WO2010067446A1 - Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability - Google Patents

Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability Download PDF

Info

Publication number
WO2010067446A1
WO2010067446A1 PCT/JP2008/072564 JP2008072564W WO2010067446A1 WO 2010067446 A1 WO2010067446 A1 WO 2010067446A1 JP 2008072564 W JP2008072564 W JP 2008072564W WO 2010067446 A1 WO2010067446 A1 WO 2010067446A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
target
phase
mol
magnetic recording
Prior art date
Application number
PCT/JP2008/072564
Other languages
French (fr)
Japanese (ja)
Inventor
荘平 野中
昭史 三島
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to PCT/JP2008/072564 priority Critical patent/WO2010067446A1/en
Publication of WO2010067446A1 publication Critical patent/WO2010067446A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Definitions

  • the present invention relates to a sputtering target for forming a perpendicular magnetic recording medium film having a low relative permeability for forming a magnetic recording film applied to a high-density magnetic recording medium of a hard disk, particularly a magnetic recording film applied to a perpendicular magnetic recording medium. It is about.
  • Hard disk devices are generally used as external recording devices such as computers and digital home appliances, and further improvement in recording density is required. Therefore, in recent years, a perpendicular magnetic recording system that can realize ultra-high-density recording has attracted attention. Unlike the conventional in-plane recording system, this perpendicular magnetic recording system is said to have a stable recording magnetization as the density increases in principle, and has already been put into practical use.
  • a CoCrPt—SiO 2 granular magnetic recording film has been proposed as a promising candidate for a material to be applied to the recording layer of this perpendicular magnetic recording type hard disk medium, and this CoCrPt—SiO 2 granular magnetic recording film is a Co containing Cr and Pt. It is known to produce by a magnetron sputtering method using a sputtering target having a mixed phase of a base sintered alloy phase and a silicon dioxide phase (see Non-Patent Document 1).
  • This sputtering target usually contains silicon dioxide powder, Cr powder, Pt powder and Co powder, silicon dioxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%. The remainder: It is known to be prepared by mixing and mixing so as to have a composition consisting of Co, and then vacuum hot pressing or hot isostatic pressing, and in addition, a commercially available Co base containing Cr and Pt.
  • Co-based alloy powder and silicon dioxide powder containing Cr and Pt prepared by alloy solidification or rapid solidification, silicon dioxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol% It is known that it is prepared by mixing and mixing so as to have a composition comprising Co: balance: Co, and then vacuum hot pressing or hot isostatic pressing. (See Patent Document 1, Patent Document 2, etc.).
  • silicon dioxide 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and the balance: Co is further added to B: 0.5 to 8 mol%.
  • the target of the composition to contain is also known (refer patent document 5).
  • non-magnetic such as TiO, Cr 2 O 3 , TiO 2 , Ta 2 O 5 , Al 2 O 3 , BeO 2 , MgO, ThO 2 , ZrO 2 , CeO 2 , Y 2 O 3. It is known that oxides can be used (see Patent Documents 3 and 4). “Fuji Times” Vol. 75No. 3 2002 (pages 169-172) Japanese Patent Laid-Open No. 2001-236643 JP 2004-339586 A JP 2003-36525 A JP 2006-24346 A JP 2004-310910 A
  • this conventional sputtering target for forming a magnetic recording medium film includes a Co-based alloy containing Cr and Pt which are ferromagnetic alloys, or a Co—Cr—Pt—B alloy containing Cr, Pt and B which are ferromagnetic alloys.
  • the base has a structure in which nonmagnetic oxides such as SiO 2 are uniformly dispersed in the base, so that the proportion of magnetic flux passing through the inside of the target is larger than that of the nonmagnetic target, Very little magnetic flux leaks out.
  • magnetron sputtering which has a magnetic circuit placed under the target and stabilizes the discharge by increasing the ionization efficiency of the noble gas by utilizing the magnetic flux leaking over the target, thereby improving the deposition rate. It becomes a big problem. In other words, if magnetron sputtering is performed using a target having a low leakage magnetic flux density (ie, a target having a high relative permeability) with a small amount of magnetic flux leaking over the target, the deposition rate is extremely high even if the discharge is not stable or can be discharged. This is because it causes problems such as slowness.
  • a method is adopted in which the thickness of the target is reduced to make it easier for the magnetic flux to escape above the target.
  • the replacement frequency of the target becomes frequent, so that the film formation efficiency is deteriorated, which is not preferable in terms of cost.
  • a target with low leakage magnetic flux density is once the erosion is formed by performing magnetron sputtering, magnetic flux leaks intensively from the erosion part, and only that part is intensively sputtered. It tends to cause problems such as a decrease in utilization efficiency, a change in deposition rate over time, a variation in film thickness within the substrate surface, and a large amount of redeposition film deposited on the target.
  • a low relative magnetic permeability can be obtained.
  • Nonmagnetic oxide 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol%, and the balance : Co and ferromagnetic component contained in a sputtering target having a component composition composed of Co and inevitable impurities are dispersed so as to form a binary alloy phase with Cr, and further Pt, nonmagnetic oxide and B are mixed with Pt and B. According to the target having a structure dispersed as an alloy phase and a nonmagnetic oxide phase, a low relative magnetic permeability can be obtained.
  • Nonmagnetic oxide 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol%, balance: Co and inevitable Ferromagnetic components Co and Cr contained in a sputtering target having a component composition composed of impurities are dispersed so as to form a Co—Cr—B ternary alloy phase, and Pt and nonmagnetic oxide are further dispersed into Pt phase and nonmagnetic.
  • a target having a structure composed of a Co—Cr—B ternary alloy phase, a Pt phase, and a nonmagnetic oxide phase dispersed as an oxide phase provides a low relative magnetic permeability.
  • the first aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is a nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%.
  • the Co—Cr binary alloy phase diffuses and penetrates into the outer periphery of the Co—Cr binary alloy phase during hot pressing.
  • the outer periphery of the Co—Cr binary alloy phase is covered with a diffusion layer composed of Co, Cr, and Pt.
  • This diffusion layer is preferably absent, but if this diffusion layer is extremely thin, it does not have a large effect on the characteristics, and Co, Cr is formed on the outer periphery of the Co—Cr binary alloy phase of the sputtering target of the first aspect.
  • a diffusion layer composed of Pt and Pt is formed is also included in the present invention. Therefore, in the first aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention, the Co—Cr binary alloy phase may be covered with a diffusion layer composed of Co, Cr, and Pt. Good.
  • the second aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is as follows.
  • Nonmagnetic oxide 0.5 to 15 mol%
  • Cr 4 to 20 mol%
  • Pt 5 to 25 mol%
  • B Sputtering target containing 0.5 to 8 mol% and having the balance: Co and inevitable impurities
  • the sputtering target comprising a Co—Cr binary alloy phase, an alloy of Pt and B in the substrate It has a structure in which the phase and the nonmagnetic oxide phase are uniformly dispersed.
  • the Co—Cr binary alloy phase is formed so that the Pt and B of the base material are on the outer periphery of the Co—Cr binary alloy phase during hot pressing. In some cases, it diffuses and penetrates, and the outer periphery of the Co—Cr binary alloy phase is covered with a diffusion layer composed of Co, Cr, Pt and B.
  • This diffusion layer is preferably absent, but if this diffusion layer is very thin, it does not have a significant effect on the characteristics, and Co, Cr is formed on the outer periphery of the Co—Cr binary alloy phase of the sputtering target of the second aspect.
  • a case where a diffusion layer composed of Pt and B is formed is also included in the present invention. Therefore, in the second aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention, the Co—Cr binary alloy phase is covered with a diffusion layer composed of Co, Cr, Pt and B. May be.
  • the nonmagnetic oxide included in the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is selected from silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide. This is already known.
  • a Co—Cr binary alloy powder, a Pt powder and a nonmagnetic oxide powder are prepared as raw material powders.
  • these raw material powders contain non-magnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and B: 0.5 to 8 mol as necessary. %, And the remainder is blended and mixed so as to have a component composition consisting of Co and inevitable impurities.
  • the obtained mixed powder is hot pressed at a temperature lower than usual (700 to 1050 ° C.). This prevents Co and Cr contained in the Co—Cr binary alloy powder from diffusing into the substrate, and further prevents Pt of the substrate from diffusing and penetrating into the Co—Cr binary alloy phase. Is possible.
  • the Co—Cr binary alloy powder preferably contains Cr: 4.2 to 33.3 mol%, and the balance is preferably composed of Co. Therefore, for forming the perpendicular magnetic recording medium film of the present invention.
  • the Co—Cr binary alloy phase dispersed in the substrate of the sputtering target also contains Cr: 4.2 to 33.3 mol%, with the balance being Co.
  • the component composition of this Co—Cr binary alloy powder and the component composition of the Co—Cr binary alloy phase uniformly dispersed in the substrate depend on the component composition of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention. It is determined.
  • the third aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is as follows.
  • Nonmagnetic oxide 0.5 to 15 mol%
  • Cr 4 to 20 mol%
  • Pt 5 to 25 mol%
  • B A sputtering target containing 0.5 to 8 mol% and having a composition comprising the balance: Co and inevitable impurities, the sputtering target comprising a Co—Cr—B ternary alloy phase, Pt phase and It has a structure in which the nonmagnetic oxide phase is uniformly dispersed.
  • the Co—Cr—B ternary alloy phase is formed so that the base Pt and B are Co—Cr—B ternary alloys during hot pressing.
  • the outer periphery of the phase may diffuse and penetrate, and the outer periphery of the Co—Cr—B ternary alloy phase may be covered with a diffusion layer composed of Co, Cr, Pt and B.
  • This diffusion layer is preferably not present, but if this diffusion layer is very thin, it does not have a significant effect on the characteristics, and the Co—Cr—B ternary alloy phase of the sputtering target of the third aspect has a Co outer periphery.
  • the Co—Cr—B ternary alloy phase is covered with a diffusion layer composed of Co, Cr, Pt and B. May be.
  • the nonmagnetic oxide included in the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is selected from silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide. This is already known.
  • Co—Cr—B ternary alloy powder, Pt powder and nonmagnetic oxide powder are prepared as raw powders. Then, these raw material powders contain nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol%, and the balance: It mix
  • the obtained mixed powder is hot pressed at a temperature (700 to 1050 ° C.) lower than the normal hot pressing temperature (1100 ° C. or higher). This prevents Co and Cr contained in the Co—Cr—B ternary alloy powder from diffusing into the substrate as much as possible, and Pt of the substrate diffuses and penetrates into the Co—Cr—B ternary alloy phase. Can be prevented.
  • the Co—Cr—B ternary alloy powder preferably contains Cr: 4.2 to 33.3 mol%, B: 0.5 to 13.3 mol%, with the balance being Co. Accordingly, the Co—Cr—B ternary alloy phase dispersed in the substrate of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is also Cr: 4.2 to 33.3 mol%, B: 0. 0.5 to 13.3 mol%, and the balance is Co.
  • the component composition of the Co—Cr—B ternary alloy powder and the component composition of the Co—Cr—B ternary alloy phase uniformly dispersed in the substrate are determined by the sputtering target for forming a perpendicular magnetic recording medium film according to the present invention. It is determined by the component composition.
  • the sputtering target for forming a perpendicular magnetic recording medium film according to the present invention has a low relative magnetic permeability.
  • magnetron sputtering can be performed efficiently, which can greatly contribute to the development of industries such as computers and digital home appliances. .
  • average particle size 20 ⁇ m Co—Cr binary alloy powders A to H having the component composition shown in Table 1, average particle size: 25 ⁇ m Pt powder, average particle size: 5 ⁇ m B powder, average Co powder having a particle size of 5 ⁇ m and Cr powder having an average particle size of 15 ⁇ m are prepared. Further, as nonmagnetic oxide powders, the average particle size is 3 ⁇ m of SiO 2 powder, TiO 2 powder, Ta 2 O 5 powder and Al. 2 O 3 powder was prepared.
  • Example 1 Co—Cr binary alloy powder A, Pt powder and SiO 2 powder shown in Table 1 contain Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, and the balance Compounding so as to have a component composition consisting of Co and inevitable impurities, the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in this container is replaced with an Ar gas atmosphere, Thereafter, the container was sealed. This container was rotated with a ball mill for 12 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of sputtering targets Tx1 of the present invention were produced by cutting the plate-like hot press body.
  • Each of the targets Tx1 has dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, the target Tx1 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a Pt phase, a SiO 2 phase, and a Co—Cr binary alloy phase were observed. A diffusion layer was observed around the -Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx1, and the results are shown in Table 2.
  • Co powder, Cr powder, Pt powder and SiO 2 powder prepared in Example 1 contain Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, the balance being Co and inevitable
  • the mixture is mixed so as to have a component composition consisting of impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. Was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder.
  • the obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty1 were produced by cutting the plate-like hot press body. All of the targets Ty1 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty1 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a structure in which SiO 2 particles were uniformly dispersed in the Co—Cr—Pt alloy phase was found. It was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty1, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Co—Cr binary alloy powder B, Pt powder, SiO 2 powder, and B powder shown in Table 1 are Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, B: 1.0% is contained and the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10 liter container together with zirconia balls serving as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
  • a plurality of sputtering targets Tx2 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx2 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Tx2 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, an alloy phase of Pt and B, a SiO 2 phase, and a Co—Cr binary alloy phase were found. A uniformly dispersed structure was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx2, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Co powder, Cr powder, Pt powder, SiO 2 powder, and B powder prepared in Example 2 were Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, B: 1.0 %, With the balance being a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is Ar After replacing in a gas atmosphere, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty2 were produced by cutting the plate-like hot press body. All of the targets Ty2 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty2 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the SiO 2 particle phase was dispersed in the Co—Cr—Pt—B alloy phase. The organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty2, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Co—Cr binary alloy powder C, Pt powder and TiO 2 powder shown in Table 1 contain Cr: 9.9%, Pt: 13.5%, TiO 2 : 10.0%, the balance being Compounding so as to have a component composition consisting of Co and inevitable impurities, the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in this container is replaced with an Ar gas atmosphere, Thereafter, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
  • a plurality of sputtering targets Tx3 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx3 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Tx3 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a Pt phase, a TiO 2 phase, and a Co—Cr binary alloy phase were observed. A diffusion layer was observed around the -Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx3, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Co powder, Cr powder, Pt powder and TiO 2 powder prepared in Example 3 contain Cr: 9.9%, Pt: 13.5%, TiO 2 : 10.0%, the balance being Co and inevitable
  • the mixture is mixed so as to have a component composition consisting of impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. Was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder.
  • the obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty3 were produced. All of the targets Ty3 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty3 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a structure in which the TiO 2 particle phase was dispersed in the Co—Cr—Pt alloy phase was found. It was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty3, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Example 4 Co—Cr binary alloy powder D, Pt powder, TiO 2 powder, and B powder shown in Table 1 are Cr: 13.4%, Pt: 15.3%, TiO 2 : 10.0%, B: It is blended so as to have a component composition comprising 4.3% and the balance consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10 liter container together with zirconia balls serving as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
  • a plurality of sputtering targets Tx4 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx4 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Tx4 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, an alloy phase of Pt and B, a TiO 2 phase, and a Co—Cr binary alloy phase were found. A uniformly dispersed structure was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx4, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Co powder, Cr powder, Pt powder, TiO 2 powder, and B powder prepared in Example 4 were Cr: 13.4%, Pt: 15.3%, TiO 2 : 10.0%, B: 4.3. %, With the balance being a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is Ar After replacing in a gas atmosphere, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty4 were produced by cutting the plate-like hot press body. All of the targets Ty4 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty4 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, TiO 2 was uniformly dispersed in the Co—Cr—Pt—B alloy substrate. The organization that has been seen. With respect to this target Ty4, the maximum relative permeability in the target in-plane direction was measured, and the result is shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Co—Cr binary alloy powder E, Pt powder and Ta 2 O 5 powder shown in Table 1 contain Cr: 16.0%, Pt: 15.4%, Ta 2 O 5 : 5.0% Then, the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is placed in an Ar gas atmosphere. The container was then sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
  • a plurality of sputtering targets Tx5 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx5 have dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, this target Tx5 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a Pt phase, a Ta 2 O 5 phase, and a Co—Cr binary alloy phase were observed. A diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx5, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Co powder, Cr powder, Pt powder and Ta 2 O 5 powder prepared in Example 5 contain Cr: 16.0%, Pt: 15.4%, Ta 2 O 5 : 5.0%, and the balance Is mixed with a component composition consisting of Co and inevitable impurities, and the obtained powder mixture is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. Then, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty5 were produced by cutting the plate-like hot press body. All of the targets Ty5 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty5 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, Ta 2 O 5 particle phase was dispersed in the Co—Cr—Pt alloy phase. The organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty5, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Co—Cr binary alloy powder F, Pt powder, Ta 2 O 5 powder and B powder shown in Table 1 were mixed with Cr: 20.5%, Pt: 15.3%, Ta 2 O 5 : 4.0. %, B: 3.8%, with the balance being a component composition consisting of Co and inevitable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
  • a plurality of sputtering targets Tx6 of the present invention were produced by cutting the plate-like hot press body.
  • Each of the targets Tx6 has dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, this target Tx6 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method.
  • EPMA electron beam microprobe analyzer
  • an alloy phase of Pt and B, a Ta 2 O 5 phase and a Co—Cr binary alloy were obtained. A phase was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase.
  • the maximum relative permeability in the target in-plane direction was measured for this target Tx6, and the results are shown in Table 2.
  • Co powder, Cr powder, Pt powder, Ta 2 O 5 powder and B powder prepared in Example 6 were made into Cr: 20.5%, Pt: 15.3%, Ta 2 O 5 : 4.0%, B : 3.8%, with the balance being a component composition consisting of Co and inevitable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty6 were produced by cutting the plate-like hot press body. All of the targets Ty6 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, the target Ty6 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Ta 2 O 5 particle phase was uniformly dispersed in the Co—Cr—Pt—B alloy phase. Organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty6, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Co—Cr binary alloy powder G, Pt powder and Al 2 O 3 powder shown in Table 1 contain Cr: 10.7%, Pt: 14.7%, Al 2 O 3 : 6.0% Then, the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is placed in an Ar gas atmosphere. The container was then sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
  • a plurality of sputtering targets Tx7 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx7 have dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, when this target Tx7 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method, a Pt phase, an Al 2 O 3 phase and a Co—Cr binary alloy phase were observed. A diffusion layer was observed around the Co—Cr binary alloy phase. For this target Tx7, the maximum relative magnetic permeability in the target in-plane direction was measured, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Co powder, Cr powder, Pt powder and Al 2 O 3 powder prepared in Example 7 contain Cr: 10.7%, Pt: 14.7%, Al 2 O 3 : 6.0%, and the balance Is mixed with a component composition consisting of Co and inevitable impurities, and the obtained powder mixture is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. Then, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty7 were produced by cutting the plate-like hot press body.
  • Each of the targets Ty7 has dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty7 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Al 2 O 3 particle phase was uniformly dispersed in the Co—Cr—Pt alloy phase. Some organizations were seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty7, and the results are shown in Table 2.
  • Co—Cr binary alloy powder H, Pt powder, Al 2 O 3 powder, and B powder shown in Table 1 were Cr: 8.5%, Pt: 14.7%, Al 2 O 3 : 8.0. %, B: 2.7%, the balance is a component composition consisting of Co and inevitable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
  • a plurality of the sputtering targets Tx8 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx8 have dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, this target Tx8 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, an alloy phase of Pt and B, an Al 2 O 3 phase, and a Co—Cr binary alloy A phase was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx8, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • Co powder, Cr powder, Pt powder, Al 2 O 3 powder, and B powder prepared in Example 8 were Cr: 8.5%, Pt: 14.7%, Al 2 O 3 : 8.0%, B : 2.7% contained, with the balance being a component composition consisting of Co and unavoidable impurities, and the resulting blended powder was put into a 10 liter container together with zirconia balls serving as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty8 were produced by cutting the plate-like hot press body. All of the targets Ty8 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty8 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Al 2 O 3 particle phase was uniformly dispersed in the Co—Cr—Pt—B alloy phase. Organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty8, and the results are shown in Table 2.
  • EPMA electron beam microprobe analyzer
  • the targets Tx1 to Tx8 in which the Co—Cr binary alloy phase is uniformly dispersed in the substrate have a lower relative permeability than the targets Ty1 to Ty8, and the leakage magnetic flux density during sputtering is low. large. Therefore, it can be seen that the targets Tx1 to Tx8 can be sputtered more efficiently than the targets Ty1 to Ty8.
  • Example 9 Co—Cr—B ternary alloy powder A, Pt powder and SiO 2 powder shown in Table 3 are Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, B: 1 .5%, the balance is blended so as to have a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container Was replaced in an Ar gas atmosphere, and then the vessel was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
  • a plurality of sputtering targets Tx9 of the present invention were produced by cutting the plate-like hot press body.
  • Each of the targets Tx9 has dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Tx9 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Pt phase, SiO 2 phase and Co—Cr—B ternary alloy phase were uniformly dispersed. And a diffusion layer was observed around the Co—Cr—B ternary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx9, and the results are shown in Table 4.
  • Co powder, Cr powder, Pt powder, SiO 2 powder and B powder prepared in Example 9 were Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, B: 1.5 %, With the balance being a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is Ar After replacing in a gas atmosphere, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty9 were produced by cutting this plate-like hot press body.
  • Each of the targets Ty9 has dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty9 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the SiO 2 particle phase was dispersed in the Co—Cr—Pt—B alloy phase. The organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty9, and the results are shown in Table 4.
  • Co—Cr—B ternary alloy powder B, Pt powder, and TiO 2 powder shown in Table 3 were prepared using Cr: 13.4%, Pt: 15.3%, TiO 2 : 9.0%, and B: 6 Is mixed so that the balance is a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container Was replaced in an Ar gas atmosphere, and then the vessel was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
  • a plurality of sputtering targets Tx10 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx10 have dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, this target Tx10 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Pt phase, the TiO 2 phase, and the Co—Cr—B ternary alloy phase were uniformly dispersed. And a diffusion layer was observed around the Co—Cr—B ternary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx10, and the results are shown in Table 4.
  • EPMA electron beam microprobe analyzer
  • Co powder, Cr powder, Pt powder, TiO 2 powder and B powder prepared in Example 10 were Cr: 10.8%, Pt: 15.3%, TiO 2 : 9.0%, B: 6.0. %, With the balance being a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is Ar After replacing in a gas atmosphere, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty10 were produced by cutting the plate-like hot press body. All of the targets Ty10 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty10 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, TiO 2 was uniformly dispersed in the Co—Cr—Pt—B alloy substrate. The organization that has been seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty10, and the results are shown in Table 4.
  • EPMA electron beam microprobe analyzer
  • Example 11 Co—Cr—B ternary alloy powder C, Pt powder, and Ta 2 O 5 powder shown in Table 3 are Cr: 13.4%, Pt: 15.3%, Ta 2 O 5 : 4.0% , B: containing 3.5%, with the balance being a component composition consisting of Co and inevitable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls serving as a grinding medium, The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
  • a plurality of sputtering targets Tx11 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx11 have dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, this target Tx11 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a Pt phase, a Ta 2 O 5 phase, and a Co—Cr—B ternary alloy phase were found. A diffusion layer was seen around the Co—Cr—B ternary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx11, and the results are shown in Table 4.
  • EPMA electron beam microprobe analyzer
  • Co powder, Cr powder, Pt powder, Ta 2 O 5 powder and B powder prepared in Example 11 were mixed with Cr: 13.4%, Pt: 15.3%, Ta 2 O 5 : 4.0%, B : Containing 3.5%, the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty11 were produced. All of the targets Ty11 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, the target Ty11 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Ta 2 O 5 particle phase was uniformly dispersed in the Co—Cr—Pt—B alloy phase. Organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty11, and the results are shown in Table 4.
  • EPMA electron beam microprobe analyzer
  • Co—Cr—B ternary alloy powder D, Pt powder, and Al 2 O 3 powder shown in Table 3 are Cr: 14.7%, Pt: 14.7%, Al 2 O 3 : 8.0% , B: 4.0%, with the balance being a component composition consisting of Co and unavoidable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
  • a plurality of sputtering targets Tx12 of the present invention were produced. All of the targets Tx12 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Tx12 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a Pt phase, an Al 2 O 3 phase, and a Co—Cr—B ternary alloy phase were found. A diffusion layer was seen around the Co—Cr—B ternary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx12, and the results are shown in Table 4.
  • EPMA electron beam microprobe analyzer
  • Co powder, Cr powder, Pt powder, Al 2 O 3 powder, and B powder prepared in Example 12 were Cr: 14.7%, Pt: 14.7%, Al 2 O 3 : 8.0%, B : Containing 4.0%, the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls serving as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
  • a plurality of conventional sputtering targets Ty12 were produced by cutting the plate-like hot press body.
  • Each of the targets Ty12 has dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty12 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Al 2 O 3 particle phase was uniformly dispersed in the Co—Cr—Pt—B alloy phase. Organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty12, and the results are shown in Table 4.
  • the component composition is the same.
  • the target Tx9 having a structure in which the Pt phase, the SiO 2 phase that is a nonmagnetic oxide phase, and the Co—Cr—B ternary alloy phase surrounded by the diffusion layer are uniformly dispersed is Co—Cr—Pt.
  • the maximum relative magnetic permeability in the in-plane direction of the target is small, and the leakage magnetic flux density is high during sputtering, so that sputtering can be performed efficiently. I understand that I can do it.
  • the targets Tx10 to Tx12 are compared with the targets Ty10 to Ty12. It can be seen that sputtering can be performed efficiently.
  • the present invention relates to a sputtering target having a component composition comprising nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and the balance: Co and inevitable impurities.
  • the sputtering target relates to a sputtering target for forming a perpendicular magnetic recording medium film having a structure in which a Co—Cr binary alloy phase, a Pt phase, and a nonmagnetic oxide phase are uniformly dispersed. According to the present invention, magnetron sputtering can be performed efficiently, which can greatly contribute to the development of industries such as computers and digital home appliances.

Abstract

Disclosed is a sputtering target for forming a perpendicular magnetic recording medium film, which has a constituent composition composed of 0.5-15% by mole of a nonmagnetic oxide, 4-20% by mole of Cr, 5-25% by mole of Pt and the balance of Co and unavoidable impurities. The sputtering target has a structure wherein a Co-Cr two-component alloy phase, a Pt phase and a nonmagnetic oxide phase are uniformly dispersed.

Description

比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットSputtering target for forming a perpendicular magnetic recording medium film having a low relative permeability
 この発明は、ハードディスクの高密度磁気記録媒体に適用される磁気記録膜、特に垂直磁気記録媒体に適用される磁気記録膜を形成するための比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットに関するものである。 The present invention relates to a sputtering target for forming a perpendicular magnetic recording medium film having a low relative permeability for forming a magnetic recording film applied to a high-density magnetic recording medium of a hard disk, particularly a magnetic recording film applied to a perpendicular magnetic recording medium. It is about.
 ハードディスク装置は一般にコンピューターやデジタル家電等の外部記録装置として用いられており、記録密度の一層の向上が求められている。そのため、近年、超高密度の記録を実現できる垂直磁気記録方式が注目されてきた。この垂直磁気記録方式は、従来の面内記録方式と異なり、原理的に高密度化するほど記録磁化が安定すると言われており、すでに実用化されている。この垂直磁気記録方式のハードディスク媒体の記録層に適用する材料の有力な候補としてCoCrPt-SiOグラニュラ磁気記録膜が提案されており、このCoCrPt-SiOグラニュラ磁気記録膜はCrおよびPtを含むCo基焼結合金相と二酸化珪素相の混合相を有するスパッタリングターゲットを用いてマグネトロンスパッタ法により作製することが知られている(非特許文献1参照)。 Hard disk devices are generally used as external recording devices such as computers and digital home appliances, and further improvement in recording density is required. Therefore, in recent years, a perpendicular magnetic recording system that can realize ultra-high-density recording has attracted attention. Unlike the conventional in-plane recording system, this perpendicular magnetic recording system is said to have a stable recording magnetization as the density increases in principle, and has already been put into practical use. A CoCrPt—SiO 2 granular magnetic recording film has been proposed as a promising candidate for a material to be applied to the recording layer of this perpendicular magnetic recording type hard disk medium, and this CoCrPt—SiO 2 granular magnetic recording film is a Co containing Cr and Pt. It is known to produce by a magnetron sputtering method using a sputtering target having a mixed phase of a base sintered alloy phase and a silicon dioxide phase (see Non-Patent Document 1).
 このスパッタリングターゲットは、通常、二酸化珪素粉末、Cr粉末、Pt粉末およびCo粉末を、二酸化珪素:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、真空ホットプレスまたは熱間静水圧プレスすることにより作製されることが知られており、その他に市販のCrおよびPtを含むCo基合金粉末または急冷凝固して作製したCrおよびPtを含むCo基合金粉末と二酸化珪素粉末を二酸化珪素:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、真空ホットプレスまたは熱間静水圧プレスすることにより作製されることが知られている。(特許文献1、特許文献2などを参照)。 This sputtering target usually contains silicon dioxide powder, Cr powder, Pt powder and Co powder, silicon dioxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%. The remainder: It is known to be prepared by mixing and mixing so as to have a composition consisting of Co, and then vacuum hot pressing or hot isostatic pressing, and in addition, a commercially available Co base containing Cr and Pt. Co-based alloy powder and silicon dioxide powder containing Cr and Pt prepared by alloy solidification or rapid solidification, silicon dioxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol% It is known that it is prepared by mixing and mixing so as to have a composition comprising Co: balance: Co, and then vacuum hot pressing or hot isostatic pressing. (See Patent Document 1, Patent Document 2, etc.).
 さらに、二酸化珪素:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%を含有し、残部:Coからなる組成にさらにB:0.5~8モル%を含有する組成のターゲットも知られている(特許文献5参照)。さらに、前記二酸化珪素のほかにTiO、Cr、TiO、Ta、Al、BeO、MgO、ThO、ZrO、CeO、Yなどの非磁性酸化物が使用できることが知られている(特許文献3、4参照)。
「富士時報」Vol.75No.3 2002(169~172ページ) 特開2001‐236643号公報 特開2004‐339586号公報 特開2003‐36525号公報 特開2006‐24346号公報 特開2004‐310910号公報
Further, silicon dioxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and the balance: Co is further added to B: 0.5 to 8 mol%. The target of the composition to contain is also known (refer patent document 5). Furthermore, in addition to the silicon dioxide, non-magnetic such as TiO, Cr 2 O 3 , TiO 2 , Ta 2 O 5 , Al 2 O 3 , BeO 2 , MgO, ThO 2 , ZrO 2 , CeO 2 , Y 2 O 3. It is known that oxides can be used (see Patent Documents 3 and 4).
"Fuji Times" Vol. 75No. 3 2002 (pages 169-172) Japanese Patent Laid-Open No. 2001-236643 JP 2004-339586 A JP 2003-36525 A JP 2006-24346 A JP 2004-310910 A
 しかし、この従来の磁気記録媒体膜形成用スパッタリングターゲットは、強磁性合金であるCrおよびPtを含むCo基合金、または強磁性合金であるCr、PtおよびBを含むCo-Cr-Pt-B合金を素地とし、この素地中にSiOなどの非磁性酸化物が均一分散している組織を有するために、非磁性体ターゲットと比較して磁束がターゲット内部を通過する割合が大きく、ターゲット上空に漏れ出る磁束が極めて少ない。このことはターゲット下部に磁気回路を配置し、ターゲット上空に漏れ出る磁束を利用して希ガスの電離効率を高めることで放電を安定化させ、成膜速度を向上させているマグネトロンスパッタリング法にとっては大きな問題となる。すなわち、ターゲット上空に漏れ出る磁束が少ない漏洩磁束密度の低いターゲット(すなわち比透磁率の高いターゲット)を用いてマグネトロンスパッタリングを行なうと、放電が安定しないかあるいは放電できても成膜速度が極端に遅くなるなどの問題を引き起こすからである。 However, this conventional sputtering target for forming a magnetic recording medium film includes a Co-based alloy containing Cr and Pt which are ferromagnetic alloys, or a Co—Cr—Pt—B alloy containing Cr, Pt and B which are ferromagnetic alloys. The base has a structure in which nonmagnetic oxides such as SiO 2 are uniformly dispersed in the base, so that the proportion of magnetic flux passing through the inside of the target is larger than that of the nonmagnetic target, Very little magnetic flux leaks out. This is for magnetron sputtering, which has a magnetic circuit placed under the target and stabilizes the discharge by increasing the ionization efficiency of the noble gas by utilizing the magnetic flux leaking over the target, thereby improving the deposition rate. It becomes a big problem. In other words, if magnetron sputtering is performed using a target having a low leakage magnetic flux density (ie, a target having a high relative permeability) with a small amount of magnetic flux leaking over the target, the deposition rate is extremely high even if the discharge is not stable or can be discharged. This is because it causes problems such as slowness.
 この問題点を解消するための手段のひとつとして、ターゲットの厚さを薄くして磁束をターゲット上空へ抜けやすくする方法が取られている。しかし、ターゲットを薄くすると、ターゲットの交換頻度が頻繁になるので成膜効率が悪くなり、コスト的に好ましくない。
 また、漏洩磁束密度の低いターゲットは、一旦マグネトロンスパッタリングを行ってエロージョンが形成されると、エロージョン部分から磁束が集中的に漏洩し、その部分だけが益々集中的にスパッタされていくためにターゲットの利用効率が低下したり、成膜速度が経時変化したり、基板面内に膜厚のばらつきが生じたり、さらにターゲット上への再デポ膜の大量付着が生じるなどといった問題を引き起こしやすい。
As one means for solving this problem, a method is adopted in which the thickness of the target is reduced to make it easier for the magnetic flux to escape above the target. However, if the target is made thin, the replacement frequency of the target becomes frequent, so that the film formation efficiency is deteriorated, which is not preferable in terms of cost.
In addition, a target with low leakage magnetic flux density is once the erosion is formed by performing magnetron sputtering, magnetic flux leaks intensively from the erosion part, and only that part is intensively sputtered. It tends to cause problems such as a decrease in utilization efficiency, a change in deposition rate over time, a variation in film thickness within the substrate surface, and a large amount of redeposition film deposited on the target.
 そこで、本発明者らは、ターゲットの厚さを薄くすることなく比透磁率の低いスパッタリングターゲットを得るべく研究を行なった結果、以下の知見を得た。
(a)非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットに含まれる強磁性成分のCoをCrとの二元系合金相となるように分散させ、さらにPtおよび非磁性酸化物をPt相および非磁性酸化物相として分散させた組織を有するターゲットによれば、低い比透磁率が得られる。
Therefore, the present inventors conducted research to obtain a sputtering target having a low relative permeability without reducing the thickness of the target, and as a result, obtained the following knowledge.
(A) A sputtering target containing a nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and the balance: Co and inevitable impurities. According to the target having a structure in which the contained ferromagnetic component Co is dispersed so as to be a binary alloy phase with Cr, and Pt and a nonmagnetic oxide are further dispersed as a Pt phase and a nonmagnetic oxide phase. A low relative magnetic permeability can be obtained.
(b)非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%を含有し、さらにB:0.5~8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットに含まれる強磁性成分のCoをCrとの二元系合金相となるように分散させ、さらにPt、非磁性酸化物およびBをPtとBの合金相および非磁性酸化物相として分散させた組織を有するターゲットによれば、低い比透磁率が得られる。 (B) Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol%, and the balance : Co and ferromagnetic component contained in a sputtering target having a component composition composed of Co and inevitable impurities are dispersed so as to form a binary alloy phase with Cr, and further Pt, nonmagnetic oxide and B are mixed with Pt and B. According to the target having a structure dispersed as an alloy phase and a nonmagnetic oxide phase, a low relative magnetic permeability can be obtained.
(c)非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%、B:0.5~8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットに含まれる強磁性成分のCoおよびCrをCo-Cr-B三元系合金相となるように分散させ、さらにPtおよび非磁性酸化物をPt相および非磁性酸化物相として分散させてCo-Cr-B三元系合金相、Pt相、非磁性酸化物相からなる組織を有するターゲットによれば、低い比透磁率が得られる。 (C) Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol%, balance: Co and inevitable Ferromagnetic components Co and Cr contained in a sputtering target having a component composition composed of impurities are dispersed so as to form a Co—Cr—B ternary alloy phase, and Pt and nonmagnetic oxide are further dispersed into Pt phase and nonmagnetic. A target having a structure composed of a Co—Cr—B ternary alloy phase, a Pt phase, and a nonmagnetic oxide phase dispersed as an oxide phase provides a low relative magnetic permeability.
 この発明は、上記の知見に基づいてなされたものである。すなわち、本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの第一の態様は、非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットであって、このスパッタリングターゲットはCo-Cr二元系合金相、Pt相および非磁性酸化物相が均一分散している組織を有する。 This invention has been made based on the above findings. That is, the first aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is a nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%. A sputtering target having a component composition comprising Co and unavoidable impurities, wherein the sputtering target has a structure in which a Co—Cr binary alloy phase, a Pt phase and a nonmagnetic oxide phase are uniformly dispersed. Have.
 本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの第一の態様において、Co-Cr二元系合金相は、ホットプレス中に素地のPtがCo-Cr二元系合金相の外周に拡散侵入し、Co-Cr二元系合金相の外周にCo、CrおよびPtで構成されている拡散層により被覆されることがある。この拡散層は無い方が好ましいがこの拡散層は極めて薄い場合は特性に大きな影響を与えるものではなく、前記第一の態様のスパッタリングターゲットのCo-Cr二元系合金相の外周にCo、CrおよびPtで構成されている拡散層が形成される場合もこの発明に含まれる。したがって、本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの第一の態様において、前記Co-Cr二元系合金相は、Co、CrおよびPtで構成されている拡散層により被覆されていてもよい。 In the first aspect of the sputtering target for forming a perpendicular magnetic recording medium film according to the present invention, the Co—Cr binary alloy phase diffuses and penetrates into the outer periphery of the Co—Cr binary alloy phase during hot pressing. In some cases, the outer periphery of the Co—Cr binary alloy phase is covered with a diffusion layer composed of Co, Cr, and Pt. This diffusion layer is preferably absent, but if this diffusion layer is extremely thin, it does not have a large effect on the characteristics, and Co, Cr is formed on the outer periphery of the Co—Cr binary alloy phase of the sputtering target of the first aspect. A case where a diffusion layer composed of Pt and Pt is formed is also included in the present invention. Therefore, in the first aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention, the Co—Cr binary alloy phase may be covered with a diffusion layer composed of Co, Cr, and Pt. Good.
 本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの第二の態様は、非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%、B:0.5~8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットであって、このスパッタリングターゲットは素地中にCo-Cr二元系合金相、PtとBの合金相および非磁性酸化物相が均一分散している組織を有する。 The second aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is as follows. Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: Sputtering target containing 0.5 to 8 mol% and having the balance: Co and inevitable impurities, the sputtering target comprising a Co—Cr binary alloy phase, an alloy of Pt and B in the substrate It has a structure in which the phase and the nonmagnetic oxide phase are uniformly dispersed.
 本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの第二の態様において、Co-Cr二元系合金相は、ホットプレス中に素地のPtおよびBがCo-Cr二元系合金相の外周に拡散侵入し、Co-Cr二元系合金相の外周にCo、Cr、PtおよびBで構成されている拡散層により被覆されることがある。この拡散層は無い方が好ましいがこの拡散層は極めて薄い場合は特性に大きな影響を与えるものではなく、前記第二の態様のスパッタリングターゲットのCo-Cr二元系合金相の外周にCo、Cr、PtおよびBで構成されている拡散層が形成される場合もこの発明に含まれる。したがって、本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの第二の態様において、前記Co-Cr二元系合金相は、Co、Cr、PtおよびBで構成されている拡散層により被覆されていてもよい。 In the second aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention, the Co—Cr binary alloy phase is formed so that the Pt and B of the base material are on the outer periphery of the Co—Cr binary alloy phase during hot pressing. In some cases, it diffuses and penetrates, and the outer periphery of the Co—Cr binary alloy phase is covered with a diffusion layer composed of Co, Cr, Pt and B. This diffusion layer is preferably absent, but if this diffusion layer is very thin, it does not have a significant effect on the characteristics, and Co, Cr is formed on the outer periphery of the Co—Cr binary alloy phase of the sputtering target of the second aspect. A case where a diffusion layer composed of Pt and B is formed is also included in the present invention. Therefore, in the second aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention, the Co—Cr binary alloy phase is covered with a diffusion layer composed of Co, Cr, Pt and B. May be.
 本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットに含まれる前記非磁性酸化物は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかであり、このことはすでに知られている。 The nonmagnetic oxide included in the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is selected from silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide. This is already known.
 本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットを製造する際は、原料粉末としてCo-Cr二元系合金粉末、Pt粉末および非磁性酸化物粉末を用意し、さらに必要に応じてB粉末を用意する。それから、これら原料粉末を非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%を含有し、必要に応じてB:0.5~8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成となるように配合し、混合する。そして、得られた混合粉末を通常より低い温度(700~1050℃)でホットプレスする。これにより、Co-Cr二元系合金粉末に含まれるCoおよびCrが素地に拡散することを阻止し、さらに素地のPtがCo-Cr二元系合金相に拡散侵入するのを阻止することが可能である。 When producing a sputtering target for forming a perpendicular magnetic recording medium film of the present invention, a Co—Cr binary alloy powder, a Pt powder and a nonmagnetic oxide powder are prepared as raw material powders. prepare. Then, these raw material powders contain non-magnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and B: 0.5 to 8 mol as necessary. %, And the remainder is blended and mixed so as to have a component composition consisting of Co and inevitable impurities. The obtained mixed powder is hot pressed at a temperature lower than usual (700 to 1050 ° C.). This prevents Co and Cr contained in the Co—Cr binary alloy powder from diffusing into the substrate, and further prevents Pt of the substrate from diffusing and penetrating into the Co—Cr binary alloy phase. Is possible.
 前記Co-Cr二元系合金粉末はCr:4.2~33.3モル%を含有し、残部がCoからなる組成を有することが好まく、したがって、本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの素地中に分散しているCo-Cr二元系合金相もCr:4.2~33.3モル%を含有し、残部がCoからなる組成を有している。このCo-Cr二元系合金粉末の成分組成および素地中に均一分散しているCo-Cr二元系合金相の成分組成は、本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの成分組成によって決定される。 The Co—Cr binary alloy powder preferably contains Cr: 4.2 to 33.3 mol%, and the balance is preferably composed of Co. Therefore, for forming the perpendicular magnetic recording medium film of the present invention. The Co—Cr binary alloy phase dispersed in the substrate of the sputtering target also contains Cr: 4.2 to 33.3 mol%, with the balance being Co. The component composition of this Co—Cr binary alloy powder and the component composition of the Co—Cr binary alloy phase uniformly dispersed in the substrate depend on the component composition of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention. It is determined.
 本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの第三の態様は、非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%、B:0.5~8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットであって、このスパッタリングターゲットは素地中にCo-Cr-B三元系合金相、Pt相および非磁性酸化物相が均一分散している組織を有する。 The third aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is as follows. Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: A sputtering target containing 0.5 to 8 mol% and having a composition comprising the balance: Co and inevitable impurities, the sputtering target comprising a Co—Cr—B ternary alloy phase, Pt phase and It has a structure in which the nonmagnetic oxide phase is uniformly dispersed.
 本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの第三の態様において、Co-Cr-B三元系合金相は、ホットプレス中に素地のPtおよびBがCo-Cr-B三元系合金相の外周に拡散侵入し、Co-Cr-B三元系合金相の外周にCo、Cr、PtおよびBで構成されている拡散層により被覆されることがある。この拡散層は無い方が好ましいがこの拡散層は極めて薄い場合は特性に大きな影響を与えるものではなく、前記第三の態様のスパッタリングターゲットのCo-Cr-B三元系合金相の外周にCo、Cr、PtおよびBで構成されている拡散層が形成される場合もこの発明に含まれる。したがって、本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの第三の態様において、前記Co-Cr-B三元系合金相は、Co、Cr、PtおよびBで構成されている拡散層により被覆されていてもよい。 In the third aspect of the sputtering target for forming a perpendicular magnetic recording medium film according to the present invention, the Co—Cr—B ternary alloy phase is formed so that the base Pt and B are Co—Cr—B ternary alloys during hot pressing. The outer periphery of the phase may diffuse and penetrate, and the outer periphery of the Co—Cr—B ternary alloy phase may be covered with a diffusion layer composed of Co, Cr, Pt and B. This diffusion layer is preferably not present, but if this diffusion layer is very thin, it does not have a significant effect on the characteristics, and the Co—Cr—B ternary alloy phase of the sputtering target of the third aspect has a Co outer periphery. The case where a diffusion layer composed of Cr, Pt and B is formed is also included in the present invention. Therefore, in the third aspect of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention, the Co—Cr—B ternary alloy phase is covered with a diffusion layer composed of Co, Cr, Pt and B. May be.
 本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットに含まれる前記非磁性酸化物は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかであり、このことはすでに知られている。 The nonmagnetic oxide included in the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is selected from silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide. This is already known.
 本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットを製造する際は、原料粉末としてCo-Cr-B三元系合金粉末、Pt粉末および非磁性酸化物粉末を用意する。それから、これら原料粉末を非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%、B:0.5~8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成となるように配合し、混合する。そして、得られた混合粉末を通常のホットプレス温度(1100℃以上)より低い温度(700~1050℃)でホットプレスする。これにより、Co-Cr-B三元系合金粉末に含まれるCoおよびCrが素地に拡散することを可能な限り阻止し、さらに素地のPtがCo-Cr-B三元系合金相に拡散侵入するのを阻止することが可能である。 When manufacturing the sputtering target for forming a perpendicular magnetic recording medium film of the present invention, Co—Cr—B ternary alloy powder, Pt powder and nonmagnetic oxide powder are prepared as raw powders. Then, these raw material powders contain nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol%, and the balance: It mix | blends and mixes so that it may become a component composition which consists of Co and an unavoidable impurity. The obtained mixed powder is hot pressed at a temperature (700 to 1050 ° C.) lower than the normal hot pressing temperature (1100 ° C. or higher). This prevents Co and Cr contained in the Co—Cr—B ternary alloy powder from diffusing into the substrate as much as possible, and Pt of the substrate diffuses and penetrates into the Co—Cr—B ternary alloy phase. Can be prevented.
 前記Co-Cr-B三元系合金粉末はCr:4.2~33.3モル%、B:0.5~13.3モル%を含有し、残部がCoからなる組成を有することが好まく、したがって、本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの素地中に分散しているCo-Cr-B三元系合金相もCr:4.2~33.3モル%、B:0.5~13.3モル%を含有し、残部がCoからなる組成を有している。このCo-Cr-B三元系合金粉末の成分組成および素地中に均一分散しているCo-Cr-B三元系合金相の成分組成は、本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットの成分組成によって決定される。 The Co—Cr—B ternary alloy powder preferably contains Cr: 4.2 to 33.3 mol%, B: 0.5 to 13.3 mol%, with the balance being Co. Accordingly, the Co—Cr—B ternary alloy phase dispersed in the substrate of the sputtering target for forming a perpendicular magnetic recording medium film of the present invention is also Cr: 4.2 to 33.3 mol%, B: 0. 0.5 to 13.3 mol%, and the balance is Co. The component composition of the Co—Cr—B ternary alloy powder and the component composition of the Co—Cr—B ternary alloy phase uniformly dispersed in the substrate are determined by the sputtering target for forming a perpendicular magnetic recording medium film according to the present invention. It is determined by the component composition.
 本発明の垂直磁気記録媒体膜形成用スパッタリングターゲットは比透磁率の低く、このスパッタリングターゲットを用いると、マグネトロンスパッタリングを効率よく行なうことができ、コンピューター並びにデジタル家電等の産業の発展に大いに貢献し得る。 The sputtering target for forming a perpendicular magnetic recording medium film according to the present invention has a low relative magnetic permeability. When this sputtering target is used, magnetron sputtering can be performed efficiently, which can greatly contribute to the development of industries such as computers and digital home appliances. .
(第一の実施形態)
 原料粉末として、表1に示される成分組成を有する平均粒径:20μmのCo-Cr二元系合金粉末A~H、平均粒径:25μmのPt粉末、平均粒径:5μmのB粉末、平均粒径:5μmのCo粉末、平均粒径:15μmのCr粉末を用意し、さらに非磁性酸化物粉末としていずれも平均粒径:3μmのSiO粉末、TiO粉末、Ta粉末およびAl粉末を用意した。
Figure JPOXMLDOC01-appb-I000001
(First embodiment)
As raw material powders, average particle size: 20 μm Co—Cr binary alloy powders A to H having the component composition shown in Table 1, average particle size: 25 μm Pt powder, average particle size: 5 μm B powder, average Co powder having a particle size of 5 μm and Cr powder having an average particle size of 15 μm are prepared. Further, as nonmagnetic oxide powders, the average particle size is 3 μm of SiO 2 powder, TiO 2 powder, Ta 2 O 5 powder and Al. 2 O 3 powder was prepared.
Figure JPOXMLDOC01-appb-I000001
(実施例1)
 表1に示されるCo-Cr二元系合金粉末A、Pt粉末およびSiO粉末を、Cr:10.8%、Pt:15.3%、SiO:10.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで12時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx1を複数個作製した。ターゲットTx1は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx1を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、SiO相およびCo-Cr二元系合金相が見られ、Co-Cr二元系合金相の周囲に拡散層が見られた。
 このターゲットTx1についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 1
Co—Cr binary alloy powder A, Pt powder and SiO 2 powder shown in Table 1 contain Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, and the balance Compounding so as to have a component composition consisting of Co and inevitable impurities, the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in this container is replaced with an Ar gas atmosphere, Thereafter, the container was sealed. This container was rotated with a ball mill for 12 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
A plurality of sputtering targets Tx1 of the present invention were produced by cutting the plate-like hot press body. Each of the targets Tx1 has dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, the target Tx1 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a Pt phase, a SiO 2 phase, and a Co—Cr binary alloy phase were observed. A diffusion layer was observed around the -Cr binary alloy phase.
The maximum relative permeability in the target in-plane direction was measured for this target Tx1, and the results are shown in Table 2.
(従来例1)
 実施例1において用意したCo粉末、Cr粉末、Pt粉末およびSiO粉末を、Cr:10.8%、Pt:15.3%、SiO:10.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 1)
Co powder, Cr powder, Pt powder and SiO 2 powder prepared in Example 1 contain Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, the balance being Co and inevitable The mixture is mixed so as to have a component composition consisting of impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. Was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy1を複数個作製した。ターゲットTy1は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy1を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co-Cr-Pt合金相中にSiO粒子が均一分散している組織が見られた。このターゲットTy1についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of conventional sputtering targets Ty1 were produced by cutting the plate-like hot press body. All of the targets Ty1 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty1 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a structure in which SiO 2 particles were uniformly dispersed in the Co—Cr—Pt alloy phase was found. It was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty1, and the results are shown in Table 2.
(実施例2)
 表1に示されるCo-Cr二元系合金粉末B、Pt粉末、SiO粉末およびB粉末を、Cr:10.8%、Pt:15.3%、SiO:10.0%、B:1.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Example 2)
Co—Cr binary alloy powder B, Pt powder, SiO 2 powder, and B powder shown in Table 1 are Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, B: 1.0% is contained and the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10 liter container together with zirconia balls serving as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx2を複数個作製した。ターゲットTx2は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx2を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、PtとBの合金相、SiO相およびCo-Cr二元系合金相が均一分散している組織が見られ、Co-Cr二元系合金相の周囲に拡散層が見られた。このターゲットTx2についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of sputtering targets Tx2 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx2 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Tx2 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, an alloy phase of Pt and B, a SiO 2 phase, and a Co—Cr binary alloy phase were found. A uniformly dispersed structure was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx2, and the results are shown in Table 2.
(従来例2)
 実施例2において用意したCo粉末、Cr粉末、Pt粉末、SiO粉末およびB粉末を、Cr:10.8%、Pt:15.3%、SiO:10.0%、B:1.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 2)
Co powder, Cr powder, Pt powder, SiO 2 powder, and B powder prepared in Example 2 were Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, B: 1.0 %, With the balance being a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is Ar After replacing in a gas atmosphere, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy2を複数個作製した。ターゲットTy2は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy2を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co-Cr-Pt-B合金相中にSiO粒子相が分散している組織が見られた。このターゲットTy2についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of conventional sputtering targets Ty2 were produced by cutting the plate-like hot press body. All of the targets Ty2 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty2 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the SiO 2 particle phase was dispersed in the Co—Cr—Pt—B alloy phase. The organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty2, and the results are shown in Table 2.
(実施例3)
 表1に示されるCo-Cr二元系合金粉末C、Pt粉末およびTiO粉末を、Cr:9.9%、Pt:13.5%、TiO:10.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Example 3)
Co—Cr binary alloy powder C, Pt powder and TiO 2 powder shown in Table 1 contain Cr: 9.9%, Pt: 13.5%, TiO 2 : 10.0%, the balance being Compounding so as to have a component composition consisting of Co and inevitable impurities, the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in this container is replaced with an Ar gas atmosphere, Thereafter, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx3を複数個作製した。ターゲットTx3は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx3を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、TiO相およびCo-Cr二元系合金相が見られ、Co-Cr二元系合金相の周囲に拡散層が見られた。このターゲットTx3についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of sputtering targets Tx3 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx3 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Tx3 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a Pt phase, a TiO 2 phase, and a Co—Cr binary alloy phase were observed. A diffusion layer was observed around the -Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx3, and the results are shown in Table 2.
(従来例3)
 実施例3において用意したCo粉末、Cr粉末、Pt粉末およびTiO粉末を、Cr:9.9%、Pt:13.5%、TiO:10.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 3)
Co powder, Cr powder, Pt powder and TiO 2 powder prepared in Example 3 contain Cr: 9.9%, Pt: 13.5%, TiO 2 : 10.0%, the balance being Co and inevitable The mixture is mixed so as to have a component composition consisting of impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. Was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy3を複数個作製した。ターゲットTy3は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy3を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co-Cr-Pt合金相中にTiO粒子相が分散している組織が見られた。このターゲットTy3についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 By cutting this plate-like hot press body, a plurality of conventional sputtering targets Ty3 were produced. All of the targets Ty3 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty3 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a structure in which the TiO 2 particle phase was dispersed in the Co—Cr—Pt alloy phase was found. It was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty3, and the results are shown in Table 2.
(実施例4)
 表1に示されるCo-Cr二元系合金粉末D、Pt粉末、TiO粉末およびB粉末を、Cr:13.4%、Pt:15.3%、TiO:10.0%、B:4.3%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
Example 4
Co—Cr binary alloy powder D, Pt powder, TiO 2 powder, and B powder shown in Table 1 are Cr: 13.4%, Pt: 15.3%, TiO 2 : 10.0%, B: It is blended so as to have a component composition comprising 4.3% and the balance consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10 liter container together with zirconia balls serving as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx4を複数個作製した。ターゲットTx4は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx4を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、PtとBの合金相、TiO相およびCo-Cr二元系合金相が均一分散している組織が見られ、Co-Cr二元系合金相の周囲に拡散層が見られた。このターゲットTx4についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of sputtering targets Tx4 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx4 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Tx4 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, an alloy phase of Pt and B, a TiO 2 phase, and a Co—Cr binary alloy phase were found. A uniformly dispersed structure was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx4, and the results are shown in Table 2.
(従来例4)
 実施例4において用意したCo粉末、Cr粉末、Pt粉末、TiO粉末およびB粉末を、Cr:13.4%、Pt:15.3%、TiO:10.0%、B:4.3%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 4)
Co powder, Cr powder, Pt powder, TiO 2 powder, and B powder prepared in Example 4 were Cr: 13.4%, Pt: 15.3%, TiO 2 : 10.0%, B: 4.3. %, With the balance being a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is Ar After replacing in a gas atmosphere, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy4を複数個作製した。ターゲットTy4は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy4を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、素地中にCo-Cr-Pt-B合金素地中にTiOが均一分散している組織が見られた。このターゲットTy4についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of conventional sputtering targets Ty4 were produced by cutting the plate-like hot press body. All of the targets Ty4 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty4 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, TiO 2 was uniformly dispersed in the Co—Cr—Pt—B alloy substrate. The organization that has been seen. With respect to this target Ty4, the maximum relative permeability in the target in-plane direction was measured, and the result is shown in Table 2.
(実施例5)
 表1に示されるCo-Cr二元系合金粉末E、Pt粉末およびTa粉末を、Cr:16.0%、Pt:15.4%、Ta:5.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Example 5)
Co—Cr binary alloy powder E, Pt powder and Ta 2 O 5 powder shown in Table 1 contain Cr: 16.0%, Pt: 15.4%, Ta 2 O 5 : 5.0% Then, the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is placed in an Ar gas atmosphere. The container was then sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx5を複数個作製した。ターゲットTx5は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx5を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、Ta相およびCo-Cr二元系合金相が見られ、Co-Cr二元系合金相の周囲に拡散層が見られた。このターゲットTx5についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of sputtering targets Tx5 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx5 have dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, this target Tx5 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a Pt phase, a Ta 2 O 5 phase, and a Co—Cr binary alloy phase were observed. A diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx5, and the results are shown in Table 2.
(従来例5)
 実施例5において用意したCo粉末、Cr粉末、Pt粉末およびTa粉末を、Cr:16.0%、Pt:15.4%、Ta:5.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 5)
Co powder, Cr powder, Pt powder and Ta 2 O 5 powder prepared in Example 5 contain Cr: 16.0%, Pt: 15.4%, Ta 2 O 5 : 5.0%, and the balance Is mixed with a component composition consisting of Co and inevitable impurities, and the obtained powder mixture is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. Then, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy5を複数個作製した。ターゲットTy5は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy5を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co-Cr-Pt合金相中にTa粒子相が分散している組織が見られた。このターゲットTy5についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of conventional sputtering targets Ty5 were produced by cutting the plate-like hot press body. All of the targets Ty5 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty5 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, Ta 2 O 5 particle phase was dispersed in the Co—Cr—Pt alloy phase. The organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty5, and the results are shown in Table 2.
(実施例6)
 表1に示されるCo-Cr二元系合金粉末F、Pt粉末、Ta粉末およびB粉末を、Cr:20.5%、Pt:15.3%、Ta:4.0%、B:3.8%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Example 6)
Co—Cr binary alloy powder F, Pt powder, Ta 2 O 5 powder and B powder shown in Table 1 were mixed with Cr: 20.5%, Pt: 15.3%, Ta 2 O 5 : 4.0. %, B: 3.8%, with the balance being a component composition consisting of Co and inevitable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx6を複数個作製した。ターゲットTx6はそのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx6を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、PtとBの合金相、Ta相およびCo-Cr二元系合金相が見られ、Co-Cr二元系合金相の周囲に拡散層が見られた。このターゲットTx6についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of sputtering targets Tx6 of the present invention were produced by cutting the plate-like hot press body. Each of the targets Tx6 has dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, this target Tx6 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, an alloy phase of Pt and B, a Ta 2 O 5 phase and a Co—Cr binary alloy were obtained. A phase was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx6, and the results are shown in Table 2.
(従来例6)
 実施例6において用意したCo粉末、Cr粉末、Pt粉末、Ta粉末およびB粉末を、Cr:20.5%、Pt:15.3%、Ta:4.0%、B:3.8%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 6)
Co powder, Cr powder, Pt powder, Ta 2 O 5 powder and B powder prepared in Example 6 were made into Cr: 20.5%, Pt: 15.3%, Ta 2 O 5 : 4.0%, B : 3.8%, with the balance being a component composition consisting of Co and inevitable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy6を複数個作製した。ターゲットTy6は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy6を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co-Cr-Pt-B合金相中にTa粒子相が均一分散している組織が見られた。このターゲットTy6についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of conventional sputtering targets Ty6 were produced by cutting the plate-like hot press body. All of the targets Ty6 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, the target Ty6 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Ta 2 O 5 particle phase was uniformly dispersed in the Co—Cr—Pt—B alloy phase. Organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty6, and the results are shown in Table 2.
(実施例7)
 表1に示されるCo-Cr二元系合金粉末G、Pt粉末およびAl粉末を、Cr:10.7%、Pt:14.7%、Al:6.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Example 7)
Co—Cr binary alloy powder G, Pt powder and Al 2 O 3 powder shown in Table 1 contain Cr: 10.7%, Pt: 14.7%, Al 2 O 3 : 6.0% Then, the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is placed in an Ar gas atmosphere. The container was then sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx7を複数個作製した。ターゲットTx7は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx7を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、Al相およびCo-Cr二元系合金相が見られ、Co-Cr二元系合金相の周囲に拡散層が見られた。このターゲットTx7についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of sputtering targets Tx7 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx7 have dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, when this target Tx7 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method, a Pt phase, an Al 2 O 3 phase and a Co—Cr binary alloy phase were observed. A diffusion layer was observed around the Co—Cr binary alloy phase. For this target Tx7, the maximum relative magnetic permeability in the target in-plane direction was measured, and the results are shown in Table 2.
(従来例7)
 実施例7において用意したCo粉末、Cr粉末、Pt粉末およびAl粉末を、Cr:10.7%、Pt:14.7%、Al:6.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 7)
Co powder, Cr powder, Pt powder and Al 2 O 3 powder prepared in Example 7 contain Cr: 10.7%, Pt: 14.7%, Al 2 O 3 : 6.0%, and the balance Is mixed with a component composition consisting of Co and inevitable impurities, and the obtained powder mixture is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. Then, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy7を複数個作製した。ターゲットTy7は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy7を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co-Cr-Pt合金相中にAl粒子相が均一分散している組織が見られた。このターゲットTy7についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of conventional sputtering targets Ty7 were produced by cutting the plate-like hot press body. Each of the targets Ty7 has dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty7 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Al 2 O 3 particle phase was uniformly dispersed in the Co—Cr—Pt alloy phase. Some organizations were seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty7, and the results are shown in Table 2.
(実施例8)
 表1に示されるCo-Cr二元系合金粉末H、Pt粉末、Al粉末、B粉末を、Cr:8.5%、Pt:14.7%、Al:8.0%、B:2.7%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Example 8)
Co—Cr binary alloy powder H, Pt powder, Al 2 O 3 powder, and B powder shown in Table 1 were Cr: 8.5%, Pt: 14.7%, Al 2 O 3 : 8.0. %, B: 2.7%, the balance is a component composition consisting of Co and inevitable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx8を複数個作製した。ターゲットTx8は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx8を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、PtとBの合金相、Al相およびCo-Cr二元系合金相が見られ、Co-Cr二元系合金相の周囲に拡散層が見られた。このターゲットTx8についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。 A plurality of the sputtering targets Tx8 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx8 have dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, this target Tx8 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, an alloy phase of Pt and B, an Al 2 O 3 phase, and a Co—Cr binary alloy A phase was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx8, and the results are shown in Table 2.
(従来例8)
 実施例8において用意したCo粉末、Cr粉末、Pt粉末、Al粉末、B粉末を、Cr:8.5%、Pt:14.7%、Al:8.0%、B:2.7%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 8)
Co powder, Cr powder, Pt powder, Al 2 O 3 powder, and B powder prepared in Example 8 were Cr: 8.5%, Pt: 14.7%, Al 2 O 3 : 8.0%, B : 2.7% contained, with the balance being a component composition consisting of Co and unavoidable impurities, and the resulting blended powder was put into a 10 liter container together with zirconia balls serving as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy8を複数個作製した。ターゲットTy8は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy8を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co-Cr-Pt-B合金相中にAl粒子相が均一分散している組織が見られた。このターゲットTy8についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Figure JPOXMLDOC01-appb-I000002
A plurality of conventional sputtering targets Ty8 were produced by cutting the plate-like hot press body. All of the targets Ty8 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty8 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Al 2 O 3 particle phase was uniformly dispersed in the Co—Cr—Pt—B alloy phase. Organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty8, and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-I000002
 表2に示される結果から、素地中にCo-Cr二元系合金相が均一分散しているターゲットTx1~Tx8は、ターゲットTy1~Ty8に比べて比透磁率が小さく、スパッタリングに際して漏洩磁束密度が大きい。したがって、ターゲットTx1~Tx8はターゲットTy1~Ty8に比べて効率よくスパッタできることが分かる。 From the results shown in Table 2, the targets Tx1 to Tx8 in which the Co—Cr binary alloy phase is uniformly dispersed in the substrate have a lower relative permeability than the targets Ty1 to Ty8, and the leakage magnetic flux density during sputtering is low. large. Therefore, it can be seen that the targets Tx1 to Tx8 can be sputtered more efficiently than the targets Ty1 to Ty8.
(第二の実施形態)
 原料粉末として、表3に示される成分組成を有する平均粒径:20μmのCo-Cr-B三元系合金粉末A~D、平均粒径:25μmのPt粉末、平均粒径:5μmのB粉末、平均粒径:5μmのCo粉末、平均粒径:15μmのCr粉末を用意し、さらに非磁性酸化物粉末としていずれも平均粒径:3μmのSiO粉末、TiO粉末、Ta粉末およびAl粉末を用意した。
Figure JPOXMLDOC01-appb-I000003
(Second embodiment)
As raw material powders, average particle size: 20 μm Co—Cr—B ternary alloy powders A to D having the composition shown in Table 3, average particle size: 25 μm Pt powder, average particle size: 5 μm B powder Co powder having an average particle diameter of 5 μm and Cr powder having an average particle diameter of 15 μm were prepared, and SiO 2 powder, TiO 2 powder, Ta 2 O 5 powder having an average particle diameter of 3 μm as nonmagnetic oxide powders. And Al 2 O 3 powder were prepared.
Figure JPOXMLDOC01-appb-I000003
(実施例9)
 表3に示されるCo-Cr-B三元系合金粉末A、Pt粉末およびSiO粉末を、Cr:10.8%、Pt:15.3%、SiO:10.0%、B:1.5%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
Example 9
Co—Cr—B ternary alloy powder A, Pt powder and SiO 2 powder shown in Table 3 are Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, B: 1 .5%, the balance is blended so as to have a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container Was replaced in an Ar gas atmosphere, and then the vessel was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx9を複数個作製した。ターゲットTx9は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx9を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、SiO相およびCo-Cr-B三元系合金相が均一分散している組織が見られ、Co-Cr-B三元系合金相の周囲に拡散層が見られた。このターゲットTx9についてターゲット面内方向の最大比透磁率を測定し、その結果を表4に示した。 A plurality of sputtering targets Tx9 of the present invention were produced by cutting the plate-like hot press body. Each of the targets Tx9 has dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Tx9 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Pt phase, SiO 2 phase and Co—Cr—B ternary alloy phase were uniformly dispersed. And a diffusion layer was observed around the Co—Cr—B ternary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx9, and the results are shown in Table 4.
(従来例9)
 実施例9において用意したCo粉末、Cr粉末、Pt粉末、SiO粉末およびB粉末を、Cr:10.8%、Pt:15.3%、SiO:10.0%、B:1.5%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 9)
Co powder, Cr powder, Pt powder, SiO 2 powder and B powder prepared in Example 9 were Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, B: 1.5 %, With the balance being a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is Ar After replacing in a gas atmosphere, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy9を複数個作製した。ターゲットTy9は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy9を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co-Cr-Pt-B合金相中にSiO粒子相が分散している組織が見られた。このターゲットTy9についてターゲット面内方向の最大比透磁率を測定し、その結果を表4に示した。 A plurality of conventional sputtering targets Ty9 were produced by cutting this plate-like hot press body. Each of the targets Ty9 has dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty9 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the SiO 2 particle phase was dispersed in the Co—Cr—Pt—B alloy phase. The organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty9, and the results are shown in Table 4.
(実施例10)
 表3に示されるCo-Cr-B三元系合金粉末B、Pt粉末およびTiO粉末を、Cr:13.4%、Pt:15.3%、TiO:9.0%、B:6.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Example 10)
Co—Cr—B ternary alloy powder B, Pt powder, and TiO 2 powder shown in Table 3 were prepared using Cr: 13.4%, Pt: 15.3%, TiO 2 : 9.0%, and B: 6 Is mixed so that the balance is a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container Was replaced in an Ar gas atmosphere, and then the vessel was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx10を複数個作製した。ターゲットTx10は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx10を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、TiO相およびCo-Cr-B三元系合金相が均一分散している組織が見られ、Co-Cr-B三元系合金相の周囲に拡散層が見られた。このターゲットTx10についてターゲット面内方向の最大比透磁率を測定し、その結果を表4に示した。 A plurality of sputtering targets Tx10 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx10 have dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, this target Tx10 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Pt phase, the TiO 2 phase, and the Co—Cr—B ternary alloy phase were uniformly dispersed. And a diffusion layer was observed around the Co—Cr—B ternary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx10, and the results are shown in Table 4.
(従来例10)
 実施例10において用意したCo粉末、Cr粉末、Pt粉末、TiO粉末およびB粉末を、Cr:10.8%、Pt:15.3%、TiO:9.0%、B:6.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 10)
Co powder, Cr powder, Pt powder, TiO 2 powder and B powder prepared in Example 10 were Cr: 10.8%, Pt: 15.3%, TiO 2 : 9.0%, B: 6.0. %, With the balance being a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is Ar After replacing in a gas atmosphere, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy10を複数個作製した。ターゲットTy10は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy10を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、素地中にCo-Cr-Pt-B合金素地中にTiOが均一分散している組織が見られた。このターゲットTy10についてターゲット面内方向の最大比透磁率を測定し、その結果を表4に示した。 A plurality of conventional sputtering targets Ty10 were produced by cutting the plate-like hot press body. All of the targets Ty10 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty10 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, TiO 2 was uniformly dispersed in the Co—Cr—Pt—B alloy substrate. The organization that has been seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty10, and the results are shown in Table 4.
(実施例11)
 表3に示されるCo-Cr-B三元系合金粉末C、Pt粉末およびTa粉末を、Cr:13.4%、Pt:15.3%、Ta:4.0%、B:3.5%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
Example 11
Co—Cr—B ternary alloy powder C, Pt powder, and Ta 2 O 5 powder shown in Table 3 are Cr: 13.4%, Pt: 15.3%, Ta 2 O 5 : 4.0% , B: containing 3.5%, with the balance being a component composition consisting of Co and inevitable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls serving as a grinding medium, The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx11を複数個作製した。ターゲットTx11は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx11を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、Ta相およびCo-Cr-B三元系合金相が見られ、Co-Cr-B三元系合金相の周囲に拡散層が見られた。このターゲットTx11についてターゲット面内方向の最大比透磁率を測定し、その結果を表4に示した。 A plurality of sputtering targets Tx11 of the present invention were produced by cutting the plate-like hot press body. All of the targets Tx11 have dimensions of diameter: 152.4 mm and thickness: 5 mm. Further, this target Tx11 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a Pt phase, a Ta 2 O 5 phase, and a Co—Cr—B ternary alloy phase were found. A diffusion layer was seen around the Co—Cr—B ternary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx11, and the results are shown in Table 4.
(従来例11)
 実施例11において用意したCo粉末、Cr粉末、Pt粉末、Ta粉末およびB粉末を、Cr:13.4%、Pt:15.3%、Ta:4.0%、B:3.5%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 11)
Co powder, Cr powder, Pt powder, Ta 2 O 5 powder and B powder prepared in Example 11 were mixed with Cr: 13.4%, Pt: 15.3%, Ta 2 O 5 : 4.0%, B : Containing 3.5%, the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy11を複数個作製した。ターゲットTy11は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy11を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co-Cr-Pt-B合金相中にTa粒子相が均一分散している組織が見られた。このターゲットTy11についてターゲット面内方向の最大比透磁率を測定し、その結果を表4に示した。 By cutting this plate-like hot press body, a plurality of conventional sputtering targets Ty11 were produced. All of the targets Ty11 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, the target Ty11 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Ta 2 O 5 particle phase was uniformly dispersed in the Co—Cr—Pt—B alloy phase. Organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty11, and the results are shown in Table 4.
(実施例12)
 表3に示されるCo-Cr-B三元系合金粉末D、Pt粉末、Al粉末を、Cr:14.7%、Pt:14.7%、Al:8.0%、B:4.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Example 12)
Co—Cr—B ternary alloy powder D, Pt powder, and Al 2 O 3 powder shown in Table 3 are Cr: 14.7%, Pt: 14.7%, Al 2 O 3 : 8.0% , B: 4.0%, with the balance being a component composition consisting of Co and unavoidable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
 この板状ホットプレス体を切削することにより、本発明のスパッタリングターゲットTx12を複数個作製した。ターゲットTx12は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTx12を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、Al相およびCo-Cr-B三元系合金相が見られ、Co-Cr-B三元系合金相の周囲に拡散層が見られた。このターゲットTx12についてターゲット面内方向の最大比透磁率を測定し、その結果を表4に示した。 By cutting this plate-like hot press body, a plurality of sputtering targets Tx12 of the present invention were produced. All of the targets Tx12 have dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Tx12 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a Pt phase, an Al 2 O 3 phase, and a Co—Cr—B ternary alloy phase were found. A diffusion layer was seen around the Co—Cr—B ternary alloy phase. The maximum relative permeability in the target in-plane direction was measured for this target Tx12, and the results are shown in Table 4.
(従来例12)
 実施例12において用意したCo粉末、Cr粉末、Pt粉末、Al粉末、B粉末を、Cr:14.7%、Pt:14.7%、Al:8.0%、B:4.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
(Conventional example 12)
Co powder, Cr powder, Pt powder, Al 2 O 3 powder, and B powder prepared in Example 12 were Cr: 14.7%, Pt: 14.7%, Al 2 O 3 : 8.0%, B : Containing 4.0%, the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls serving as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
 この板状ホットプレス体を切削することにより、従来型のスパッタリングターゲットTy12を複数個作製した。ターゲットTy12は、そのいずれもが直径:152.4mm、厚さ:5mmの寸法を有する。さらにこのターゲットTy12を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co-Cr-Pt-B合金相中にAl粒子相が均一分散している組織が見られた。このターゲットTy12についてターゲット面内方向の最大比透磁率を測定し、その結果を表4に示した。
Figure JPOXMLDOC01-appb-I000004
A plurality of conventional sputtering targets Ty12 were produced by cutting the plate-like hot press body. Each of the targets Ty12 has dimensions of a diameter: 152.4 mm and a thickness: 5 mm. Further, this target Ty12 was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, the Al 2 O 3 particle phase was uniformly dispersed in the Co—Cr—Pt—B alloy phase. Organization was seen. The maximum relative permeability in the target in-plane direction was measured for this target Ty12, and the results are shown in Table 4.
Figure JPOXMLDOC01-appb-I000004
 表4に示される結果から、ターゲットTx9とターゲットTy9とを比較すると、成分組成は同じである。しかしながら、Pt相、非磁性酸化物相であるSiO相および拡散層により包囲されたCo-Cr-B三元系合金相が均一分散している組織を有するターゲットTx9は、Co-Cr-Pt-B合金素地中にSiO粒子が均一分散している組織を有する従来型のターゲットに比べて、ターゲット面内方向の最大比透磁率が小さく、スパッタリングに際して漏洩磁束密度が大きいので、効率よくスパッタできることが分かる。同様に、ターゲットTx10とターゲットTy10との比較結果、ターゲットTx11とターゲットTy11との比較結果、およびターゲットTx12とターゲットTy12との比較結果を考慮すると、ターゲットTx10~Tx12は、ターゲットTy10~Ty12に比べて効率よくスパッタできることが分かる。 From the results shown in Table 4, when the target Tx9 and the target Ty9 are compared, the component composition is the same. However, the target Tx9 having a structure in which the Pt phase, the SiO 2 phase that is a nonmagnetic oxide phase, and the Co—Cr—B ternary alloy phase surrounded by the diffusion layer are uniformly dispersed is Co—Cr—Pt. -Compared with conventional targets having a structure in which SiO 2 particles are uniformly dispersed in the B alloy substrate, the maximum relative magnetic permeability in the in-plane direction of the target is small, and the leakage magnetic flux density is high during sputtering, so that sputtering can be performed efficiently. I understand that I can do it. Similarly, considering the comparison result between the target Tx10 and the target Ty10, the comparison result between the target Tx11 and the target Ty11, and the comparison result between the target Tx12 and the target Ty12, the targets Tx10 to Tx12 are compared with the targets Ty10 to Ty12. It can be seen that sputtering can be performed efficiently.
 本発明は、非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットであって、このスパッタリングターゲットはCo-Cr二元系合金相、Pt相および非磁性酸化物相が均一分散している組織を有する垂直磁気記録媒体膜形成用スパッタリングターゲットに関する。本発明によれば、マグネトロンスパッタリングを効率よく行なうことができ、コンピューター並びにデジタル家電等の産業の発展に大いに貢献し得る。 The present invention relates to a sputtering target having a component composition comprising nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and the balance: Co and inevitable impurities. The sputtering target relates to a sputtering target for forming a perpendicular magnetic recording medium film having a structure in which a Co—Cr binary alloy phase, a Pt phase, and a nonmagnetic oxide phase are uniformly dispersed. According to the present invention, magnetron sputtering can be performed efficiently, which can greatly contribute to the development of industries such as computers and digital home appliances.

Claims (6)

  1.  非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有する垂直磁気記録媒体膜形成用スパッタリングターゲットであって、
     Co-Cr二元系合金相、Pt相および非磁性酸化物相が均一分散している組織を有する垂直磁気記録媒体膜形成用スパッタリングターゲット。
    Formation of perpendicular magnetic recording medium film containing non-magnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and balance: Co and inevitable impurities A sputtering target for
    A sputtering target for forming a perpendicular magnetic recording medium film having a structure in which a Co—Cr binary alloy phase, a Pt phase, and a nonmagnetic oxide phase are uniformly dispersed.
  2.  前記Co-Cr二元系合金相は、Co、CrおよびPtで構成されている拡散層により被覆されている請求項1に記載の垂直磁気記録媒体膜形成用スパッタリングターゲット。 2. The sputtering target for forming a perpendicular magnetic recording medium film according to claim 1, wherein the Co—Cr binary alloy phase is covered with a diffusion layer composed of Co, Cr and Pt.
  3.  非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%、B:0.5~8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有する垂直磁気記録媒体膜形成用スパッタリングターゲットであって、
     素地中にCo-Cr二元系合金相、PtとBの合金相および非磁性酸化物相が均一分散している組織を有する垂直磁気記録媒体膜形成用スパッタリングターゲット。
    Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol%, balance: Co and inevitable impurities A sputtering target for forming a perpendicular magnetic recording medium film having a component composition,
    A sputtering target for forming a perpendicular magnetic recording medium film, having a structure in which a Co—Cr binary alloy phase, an alloy phase of Pt and B, and a nonmagnetic oxide phase are uniformly dispersed in a substrate.
  4.  前記Co-Cr二元系合金相は、Co、Cr、PtおよびBで構成されている拡散層により被覆されている請求項3に記載の垂直磁気記録媒体膜形成用スパッタリングターゲット。 4. The sputtering target for forming a perpendicular magnetic recording medium film according to claim 3, wherein the Co—Cr binary alloy phase is covered with a diffusion layer made of Co, Cr, Pt and B.
  5. 非磁性酸化物:0.5~15モル%、Cr:4~20モル%、Pt:5~25モル%、B:0.5~8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有する垂直磁気記録媒体膜形成用スパッタリングターゲットであって、
     素地中にCo-Cr-B三元系合金相、Pt相および非磁性酸化物相が均一分散している組織を有する垂直磁気記録媒体膜形成用スパッタリングターゲット。
    Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol%, balance: Co and inevitable impurities A sputtering target for forming a perpendicular magnetic recording medium film having a component composition,
    A sputtering target for forming a perpendicular magnetic recording medium film having a structure in which a Co—Cr—B ternary alloy phase, a Pt phase, and a nonmagnetic oxide phase are uniformly dispersed in a substrate.
  6.  前記Co-Cr-B三元系合金相は、Co、Cr、PtおよびBで構成されている拡散層により被覆されている請求項5に記載の垂直磁気記録媒体膜形成用スパッタリングターゲット。 6. The sputtering target for forming a perpendicular magnetic recording medium film according to claim 5, wherein the Co—Cr—B ternary alloy phase is covered with a diffusion layer composed of Co, Cr, Pt and B.
PCT/JP2008/072564 2008-12-11 2008-12-11 Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability WO2010067446A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072564 WO2010067446A1 (en) 2008-12-11 2008-12-11 Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072564 WO2010067446A1 (en) 2008-12-11 2008-12-11 Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability

Publications (1)

Publication Number Publication Date
WO2010067446A1 true WO2010067446A1 (en) 2010-06-17

Family

ID=42242457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072564 WO2010067446A1 (en) 2008-12-11 2008-12-11 Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability

Country Status (1)

Country Link
WO (1) WO2010067446A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021254A (en) * 2009-07-16 2011-02-03 Solar Applied Materials Technology Corp Method for producing boron-containing sputtering target, thin film and magnetic recording medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339586A (en) * 2003-05-19 2004-12-02 Mitsubishi Materials Corp Sputtering target for forming magnetic recording film, and its production method
JP2007291489A (en) * 2006-03-31 2007-11-08 Mitsubishi Materials Corp Method for manufacturing sputtering target to be used in forming film of perpendicular magnetic recording medium having low relative magnetic permeability in in-plane direction
JP2008240012A (en) * 2007-03-26 2008-10-09 Mitsubishi Materials Corp Sputtering target for vertical magnetic recording medium film formation having high leakage magnetic flux density
JP2009001860A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP2009001861A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP2009001862A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339586A (en) * 2003-05-19 2004-12-02 Mitsubishi Materials Corp Sputtering target for forming magnetic recording film, and its production method
JP2007291489A (en) * 2006-03-31 2007-11-08 Mitsubishi Materials Corp Method for manufacturing sputtering target to be used in forming film of perpendicular magnetic recording medium having low relative magnetic permeability in in-plane direction
JP2008240012A (en) * 2007-03-26 2008-10-09 Mitsubishi Materials Corp Sputtering target for vertical magnetic recording medium film formation having high leakage magnetic flux density
JP2009001860A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP2009001861A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP2009001862A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021254A (en) * 2009-07-16 2011-02-03 Solar Applied Materials Technology Corp Method for producing boron-containing sputtering target, thin film and magnetic recording medium

Similar Documents

Publication Publication Date Title
JP2009001860A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
US9228251B2 (en) Ferromagnetic material sputtering target
JP2009132975A (en) Sputtering target for forming film of perpendicular magnetic recording medium having low relative permeability
TWI482867B (en) Non - magnetic Particle Dispersive Type Strong Magnetic Sputtering Target
JP2009001861A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
TWI496905B (en) A sputtering target having an oxide phase dispersed in a Co or Co alloy phase, a magnetic thin film composed of a Co or Co alloy phase and an oxide phase, and a magnetic recording medium using the magnetic thin film
US8679268B2 (en) Sputtering target of ferromagnetic material with low generation of particles
JP6359622B2 (en) Sputtering target containing Co or Fe
JP4673453B1 (en) Ferromagnetic material sputtering target
SG189832A1 (en) Ferromagnetic material sputtering target
JP2009001862A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
SG172395A1 (en) Sputtering target and method of forming film
JP2010222639A (en) METHOD OF MANUFACTURING Co-BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM HAVING LOW MAGNETIC PERMEABILITY
JP5024661B2 (en) Co-based sintered alloy sputtering target for magnetic recording film formation with less generation of particles
US20110003177A1 (en) Method for producing sputtering target containing boron, thin film and magnetic recording media
JP2010272177A (en) Sputtering target for forming magnetic recording medium film, and method for producing the same
WO2010067446A1 (en) Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability
JP2009293102A (en) Sputtering target for depositing vertical magnetic recording medium film with low relative permeability
JP2009132976A (en) Sputtering target for depositing perpendicular magnetic recording medium film having low relative magnetic permeability
JP5024660B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
JP2009108335A (en) MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY
JP2011216135A (en) Sputtering target for forming magnetic recording medium film, and manufacturing method thereof
JP2009108336A (en) MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY
JP5024659B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
JP4758522B1 (en) Ferromagnetic sputtering target with less generation of particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP