WO2010070855A1 - 燃料電池用ソケットと、それを用いた燃料電池用カップラーおよび燃料電池 - Google Patents

燃料電池用ソケットと、それを用いた燃料電池用カップラーおよび燃料電池 Download PDF

Info

Publication number
WO2010070855A1
WO2010070855A1 PCT/JP2009/006808 JP2009006808W WO2010070855A1 WO 2010070855 A1 WO2010070855 A1 WO 2010070855A1 JP 2009006808 W JP2009006808 W JP 2009006808W WO 2010070855 A1 WO2010070855 A1 WO 2010070855A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
socket
introduction path
plug
Prior art date
Application number
PCT/JP2009/006808
Other languages
English (en)
French (fr)
Inventor
高橋賢一
川村公一
長谷部裕之
吉弘憲司
山盛陽
Original Assignee
株式会社 東芝
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東洋製罐株式会社 filed Critical 株式会社 東芝
Priority to CN2009801513261A priority Critical patent/CN102246339A/zh
Publication of WO2010070855A1 publication Critical patent/WO2010070855A1/ja
Priority to US13/160,274 priority patent/US20110275004A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/28Couplings of the quick-acting type with fluid cut-off means
    • F16L37/30Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings
    • F16L37/32Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings at least one of two lift valves being opened automatically when the coupling is applied
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell socket used for supplying liquid fuel to a fuel cell, a fuel cell coupler and a fuel cell using the same.
  • a fuel cell can generate electric power simply by supplying fuel and air, and can continuously generate electric power for a long time if fuel is replenished. For this reason, if the fuel cell can be reduced in size, it can be said that the system is extremely advantageous as a power source for portable electronic devices.
  • direct methanol fuel cells using methanol fuel with high energy density are promising as power sources for portable devices because they can be miniaturized and the fuel is easy to handle.
  • DMFC direct methanol fuel cells
  • the liquid fuel supply method in the DMFC there are known an active method such as a gas supply type and a liquid supply type, and an internal vaporization type passive method in which the liquid fuel in the fuel container is vaporized in the fuel cell and supplied to the fuel electrode. It has been.
  • the passive method is advantageous for downsizing the DMFC.
  • methanol fuel in the fuel container is vaporized through a fuel impregnated layer, a fuel vaporized layer, etc., and supplied to the fuel electrode.
  • a satellite type (outside injection type) fuel cartridge is used for supplying liquid fuel such as methanol fuel to the fuel storage section.
  • a fuel cell coupler When liquid fuel is supplied by a fuel cartridge, a fuel cell coupler generally composed of a fuel cell socket and a fuel cell plug is used. Each of the fuel cell socket and the fuel cell plug has a valve mechanism that incorporates a valve as a valve body. By connecting the fuel cell plug to the fuel cell socket, both the valves are brought into contact with each other to connect the valve. Open the mechanism.
  • the fuel cell socket is attached to the fuel cell side
  • the fuel cell plug is attached to the fuel cartridge side
  • the fuel cell plug is inserted into the fuel cell socket so that the fuel cartridge is accommodated in the fuel cartridge.
  • the liquid fuel that is present can be supplied to the fuel cell, specifically to the fuel storage portion.
  • the valve mechanism can be closed by releasing both valves and the supply of liquid fuel can be shut off.
  • a valve is arranged in a cylindrical socket body and an elastic cylindrical fuel introduction path called a rubber holder or the like is provided so as to cover the periphery of the connection side of the valve.
  • an elastic cylindrical fuel introduction path called a rubber holder or the like is provided so as to cover the periphery of the connection side of the valve.
  • the fuel introduction path is in contact with the periphery of the discharge port for discharging the liquid fuel, and serves as a flow path for guiding the discharged liquid fuel to the inside of the fuel cell socket. is there.
  • a fuel introduction path for example, a bellows-like one that can expand and contract in the axial direction is known (see, for example, Patent Document 1).
  • characteristics of such a fuel introduction path may deteriorate due to long-term use, and the repulsive force may be weakened, or it may not be restored to its original state after contracting once.
  • the repulsive force may be weakened, or it may not be restored to its original state after contracting once.
  • about such a fuel introduction path with a lowered characteristic when the fuel cell plug is connected, it is not possible to properly contact the periphery of the discharge port, and the liquid fuel may leak to the outside.
  • An object of the present invention is to provide a fuel with excellent safety, which can appropriately contact a fuel introduction path around the discharge port when connected to a fuel cell plug, and prevents leakage of liquid fuel to the outside.
  • the object is to provide a battery socket. It is another object of the present invention to provide a fuel cell coupler and a fuel cell having such a fuel cell socket having excellent safety.
  • a fuel cell socket is a fuel cell socket to which a fuel cell plug for discharging liquid fuel for a fuel cell is detachably connected, and a cylinder having a reduced diameter portion in a substantially middle portion in the axial direction.
  • a fuel cell coupler according to the present invention is a fuel cell coupler comprising a fuel cell plug for discharging liquid fuel for a fuel cell and a fuel cell socket to which the fuel cell plug is detachably connected.
  • the fuel cell socket is the above-described fuel cell socket of the present invention.
  • the fuel cell of the present invention supplies a fuel electrode, an air electrode, a membrane electrode assembly having an electrolyte membrane sandwiched between the fuel electrode and the air electrode, and a fuel electrode of the membrane electrode assembly.
  • a fuel cell having a fuel storage portion for storing liquid fuel and a fuel cell socket provided in the fuel storage portion, wherein the fuel cell socket is the above-described fuel cell socket of the present invention.
  • FIG. Schematic which shows the application method of the socket for fuel cells of this invention.
  • Sectional drawing which shows 1st Embodiment of the socket for fuel cells of this invention.
  • Sectional drawing which shows an example of the plug for fuel cells connected to the socket for fuel cells shown in FIG.
  • Sectional drawing which shows the state which connected the plug for fuel cells to the socket for fuel cells shown in FIG.
  • Sectional drawing which shows 2nd Embodiment of the socket for fuel cells of this invention.
  • Sectional drawing which shows the state which connected the plug for fuel cells to the socket for fuel cells shown in FIG. Sectional drawing which shows 3rd Embodiment of the socket for fuel cells of this invention.
  • Sectional drawing which shows the state which connected the plug for fuel cells to the socket for fuel cells shown in FIG. Sectional drawing which shows an example of the fuel cell of this invention.
  • FIG. 1 is a schematic diagram showing an application method of a fuel cell socket 1 (hereinafter simply referred to as a socket 1) of the present invention.
  • the fuel cell socket 1 of the present invention is detachably connected to a fuel cell plug 2 (hereinafter simply referred to as a plug 2) to constitute a fuel cell coupler 3 (hereinafter simply referred to as a coupler 3).
  • the socket 1 and the plug 2 each have a valve constituting a valve mechanism, and in the separated state as shown in the drawing, the valve mechanism is closed to prevent the liquid fuel from flowing out.
  • the valve mechanism is opened by the contact of these valves, and the liquid fuel can be supplied.
  • Such a socket 1 is used by being attached to a fuel cell 4.
  • the fuel cell 4 includes, for example, a fuel cell 5 that serves as an electromotive unit, a fuel storage unit 6 that stores liquid fuel to be supplied to the fuel cell 5, and a liquid storage unit that is attached to the fuel storage unit 6 to supply liquid fuel.
  • the socket 1 is attached to the fuel receiving portion 7, for example.
  • the cartridge 8 has a cartridge main body 9 which is a container for storing liquid fuel, and a plug 2 for discharging the liquid fuel is attached to a tip portion thereof.
  • a cartridge 8 is connected only when liquid fuel is injected into the fuel cell 4 and is called a so-called satellite type (outside injection type).
  • the cartridge main body 9 accommodates liquid fuel corresponding to the fuel cell 4, for example, methanol fuel such as methanol aqueous solution of various concentrations or pure methanol in the case of a direct methanol fuel cell (DMFC).
  • methanol fuel such as methanol aqueous solution of various concentrations or pure methanol in the case of a direct methanol fuel cell (DMFC).
  • the liquid fuel accommodated in the cartridge body 9 is not necessarily limited to methanol fuel.
  • ethanol fuel such as ethanol aqueous solution and pure ethanol
  • propanol fuel such as propanol aqueous solution and pure propanol
  • glycol aqueous solution and pure glycol etc.
  • liquid fuel corresponding to the fuel cell 4 is accommodated.
  • the socket 1 of the present invention will be specifically described.
  • the upper side in the figure is the side to which the plug 2 is connected.
  • the side of the socket 1 to which the plug 2 is connected (upper side in the figure) is referred to as the connection side, and the opposite side (lower side in the figure) is referred to as the bottom side.
  • FIG. 2 is a cross-sectional view showing the socket 1 according to the first embodiment of the present invention.
  • FIG. 2 shows a state where the valve mechanism is closed.
  • the socket 1 is also called a female side coupler, and is a cylindrical socket body 11, a valve 12 provided inside the socket body 11, and a fuel introduction provided so as to surround a side surface portion on the connection side of the valve 12. It is mainly composed of a path 13, a locking part 14 provided in the fuel introduction path 13, and an auxiliary elastic body 15 that presses the locking part 14.
  • the socket body 11 includes, for example, a substantially cylindrical first cylindrical portion 111 disposed on the connection side, a second cylindrical portion 112 fixed so as to be fitted to the bottom side of the first cylindrical portion 111, and the first cylindrical portion 111.
  • the third cylindrical portion 113 is fixed to be fitted to the bottom side of the two cylindrical portions 112.
  • the first cylindrical portion 111 is formed with a stepped portion by making the inner diameter of the connection side smaller than that of the bottom side, and this stepped portion restricts the movement of the locking portion 14 to the connection side. It is the positioning part 111a which prescribes
  • the second cylindrical portion 112 has a reduced diameter portion 112a on the connection side, and the inner diameter of the reduced diameter portion 112a can be inserted into the connection side portion of the valve 12 and allows liquid fuel to pass through. It is said that.
  • the third cylindrical portion 113 is formed with a valve abutting portion 113a for restricting the movement of the valve 12 toward the bottom side at the shaft center portion, and a plurality of flow holes 113b serving as liquid fuel flow paths around the third cylindrical portion 113. Are formed at equal intervals.
  • the valve 12 mainly constitutes a valve mechanism together with the socket body 11, and includes a shaft portion 12a protruding to the connection side through the reduced diameter portion 112a, and a head portion 12b disposed on the bottom side of the reduced diameter portion 112a. have.
  • An annular seal member 16 such as an O-ring is disposed on the connection side of the head portion 12b, and a valve elastic body 17 such as a compression spring is disposed on the bottom side, and the annular seal member 16 is connected to the valve via the head portion 12b.
  • the fuel introduction path 13 has a cylindrical shape made of an elastic material, and the inside serves as a flow path for liquid fuel discharged from the plug 2.
  • the fuel introduction path 13 has a substantially bellows shape except for a part on the connection side, that is, an end on the connection side, and a mounting portion 13a to which the locking portion 14 is attached. Depending on the characteristics (rubber elasticity), it can be expanded and contracted in the axial direction.
  • the mounting portion 13a is formed as a groove portion that goes around the side surface portion of the fuel introduction path 13, for example. Moreover, the both ends of the fuel introduction path 13 are made into the seal part 13b and the seal part 13c, for example, the cross section is convex in the axial direction. That is, the seal portion 13 b at the end on the connection side comes into contact with the periphery of the discharge port for discharging the liquid fuel of the plug 2 to be in a sealed state, and is convex toward the plug 2. On the other hand, the seal portion 13c at the end on the bottom side comes into contact with the reduced diameter portion 112a to be in a sealed state, and is convex toward the reduced diameter portion 112a.
  • Such a fuel introduction path 13 is provided so as to surround the entire portion of the shaft portion 12a protruding to the connection side of the reduced diameter portion 112a.
  • the end of the fuel introduction path 13 on the connection side protects, for example, the end on the connection side of the shaft portion 12a and before the shaft portion 12a is inserted into the discharge port for discharging the liquid fuel of the plug 2.
  • the shaft portion 12a is slightly extended to the connection side.
  • the locking portion 14 and the auxiliary elastic body 15 are provided to press the end portion on the connection side of the fuel introduction path 13 toward the tip side, and the locking portion is provided on the side surface portion of the fuel introduction path 13. 14 is mounted, and an auxiliary elastic body 15 is provided outside the fuel introduction path 13 on the bottom side of the locking portion 14 so as to press the locking portion 14 toward the connection side.
  • the locking portion 14 and the auxiliary elastic body 15 By providing the locking portion 14 and the auxiliary elastic body 15 in this manner, when the plug 2 is connected, the end portion on the connection side of the fuel introduction path 13 is appropriately brought into contact with the periphery of the discharge port for discharging the liquid fuel. Can be brought into a sealed state. Thereby, the leakage of the liquid fuel to the outside can be suppressed and the safety can be improved. In particular, when the characteristics of the fuel introduction path 13 deteriorate due to long-term use, leakage of liquid fuel to the outside can be effectively suppressed, and the safety can be improved.
  • auxiliary elastic body 15 Even when the auxiliary elastic body 15 is provided as described above, by arranging the auxiliary elastic body 15 outside the fuel introduction path 13, it is possible to suppress the mixing of metal ions or the like eluted from the auxiliary elastic body into the liquid fuel. Further, it is possible to suppress a decrease in power generation characteristics of the fuel cell.
  • the locking portion 14 is restricted from moving to the distal end side by a positioning portion 111a provided in the socket body 11 (first tube portion 111), and is prevented from falling off from the socket body 11 and is in an initial position state. Is held in. In addition, since the initial position state of the locking portion 14 is maintained in this way, the initial position state of the end portion on the connection side of the fuel introduction path 13 can also be maintained.
  • Such a locking portion 14 is, for example, an annular member having a holding hole for holding the fuel introduction path 13, and is mounted so as to be fitted from the outside into a mounting portion 13 a provided at the connection side end of the fuel introduction path 13.
  • the position at which the locking portion 14 is attached is not necessarily the end portion on the connection side of the fuel introduction path 13, but the end portion on the connection side of the fuel introduction path 13 is pressed toward the connection side, and the liquid of the plug 2 From the viewpoint of making appropriate contact with the periphery of the discharge port from which the fuel is discharged, the end of the fuel introduction path 13 on the connection side is preferable.
  • the outer diameter of the locking portion 14 is the same as the inner diameter of the socket body 11 so that the inside of the socket body 11 (first tube portion 111) can slide.
  • the axial center of the socket body 11 and the axial center of the fuel introduction path 13 are aligned, and the connection side of the fuel introduction path 13 is surely secured around the discharge port for discharging the liquid fuel of the plug 2.
  • the end portions can be brought into contact with each other to be in a sealed state.
  • the fuel introduction path 13 and the annular seal member 16 are preferably made of ethylene-propylene-diene rubber (EPDM) having resistance to liquid fuel, particularly methanol resistance.
  • EPDM ethylene-propylene-diene rubber
  • it is not limited to EPDM, and may be made of silicone rubber (VMQ), fluorosilicone rubber (FVMQ), fluorine rubber (FKM), nitrile rubber (NBR), or hydrogenated nitrile rubber (HNBR).
  • the auxiliary elastic body 15 is not necessarily in contact with the liquid fuel, but is preferably subjected to a surface treatment for contact with the liquid fuel.
  • the valve elastic body 17 has been subjected to a surface treatment in order to be disposed in the flow path of the liquid fuel.
  • a stainless steel spring that has been passivated to enhance corrosion resistance is preferable.
  • the surface treatment is not limited to the passivation treatment, and a precious metal plating such as gold or a resin coating such as a fluorine-based resin is also preferably used.
  • a spring using carbon as a material can be used.
  • the other members are generally preferably made of a non-metallic material, and are preferably made of a resin material having resistance to liquid fuel, particularly methanol resistance.
  • resin materials include polypropylene (PP), polyphenylene sulfide (PPS), high density polyethylene (HDPE), polystyrene (PS), polyether ether ketone (PEEK: trademark of Victrex), and liquid crystal polymer (LCP). , Polybutylene terephthalate (PBT), polyacetal (POM), etc.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • COC cyclic olefin copolymer
  • COP polymer
  • TPX polymethylpentene
  • PPSU polyphenylsulfone
  • PES polyethersulfone
  • FIG. 3 shows the plug 2 connected to the socket 1.
  • the lower side in the figure is the side connected to the socket 1.
  • the side of the plug 2 connected to the socket 1 (lower side in the figure) will be referred to as the connecting side, and the opposite side (upper side in the figure) will be referred to as the bottom side.
  • the plug 2 is also called a male-side coupler, and includes a plug head 21 into which the cartridge main body 9 is fitted, a valve 22 disposed inside the plug head 21, and the cartridge main body so as to cover the plug head 21 from the outside.
  • 9 has a presser cap 23 and the like to be fixed to the head 9.
  • the plug head 21 has a cylindrical base portion 21a into which the cartridge main body 9 is fitted, and an insertion portion 21b provided on the connection side and having a smaller diameter.
  • a shaft hole 21c into which the valve 22 is movably inserted is formed in the axial center portion of the insertion portion 21b, which is a flow path for the liquid fuel accommodated in the cartridge main body 9.
  • a seal recess 21d into which the fuel introduction path 13 is fitted is formed at the end of the insertion portion 21b, and a discharge port 21e connected to the shaft hole 21c is formed on the bottom surface of the seal recess 21d.
  • the discharge port 21e is a portion for discharging the liquid fuel stored in the cartridge body 9, and the seal recess 21d is a temporary storage portion for the residue (adhered matter) of the liquid fuel discharged from the discharge port 21e. It functions and prevents the operator from touching the liquid fuel.
  • the periphery of the discharge port 21e is sealed by contacting the seal recess 21d so that the tip of the fuel introduction path 13 is fitted, and the outflow of liquid fuel to the outside is suppressed.
  • a valve holder 24 that holds the valve 22 is disposed inside the base portion 21a.
  • the valve holder 24 defines a valve chamber.
  • a flange portion 24a formed on the outer edge of the connection side is pressed by the cartridge main body 9 from the bottom side via an annular seal member 25 such as an O-ring. It is fixed to the part 21a.
  • a shaft hole 24b into which the valve 22 is movably inserted is provided at a substantially middle portion of the valve holder 24, and a communication hole 24c serving as a flow path for liquid fuel from the cartridge body 9 is provided at the rear end portion. It has been.
  • the valve 22 mainly constitutes a valve mechanism together with the plug head 21, and has a shaft portion 22a inserted into the shaft hole 21c and a head portion 22b disposed on the bottom side of the shaft hole 21c. Yes.
  • An annular seal member 26 such as an O-ring is disposed on the front end side of the head portion 22b so as to surround the periphery of the shaft portion 22a, and a compression spring or the like is provided on the bottom side so as to press the valve 22 toward the front end side.
  • the valve elastic body 27 is disposed, and the annular seal member 26 is pressed by the valve elastic body 27 via the head portion 22b, whereby the shaft hole 21c is closed and leakage of the liquid fuel is suppressed.
  • Such an annular seal member 26 and an annular seal member 27 are preferably made of ethylene-propylene-diene rubber (EPDM) having resistance to liquid fuel, particularly methanol resistance.
  • EPDM ethylene-propylene-diene rubber
  • it is not limited to EPDM, and may be made of silicone rubber (VMQ), fluorosilicone rubber (FVMQ), fluorine rubber (FKM), nitrile rubber (NBR), or hydrogenated nitrile rubber (HNBR).
  • valve elastic body 27 is preferably subjected to a surface treatment in order to be disposed in the flow path of the liquid fuel.
  • a surface treatment in order to be disposed in the flow path of the liquid fuel.
  • a stainless steel spring that has been passivated to enhance corrosion resistance is preferable.
  • the surface treatment is not limited to the passivation treatment, and a precious metal plating such as gold or a resin coating such as a fluorine-based resin is also preferably used.
  • a spring using carbon as a material can be used.
  • the other members of the plug 2 are generally preferably made of a non-metallic material, and preferably made of a resin material having resistance to liquid fuel, particularly methanol resistance.
  • resin materials include polypropylene (PP), polyphenylene sulfide (PPS), high density polyethylene (HDPE), polystyrene (PS), polyether ether ketone (PEEK: trademark of Victrex), and liquid crystal polymer (LCP). , Polybutylene terephthalate (PBT), polyacetal (POM), etc.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • COC cyclic olefin copolymer
  • COP polymer
  • TPX polymethylpentene
  • PPSU polyphenylsulfone
  • PES polyethersulfone
  • FIG. 4 is a cross-sectional view showing a state in which the socket 1 and the plug 2 are connected.
  • the socket 1 and the plug 2 can be connected as follows.
  • the fuel introduction path 13 contracts so as to be pushed down by the plug 2, and the locking portion 14 also moves to the bottom side in accordance with the contraction of the fuel introduction path 13. .
  • the position of the valve 12 on the socket side does not change, it is inserted into the discharge port 21e of the plug 2 and abuts on the valve 22 on the plug side.
  • the socket-side valve 12 When the plug 2 is inserted while the socket-side valve 12 and the plug-side valve 22 are in contact with each other, the socket-side valve 12 is pushed down by the plug-side valve 22 and moved to the bottom side. The valve mechanism of the socket 1 is opened.
  • the opening order of both valve mechanisms is determined by adjusting the repulsive force of the valve elastic body that presses the valves.
  • the valve mechanism of the socket 1 is plugged.
  • the valve mechanism is configured to open before the second valve mechanism.
  • valve 12 on the socket side comes into contact with a valve contact portion 113a provided on the bottom side.
  • the plug-side valve 22 is pushed back to the socket-side valve 12 so that the socket-side valve 22 is moved to the bottom side.
  • the valve mechanism of the plug 2 is opened.
  • the valve mechanism of the plug 2 When the valve mechanism of the plug 2 is opened, the liquid fuel accommodated in the cartridge body 9 is discharged from the discharge port 21e through the shaft hole 21c. Then, the liquid fuel discharged from the discharge port 21e sequentially passes through the inside of the fuel introduction path 13 and the reduced diameter portion 112a, and is finally supplied to the fuel cell 4 from the circulation hole 113b via the fuel receiving portion 7. .
  • the connection between the socket 1 and the plug 2 is completed when the plug-side valve 22 comes into contact with the rear end of the valve holder 24, making it difficult to insert the plug 2 any more (FIG. 4).
  • valve 22 is similarly pulled out together with the insertion portion 21b of the plug 2, so that the valve 12 on the socket side moves to the connection side, and as a result, the socket 1 The valve mechanism is closed.
  • the locking portion 14 and the auxiliary elastic body 15 in addition to the fuel introduction path 13, the fuel introduction path is always provided during a series of such steps of connecting and removing the plug 2.
  • the end of the connection side of 13 can be brought into contact with the periphery of the discharge port 21e of the plug 2, and leakage of the liquid fuel to the outside can be suppressed and the safety can be improved.
  • FIG. 5 is a cross-sectional view showing the socket 1 of the second embodiment.
  • FIG. 6 is sectional drawing which shows the state which connected the plug 2 to the socket 1 of 2nd Embodiment.
  • the plug 2 can be the same as the socket 1 of the first embodiment.
  • the socket 1 has an inner cylindrical portion 112 b extending from the reduced diameter portion 112 a toward the connection side, and an inner cylindrical portion 112 b extending so as to expand an end portion on the bottom side of the fuel introduction path 13. It is attached so as to cover the whole.
  • the fuel introduction path 13 has a fixed size in which the entire portion excluding the end on the connection side is slightly larger than the shaft portion 12a when not attached to the socket body 11.
  • the fuel introduction path 13 is contracted by being deformed so that a substantially middle portion in the axial direction is bent outward. Further, in the fuel introduction path 13, when the plug 2 is connected, the insertion portion 21b and the reduced diameter portion 112a are pressed in the axial direction so that the seal portion 13b, which is the end portion on the connection side, surrounds the discharge port 21e. The seal portion 13c, which is the end portion on the bottom side, comes into contact with the reduced diameter portion 112a to make a seal state.
  • the bottom side of the fuel introduction path 13 is brought into a sealed state mainly by contact between the seal portion 13c, which is the end portion, and the reduced diameter portion 112a, but the gap between the inner surface and the outer surface of the inner cylinder portion 112b is also maintained. Since they are in contact with each other, they are additionally sealed.
  • the end of the fuel introduction passage 13 on the bottom side is in contact with the reduced diameter portion 112a and the inner surface is in contact with the outer surface of the inner cylinder portion 112b. It is preferable to gradually reduce the diameter of the connecting portion between the diameter portion 112a and the inner cylinder portion 112b toward the connection side in accordance with the shape of the seal portion 13c.
  • Such a socket 1 can also be used by connecting the plug 2 in the same manner as the socket 1 of the first embodiment. And by providing the latching
  • FIG. 7 is a cross-sectional view showing the socket 1 of the third embodiment.
  • FIG. 8 is sectional drawing which shows the state which connected the plug 2 to the socket 1 of 3rd Embodiment.
  • the plug 2 can be the same as the socket 1 of the first embodiment.
  • the socket 1 has an inner cylinder part 112 b extending from the reduced diameter part 112 a to the connection side, and a part of the connection side of the inner cylinder part 112 b can slide as the fuel introduction path 13. It uses something that covers it.
  • the fuel introduction path 13 has an inner diameter on the bottom side of the mounting portion 13a that is substantially the same as the outer diameter of the inner cylinder portion 112b within a range that can slide with respect to the inner cylinder portion 112b. ing.
  • the fuel introduction path 13 slides to the bottom side by insertion of the plug 2 and is pressed in the axial direction by the insertion portion 21b and the reduced diameter portion 112a, so that the connection side
  • the seal portion 13b which is an end portion, comes into contact with the periphery of the discharge port 21e to be in a sealed state
  • the seal portion 13c which is an end portion on the bottom side, comes into contact with the reduced diameter portion 112a to be in a sealed state.
  • the bottom side of the fuel introduction path 13 is brought into a sealed state when the fuel introduction path 13 moves to the bottom side, and the seal portion 13c, which is an end, and the reduced diameter portion 112a come into contact with each other.
  • the seal portion 13c which is an end, and the reduced diameter portion 112a come into contact with each other.
  • the inner surface and the outer surface of the inner cylindrical portion 112b are in contact with each other.
  • the diameter of the connecting portion between the reduced diameter portion 112a and the inner cylindrical portion 112b is gradually reduced toward the connection side in accordance with the shape of the seal portion 13c. It is preferable.
  • Such a socket 1 can also be used by connecting the plug 2 in the same manner as the socket 1 of the first embodiment. And by providing the latching
  • FIG. 9 is a cross-sectional view showing an example of the fuel cell 4 of the present invention.
  • the fuel cell 4 is mainly composed of a fuel cell 5 constituting an electromotive part, a fuel accommodating part 6, and a fuel receiving part 7 having a socket 1 (not shown).
  • the fuel receiving portion 7 (not shown) is provided on the lower surface side of the fuel containing portion 6 as shown in FIG.
  • the fuel cell 5 includes an anode (fuel electrode) composed of an anode catalyst layer 51 and an anode gas diffusion layer 52, a cathode (oxidant electrode / air electrode) composed of a cathode catalyst layer 53 and a cathode gas diffusion layer 54, and an anode catalyst. It has a membrane electrode assembly (MEA: Membrane Electrode Assembly) composed of a proton (hydrogen ion) conductive electrolyte membrane 55 sandwiched between the layer 51 and the cathode catalyst layer 53.
  • MEA Membrane Electrode Assembly
  • Examples of the catalyst contained in the anode catalyst layer 51 and the cathode catalyst layer 53 include a simple substance of a platinum group element such as Pt, Ru, Rh, Ir, Os, and Pd, and an alloy containing the platinum group element. Specifically, it is preferable to use Pt—Ru, Pt—Mo or the like having strong resistance to methanol or carbon monoxide for the anode catalyst layer 51 and platinum, Pt—Ni or the like for the cathode catalyst layer 53. Further, a supported catalyst using a conductive support such as a carbon material or an unsupported catalyst may be used.
  • Examples of the proton conductive material constituting the electrolyte membrane 55 include fluorine-based resins such as perfluorosulfonic acid polymer having a sulfonic acid group (Nafion (trade name, manufactured by DuPont) and Flemion (trade name, manufactured by Asahi Glass Co., Ltd.). Etc.), hydrocarbon resins having a sulfonic acid group, and inorganic substances such as tungstic acid and phosphotungstic acid. However, it is not restricted to these.
  • the anode gas diffusion layer 52 laminated on the anode catalyst layer 51 serves to uniformly supply fuel to the anode catalyst layer 51 and also serves as a current collector for the anode catalyst layer 51.
  • the cathode gas diffusion layer 54 laminated on the cathode catalyst layer 53 serves to supply the oxidant uniformly to the cathode catalyst layer 53 and also serves as a current collector for the cathode catalyst layer 53.
  • An anode conductive layer 56 is stacked on the anode gas diffusion layer 52, and a cathode conductive layer 57 is stacked on the cathode gas diffusion layer 54.
  • the anode conductive layer 56 and the cathode conductive layer 57 are made of, for example, a porous layer such as a mesh made of a conductive metal material such as Au or Ni, a thin film or a foil, or a conductive metal material such as stainless steel (SUS). A composite material coated with a highly conductive metal such as is used.
  • annular seal members 58 and 59 such as rubber O-rings are interposed between the electrolyte membrane 55 and the anode conductive layer 56 and between the electrolyte membrane 55 and the cathode conductive layer 57. Fuel leakage and oxidant leakage from the fuel battery cell 5 are prevented.
  • the inside of the fuel storage unit 6 is filled with, for example, methanol fuel as a liquid fuel. Further, the fuel storage unit 6 is opened on the fuel cell 5 side, and a gas permselective membrane 41 is installed between the opening of the fuel storage unit 6 and the fuel cell 5.
  • the gas selective permeable membrane 41 is a gas-liquid separation membrane that transmits only the vaporized component of the liquid fuel and does not transmit the liquid component. Examples of the constituent material of the gas selective permeable membrane 41 include a fluororesin such as polytetrafluoroethylene.
  • the vaporized component of the liquid fuel means a mixed gas composed of a vaporized component of methanol and a vaporized component of water when an aqueous methanol solution is used as the liquid fuel, and a vaporized component of methanol when pure methanol is used. To do.
  • a moisturizing layer 42 is laminated on the cathode conductive layer 57, and a surface layer 43 is further laminated thereon.
  • the surface layer 43 has a function of adjusting the amount of air that is an oxidant, and the adjustment is performed by changing the number, size, and the like of the air inlets 43 a formed in the surface layer 43.
  • the moisturizing layer 42 is impregnated with a part of the water generated in the cathode catalyst layer 53 and serves to suppress the transpiration of water, and by uniformly introducing an oxidant into the cathode gas diffusion layer 54, the cathode catalyst. It also has a function of promoting uniform diffusion of the oxidant into the layer 53.
  • the moisturizing layer 42 is composed of, for example, a porous member, and specific constituent materials include polyethylene and polypropylene porous bodies.
  • the gas permselective membrane 41, the fuel cell 5, the moisture retaining layer 42, and the surface layer 43 laminated on the fuel storage unit 6 are held by covering with a stainless steel cover 44, for example.
  • the cover 44 is provided with an opening 44 a at a portion corresponding to the air inlet 43 a formed in the surface layer 43.
  • the fuel storage unit 6 is provided with a terrace 6a for receiving the claw 44b of the cover 44. The claw 44b is caulked on the terrace 6a so that the whole is integrally held by the cover 44.
  • the liquid fuel (for example, aqueous methanol solution) in the fuel storage unit 6 is vaporized, and this vaporized component permeates the gas selective permeable membrane 41 and is supplied to the fuel cell 5.
  • the vaporized component of the liquid fuel is diffused in the anode gas diffusion layer 52 and supplied to the anode catalyst layer 51.
  • the vaporized component supplied to the anode catalyst layer 51 causes, for example, the internal reforming reaction of methanol shown in the following (1). CH 3 OH + H 2 O ⁇ CO 2 + 6H + + 6e ⁇ (1)
  • Protons (H + ) generated by the internal reforming reaction are conducted through the electrolyte membrane 55 and reach the cathode catalyst layer 53.
  • Air (oxidant) taken from the air inlet 43 a of the surface layer 43 diffuses through the moisturizing layer 42, the cathode conductive layer 57, and the cathode gas diffusion layer 54 and is supplied to the cathode catalyst layer 53.
  • the air supplied to the cathode catalyst layer 53 causes the reaction shown in the following formula (2). This reaction causes a power generation reaction that accompanies the generation of water. (3/2) O 2 + 6H + + 6e ⁇ ⁇ 3H 2 O (2)
  • liquid fuel for example, aqueous methanol solution or pure methanol
  • the power generation reaction stops when the liquid fuel in the fuel storage unit 6 is completely consumed, the liquid fuel is supplied from the cartridge 8 into the fuel storage unit 6 at that time or before that time.
  • the liquid fuel can be supplied from the cartridge 8 by connecting the plug 2 mounted on the cartridge 8 to the socket 1 mounted on the fuel cell 4 as described above. At this time, since the locking portion 14 and the auxiliary elastic body 15 are provided in the socket 1 in addition to the fuel introduction path 13, leakage of the liquid fuel at the time of connection is suppressed, and the safety is improved.
  • the fuel cell socket of the present invention and the fuel cell coupler and fuel cell using the same have been described above.
  • the fuel cell socket, fuel cell coupler and fuel cell of the present invention are limited to the above-described embodiment itself.
  • the constituent elements can be modified and embodied without departing from the spirit of the invention.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment.
  • a passive type DMFC which is being reduced in size is suitable as a fuel cell, but at least the fuel cell socket of the present invention is provided and liquid fuel is supplied through the socket.
  • the method and mechanism are not limited in any way.
  • the fuel cell socket of the present invention includes a fuel introduction path having a locking portion and an auxiliary elastic body that presses the locking portion toward the connection side.
  • SYMBOLS 1 Fuel cell socket, 2 ... Fuel cell plug, 3 ... Fuel cell coupler, 4 ... Fuel cell, 5 ... Fuel cell, 6 ... Fuel accommodating part, 11 ... Socket main body, 112a ... Reduced diameter part, 112b DESCRIPTION OF SYMBOLS ... Inner cylinder part, 12 ... Valve, 12a ... Shaft part, 13 ... Fuel introduction path, 14 ... Locking part, 15 ... Auxiliary elastic body, 51 ... Anode catalyst layer, 52 ... Anode gas diffusion layer, 53 ... Cathode catalyst layer 54 ... cathode gas diffusion layer, 55 ... electrolyte membrane, 56 ... anode conductive layer, 57 ... cathode conductive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池用の液体燃料を吐出する燃料電池用プラグ2が着脱可能に接続される燃料電池用ソケット1であって、軸方向の略中間部に縮径部112aを有する筒状のソケット本体11と、前記縮径部112aを通して前記接続側に突出する軸部12aを有するバルブ12と、前記縮径部112aから突出する前記軸部12aの側面部を囲むようにして設けられ、側面部に係止部14を有する弾性筒状の燃料導入路13と、前記燃料導入路13の外側に設けられ、前記係止部14を前記接続側に押圧する補助弾性体15とを有するもの。

Description

燃料電池用ソケットと、それを用いた燃料電池用カップラーおよび燃料電池
 本発明は、燃料電池への液体燃料の供給に用いられる燃料電池用ソケットと、それを用いた燃料電池用カップラーおよび燃料電池に関する。
 近年、ノートパソコンや携帯電話等の各種携帯用電子機器を長時間充電なしで使用可能とするために、これら携帯用電子機器の電源に燃料電池を用いる試みがなされている。燃料電池は燃料と空気を供給するだけで発電することができ、燃料を補給すれば連続して長時間発電することができる。このため、燃料電池を小型化できれば、携帯用電子機器の電源として極めて有利なシステムといえる。
 特に、エネルギー密度の高いメタノール燃料を用いた直接メタノール型燃料電池(DMFC:direct methanol fuel cell)は小型化が可能であり、さらに燃料の取り扱いも容易であるため、携帯機器用の電源として有望視されている。DMFCにおける液体燃料の供給方式としては、気体供給型や液体供給型等のアクティブ方式、また燃料収容部内の液体燃料を燃料電池内で気化させて燃料極に供給する内部気化型のパッシブ方式が知られている。このうち、パッシブ方式はDMFCの小型化に対して有利である。
 パッシブ方式のDMFCにおいては、燃料収容部内のメタノール燃料を燃料含浸層や燃料気化層等を介して気化させて燃料極に供給している。そして、このような燃料収容部へのメタノール燃料等の液体燃料の供給には、例えばサテライトタイプ(外側注入式)の燃料カートリッジが用いられている。
 燃料カートリッジによって液体燃料を供給する場合、一般に燃料電池用ソケットと燃料電池用プラグとによって構成される燃料電池用カップラーが用いられている。燃料電池用ソケットおよび燃料電池用プラグはそれぞれ弁体としてのバルブを内蔵するバルブ機構を有しており、燃料電池用ソケットに燃料電池用プラグを接続することにより両者のバルブを当接させてバルブ機構を開状態とする。
 これにより、例えば燃料電池側に燃料電池用ソケットを装着すると共に、燃料カートリッジ側に燃料電池用プラグを装着し、燃料電池用ソケットに燃料電池用プラグを挿入することで、燃料カートリッジに収容されている液体燃料を燃料電池、具体的には燃料収容部へと供給することができる。また、燃料電池用ソケットから燃料電池用プラグを引き抜くことで、両者のバルブを離してバルブ機構を閉状態とし、液体燃料の供給を遮断することができる。
 このような燃料電池用ソケットとしては、例えば筒状のソケット本体内にバルブを配置すると共に、このバルブの接続側の周囲を覆うようにゴムホルダ等と呼ばれる弾性筒状の燃料導入路を設けるものが知られている。燃料導入路は、燃料電池用プラグが接続された際、その液体燃料を吐出する吐出口の周囲に接触し、吐出される液体燃料を燃料電池用ソケットの内部へと導く流路となるものである。このような燃料導入路としては、例えば蛇腹状のものであって、軸方向に伸縮が可能なものが知られている(例えば、特許文献1参照)。
 しかしながら、このような燃料導入路については、長期間の使用により特性が低下し、反発力が弱くなったり、また一度収縮した後に完全に元の状態に戻らなくなったりするおそれがある。このような特性の低下した燃料導入路については、燃料電池用プラグの接続時、その吐出口の周囲に適切に接触することができず、液体燃料が外側へ漏れ出すおそれがある。
特開2008-047405公報
 本発明の目的は、燃料電池用プラグとの接続時、その吐出口の周囲に燃料導入路を適切に接触させることができ、外部への液体燃料の漏れが抑制され、安全性に優れた燃料電池用ソケットを提供することにある。また、本発明の目的は、このような安全性に優れる燃料電池用ソケットを具備する燃料電池用カップラーおよび燃料電池を提供することにある。
 本発明の燃料電池用ソケットは、燃料電池用の液体燃料を吐出する燃料電池用プラグが着脱可能に接続される燃料電池用ソケットであって、軸方向の略中間部に縮径部を有する筒状のソケット本体と、この縮径部を通して接続側に突出する軸部を有するバルブと、この縮径部から突出する軸部の側面部を囲むようにして設けられ、側面部に係止部を有する弾性筒状の燃料導入路と、この燃料導入路の外側に設けられ、係止部を接続側に押圧する補助弾性体とを有することを特徴とする。
 本発明の燃料電池用カップラーは、燃料電池用の液体燃料を吐出する燃料電池用プラグと、この燃料電池用プラグが着脱可能に接続される燃料電池用ソケットとからなる燃料電池用カップラーであって、この燃料電池用ソケットが上記した本発明の燃料電池用ソケットであることを特徴とする。
 また、本発明の燃料電池は、燃料極と、空気極と、これら燃料極と空気極とに挟持される電解質膜とを有する膜電極接合体と、この膜電極接合体の燃料極に供給する液体燃料を収容する燃料収容部と、この燃料収容部に設けられる燃料電池用ソケットとを有する燃料電池であって、この燃料電池用ソケットが上記した本発明の燃料電池用ソケットであることを特徴とする。
本発明の燃料電池用ソケットの適用方法を示す概略図。 本発明の燃料電池用ソケットの第1の実施形態を示す断面図。 図2に示す燃料電池用ソケットに接続される燃料電池用プラグの一例を示す断面図。 図2に示す燃料電池用ソケットに燃料電池用プラグを接続した状態を示す断面図。 本発明の燃料電池用ソケットの第2の実施形態を示す断面図。 図5に示す燃料電池用ソケットに燃料電池用プラグを接続した状態を示す断面図。 本発明の燃料電池用ソケットの第3の実施形態を示す断面図。 図7に示す燃料電池用ソケットに燃料電池用プラグを接続した状態を示す断面図。 本発明の燃料電池の一例を示す断面図。
 以下、本発明について図面を参照して説明する。
 図1は、本発明の燃料電池用ソケット1(以下、単にソケット1と呼ぶ)の適用方法を示す概略図である。本発明の燃料電池用ソケット1は、燃料電池用プラグ2(以下、単にプラグ2と呼ぶ)と着脱可能に接続されて燃料電池用カップラー3(以下、単にカップラー3と呼ぶ)を構成する。
 ソケット1、プラグ2はそれぞれバルブ機構を構成するバルブを有するものであり、図示するような分離状態においては、それらのバルブ機構が閉じることで、液体燃料の流出が抑制されている。そして、ソケット1にプラグ2を接続した場合には、それらのバルブが当接することでバルブ機構が開き、液体燃料の供給が可能となる。
 このようなソケット1は、燃料電池4に装着されて使用される。燃料電池4は、例えば起電部となる燃料電池セル5と、この燃料電池セル5に供給する液体燃料を収容する燃料収容部6と、この燃料収容部6に装着されて液体燃料を供給する燃料受容部7とを有し、ソケット1は例えば燃料受容部7に装着されている。
 一方、プラグ2は、カートリッジ8に装着されて使用される。カートリッジ8は、液体燃料を収容する容器であるカートリッジ本体9を有し、その先端部分に液体燃料を吐出するためのプラグ2が装着される。このようなカートリッジ8は、燃料電池4に液体燃料を注入するときのみ接続され、いわゆるサテライトタイプ(外側注入式)と呼ばれるものである。
 カートリッジ本体9には、燃料電池4に応じた液体燃料、例えば直接メタノール型燃料電池(DMFC)であれば各種濃度のメタノール水溶液や純メタノール等のメタノール燃料が収容される。なお、カートリッジ本体9に収容される液体燃料は必ずしもメタノール燃料に限られるものではなく、例えばエタノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノール等のプロパノール燃料、グリコール水溶液や純グリコール等のグリコール燃料、ジメチルエーテル、ギ酸、その他の液体燃料であってもよい。いずれにしても、燃料電池4に応じた液体燃料が収容される。
 次に、本発明のソケット1について具体的に説明する。なお、以下のソケット1を示す図については、いずれも図中上側がプラグ2が接続される側となっている。また、以下では、ソケット1におけるプラグ2が接続される側(図中上側)を接続側と呼び、その反対側(図中下側)を底部側と呼んで説明する。
 図2は、本発明の第1の実施形態のソケット1を示す断面図である。なお、図2は、バルブ機構が閉じた状態を示している。ソケット1は、メス側カップラーとも呼ばれるものであり、筒状のソケット本体11と、このソケット本体11の内部に設けられるバルブ12と、このバルブ12の接続側の側面部を囲むようにして設けられる燃料導入路13と、この燃料導入路13に設けられる係止部14と、この係止部14を押圧する補助弾性体15とから主として構成されている。
 ソケット本体11は、例えば接続側に配置される略円筒状の第1筒部111と、この第1筒部111の底部側に嵌め込まれるようにして固定される第2筒部112と、この第2筒部112の底部側に嵌め込まれるようにして固定される第3筒部113とから構成されている。
 第1筒部111は、例えば底部側に比べて接続側の内径が小さくされることで段部が形成されており、この段部が係止部14の接続側への移動を制限し、初期の位置状態を規定する位置決め部111aとなっている。第2筒部112は接続側に縮径部112aを有しており、この縮径部112aの内径はバルブ12の接続側の部分を挿入することができ、また液体燃料の通過が可能なものとされている。
 また、第3筒部113は、軸心部分にバルブ12の底部側への移動を制限するバルブ当接部113aが形成されており、その周囲に液体燃料の流路となる複数の流通孔113bが均等な間隔となるように形成されている。
 バルブ12は、ソケット本体11と合わせてバルブ機構を主として構成するものであり、縮径部112aを通して接続側に突出する軸部12aと、縮径部112aの底部側に配置されるヘッド部12bとを有している。ヘッド部12bの接続側にはOリング等の環状シール部材16が配置され、また底部側には圧縮スプリング等のバルブ用弾性体17が配置され、ヘッド部12bを介して環状シール部材16をバルブ用弾性体17で押圧することで、縮径部112aが閉じられ、接続側への液体燃料の漏れが抑制されている。
 燃料導入路13は、弾性材料からなる筒状のものであり、内部がプラグ2から吐出される液体燃料の流路となるものである。この燃料導入路13は、接続側の一部、すなわち接続側の端部、および係止部14が装着される装着部13aを除いた略全体が蛇腹状とされており、この蛇腹形状と材料特性(ゴム弾性)とにより軸方向に伸縮可能となっている。
 装着部13aは、例えば燃料導入路13の側面部を一周する溝部として形成されている。また、燃料導入路13の両端部はシール部13b、シール部13cとされており、例えば断面が軸方向に凸状とされている。すなわち、接続側の端部におけるシール部13bは、プラグ2の液体燃料を吐出する吐出口の周囲に接触してシール状態とするものであり、プラグ2に向けて凸状とされている。一方、底部側の端部におけるシール部13cは、縮径部112aに接触してシール状態とするものであり、縮径部112aに向けて凸状とされている。
 このような燃料導入路13は、軸部12aのうち縮径部112aの接続側に突出する部分の全体を囲むように設けられる。なお、燃料導入路13の接続側の端部は、例えば軸部12aの接続側の端部を保護すると共に、プラグ2の液体燃料を吐出する吐出口に軸部12aが挿入される前にその周囲に接触してシール状態とするために、軸部12aよりも若干接続側に延ばされている。
 係止部14と補助弾性体15とは、このような燃料導入路13の接続側の端部を先端側へと押圧するために設けられており、燃料導入路13の側面部に係止部14が装着され、この係止部14を接続側へと押圧するように、係止部14の底部側であって燃料導入路13の外側に補助弾性体15が設けられている。
 このように係止部14と補助弾性体15とを設けることで、プラグ2の接続時、その液体燃料を吐出する吐出口の周囲に燃料導入路13の接続側の端部を適切に接触させてシール状態とすることができる。これにより、外部への液体燃料の漏れを抑制し、安全性に優れたものとすることができる。特に、長期間の使用により燃料導入路13の特性が低下したときに、効果的に外部への液体燃料の漏れを抑制し、安全性に優れたものとすることができる。
 また、このように補助弾性体15を設ける場合であっても、燃料導入路13の外側に配置することで、補助弾性体から溶出する金属イオン等の液体燃料への混入を抑制することができ、燃料電池の発電特性の低下も抑制することができる。
 係止部14は、ソケット本体11(第1筒部111)に設けられた位置決め部111aにより、先端側への移動が制限され、ソケット本体11からの抜け落ちが抑制されると共に、初期の位置状態に保持されている。また、このように係止部14の初期の位置状態が保持されることで、燃料導入路13の接続側の端部の初期の位置状態も保持することができる。
 このような係止部14は、例えば燃料導入路13を保持する保持孔を有する環状部材であって、燃料導入路13の接続側の端部に設けられる装着部13aに外側から嵌め込むようにして装着されている。係止部14が取り付けられる位置は、必ずしも燃料導入路13の接続側の端部でなくてもよいが、燃料導入路13の接続側の端部を接続側へと押圧し、プラグ2の液体燃料を吐出する吐出口の周囲に適切に接触させる観点から、燃料導入路13の接続側の端部とすることが好ましい。
 係止部14の外径は、ソケット本体11(第1筒部111)の内部を摺動することができる程度に、ソケット本体11の内径と同様なものとすることが好ましい。このようなものとすることで、ソケット本体11の軸心と燃料導入路13の軸心とを合わせ、プラグ2の液体燃料を吐出する吐出口の周囲により確実に燃料導入路13の接続側の端部を接触させてシール状態とすることができる。
 このような燃料導入路13、環状シール部材16は、液体燃料に対する耐性、特に耐メタノール性を有するエチレン-プロピレン-ジエンゴム(EPDM)からなるものが好ましい。しかしながら、EPDMに限らず、シリコーンゴム(VMQ)、フロロシリコーンゴム(FVMQ)、フッ素ゴム(FKM)、ニトリルゴム(NBR)、水素化ニトリルゴム(HNBR)からなるものであってもよい。
 また、補助弾性体15は、必ずしも液体燃料と接触するものではないが、液体燃料と接触したときのために表面処理が施されたものであることが好ましい。一方、バルブ用弾性体17は、液体燃料の流路中に配置されるために表面処理が施されたものであることが好ましい。このようなものとしては、具体的にはステンレス系のスプリングに対し不動態化処理を行い、耐食性を高めたものが好ましい。表面処理に関しては不動態化処理に限らず、金等の貴金属めっきやフッ素系樹脂等の樹脂コーティングも好適に用いられる。また、素材としてカーボンを用いたバネを使用することもできる。
 その他の部材については、一般に非金属材料からなることが好ましく、液体燃料に対する耐性、特に耐メタノール性を有する樹脂材料からなることが好ましい。このような樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、高密度ポリエチレン(HDPE)、ポリスチレン(PS)、ポリエーテルエーテルケトン(PEEK:ヴィクトレックス社商標)、液晶ポリマー(LCP)、ポリブチレンテレフタレート(PBT)、ポリアセタール(POM)等、さらには耐メタノール性と透明性を有する樹脂材料として、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、環状オレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)、ポリメチルペンテン(TPX)、ポリフェニルサルホン(PPSU)、ポリエーテルサルホン(PES)等が挙げられる。
 図3は、ソケット1に接続されるプラグ2を示したものである。なお、以下のプラグ2を示す図については、いずれも図中下側がソケット1に接続する側となっている。また、以下では、プラグ2におけるソケット1に接続する側(図中下側)を接続側と呼び、その反対側(図中上側)を底部側と呼んで説明する。
 プラグ2は、オス側カップラーとも呼ばれるものであり、カートリッジ本体9が嵌め込まれるプラグヘッド21と、このプラグヘッド21の内部に配置されるバルブ22と、プラグヘッド21を外側から覆うようにしてカートリッジ本体9に固定する押えキャップ23等を有している。
 プラグヘッド21は、カートリッジ本体9が嵌め込まれる筒状のベース部21aと、その接続側に設けられ、より細径とされた挿入部21bとを有している。挿入部21bの軸心部分には、カートリッジ本体9に収容された液体燃料の流路となると共に、バルブ22が移動可能に挿入される軸孔21cが形成されている。挿入部21bの端部には燃料導入路13が嵌め込まれるシール凹部21dが形成され、このシール凹部21dの底面に軸孔21cと繋がる吐出口21eが形成されている。
 吐出口21eは、カートリッジ本体9に収容された液体燃料を吐出する部分であり、シール凹部21dは、この吐出口21eから吐出された液体燃料の残留物(付着物)の一時的な収容部として機能するものであり、操作者が液体燃料に触れないようにするものである。接続状態においては、このシール凹部21dに燃料導入路13の先端部が嵌め合わされるようにして当接することで、吐出口21eの周囲がシールされ、外側への液体燃料の流出が抑制される。
 ベース部21aの内側には、バルブ22を保持するバルブホルダ24が配置されている。バルブホルダ24はバルブ室を規定するものであり、その接続側外縁部に形成されたフランジ部24aがOリング等の環状シール部材25を介して底部側からカートリッジ本体9によって押圧されることでベース部21aに固定されている。また、バルブホルダ24の略中間部にはバルブ22が移動可能に挿入される軸孔24bが設けられ、後端部には、カートリッジ本体9からの液体燃料の流路となる連通孔24cが設けられている。
 バルブ22は、プラグヘッド21と合わせてバルブ機構を主として構成するものであり、軸孔21cに挿入される軸部22aと、軸孔21cの底部側に配置されるヘッド部22bとを有している。ヘッド部22bの先端側には、軸部22aの周囲を囲むようにOリング等の環状シール部材26が配置され、また底部側にはバルブ22を先端側へと押圧するように圧縮スプリング等のバルブ用弾性体27が配置され、ヘッド部22bを介して環状シール部材26をバルブ用弾性体27で押圧することで、軸孔21cが閉じられ、液体燃料の漏れが抑制されている。
 このような環状シール部材26、環状シール部材27は、液体燃料に対する耐性、特に耐メタノール性を有するエチレン-プロピレン-ジエンゴム(EPDM)からなるものが好ましい。しかしながら、EPDMに限らず、シリコーンゴム(VMQ)、フロロシリコーンゴム(FVMQ)、フッ素ゴム(FKM)、ニトリルゴム(NBR)、水素化ニトリルゴム(HNBR)からなるものであってもよい。
 また、バルブ用弾性体27は、液体燃料の流路中に配置されるために表面処理が施されたものであることが好ましい。このようなものとしては、具体的にはステンレス系のスプリングに対し不動態化処理を行い、耐食性を高めたものが好ましい。表面処理に関しては不動態化処理に限らず、金等の貴金属めっきやフッ素系樹脂等の樹脂コーティングも好適に用いられる。また、素材としてカーボンを用いたバネを使用することもできる。
 プラグ2のその他の部材については、一般に非金属材料からなることが好ましく、液体燃料に対する耐性、特に耐メタノール性を有する樹脂材料からなることが好ましい。このような樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、高密度ポリエチレン(HDPE)、ポリスチレン(PS)、ポリエーテルエーテルケトン(PEEK:ヴィクトレックス社商標)、液晶ポリマー(LCP)、ポリブチレンテレフタレート(PBT)、ポリアセタール(POM)等、さらには耐メタノール性と透明性を有する樹脂材料として、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、環状オレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)、ポリメチルペンテン(TPX)、ポリフェニルサルホン(PPSU)、ポリエーテルサルホン(PES)等が挙げられる。
 図4は、ソケット1とプラグ2とを接続した状態を示す断面図である。ソケット1とプラグ2との接続は、以下のようにして行うことができる。
 まず、ソケット1のソケット本体11にプラグ2の挿入部21bを挿入していくと、燃料導入路13の接続側の端部(シール部13b)が挿入部21bのシール凹部21dに嵌め込まれ、その底面に設けられた吐出口21eの周囲に接触してシール状態とする。
 さらに、プラグ2を挿入していくと、このプラグ2に押し下げられるようにして燃料導入路13が収縮すると共に、この燃料導入路13の収縮に合わせて係止部14も底部側へと移動する。この際、ソケット側のバルブ12の位置は変わらないため、プラグ2の吐出口21eへと挿入され、プラグ側のバルブ22と当接する。
 ソケット側のバルブ12とプラグ側のバルブ22とが当接した状態でプラグ2を挿入していくと、ソケット側のバルブ12がプラグ側のバルブ22に押し下げられるようにして底部側へと移動し、ソケット1のバルブ機構が開かれる。
 なお、両者のバルブ機構の開放順序は、それらのバルブを押圧するバルブ用弾性体の反発力を調整することにより決定される。この場合、プラグ側のバルブ22を押圧するバルブ用弾性体27の反発力をソケット側のバルブ12を押圧するバルブ用弾性体17の反発力よりも大きくすることで、ソケット1のバルブ機構がプラグ2のバルブ機構よりも先に開くように構成されている。このように液体燃料が供給されるソケット1のバルブ機構を先に開くことで安全性を確保しやすくなるが、バルブ機構の開放順序は必ずしもこのようなものに限られるものではない。
 さらにプラグ2を挿入していくと、ソケット側のバルブ12が底部側に設けられたバルブ当接部113aに当接する。ソケット側のバルブ12がバルブ当接部113aに当接した状態でさらにプラグ2を挿入していくと、このソケット側のバルブ12に押し返されるようにしてプラグ側のバルブ22が底部側へと移動し、プラグ2のバルブ機構が開かれる。
 プラグ2のバルブ機構が開かれることで、カートリッジ本体9に収容されている液体燃料が軸孔21cを通して吐出口21eから吐出される。そして、吐出口21e吐出された液体燃料は、燃料導入路13および縮径部112aの内部を順に通して、最終的に流通孔113bから燃料受容部7を介して燃料電池4へと供給される。このようなソケット1とプラグ2との接続は、プラグ側のバルブ22がバルブホルダ24の後端部に当接した時点で、それ以上のプラグ2の挿入が困難となり完了する(図4)。
 一方、ソケット1からプラグ2を取り外す際は、上記工程と反対の工程が行われる。まず、ソケット1からプラグ2を引き抜いていくと、ソケット1から見たプラグ側のバルブ22の位置はそのままに挿入部21bのみが引き抜かれ、結果としてプラグ2のバルブ機構が閉じられる。
 そして、プラグ2のバルブ機構が閉じられた後は、プラグ2の挿入部21bと共に、バルブ22も同様にして引き抜かれ、これによりソケット側のバルブ12が接続側へと移動し、結果としてソケット1のバルブ機構が閉じられる。
 さらにソケット1からプラグ2を引き抜いていくと、ソケット側のバルブ12とプラグ側のバルブ22とが離れ、その後にプラグ2の吐出口21eの周囲から燃料導入路13の接続側の端部が離れ、これらのシール状態が解除される。
 本発明のソケット1によれば、燃料導入路13に加えて係止部14と補助弾性体15とを設けることで、このようなプラグ2の接続および取り外しの一連の工程中、常に燃料導入路13の接続側の端部をプラグ2の吐出口21eの周囲に接触させることができ、外部への液体燃料の漏れを抑制し、安全性に優れたものとすることができる。
 次に、本発明のソケット1の第2の実施形態について説明する。
 図5は第2の実施形態のソケット1を示す断面図である。また、図6は、第2の実施形態のソケット1にプラグ2を接続した状態を示す断面図である。なお、プラグ2については、第1の実施形態のソケット1と同様なものとすることができる。
 このソケット1は、例えば図5に示すように、縮径部112aを接続側に延びる内筒部112bを有するものとし、燃料導入路13の底部側の端部を拡げるようにして内筒部112bの全体を覆うように装着したものである。なお、燃料導入路13は、ソケット本体11に装着していない状態で、接続側の端部を除いた略全体が軸部12aよりも若干大きくされた一定の大きさのものである。
 この燃料導入路13は、例えば図6に示すように軸方向の略中間部が外側に撓むように変形することで収縮する。また、この燃料導入路13では、プラグ2の接続時、挿入部21bと縮径部112aとによって軸方向に押圧されることで、接続側の端部であるシール部13bが吐出口21eの周囲に接触してシール状態とすると共に、底部側の端部であるシール部13cが縮径部112aに接触してシール状態とする。
 なお、燃料導入路13の底部側については、主として端部であるシール部13cと縮径部112aとが接触することによってシール状態とされるが、内面と内筒部112bの外面との間も接触しているため、これらによっても追加的にシール状態とされる。
 このように燃料導入路13の底部側の端部が縮径部112aに接触すると共に、内面が内筒部112bの外面と接触するものについては、シール状態を確実なものとするために、縮径部112aと内筒部112bとの接続部分をシール部13cの形状に合わせて接続側に向けて徐々に縮径させることが好ましい。
 このようなソケット1についても、第1の実施形態のソケット1と同様にしてプラグ2を接続して用いることができる。そして、係止部14と補助弾性体15とを設けることで、プラグ2の接続時、燃料導入路13の接続側の端部を吐出口21eの周囲に適切に接触させてシール状態とすることができ、外部への液体燃料の漏れを抑制し、安全性に優れたものとすることができる。また、燃料導入路13の外側に補助弾性体15を配置することで、補助弾性体から溶出する金属イオン等の液体燃料への混入も抑制することができ、燃料電池4の発電特性の低下も抑制することができる。
 次に、本発明のソケット1の第3の実施形態について説明する。
 図7は第3の実施形態のソケット1を示す断面図である。また、図8は、第3の実施形態のソケット1にプラグ2を接続した状態を示す断面図である。なお、プラグ2については、第1の実施形態のソケット1と同様なものとすることができる。
 このソケット1は、例えば図7に示すように、縮径部112aを接続側に延びる内筒部112bを有するものとし、燃料導入路13として内筒部112bの接続側の一部を摺動可能に覆うものを用いたものである。具体的には、燃料導入路13として、内筒部112bに対して摺動可能な範囲で、装着部13aよりも底部側の内径を内筒部112bの外径と略同様としたものを用いている。
 この燃料導入路13は、例えば図8に示すように、プラグ2の挿入により底部側へと摺動し、挿入部21bと縮径部112aとによって軸方向に押圧されることで、接続側の端部であるシール部13bが吐出口21eの周囲に接触してシール状態とすると共に、底部側の端部であるシール部13cが縮径部112aに接触してシール状態とする。
 なお、この燃料導入路13の底部側については、燃料導入路13が底部側へと移動したときに、端部であるシール部13cと縮径部112aとが接触することによってシール状態とされるが、それ以外の場合については、内面と内筒部112bの外面とが接触しているため、これらによってシール状態とされている。
 このようなものについても、シール状態を確実なものとするために、縮径部112aと内筒部112bとの接続部分をシール部13cの形状に合わせて接続側に向けて徐々に縮径させることが好ましい。
 このようなソケット1についても、第1の実施形態のソケット1と同様にしてプラグ2を接続して用いることができる。そして、係止部14と補助弾性体15とを設けることで、プラグ2の接続時、燃料導入路13の接続側の端部を吐出口21eの周囲に適切に接触させてシール状態とすることができ、外部への液体燃料の漏れを抑制し、安全性に優れたものとすることができる。また、燃料導入路13の外側に補助弾性体15を配置することで、補助弾性体から溶出する金属イオン等の液体燃料への混入も抑制することができ、燃料電池4の発電特性の低下も抑制することができる。
 次に、本発明の燃料電池4について、内部気化型のDMFCを例に挙げて説明する。図9は、本発明の燃料電池4の一例を示す断面図である。燃料電池4は、起電部を構成する燃料電池セル5と、燃料収容部6と、図示を省略したソケット1を有する燃料受容部7とから主として構成されている。なお、図示が省略された燃料受容部7は、例えば図1に示されるように燃料収容部6の下面側に設けられている。
 燃料電池セル5は、アノード触媒層51およびアノードガス拡散層52からなるアノード(燃料極)と、カソード触媒層53およびカソードガス拡散層54からなるカソード(酸化剤極/空気極)と、アノード触媒層51とカソード触媒層53とで挟持されたプロトン(水素イオン)伝導性の電解質膜55とから構成される膜電極接合体(MEA:Membrane Electrode Assembly)を有している。
 アノード触媒層51およびカソード触媒層53に含有される触媒としては、例えば、Pt、Ru、Rh、Ir、Os、Pd等の白金族元素の単体、白金族元素を含有する合金等が挙げられる。具体的には、アノード触媒層51にメタノールや一酸化炭素に対して強い耐性を有するPt-RuやPt-Mo等を、カソード触媒層53に白金やPt-Ni等を用いることが好ましい。また、炭素材料のような導電性担持体を使用する担持触媒、あるいは無担持触媒を使用してもよい。
 電解質膜55を構成するプロトン伝導性材料としては、例えばスルホン酸基を有するパーフルオロスルホン酸重合体のようなフッ素系樹脂(ナフィオン(商品名、デュポン社製)やフレミオン(商品名、旭硝子社製)等)、スルホン酸基を有する炭化水素系樹脂、タングステン酸やリンタングステン酸等の無機物等が挙げられる。ただし、これらに限られるものではない。
 アノード触媒層51に積層されるアノードガス拡散層52は、アノード触媒層51に燃料を均一に供給する役割を果たすと同時に、アノード触媒層51の集電体も兼ねている。一方、カソード触媒層53に積層されるカソードガス拡散層54は、カソード触媒層53に酸化剤を均一に供給する役割を果たすと同時に、カソード触媒層53の集電体も兼ねている。アノードガス拡散層52にはアノード導電層56が積層され、カソードガス拡散層54にはカソード導電層57が積層されている。
 アノード導電層56およびカソード導電層57は、例えばAu、Niなどの導電性金属材料からなるメッシュ状等の多孔質層、薄膜または箔体、あるいはステンレス鋼(SUS)等の導電性金属材料にAuなどの良導電性金属を被覆した複合材等が用いられる。なお、電解質膜55とアノード導電層56との間、および電解質膜55とカソード導電層57との間には、ゴム製のOリング等の環状シール部材58、59が介在されており、これらによって燃料電池セル5からの燃料漏れや酸化剤漏れを防止している。
 燃料収容部6の内部には、液体燃料として例えばメタノール燃料が充填されている。また、燃料収容部6は燃料電池セル5側が開口されており、この燃料収容部6の開口部と燃料電池セル5との間に気体選択透過膜41が設置されている。気体選択透過膜41は、液体燃料の気化成分のみを透過し、液体成分は透過させない気液分離膜である。このような気体選択透過膜41の構成材料としては、例えばポリテトラフルオロエチレンのようなフッ素樹脂が挙げられる。ここで、液体燃料の気化成分とは、液体燃料としてメタノール水溶液を使用した場合にはメタノールの気化成分と水の気化成分からなる混合気、純メタノールを使用した場合にはメタノールの気化成分を意味する。
 カソード導電層57上には保湿層42が積層されており、さらにその上には表面層43が積層されている。表面層43は酸化剤である空気の取入れ量を調整する機能を有し、その調整は表面層43に形成された空気導入口43aの個数やサイズ等を変更することで行う。保湿層42はカソード触媒層53で生成された水の一部が含浸されて、水の蒸散を抑制する役割を果たすと共に、カソードガス拡散層54に酸化剤を均一に導入することで、カソード触媒層53への酸化剤の均一拡散を促進する機能も有している。保湿層42は例えば多孔質構造の部材で構成され、具体的な構成材料としてはポリエチレンやポリプロピレンの多孔質体等が挙げられる。
 燃料収容部6上に積層される気体選択透過膜41、燃料電池セル5、保湿層42、および表面層43は、例えばステンレス製のカバー44を被せることによって保持されている。カバー44には表面層43に形成された空気導入口43aと対応する部分に開口44aが設けられている。また、燃料収容部6にはカバー44の爪44bを受けるテラス6aが設けられており、このテラス6aに爪44bをかしめることで全体がカバー44によって一体的に保持されている。
 上述したような構成を有する燃料電池4においては、燃料収容部6内の液体燃料(例えばメタノール水溶液)が気化し、この気化成分が気体選択透過膜41を透過して燃料電池セル5に供給される。燃料電池セル5内において、液体燃料の気化成分はアノードガス拡散層52で拡散されてアノード触媒層51に供給される。アノード触媒層51に供給された気化成分は、例えば下記の(1)に示すメタノールの内部改質反応を生じさせる。
  CHOH+HO → CO+6H+6e …(1)
 なお、液体燃料として純メタノールを使用した場合には、燃料収容部6から水蒸気が供給されないため、カソード触媒層53で生成した水や電解質膜55中の水をメタノールと反応させて上記(1)式の内部改質反応を生起するか、あるいは上記(1)式の内部改質反応によらず、水を必要としない他の反応機構により内部改質反応を生じさせる。
 内部改質反応で生成されたプロトン(H)は電解質膜55を伝導し、カソード触媒層53に到達する。表面層43の空気導入口43aから取り入れられた空気(酸化剤)は、保湿層42、カソード導電層57、カソードガス拡散層54を拡散して、カソード触媒層53に供給される。カソード触媒層53に供給された空気は、次の(2)式に示す反応を生じさせる。この反応によって、水の生成を伴う発電反応が生じる。
  (3/2)O+6H+6e → 3HO …(2)
 上述した反応に基づく発電反応が進行するにしたがって、燃料収容部6内の液体燃料(例えばメタノール水溶液や純メタノール)が消費される。燃料収容部6内の液体燃料が完全に消費されると発電反応が停止するため、その時点でもしくはそれ以前の時点で燃料収容部6内にカートリッジ8から液体燃料を供給する。
 カートリッジ8からの液体燃料の供給は、上記したようにカートリッジ8に装着されたプラグ2を燃料電池4に装着されたソケット1に接続することにより行うことができる。この際、ソケット1に燃料導入路13に加えて係止部14や補助弾性体15が設けられていることで、接続時の液体燃料の漏れが抑制され、安全性に優れたものとなる。
 以上、本発明の燃料電池用ソケットと、それを用いた燃料電池用カップラーおよび燃料電池について説明したが、本発明の燃料電池用ソケット、燃料電池用カップラーおよび燃料電池は上記実施形態そのものに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。
 例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。また、例えば燃料電池としては小型化が進められているパッシブ型DMFCが好適であるが、少なくとも本発明の燃料電池用ソケットを具備し、液体燃料が該ソケットを介して供給されるものであれば、その方式や機構等については何等限定されるものではない。
 本発明の燃料電池用ソケットは、係止部を有する燃料導入路と、この係止部を接続側に押圧する補助弾性体とを有する。このようなものとすることで、燃料電池用プラグの接続時、燃料電池用プラグに燃料導入路を適切に接触させることができ、外部への液体燃料の漏れが抑制され、安全性に優れたものとすることができる。また、燃料導入路の外側に補助弾性体を設けることで、補助弾性体から溶出する金属イオン等の液体燃料への混入も抑制することができる。このような燃料電池用ソケットは、燃料電池用カップラー、燃料電池に有効利用することができる。
 1…燃料電池用ソケット、2…燃料電池用プラグ、3…燃料電池用カップラー、4…燃料電池、5…燃料電池セル、6…燃料収容部、11…ソケット本体、112a…縮径部、112b…内筒部、12…バルブ、12a…軸部、13…燃料導入路、14…係止部、15…補助弾性体、51…アノード触媒層、52…アノードガス拡散層、53…カソード触媒層、54…カソードガス拡散層、55…電解質膜、56…アノード導電層、57…カソード導電層

Claims (11)

  1.  燃料電池用の液体燃料を吐出する燃料電池用プラグが着脱可能に接続される燃料電池用ソケットであって、
     軸方向の略中間部に縮径部を有する筒状のソケット本体と、
     前記縮径部を通して前記接続側に突出する軸部を有するバルブと、
     前記縮径部から突出する前記軸部の側面部を囲むようにして設けられ、側面部に係止部を有する弾性筒状の燃料導入路と、
     前記燃料導入路の外側に設けられ、前記係止部を前記接続側に押圧する補助弾性体と
    を有することを特徴とする燃料電池用ソケット。
  2.  前記係止部は、前記燃料導入路を保持する保持孔を有する環状部材であって、前記燃料導入路の側面部に装着されていることを特徴とする請求項1記載の燃料電池用ソケット。
  3.  前記係止部は、前記燃料導入路の前記接続側の端部に設けられていることを特徴とする請求項1記載の燃料電池用ソケット。
  4.  前記燃料導入路は両端部にシール部を有し、前記シール部の断面が軸方向に凸状となっていることを特徴とする請求項1記載の燃料電池用ソケット。
  5.  前記燃料導入路は、前記縮径部から突出する前記軸部の側面部の全体を囲むようにして設けられていることを特徴とする請求項1記載の燃料電池用ソケット。
  6.  前記燃料導入路は、軸方向に伸縮可能なものであることを特徴とする請求項5項記載の燃料電池用ソケット。
  7.  前記燃料導入路は、蛇腹状であることを特徴とする請求項6項記載の燃料電池用ソケット。
  8.  前記縮径部は、前記接続側に延びる内筒部を有し、前記燃料導入路は、前記内筒部の前記接続側の一部を摺動可能に覆うものであることを特徴とする請求項1記載の燃料電池用ソケット。
  9.  前記燃料導入路は、前記縮径部側への摺動により、前記縮径部側の端部が前記縮径部に接触することを特徴とする請求項8項記載の燃料電池用ソケット。
  10.  燃料電池用の液体燃料を吐出する燃料電池用プラグと、前記燃料電池用プラグが着脱可能に接続される燃料電池用ソケットとからなる燃料電池用カップラーであって、
     前記燃料電池用ソケットが請求項1記載の燃料電池用ソケットであることを特徴とする燃料電池用カップラー。
  11.  燃料極と、空気極と、前記燃料極と前記空気極とに挟持される電解質膜とを有する膜電極接合体と、前記膜電極接合体の前記燃料極に供給する液体燃料を収容する燃料収容部と、前記燃料収容部に設けられる燃料電池用ソケットとを有する燃料電池であって、
     前記燃料電池用ソケットが請求項1記載の燃料電池用ソケットであることを特徴とする燃料電池。
PCT/JP2009/006808 2008-12-15 2009-12-11 燃料電池用ソケットと、それを用いた燃料電池用カップラーおよび燃料電池 WO2010070855A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801513261A CN102246339A (zh) 2008-12-15 2009-12-11 燃料电池用插座、使用了该插座的燃料电池用联接器和燃料电池
US13/160,274 US20110275004A1 (en) 2008-12-15 2011-06-14 Fuel cell sockets, and fuel cell couplers and fuel cells using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008318409A JP2010140856A (ja) 2008-12-15 2008-12-15 燃料電池用ソケットと、それを用いた燃料電池用カップラーおよび燃料電池
JP2008-318409 2008-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/160,274 Continuation US20110275004A1 (en) 2008-12-15 2011-06-14 Fuel cell sockets, and fuel cell couplers and fuel cells using same

Publications (1)

Publication Number Publication Date
WO2010070855A1 true WO2010070855A1 (ja) 2010-06-24

Family

ID=42268537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006808 WO2010070855A1 (ja) 2008-12-15 2009-12-11 燃料電池用ソケットと、それを用いた燃料電池用カップラーおよび燃料電池

Country Status (5)

Country Link
US (1) US20110275004A1 (ja)
JP (1) JP2010140856A (ja)
CN (1) CN102246339A (ja)
TW (1) TW201036241A (ja)
WO (1) WO2010070855A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047405A (ja) * 2006-08-15 2008-02-28 Toshiba Corp 燃料電池用ソケットとそれを用いた燃料電池
WO2008041779A1 (fr) * 2006-10-03 2008-04-10 Toyo Seikan Kaisha, Ltd. Coupleur pour pile à combustible

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227093A (ja) * 2006-02-22 2007-09-06 Matsushita Electric Ind Co Ltd 燃料電池装置
JP2008133953A (ja) * 2007-10-29 2008-06-12 Sony Corp コネクタ機構

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047405A (ja) * 2006-08-15 2008-02-28 Toshiba Corp 燃料電池用ソケットとそれを用いた燃料電池
WO2008041779A1 (fr) * 2006-10-03 2008-04-10 Toyo Seikan Kaisha, Ltd. Coupleur pour pile à combustible

Also Published As

Publication number Publication date
JP2010140856A (ja) 2010-06-24
US20110275004A1 (en) 2011-11-10
TW201036241A (en) 2010-10-01
CN102246339A (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
JP2007128850A (ja) 燃料電池用燃料カートリッジの接続構造とそれを用いた燃料電池
EP2023429A1 (en) Fuel cell coupler and fuel cell using same
US20100239948A1 (en) Fuel cell socket and fuel cell using same
JP2007194055A (ja) 燃料電池用燃料カートリッジ、燃料電池およびカップラ
US20100266934A1 (en) Coupler for fuel cell and fuel cell
JP4996099B2 (ja) 燃料電池用燃料カートリッジ、燃料電池およびカップラ
JP2007128700A (ja) 燃料電池用燃料カートリッジとそれを用いた燃料電池
JP2007311032A (ja) 燃料電池用燃料カートリッジとそれを用いた燃料電池
WO2010070855A1 (ja) 燃料電池用ソケットと、それを用いた燃料電池用カップラーおよび燃料電池
KR101044868B1 (ko) 연료 전지용 연료 카트리지와 연료 카트리지용 노즐 어태치먼트
JP2007122961A (ja) 燃料電池用燃料カートリッジとそれを用いた燃料電池
JP2007242572A (ja) 燃料電池用燃料カートリッジの接続機構とそれを用いた燃料電池
JP2007220571A (ja) 燃料電池用カップラとそれを用いた燃料電池
JP2007273219A (ja) 燃料電池用燃料カートリッジの接続機構とそれを用いた燃料電池
JP2009218036A (ja) 燃料電池用ソケット、燃料電池用カップラー、および燃料電池
JP2010251225A (ja) 燃料電池用燃料タンクおよび燃料電池
JP2007273092A (ja) 燃料電池用燃料カートリッジとそれを用いた燃料電池
WO2010047036A1 (ja) 燃料電池用プラグとそれを用いた燃料電池用カップラー
WO2009147818A1 (ja) 燃料電池用ソケット、燃料電池用カップラー、および燃料電池
JP2010102854A (ja) 燃料電池用プラグおよび燃料電池用カップラー
JP2010060003A (ja) 燃料電池用圧力調整バルブとそれを用いた燃料電池
JP2011082035A (ja) 燃料電池用カップラーおよび燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151326.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833164

Country of ref document: EP

Kind code of ref document: A1