WO2014178310A1 - Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body - Google Patents

Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body Download PDF

Info

Publication number
WO2014178310A1
WO2014178310A1 PCT/JP2014/061357 JP2014061357W WO2014178310A1 WO 2014178310 A1 WO2014178310 A1 WO 2014178310A1 JP 2014061357 W JP2014061357 W JP 2014061357W WO 2014178310 A1 WO2014178310 A1 WO 2014178310A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide
mol
boron
body according
Prior art date
Application number
PCT/JP2014/061357
Other languages
French (fr)
Japanese (ja)
Inventor
英生 高見
中村 祐一郎
祐希 池田
真一 荻野
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2014541456A priority Critical patent/JP5878242B2/en
Priority to CN201480011201.XA priority patent/CN105026589B/en
Priority to SG11201506155PA priority patent/SG11201506155PA/en
Publication of WO2014178310A1 publication Critical patent/WO2014178310A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal

Definitions

  • the present invention relates to a sintered body, which is useful for forming a magnetic thin film of a magnetic recording medium, particularly a magnetic recording film used for forming a magnetic recording layer of a hard disk adopting a perpendicular magnetic recording system
  • the present invention relates to a sputtering target made of the sintered body.
  • a target prepared from a sintered body containing boron oxide particles of boron oxide are coarsened during or after sintering, so that many particles are generated during sputtering.
  • This invention relates to the sputtering target which consists of a sintered compact which can solve such a problem, and the sintered compact.
  • a material based on Co, Fe, or Ni which is a ferromagnetic metal, is used as a magnetic thin film material for recording.
  • a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording method.
  • a composite material composed of a Co—Cr—Pt ferromagnetic alloy containing Co as a main component and a non-magnetic inorganic material is often used for a recording layer of a hard disk employing a perpendicular magnetic recording method that has been put into practical use in recent years. ing.
  • a magnetic thin film of a magnetic recording medium such as a hard disk is often produced by sputtering a ferromagnetic material sputtering target containing the above material as a component because of high productivity. Further, boron oxide is added to such a sputtering target for a magnetic recording film in order to magnetically separate the alloy phase.
  • a melting method or a powder metallurgy method can be considered as a method for producing a ferromagnetic material sputtering target. Which method is used depends on the required characteristics, so it cannot be generally stated, but the sputtering target made of a ferromagnetic alloy and non-magnetic inorganic particles used for the recording layer of a perpendicular magnetic recording hard disk is Generally, it is produced by a powder metallurgy method. This is because inorganic particles such as boron oxide need to be uniformly dispersed in the alloy substrate, and thus it is difficult to produce by the melting method.
  • Patent Document 1 states that “a magnetic recording medium having a magnetic data recording layer, wherein the magnetic data recording layer has a magnetic difference of at least 0.5 ⁇ 10 7 erg / cm 3 (0.5 / Jcm 3 ).
  • a magnetic recording medium comprising: a first alloy having an isotropic constant; and an oxide compound comprising oxygen and one or more elements in which at least one element has a negative reduction potential. 1) is described.
  • “at least one of the one or more elements in the oxide compound is lithium (Li), beryllium (Be), boron (B), sodium (Na), magnesium.
  • Mg aluminum (Al), silicon (Si), potassium (K), calcium (Ca), scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), cadmium (Cd), indium (In), cesium (Cs), barium (Ba), lanthanum (La), cerium (Ce), praseodymium (Pr), neo (Nd), samarium (Sm), europium (Eu), terbium (Tb), gadolinium (
  • Claim 1 of the following Patent Document 2 states that “a target used for forming a Co-based magnetic layer of a magnetic recording medium by a sputtering method, wherein the target contains 5 mol% or more of Cr or Cr alloy, and contains CoO.
  • the oxide having a melting point of 800 ° C. or lower is at least one selected from boron oxide, vanadium oxide, tellurium oxide, molybdenum oxide, and low-melting glass.
  • “Target described in item 1" is described. In this case as well, there is no description about the problem of the presence of boron oxide in the sintered body or the target made of the sintered body and the solution to the problem, as in the case of the above-mentioned document 1.
  • Patent Document 3 listed below is a sintered sputtering target made of a ferromagnetic alloy having a Cr content of 20 mol% or less and the balance being Co and a non-metallic inorganic material, and the volume ratio occupied by the non-metallic inorganic material is 40 vol% or less.
  • the sputtering target is characterized in that the non-metallic inorganic material contains at least cobalt oxide and boron oxide.
  • Sputtering which forms and sinters the mixed powder obtained by pulverizing and mixing the metal powder and the non-metallic inorganic material powder containing at least cobalt oxide and boron oxide at a holding temperature of 800 ° C or less.
  • Patent Document 4 describes “a sputtering target for a magnetic recording film containing SiO 2 and containing 10 to 1000 wtppm of B (boron)”. Yes. In this case, boron oxide is also included. However, as in the above-mentioned documents 1, 2, and 3, the problem of the presence of boron oxide in the sintered body or the target composed of the sintered body, and the solution of the problem There is no mention of any method.
  • a composite material composed of a ferromagnetic alloy and a nonmagnetic material is often used, and boron oxide is added as a nonmagnetic material.
  • boron oxide particles become large after sintering. Therefore, if the sintering temperature is lowered in order to suppress grain growth, the density cannot be increased and many particles are generated. It was.
  • boron oxide raw materials are highly hygroscopic and easily solidify, making it difficult to obtain fine boron oxide.
  • the sintered body in which the boron oxide remains when wet-processed by machining or stored in a place with high humidity, it reacts with moisture to generate boric acid, which is baked. It precipitates on the surface of the bonded body (target) and causes stains and dirt, which also causes generation of particles during sputtering, and moisture is taken into the film and causes defects. It was. In order to ensure good quality of a sintered body for forming a magnetic recording film to which boron oxide is added, particularly a sputtering target, it is necessary to solve such a problem.
  • the present invention 1) A sintered body comprising at least one metal selected from the group consisting of cobalt and one or more metals or alloys selected from boron and / or platinum group elements, and an oxide, wherein the phase comprising the oxide is Cr
  • a sintered body characterized in that at least one of (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is present.
  • the present invention also provides: 2) A sintered body comprising at least cobalt as a metal, chromium, one or more metals or alloys selected from boron and / or platinum group elements, and an oxide, the phase comprising the oxide And a sintered body characterized in that at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is present.
  • the present invention also provides: 3) The sintered body according to any one of 1) or 2) above, wherein the sintered body has no discoloration when contacted or immersed in water. .
  • the present invention also provides: 4) The sintered body according to any one of 2) or 3) above, wherein the atomic ratio of chromium to boron is Cr / B ⁇ 1.
  • the present invention also provides: 5) The sintered body according to any one of 1) to 4) above, wherein the atomic ratio of boron to oxygen is B / O ⁇ 0.5.
  • the present invention also provides: 6) The ratio of the metal component is such that the chromium content is 0 to 50 mol%, the boron and / or platinum group element content is 0 (excluding 0) to 40 mol%, and the balance is cobalt.
  • the sintered body according to any one of 1) to 5) above is provided.
  • the present invention also provides: 7) The sintered body according to any one of 1) to 6) above, wherein the boron oxide content is 0.5 to 10 mol% in terms of B 2 O 3 .
  • the present invention also provides: 8) The sintered body according to any one of 1) to 7) above, wherein the total content of chromium oxide is 0.5 to 10 mol% in terms of Cr 2 O 3 .
  • the present invention also provides: 9) Further, Al, Co, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, Nb, Ni, Sb, Si, Sn, Ta, Te, Ti, V, W, Y, Zn or Zr
  • a sintered body is any one of 1) to 8) above, wherein an oxide containing at least one element selected from the group consisting of 2 to 8 wt% in terms of oxygen is contained.
  • the present invention also provides: 10) The sintered body according to any one of 1) to 9) above, wherein the average area per one particle of the oxide in the sintered body is 2 ⁇ m 2 or less.
  • the present invention also provides: 11) The sintered body according to any one of 1) to 10) described above further includes 0.5 mol% or more of at least one element selected from Ti, V, Mn, Zr, Nb, Mo, Ta, and W. A sintered body containing 10 mol% or less is provided.
  • the present invention also provides: 12) The sintered body according to any one of 1) to 11) above, further comprising at least one selected from carbon, nitride, and carbide.
  • the present invention also provides: 13) The sintered body according to any one of 1) to 12) above, wherein the relative density is 95% or more.
  • the present invention also provides: 14) Provided is a sputtering target for forming a magnetic recording film comprising the sintered body according to any one of 1) to 13) above.
  • the present invention also provides: 15) At least one of one or more metals or alloys selected from boron and / or platinum group elements, and at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 , including at least cobalt as a metal.
  • a method for producing a sintered body characterized by mixing and sintering seeds or more oxides.
  • the present invention also provides: 16) At least cobalt as a metal, one or more metals or alloys selected from chromium, boron and / or platinum group elements, Cr (BO 3 ), Co 2 B 2 O 5 , Co 3 B 2 O 6 There is provided a method for producing a sintered body comprising mixing and sintering at least one kind of oxide.
  • the present invention also provides: 17) Boron oxide and chromium oxide and / or cobalt oxide are prepared, and this is fired in the atmosphere, and at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6
  • the present invention also provides: 18) The sintered body according to any one of 1) to 13) above is manufactured by the method for manufacturing a sintered body according to any one of 15) to 17) above. A method for producing a sintered body is provided.
  • the sintered body to which boron oxide is added has a problem that particles of boron oxide become large after sintering, and many particles are generated when used as a sputtering target for forming a magnetic recording film. .
  • the cause is that boron oxide raw material is highly hygroscopic and solidifies easily, so it is difficult to obtain fine boron oxide.
  • boron oxide has a low melting point, it easily liquefies during sintering, It grows into large particles.
  • At least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is included in the phase of the oxide in the sintered body of the present invention, in particular, the sputtering target for a magnetic recording film.
  • Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 can maintain a fine structure, increase the melting point of boron oxide, and suppress reaction with water. It has the characteristics that can be. As a result, it has become possible to solve the above-mentioned problems caused by boron oxide in the sintered body.
  • the sintered body of the present invention particularly a sputtering target for a magnetic recording film, includes cobalt as a metal, one or more metals or alloys selected from chromium and platinum group elements, and an oxide containing boron oxide and chromium oxide. It is a sintered body, particularly a sputtering target for a magnetic recording film. In addition to this (other than the above component composition), other metal materials and inorganic materials described later can be further added.
  • the “one or more metals or alloys selected from chromium and platinum group elements” may be chromium metal alone, one or more metals selected from platinum group elements, or these It means that an alloy may be used.
  • the sintered body of the present invention is mainly used as a sputtering target. In that sense, the following will be described mainly with respect to the sputtering target of the main application, but this sintered body is not prevented from being used as another coating (coating) method. For example, it can be used for physical and chemical vapor deposition such as ion beam vapor deposition.
  • the sintered body of the present invention includes these.
  • the present invention requires that at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is present in the phase comprising the oxide, and this is a requirement of the present application.
  • This is one of the major features of the invention.
  • boron oxide exists in the form of the compound as described above, it has characteristics and effects that can maintain a fine structure, increase the melting point of boron oxide, and suppress reaction with water. Can do.
  • the atomic ratio of chromium and boron is preferably Cr / B ⁇ 1. This is confirmed by an experiment, and when it is out of this range, it easily reacts with water. Although other ranges can be used, this atomic ratio can be said to be a more preferable range.
  • the atomic ratio of boron and oxygen is B / O ⁇ 0.5. This is confirmed by an experiment, and when it is out of this range, it easily reacts with water. Although other ranges can be used, this atomic ratio can be said to be a more preferable range.
  • the sintered body of the present invention can be applied to a general magnetic material target.
  • the chromium content is 0 to 50 mol%.
  • the content of boron and / or platinum group elements is 0 (excluding 0) to 40 mol%, and the balance is cobalt.
  • it may be a chromium metal alone, one or more metals selected from boron and / or platinum group elements, or an alloy thereof.
  • inclusion of boron oxide in the above form is an important point of the invention, it can be said that it is not necessary to be limited to the above composition range, but as a basic composition of a suitable magnetic material, The above can be mentioned.
  • the boron oxide content (also referred to as the addition amount) can be applied to 0.5 to 10 mol% in terms of B 2 O 3 .
  • boron contained as a component exists as a compound of at least Cr (BO 3 ), Co 2 B 2 O 5 , or Co 3 B 2 O 6 .
  • the total content of chromium oxide is preferably 0.5 to 10 mol% in terms of Cr 2 O 3 . This also shows a preferable range as a sputtering target for a magnetic recording film.
  • An oxide containing one or more elements selected from Y, Zn, and Zr is included, and the total oxide amount is 2 to 8 wt% in terms of oxygen.
  • These also show a suitable range as a sintered body, particularly as a sputtering target for a magnetic recording film.
  • the addition of these oxides is not particularly shown in the examples, it is a suitable material generally added to the magnetic recording film, and can be similarly applied to the present invention.
  • the average area per one particle of the oxide phase is desirably 2 ⁇ m 2 or less.
  • an oxide phase can be observed, and it is desirable that the oxide phase is finely dispersed. This is because if there is a coarse oxide phase, arcing or particles are easily generated during sputtering.
  • said area shows the suitable range as a sputtering target for magnetic recording films, and use of what exceeds these ranges is not prevented by the relation with the purpose of use or other materials.
  • the sintered body of the present invention described above, particularly the sputtering target for a magnetic recording film, is additionally selected from Ti, V, Mn, Zr, Nb, Mo, Ta, and W as a single additive element. More than element and 0.5 mol% or more and 10 mol% or less can be contained. These additive elements are added as necessary in order to improve the characteristics as a magnetic recording medium. These additive elements are not particularly shown in the examples, but are suitable materials generally added to the magnetic recording film, and can be similarly applied to the present invention.
  • an inorganic material having one or more components selected from carbon, nitride, and carbide can be contained as an additive material. These are elements that are added as necessary in order to improve the characteristics as a magnetic recording medium.
  • the sintered body of the present invention having the above component composition, particularly a sputtering target for a magnetic recording film, a relative density of 95% or more, 98% or more, and 99% or more can be achieved.
  • the density of the sintered body can be adjusted by the sintering temperature and the pressure of the hot press or HIP. However, if the temperature is too high, the oxide phase grows and coarsens, so the sintering temperature is lowered as much as possible to increase the pressure. It is desirable to do.
  • the sintering temperature is desirably 1100 ° C. or lower and the pressure is preferably 250 kgf / cm 2 or higher. Molding / sintering is not limited to hot pressing, and plasma discharge sintering and hot isostatic pressing can also be used.
  • the relative density is a value obtained by dividing the actually measured density of the target by the calculated density (also called the theoretical density).
  • the calculation density is a density when it is assumed that the constituent components of the target are mixed without diffusing or reacting with each other, and is calculated by the following equation.
  • Calculated density Sigma ⁇ (Molecular weight of constituent component x Molar ratio of constituent component) / ⁇ (Molecular weight of constituent component x Molar ratio of constituent component / Document value density of constituent component)
  • means taking the sum for all the constituent components of the target.
  • the sintered body of the component composition range specified in the present invention particularly the sputtering target for magnetic recording film, It has the same effect as.
  • the sintering raw material at least one metal containing cobalt as a metal and selected from chromium and platinum group elements, and further necessary raw material powders of oxides in the ratios shown in Table 1.
  • a graphite die having a diameter of 50 ⁇ and subjected to hot press sintering at a sintering temperature of 900 to 1100 ° C. in vacuum.
  • a sintering temperature of 900 to 1100 ° C. in vacuum.
  • it was immersed in pure water for 1 hour at room temperature and then dried to observe the surface.
  • the production method and test method were the same as those in this example.
  • Each component composition of the magnetic material used as the matrix in Example 1 was Co: 69 mol%, Cr: 5 mol%, and Pt: 20 mol%.
  • the oxides were Cr (BO 3 ): 2 mol%, Cr 2 O 3 : 2 mol%, and SiO 2 : 2 mol%.
  • the ratio of Cr / B is 5.5.
  • the B / O ratio was 0.1.
  • the results are shown in Table 1.
  • the average area per one particle of the oxide phase in the target was 1.5 ⁇ m 2 .
  • grains of an oxide phase is calculated
  • sputtering was performed by producing a target from a 180 ⁇ size sintered body produced with the same raw materials and production conditions, the number of particles generated in a steady state was 2, and thus a high-density target was obtained. The number of particles generated was small.
  • Example 2 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • Each component composition of the magnetic material used as the matrix of Example 2 was set to Co: 60 mol%, Cr: 5 mol%, Pt: 20 mol%, Ru: 5 mol%.
  • the oxide was Cr (BO 3 ): 10 mol%.
  • the ratio of Cr / B is 1.5.
  • the B / O ratio was 0.3.
  • the results are also shown in Table 1.
  • the average area per one particle of the oxide phase in the target was 1.9 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water had no discoloration.
  • the relative density of this sintered compact was 95.8%.
  • Example 3 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • Each component composition of the magnetic material used as the matrix of Example 3 was Co: 77.8 mol%, Cr: 5.3 mol%, and Pt: 10.5 mol%.
  • the oxides were Cr (BO 3 ): 4.2 mol%, Co 2 B 2 O 5 : 1.1, and Co 3 B 2 O 6 : 1.1.
  • the ratio of Cr / B is 1.7.
  • the B / O ratio was 0.3.
  • the results are also shown in Table 1.
  • the average area per particle of the oxide phase in the target was 1.1 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water had no discoloration.
  • the relative density of this sintered body was 96.1%.
  • Example 4 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • Each component composition of the magnetic material used as the matrix of Example 4 was set to Co: 75.2 mol% and Pt: 21.5 mol%.
  • the oxides were Co 2 B 2 O 5 : 2.2 and Co 3 B 2 O 6 : 1.1.
  • the ratio of Cr / B is 0.0.
  • the B / O ratio was 0.4. These satisfied the conditions of the present invention.
  • the results are also shown in Table 1.
  • the average area per one particle of the oxide phase in the target was 2.0 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water had no discoloration.
  • the relative density of this sintered body was 97.1%.
  • Example 5 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • the composition of each component of the magnetic material serving as the matrix of Example 5 was Co: 71.4 mol% and Pt: 20.4 mol%.
  • the oxides were Cr (BO 3 ): 4.1 mol%, Co 2 B 2 O 5 : 1, TiO 2 : 3.1 mol%.
  • the ratio of Cr / B is 0.7.
  • the B / O ratio was 0.3. Except for the Cr / B ratio, the conditions of the present invention were satisfied.
  • the results are also shown in Table 1.
  • the average area per particle of the oxide phase in the target was 1.2 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water had no discoloration.
  • the relative density of this sintered body was 97.5%.
  • Example 6 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • the composition of each component of the magnetic material serving as the matrix of Example 6 was Co: 55 mol%, Cr: 30 mol%, and Ru: 5 mol%. Meanwhile, oxides, Cr (BO 3): 2mol %, TiO 2: was a 8 mol%.
  • the ratio of Cr / B is 16. The B / O ratio was 0.09. All satisfied the conditions of the present invention.
  • the results are also shown in Table 1.
  • the average area per one particle of the oxide phase in the target was 1.9 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water had no discoloration.
  • the relative density of this sintered body was 99.5%.
  • Example 7 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • Each component composition of the magnetic material used as the matrix of Example 7 was set to Co: 55 mol%, Cr: 30 mol%, and B: 5 mol%. Meanwhile, oxides, CoO: 6mol%, TiO 2 : was 4 mol%.
  • the ratio of Cr / B is 6.
  • the B / O ratio was 0.36. All satisfied the conditions of the present invention. After sintering, it was confirmed that a part of Cr (BO 3 ) was produced by XRD measurement of the sample.
  • the XRD measurement conditions were using Rigaku's Ultimate IV, using CuK ⁇ rays, tube voltage 40 kv, tube current 30 mA, scan speed 1 ° / min, step 0.01 °, and scan angle range (2 ⁇ ) of 24 to 35. °.
  • the intensity of the first peak was 120 cps
  • the intensity of the second peak was 70 cps (the background intensity was approximately 50 cps).
  • strength values are fluctuate
  • the results are also shown in Table 1.
  • the average area per one particle of the oxide phase in the target was 1.9 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water had no discoloration.
  • the relative density of this sintered body was 99%.
  • Example 8 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • Each component composition of the magnetic material used as the matrix of Example 8 was Co: 60 mol%, Cr: 5 mol%, and Pt: 24 mol%.
  • the oxides were Cr (BO 3 ): 4 mol%, SiO 2 : 4 mol%, and CoO: 3 mol%.
  • the ratio of Cr / B is 2.25.
  • the B / O ratio was 0.17. All satisfied the conditions of the present invention.
  • the results are also shown in Table 1.
  • the average area per particle of the oxide phase in the target was 1.1 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water had no discoloration.
  • the relative density of this sintered body was 99.2%.
  • Example 9 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • Each component composition of the magnetic material used as the matrix of Example 9 was Co: 73 mol%, Cr: 2 mol%, and Pt: 17 mol%.
  • the ratio of Cr / B is 2.
  • the B / O ratio was 0.07. All satisfied the conditions of the present invention.
  • the results are also shown in Table 1.
  • the average area per one particle of the oxide phase in the target was 1.5 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water had no discoloration.
  • the relative density of this sintered body was 98%.
  • Example 10 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • Each component composition of the magnetic material used as the matrix of Example 10 was Co: 65 mol%, Cr: 4 mol%, and Pt: 25 mol%.
  • the ratio of Cr / B is 1.
  • the B / O ratio was 0.27. All satisfied the conditions of the present invention.
  • the results are also shown in Table 1.
  • the average area per one particle of the oxide phase in the target was 1.6 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water had no discoloration.
  • the relative density of this sintered body was 98.8%.
  • Example 1 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • Each component composition of the magnetic material used as the matrix of Comparative Example 1 was Co: 63 mol%, Cr: 5 mol%, Pt: 20 mol%, Ru: 5 mol%.
  • the oxide, B 2 O 3: 5mol% , SiO 2: was a 2 mol%.
  • the ratio of Cr / B is 0.5.
  • in the sintered body at a B / O ratio of 0.5, Cr (BO 3) Co 2 B 2 O 5, compounds of Co 3 B 2 O 6 was not confirmed. These did not satisfy the conditions of the present invention.
  • the results are also shown in Table 1.
  • the average area per particle of the oxide phase in the target was 4.3 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water was discolored.
  • the relative density of this sintered body was 96%.
  • Example 2 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1. However, compound powders of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 are not prepared in advance.
  • Each component composition of the magnetic material used as the matrix of Comparative Example 2 was Co: 68 mol%, Cr: 5 mol%, and Pt: 20 mol%.
  • the oxide, B 2 O 3: 5mol% , Cr 2 O 3: was a 2 mol%.
  • the ratio of Cr / B is 0.9.
  • the B / O ratio was 0.5.
  • the Cr / B ratio did not satisfy the conditions of the present invention.
  • the results are also shown in Table 1.
  • the average area per particle of the oxide phase in the target was 1.8 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water was discolored.
  • the relative density of this sintered body was 93%.
  • Example 3 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • the composition of each component of the magnetic material serving as the matrix of Comparative Example 3 was Co: 73 mol% and Pt: 20 mol%.
  • the oxide, B 2 O 3: 6mol% , Co 3 B 2 O 6: was 1 mol%.
  • the ratio of Cr / B is zero.
  • the B / O ratio was 0.6. These did not satisfy the conditions of the present invention.
  • the results are also shown in Table 1.
  • the average area per particle of the oxide phase in the target was 5.1 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water was discolored.
  • the relative density of this sintered compact was 96.3%.
  • Example 4 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • Each component composition of the magnetic material used as the matrix of Comparative Example 4 was Co: 66 mol%, Cr: 9 mol%, and B: 10 mol%. Meanwhile, oxides, CoO: 7mol%, TiO 2 : was a 8 mol%.
  • the ratio of Cr / B is 0.9.
  • the B / O ratio was 0.43.
  • the conditions of the present invention were not satisfied. Further, in the XRD measurement of the sample after sintering, generation of Cr (BO 3) was not confirmed.
  • the results are also shown in Table 1.
  • the average area per one particle of the oxide phase in the target was 3.8 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water was discolored. This was thought to be because the ratio of Cr / B was small and the amount of B was large relative to the amount of Cr, so that a large amount of boron oxide was generated and the oxide particles were coarsened.
  • the relative density of this sintered body was 99.0%.
  • Example 5 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
  • Each component composition of the magnetic material used as the matrix of Comparative Example 5 was Co: 50 mol%, Cr: 30 mol%, and Ru: 10 mol%.
  • the oxide, B 2 O 3: 7mol% , SiO 2: was a 3 mol%.
  • the ratio of Cr / B is 2.1.
  • the B / O ratio was 0.52.
  • the conditions of the present invention were not satisfied. Further, in the XRD measurement of the sample after sintering, generation of Cr (BO 3) was not confirmed.
  • the results are also shown in Table 1.
  • the average area per one particle of the oxide phase in the target was 8.2 ⁇ m 2 .
  • the appearance of the surface of the sintered body after being immersed in water was discolored. This is considered due to the coarsening of the oxide particles due to the presence of boron oxide.
  • the relative density of this sintered body was 99.2%.
  • At least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is included in the phase of the oxide in the sintered body of the present invention, particularly the sputtering target for a magnetic recording film. This is what exists.
  • boric acid is generated by reacting with moisture and deposited on the target surface and the like. Although it was a cause of stains and dirt, this problem could be solved as well. Since particle generation can be suppressed, the magnetic recording film defect rate is reduced and the cost is reduced. This greatly contributes to the improvement of magnetic thin film quality and production efficiency. It is useful as a ferromagnetic sputtering target used for forming a magnetic thin film of a recording medium, particularly a hard disk drive recording layer.

Abstract

A sintered body which contains at least cobalt as a metal and is composed of boron and/or at least one metal selected from platinum group elements or an alloy of the metal and an oxide, said sintered body being characterized in that at least one compound selected from Cr(BO3), Co2B2O5 and Co3B2O6 is contained in a phase composed of the oxide. A sintered body in which a compound selected from Cr(BO3), Co2B2O5 and Co3B2O6 is present in a target can maintain a fine structure, and enables the provision of a sintered body for magnetic recording film formation use which comprises a sintered body that is stable in water.

Description

焼結体、同焼結体からなる磁気記録膜形成用スパッタリングターゲットSintered body, sputtering target for forming a magnetic recording film comprising the sintered body
 本発明は、焼結体に関し、磁気記録媒体の磁性体薄膜、特に垂直磁気記録方式を採用したハードディスクの磁気記録層の成膜に使用される磁気記録膜の形成に有用である焼結体、同焼結体からなるスパッタリングターゲットに関するものである。
 従来、酸化ホウ素を含有する焼結体から作製したターゲットを使用してスパッタリングした場合に、焼結時又はその後に酸化ホウ素の粒子が粗大化するために、スパッタリング時にパーティクルの発生が多く発生するという問題があった。
 本願発明は、このような問題を解決できる焼結体及び同焼結体からなるスパッタリングターゲットに関する。
The present invention relates to a sintered body, which is useful for forming a magnetic thin film of a magnetic recording medium, particularly a magnetic recording film used for forming a magnetic recording layer of a hard disk adopting a perpendicular magnetic recording system, The present invention relates to a sputtering target made of the sintered body.
Conventionally, when sputtering is performed using a target prepared from a sintered body containing boron oxide, particles of boron oxide are coarsened during or after sintering, so that many particles are generated during sputtering. There was a problem.
This invention relates to the sputtering target which consists of a sintered compact which can solve such a problem, and the sintered compact.
 ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。
 また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo-Cr-Pt系の強磁性合金と非磁性の無機物からなる複合材料が多く用いられている。
In the field of magnetic recording typified by a hard disk drive, a material based on Co, Fe, or Ni, which is a ferromagnetic metal, is used as a magnetic thin film material for recording. For example, a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording method.
In addition, a composite material composed of a Co—Cr—Pt ferromagnetic alloy containing Co as a main component and a non-magnetic inorganic material is often used for a recording layer of a hard disk employing a perpendicular magnetic recording method that has been put into practical use in recent years. ing.
 そしてハードディスクなどの磁気記録媒体の磁性薄膜は、生産性の高さから、上記の材料を成分とする強磁性材スパッタリングターゲットをスパッタリングして作製されることが多い。また、このような磁気記録膜用スパッタリングターゲットには、合金相を磁気的に分離させるために、酸化ホウ素を添加することが行われている。 Further, a magnetic thin film of a magnetic recording medium such as a hard disk is often produced by sputtering a ferromagnetic material sputtering target containing the above material as a component because of high productivity. Further, boron oxide is added to such a sputtering target for a magnetic recording film in order to magnetically separate the alloy phase.
 強磁性材スパッタリングターゲットの作製方法としては、溶解法や粉末冶金法が考えられる。どちらの手法で作製するかは、要求される特性によるので一概には言えないが、垂直磁気記録方式のハードディスクの記録層に使用される、強磁性合金と非磁性の無機物粒子からなるスパッタリングターゲットは、一般に粉末冶金法によって作製されている。これは酸化ホウ素等の無機物粒子を合金素地中に均一に分散させる必要があるため、溶解法では作製することが困難だからである。 As a method for producing a ferromagnetic material sputtering target, a melting method or a powder metallurgy method can be considered. Which method is used depends on the required characteristics, so it cannot be generally stated, but the sputtering target made of a ferromagnetic alloy and non-magnetic inorganic particles used for the recording layer of a perpendicular magnetic recording hard disk is Generally, it is produced by a powder metallurgy method. This is because inorganic particles such as boron oxide need to be uniformly dispersed in the alloy substrate, and thus it is difficult to produce by the melting method.
 一方、磁気記録媒体に酸化ホウ素添加する公知文献を探索すると、次のような特許文献を挙げることができる。
 下記特許文献1には、「磁気データ記録層を有する磁気記録媒体であって、前記磁気データ記録層が、少なくとも0.5×10erg/cm(0.5/Jcm)の磁気異方性定数を有する第1の合金と、酸素と少なくとも1つの元素が負の還元電位を持つ1つ以上の元素とからなる酸化化合物と、を含むことを特徴とする磁気記録媒体」(請求項1)が記載されている。
On the other hand, when searching for known documents for adding boron oxide to a magnetic recording medium, the following patent documents can be cited.
The following Patent Document 1 states that “a magnetic recording medium having a magnetic data recording layer, wherein the magnetic data recording layer has a magnetic difference of at least 0.5 × 10 7 erg / cm 3 (0.5 / Jcm 3 ). A magnetic recording medium comprising: a first alloy having an isotropic constant; and an oxide compound comprising oxygen and one or more elements in which at least one element has a negative reduction potential. 1) is described.
 そして、同特許文献1の請求項6に、「前記酸化化合物内の1つ以上の元素の少なくとも1つは、リチウム(Li)、ベリリウム(Be)、ホウ素(B)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、カリウム(K)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、ガリウム(Ga)、ルビジウム(Rb)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、カドミウム(Cd)、インジウム(In)、セシウム(Cs)、バリウム(Ba)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、テルビウム(Tb)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、鉛(Pb)、トリウム(Th)及びウラン(U)からなるグループから選択されることを特徴とする磁気記録媒体」が、そしてこれらの材料がスパッタリングターゲットであること記載されている。
 上記に記載されている多量の酸化物の中には酸化ホウ素の記載もあるが、ターゲット中の酸化ホウ素の存在の問題点、その問題の解決方法については、一切記載がない。
Further, in claim 6 of Patent Document 1, “at least one of the one or more elements in the oxide compound is lithium (Li), beryllium (Be), boron (B), sodium (Na), magnesium. (Mg), aluminum (Al), silicon (Si), potassium (K), calcium (Ca), scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), cadmium (Cd), indium (In), cesium (Cs), barium (Ba), lanthanum (La), cerium (Ce), praseodymium (Pr), neo (Nd), samarium (Sm), europium (Eu), terbium (Tb), gadolinium (Gd), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), A magnetic recording medium characterized by being selected from the group consisting of hafnium (Hf), tantalum (Ta), tungsten (W), lead (Pb), thorium (Th) and uranium (U), and It is described that the material is a sputtering target.
Although a large amount of oxides described above include boron oxide, there is no description about the problem of the presence of boron oxide in the target and how to solve the problem.
 下記特許文献2の請求項1に、「磁気記録媒体のC o 系磁性層をスパッタリング法で形成するために用いるターゲットであって、前記ターゲットはCrまたはCr合金を5モル% 以上含み、CoOを5モル%以上含み、融点が800℃以下の酸化物を合計で3モル%~20モル%の範囲内で含み、気孔率が7%以下であることを特徴とするターゲット」が記載され、同請求項4に融点が800℃以下の酸化物が、酸化ホウ素、酸化バナジウム、酸化テルル、酸化モリブテン、低融点ガラスから選ばれる少なくとも1種であることを特徴とする請求項1~3の何れか1項に記載のターゲット」が記載されている。
 この場合も、上記文献1と同様に、焼結体又は焼結体からなるターゲット中の酸化ホウ素の存在の問題点、その問題の解決方法については、一切記載がない。
Claim 1 of the following Patent Document 2 states that “a target used for forming a Co-based magnetic layer of a magnetic recording medium by a sputtering method, wherein the target contains 5 mol% or more of Cr or Cr alloy, and contains CoO. A target characterized in that it contains 5 mol% or more of an oxide having a melting point of 800 ° C. or less in a total range of 3 to 20 mol% and a porosity of 7% or less. 4. The oxide according to claim 4, wherein the oxide having a melting point of 800 ° C. or lower is at least one selected from boron oxide, vanadium oxide, tellurium oxide, molybdenum oxide, and low-melting glass. "Target described in item 1" is described.
In this case as well, there is no description about the problem of the presence of boron oxide in the sintered body or the target made of the sintered body and the solution to the problem, as in the case of the above-mentioned document 1.
 下記特許文献3には、Crが20mol%以下、残余がCoである強磁性合金と非金属無機材料からなる焼結体スパッタリングターゲットであって、前記非金属無機材料が占める体積率が40vol%以下で、前記非金属無機材料が少なくともコバルト酸化物とホウ素酸化物を含むことを特徴とするスパッタリングターゲット。金属粉末と少なくともコバルト酸化物とホウ素酸化物を含む非金属無機材料粉末を粉砕・混合して得られた混合粉末を保持温度は800°C以下で加圧焼結装置により成型・焼結するスパッタリングターゲット用焼結体の製造法」(要約書)が記載されている。
 この場合も、上記文献1、2と同様に、「ホウ素酸化物」を含有させることが記載されているが、ターゲット中の酸化ホウ素の存在の問題点、その問題の解決方法については、一切記載がない。
Patent Document 3 listed below is a sintered sputtering target made of a ferromagnetic alloy having a Cr content of 20 mol% or less and the balance being Co and a non-metallic inorganic material, and the volume ratio occupied by the non-metallic inorganic material is 40 vol% or less. The sputtering target is characterized in that the non-metallic inorganic material contains at least cobalt oxide and boron oxide. Sputtering which forms and sinters the mixed powder obtained by pulverizing and mixing the metal powder and the non-metallic inorganic material powder containing at least cobalt oxide and boron oxide at a holding temperature of 800 ° C or less. "Method for producing sintered body for target" (abstract) is described.
Also in this case, it is described that “boron oxide” is contained, as in the above-mentioned documents 1 and 2. However, the problem of the presence of boron oxide in the target and a solution to the problem are not described at all. There is no.
 下記特許文献4には、「SiOを含有する磁気記録膜用スパッタリングターゲットであって、B(ボロン)を10~1000wtppm含有することを特徴とする磁気記録膜用スパッタリングターゲット。」が記載されている。この場合には、酸化ホウ素も含まれるものであるが、上記文献1、2、3と同様に、焼結体又は焼結体からなるターゲット中の酸化ホウ素の存在の問題点、その問題の解決方法については、一切記載がない。 Patent Document 4 below describes “a sputtering target for a magnetic recording film containing SiO 2 and containing 10 to 1000 wtppm of B (boron)”. Yes. In this case, boron oxide is also included. However, as in the above-mentioned documents 1, 2, and 3, the problem of the presence of boron oxide in the sintered body or the target composed of the sintered body, and the solution of the problem There is no mention of any method.
特開2008-59733号公報JP 2008-59733 A 特開2012-33247号公報JP 2012-33247 A 特開2012-117147号公報JP 2012-117147 A 特許第5009448号公報Japanese Patent No. 5009448
 磁気記録膜用スパッタリングターゲットには、強磁性合金と非磁性材料からなる複合材料が多く用いられ、非磁性材料として酸化ホウ素を添加することが行なわれている。しかし、酸化ホウ素を添加したターゲットでは、焼結後に酸化ホウ素の粒子が大きくなるため、粒成長を抑制するために焼結温度を下げると密度が上げられず、パーティクルが多く発生するという問題があった。 For a sputtering target for a magnetic recording film, a composite material composed of a ferromagnetic alloy and a nonmagnetic material is often used, and boron oxide is added as a nonmagnetic material. However, in the target to which boron oxide is added, the boron oxide particles become large after sintering. Therefore, if the sintering temperature is lowered in order to suppress grain growth, the density cannot be increased and many particles are generated. It was.
 この問題を究明すると、その理由は大きく二つあることが分かった。一つは、酸化ホウ素原料は吸湿性が高く容易に凝固してしまうため、細かい酸化ホウ素が得難いということ。二つめ目は、酸化ホウ素は融点が低いため焼結中に容易に液状化してしまい、焼結中に大きな粒子に成長してしまうからである。 Investigating this problem revealed that there are two main reasons. One is that boron oxide raw materials are highly hygroscopic and easily solidify, making it difficult to obtain fine boron oxide. Second, since boron oxide has a low melting point, it easily liquefies during sintering and grows into large particles during sintering.
 更に、他の問題として、酸化ホウ素が残留した焼結体を、機械加工等で湿式加工したとき、又は湿度が高い場所に保管したときに、水分と反応してホウ酸が生成され、これが焼結体(ターゲット)の表面などに析出してシミや汚れの原因になり、これも亦スパッタリング時のパーティクル発生の原因になり、また膜中に水分が取り込まれ不良の原因になるという問題があった。酸化ホウ素を添加した磁気記録膜を形成するための焼結体、特にスパッタリングターゲットの良好な品質を確保する上では、このような問題を解決することが必要である。 Furthermore, as another problem, when the sintered body in which the boron oxide remains is wet-processed by machining or stored in a place with high humidity, it reacts with moisture to generate boric acid, which is baked. It precipitates on the surface of the bonded body (target) and causes stains and dirt, which also causes generation of particles during sputtering, and moisture is taken into the film and causes defects. It was. In order to ensure good quality of a sintered body for forming a magnetic recording film to which boron oxide is added, particularly a sputtering target, it is necessary to solve such a problem.
 このような知見に基づき、本発明は、
 1)少なくとも金属としてコバルトを含み、ホウ素及び/又は白金族元素から選択した1種以上の金属若しくは合金と、酸化物から構成される焼結体であって、前記酸化物からなる相に、Cr(BO)、Co、Coの少なくとも1種以上が存在することを特徴とする焼結体、を提供する。
Based on such knowledge, the present invention
1) A sintered body comprising at least one metal selected from the group consisting of cobalt and one or more metals or alloys selected from boron and / or platinum group elements, and an oxide, wherein the phase comprising the oxide is Cr There is provided a sintered body characterized in that at least one of (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is present.
 また、本発明は、
 2)少なくとも金属としてコバルトを含み、クロムと、ホウ素及び/又は白金族元素から選択した1種以上の金属又は合金と、酸化物から構成される焼結体であって、前記酸化物からなる相に、Cr(BO)、Co、Coの少なくとも1種以上が存在することを特徴とする焼結体、を提供する。
The present invention also provides:
2) A sintered body comprising at least cobalt as a metal, chromium, one or more metals or alloys selected from boron and / or platinum group elements, and an oxide, the phase comprising the oxide And a sintered body characterized in that at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is present.
 また、本発明は、
 3)焼結体が水に接触又は浸漬した際に、焼結体の表面に変色が無いことを特徴とする上記1)又は2)のいずれか一項に記載の焼結体、を提供する。
 また、本発明は、
 4)クロムとホウ素の原子比がCr/B≧1であることを特徴とする上記2)又は3)のいずれか一項に記載の焼結体、を提供する。
The present invention also provides:
3) The sintered body according to any one of 1) or 2) above, wherein the sintered body has no discoloration when contacted or immersed in water. .
The present invention also provides:
4) The sintered body according to any one of 2) or 3) above, wherein the atomic ratio of chromium to boron is Cr / B ≧ 1.
 また、本発明は、
 5)ホウ素と酸素の原子比がB/O≦0.5であることを特徴とする上記1)~4)のいずれか一項に記載の焼結体、を提供する。
 また、本発明は、
 6)金属成分の比率において、クロムの含有量が0~50mol%、ホウ素及び/又は白金族元素の含有量が0(但し、0を除く)~40mol%、残部がコバルトであることを特徴とする上記1)~5)のいずれか一項に記載の焼結体、を提供する。
The present invention also provides:
5) The sintered body according to any one of 1) to 4) above, wherein the atomic ratio of boron to oxygen is B / O ≦ 0.5.
The present invention also provides:
6) The ratio of the metal component is such that the chromium content is 0 to 50 mol%, the boron and / or platinum group element content is 0 (excluding 0) to 40 mol%, and the balance is cobalt. The sintered body according to any one of 1) to 5) above is provided.
 また、本発明は、
 7)酸化ホウ素の含有量がB換算で0.5~10mol%であることを特徴とする上記1)~6)のいずれか一項に記載の焼結体、を提供する。
 また、本発明は、
 8)酸化クロムの合計含有量がCr換算で0.5~10mol%であることを特徴とする上記1)~7)いずれか一項に記載の焼結体、を提供する。
The present invention also provides:
7) The sintered body according to any one of 1) to 6) above, wherein the boron oxide content is 0.5 to 10 mol% in terms of B 2 O 3 .
The present invention also provides:
8) The sintered body according to any one of 1) to 7) above, wherein the total content of chromium oxide is 0.5 to 10 mol% in terms of Cr 2 O 3 .
 また、本発明は、
 9)さらにAl、Co、Cu、Fe、Ga、Ge、Hf、Li、Mg、Mn、Mo、Nb、Ni、Sb、Si、Sn、Ta、Te、Ti、V、W、Y、Zn又はZrから選択した一種以上の元素を構成成分とする酸化物が含まれ、全酸化物量が酸素換算で2~8wt%であることを特徴とする上記1)~8)のいずれか一項に記載の焼結体、を提供する。
The present invention also provides:
9) Further, Al, Co, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, Nb, Ni, Sb, Si, Sn, Ta, Te, Ti, V, W, Y, Zn or Zr The oxide according to any one of 1) to 8) above, wherein an oxide containing at least one element selected from the group consisting of 2 to 8 wt% in terms of oxygen is contained. A sintered body.
 また、本発明は、
 10)焼結体中の酸化物の1粒子当たりの平均面積が2μm以下であることを特徴とする上記1)~9)のいずれか一項に記載の焼結体、を提供する。
 また、本発明は、
 11)前記上記1)~10)のいずれか一項に記載の焼結体が、さらにTi、V、Mn、Zr、Nb、Mo、Ta、Wから選択した1元素以上を0.5mol%以上10mol%以下含有することを特徴とする焼結体、を提供する。
The present invention also provides:
10) The sintered body according to any one of 1) to 9) above, wherein the average area per one particle of the oxide in the sintered body is 2 μm 2 or less.
The present invention also provides:
11) The sintered body according to any one of 1) to 10) described above further includes 0.5 mol% or more of at least one element selected from Ti, V, Mn, Zr, Nb, Mo, Ta, and W. A sintered body containing 10 mol% or less is provided.
 また、本発明は、
 12)さらに炭素、窒化物、炭化物から選択した1種以上を含有することを特徴とする上記1)~11)のいずれか一項に記載の焼結体、を提供する。
 また、本発明は、
 13)相対密度が95%以上であることを特徴とする上記1)~12)のいずれか一項に記載の焼結体、を提供する。
The present invention also provides:
12) The sintered body according to any one of 1) to 11) above, further comprising at least one selected from carbon, nitride, and carbide.
The present invention also provides:
13) The sintered body according to any one of 1) to 12) above, wherein the relative density is 95% or more.
 また、本発明は、
 14)上記1)~13)のいずれか一項に記載の焼結体からなる磁気記録膜形成用スパッタリングターゲット、を提供する。
The present invention also provides:
14) Provided is a sputtering target for forming a magnetic recording film comprising the sintered body according to any one of 1) to 13) above.
 また、本発明は、
 15)少なくとも金属としてコバルトを含み、ホウ素及び/又は白金族元素から選択した1種以上の金属若しくは合金と、Cr(BO)、Co、Coの少なくとも1種以上の酸化物を混合して焼結することを特徴とする焼結体の製造方法、を提供する。
The present invention also provides:
15) At least one of one or more metals or alloys selected from boron and / or platinum group elements, and at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 , including at least cobalt as a metal. There is provided a method for producing a sintered body characterized by mixing and sintering seeds or more oxides.
 また、本発明は、
 16)少なくとも金属としてコバルトを含み、クロムと、ホウ素及び/又は白金族元素から選択した1種以上の金属又は合金と、Cr(BO)、Co、Coの少なくとも1種以上の酸化物を混合して焼結することを特徴とする焼結体の製造方法、を提供する。
The present invention also provides:
16) At least cobalt as a metal, one or more metals or alloys selected from chromium, boron and / or platinum group elements, Cr (BO 3 ), Co 2 B 2 O 5 , Co 3 B 2 O 6 There is provided a method for producing a sintered body comprising mixing and sintering at least one kind of oxide.
 また、本発明は、
 17)酸化ホウ素と、酸化クロム及び/又は酸化コバルトを準備し、これを大気中で焼成して、Cr(BO)、Co、Coの少なくとも1種以上の酸化物を製造することを特徴とする上記15)又は16)のいずれか一項に記載の焼結体の製造方法、を提供する。
 また、本発明は、
 18)上記15)~17)のいずれか一項に記載の焼結体の製造方法により、上記1)~上記13)のいずれか一項に記載の焼結体を製造することを特徴とする焼結体の製造方法、を提供する。
The present invention also provides:
17) Boron oxide and chromium oxide and / or cobalt oxide are prepared, and this is fired in the atmosphere, and at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 The method for producing a sintered body according to any one of 15) or 16) above, wherein the oxide is produced.
The present invention also provides:
18) The sintered body according to any one of 1) to 13) above is manufactured by the method for manufacturing a sintered body according to any one of 15) to 17) above. A method for producing a sintered body is provided.
 上記の通り、酸化ホウ素を添加した焼結体は、焼結後に酸化ホウ素の粒子が大きくなってしまい、磁気記録膜形成用スパッタリングターゲットとして使用する場合に、パーティクルが多く発生するという問題があった。その原因は、酸化ホウ素原料は吸湿性が高く容易に凝固してしまうため、細かい酸化ホウ素が得難いということ、さらに酸化ホウ素は融点が低いため焼結中に容易に液状化してしまい、焼結中に大きな粒子に成長してしまうことである。 As described above, the sintered body to which boron oxide is added has a problem that particles of boron oxide become large after sintering, and many particles are generated when used as a sputtering target for forming a magnetic recording film. . The cause is that boron oxide raw material is highly hygroscopic and solidifies easily, so it is difficult to obtain fine boron oxide. Furthermore, since boron oxide has a low melting point, it easily liquefies during sintering, It grows into large particles.
 この点に鑑み、本願発明の焼結体、特に磁気記録膜用スパッタリングターゲットにおける酸化物からなる相に、Cr(BO)、Co、Coの少なくとも1種以上が存在するようにしたものである。
 これらのCr(BO)、Co、Coの化合物は、微細な組織を維持し、かつ酸化ホウ素の融点を上げることができ、水と反応を抑制することができる特性を持つものである。これによって、焼結体中の酸化ホウ素に起因する上記の問題を解決することが可能となった。
In view of this point, at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is included in the phase of the oxide in the sintered body of the present invention, in particular, the sputtering target for a magnetic recording film. This is what exists.
These compounds of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 can maintain a fine structure, increase the melting point of boron oxide, and suppress reaction with water. It has the characteristics that can be. As a result, it has become possible to solve the above-mentioned problems caused by boron oxide in the sintered body.
 すなわち、酸化ホウ素を添加した焼結体、特に磁気記録膜用スパッタリングターゲットの良好な品質を確保することが可能となり、スパッタリング中のパーティクル発生を抑制することが可能となった。また、酸化ホウ素が残留した焼結体を、機械加工等で湿式加工したとき、又は湿度が高い場所に保管したときに、水分と反応してホウ酸が生成され、焼結体(ターゲット)表面などに析出してシミや汚れの原因になっていたが、この問題も同様に解消することができた。 That is, it became possible to ensure the good quality of the sintered body added with boron oxide, particularly the sputtering target for magnetic recording film, and to suppress the generation of particles during sputtering. In addition, when wet processing is performed on the sintered body in which boron oxide remains, boric acid is generated by reacting with moisture when wet processing is performed by machining or the like, or when the humidity is stored in a high humidity, and the surface of the sintered body (target) However, this problem could be solved as well.
 このようにパーティクル発生を抑制することができるので、磁気記録膜の不良率が減少し、コスト低減化になるという大きな効果を有し、磁性薄膜の品質及び生産効率の向上に大きく貢献するものである。 Since particle generation can be suppressed in this way, the magnetic recording film defect rate is reduced, which has the great effect of reducing costs, and greatly contributes to improving the quality and production efficiency of magnetic thin films. is there.
 本願発明の焼結体、特に磁気記録膜用スパッタリングターゲットは、金属としてコバルトを含み、クロムと白金族元素から選択した1種以上の金属又は合金と、酸化ホウ素及び酸化クロムを含有する酸化物から構成された焼結体、特に磁気記録膜用スパッタリングターゲットである。これ以外(上記成分組成以外)に、後述する他の金属材料や無機質材料をさらに添加することもできる。
 なお、上記「クロムと白金族元素から選択した1種以上の金属又は合金」とは、クロム金属単体でも良いし、白金族元素から選択した1種又は2種以上の金属でも良く、又はこれらの合金でも良いことを意味する。
The sintered body of the present invention, particularly a sputtering target for a magnetic recording film, includes cobalt as a metal, one or more metals or alloys selected from chromium and platinum group elements, and an oxide containing boron oxide and chromium oxide. It is a sintered body, particularly a sputtering target for a magnetic recording film. In addition to this (other than the above component composition), other metal materials and inorganic materials described later can be further added.
The “one or more metals or alloys selected from chromium and platinum group elements” may be chromium metal alone, one or more metals selected from platinum group elements, or these It means that an alloy may be used.
 なお、本願発明の焼結体は、主としてスパッタリングターゲットとして使用される。その意味で、以下については、主たる用途のスパッタリングターゲットを中心に説明するが、この焼結体を、他のコーティング(被覆)方法としての利用を妨げるものではない。例えばイオンビーム蒸着法等の物理的、化学的蒸着法への利用も可能である。本願発明の焼結体は、これらを包含するものである。 Note that the sintered body of the present invention is mainly used as a sputtering target. In that sense, the following will be described mainly with respect to the sputtering target of the main application, but this sintered body is not prevented from being used as another coating (coating) method. For example, it can be used for physical and chemical vapor deposition such as ion beam vapor deposition. The sintered body of the present invention includes these.
 本願発明は、前記酸化物からなる相に、Cr(BO)、Co、Coの少なくとも1種以上が存在することを要件とするものであり、これが本願発明の大きな特徴の一つである。酸化ホウ素が、上記のような化合物の形態で存在することにより、微細な組織を維持し、かつ酸化ホウ素の融点を上げることができ、水と反応を抑制することができる特性と効果を持つことができる。 The present invention requires that at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is present in the phase comprising the oxide, and this is a requirement of the present application. This is one of the major features of the invention. When boron oxide exists in the form of the compound as described above, it has characteristics and effects that can maintain a fine structure, increase the melting point of boron oxide, and suppress reaction with water. Can do.
 事前に、上記化合物の形態になっている原料を採用することで、焼結体中に安定して、上記化合物を残留させることが可能となるが、反応焼結等により上記化合物を生成出来れば同様の効果を持つことが出来る。上記化合物の存在は、焼結体から採取したサンプルをXRD測定し、化合物相のピークが特定出来れば良い。 By adopting the raw material in the form of the above compound in advance, it becomes possible to leave the above compound stably in the sintered body, but if the above compound can be produced by reaction sintering etc. It can have the same effect. Presence of the above-mentioned compound is sufficient if the sample collected from the sintered body is subjected to XRD measurement and the peak of the compound phase can be identified.
 本願の焼結体において、クロムとホウ素の原子比は、Cr/B≧1であることが望ましい。これは実験により確認されたもので、この範囲から外れると水と反応し易くなるからである。これ以外の範囲を使用することも可能であるが、この原子比は、より好ましい範囲と言える。 In the sintered body of the present application, the atomic ratio of chromium and boron is preferably Cr / B ≧ 1. This is confirmed by an experiment, and when it is out of this range, it easily reacts with water. Although other ranges can be used, this atomic ratio can be said to be a more preferable range.
 また、本願の焼結体において、ホウ素と酸素の原子比がB/O≦0.5であることが望ましい。これは実験により確認されたもので、この範囲から外れると水と反応し易くなるからである。これ以外の範囲を使用することも可能であるが、この原子比は、より好ましい範囲と言える。 In the sintered body of the present application, it is desirable that the atomic ratio of boron and oxygen is B / O ≦ 0.5. This is confirmed by an experiment, and when it is out of this range, it easily reacts with water. Although other ranges can be used, this atomic ratio can be said to be a more preferable range.
 本願発明の焼結体、特に磁気記録膜用スパッタリングターゲットは、一般的な磁性材ターゲットに適用できるものであるが、その代表的かつ好適な磁性材としては、クロムの含有量が0~50mol%、ホウ素及び/又は白金族元素の含有量が0(但し、0を除く)~40mol%、残部がコバルトである。この場合も、上記と同様に、クロム金属単体でも良いし、ホウ素及び/又は白金族元素から選択した1種又は2種以上の金属でも良く、又はこれらの合金でも良いことを意味する。
 本願発明は、酸化ホウ素を上記の形態で含有させることが、発明の重点(要)であるので、上記の組成範囲に限定される必要はないと言えるが、好適な磁性材の基本組成としては、上記を挙げることができる。
The sintered body of the present invention, particularly the sputtering target for a magnetic recording film, can be applied to a general magnetic material target. As a typical and suitable magnetic material, the chromium content is 0 to 50 mol%. The content of boron and / or platinum group elements is 0 (excluding 0) to 40 mol%, and the balance is cobalt. In this case as well, as described above, it may be a chromium metal alone, one or more metals selected from boron and / or platinum group elements, or an alloy thereof.
In the present invention, since inclusion of boron oxide in the above form is an important point of the invention, it can be said that it is not necessary to be limited to the above composition range, but as a basic composition of a suitable magnetic material, The above can be mentioned.
 本願発明の焼結体、特に磁気記録膜用スパッタリングターゲットでは、酸化ホウ素の含有量(添加量とも言える)はB換算で0.5~10mol%に適用できる。但し、成分として含まれるホウ素は、少なくともCr(BO)、Co、Coの何れかの化合物として存在することが望ましい。
 酸化クロムの合計含有量はCr換算で0.5~10mol%であることが望ましい。これも磁気記録膜用スパッタリングターゲットとしての好適な範囲を示すものである。
In the sintered body of the present invention, particularly the sputtering target for a magnetic recording film, the boron oxide content (also referred to as the addition amount) can be applied to 0.5 to 10 mol% in terms of B 2 O 3 . However, it is desirable that boron contained as a component exists as a compound of at least Cr (BO 3 ), Co 2 B 2 O 5 , or Co 3 B 2 O 6 .
The total content of chromium oxide is preferably 0.5 to 10 mol% in terms of Cr 2 O 3 . This also shows a preferable range as a sputtering target for a magnetic recording film.
 前記載の酸化物以外に、Al、Co、Cu、Fe、Ga、Ge、Hf、Li、Mg、Mn、Mo、Nb、Ni、Sb、Si、Sn、Ta、Te、Ti、V、W、Y、Zn、Zrから選択した一種以上の元素を構成成分とする酸化物が含まれ、全酸化物量が酸素換算で2~8wt%とする。これらも、焼結体、特に磁気記録膜用スパッタリングターゲットとしての好適な範囲を示すものである。
 これらの酸化物の添加については、特に実施例には示さないが、磁気記録膜には一般的に添加される好適な材料であり、本願発明においても同様に適用できる。
In addition to the oxides described above, Al, Co, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, Nb, Ni, Sb, Si, Sn, Ta, Te, Ti, V, W, An oxide containing one or more elements selected from Y, Zn, and Zr is included, and the total oxide amount is 2 to 8 wt% in terms of oxygen. These also show a suitable range as a sintered body, particularly as a sputtering target for a magnetic recording film.
Although the addition of these oxides is not particularly shown in the examples, it is a suitable material generally added to the magnetic recording film, and can be similarly applied to the present invention.
 本願発明の焼結体、特に磁気記録膜用スパッタリングターゲットにおいては、前記酸化物相の1粒子当たりの平均面積が2μm以下であることが望ましい。通常、ターゲットの表面を研磨(必要に応じて研削を伴う)することにより、酸化物相を観察することができ、この酸化物相が微細に分散していることが望ましい。
 粗大化した酸化物相があると、スパッタリング時のアーキング又はパーティクルの発生を伴い易くなるからである。なお、上記の面積は磁気記録膜用スパッタリングターゲットとしての好適な範囲を示すものであり、使用目的や他の材料との関連によって、これらの範囲を超えるものの使用を妨げるものではない。
In the sintered body of the present invention, in particular, the sputtering target for a magnetic recording film, the average area per one particle of the oxide phase is desirably 2 μm 2 or less. Usually, by polishing the surface of the target (with grinding if necessary), an oxide phase can be observed, and it is desirable that the oxide phase is finely dispersed.
This is because if there is a coarse oxide phase, arcing or particles are easily generated during sputtering. In addition, said area shows the suitable range as a sputtering target for magnetic recording films, and use of what exceeds these ranges is not prevented by the relation with the purpose of use or other materials.
 上記に説明した本願発明の焼結体、特に磁気記録膜用スパッタリングターゲットについて、さらに付加的に、単体の添加元素として、Ti、V、Mn、Zr、Nb、Mo、Ta、Wから選択した1元素以上を、0.5mol%以上10mol%以下含有させることができる。これらの添加元素は、磁気記録媒体としての特性を向上させるために、必要に応じて添加するものである。
 これらの添加元素については、特に実施例には示さないが、磁気記録膜には一般的に添加される好適な材料であり、本願発明においても同様に適用できる。
The sintered body of the present invention described above, particularly the sputtering target for a magnetic recording film, is additionally selected from Ti, V, Mn, Zr, Nb, Mo, Ta, and W as a single additive element. More than element and 0.5 mol% or more and 10 mol% or less can be contained. These additive elements are added as necessary in order to improve the characteristics as a magnetic recording medium.
These additive elements are not particularly shown in the examples, but are suitable materials generally added to the magnetic recording film, and can be similarly applied to the present invention.
 同様に、添加材料として、炭素、窒化物、炭化物から選択した1成分以上の無機物材料を含有させることができる。これらは亦、磁気記録媒体としての特性を向上させるために、必要に応じて添加される元素である。 Similarly, an inorganic material having one or more components selected from carbon, nitride, and carbide can be contained as an additive material. These are elements that are added as necessary in order to improve the characteristics as a magnetic recording medium.
 上記成分組成の本願発明の焼結体、特に磁気記録膜用スパッタリングターゲットについては、相対密度を95%以上、また98%以上、さらには99%以上を達成することができる。焼結体密度は、焼結温度とホットプレスやHIPの圧力により調整出来るが、温度を高くし過ぎると酸化物相が粒成長して粗大化するので極力焼結温度を下げて、圧力を高くすることが望ましい。焼結温度は1100℃以下、圧力は250kgf/cm以上が望ましい。成型・焼結は、ホットプレスに限らず、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。 With respect to the sintered body of the present invention having the above component composition, particularly a sputtering target for a magnetic recording film, a relative density of 95% or more, 98% or more, and 99% or more can be achieved. The density of the sintered body can be adjusted by the sintering temperature and the pressure of the hot press or HIP. However, if the temperature is too high, the oxide phase grows and coarsens, so the sintering temperature is lowered as much as possible to increase the pressure. It is desirable to do. The sintering temperature is desirably 1100 ° C. or lower and the pressure is preferably 250 kgf / cm 2 or higher. Molding / sintering is not limited to hot pressing, and plasma discharge sintering and hot isostatic pressing can also be used.
 なお、相対密度は、ターゲットの実測密度を計算密度(理論密度ともいう)で割り返して求めた値である。計算密度とはターゲットの構成成分が互いに拡散あるいは反応せずに混在していると仮定したときの密度で、次式で計算される。
式:計算密度=シグマΣ(構成成分の分子量×構成成分のモル比)/Σ(構成成分の分子量×構成成分のモル比/構成成分の文献値密度)
 ここでΣは、ターゲットの構成成分の全てについて、和をとることを意味する。
The relative density is a value obtained by dividing the actually measured density of the target by the calculated density (also called the theoretical density). The calculation density is a density when it is assumed that the constituent components of the target are mixed without diffusing or reacting with each other, and is calculated by the following equation.
Formula: Calculated density = Sigma Σ (Molecular weight of constituent component x Molar ratio of constituent component) / Σ (Molecular weight of constituent component x Molar ratio of constituent component / Document value density of constituent component)
Here, Σ means taking the sum for all the constituent components of the target.
 下記に、本願発明の成分組成範囲の一部を、実施例(代表例)として挙げるが、本願発明で規定する成分組成範囲の焼結体、特に磁気記録膜用スパッタリングターゲットは、下記の実施例と同等の効果を有するものである。 Hereinafter, a part of the component composition range of the present invention will be given as examples (representative examples). The sintered body of the component composition range specified in the present invention, particularly the sputtering target for magnetic recording film, It has the same effect as.
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.
(実施例1)
 酸化ホウ素と酸化クロム又は酸化コバルトを準備し、B:Cr=1:1、B:CoO=1:2、B:CoO=1:3となるようにそれぞれ秤量し、ボールミルにて混合した後、これを700~1200℃の範囲で5時間以上、大気中で焼成し、これによりCr(BO)、Co、Coから選択した1種又は2種以上の化合物を製造した。なお、調合比率を変えて、複数の化合物及び単純酸化物が共存するように原料調整することも可能である。
(Example 1)
Boron oxide and chromium oxide or cobalt oxide are prepared so that B 2 O 3 : Cr 2 O 3 = 1: 1, B 2 O 3 : CoO = 1: 2, B 2 O 3 : CoO = 1: 3. And then mixed in a ball mill, and then fired in the atmosphere at 700 to 1200 ° C. for 5 hours or longer, whereby Cr (BO 3 ), Co 2 B 2 O 5 , Co 3 B 2 One or more compounds selected from O 6 were prepared. It is also possible to adjust the raw materials so that a plurality of compounds and simple oxides coexist by changing the blending ratio.
 さらに、これらを粉砕して焼結原料(酸化物)とした。なお、調合比率を変えて、複数の化合物及び単純酸化物が共存するように原料調整することも可能である。粉砕に際しては、ボールミルを使用した。 Furthermore, these were pulverized to obtain sintered raw materials (oxides). It is also possible to adjust the raw materials so that a plurality of compounds and simple oxides coexist by changing the blending ratio. A ball mill was used for pulverization.
 次に、この焼結原料と、少なくとも金属としてコバルトを含み、クロムと白金族元素から選択した1種以上の金属の原料粉末と、更に必要な酸化物の原料粉末を、表1に示す割合に調整し、ボールミルで20時間以上混合した後、直径50φサイズのグラファイトダイスに充填し、真空中焼結温度900~1100°Cでホットプレス焼結した。
 そして機械加工により、円盤形状にした後、室温で純水に1時間浸漬し、その後乾燥して表面を観察した。なお、下記の実施例、比較例も製造法及び試験方法についても、本実施例と同様の条件とした。
Next, the sintering raw material, at least one metal containing cobalt as a metal and selected from chromium and platinum group elements, and further necessary raw material powders of oxides in the ratios shown in Table 1. After adjusting and mixing with a ball mill for 20 hours or more, it was filled in a graphite die having a diameter of 50φ and subjected to hot press sintering at a sintering temperature of 900 to 1100 ° C. in vacuum.
And after making into a disk shape by machining, it was immersed in pure water for 1 hour at room temperature and then dried to observe the surface. In the following examples and comparative examples, the production method and test method were the same as those in this example.
 実施例1のマトリックスとなる磁性材料の各成分組成は、Co:69mol%、Cr:5mol%、Pt:20mol%とした。一方、酸化物はCr(BO):2mol%、Cr:2mol%、SiO:2mol%とした。Cr/Bの比は5.5である。またB/Oの比は0.1であった。これらは、本願発明の条件を満たしていた。 Each component composition of the magnetic material used as the matrix in Example 1 was Co: 69 mol%, Cr: 5 mol%, and Pt: 20 mol%. On the other hand, the oxides were Cr (BO 3 ): 2 mol%, Cr 2 O 3 : 2 mol%, and SiO 2 : 2 mol%. The ratio of Cr / B is 5.5. The B / O ratio was 0.1. These satisfied the conditions of the present invention.
 この結果を、表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は1.5μmであった。なお、酸化物相の1粒子当たりの平均面積は、次のようにして求めたものである。まず、ターゲットより任意に採取したサンプルの表面を鏡面になるように研磨し、25×18μmの視野でレーザー顕微鏡画像を撮影する。酸化物相と金属相は反射率が大きく異なるので画像の明暗差で判別する。
 それより酸化物相の全面積と個数を求め、1粒子当たりの平均面積(酸化物相の全面積÷個数)を算出した。以下の実施例、比較例も同様にして算出した。前記算出に際しては、ソフトウエア(KEYENCE社製形状解析アプリケーションVK-H1A1)を使用し、レーザー顕微鏡画像から求めた。
The results are shown in Table 1. The average area per one particle of the oxide phase in the target was 1.5 μm 2 . In addition, the average area per particle | grains of an oxide phase is calculated | required as follows. First, the surface of a sample arbitrarily collected from the target is polished so as to be a mirror surface, and a laser microscope image is taken with a field of view of 25 × 18 μm. Since the oxide phase and the metal phase have greatly different reflectances, they are discriminated based on the difference in brightness of the image.
From this, the total area and number of oxide phases were determined, and the average area per particle (total area of oxide phases ÷ number) was calculated. The following examples and comparative examples were similarly calculated. In the calculation, software (shape analysis application VK-H1A1 manufactured by KEYENCE) was used and obtained from a laser microscope image.
 水に浸漬した後の焼結体の表面の外観は、変色が全くなかった。また、この焼結体の相対密度は、96.5%であった。同じ原料と製造条件で作製した180φサイズの焼結体からターゲットを製作してスパッタリングを実施したところ、定常状態時のパーティクル発生数は2個であり、このように、高密度のターゲットが得られ、パーティクル発生数は少ない結果となった。 The appearance of the surface of the sintered body after being immersed in water had no discoloration. Moreover, the relative density of this sintered compact was 96.5%. When sputtering was performed by producing a target from a 180φ size sintered body produced with the same raw materials and production conditions, the number of particles generated in a steady state was 2, and thus a high-density target was obtained. The number of particles generated was small.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 実施例2のマトリックスとなる磁性材料の各成分組成は、Co:60mol%、Cr:5mol%、Pt:20mol%、Ru:5mol%とした。
 一方、酸化物はCr(BO):10mol%とした。Cr/Bの比は1.5である。またB/Oの比は0.3であった。これらは、本願発明の条件を満たしていた。
(Example 2)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
Each component composition of the magnetic material used as the matrix of Example 2 was set to Co: 60 mol%, Cr: 5 mol%, Pt: 20 mol%, Ru: 5 mol%.
On the other hand, the oxide was Cr (BO 3 ): 10 mol%. The ratio of Cr / B is 1.5. The B / O ratio was 0.3. These satisfied the conditions of the present invention.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は1.9μmであった。水に浸漬した後の焼結体の表面の外観は、変色が全くなかった。また、この焼結体の相対密度は、95.8%であった。 The results are also shown in Table 1. The average area per one particle of the oxide phase in the target was 1.9 μm 2 . The appearance of the surface of the sintered body after being immersed in water had no discoloration. Moreover, the relative density of this sintered compact was 95.8%.
(実施例3)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 実施例3のマトリックスとなる磁性材料の各成分組成は、Co:77.8mol%、Cr:5.3mol%、Pt:10.5mol%とした。
 一方、酸化物はCr(BO):4.2mol%、Co:1.1、Co:1.1とした。Cr/Bの比は1.7である。またB/Oの比は0.3であった。これらは、本願発明の条件を満たしていた。
(Example 3)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
Each component composition of the magnetic material used as the matrix of Example 3 was Co: 77.8 mol%, Cr: 5.3 mol%, and Pt: 10.5 mol%.
On the other hand, the oxides were Cr (BO 3 ): 4.2 mol%, Co 2 B 2 O 5 : 1.1, and Co 3 B 2 O 6 : 1.1. The ratio of Cr / B is 1.7. The B / O ratio was 0.3. These satisfied the conditions of the present invention.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は1.1μmであった。水に浸漬した後の焼結体の表面の外観は、変色が全くなかった。また、この焼結体の相対密度は、96.1%であった。 The results are also shown in Table 1. The average area per particle of the oxide phase in the target was 1.1 μm 2 . The appearance of the surface of the sintered body after being immersed in water had no discoloration. The relative density of this sintered body was 96.1%.
(実施例4)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 実施例4のマトリックスとなる磁性材料の各成分組成は、Co:75.2mol%、Pt:21.5mol%とした。
 一方、酸化物はCo:2.2、Co:1.1とした。Cr/Bの比は0.0である。またB/Oの比は0.4であった。これらは、本願発明の条件を満たしていた。
Example 4
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
Each component composition of the magnetic material used as the matrix of Example 4 was set to Co: 75.2 mol% and Pt: 21.5 mol%.
On the other hand, the oxides were Co 2 B 2 O 5 : 2.2 and Co 3 B 2 O 6 : 1.1. The ratio of Cr / B is 0.0. The B / O ratio was 0.4. These satisfied the conditions of the present invention.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は2.0μmであった。水に浸漬した後の焼結体の表面の外観は、変色が全くなかった。また、この焼結体の相対密度は、97.1%であった。 The results are also shown in Table 1. The average area per one particle of the oxide phase in the target was 2.0 μm 2 . The appearance of the surface of the sintered body after being immersed in water had no discoloration. The relative density of this sintered body was 97.1%.
(実施例5)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 実施例5のマトリックスとなる磁性材料の各成分組成は、Co:71.4mol%、Pt:20.4mol%とした。
 一方、酸化物は、Cr(BO):4.1mol%、Co:1、TiO:3.1mol%とした。Cr/Bの比は0.7である。またB/Oの比は0.3であった。Cr/B比以外は、本願発明の条件を満たしていた。
(Example 5)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
The composition of each component of the magnetic material serving as the matrix of Example 5 was Co: 71.4 mol% and Pt: 20.4 mol%.
On the other hand, the oxides were Cr (BO 3 ): 4.1 mol%, Co 2 B 2 O 5 : 1, TiO 2 : 3.1 mol%. The ratio of Cr / B is 0.7. The B / O ratio was 0.3. Except for the Cr / B ratio, the conditions of the present invention were satisfied.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は1.2μmであった。水に浸漬した後の焼結体の表面の外観は、変色が全くなかった。また、この焼結体の相対密度は、97.5%であった。同じ原料と製造条件で作製した180φサイズの焼結体からターゲットを製作してスパッタリングを実施したところ、定常状態時のパーティクル発生数は3個であり、このように、高密度のターゲットが得られ、パーティクル発生数は少ない結果となった。 The results are also shown in Table 1. The average area per particle of the oxide phase in the target was 1.2 μm 2 . The appearance of the surface of the sintered body after being immersed in water had no discoloration. The relative density of this sintered body was 97.5%. When sputtering was carried out by producing a target from a 180φ size sintered body produced with the same raw materials and production conditions, the number of particles generated in a steady state was 3, and thus a high-density target was obtained. The number of particles generated was small.
(実施例6)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 実施例6のマトリックスとなる磁性材料の各成分組成は、Co:55mol%、Cr:30mol%、Ru:5mol%とした。
 一方、酸化物は、Cr(BO):2mol%、TiO:8mol%とした。Cr/Bの比は16である。またB/Oの比は0.09であった。いずれも、本願発明の条件を満たしていた。
(Example 6)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
The composition of each component of the magnetic material serving as the matrix of Example 6 was Co: 55 mol%, Cr: 30 mol%, and Ru: 5 mol%.
Meanwhile, oxides, Cr (BO 3): 2mol %, TiO 2: was a 8 mol%. The ratio of Cr / B is 16. The B / O ratio was 0.09. All satisfied the conditions of the present invention.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は1.9μmであった。水に浸漬した後の焼結体の表面の外観は、変色が全くなかった。また、この焼結体の相対密度は、99.5%であった。同じ原料と製造条件で作製した180φサイズの焼結体からターゲットを製作してスパッタリングを実施したところ、定常状態時のパーティクル発生数は9個であり、このように、高密度のターゲットが得られ、パーティクル発生数は少ない結果となった。 The results are also shown in Table 1. The average area per one particle of the oxide phase in the target was 1.9 μm 2 . The appearance of the surface of the sintered body after being immersed in water had no discoloration. The relative density of this sintered body was 99.5%. When sputtering was carried out by producing a target from a 180φ size sintered body produced with the same raw materials and production conditions, the number of particles generated in a steady state was 9, and thus a high-density target was obtained. The number of particles generated was small.
(実施例7)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 実施例7のマトリックスとなる磁性材料の各成分組成は、Co:55mol%、Cr:30mol%、B:5mol%とした。
 一方、酸化物は、CoO:6mol%、TiO:4mol%とした。Cr/Bの比は6である。またB/Oの比は0.36であった。いずれも、本願発明の条件を満たしていた。
 焼結後、サンプルのXRD測定でCr(BO)が一部生成していることが確認できた。XRD測定条件は、リガク社製のUltimaIVを用い、CuKα線を使用し、管電圧40kv、管電流30mA、スキャンスピード1°/min、ステップ0.01°、走査角度範囲(2θ)は24~35°である。33.79°付近に現れるCr(BO)の第一ピーク又は25.68°付近に現れる第二ピークのうち、他の生成物のピークと重ならないピークにより確認できる。
 本実施例では、第一ピークの強度が120cps、第二ピークの強度が70cpsであった(バックグランド強度は、およそ50cpsである)。なお、これらの強度値は、測定条件や試料調整により変動するので、上記の数値はあくまで一例であり、これらの数値に限定されるものではない。
(Example 7)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
Each component composition of the magnetic material used as the matrix of Example 7 was set to Co: 55 mol%, Cr: 30 mol%, and B: 5 mol%.
Meanwhile, oxides, CoO: 6mol%, TiO 2 : was 4 mol%. The ratio of Cr / B is 6. The B / O ratio was 0.36. All satisfied the conditions of the present invention.
After sintering, it was confirmed that a part of Cr (BO 3 ) was produced by XRD measurement of the sample. The XRD measurement conditions were using Rigaku's Ultimate IV, using CuKα rays, tube voltage 40 kv, tube current 30 mA, scan speed 1 ° / min, step 0.01 °, and scan angle range (2θ) of 24 to 35. °. Of the first peak of Cr (BO 3 ) appearing near 33.79 ° or the second peak appearing near 25.68 °, this can be confirmed by a peak that does not overlap with the peak of other products.
In this example, the intensity of the first peak was 120 cps, and the intensity of the second peak was 70 cps (the background intensity was approximately 50 cps). In addition, since these intensity | strength values are fluctuate | varied by measurement conditions or sample adjustment, said numerical value is an example to the last, and is not limited to these numerical values.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は1.9μmであった。水に浸漬した後の焼結体の表面の外観は、変色が全くなかった。また、この焼結体の相対密度は、99%であった。同じ原料と製造条件で作製した180φサイズの焼結体からターゲットを製作してスパッタリングを実施したところ、定常状態時のパーティクル発生数は10個であり、このように、高密度のターゲットが得られ、パーティクル発生数は少ない結果となった。 The results are also shown in Table 1. The average area per one particle of the oxide phase in the target was 1.9 μm 2 . The appearance of the surface of the sintered body after being immersed in water had no discoloration. The relative density of this sintered body was 99%. When sputtering was performed by producing a target from a 180φ size sintered body produced with the same raw materials and production conditions, the number of particles generated in a steady state was 10, and thus a high-density target was obtained. The number of particles generated was small.
(実施例8)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 実施例8のマトリックスとなる磁性材料の各成分組成は、Co:60mol%、Cr:5mol%、Pt:24mol%とした。
 一方、酸化物は、Cr(BO):4mol%、SiO:4mol%、CoO:3mol%とした。Cr/Bの比は2.25である。またB/Oの比は0.17であった。いずれも、本願発明の条件を満たしていた。
(Example 8)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
Each component composition of the magnetic material used as the matrix of Example 8 was Co: 60 mol%, Cr: 5 mol%, and Pt: 24 mol%.
On the other hand, the oxides were Cr (BO 3 ): 4 mol%, SiO 2 : 4 mol%, and CoO: 3 mol%. The ratio of Cr / B is 2.25. The B / O ratio was 0.17. All satisfied the conditions of the present invention.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は1.1μmであった。水に浸漬した後の焼結体の表面の外観は、変色が全くなかった。また、この焼結体の相対密度は、99.2%であった。同じ原料と製造条件で作製した180φサイズの焼結体からターゲットを製作してスパッタリングを実施したところ、定常状態時のパーティクル発生数は4個であり、このように、高密度のターゲットが得られ、パーティクル発生数は少ない結果となった。 The results are also shown in Table 1. The average area per particle of the oxide phase in the target was 1.1 μm 2 . The appearance of the surface of the sintered body after being immersed in water had no discoloration. The relative density of this sintered body was 99.2%. When sputtering was carried out by producing a target from a sintered body of 180φ size produced with the same raw materials and production conditions, the number of particles generated in a steady state was 4, and thus a high-density target was obtained. The number of particles generated was small.
(実施例9)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 実施例9のマトリックスとなる磁性材料の各成分組成は、Co:73mol%、Cr:2mol%、Pt:17mol%とした。
 一方、酸化物は、Cr(BO):2mol%、Ta:2mol%、WO:4mol%とした。Cr/Bの比は2である。またB/Oの比は0.07であった。いずれも、本願発明の条件を満たしていた。
Example 9
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
Each component composition of the magnetic material used as the matrix of Example 9 was Co: 73 mol%, Cr: 2 mol%, and Pt: 17 mol%.
Meanwhile, oxides, Cr (BO 3): 2mol %, Ta 2 O 5: 2mol%, WO 3: was 4 mol%. The ratio of Cr / B is 2. The B / O ratio was 0.07. All satisfied the conditions of the present invention.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は1.5μmであった。水に浸漬した後の焼結体の表面の外観は、変色が全くなかった。また、この焼結体の相対密度は、98%であった。同じ原料と製造条件で作製した180φサイズの焼結体からターゲットを製作してスパッタリングを実施したところ、定常状態時のパーティクル発生数は5個であり、このように、高密度のターゲットが得られ、パーティクル発生数は少ない結果となった。 The results are also shown in Table 1. The average area per one particle of the oxide phase in the target was 1.5 μm 2 . The appearance of the surface of the sintered body after being immersed in water had no discoloration. The relative density of this sintered body was 98%. When sputtering was performed by producing a target from a 180φ size sintered body produced with the same raw materials and production conditions, the number of particles generated in a steady state was five, and thus a high-density target was obtained. The number of particles generated was small.
(実施例10)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 実施例10のマトリックスとなる磁性材料の各成分組成は、Co:65mol%、Cr:4mol%、Pt:25mol%とした。
 一方、酸化物は、Cr(BO):2mol%、B:2mol%、Nb:2mol%とした。Cr/Bの比は1である。またB/Oの比は0.27であった。いずれも、本願発明の条件を満たしていた。
(Example 10)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
Each component composition of the magnetic material used as the matrix of Example 10 was Co: 65 mol%, Cr: 4 mol%, and Pt: 25 mol%.
Meanwhile, oxides, Cr (BO 3): 2mol %, B 2 O 3: 2mol%, Nb 2 O 5: was 2 mol%. The ratio of Cr / B is 1. The B / O ratio was 0.27. All satisfied the conditions of the present invention.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は1.6μmであった。水に浸漬した後の焼結体の表面の外観は、変色が全くなかった。また、この焼結体の相対密度は、98.8%であった。同じ原料と製造条件で作製した180φサイズの焼結体からターゲットを製作してスパッタリングを実施したところ、定常状態時のパーティクル発生数は6個であり、このように、高密度のターゲットが得られ、パーティクル発生数は少ない結果となった。 The results are also shown in Table 1. The average area per one particle of the oxide phase in the target was 1.6 μm 2 . The appearance of the surface of the sintered body after being immersed in water had no discoloration. The relative density of this sintered body was 98.8%. When sputtering was performed by producing a target from a 180φ size sintered body produced with the same raw materials and production conditions, the number of particles generated in a steady state was 6, and thus a high-density target was obtained. The number of particles generated was small.
(比較例1)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 比較例1のマトリックスとなる磁性材料の各成分組成は、Co:63mol%、Cr:5mol%、Pt:20mol%、Ru:5mol%とした。
 一方、酸化物は、B:5mol%、SiO:2mol%とした。Cr/Bの比は0.5である。また、B/Oの比は0.5で焼結体中には、Cr(BO)、Co、Coの化合物は確認できなかった。これらは、本願発明の条件を満たしていなかった。
(Comparative Example 1)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
Each component composition of the magnetic material used as the matrix of Comparative Example 1 was Co: 63 mol%, Cr: 5 mol%, Pt: 20 mol%, Ru: 5 mol%.
On the other hand, the oxide, B 2 O 3: 5mol% , SiO 2: was a 2 mol%. The ratio of Cr / B is 0.5. Further, in the sintered body at a B / O ratio of 0.5, Cr (BO 3), Co 2 B 2 O 5, compounds of Co 3 B 2 O 6 was not confirmed. These did not satisfy the conditions of the present invention.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は4.3μmであった。水に浸漬した後の焼結体の表面の外観は、変色があった。また、この焼結体の相対密度は、96%であった。同じ原料と製造条件で作製した180φサイズの焼結体からターゲットを製作してスパッタリングを実施したところ、定常状態時のパーティクル発生数は20個であり、パーティクル発生数は多い結果となった。 The results are also shown in Table 1. The average area per particle of the oxide phase in the target was 4.3 μm 2 . The appearance of the surface of the sintered body after being immersed in water was discolored. The relative density of this sintered body was 96%. When sputtering was carried out by producing a target from a 180φ size sintered body produced with the same raw materials and production conditions, the number of particles generated in a steady state was 20, and the number of particles generated was large.
(比較例2)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。但し、事前にCr(BO)、Co、Coの化合物粉は作製していない。
 比較例2のマトリックスとなる磁性材料の各成分組成は、Co:68mol%、Cr:5mol%、Pt:20mol%とした。一方、酸化物は、B:5mol%、Cr:2mol%とした。Cr/Bの比は0.9である。またB/Oの比は0.5であった。Cr/B比は、本願発明の条件を満たしていなかった。
(Comparative Example 2)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1. However, compound powders of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 are not prepared in advance.
Each component composition of the magnetic material used as the matrix of Comparative Example 2 was Co: 68 mol%, Cr: 5 mol%, and Pt: 20 mol%. On the other hand, the oxide, B 2 O 3: 5mol% , Cr 2 O 3: was a 2 mol%. The ratio of Cr / B is 0.9. The B / O ratio was 0.5. The Cr / B ratio did not satisfy the conditions of the present invention.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は1.8μmであった。水に浸漬した後の焼結体の表面の外観は、変色があった。また、この焼結体の相対密度は、93%であった。同じ原料と製造条件で作製した180φサイズの焼結体からターゲットを製作してスパッタリングを実施したところ、定常状態時のパーティクル発生数は34個であり、このように、密度が低いターゲットが得られ、パーティクル発生数が多い結果となった。 The results are also shown in Table 1. The average area per particle of the oxide phase in the target was 1.8 μm 2 . The appearance of the surface of the sintered body after being immersed in water was discolored. The relative density of this sintered body was 93%. When sputtering was performed by producing a target from a 180φ size sintered body produced with the same raw materials and production conditions, the number of particles generated in a steady state was 34, and thus a target with low density was obtained. As a result, many particles were generated.
(比較例3)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 比較例3のマトリックスとなる磁性材料の各成分組成は、Co:73mol%、Pt:20mol%とした。一方、酸化物は、B:6mol%、Co:1mol%とした。Cr/Bの比は0である。またB/Oの比は0.6であった。これらは、本願発明の条件を満たしていなかった。
(Comparative Example 3)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
The composition of each component of the magnetic material serving as the matrix of Comparative Example 3 was Co: 73 mol% and Pt: 20 mol%. On the other hand, the oxide, B 2 O 3: 6mol% , Co 3 B 2 O 6: was 1 mol%. The ratio of Cr / B is zero. The B / O ratio was 0.6. These did not satisfy the conditions of the present invention.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は5.1μmであった。水に浸漬した後の焼結体の表面の外観は、変色があった。また、この焼結体の相対密度は、96.3%であった。 The results are also shown in Table 1. The average area per particle of the oxide phase in the target was 5.1 μm 2 . The appearance of the surface of the sintered body after being immersed in water was discolored. Moreover, the relative density of this sintered compact was 96.3%.
(比較例4)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 比較例4のマトリックスとなる磁性材料の各成分組成は、Co:66mol%、Cr:9mol%とし、B:10mol%とした。一方、酸化物は、CoO:7mol%、TiO:8mol%とした。Cr/Bの比は0.9である。またB/Oの比は0.43であった。本願発明の条件を満たしていなかった。また、焼結後のサンプルのXRD測定では、Cr(BO)の生成が確認できなかった。
(Comparative Example 4)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
Each component composition of the magnetic material used as the matrix of Comparative Example 4 was Co: 66 mol%, Cr: 9 mol%, and B: 10 mol%. Meanwhile, oxides, CoO: 7mol%, TiO 2 : was a 8 mol%. The ratio of Cr / B is 0.9. The B / O ratio was 0.43. The conditions of the present invention were not satisfied. Further, in the XRD measurement of the sample after sintering, generation of Cr (BO 3) was not confirmed.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は3.8μmであった。水に浸漬した後の焼結体の表面の外観は、変色があった。これは、Cr/Bの比は小さく、Cr量に対してB量が多いという結果、酸化ホウ素が多く発生し、酸化物粒子の粗大化が発生したと考えられた。また、この焼結体の相対密度は、99.0%であった。 The results are also shown in Table 1. The average area per one particle of the oxide phase in the target was 3.8 μm 2 . The appearance of the surface of the sintered body after being immersed in water was discolored. This was thought to be because the ratio of Cr / B was small and the amount of B was large relative to the amount of Cr, so that a large amount of boron oxide was generated and the oxide particles were coarsened. The relative density of this sintered body was 99.0%.
(比較例5)
 各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
 比較例5のマトリックスとなる磁性材料の各成分組成は、Co:50mol%、Cr:30mol%とし、Ru:10mol%とした。一方、酸化物は、B:7mol%、SiO:3mol%とした。Cr/Bの比は2.1である。またB/Oの比は0.52であった。本願発明の条件を満たしていなかった。また、焼結後のサンプルのXRD測定では、Cr(BO)の生成が確認できなかった。
(Comparative Example 5)
A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
Each component composition of the magnetic material used as the matrix of Comparative Example 5 was Co: 50 mol%, Cr: 30 mol%, and Ru: 10 mol%. On the other hand, the oxide, B 2 O 3: 7mol% , SiO 2: was a 3 mol%. The ratio of Cr / B is 2.1. The B / O ratio was 0.52. The conditions of the present invention were not satisfied. Further, in the XRD measurement of the sample after sintering, generation of Cr (BO 3) was not confirmed.
 この結果を、同様に表1に示す。ターゲット中の酸化物の相の1粒子当たりの平均面積は8.2μmであった。水に浸漬した後の焼結体の表面の外観は、変色があった。これは、酸化ホウ素の存在に起因した酸化物粒子の粗大化が原因と考えられる。また、この焼結体の相対密度は、99.2%であった。 The results are also shown in Table 1. The average area per one particle of the oxide phase in the target was 8.2 μm 2 . The appearance of the surface of the sintered body after being immersed in water was discolored. This is considered due to the coarsening of the oxide particles due to the presence of boron oxide. The relative density of this sintered body was 99.2%.
 従来、無機物として酸化ホウ素を添加した焼結体、特に磁気記録膜用スパッタリングターゲットは、焼結後に酸化ホウ素の粒子が大きく、粒成長を抑制するために焼結温度を下げると密度が上げられず、パーティクルが多く発生するという問題があった。
 その原因は、酸化ホウ素原料は吸湿性が高く容易に凝固してしまうため、細かい酸化ホウ素が得難いということ、さらに酸化ホウ素は融点が低いため焼結中に容易に液状化してしまい、焼結中に大きな粒子に成長してしまうことであった。
 この点に鑑み、本願発明の焼結体、特に磁気記録膜用スパッタリングターゲットにおいて酸化物からなる相に、Cr(BO)、Co、Coの少なくとも1種以上が存在するようにしたものである。
Conventionally, sintered bodies to which boron oxide is added as an inorganic substance, particularly sputtering targets for magnetic recording films, have large boron oxide particles after sintering, and the density cannot be increased if the sintering temperature is lowered to suppress grain growth. There was a problem that many particles were generated.
The cause is that boron oxide raw material is highly hygroscopic and solidifies easily, so it is difficult to obtain fine boron oxide. Furthermore, since boron oxide has a low melting point, it easily liquefies during sintering, It grew to large particles.
In view of this point, at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is included in the phase of the oxide in the sintered body of the present invention, particularly the sputtering target for a magnetic recording film. This is what exists.
 これらのCr(BO)、Co、Coの化合物は、微細な組織を維持し、かつ酸化ホウ素の融点を上げることができ、水と反応を抑制することができる特性を持つものである。これによって、酸化ホウ素に起因する上記の問題を解決することが可能となった。このように、酸化ホウ素を添加した焼結体、特に磁気記録膜用スパッタリングターゲットの良好な品質を確保することが可能となり、スパッタリング中のパーティクル発生を抑制することが可能となった。 These compounds of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 can maintain a fine structure, increase the melting point of boron oxide, and suppress reaction with water. It has the characteristics that can be. As a result, it has become possible to solve the above problems caused by boron oxide. As described above, it is possible to ensure good quality of the sintered body to which boron oxide is added, particularly the sputtering target for magnetic recording film, and it is possible to suppress the generation of particles during sputtering.
 また、酸化ホウ素が残留した焼結体を、機械加工等で湿式加工したとき、又は湿度が高い場所に保管したときに、水分と反応してホウ酸が生成され、ターゲット表面などに析出してシミや汚れの原因になっていたが、この問題も同様に解消することができた。
 パーティクル発生を抑制することができるので、磁気記録膜の不良率が減少し、コスト低減化になるという大きな効果を有し、磁性薄膜の品質及び生産効率の向上に大きく貢献するものであり、磁気記録媒体の磁性体薄膜、特にハードディスクドライブ記録層の成膜に使用される強磁性材スパッタリングターゲットとして有用である。
In addition, when the sintered body in which the boron oxide remains is wet-processed by machining or the like, or stored in a place with high humidity, boric acid is generated by reacting with moisture and deposited on the target surface and the like. Although it was a cause of stains and dirt, this problem could be solved as well.
Since particle generation can be suppressed, the magnetic recording film defect rate is reduced and the cost is reduced. This greatly contributes to the improvement of magnetic thin film quality and production efficiency. It is useful as a ferromagnetic sputtering target used for forming a magnetic thin film of a recording medium, particularly a hard disk drive recording layer.

Claims (18)

  1.  少なくとも金属としてコバルトを含み、ホウ素及び/又は白金族元素から選択した1種以上の金属若しくは合金と、酸化物から構成される焼結体であって、前記酸化物からなる相に、Cr(BO)、Co、Coの少なくとも1種以上が存在することを特徴とする焼結体。 A sintered body comprising at least cobalt as a metal, one or more metals or alloys selected from boron and / or platinum group elements, and an oxide, and a phase comprising the oxide containing Cr (BO 3 ) A sintered body characterized in that at least one of Co 2 B 2 O 5 and Co 3 B 2 O 6 is present.
  2.  少なくとも金属としてコバルトを含み、クロムと、ホウ素及び/又は白金族元素から選択した1種以上の金属又は合金と、酸化物から構成される焼結体であって、前記酸化物からなる相に、Cr(BO)、Co、Coの少なくとも1種以上が存在することを特徴とする焼結体。 A sintered body comprising at least cobalt as a metal, chromium, one or more metals or alloys selected from boron and / or platinum group elements, and an oxide, the phase comprising the oxide, A sintered body comprising at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 .
  3.  焼結体が水に接触又は浸漬した際に、焼結体の表面に変色が無いことを特徴とする請求項1又は2のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 and 2, wherein the surface of the sintered body is not discolored when the sintered body is contacted or immersed in water.
  4.  クロムとホウ素の原子比がCr/B≧1であることを特徴とする請求項2又は3のいずれか一項に記載の焼結体。 4. The sintered body according to claim 2, wherein the atomic ratio of chromium to boron is Cr / B ≧ 1. 5.
  5.  ホウ素と酸素の原子比がB/O≦0.5であることを特徴とする請求項1~4のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 4, wherein the atomic ratio of boron to oxygen is B / O≤0.5.
  6.  金属成分の比率において、クロムの含有量が0~50mol%、ホウ素及び/又は白金族元素の含有量が0(但し、0を除く)~40mol%、残部がコバルトであることを特徴とする請求項1~5のいずれか一項に記載の焼結体。 The content of chromium is 0 to 50 mol%, the content of boron and / or platinum group elements is 0 (however, excluding 0) to 40 mol%, and the balance is cobalt in the ratio of the metal component. Item 6. The sintered body according to any one of Items 1 to 5.
  7.  酸化ホウ素の含有量がB換算で0.5~10mol%であることを特徴とする請求項1~6のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 6, wherein the content of boron oxide is 0.5 to 10 mol% in terms of B 2 O 3 .
  8.  酸化クロムの合計含有量がCr換算で0.5~10mol%であることを特徴とする請求項1~7いずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 7, wherein the total content of chromium oxide is 0.5 to 10 mol% in terms of Cr 2 O 3 .
  9.  さらにAl、Co、Cu、Fe、Ga、Ge、Hf、Li、Mg、Mn、Mo、Nb、Ni、Sb、Si、Sn、Ta、Te、Ti、V、W、Y、Zn又はZrから選択した一種以上の元素を構成成分とする酸化物が含まれ、全酸化物量が酸素換算で2~8wt%であることを特徴とする請求項1~8のいずれか一項に記載の焼結体。 Furthermore, select from Al, Co, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, Nb, Ni, Sb, Si, Sn, Ta, Te, Ti, V, W, Y, Zn or Zr The sintered body according to any one of claims 1 to 8, wherein the oxide comprises one or more elements as constituents and the total oxide amount is 2 to 8 wt% in terms of oxygen. .
  10.  焼結体中の酸化物の1粒子当たりの平均面積が2μm以下であることを特徴とする請求項1~9のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 9, wherein an average area per one particle of the oxide in the sintered body is 2 µm 2 or less.
  11.  前記請求項1~10のいずれか一項に記載の焼結体が、さらにTi、V、Mn、Zr、Nb、Mo、Ta、Wから選択した1元素以上を0.5mol%以上10mol%以下含有することを特徴とする焼結体。 The sintered body according to any one of claims 1 to 10, further comprising at least one element selected from Ti, V, Mn, Zr, Nb, Mo, Ta, and W in an amount of 0.5 mol% to 10 mol%. A sintered body characterized by containing.
  12.  さらに炭素、窒化物、炭化物から選択した1種以上を含有することを特徴とする請求項1~11のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 11, further comprising at least one selected from carbon, nitride, and carbide.
  13.  相対密度が95%以上であることを特徴とする請求項1~12のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 12, wherein the relative density is 95% or more.
  14.  上記請求項1~13のいずれか一項に記載の焼結体からなる磁気記録膜形成用スパッタリングターゲット。 A sputtering target for forming a magnetic recording film comprising the sintered body according to any one of claims 1 to 13.
  15.  少なくとも金属としてコバルトを含み、ホウ素及び/又は白金族元素から選択した1種以上の金属若しくは合金と、Cr(BO)、Co、Coの少なくとも1種以上の酸化物を混合して焼結することを特徴とする焼結体の製造方法。 One or more metals or alloys selected from boron and / or platinum group elements and at least one or more of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 , including at least cobalt as a metal. A method for producing a sintered body, characterized by mixing and sintering the oxide.
  16.  少なくとも金属としてコバルトを含み、クロムと、ホウ素及び/又は白金族元素から選択した1種以上の金属又は合金と、Cr(BO)、Co、Coの少なくとも1種以上の酸化物を混合して焼結することを特徴とする焼結体の製造方法。 Cobalt as at least metal, at least one of chromium, boron and / or one or more metals or alloys selected from platinum group elements, Cr (BO 3 ), Co 2 B 2 O 5 , Co 3 B 2 O 6 A method for producing a sintered body, comprising mixing and sintering one or more oxides.
  17.  酸化ホウ素と、酸化クロム及び/又は酸化コバルトを準備し、これを大気中で焼成して、Cr(BO)、Co、Coの少なくとも1種以上の酸化物を製造することを特徴とする請求項15又は16のいずれか一項に記載の焼結体の製造方法。 Boron oxide and chromium oxide and / or cobalt oxide are prepared and fired in the air to oxidize at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6. The method for producing a sintered body according to claim 15, wherein an article is produced.
  18.  請求項15~17のいずれか一項に記載の焼結体の製造方法により、請求項1~請求項13のいずれか一項に記載の焼結体を製造することを特徴とする焼結体の製造方法。 A sintered body according to any one of claims 1 to 13, wherein the sintered body according to any one of claims 1 to 13 is manufactured by the method for manufacturing a sintered body according to any one of claims 15 to 17. Manufacturing method.
PCT/JP2014/061357 2013-04-30 2014-04-23 Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body WO2014178310A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014541456A JP5878242B2 (en) 2013-04-30 2014-04-23 Sintered body, sputtering target for forming a magnetic recording film comprising the sintered body
CN201480011201.XA CN105026589B (en) 2013-04-30 2014-04-23 Sintered body, the magnetic recording film formation sputtering target comprising the sintered body
SG11201506155PA SG11201506155PA (en) 2013-04-30 2014-04-23 Sintered body, and sputtering target for forming magnetic recording film produced from said sintered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013095486 2013-04-30
JP2013-095486 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178310A1 true WO2014178310A1 (en) 2014-11-06

Family

ID=51843443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061357 WO2014178310A1 (en) 2013-04-30 2014-04-23 Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body

Country Status (6)

Country Link
JP (1) JP5878242B2 (en)
CN (1) CN105026589B (en)
MY (1) MY170253A (en)
SG (1) SG11201506155PA (en)
TW (1) TWI615479B (en)
WO (1) WO2014178310A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133047A1 (en) * 2015-02-19 2016-08-25 Jx金属株式会社 Sputtering target for forming magnetic thin film
JP2016160530A (en) * 2015-03-05 2016-09-05 光洋應用材料科技股▲分▼有限公司 Magnetic alloy sputtering target and recording layer for magnetic recording media
JP2017095790A (en) * 2015-11-27 2017-06-01 田中貴金属工業株式会社 Sputtering target
WO2020066114A1 (en) * 2018-09-25 2020-04-02 Jx金属株式会社 Sputtering target and powder for producing sputtering target
WO2020202603A1 (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Methods for fabricating and transporting package of sputtering target
CN113692457A (en) * 2019-03-29 2021-11-23 Jx金属株式会社 Sputtering target and method for producing sputtering target

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158607A (en) * 1997-11-28 1999-06-15 Sumitomo Metal Mining Co Ltd Zno sintered compact and its production
JP2006351164A (en) * 2005-06-15 2006-12-28 Heraeus Inc Sputtering target, magnetic recording medium, method of manufacturing magnetic recording medium
JP2012117147A (en) * 2010-11-12 2012-06-21 Jx Nippon Mining & Metals Corp Sputtering target with remained cobalt oxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469506A (en) * 1983-01-24 1984-09-04 Mitsui Toatsu Chemicals, Incorporated Production process of ferromagnetic iron powder
SG173128A1 (en) * 2009-03-03 2011-08-29 Jx Nippon Mining & Metals Corp Sputtering target and process for producing same
MY149640A (en) * 2009-12-11 2013-09-13 Jx Nippon Mining & Metals Corp Sputtering target comprising oxide phase dispersed in co or co alloy phase, magnetic thin film made of co or co alloy phase and oxide phase, and magnetic recording medium using the said thin film
US9228251B2 (en) * 2010-01-21 2016-01-05 Jx Nippon Mining & Metals Corporation Ferromagnetic material sputtering target
CN103003468B (en) * 2010-07-20 2015-03-11 吉坤日矿日石金属株式会社 Ferromagnetic material sputtering target with little particle generation
US8590717B2 (en) * 2011-05-16 2013-11-26 Miner Enterprises, Inc. Railroad freight car draft gear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158607A (en) * 1997-11-28 1999-06-15 Sumitomo Metal Mining Co Ltd Zno sintered compact and its production
JP2006351164A (en) * 2005-06-15 2006-12-28 Heraeus Inc Sputtering target, magnetic recording medium, method of manufacturing magnetic recording medium
JP2012117147A (en) * 2010-11-12 2012-06-21 Jx Nippon Mining & Metals Corp Sputtering target with remained cobalt oxide

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108026631A (en) * 2015-02-19 2018-05-11 捷客斯金属株式会社 Magnetic film formation sputtering target
CN108026631B (en) * 2015-02-19 2020-02-28 捷客斯金属株式会社 Sputtering target for forming magnetic thin film
WO2016133047A1 (en) * 2015-02-19 2016-08-25 Jx金属株式会社 Sputtering target for forming magnetic thin film
JPWO2016133047A1 (en) * 2015-02-19 2017-11-09 Jx金属株式会社 Sputtering target for magnetic thin film formation
JP2016160530A (en) * 2015-03-05 2016-09-05 光洋應用材料科技股▲分▼有限公司 Magnetic alloy sputtering target and recording layer for magnetic recording media
WO2017090481A1 (en) * 2015-11-27 2017-06-01 田中貴金属工業株式会社 Sputtering target
JP2017095790A (en) * 2015-11-27 2017-06-01 田中貴金属工業株式会社 Sputtering target
US11072851B2 (en) 2015-11-27 2021-07-27 Tanaka Kikinzoku Kogyo K.K. Sputtering target
WO2020066114A1 (en) * 2018-09-25 2020-04-02 Jx金属株式会社 Sputtering target and powder for producing sputtering target
JPWO2020066114A1 (en) * 2018-09-25 2021-10-21 Jx金属株式会社 Sputtering target and manufacturing method of sputtering target
JP7072664B2 (en) 2018-09-25 2022-05-20 Jx金属株式会社 Sputtering target and manufacturing method of sputtering target
WO2020202603A1 (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Methods for fabricating and transporting package of sputtering target
JP2020164973A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Manufacturing method and transporting method for package of sputtering target
CN113692457A (en) * 2019-03-29 2021-11-23 Jx金属株式会社 Sputtering target and method for producing sputtering target

Also Published As

Publication number Publication date
CN105026589B (en) 2017-07-18
JPWO2014178310A1 (en) 2017-02-23
TW201510232A (en) 2015-03-16
SG11201506155PA (en) 2015-09-29
TWI615479B (en) 2018-02-21
MY170253A (en) 2019-07-13
JP5878242B2 (en) 2016-03-08
CN105026589A (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5878242B2 (en) Sintered body, sputtering target for forming a magnetic recording film comprising the sintered body
JP6526837B2 (en) Ferromagnetic sputtering target
JP6692724B2 (en) Non-magnetic material dispersed Fe-Pt based sputtering target
US20130168240A1 (en) Fe-Pt-Based Ferromagnetic Material Sputtering Target
JP5960287B2 (en) Sintered sputtering target
JP5801496B2 (en) Sputtering target
US9773653B2 (en) Ferromagnetic material sputtering target containing chromium oxide
CN108026631B (en) Sputtering target for forming magnetic thin film
JP6100352B2 (en) Ferromagnetic material sputtering target containing chromium oxide
JP5944580B2 (en) Sputtering target
CN111183244B (en) Ferromagnetic material sputtering target
WO2021014760A1 (en) Sputtering target member for non-magnetic layer formation
JP2009132976A (en) Sputtering target for depositing perpendicular magnetic recording medium film having low relative magnetic permeability
US20130008784A1 (en) Cocrpt-based alloy sputtering targets with cobalt oxide and non-magnetic oxide and manufacturing methods thereof
WO2023079857A1 (en) Fe-Pt-C-BASED SPUTTERING TARGET MEMBER, SPUTTERING TARGET ASSEMBLY, METHOD FOR FORMING FILM, AND METHOD FOR PRODUCING SPUTTERING TARGET MEMBER
JP2015190017A (en) Softly magnetic thin film forming sputtering target
CN111183243A (en) Sputtering target, magnetic film, and method for producing magnetic film
JP2019019402A (en) Sputtering target, production method of sputtering target, and production method of magnetic medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011201.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014541456

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14792150

Country of ref document: EP

Kind code of ref document: A1