JP2009108336A - MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY - Google Patents

MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY Download PDF

Info

Publication number
JP2009108336A
JP2009108336A JP2007278315A JP2007278315A JP2009108336A JP 2009108336 A JP2009108336 A JP 2009108336A JP 2007278315 A JP2007278315 A JP 2007278315A JP 2007278315 A JP2007278315 A JP 2007278315A JP 2009108336 A JP2009108336 A JP 2009108336A
Authority
JP
Japan
Prior art keywords
powder
mol
oxide
recording film
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007278315A
Other languages
Japanese (ja)
Inventor
Sohei Nonaka
荘平 野中
Shozo Komiyama
昌三 小見山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007278315A priority Critical patent/JP2009108336A/en
Publication of JP2009108336A publication Critical patent/JP2009108336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a Co-base sintered alloy sputtering target for forming a magnetic recording film of low relative magnetic permeability. <P>SOLUTION: First CoCr alloy powder having composition containing 50-70 atom% Cr and the balance Co, second CoCr alloy powder having composition containing 5-15 atom% Cr and the balance Co, Pt powder and non-magnetic oxide powder are mixed so as to get the composition containing 0.5-15 mol% non-magnetic oxide, 4-20 mol% Cr, and 5-25 mol% Pt and the balance Co and inevitable impurities, and the mixture is pressure-sintered. Either of or both of the first CoCr alloy powder and the second CoCr alloy powder may further contain 0.5-8 atom% B. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、ハードディスクの高密度磁気記録媒体に適用される磁気記録膜、特に垂直磁気記録媒体に適用される磁気記録膜を形成するためのスパッタリングターゲットの製造方法に関するものである。   The present invention relates to a method of manufacturing a sputtering target for forming a magnetic recording film applied to a high-density magnetic recording medium of a hard disk, particularly a magnetic recording film applied to a perpendicular magnetic recording medium.

ハードディスク装置は一般にコンピューターやデジタル家電等の外部記録装置として用いられており、記録密度の一層の向上が求められている。そのため、近年、超高密度の記録を実現できる垂直磁気記録方式が注目されてきた。この垂直磁気記録方式は、従来の面内記録方式と異なり、原理的に高密度化するほど記録磁化が安定すると言われており、すでに実用化されている。この垂直磁気記録方式のハードディスク媒体の磁気記録層に適用する材料の有力な候補としてCoCrPt−SiOグラニュラ磁気記録膜が提案されており、この磁気記録膜は高性能な磁気記録膜であることが必要である。これに適用可能な磁気記録膜の一つとしてCoCrPt−SiOグラニュラ磁気記録膜が提案されており、このCoCrPt−SiOグラニュラ磁気記録膜はCrおよびPtを含むCo基焼結合金相と二酸化珪素相の混合相を有するCo基焼結合金スパッタリングターゲットを用いてマグネトロンスパッタ法により作製することが知られている(非特許文献1参照)。
このCo基焼結合金スパッタリングターゲットは、通常、二酸化珪素粉末、Cr粉末、Pt粉末およびCo粉末を、二酸化珪素:2〜15モル%、Cr:4〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、ホットプレスまたは熱間静水圧プレスなどの方法で加圧焼結することにより作製されることが知られている(特許文献1、特許文献2などを参照)。
さらに、二酸化珪素:2〜15モル%、Cr:4〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる組成にさらにB:0.5〜8モル%を含有するターゲットも知られている(特許文献5参照)。
さらに、前記非磁性酸化物はSiOのほかにTiO、Cr、TiO、Ta、Al、BeO、MgO、ThO、ZrO、CeO、Yなどの非磁性酸化物が使用できることが知られている(特許文献3、4参照)。
「富士時報」Vol.75No.3 2002(169〜172ページ) 特開2001‐236643号公報 特開2004‐339586号公報 特開2003‐36525号公報 特開2006‐24346号公報 特開2004‐310910号公報
Hard disk devices are generally used as external recording devices such as computers and digital home appliances, and further improvement in recording density is required. Therefore, in recent years, a perpendicular magnetic recording system that can realize ultra-high density recording has attracted attention. Unlike the conventional in-plane recording system, this perpendicular magnetic recording system is said to have a stable recording magnetization as the density increases in principle, and has already been put into practical use. A CoCrPt—SiO 2 granular magnetic recording film has been proposed as a promising candidate for a material to be applied to the magnetic recording layer of this perpendicular magnetic recording type hard disk medium, and this magnetic recording film is a high-performance magnetic recording film. is necessary. As one of the magnetic recording films applicable to this, a CoCrPt—SiO 2 granular magnetic recording film has been proposed. This CoCrPt—SiO 2 granular magnetic recording film has a Co-based sintered alloy phase containing Cr and Pt and silicon dioxide. It is known to produce by a magnetron sputtering method using a Co-based sintered alloy sputtering target having a mixed phase (see Non-Patent Document 1).
This Co-based sintered alloy sputtering target is usually composed of silicon dioxide powder, Cr powder, Pt powder and Co powder, silicon dioxide: 2 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 30 mol%. It is known that it is prepared by mixing and mixing so as to have a composition consisting of Co: the balance: Co, and then pressure sintering by a method such as hot pressing or hot isostatic pressing (patent) (See Reference 1, Patent Reference 2, etc.).
Further, silicon dioxide: 2 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 30 mol%, and the balance: Co further contained B: 0.5 to 8 mol% A target is also known (see Patent Document 5).
Furthermore, the non-magnetic oxide is TiO Besides SiO 2, Cr 2 O 3, TiO 2, Ta 2 O 5, Al 2 O 3, BeO 2, MgO, ThO 2, ZrO 2, CeO 2, Y 2 O It is known that nonmagnetic oxides such as 3 can be used (see Patent Documents 3 and 4).
“Fuji Times” Vol. 75No. 3 2002 (pages 169-172) Japanese Patent Laid-Open No. 2001-236643 JP 2004-339586 A JP 2003-36525 A JP 2006-24346 A JP 2004-310910 A

しかし、前記従来の方法で作製したCo基焼結合金スパッタリングターゲットは比透磁率が高いために、ターゲット上空に漏れ出る磁束が少ないマグネトロンスパッタリングに適用した際には成膜速度が低下しさらにターゲットの利用効率が低下するという問題点があった。したがって、一層比透磁率の低いCo基焼結合金からなるスパッタリングターゲットが求められていた。   However, since the Co-based sintered alloy sputtering target produced by the conventional method has a high relative magnetic permeability, when applied to magnetron sputtering where the magnetic flux leaking over the target is small, the film formation rate decreases and the target There was a problem that the utilization efficiency decreased. Therefore, a sputtering target made of a Co-based sintered alloy having a lower relative permeability has been demanded.

そこで、本発明者は、比透磁率の一層低いCo基焼結合金スパッタリングターゲットを得るべく研究を行なったところ、
原料粉末としてCr:50〜70原子%を含有し、残部がCoからなる成分組成を有するCr含有量が多いCoCr合金粉末(以下、第一CoCr合金粉末という)と、Cr:5〜15原子%を含有し、残部がCoからなる成分組成を有する前記第一CoCr合金粉末よりもCr含有量の少ないCoCr合金粉末(以下、第二CoCr合金粉末という)、Pt粉末および非磁性酸化物粉末を、
非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結することにより得られた磁気記録膜形成用Co基焼結合金スパッタリングターゲットは、従来法である二酸化珪素粉末、Cr粉末、Pt粉末およびCo粉末を、二酸化珪素:2〜15モル%、Cr:4〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、ホットプレスまたは熱間静水圧プレスなどの方法で加圧焼結することにより作製されたCo基焼結合金スパッタリングターゲットに比べて、成分組成が同じであっても比透磁率が低くなる、というという研究結果が得られたのである。
Therefore, the present inventor conducted research to obtain a Co-based sintered alloy sputtering target having a lower relative permeability.
CoCr alloy powder (hereinafter referred to as the first CoCr alloy powder) containing Cr: 50 to 70 atom% as raw material powder and having a component composition consisting of Co as the balance, and Cr: 5 to 15 atom% CoCr alloy powder (hereinafter referred to as second CoCr alloy powder), Pt powder and non-magnetic oxide powder having a Cr content lower than that of the first CoCr alloy powder having a component composition consisting of Co.
Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, with the balance being a component composition consisting of Co and inevitable impurities, mixed and mixed After that, the Co-based sintered alloy sputtering target for forming a magnetic recording film obtained by pressure sintering is obtained by using conventional silicon dioxide powder, Cr powder, Pt powder and Co powder with silicon dioxide: 2-15. After containing and mixing so as to have a composition consisting of mol%, Cr: 4 to 20 mol%, Pt: 5 to 30 mol% and the balance: Co, by a method such as hot pressing or hot isostatic pressing. As a result, it has been found that the relative permeability is low even when the component composition is the same as compared with the Co-based sintered alloy sputtering target produced by pressure sintering.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)Cr:50〜70原子%を含有し、残部がCoからなる成分組成を有する第一CoCr合金粉末、Cr:5〜15原子%を含有し、残部がCoからなる成分組成を有する第二CoCr合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結する比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) First CoCr alloy powder containing Cr: 50 to 70 atomic%, with the balance being composed of Co, and Cr: No. 5 having 15 to 15 atomic% and the balance being composed of Co. 2 CoCr alloy powder, Pt powder and non-magnetic oxide powder containing non-magnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, the balance being Co And a method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative magnetic permeability, which is compounded so as to have a component composition consisting of inevitable impurities, mixed and then subjected to pressure sintering. .

一般に、磁気記録膜形成用Co基焼結合金スパッタリングターゲットは、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部がCoおよび不可避不純物からなる成分組成を有することが知られているが、これにさらにB:0.5〜8モル%含有する成分組成を有しても良く、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部がCoおよび不可避不純物からなる成分組成を有する磁気記録膜形成用Co基焼結合金スパッタリングターゲットも知られている。
このBを含有する磁気記録膜形成用Co基焼結合金スパッタリングターゲットは、前記第一CoCr合金粉末および前記第二CoCr合金粉末のいずれか一方または両方の粉末に、さらにB:0.5〜8原子%を含有する成分組成を有する粉末にPt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結することにより比透磁率の一層低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットを製造することができる。
Generally, a Co-based sintered alloy sputtering target for forming a magnetic recording film contains nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, with the balance being It is known to have a component composition consisting of Co and inevitable impurities, but it may further have a component composition containing B: 0.5 to 8 mol%, and nonmagnetic oxide: 0.5 to Also known is a Co-based sintered alloy sputtering target for forming a magnetic recording film having a component composition containing 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and the balance consisting of Co and inevitable impurities. ing.
The Co-based sintered alloy sputtering target for forming a magnetic recording film containing B includes either or both of the first CoCr alloy powder and the second CoCr alloy powder, and B: 0.5 to 8 Pt powder and nonmagnetic oxide powder are added to powder having a component composition containing atomic%, nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: A magnetic recording film having a lower relative magnetic permeability is formed by blending so as to contain 0.5 to 8 mol%, with the balance being a component composition consisting of Co and inevitable impurities, mixing, and then pressure sintering. Co-based sintered alloy sputtering target can be produced.

したがって、この発明は、
(2)前記第一CoCr合金粉末および前記第二CoCr合金粉末のいずれか一方または両方の粉末は、さらにB:0.5〜8原子%を含有する成分組成を有する粉末であり、これら粉末にPt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結する前記(1)記載の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
Therefore, the present invention
(2) Either one or both of the first CoCr alloy powder and the second CoCr alloy powder are powders having a component composition further containing B: 0.5 to 8 atomic%, Pt powder and nonmagnetic oxide powder containing nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol% In addition, the Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative magnetic permeability according to the above (1), wherein the remainder is blended so as to have a component composition comprising Co and inevitable impurities, mixed and then pressure-sintered The manufacturing method is characterized.

一層具体的には、原料粉末として、前記Cr含有量の多い第一CoCr合金粉末にさらにB:0.5〜8原子%を含有する成分組成を有する粉末(以下、第一CoCrB合金粉末という)および前記第一CoCr合金粉末に比べてCr含有量の少ない前記第二CoCr合金粉末にさらにB:0.5〜8原子%を含有する成分組成を有する粉末(以下、第二CoCrB合金粉末という)を更に用意し、これら原料粉末を、
(イ)前記第一CoCr合金粉末、前記第二CoCrB合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結することにより得られた磁気記録膜形成用Co基焼結合金スパッタリングターゲット、
(ロ)前記第一CoCrB合金粉末、前記第二CoCr合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結することにより得られた磁気記録膜形成用Co基焼結合金スパッタリングターゲット、並びに
(ハ)前記第一CoCrB合金粉末、前記第二CoCrB合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結することにより得られた磁気記録膜形成用Co基焼結合金スパッタリングターゲットは、
従来の純Co粉末、純Cr粉末、Pt粉末、B粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結することにより得られた磁気記録膜形成用Co基焼結合金スパッタリングターゲットに比べて比透磁率が一層低くなる、という研究結果が得られ、この発明は、かかる研究結果に基づいてなされたものであって、
(a)第一CoCr合金粉末、第二CoCrB合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結する比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、
(b)第一CoCrB合金粉末、第二CoCr合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結する比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、
(c)第一CoCrB合金粉末、第二CoCrB合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結する比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
More specifically, as a raw material powder, a powder having a component composition containing B: 0.5 to 8 atomic% in the first CoCr alloy powder having a high Cr content (hereinafter referred to as the first CoCrB alloy powder). And a powder having a component composition further containing B: 0.5 to 8 atomic% in the second CoCr alloy powder having a smaller Cr content than the first CoCr alloy powder (hereinafter referred to as a second CoCrB alloy powder). And preparing these raw material powders
(A) The first CoCr alloy powder, the second CoCrB alloy powder, the Pt powder and the nonmagnetic oxide powder are mixed with nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol%, with the balance being a component composition consisting of Co and unavoidable impurities, mixed, mixed and then pressure sintered Co-based sintered alloy sputtering target for recording film formation,
(B) The first CoCrB alloy powder, the second CoCr alloy powder, the Pt powder and the nonmagnetic oxide powder are mixed with nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol%, with the balance being a component composition consisting of Co and unavoidable impurities, mixed, mixed and then pressure sintered Co-based sintered alloy sputtering target for recording film formation, and (c) the first CoCrB alloy powder, the second CoCrB alloy powder, the Pt powder, and the nonmagnetic oxide powder, nonmagnetic oxide: 0.5 to 15 It is mixed and mixed so that it contains a mole composition, Cr: 4 to 20 mole%, Pt: 5 to 25 mole%, B: 0.5 to 8 mole%, and the balance is composed of Co and inevitable impurities. Then pressurize and sinter More obtained magnetic recording film forming Co sintered alloy sputtering target,
Conventional pure Co powder, pure Cr powder, Pt powder, B powder and non-magnetic oxide powder are mixed with non-magnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol. %, B: 0.5 to 8 mol%, with the balance being a component composition consisting of Co and inevitable impurities, mixed and mixed, and then subjected to pressure sintering to form a magnetic recording film A research result that relative permeability is further lower than that of a Co-based sintered alloy sputtering target was obtained, and the present invention was made based on the research result,
(A) First CoCr alloy powder, second CoCrB alloy powder, Pt powder and non-magnetic oxide powder are mixed with non-magnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 5 A magnetic recording film having a low relative magnetic permeability containing 25 mol%, B: 0.5 to 8 mol%, blended so that the balance is a component composition of Co and inevitable impurities, mixed and then pressure sintered Method for producing Co-based sintered alloy sputtering target for formation,
(B) First CoCrB alloy powder, second CoCr alloy powder, Pt powder and non-magnetic oxide powder are mixed with non-magnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 5 A magnetic recording film having a low relative magnetic permeability containing 25 mol%, B: 0.5 to 8 mol%, blended so that the balance is a component composition of Co and inevitable impurities, mixed and then pressure sintered Method for producing Co-based sintered alloy sputtering target for formation,
(C) First CoCrB alloy powder, second CoCrB alloy powder, Pt powder and non-magnetic oxide powder are mixed with non-magnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 5 A magnetic recording film having a low relative magnetic permeability containing 25 mol%, B: 0.5 to 8 mol%, blended so that the balance is a component composition of Co and inevitable impurities, mixed and then pressure sintered It is characterized by a method for producing a forming Co-based sintered alloy sputtering target.

この発明の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法で使用する非磁性酸化物粉末は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかであり、特に二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウムのうちのいずれかであることが好ましいことはすでに知られている。したがって、この発明は、
(3)前記非磁性酸化物粉末は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかである前記(1)または(2)記載の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
The nonmagnetic oxide powder used in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative permeability according to the present invention is silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide. It is already known that any one of zirconium oxide, cerium oxide, and yttrium oxide is preferable, and any of silicon dioxide, tantalum oxide, titanium oxide, and aluminum oxide is particularly preferable. Therefore, the present invention
(3) The nonmagnetic oxide powder is any one of (1) or (1), which is any one of silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide. 2) A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative magnetic permeability described in 2).

前記加圧焼結は、具体的には、ホットプレスまたは熱間静水圧プレスであることが好ましい。したがって、この発明は、
(4)前記加圧焼結は、ホットプレスまたは熱間静水圧プレスである前記(1)、(2)または(3)記載の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
Specifically, the pressure sintering is preferably hot pressing or hot isostatic pressing. Therefore, the present invention
(4) The pressure sintering is a hot press or a hot isostatic press. Co-based sintered alloy sputtering for forming a magnetic recording film having a low relative magnetic permeability according to (1), (2) or (3). It has the characteristic in the manufacturing method of a target.

この発明の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において原料粉末として第一CoCr合金粉末、第二CoCr合金粉末、第一CoCrB合金粉末および第二CoCrB合金粉末を使用する理由は、第一CoCr合金粉末および第一CoCrB合金粉末はCoとCrが非磁性体の金属間化合物を生成する組成域であることから低透磁率化に有効であり、なおかつ金属間化合物中のCrは酸化しにくくなってパーティクルの原因となるCrの酸化凝集体を生じにくくすることから、出発原料粉末として非常に有効であるからである。しかし、この高Cr含有の第一CoCr合金粉末または第一CoCrB合金粉末を使用する際に、目標のターゲット組成を得るためには残量のCoを純Co粉末で供給すると透磁率が上昇する。これを抑制するためにCoに少量のCrを加えて、ある程度透磁率を下げた低Cr組成の第二CoCr合金粉末または第二CoCrB合金粉末からCoを供給することが有効であるからである。 First CoCr alloy powder, second CoCr alloy powder, first CoCrB alloy powder and second CoCrB alloy powder as raw material powders in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative permeability according to the present invention The first CoCr alloy powder and the first CoCrB alloy powder are effective in reducing the magnetic permeability because Co and Cr are composition regions in which Co and Cr form a non-magnetic intermetallic compound. This is because Cr in the compound is very effective as a starting raw material powder because it is difficult to oxidize and it is difficult to produce an oxidized aggregate of Cr that causes particles. However, when using this high Cr-containing first CoCr alloy powder or first CoCrB alloy powder, the magnetic permeability increases if the remaining amount of Co is supplied as pure Co powder in order to obtain the target composition. In order to suppress this, it is effective to supply Co from the second CoCr alloy powder or the second CoCrB alloy powder having a low Cr composition by adding a small amount of Cr to Co and lowering the magnetic permeability to some extent.

次に、この発明の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において使用する第一CoCr合金粉末および第一CoCrB合金粉末のCrを50〜70原子%とし、一方、第二CoCr合金粉末および第二CoCrB合金粉末のCrを5〜15原子%に限定した理由を説明する。
第一CoCr合金粉末および第一CoCrB合金粉末のCr含有量を50〜70原子%としたのは、この範囲を外れると、粉末中のCoCrの金属間化合物が少なくなり、Cr酸化防止効果が小さくなるので好ましくないからであり、一方、第二CoCr合金粉末および第二CoCrB合金粉末のCrを5〜15原子%としたのは、5原子%未満ではCo合金粉末の透磁率が高くなりすぎるので好ましくなく、15原子%を超えて含有するとターゲット全体としてCrが高Cr含有の第一CoCr合金粉末よりも低Cr含有の第二CoCr合金粉末の方に多く存在することとなり、低透磁率化およびCr酸化防止の観点から好ましくない理由によるものである。一層好ましくは、7〜12原子%である。
また、Bを第一CoCr合金粉末および第二CoCr合金粉末に添加して第一CoCrB合金粉末および第二CoCrB合金粉末として添加するのは、Bを単独粉末で加えると、製造工程中にB粉末が酸化し易いために好ましくなく、Bの酸化防止のためにはBを合金粉末として添加するのが好ましいからである。
Next, Cr of the first CoCr alloy powder and the first CoCrB alloy powder used in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative permeability according to the present invention is 50 to 70 atomic%, On the other hand, the reason why Cr in the second CoCr alloy powder and the second CoCrB alloy powder is limited to 5 to 15 atomic% will be described.
The reason why the Cr content of the first CoCr alloy powder and the first CoCrB alloy powder is 50 to 70 atomic% is that if it is outside this range, the amount of CoCr intermetallic compounds in the powder decreases, and the Cr oxidation prevention effect is small. On the other hand, the Cr content of the second CoCr alloy powder and the second CoCrB alloy powder is set to 5 to 15 atomic% because the magnetic permeability of the Co alloy powder is too high if it is less than 5 atomic%. Undesirably, if the content exceeds 15 atomic%, the Cr as a whole will be present more in the second CoCr alloy powder having a lower Cr content than in the first CoCr alloy powder having a higher Cr content. This is because it is not preferable from the viewpoint of preventing Cr oxidation. More preferably, it is 7 to 12 atomic%.
In addition, B is added to the first CoCr alloy powder and the second CoCr alloy powder and added as the first CoCrB alloy powder and the second CoCrB alloy powder. This is because it is not preferable because it is easily oxidized, and it is preferable to add B as an alloy powder in order to prevent oxidation of B.

この発明の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において使用する第一CoCr合金粉末、第二CoCr合金粉末、第一CoCrB合金粉末および第二CoCrB合金粉末は、50%粒径が150μmを越えると混合粉砕時に粉砕が十分に進まないことから、粒径は50%粒径が150μm以下であることが好ましく、微細であるほど好ましいところから分級などにより50%粒径が75μm以下にすることが一層好ましく、さらに50%粒径が45μm以下とすることがさらに一層好ましい。前記原料粉末の混合は不活性ガス雰囲気中で行なうことが好ましい。これは混合中にCrが酸素と結合してクロム酸化物凝集体が形成されるのをより一層防止するからである。   The first CoCr alloy powder, the second CoCr alloy powder, the first CoCrB alloy powder, and the second CoCrB alloy powder used in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative permeability according to the present invention are: When the 50% particle size exceeds 150 μm, the pulverization does not sufficiently proceed during the mixing and pulverization. Therefore, the 50% particle size is preferably 150 μm or less, and the finer the particle size is, the more preferable 50% by classification or the like. The particle size is more preferably 75 μm or less, and further preferably the 50% particle size is 45 μm or less. The raw material powder is preferably mixed in an inert gas atmosphere. This is because it further prevents Cr from being combined with oxygen to form chromium oxide aggregates during mixing.

この発明は、一層比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットまたは磁気記録膜形成用Co基焼結合金スパッタリングターゲットを提供することができ、コンピューター並びにデジタル家電等の産業の発展に大いに貢献し得るものである。   The present invention can provide a Co-based sintered alloy sputtering target for forming a magnetic recording film or a Co-based sintered alloy sputtering target for forming a magnetic recording film having a lower relative permeability. It can greatly contribute to development.

市販の50%粒径:10μmのCo粉末、50%粒径:15μmのPt粉末、50%粒径:5μmのB粉末を用意し、さらに非磁性酸化物粉末として50%粒径:3μmのSiO粉末、50%粒径:3μmのTiO粉末、50%粒径:3μmのTa粉末および50%粒径:3μmのAl粉末を用意し、さらに50%粒径:15μmのCr粉末を用意した。 Commercially available 50% particle size: 10 μm Co powder, 50% particle size: 15 μm Pt powder, 50% particle size: 5 μm B powder, and 50% particle size: 3 μm SiO as nonmagnetic oxide powder 2 powder, 50% particle size: 3 μm TiO 2 powder, 50% particle size: 3 μm Ta 2 O 5 powder and 50% particle size: 3 μm Al 2 O 3 powder, 50% particle size: 15 μm Cr powder was prepared.

実施例1
さらに、第一CrCo合金粉末としてCo50Cr50合金粉末、第二CoCr合金粉末としてCo88Cr12合金粉末(但し、Co50Cr50合金粉末およびCo88Cr12合金粉末の組成比は原子%を示す)をガスアトマイズ法により作製し、これらにPt粉末およびSiO粉末を表1に示される組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
Example 1
Furthermore, the Co 50 Cr 50 alloy powder as the first CrCo alloy powder and the Co 88 Cr 12 alloy powder as the second CoCr alloy powder (provided that the composition ratio of the Co 50 Cr 50 alloy powder and the Co 88 Cr 12 alloy powder is atomic%. Are prepared by a gas atomization method, and Pt powder and SiO 2 powder are blended so as to have the composition shown in Table 1, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium. Then, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed, and this container was rotated with a ball mill for 12 hours to produce a mixed powder.

得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表1に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより本発明法1を実施し、前記本発明法1で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表1に示した。 The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 1 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. The present invention method 1 was carried out by cutting the hot press body to produce a target having dimensions of diameter: 152.4 mm and thickness: 6 mm. The maximum relative permeability in the in-plane direction of the target was measured, and the result is shown in Table 1.

従来例1
先に用意したCo粉末、Pt粉末、SiO粉末およびCr粉末を表3に示される割合で配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表1に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより従来法1を実施し、従来法1で得られたターゲットの面内方向の最大比透磁率を測定し、その結果を表1に示した。
Conventional example 1
The previously prepared Co powder, Pt powder, SiO 2 powder and Cr powder are blended in the proportions shown in Table 3, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium. The atmosphere inside was replaced with an Ar gas atmosphere, and then the container was sealed, and this container was rotated with a ball mill for 12 hours to prepare a mixed powder.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 1 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. A conventional method 1 is carried out by producing a target and cutting the hot press body to prepare a target having a diameter of 152.4 mm and a thickness of 6 mm. The maximum relative permeability in the in-plane direction was measured and the results are shown in Table 1.

Figure 2009108336
Figure 2009108336

表1に示される結果から、本発明法1で作製したターゲットと従来法1で作製したターゲットを比較すると、得られたターゲットの成分組成は同じであっても、本発明法1で作製したターゲットは従来法1で作製したターゲットよりも面内方向の最大比透磁率が低いことがわかる。   From the results shown in Table 1, when comparing the target prepared by the method 1 of the present invention with the target prepared by the conventional method 1, the target prepared by the method 1 of the present invention was obtained even though the component composition of the obtained target was the same. Shows that the maximum relative permeability in the in-plane direction is lower than that of the target produced by the conventional method 1.

実施例2
第一CoCr粉末としてCo55Cr45合金粉末、第二CoCrB合金粉末としてCo90.5Cr6.03.5合金粉末(但し、Co55Cr45合金粉末およびCo90.5Cr6.03.5合金粉末の組成比は原子%を示す)をガスアトマイズ法により作製し、これらにPt粉末およびTiO粉末を表2に示される組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表2に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより本発明法2を実施し、前記本発明法2で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 2
Co 55 Cr 45 alloy powder as the first CoCr powder and Co 90.5 Cr 6.0 B 3.5 alloy powder as the second CoCrB alloy powder (provided that Co 55 Cr 45 alloy powder and Co 90.5 Cr 6.0) B 3.5 alloy powder shows atomic%) by a gas atomization method, and Pt powder and TiO 2 powder are blended so as to have the composition shown in Table 2, and the resulting blended powder is obtained. It is put into a 10-liter container together with zirconia balls as a grinding medium, the atmosphere in the container is replaced with an Ar gas atmosphere, and then the container is sealed, and the mixed powder is obtained by rotating the container with a ball mill for 12 hours. Produced.
The obtained mixed powder is filled into a vacuum hot press apparatus, and is hot pressed having the component composition shown in Table 2 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. The present invention method 2 was carried out by cutting the hot press body to produce a target having dimensions of diameter: 152.4 mm and thickness: 6 mm. The maximum relative permeability in the in-plane direction of the target was measured, and the result is shown in Table 2.

従来例2
先に用意したCo粉末、Pt粉末、TiO粉末、B粉末およびCr粉末を表4に示される割合で配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表2に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより従来法2を実施し、前記従来法2で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional example 2
The previously prepared Co powder, Pt powder, TiO 2 powder, B powder and Cr powder are blended in the proportions shown in Table 4, and the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium. The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed, and this container was rotated with a ball mill for 12 hours to prepare a mixed powder.
The obtained mixed powder is filled into a vacuum hot press apparatus, and is hot pressed having the component composition shown in Table 2 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. A conventional method 2 is carried out by cutting the hot-pressed body to produce a target having a diameter of 152.4 mm and a thickness of 6 mm. The maximum relative permeability in the in-plane direction was measured and the results are shown in Table 2.

Figure 2009108336
Figure 2009108336

表2に示される結果から、本発明法2で作製したターゲットと従来法2で作製したターゲットを比較すると、得られたターゲットの成分組成は同じであっても、本発明法2で作製したターゲットは従来法2で作製したターゲットよりも面内方向の最大比透磁率が低いことがわかる。   From the results shown in Table 2, when the target produced by the method 2 of the present invention and the target produced by the conventional method 2 are compared, even if the component composition of the obtained target is the same, the target produced by the method 2 of the present invention Shows that the maximum relative magnetic permeability in the in-plane direction is lower than that of the target produced by the conventional method 2.

実施例3
第一CoCrB粉末としてCo28Cr65合金粉末、第二CoCr合金粉末としてCo90Cr10合金粉末(但し、Co28Cr65合金粉末およびCo90Cr10合金粉末の組成比は原子%を示す)をガスアトマイズ法により作製し、これらにPt粉末およびTa粉末を表3に示される組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表5に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより本発明法3を実施し、前記本発明法3で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表3に示した。
Example 3
Co 28 Cr 65 B 7 alloy powder as the first CoCrB powder and Co 90 Cr 10 alloy powder as the second CoCr alloy powder (provided that the composition ratio of the Co 28 Cr 65 B 7 alloy powder and the Co 90 Cr 10 alloy powder is atomic%. Is prepared by a gas atomizing method, and Pt powder and Ta 2 O 5 powder are blended so as to have the composition shown in Table 3, and the obtained blended powder is mixed with 10 liters of zirconia balls as grinding media. The mixture was put into a container, and the atmosphere in the container was replaced with an Ar gas atmosphere. After that, the container was sealed, and this container was rotated with a ball mill for 12 hours to prepare a mixed powder.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 5 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. The method of the present invention 3 was carried out by cutting the hot-pressed body to produce a target having a diameter of 152.4 mm and a thickness of 6 mm. The maximum relative permeability in the in-plane direction of the target was measured, and the results are shown in Table 3.

従来例3
先に用意したCo粉末、Pt粉末、Ta粉末、B粉末およびCr粉末を表3に示される割合で配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表3に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより従来法3を実施し、前記従来法3で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表3に示した。
Conventional example 3
The previously prepared Co powder, Pt powder, Ta 2 O 5 powder, B powder and Cr powder were blended in the proportions shown in Table 3, and the resulting blended powder was placed in a 10 liter container together with zirconia balls serving as grinding media. Then, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed, and this container was rotated with a ball mill for 12 hours to prepare a mixed powder.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 3 by vacuum hot pressing in a vacuum atmosphere under the conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. A conventional method 3 is carried out by cutting the hot-pressed body to produce a target having a diameter of 152.4 mm and a thickness of 6 mm. The maximum relative permeability in the in-plane direction was measured, and the results are shown in Table 3.

Figure 2009108336
Figure 2009108336

表3に示される結果から、本発明法3で作製したターゲットと従来法3で作製したターゲットを比較すると、得られたターゲットの成分組成は同じであっても、本発明法3で作製したターゲットは従来法3で作製したターゲットよりも面内方向の最大比透磁率が低いことがわかる。   From the results shown in Table 3, when the target produced by the method 3 of the present invention and the target produced by the conventional method 3 were compared, the target produced by the method 3 of the present invention was obtained even though the component composition of the obtained target was the same. Shows that the maximum relative magnetic permeability in the in-plane direction is lower than that of the target produced by the conventional method 3.

実施例4
第一CoCrB粉末としてCo41Cr55合金粉末、第二CoCrB合金粉末としてCo87Cr合金粉末(但し、Co41Cr55合金粉末およびCo87Cr合金粉末の組成比は原子%を示す)をガスアトマイズ法により作製し、これらにPt粉末並びにAl粉末を表4に示される組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表4に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより本発明法4を実施し、前記本発明法4で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表4に示した。
Example 4
Co 41 Cr 55 B 4 alloy powder as the first CoCrB powder and Co 87 Cr 6 B 7 alloy powder as the second CoCrB alloy powder (provided that the composition of the Co 41 Cr 55 B 4 alloy powder and the Co 87 Cr 6 B 7 alloy powder is The ratio is atomic%) is prepared by a gas atomizing method, and Pt powder and Al 2 O 3 powder are blended so as to have the composition shown in Table 4, and the resulting blended powder is used as a grinding medium. The mixture was put into a 10-liter container, and the atmosphere in the container was replaced with an Ar gas atmosphere. Thereafter, the container was sealed, and this container was rotated with a ball mill for 12 hours to prepare a mixed powder.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 4 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. The present invention method 4 was carried out by cutting the hot press body to produce a target having dimensions of diameter: 152.4 mm and thickness: 6 mm. The maximum relative permeability in the in-plane direction of the target was measured, and the result is shown in Table 4.

従来例4
先に用意したCo粉末、Pt粉末、Al粉末、B粉末およびCr粉末を表4に示される割合で配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表4に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより従来法4を実施し、前記従来法4で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表4に示した。
Conventional example 4
The previously prepared Co powder, Pt powder, Al 2 O 3 powder, B powder and Cr powder are blended in the proportions shown in Table 4, and the resulting blended powder is placed in a 10 liter container together with zirconia balls as a grinding medium. Then, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed, and this container was rotated with a ball mill for 12 hours to prepare a mixed powder.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 4 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. A conventional method 4 is carried out by cutting the hot pressed body to produce a target having a diameter of 152.4 mm and a thickness of 6 mm. The maximum relative permeability in the in-plane direction was measured and the results are shown in Table 4.

Figure 2009108336
Figure 2009108336

表4に示される結果から、本発明法4で作製したターゲットと従来法4で作製したターゲットを比較すると、得られたターゲットの成分組成は同じであっても、本発明法4で作製したターゲットは従来法4で作製したターゲットよりも面内方向の最大比透磁率が低いことがわかる。   From the results shown in Table 4, when the target produced by the method 4 of the present invention and the target produced by the conventional method 4 are compared, even if the component composition of the obtained target is the same, the target produced by the method 4 of the present invention Shows that the maximum relative permeability in the in-plane direction is lower than that of the target produced by the conventional method 4.

Claims (4)

Cr:50〜70原子%を含有し、残部がCoからなる成分組成を有する第一CoCr合金粉末、Cr:5〜15原子%を含有し、残部がCoからなる成分組成を有する第二CoCr合金粉末、Pt粉末および非磁性酸化物粉末を、
非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結することを特徴とする比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。
A first CoCr alloy powder having a component composition containing Cr: 50 to 70 atomic% and the balance being made of Co, and a second CoCr alloy having a composition composition of Cr: 5 to 15 atomic% and the balance being made of Co Powder, Pt powder and non-magnetic oxide powder,
Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, with the balance being a component composition consisting of Co and inevitable impurities, mixed and mixed A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative magnetic permeability, which is then subjected to pressure sintering.
前記第一CoCr合金粉末および前記第二CoCr合金粉末のいずれか一方または両方の粉末は、さらにB:0.5〜8原子%を含有する成分組成を有する粉末であり、これら粉末にPt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結することを特徴とする請求項1記載の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 One or both of the first CoCr alloy powder and the second CoCr alloy powder are powders having a component composition further containing B: 0.5 to 8 atomic%, and these powders include Pt powder and Nonmagnetic oxide powder containing nonmagnetic oxide: 0.5-15 mol%, Cr: 4-20 mol%, Pt: 5-25 mol%, B: 0.5-8 mol%, the balance 2. The Co-based sintered alloy sputtering for forming a magnetic recording film having a low relative magnetic permeability according to claim 1, wherein the composition is mixed so as to have a component composition comprising Co and inevitable impurities, mixed and then sintered under pressure. Target manufacturing method. 前記非磁性酸化物粉末は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかであることを特徴とする請求項1または2記載の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 The nonmagnetic oxide powder is any one of silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide. 2. A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative magnetic permeability according to 2. 前記加圧焼結は、ホットプレスまたは熱間静水圧プレスであることを特徴とする請求項1または2記載の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 3. The method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with a low relative magnetic permeability according to claim 1, wherein the pressure sintering is hot pressing or hot isostatic pressing.
JP2007278315A 2007-10-26 2007-10-26 MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY Pending JP2009108336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278315A JP2009108336A (en) 2007-10-26 2007-10-26 MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007278315A JP2009108336A (en) 2007-10-26 2007-10-26 MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY

Publications (1)

Publication Number Publication Date
JP2009108336A true JP2009108336A (en) 2009-05-21

Family

ID=40777145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278315A Pending JP2009108336A (en) 2007-10-26 2007-10-26 MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY

Country Status (1)

Country Link
JP (1) JP2009108336A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021254A (en) * 2009-07-16 2011-02-03 Solar Applied Materials Technology Corp Method for producing boron-containing sputtering target, thin film and magnetic recording medium
CN105256174A (en) * 2015-10-22 2016-01-20 东北大学 Biotic bone composite material and preparing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297572A (en) * 1991-03-26 1992-10-21 Hitachi Metals Ltd Co-cr-pt series target for magnetic recording medium
JP2000038661A (en) * 1998-07-21 2000-02-08 Hitachi Metals Ltd Co ALLOY TARGET, ITS PRODUCTION, APPARATUS FOR SPUTTERING, MAGNETIC RECORDING FILM AND DEVICE FOR MAGNETIC RECORDING
JP2000282229A (en) * 1999-03-29 2000-10-10 Hitachi Metals Ltd CoPt SPUTTERING TARGET, ITS PRODUCTION, MAGNETIC RECORDING FILM AND CoPt MAGNETIC RECORDING MEDIUM
WO2007116834A1 (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Corporation METHOD FOR MANUFACTURING Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLES, AND Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297572A (en) * 1991-03-26 1992-10-21 Hitachi Metals Ltd Co-cr-pt series target for magnetic recording medium
JP2000038661A (en) * 1998-07-21 2000-02-08 Hitachi Metals Ltd Co ALLOY TARGET, ITS PRODUCTION, APPARATUS FOR SPUTTERING, MAGNETIC RECORDING FILM AND DEVICE FOR MAGNETIC RECORDING
JP2000282229A (en) * 1999-03-29 2000-10-10 Hitachi Metals Ltd CoPt SPUTTERING TARGET, ITS PRODUCTION, MAGNETIC RECORDING FILM AND CoPt MAGNETIC RECORDING MEDIUM
WO2007116834A1 (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Corporation METHOD FOR MANUFACTURING Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLES, AND Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021254A (en) * 2009-07-16 2011-02-03 Solar Applied Materials Technology Corp Method for producing boron-containing sputtering target, thin film and magnetic recording medium
CN105256174A (en) * 2015-10-22 2016-01-20 东北大学 Biotic bone composite material and preparing method thereof

Similar Documents

Publication Publication Date Title
JP5226155B2 (en) Fe-Pt ferromagnetic sputtering target
TWI537408B (en) Fe-Pt sputtering target with dispersed C particles
JP2009001860A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP2009132975A (en) Sputtering target for forming film of perpendicular magnetic recording medium having low relative permeability
JP5847203B2 (en) Co-Cr-Pt-based sputtering target and method for producing the same
JP5375707B2 (en) Sputtering target for forming a magnetic recording film and method for producing the same
TW201400630A (en) Magnetic material sputtering target and manufacturing method for same
JP2010222639A (en) METHOD OF MANUFACTURING Co-BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM HAVING LOW MAGNETIC PERMEABILITY
JP2009001861A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
TWI608113B (en) Sputtering target
WO2014178310A1 (en) Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body
JP2009001862A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP5654121B2 (en) Ferromagnetic material sputtering target containing chromium oxide
JP6100352B2 (en) Ferromagnetic material sputtering target containing chromium oxide
JP2009108336A (en) MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY
JP2009108335A (en) MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY
JP5024660B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
JP2009293102A (en) Sputtering target for depositing vertical magnetic recording medium film with low relative permeability
JP2011216135A (en) Sputtering target for forming magnetic recording medium film, and manufacturing method thereof
JP5024659B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
JP2009132976A (en) Sputtering target for depositing perpendicular magnetic recording medium film having low relative magnetic permeability
WO2010067446A1 (en) Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability
JP2007291489A (en) Method for manufacturing sputtering target to be used in forming film of perpendicular magnetic recording medium having low relative magnetic permeability in in-plane direction
JP2011081859A (en) Sputtering target for forming magnetic recording medium film, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120629