内の緑色光の画像情報を受け取る第1の反射型液晶素子501と、S偏光の内の赤色光および青色光の画像情報を受け取る第2の反射型液晶素子502と、赤色、緑色および青色の光の偏光方向を制御する偏光方向制御手段としての偏光変換素子503、504と、緑色光を第1の反射型液晶素子501に向けて反射し、赤色光および青色光を第2の反射型液晶素子502に向けて透過するとともに、第1の反射型液晶素子501で反射された緑色光と、第2の反射型液晶素子502で反射された赤色光または青色光とを結合する光分割結合手段としての偏光ビームスプリッタ505とを有する。
 第1の反射型液晶素子501と第2の反射型液晶素子502には、液晶の応答速度が速く、高いフレーム速度を有するものを用いる。例えば、高速応答と広視野角表示が可能な分極遮蔽型スメクティック液晶(PSS:Polarization Shielded Smectic)素子が好ましく用いられる。この液晶素子については、例えば、特許文献:米国特許出願公開第2004/196428号明細書が参照される。また、120Hzでのフレーム速度表示が可能なソニー株式会社製の「0.61型ハイフレームレートフルHD SXRD」なども挙げられる。
 また、第1および第2の反射型液晶素子501、502には、分極遮蔽型スメクティック液晶(PSS)素子(PSS-LCD)、TN型液晶素子、IPS型液晶素子、VA型液晶素子、MVA型液晶素子、OCB型液晶素子、強誘電性液晶素子、反強誘電性液晶素子、無しきい値反強誘電性液晶素子、または、ブルー相液晶を用いた液晶素子などを用いることも可能である。
 偏光変換素子503、504は、赤色光と青色光をS偏光からP偏光に変換し、緑色光に対しては偏光方向を変えずにそのまま透過させる機能を有する。偏光変換素子503、504の具体例としては、カラーリンク・ジャパン株式会社製のカラーセレクト(登録商標)が挙げられる。図2にカラーセレクト(製品名:MG11)の分光特性を示す。実線は、2枚の偏向板をクロスニコルに配置し、その間にカラーセレクトを配置した場合の分光特性である。一方、点線は、2枚の偏向板をパラレルニコルに配置し、その間にカラーセレクトを配置した場合の分光特性である。このような偏光変換素子を用いることにより、赤色光と青色光についてはS偏光からP偏光に変換し、緑色光については偏光方向を変えずにそのまま透過させることができる。
 偏光ビームスプリッタ505は、2つの直角プリズムの斜辺同士を接合し、S偏光を反射しP偏光を透過させる機能を持った誘電体多層膜からなる偏光分離層を接合面に形成したものである。
 偏光プリズム4で反射されたS偏光は、偏光変換素子503に入射する。このとき、S偏光は、緑色光と赤色光の組み合わせ、または、緑色光と青色光の組み合わせとなる。
 偏光変換素子503は緑色光に対しては作用しないので、S偏光の内の緑色光はそのまま偏光変換素子503を透過し、偏光ビームスプリッタ505で反射した後、第1の反射型液晶素子501に入射する。第1の反射型液晶素子501に入射したS偏光の緑色光は、緑色光の画像情報に基づいて変調される。そして、第1の反射型液晶素子501で反射される際に、変調に応じて偏光方向を回転させてP偏光になる。このP偏光の緑色光は、偏光ビームスプリッタ505を透過した後、偏光変換素子504に入射する。偏光変換素子504は緑色光に対して作用しないので、緑色光はP偏光のまま偏光変換素子504を透過して偏光プリズム7に入射する。
 一方、赤色光は、偏光変換素子503によって偏光方向を90度回転させられてP偏光になる。その後、偏光ビームスプリッタ505を透過して、第2の反射型液晶素子502に入射する。第2の反射型液晶素子502に入射したP偏光の赤色光は、赤色光の画像情報に基づいて変調される。そして、第2の反射型液晶素子502で反射される際に、変調に応じて偏光方向を回転させてS偏光になる。S偏光の赤色光は、偏光ビームスプリッタ505で反射された後、偏光変換素子504に入射する。そして、偏光変換素子504で偏光方向を90度回転させられ、P偏光の赤色光となって偏光プリズム7に入射する。
 尚、青色光についても赤色光と同様である。すなわち、偏光変換素子503によって偏光方向を90度回転させられてP偏光になった後、偏光ビームスプリッタ505を透過して、第2の反射型液晶素子502に入射する。その後、第2の反射型液晶素子502で青色光の画像情報に基づいて変調され、第2の反射型液晶素子502で反射される際に、変調に応じて偏光方向を回転させてS偏光になる。S偏光の青色光は、偏光ビームスプリッタ505で反射された後、偏光変換素子504で偏光方向を90度回転させられ、P偏光の青色光となって偏光プリズム7に入射する。
 第2の偏光画像形成手段6は、P偏光の内の緑色光の画像情報を受け取る第3の反射型液晶素子601と、P偏光の内の赤色光および青色光の画像情報を受け取る第4の反射型液晶素子602と、赤色、緑色および青色の光の偏光方向を制御する偏光方向制御手段としての偏光変換素子603、604と、緑色光を第3の反射型液晶素子601に向けて反射し、赤色光および青色光を第4の反射型液晶素子602に向けて透過するとともに、第3の反射型液晶素子601で反射された緑色光と、第4の反射型液晶素子602で反射された赤色光または青色光とを結合する光分割結合手段としての偏光ビームスプリッタ605とを有する。
 第3の反射型液晶素子601と第4の反射型液晶素子602には、液晶の応答速度が速く、高いフレーム速度を有するものを用いる。例えば、高速応答と広視野角表示が可能な分極遮蔽型スメクティック液晶(PSS:Polarization Shielded Smectic)素子が好ましく用いられる。この液晶素子については、例えば、特許文献:米国特許出願公開第2004/196428号明細書が参照される。また、120Hzでのフレーム速度表示が可能なソニー株式会社製の「0.61型ハイフレームレートフルHD SXRD」なども挙げられる。応答速度の速い液晶を用いることで、書き込み速度が速く、フレーム毎の映像を速く切り替えることのできる画像表示装置が提供される。
 また、第3の反射型液晶素子601と第4の反射型液晶素子602には、分極遮蔽型スメクティック液晶(PSS)素子(PSS-LCD)、TN型液晶素子、IPS型液晶素子、VA型液晶素子、MVA型液晶素子、OCB型液晶素子、強誘電性液晶素子、反強誘電性液晶素子、無しきい値反強誘電性液晶素子、または、ブルー相液晶を用いた液晶素子などを用いることも可能である。
 偏光変換素子603、604は、緑色光をP偏光からS偏光に変換し、赤色光と青色光に対しては偏光方向を変えずにそのまま透過させる機能を有する。偏光変換素子603、604の具体例としては、カラーリンク・ジャパン株式会社製のカラーセレクト(登録商標)が挙げられる。図3にカラーセレクト(製品名:GM44)の分光特性を示す。実線は、2枚の偏向板をクロスニコルに配置し、その間にカラーセレクトを配置した場合の分光特性である。一方、点線は、2枚の偏向板をパラレルニコルに配置し、その間にカラーセレクトを配置した場合の分光特性である。このような偏光変換素子を用いることにより、緑色光についてはP偏光からS偏光に変換し、赤色光と青色光については偏光方向を変えずにそのまま透過させることができる。
 偏光ビームスプリッタ605は、2つの直角プリズムの斜辺同士を接合し、S偏光を反射しP偏光を透過させる機能を持った誘電体多層膜からなる偏光分離層を接合面に形成したものである。
 偏光プリズム4を透過したP偏光は、偏光変換素子603に入射する。このとき、P偏光は、緑色光と赤色光の組み合わせ、または、緑色光と青色光の組み合わせとなる。
 偏光変換素子603は、緑色光の偏光方向を90度回転してS偏光にする。S偏光の緑色光は、偏光ビームスプリッタ605で反射した後、第3の反射型液晶素子601に入射する。第3の反射型液晶素子601に入射したS偏光の緑色光は、緑色光の画像情報に基づいて変調される。そして、第3の反射型液晶素子601で反射される際に、変調に応じて偏光方向を回転させてP偏光になる。このP偏光の緑色光は、偏光ビームスプリッタ605を透過した後、偏光変換素子604に入射する。偏光変換素子604は緑色光の偏光方向を90度回転させるので、緑色光はS偏光となって偏光プリズム7に入射する。
 一方、偏光変換素子603は、赤色光に対して作用しないので、赤色光はP偏光のまま偏光変換素子603を透過する。その後、偏光ビームスプリッタ605を透過して、第4の反射型液晶素子602に入射する。第4の反射型液晶素子602に入射したP偏光の赤色光は、赤色光の画像情報に基づいて変調される。そして、第4の反射型液晶素子602で反射される際に、変調に応じて偏光方向を回転させてS偏光になる。S偏光の赤色光は、偏光ビームスプリッタ605で反射された後、偏光変換素子604に入射する。偏光変換素子604は赤色光に対して作用しないので、赤色光はS偏光のまま偏光変換素子604を透過して偏光プリズム7に入射する。
 尚、青色光についても赤色光と同様である。すなわち、青色光はP偏光のまま偏光変換素子603を透過し、さらに、偏光ビームスプリッタ605を透過して、第4の反射型液晶素子602に入射する。第4の反射型液晶素子602に入射したP偏光の青色光は、青色光の画像情報に基づいて変調される。そして、第4の反射型液晶素子602で反射される際に、変調に応じて偏光方向を回転させてS偏光になる。S偏光の青色光は、偏光ビームスプリッタ605で反射された後に偏光変換素子604に入射し、S偏光のまま偏光変換素子604を透過して偏光プリズム7に入射する。
 以上のようにして、第1の偏光画像形成手段5からはP偏光の緑色光と赤色光、または、P偏光の緑色光と青色光が出射して偏光プリズム7に入射する。一方、第2の偏光画像形成手段6からは、S偏光の緑色光と赤色光、またはS偏光の緑色光と青色光が出射して偏光プリズム7に入射する。偏光プリズム7は、第1の偏光画像形成手段5からのP偏光画像と、第2の偏光画像平成手段6からのS偏光画像を合成する。合成された画像は、画像を投影する投影手段としての投影レンズ8を介してスクリーン9に投影される。
 本実施の形態においては、画像情報が2次元の画像情報および3次元の画像情報のいずれか一方に選択的に切り替えられるようにすることができる。すなわち、第1の反射型液晶素子501、第2の反射型液晶素子502、第3の反射型液晶素子601および第4の反射型液晶素子602に2次元の画像情報が入力された場合には、スクリーン9に2次元の画像が投影される。この画像は、具体的には、P偏光画像とS偏光画像とが全て同じ視差の画像となっている。一方、第1の反射型液晶素子501、第2の反射型液晶素子502、第3の反射型液晶素子601および第4の反射型液晶素子602に、左右の目の視差分のずれを有する立体画像情報が入力された場合には、スクリーン9に投影された画像を、左右の偏光方向に対応した偏光板を備えた偏光眼鏡を装着して観察することで、観察者は立体画像を見ることができる。この場合、例えば、P偏光画像を左眼用画像とし、S偏光画像を右眼用画像とすることができる。
 このように、本実施の形態の構成によれば、一方の偏光画像形成手段によって左眼用画像を形成し、他方の偏光画像形成手段によって右眼用画像を形成するので、3次元表示した場合に、右眼画像と左眼画像を交互に切り替えて表示する必要がない。つまり、解像度を犠牲にすることなく3次元表示をすることができる。
 また、反射型液晶素子に入力する画像情報を2次元の画像情報および3次元の画像情報のいずれか一方に選択的に切り替えるだけで、2次元の画像表示または3次元の画像表示が行えるので、2次元表示と3次元表示とで光利用効率が実質的に変わらない画像表示装置とすることができる。
 尚、3板方式においても、3つの偏光ビームスプリッタと、例えば120Hzでのフレーム速度表示が可能な反射型液晶素子とを用いて、右眼画像と左眼画像を時分割で切り替えることにより、大型化を回避して3次元の画像を表示することが可能である。しかしながら、この方式では、照明光を偏向させるための偏光変換光学系が必要であり、光利用効率が低下する問題を解消できない。
 さらに、本実施の形態の画像表示装置によれば、液晶シャッタを用いてスクリーンに左眼用画像と右眼用画像を交互に投影する方式に比べて、フリッカがなく動画特性のよい立体表示が可能となる。
 本実施の形態は、図1とは異なる方向から入射光が入射するようにしてもよい。図4にその一例を示す。尚、図4で図1と同じ符号を付した部分は図1と同じものである。
 図4では、LED光源から出射された光は、画像表示装置1’に対して2方向から入射する。すなわち、緑色LED2Gからの入射方向は図1と同様であるが、赤色LED2Rと青色LED2Bからは、緑色LED2Gからの入射方向に対して90度の方向から入射する。尚、緑色LED2Gは常時発光しており、赤色LED2Rと青色LED2Bは、交互に時分割で発光するのは図1の例と同様である。また、赤色LED2Rと青色LED2Bは、タイミング演算制御部203と照明色切替制御部202によって、それぞれ60Hzの周波数で交互に発光するように制御される。但し、各色の発光の形態はこれに限られるものではない。また、赤色LED2Rと青色LED2Bは、それぞれ同じ期間で交互に発光してもよく、各発光強度のバランスなどを考慮して発光期間が異なるようにしてもよい。
 緑色LED2Gから出射された光は、コリメータレンズ3を透過することによって平行光になる。その後、この平行光は、コンデンサレンズ10によって集光された後、偏光プリズム4によって、互いに直交する偏光軸を有するS偏光とP偏光に偏光分離される。分離されたS偏光とP偏光は、それぞれ、第1の偏光画像形成手段5と第2の偏光画像形成手段6に入射する。
 一方、赤色LED2Rと青色LED2Bから出射された光は、コリメータレンズ3’を透過することによって平行光になる。その後、この平行光は、コンデンサレンズ10’によって集光された後、偏光プリズム4によって、互いに直交する偏光軸を有するS偏光とP偏光に偏光分離される。分離されたP偏光とS偏光は、それぞれ、第1の偏光画像形成手段5と第2の偏光画像形成手段6に入射する。
 第1の偏光画像形成手段5は、緑色のS偏光の画像情報を受け取る第1の反射型液晶素子501と、赤色および青色のP偏光の画像情報を受け取る第2の反射型液晶素子502と、赤色、緑色および青色の光の偏光方向を制御する偏光方向制御手段としての偏光変換素子504と、緑色光を第1の反射型液晶素子501に向けて反射し、赤色光および青色光を第2の反射型液晶素子502に向けて透過するとともに、第1の反射型液晶素子501で反射された緑色光と、第2の反射型液晶素子502で反射された赤色光または青色光とを結合する光分割結合手段としての偏光ビームスプリッタ505とを有する。
 第1の反射型液晶素子501と第2の反射型液晶素子502には、液晶の応答速度が速く、高いフレーム速度を有するものを用いる。例えば、例えば、高速応答と広視野角表示が可能な分極遮蔽型スメクティック液晶(PSS:Polarization Shielded Smectic)素子が好ましく用いられる。
 偏光変換素子504は、赤色光と青色光をS偏光からP偏光に変換し、緑色光に対しては偏光方向を変えずにそのまま透過させる。
 偏光ビームスプリッタ505は、2つの直角プリズムの斜辺同士を接合し、S偏光を反射しP偏光を透過させる機能を持った誘電体多層膜からなる偏光分離層を接合面に形成したものである。
 偏光プリズム4で反射されたS偏光の緑色光は、偏光ビームスプリッタ505で反射した後、第1の反射型液晶素子501に入射する。第1の反射型液晶素子501に入射したS偏光の緑色光は、緑色光の画像情報に基づいて変調される。そして、第1の反射型液晶素子501で反射される際に、変調に応じて偏光方向を回転させてP偏光になる。このP偏光の緑色光は、偏光ビームスプリッタ505を透過した後、偏光変換素子504に入射する。偏光変換素子504は緑色光に対して作用しないので、緑色光はP偏光のまま偏光変換素子504を透過して偏光プリズム7に入射する。
 一方、偏光プリズム4を透過したP偏光の赤色光は、偏光ビームスプリッタ505を透過した後、第2の反射型液晶素子502に入射する。第2の反射型液晶素子502に入射したP偏光の赤色光は、赤色光の画像情報に基づいて変調される。そして、第2の反射型液晶素子502で反射される際に、変調に応じて偏光方向を回転させてS偏光になる。S偏光の赤色光は、偏光ビームスプリッタ505で反射された後、偏光変換素子504に入射する。そして、偏光変換素子504で偏光方向を90度回転させられ、P偏光の赤色光となって偏光プリズム7に入射する。
 尚、青色光についても赤色光と同様である。すなわち、偏光ビームスプリッタ505を透過して、第2の反射型液晶素子502に入射する。その後、第2の反射型液晶素子502で青色光の画像情報に基づいて変調され、第2の反射型液晶素子502で反射される際に、変調に応じて偏光方向を回転させてS偏光になる。S偏光の青色光は、偏光ビームスプリッタ505で反射された後、偏光変換素子504で偏光方向を90度回転させられ、P偏光の青色光となって偏光プリズム7に入射する。
 第2の偏光画像形成手段6は、赤色および青色のS偏光の画像情報を受け取る第3の反射型液晶素子601と、緑色のP偏光の画像情報を受け取る第4の反射型液晶素子602と、赤色、緑色および青色の光の偏光方向を制御する偏光方向制御手段としての偏光変換素子604と、赤色光と青色光を第3の反射型液晶素子601に向けて反射し、緑色光を第4の反射型液晶素子602に向けて透過するとともに、第3の反射型液晶素子601で反射された赤色光および青色光と、第4の反射型液晶素子602で反射された緑色光とを結合する光分割結合手段としての偏光ビームスプリッタ605とを有する。
 第3の反射型液晶素子601と第4の反射型液晶素子602には、液晶の応答速度が速く、高いフレーム速度を有するものを用いる。例えば、例えば、高速応答と広視野角表示が可能な分極遮蔽型スメクティック液晶(PSS:Polarization Shielded Smectic)素子が好ましく用いられる。
 偏光変換素子604は、赤色光と青色光をP偏光からS偏光に変換し、緑色光に対しては偏光方向を変えずにそのまま透過させる機能を有する。
 偏光ビームスプリッタ605は、2つの直角プリズムの斜辺同士を接合し、S偏光を反射しP偏光を透過させる機能を持った誘電体多層膜からなる偏光分離層を接合面に形成したものである。
 偏光プリズム4を透過したP偏光の緑色光は、偏光ビームスプリッタ605を透過して、第4の反射型液晶素子602に入射する。第4の反射型液晶素子602に入射したP偏光の緑色光は、緑色光の画像情報に基づいて変調される。そして、第4の反射型液晶素子602で反射される際に、変調に応じて偏光方向を回転させてS偏光になる。S偏光の緑色光は、偏光ビームスプリッタ605で反射された後、偏光変換素子604に入射する。偏光変換素子604は緑色光に対して作用しないので、緑色光はS偏光のまま偏光変換素子604を透過して偏光プリズム7に入射する。
 一方、偏光プリズム4で反射したS偏光の赤色光は、偏光ビームスプリッタ605で反射した後、第3の反射型液晶素子601に入射する。第3の反射型液晶素子601に入射したS偏光の赤色光は、赤色光の画像情報に基づいて変調される。そして、第3の反射型液晶素子601で反射される際に、変調に応じて偏光方向を回転させてP偏光になる。このP偏光の赤色光は、偏光ビームスプリッタ605を透過した後、偏光変換素子604に入射する。偏光変換素子604は赤色光の偏光方向を90度回転させるので、赤色光はS偏光となって偏光プリズム7に入射する。
 尚、青色光についても赤色光と同様である。すなわち、S偏光の青色光は、偏光ビームスプリッタ605で反射して、第3の反射型液晶素子601に入射する。第3の反射型液晶素子601に入射したS偏光の青色光は、青色光の画像情報に基づいて変調される。そして、第3の反射型液晶素子601で反射される際に、変調に応じて偏光方向を回転させてP偏光になる。P偏光の青色光は、偏光ビームスプリッタ605を透過した後に偏光変換素子604に入射する。偏光変換素子604は青色光の偏光方向を90度回転させるので、青色光はS偏光となって偏光プリズム7に入射する。
 以上のようにして、第1の偏光画像形成手段5からはP偏光の緑色光と赤色光、または、P偏光の緑色光と青色光が出射して偏光プリズム7に入射する。一方、第2の偏光画像形成手段6からは、S偏光の緑色光と赤色光、またはS偏光の緑色光と青色光が出射して偏光プリズム7に入射する。偏光プリズム7は、第1の偏光画像形成手段5からのP偏光画像と、第2の偏光画像平成手段6からのS偏光画像を合成する。合成された画像は、画像を投影する投影手段としての投影レンズ8を介してスクリーン9に投影される。
 図4の例によれば、図1で必要とした偏光変換素子503、603が不要になる。また、光源の発光面積を小さくして光の利用効率を向上させることができる。つまり、本発明では、光源の発光特性に合わせて、赤色光、青色光、緑色光の組み合わせを任意に変えることが可能である。
 尚、本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において、種々変形して実施することができる。
 例えば、反射型液晶素子に代えて透過型液晶素子を用いることもできる。
 また、上記実施の形態では、偏光ビームスプリッタとしてS偏光を反射しP偏光を透過させる機能を持ったものを用いたが、P偏光を反射してS偏光を透過させる機能を持ったものを用いてもよい。この場合、図1の偏光ビームスプリッタ505、605を偏光ビームスプリッタ505’、605’(図示せず)とすると、S偏光の緑色光は偏光ビームスプリッタ505’を透過し、S偏光の赤色光と青色光は、偏光変換素子503でP偏光に変換された後、偏光ビームスプリッタ505’で反射する。したがって、図1の第1の反射型液晶素子501と第2の反射型液晶素子502の位置を入れ替える必要がある。一方、P偏光の緑色光は、偏光変換素子603でS偏光に変換された後、偏光ビームスプリッタ605’を透過し、P偏光の赤色光と青色光は偏光ビームスプリッタ605’で反射する。したがって、図1の第3の液晶光学素子601と第4の液晶光学素子602の位置を入れ替える必要がある。
 また、図1において、偏光プリズム7と、第1の偏光画像形成手段5および第2の偏光画像形成手段6との間に、吸収型の偏光板を挿入して、偏光状態が乱れた光がカットされるようにしてもよい。これにより、3次元画像を表示する際のクロストークを防止することができる。
 1  画像表示装置
 2  LED光源
 3  コリメータレンズ
 4、7  偏光プリズム
 5  第1の偏光画像形成手段
 6  第2の偏光画像形成手段
 8  投影レンズ
 9  スクリーン
 10  コンデンサレンズ
 501  第1の反射型液晶素子
 502  第2の反射型液晶素子
 503、504、603、604  偏光変換素子
 505、605  偏光ビームスプリッタ
 601  第3の反射型液晶素子
 602  第4の反射型液晶素子
 110  白色光
 120  暫定変調器
 125  スペクトル要素
 130  第1のフィルタ
 135  第1のスペクトル要素
 136  第2のスペクトル要素
 140  ビームスプリッタ
 145  反射・透過面
 150、160  パネル
 180  投写レンズ

Claims (8)

  1.  光源と、
     前記光源からの光を平行光にする平行光生成手段と、
     前記平行光をS偏光とP偏光に分離する分離手段と、
     前記S偏光からP偏光画像を形成する第1の偏光画像形成手段と、
     前記P偏光からS偏光画像を形成する第2の偏光画像形成手段と、
     前記P偏光画像と前記S偏光画像を合成する合成手段と、
     前記合成された画像を投影する投影手段とを備えた画像表示装置であって、
     前記第1の偏光画像形成手段は、前記S偏光の内の第1の色の画像情報を受け取る第1の反射型液晶素子と、
     前記S偏光の内の第2の色および第3の色の画像情報を受け取る第2の反射型液晶素子と、
     該第1の色の光、該第2の色の光および該第3の色の光の偏光方向を制御する2つの偏光方向制御手段と、
     該第1の色の光を前記第1の反射型液晶素子に向けて反射(または透過)し、該第2の色の光および該第3の色の光を前記第2の反射型液晶素子に向けて透過(または反射)するとともに、前記第1の反射型液晶素子で反射された光と、前記第2の反射型液晶素子で反射された光とを結合する光分割結合手段とを有し、
     前記第2の偏光画像形成手段は、前記P偏光の内の第1の色の画像情報を受け取る第3の反射型液晶素子と、
     前記P偏光の内の第2の色および第3の色の画像情報を受け取る第4の反射型液晶素子と、
     該第1の色の光、該第2の色の光および該第3の色の光の偏光方向を制御する2つの偏光方向制御手段と、
     該第1の色の光を前記第3の反射型液晶素子に向けて反射(または透過)し、該第2の色の光および該第3の色の光を前記第4の反射型液晶素子に向けて透過(または反射)するとともに、前記第3の反射型液晶素子で反射された光と、前記第4の反射型液晶素子で反射された光とを結合する光分割結合手段とを有することを特徴とする画像表示装置。
  2.  前記画像情報は、2次元の画像情報および3次元の画像情報のいずれか一方に選択的に切り替えられることを特徴とする請求項1に記載の画像表示装置。
  3.  前記光源は偏光特性を有しないLED光源であることを特徴とする請求項1または2に記載の画像表示装置。
  4.  前記光源は、前記第2の色の光と前記第3の色の光とを時間を分離して放射するとともに、それぞれの放射時間の長さが異なるよう構成された光源であることを特徴とする請求項1~3のいずれか1項に記載の画像表示装置。
  5.  前記平行光生成手段は、コリメータレンズを用いて構成された手段であることを特徴とする請求項1~4のいずれか1項に記載の画像表示装置。
  6.  前記平行光生成手段は、ライトトンネルを用いて構成された手段であることを特徴とする請求項1~4のいずれか1項に記載の画像表示装置。
  7.  前記第2の反射型液晶素子は、前記第2および前記第3の色の画像情報を受け取り、前記第2の色の画像情報に従う画像形成と前記第3の色の画像情報に従う画像形成とを時間を分けて行うものであり、且つ、前記第2の色の画像情報に従う画像形成の期間と前記第3の色の画像情報に従う画像形成の期間とが異なることを特徴とする請求項1~6のいずれか1項に記載の画像表示装置。
  8.  前記第4の反射型液晶素子は、前記第2の色の画像情報と前記第3の色の画像情報とを時間を分けて受け取るものであり、前記第2の色の画像情報を受け取る時間の長さと前記第3の色の画像情報を受け取る時間の長さが異なることを特徴とする請求項1~7のいずれか1項に記載の画像表示装置。
PCT/JP2009/006992 2008-12-17 2009-12-17 画像表示装置 WO2010070917A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/130,314 US20110222022A1 (en) 2008-12-17 2009-12-17 Image display device
JP2010542882A JPWO2010070917A1 (ja) 2008-12-17 2009-12-17 画像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008321164 2008-12-17
JP2008-321164 2008-12-17

Publications (1)

Publication Number Publication Date
WO2010070917A1 true WO2010070917A1 (ja) 2010-06-24

Family

ID=42268596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006992 WO2010070917A1 (ja) 2008-12-17 2009-12-17 画像表示装置

Country Status (3)

Country Link
US (1) US20110222022A1 (ja)
JP (1) JPWO2010070917A1 (ja)
WO (1) WO2010070917A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375246A (zh) * 2010-08-09 2012-03-14 精工爱普生株式会社 立体观看用眼镜以及立体观看用电子设备
CN103019013A (zh) * 2011-09-28 2013-04-03 苏州智能泰克有限公司 一种偏光式投影显示装置
JPWO2013014794A1 (ja) * 2011-07-28 2015-02-23 Necディスプレイソリューションズ株式会社 液晶プロジェクタ
US10477194B2 (en) 2012-04-25 2019-11-12 3M Innovative Properties Company Two imager projection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675330B2 (ja) * 2010-12-27 2015-02-25 キヤノン株式会社 画像表示装置
DE102012221467A1 (de) * 2012-11-23 2014-05-28 Osram Gmbh Lichtmodul für eine projektionsvorrichtung
CN109188700B (zh) * 2018-10-30 2021-05-11 京东方科技集团股份有限公司 光学显示系统及ar/vr显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040367A (ja) * 2000-05-08 2002-02-06 Colorlink Inc 2パネル投写システム
JP2004117676A (ja) * 2002-09-25 2004-04-15 Victor Co Of Japan Ltd 液晶表示装置及び液晶パネル
JP2006267868A (ja) * 2005-03-25 2006-10-05 Seiko Epson Corp 画像表示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183091B1 (en) * 1995-04-07 2001-02-06 Colorlink, Inc. Color imaging systems and methods
US6309071B1 (en) * 1999-08-04 2001-10-30 Sharp Laboratories Of America, Inc. Liquid crystal projection display system
US6375330B1 (en) * 1999-12-30 2002-04-23 Gain Micro-Optics, Inc. Reflective liquid-crystal-on-silicon projection engine architecture
EP1350138A4 (en) * 2000-11-02 2007-02-28 3M Innovative Properties Co OPTICAL SYSTEMS FOR REFLECTIVE LIQUID CRYSTAL DISPLAYS
US6672722B2 (en) * 2001-06-19 2004-01-06 Intel Corporation Projection engine
JP2006527392A (ja) * 2003-04-16 2006-11-30 アップストリーム エンジニアリング オーワイ 2d/3dデータプロジェクタ
JP2004325854A (ja) * 2003-04-25 2004-11-18 Victor Co Of Japan Ltd 液晶プロジェクタ
CN100476505C (zh) * 2003-07-18 2009-04-08 晶荧光学科技有限公司 一种三维/二维可切换的彩色投影显示装置及其方法
EP1708512A1 (en) * 2005-03-31 2006-10-04 SONY DEUTSCHLAND GmbH Image generation unit with four primary colors
KR20060111793A (ko) * 2005-04-25 2006-10-30 삼성전자주식회사 조명유니트 및 이를 채용한 화상투사장치
DE102005020539A1 (de) * 2005-05-03 2006-11-09 Carl Zeiss Jena Gmbh Anordnung zur Erzeugung eines mehrfarbigen Bildes auf eine Projektionsfläche
JP5058631B2 (ja) * 2006-03-03 2012-10-24 日本電気株式会社 光源装置、表示装置、端末装置及びそれらの制御方法
JP4952070B2 (ja) * 2006-06-02 2012-06-13 ソニー株式会社 面状光源装置及び液晶表示装置組立体
CN101377572A (zh) * 2007-08-28 2009-03-04 鸿富锦精密工业(深圳)有限公司 立体投影光学系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040367A (ja) * 2000-05-08 2002-02-06 Colorlink Inc 2パネル投写システム
JP2004117676A (ja) * 2002-09-25 2004-04-15 Victor Co Of Japan Ltd 液晶表示装置及び液晶パネル
JP2006267868A (ja) * 2005-03-25 2006-10-05 Seiko Epson Corp 画像表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375246A (zh) * 2010-08-09 2012-03-14 精工爱普生株式会社 立体观看用眼镜以及立体观看用电子设备
JPWO2013014794A1 (ja) * 2011-07-28 2015-02-23 Necディスプレイソリューションズ株式会社 液晶プロジェクタ
US9140913B2 (en) 2011-07-28 2015-09-22 Nec Display Solutions, Ltd. Liquid-crystal projector
CN103019013A (zh) * 2011-09-28 2013-04-03 苏州智能泰克有限公司 一种偏光式投影显示装置
US10477194B2 (en) 2012-04-25 2019-11-12 3M Innovative Properties Company Two imager projection device

Also Published As

Publication number Publication date
US20110222022A1 (en) 2011-09-15
JPWO2010070917A1 (ja) 2012-05-24

Similar Documents

Publication Publication Date Title
JP6172775B2 (ja) 高輝度立体投影用のp光線およびs光線の合成
JP4387688B2 (ja) 液晶プロジェクタ
US7926949B1 (en) Dual-mode three-dimensional projection display
JP5360683B2 (ja) プロジェクター
US7690794B2 (en) Image-combining device and projection display apparatus having image-combining devices incorporated therein
US20060290889A1 (en) Three-Dimensional Stereoscopic Projection Architectures
US20090086016A1 (en) Stereoscopic image display employing solid state light sources
US9316898B2 (en) Projection apparatus
WO2010070917A1 (ja) 画像表示装置
JP2007509544A (ja) 色選択フィルタに基づく立体画像表示を行う方法と装置
TW201007334A (en) Laser illuminated micro-mirror projector
JP2007271828A (ja) 立体画像投射装置
JP2009151151A (ja) 立体映像表示装置
JP2008209476A (ja) 立体画像表示装置
JP2011112900A (ja) 立体映像投影装置
JP2010139590A (ja) 画像投影装置及び投影画像の二次元/三次元切替え方法
JP2008310340A (ja) 液晶プロジェクタ
JP2011191491A (ja) 画像表示装置
EP2963493B1 (en) Image projection device
JP2003185969A (ja) 立体視液晶プロジェクタシステム
JP5982899B2 (ja) 波長分離装置、及び画像表示システム
JP2006058588A (ja) 光学デバイス、光学装置、表示装置及び立体画像表示装置
JP2004226767A (ja) 光学ユニット及びそれを用いた表示システム並びに映像光出力方法
JP2014203068A (ja) 画像表示装置及び画像表示方法
JP2014153545A (ja) 投射型表示装置および眼鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542882

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13130314

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833224

Country of ref document: EP

Kind code of ref document: A1