JP2006351164A - Sputtering target, magnetic recording medium, method of manufacturing magnetic recording medium - Google Patents

Sputtering target, magnetic recording medium, method of manufacturing magnetic recording medium Download PDF

Info

Publication number
JP2006351164A
JP2006351164A JP2006088246A JP2006088246A JP2006351164A JP 2006351164 A JP2006351164 A JP 2006351164A JP 2006088246 A JP2006088246 A JP 2006088246A JP 2006088246 A JP2006088246 A JP 2006088246A JP 2006351164 A JP2006351164 A JP 2006351164A
Authority
JP
Japan
Prior art keywords
metal additive
cobalt
recording medium
sputter target
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006088246A
Other languages
Japanese (ja)
Inventor
Michael G Racine
ジーン ラシーネ マイケル
Anirban Das
ダース アニアーバーン
Steven Roger Kennedy
ロジャー ケネディ スティーブン
Kyung Chung
チョン キョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Inc
Original Assignee
Heraeus Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Inc filed Critical Heraeus Inc
Publication of JP2006351164A publication Critical patent/JP2006351164A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the thermal stability and the SNR of a magnetic recording medium by utilizing an enhanced sputtering target to achieve enhancement in magnetocrystalline anisotropy and increased grain-to-grain segregation. <P>SOLUTION: The sputtering target contains cobalt (Co), platinum (Pt), a single-component oxide or a multi-component oxide, and an elemental metal additive. The elemental metal additive has a reduction potential of greater than -0.03 electron volts, and is substantially insoluble with cobalt (Co) at a room temperature. The elemental metal additive is copper (Cu), silver (Ag), or gold (Au), and the sputtering target is further comprised of chromium (Cr) and/or boron (B). The sputtering target is comprised of between 2 atomic% and 10 atomic% copper (Cu), silver (Ag), or gold (Au) or other elemental metal additive. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スパッタターゲット、このスパッタターゲットを用いて形成した薄膜磁気記録媒体及びこの薄膜磁気記録媒体の製造方法に関し、より詳しくは、改善された冶金学的特性を有する合金組成からなるスパッタターゲット、このスパッタターゲットでスパッタ成膜された磁気記録媒体及びこの磁気記録媒体の製造方法に関する。   The present invention relates to a sputter target, a thin film magnetic recording medium formed using the sputter target, and a method of manufacturing the thin film magnetic recording medium, and more particularly, a sputter target composed of an alloy composition having improved metallurgical properties, The present invention relates to a magnetic recording medium formed by sputtering with this sputter target and a method for manufacturing the magnetic recording medium.

直流(DC)マグネトロンスパッタリングプロセスは、例えば半導体表面を被覆したり、磁気記録媒体の表面に膜を形成したりするような、精密に制御された厚さ及び原子比の狭い公差内の薄膜材料付着物を基板上に形成する種々の分野に用いられている。1つの共通の構成として、ターゲットの背面に磁石を配置することにより長円形状の磁場をスパッタターゲットに与える。これにより、電子が、スパッタリングターゲット近傍で捕捉され、アルゴンイオンの生成を改善し、スパッタリング速度を増加させる。このプラズマ内のイオンはスパッタターゲット表面に衝突してスパッタターゲットがその表面から原子を放出する。陰極のスパッタターゲットと被覆される陽極の基板との間の電圧差で、放出された原子が基板表面に所望の膜を形成する。   A direct current (DC) magnetron sputtering process can be applied to thin film materials with tightly controlled thickness and narrow atomic ratio tolerances, such as coating semiconductor surfaces or forming films on the surface of magnetic recording media. It is used in various fields for forming a kimono on a substrate. As one common configuration, an elliptical magnetic field is applied to the sputter target by disposing a magnet on the back surface of the target. This traps electrons in the vicinity of the sputtering target, improving the production of argon ions and increasing the sputtering rate. The ions in the plasma collide with the surface of the sputter target, and the sputter target releases atoms from the surface. Due to the voltage difference between the cathode sputter target and the anode substrate to be coated, the emitted atoms form the desired film on the substrate surface.

反応性スパッタリングプロセスにおいては、真空チャンバは、化学的に活性なガス雰囲気にあり、スパッタによりスパッタターゲットから飛び出した物質は、混合ガス内の反応性の種と化学的に反応して所望の膜を形成する化合物を形成する。   In the reactive sputtering process, the vacuum chamber is in a chemically active gas atmosphere, and the material ejected from the sputtering target by sputtering chemically reacts with the reactive species in the mixed gas to form a desired film. Form the compound to be formed.

従来の磁気記録媒体の製造時には、夫々が異なる材料の複数のスパッタターゲットにより、複数の薄膜層が順次基板上にスパッタされ、その結果、薄膜の付着物が積層されるものである。図6は、従来の磁気記録媒体の一般的な薄膜積層構造を示す。積層構造の底部に、一般的にアルミニウム或いはガラスの非磁性基板101がある。最初の付着層であるシード層102は、上層の粒状組織の形態及び方位を規定し、普通はNiP或いはNiAlからなる。次に、しばしば1つから3つの個別の層からなる非磁性の下地層104が付着される。下地層104は、一般的にCrMo或いはCrTiのようなクロムを主成分とする合金である。1つ或いは2つの別々な層からなる中間層105は下地層104の上に形成され、コバルトを主成分としわずかに磁性を有する。2つ或いは3つの別層からなる磁気データ記録層106は中間層105の上に付着され、更に、カーボン潤滑層108が磁気データ記録層106の上に形成される。   In manufacturing a conventional magnetic recording medium, a plurality of thin film layers are sequentially sputtered onto a substrate by a plurality of sputter targets, each of which is made of a different material, and as a result, thin film deposits are stacked. FIG. 6 shows a general thin film laminated structure of a conventional magnetic recording medium. A nonmagnetic substrate 101 made of aluminum or glass is generally provided at the bottom of the laminated structure. The seed layer 102, which is the first adhesion layer, defines the morphology and orientation of the upper granular structure, and is usually made of NiP or NiAl. Next, a non-magnetic underlayer 104, often consisting of one to three individual layers, is deposited. The underlayer 104 is generally an alloy mainly composed of chromium such as CrMo or CrTi. The intermediate layer 105 composed of one or two separate layers is formed on the underlayer 104, and has cobalt as a main component and slightly magnetism. Two or three separate magnetic data recording layers 106 are deposited on the intermediate layer 105, and a carbon lubricating layer 108 is formed on the magnetic data recording layer 106.

磁気記録媒体の単位面積当たりの記録可能なデータ量は、データ記録層の冶金学的な特性及び組成に直接的に関係し、同様に、データ記録層をスパッタ成膜するスパッタターゲット材に関係する。データ記録容量を今後とも増大させていくためには、従来の長手磁気記録(LMR)に対抗して垂直磁気記録(PMR)として知られる技術は、軟磁性下地層と組み合わせて垂直単磁極記録ヘッドを使用することにより高い書込み効率を示すために、磁気データ記録産業にとって最も有望且つ有効な技術となっている。PMRを用いると、ビットは磁気記録媒体面に対して垂直に記録され、ビットサイズを小さくしながら保磁力を大きくさせることが可能である。故に、将来的には、PMRは、ディスクの保磁力を増大し、信号増幅を増強することが期待され、優れた記録文書のデータ保持が可能になる。   The amount of data that can be recorded per unit area of the magnetic recording medium is directly related to the metallurgical characteristics and composition of the data recording layer, and similarly to the sputter target material on which the data recording layer is sputtered. . In order to increase the data recording capacity in the future, a technique known as perpendicular magnetic recording (PMR) in contrast to conventional longitudinal magnetic recording (LMR) is a perpendicular single pole recording head combined with a soft magnetic underlayer. The high writing efficiency by using, has become the most promising and effective technology for the magnetic data recording industry. When PMR is used, the bits are recorded perpendicular to the magnetic recording medium surface, and the coercive force can be increased while reducing the bit size. Therefore, in the future, the PMR is expected to increase the coercive force of the disk and enhance the signal amplification, and it will be possible to retain excellent recorded document data.

PMR媒体の高記録密度を達成するために、熱安定性を高め、媒体雑音特性を下げる必要がある。PMR媒体に要求される本質的な熱安定性と媒体雑音特性を実現するための1つの技術は、高い磁気結晶異方性を有する磁気領域を備えた粒状磁気媒体を提供することであり、構造的、磁気的及び電気的に分離した母材に微粒のミクロ組織を十分に封じ込めることである。この目的を達成するために、比較的大きな原子半径とコバルトに対して十分な固溶度を持つ成分が、保磁力を増強するために添加されてきた。   In order to achieve the high recording density of PMR media, it is necessary to increase thermal stability and reduce media noise characteristics. One technique for achieving the essential thermal stability and media noise characteristics required for PMR media is to provide a granular magnetic media with a magnetic region having high magnetocrystalline anisotropy, It is to sufficiently contain the fine microstructure in the base material separated from each other mechanically, magnetically and electrically. In order to achieve this goal, components with a relatively large atomic radius and sufficient solid solubility in cobalt have been added to enhance the coercivity.

従来のLMRによって実現された異方性エネルギの増強に加えて、PMRは、十分な粒子間分離性を有し、磁気領域間のクロストーク(cross−talk)がごくわずかである、非常に細かい粒子のミクロ組織を要求する。磁気相内への固溶度が無視できるほどわずかであることから、粒界に析出される化学量論酸化物を含んだ酸素の豊富な粒界領域を含むことは、粒子の微粒化を著しく改善し、優れたミクロ組織的、磁気的及び電気的な分離性を提供する。上述及びその他の従来技術は、CoPtCrO,CoPtCr−SiO2或いはCoPtTa25からなる磁気記録媒体のような酸素含有磁気記録媒体において、十分に分離された粒子組織を実現し、大きな磁気異方性エネルギ(Ku)値の著しい改善を実現する。 In addition to the enhancement of anisotropic energy achieved by conventional LMR, PMR is very fine with sufficient interparticle separation and negligible cross-talk between magnetic domains. Requires the microstructure of the particles. Inclusion of oxygen-rich grain boundary regions with stoichiometric oxides precipitated at the grain boundaries significantly reduces the atomization of the particles, as the solid solubility in the magnetic phase is negligible. Improves and provides excellent microstructural, magnetic and electrical separation. The above-mentioned and other conventional techniques realize a sufficiently separated grain structure in an oxygen-containing magnetic recording medium such as a magnetic recording medium made of CoPtCrO, CoPtCr—SiO 2 or CoPtTa 2 O 5 , and have a large magnetic anisotropy. A significant improvement in energy (Ku) value is achieved.

粒状磁気媒体の微粒化によって磁気双極子安定性の限界に近づくので、十分な粒子間分離性は、各々の粒子が隣接粒子によって影響を受けないように確立されなければならず、また、磁気結晶異方性を増大しなければならない。粒界への酸素の導入は、更に磁気粒子を封入することでより良い信号対雑音比(SNR)特性を提供することが観察されているが、これら所望の特性を達成するために従来技術では、媒体用途について、SiO2,Y23,Al23,TiO2,Ta25,Nb25のような単一成分酸化物を使用する。最近の研究から、CoPt,CoPtCr,CoPtB及び/又はCoPtCrBを含有する粒状磁気媒体において、反応的スパッタリング及び/又は単一酸化物含有スパッタターゲットにより取り入れた酸素の効果が有益であることが証明された。この技術は、十分に分離した粒子構造の実現について著しい改善を示した。しかしながら、これら酸化物は、PMR媒体のSNR及び熱安定性に関して最良の粒状媒体性能を実現していない。更に、米国特許出願第11/110,105号、「Enhanced Multi-Component Oxide-Containing Sputter Target Alloy Compositions」(2005年4月19日出願)に記載されたこれら技術は、粒状媒体に含有する多成分酸化物の酸化物特性の調整により粒子間のミクロ組織的、磁気的及び電気的な分離性をさらに改善する。 Sufficient interparticle separation must be established so that each particle is not affected by adjacent particles, as the atomization of the granular magnetic medium approaches the limit of magnetic dipole stability, and the magnetic crystal The anisotropy must be increased. The introduction of oxygen into the grain boundaries has been observed to provide better signal-to-noise ratio (SNR) characteristics by further encapsulating magnetic particles, but in the prior art to achieve these desired characteristics for media applications, using a single-component oxide such as SiO 2, Y 2 O 3, Al 2 O 3, TiO 2, Ta 2 O 5, Nb 2 O 5. Recent studies have demonstrated that the effect of oxygen incorporated by reactive sputtering and / or single oxide containing sputter targets is beneficial in granular magnetic media containing CoPt, CoPtCr, CoPtB and / or CoPtCrB. . This technique has shown a significant improvement in achieving a well-separated particle structure. However, these oxides do not achieve the best granular media performance with respect to the SNR and thermal stability of the PMR media. In addition, these techniques described in US patent application Ser. No. 11 / 110,105, “Enhanced Multi-Component Oxide-Containing Sputter Target Alloy Compositions” (filed Apr. 19, 2005) can be used for multicomponents contained in granular media. Adjustment of the oxide properties of the oxide further improves the microstructural, magnetic and electrical separation between the particles.

従って、磁気データ記録層に高密度粒子構造を有する磁気記録媒体を提供し、信号対雑音比を改善し、潜在的なデータ記録能力を増大することが極めて望ましいと考えられる。特に、スパッタターゲットに用いることが可能で、薄膜をスパッタすることが可能な単一成分或いは多成分の酸化物を含有する合金組成を提供することが望ましい。   Accordingly, it would be highly desirable to provide a magnetic recording medium having a high density particle structure in the magnetic data recording layer to improve the signal to noise ratio and increase the potential data recording capability. In particular, it is desirable to provide an alloy composition containing a single component or multicomponent oxide that can be used for a sputtering target and can sputter a thin film.

本発明は、スパッタターゲット、このスパッタターゲットを用いて形成した薄膜磁気記録媒体及びこの薄膜磁気記録媒体の製造方法に関し、より詳しくは、改善された冶金学的特性を有する合金組成からなるスパッタターゲット、このスパッタターゲットでスパッタ成膜された磁気記録媒体及びこの磁気記録媒体の製造方法に関する。   The present invention relates to a sputter target, a thin film magnetic recording medium formed using the sputter target, and a method of manufacturing the thin film magnetic recording medium, and more particularly, a sputter target composed of an alloy composition having improved metallurgical properties, The present invention relates to a magnetic recording medium formed by sputtering with this sputter target and a method for manufacturing the magnetic recording medium.

第1の構成によれば、本発明は、コバルト(Co)、白金(Pt)、単一成分酸化物及び金属添加物を含むスパッタターゲットである。前記金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   According to a first configuration, the present invention is a sputter target comprising cobalt (Co), platinum (Pt), a single component oxide and a metal additive. The metal additive has a reduction potential greater than −0.03 electron volts and is substantially insoluble in cobalt (Co) at room temperature.

従って、磁気結晶異方性の改善と増大化された粒子間分離性とを介して、コバルト(Co)含有磁気相に不溶で酸化に対して抵抗力のある金属添加物を有する単一成分或いは多成分の酸化物を含有する組成を使用すれば、熱安定性及びSNRの著しい改善を行うことが可能となる。それ故、本発明は、マグネトロンスパッタリングを用いて製造されたPMR媒体の磁性をより良くする金属添加物を用いてスパッタターゲット合金組成を改善することを意図している。   Thus, through improved magnetocrystalline anisotropy and increased interparticle separation, a single component having a metal additive that is insoluble in the cobalt (Co) containing magnetic phase and resistant to oxidation or If a composition containing a multi-component oxide is used, it is possible to significantly improve thermal stability and SNR. Therefore, the present invention contemplates improving the sputter target alloy composition with a metal additive that improves the magnetism of PMR media produced using magnetron sputtering.

前記スパッタターゲットは、更に、クロム(Cr)及び/又はホウ素(B)を含む。前記スパッタターゲットは、2原子%〜10原子%の範囲の金属添加物を含み、その金属添加物は、銅(Cu)、銀(Ag)又は金(Au)である。   The sputter target further includes chromium (Cr) and / or boron (B). The sputter target includes a metal additive in a range of 2 atomic% to 10 atomic%, and the metal additive is copper (Cu), silver (Ag), or gold (Au).

PMR媒体は、熱安定性とSNR特性に関してLMR媒体以上の厳しい要求を有し、従って、高い磁気結晶異方性、微粒構造及び改善した粒子間のミクロ構造的、磁気的、電気的分離性を提供するために、従来の記録媒体について新たな添加物の導入を必要とする。CoPtを主成分とする系において、銅(Cu)、銀(Ag)及び金(Au)のような金属の適量の添加は、磁気結晶異方性及び保磁力の増大並びにLMR媒体の微粒のミクロ組織の実現について著しい改善を示す。   PMR media have more stringent requirements than LMR media in terms of thermal stability and SNR properties, and thus provide high magnetocrystalline anisotropy, fine grain structure and improved microstructural, magnetic and electrical isolation between grains. In order to provide it, it is necessary to introduce a new additive to the conventional recording medium. In systems based on CoPt, the addition of appropriate amounts of metals such as copper (Cu), silver (Ag) and gold (Au) can increase the magnetocrystalline anisotropy and coercivity as well as the microscopic size of the LMR media. Show significant improvement in organizational realization.

第2の構成によれば、本発明はスパッタターゲットであり、該スパッタターゲットは、コバルト(Co)、白金(Pt)、多成分酸化物及び金属添加物を含み、この金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   According to a second configuration, the present invention is a sputter target, the sputter target comprising cobalt (Co), platinum (Pt), a multi-component oxide and a metal additive, the metal additive being −0 It has a reduction potential greater than 0.03 eV and is substantially insoluble in cobalt (Co) at room temperature.

本発明は、従来組成に比べてより良い熱安定性とSNRを提供する、CoPtを主成分とする組成を含有する粒状磁気媒体をスパッタするのに用いることが可能な改善された合金組成を提供する。酸化物含有のCoPtを主成分とする媒体は、粒子サイズの微粒化と分離性を著しく改善する。これら利点は、添加金属が磁気合金組成に加えられたときに、磁気結晶異方性エネルギの増大と組み合わせた場合に更に改善される。   The present invention provides an improved alloy composition that can be used to sputter a granular magnetic medium containing a CoPt-based composition that provides better thermal stability and SNR compared to conventional compositions. To do. A medium mainly composed of oxide-containing CoPt remarkably improves particle size atomization and separability. These advantages are further improved when added metals are added to the magnetic alloy composition when combined with increased magnetocrystalline anisotropy energy.

第3の構成によれば、本発明は、基板と、該基板上に形成されたデータ記録薄膜層とを備える磁気記録媒体である。前記データ記録薄膜層用スパッタターゲットは、コバルト(Co)、白金(Pt)、単一成分酸化物及び金属添加物を含み、該金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   According to a third configuration, the present invention is a magnetic recording medium including a substrate and a data recording thin film layer formed on the substrate. The sputter target for the data recording thin film layer includes cobalt (Co), platinum (Pt), a single component oxide, and a metal additive, and the metal additive has a reduction potential greater than −0.03 electron volts. In addition, it is substantially insoluble in cobalt (Co) at room temperature.

第4の構成によれば、本発明は、基板と、該基板上に形成されたデータ記録薄膜層とを備える磁気記録媒体である。前記データ記録薄膜層用スパッタターゲットは、コバルト(Co)、白金(Pt)、多成分酸化物及び金属添加物を含む。前記金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   According to a fourth configuration, the present invention is a magnetic recording medium including a substrate and a data recording thin film layer formed on the substrate. The sputter target for the data recording thin film layer includes cobalt (Co), platinum (Pt), a multi-component oxide, and a metal additive. The metal additive has a reduction potential greater than −0.03 electron volts and is substantially insoluble in cobalt (Co) at room temperature.

本発明は、より良い熱安定性とSNRを提供する改善されたスパッタターゲット合金組成を有する新たな粒状磁気媒体を製造するために利用される。特に、本発明は、CoPtを主成分とする系の粒界領域に含有する酸素と関連して、銅(Cu)、銀(Ag)及び金(Au)のような金属の取り込みにより、粒状磁気媒体内の磁気結晶異方性、粒子の微粒化及び分離性を改善する。更に加えて、本発明は、粒子の微粒化と分離性を提供する金属で酸化物を含有する粒界領域を改善することによって、従来の市販用LMR媒体の磁気特性を増大する。   The present invention is utilized to produce new granular magnetic media having an improved sputter target alloy composition that provides better thermal stability and SNR. In particular, the present invention relates to oxygen contained in the grain boundary region of the system mainly composed of CoPt, by incorporating a metal such as copper (Cu), silver (Ag), and gold (Au), thereby producing a granular magnetic material. Improves magnetic crystal anisotropy, grain atomization and separation in the medium. In addition, the present invention increases the magnetic properties of conventional commercial LMR media by improving the grain boundary region containing metal oxides that provide particle atomization and separation.

第5の構成によれば、本発明は、磁気記録媒体の製造方法である。その方法は、スパッタターゲットで基板上に少なくとも第1のデータ記録薄膜層をスパッタリングする工程を含み、前記データ記録薄膜層用スパッタターゲットは、コバルト(Co)、白金(Pt)、単一成分酸化物及び金属添加物を含む。前記金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   According to a fifth configuration, the present invention is a method for manufacturing a magnetic recording medium. The method includes the step of sputtering at least a first data recording thin film layer onto a substrate with a sputter target, the sputter target for the data recording thin film layer comprising cobalt (Co), platinum (Pt), and a single component oxide. And metal additives. The metal additive has a reduction potential greater than −0.03 electron volts and is substantially insoluble in cobalt (Co) at room temperature.

第6の構成によれば、本発明は、スパッタターゲットで基板上に少なくとも第1のデータ記録薄膜層をスパッタリングする工程を含む磁気記録媒体の製造方法である。前記データ記録薄膜層用スパッタターゲットは、コバルト(Co)、白金(Pt)、多成分酸化物及び金属添加物を含み、該金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   According to a sixth configuration, the present invention is a method of manufacturing a magnetic recording medium including a step of sputtering at least a first data recording thin film layer on a substrate with a sputtering target. The sputter target for the data recording thin film layer includes cobalt (Co), platinum (Pt), a multi-component oxide, and a metal additive, and the metal additive has a reduction potential greater than −0.03 electron volts. And substantially insoluble in cobalt (Co) at room temperature.

下記の好ましい実施形態の記載において、同記載の一部をなす添付図面を参照して本発明を実施する特定の実施形態について説明する。尚、他の諸実施形態を利用することが可能であり、且つ、本発明を逸脱しない範囲で種々の変更が可能であることを理解すべきである。   In the following description of preferred embodiments, specific embodiments for carrying out the present invention will be described with reference to the accompanying drawings, which form a part of the description. It should be understood that other embodiments can be used and various modifications can be made without departing from the present invention.

本発明は、SNRを改善し潜在的なデータ記録容量を増大する磁気データ記録層が高密度の粒子構造を有する磁気記録媒体を提供する。更に、本発明は、スパッタターゲットに用い薄膜をスパッタすることが可能な改善された酸化物含有合金を提供する。   The present invention provides a magnetic recording medium having a high-density particle structure in a magnetic data recording layer that improves SNR and increases potential data recording capacity. Furthermore, the present invention provides an improved oxide-containing alloy that can be used as a sputter target to sputter a thin film.

図1は、本発明の一実施形態による改善された酸化物含有スパッタターゲット合金組成からなるスパッタターゲットによってスパッタ成膜された磁気データ記録層を備える薄膜積層構造を示す。簡潔に言えば、磁気記録媒体は、基板と、基板上に形成されたデータ記録薄膜層とを備える。データ記録薄膜層用スパッタターゲットは、コバルト(Co)、白金(Pt)、単一成分酸化物或いは多成分酸化物、及び金属添加物を含む。前記金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   FIG. 1 illustrates a thin film stack structure comprising a magnetic data recording layer sputtered by a sputter target comprising an improved oxide-containing sputter target alloy composition according to one embodiment of the present invention. Briefly, a magnetic recording medium includes a substrate and a data recording thin film layer formed on the substrate. The sputter target for the data recording thin film layer includes cobalt (Co), platinum (Pt), a single component oxide or a multicomponent oxide, and a metal additive. The metal additive has a reduction potential greater than −0.03 electron volts and is substantially insoluble in cobalt (Co) at room temperature.

より詳細には、磁気記録媒体200は、基板201と、基板201上に形成されたデータ記録薄膜層206とを備える。データ記録薄膜層206は、コバルト(Co)、白金(Pt)、単一成分酸化物及び金属添加物を含み、この金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   More specifically, the magnetic recording medium 200 includes a substrate 201 and a data recording thin film layer 206 formed on the substrate 201. The data recording thin film layer 206 includes cobalt (Co), platinum (Pt), a single component oxide and a metal additive, the metal additive having a reduction potential greater than −0.03 electron volts, and It is substantially insoluble in cobalt (Co) at room temperature.

又は、データ記録薄膜層206は、コバルト(Co)、白金(Pt)、多成分酸化物及び金属添加物を含み、この金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   Alternatively, the data recording thin film layer 206 includes cobalt (Co), platinum (Pt), a multicomponent oxide, and a metal additive, the metal additive having a reduction potential greater than −0.03 electron volts, In addition, it is substantially insoluble in cobalt (Co) at room temperature.

いずれの場合でも、図1は、Co−Pt−Cr−B−MOY−Xからなるデータ記録薄膜層206を示す。ここで、MOYは、単一成分酸化物或いは多成分酸化物を示し、Xは、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である金属添加物を示す。 In any case, FIG. 1 shows a data recording thin film layer 206 made of Co—Pt—Cr—B—MO Y —X. Where MO Y represents a single component oxide or a multi-component oxide, X has a reduction potential greater than −0.03 electron volts, and is substantially relative to cobalt (Co) at room temperature. The metal additive which is insoluble in is shown.

上述したように、磁気記録媒体200は、シード層202、非磁性下地層204、中間層205及びカーボン潤滑層208を含む他の薄膜層を含むことが可能であるが、これらの層のいくつか或いは全てを省略してもよい。主要な磁気コバルト(Co)相への固溶度が制限され、粒界領域で磁気粒子の分離を促進する元素は、SNRを著しく改善することを実証している。   As described above, the magnetic recording medium 200 can include other thin film layers including a seed layer 202, a non-magnetic underlayer 204, an intermediate layer 205, and a carbon lubrication layer 208, although some of these layers Alternatively, all may be omitted. Elements that have limited solid solubility in the main magnetic cobalt (Co) phase and promote separation of magnetic particles in the grain boundary region have been demonstrated to significantly improve SNR.

本発明の粒状磁気媒体は、より良い熱安定性及びSNRを提供する改善されたスパッタターゲット合金組成を含む。特に、磁気記録媒体は、CoPtを主成分とする系の粒界領域に含有する酸化物と関連して金属の取り込みにより、粒状磁気媒体の磁気結晶異方性、粒子の微粒化及び分離性を改善する。従来の市販用LMR媒体もまた、粒子の微粒化と分離性を提供する金属で酸化物を含有する粒界領域を改善することによって利益を得られる。   The granular magnetic media of the present invention includes an improved sputter target alloy composition that provides better thermal stability and SNR. In particular, the magnetic recording medium exhibits the magnetic crystal anisotropy, grain atomization and separation properties of the granular magnetic medium by incorporating metal in association with the oxide contained in the grain boundary region of the system mainly composed of CoPt. Improve. Conventional commercial LMR media can also benefit by improving the oxide-containing grain boundary region with a metal that provides particle atomization and separation.

熱安定性とSNR特性に関して、PMR媒体は、LMR媒体より厳しい要求を有し、高い磁気結晶異方性を提供し、微粒構造を改善し、粒子間のミクロ構造的、磁気的、電気的分離性を増大するために、従来のCoPt含有媒体について新たな添加物の導入を必要とする。CoPtを主成分とする系に上述の金属を添加することは、磁気結晶異方性及び保磁力(Hc)を著しく増大し、PMR及びLMR媒体の改善された微粒のミクロ組織を実現した。   With respect to thermal stability and SNR properties, PMR media have stricter requirements than LMR media, provide high magnetocrystalline anisotropy, improve grain structure, and microstructural, magnetic, and electrical separation between grains. In order to increase the properties, it is necessary to introduce new additives for conventional CoPt-containing media. Addition of the above metals to a system based on CoPt significantly increased the magnetocrystalline anisotropy and coercivity (Hc) and realized an improved fine grained microstructure of PMR and LMR media.

データ記録薄膜層206は、PMR用途に特によく適している。金属酸化物に用いられる元素の選択は、いくつかの基準に基づいており、補償及び増強特性を持つ異なる酸化物の使用は、垂直磁気媒体のSNR及び熱安定性に関して最良の粒状媒体特性を実現する。   The data recording thin film layer 206 is particularly well suited for PMR applications. The choice of elements used in metal oxides is based on several criteria, and the use of different oxides with compensation and enhancement properties achieves the best granular media properties with respect to SNR and thermal stability of perpendicular magnetic media To do.

より詳細には、PMRの高記録密度を達成するために、データ記録薄膜層を高い熱安定性と低媒体雑音特性を備える材料で構成する必要がある。分離用母材に封じ込めた磁気領域を備え、CoCrPt或いはCoPtを主成分とする合金を含む粒状磁気媒体は、大きな磁気結晶異方性によって熱運動に対して高い抵抗力があるだけでなく、粒子サイズの縮小によってSNRに関して改善された性能も呈する。しかしながら、粒状磁気媒体の粒子の微粒化によって、磁気双極子安定性は限界に近づいているので、各粒子がバルク内の隣接粒子によって磁気的に影響を受けないような十分な粒子間分離性を有する材料を開発することがますます重要になる。   More specifically, in order to achieve a high recording density of PMR, the data recording thin film layer needs to be made of a material having high thermal stability and low medium noise characteristics. A granular magnetic medium having a magnetic region enclosed in a separating base material and containing CoCrPt or an alloy mainly composed of CoPt is not only highly resistant to thermal motion due to a large magnetocrystalline anisotropy, but also particles It also exhibits improved performance with respect to SNR due to size reduction. However, since the magnetic dipole stability is approaching its limit due to the atomization of the particles in the granular magnetic medium, there is sufficient interparticle separation so that each particle is not magnetically affected by adjacent particles in the bulk. It will become increasingly important to develop materials that have.

PMRに関して、粒子の微粒化と分離性の要求は、LMRに比べてより一層厳しく、粒状媒体において酸素を含有した粒界は、反応性スパッタリング及び/又は単一酸化物(SiO2,Al23,Ta25,或いはNb25のような)を含有するターゲットにより酸素を取り込ませることで、より良い磁気特性を提供することが観察されている。本発明は、更に、単一或いは多成分酸化物を含有するスパッタターゲットを用いることにより磁気媒体における酸素の豊富な粒界領域の有益さを増強する。この目的は、特定の基準に基づいて選択された多成分酸化物を含有するスパッタターゲットを用い、磁気媒体に取り込んだ多成分酸化物母材の酸化傾向、ガラス形成傾向及び磁気誘電体作用に関連した異なる酸化物特性を調整することによって達成される。 With respect to PMR, particle atomization and separability requirements are more stringent than with LMR, and grain boundaries containing oxygen in granular media may be reactive sputtering and / or single oxides (SiO 2 , Al 2 O It has been observed that oxygen can be incorporated by a target containing (such as 3 , Ta 2 O 5 , or Nb 2 O 5 ) to provide better magnetic properties. The present invention further enhances the benefits of oxygen rich grain boundary regions in magnetic media by using sputter targets containing single or multi-component oxides. This objective relates to the oxidation tendency, glass formation tendency and magnetodielectric action of multicomponent oxide matrix incorporated in magnetic media using sputter targets containing multicomponent oxides selected based on specific criteria. This is achieved by adjusting the different oxide properties.

室温でコバルト(Co)への固溶度が制限された種々の金属の中で、銅(Cu),銀(Ag),及び金(Au)は、比較的に高い酸化抵抗を有する。それぞれの標準還元電位を下記の表1に示す。   Among various metals whose solid solubility in cobalt (Co) is limited at room temperature, copper (Cu), silver (Ag), and gold (Au) have a relatively high oxidation resistance. The respective standard reduction potentials are shown in Table 1 below.

Figure 2006351164
Figure 2006351164

図2は、Co−Cuを主成分とする系の2元状態図を示し、図3はCo−Agを主成分とする系の2元状態図を示し、図4はCo−Auを主成分とする系の2元状態図を示す。おおよそには21℃から23℃(68°Fから72°F或いは295Kから296K)の室温では、銅(Cu),銀(Ag)及び金(Au)は実質的にコバルト(Co)に不溶である。それぞれの図に示されているように、実質的に不溶であるとは、金属添加物の固溶度が略ゼロの状態である。   2 shows a binary phase diagram of a system containing Co—Cu as a main component, FIG. 3 shows a binary phase diagram of a system containing Co—Ag as a main component, and FIG. 4 shows Co—Au as a main component. A binary phase diagram of the system is shown. At room temperature of approximately 21 ° C. to 23 ° C. (68 ° F. to 72 ° F. or 295K to 296K), copper (Cu), silver (Ag) and gold (Au) are substantially insoluble in cobalt (Co). is there. As shown in each figure, being substantially insoluble means a state in which the solid solubility of the metal additive is substantially zero.

金属添加物は、好ましくは銅(Cu),銀(Ag)又は金(Au)であるが、他の金属添加物もまた利用可能である。スパッタターゲットは、クロム(Cr)及び/又はホウ素(B)を更に含む。これら元素の添加によって、酸化物を含有する粒状媒体の粒子間のミクロ組織的、磁気的及び電気的な分離性をより増強することが可能になる。尚、別の例としては、クロム(Cr)及び/又はホウ素(B)を省略してもよい。前記スパッタターゲットは、2原子%〜10原子%の範囲の金属添加物を含み、この金属添加物は、銅(Cu),銀(Ag)又は金(Au)又は他の添加物とすることができるが、多少の金属添加物を含有するスパッタターゲットもまた本発明により考えられる。組成内のコバルト(Co),白金(Pt),クロム(Cr),ホウ素(B),単一成分酸化物或いは多成分酸化物の原子%は、変えることが可能で、いかなる特定の原子%にも限定されない。   The metal additive is preferably copper (Cu), silver (Ag) or gold (Au), although other metal additives are also available. The sputter target further includes chromium (Cr) and / or boron (B). The addition of these elements makes it possible to further enhance the microstructural, magnetic and electrical separation between the particles of the granular medium containing the oxide. As another example, chromium (Cr) and / or boron (B) may be omitted. The sputter target includes a metal additive in a range of 2 atomic% to 10 atomic%, and the metal additive may be copper (Cu), silver (Ag), gold (Au), or other additives. Although possible, sputter targets containing some metal additives are also contemplated by the present invention. The atomic% of cobalt (Co), platinum (Pt), chromium (Cr), boron (B), single-component oxide or multi-component oxide in the composition can vary and can be any specific atomic% Is not limited.

別の構成によれば、本発明は、コバルト(Co),白金(Pt),単一成分酸化物及び金属添加物を含むスパッタターゲットであって、前記金属添加物が、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。又は、本発明は、コバルト(Co),白金(Pt),多成分酸化物及び金属添加物を含むスパッタターゲットであって、前記金属添加物が、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   According to another configuration, the present invention is a sputter target comprising cobalt (Co), platinum (Pt), a single component oxide and a metal additive, wherein the metal additive is -0.03 electron volts. It has a higher reduction potential and is substantially insoluble in cobalt (Co) at room temperature. Alternatively, the present invention provides a sputtering target including cobalt (Co), platinum (Pt), a multi-component oxide, and a metal additive, wherein the metal additive has a reduction potential greater than −0.03 electron volts. In addition, it is substantially insoluble in cobalt (Co) at room temperature.

磁気結晶異方性の改善と増大化された粒子間分離性とを介した、熱安定性とSNRの著しい改善は、Coを含有する磁気相に不溶で、酸化に対して抵抗力がある金属添加物を有し、前述の単一成分酸化物或いは多成分酸化物を含有する組成からなるスパッタターゲットを用いることにより可能である。本発明は、マグネトロンスパッタリングを用いて製造されたPMR媒体に関してより良い磁性を提供する金属添加物を用いるこれら改善されたスパッタターゲット合金組成を提供する。   A significant improvement in thermal stability and SNR, through improved magnetocrystalline anisotropy and increased interparticle separation, is a metal that is insoluble in the Co-containing magnetic phase and resistant to oxidation. This is possible by using a sputter target having an additive and having a composition containing the above-described single component oxide or multicomponent oxide. The present invention provides these improved sputter target alloy compositions with metal additives that provide better magnetism for PMR media produced using magnetron sputtering.

本発明は、特に、PMR用途において、単一成分酸化物或いは多成分酸化物を含有するスパッタターゲットを用いて磁気膜を加工処理するために利用することができる。つまり、このPMR用途では、粒子組織の微粒化及び分離性の要求が、SNRの劣化を最小限にすると共に大きな磁気異方性エネルギ(Ku)を実現するために更に厳しいが、このようなPMR用途において利用することができるのである。また、市販の水平磁気記録媒体も磁気特性を改善するための粒子の微粒化及び分離性に関する多成分酸化物母材の基本的属性の利益を享有することができる。更にまた、主要な磁気コバルト(Co)相に不溶な金属が、CoPtを主成分とする系に添加された時に、LMR媒体の磁気結晶異方性、保磁力(Hc)及び粒子サイズの微粒化を著しく改善する能力を呈するのである。   The present invention can be used to process a magnetic film using a sputter target containing a single component oxide or a multicomponent oxide, particularly in PMR applications. In other words, in this PMR application, the requirements for atomization and separation of the grain structure are more severe in order to minimize the SNR degradation and achieve a large magnetic anisotropy energy (Ku). It can be used in applications. Also, commercially available horizontal magnetic recording media can also benefit from the basic attributes of multi-component oxide matrix with respect to particle atomization and separability to improve magnetic properties. Furthermore, when a metal insoluble in the main magnetic cobalt (Co) phase is added to a system containing CoPt as a main component, the magnetic crystal anisotropy, coercivity (Hc) and grain size of the LMR medium are atomized. It exhibits the ability to improve significantly.

本発明は、従来の組成と比較してより良い熱安定性とSNRを提供するCoPtを主成分とする組成を含有する粒状磁気媒体をスパッタするために利用することが可能な改善された合金組成を提供する。酸化物含有のCoPtを主成分とする媒体は、粒子サイズの微粒化と分離性を著しく改善する。これらの利点は、添加物金属が磁気合金組成に添加されたときに磁気結晶異方性エネルギの増大と組み合わされた場合に、更に増進される。   The present invention provides an improved alloy composition that can be used to sputter a granular magnetic medium containing a CoPt-based composition that provides better thermal stability and SNR compared to conventional compositions. I will provide a. A medium mainly composed of oxide-containing CoPt remarkably improves particle size atomization and separability. These advantages are further enhanced when combined with an increase in magnetocrystalline anisotropy energy when additive metals are added to the magnetic alloy composition.

図5は、本発明の別の実施形態による磁気記録媒体の製造方法を示すフローチャートである。簡潔に言えば、本実施形態の方法は、スパッタターゲットで基板上に少なくとも第1のデータ記録薄膜層をスパッタリングする工程を含み、そのデータ記録薄膜層用スパッタターゲットは、コバルト(Co)、白金(Pt)、単一成分酸化物及び金属添加物を含む。前記金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。別の方法は、スパッタターゲットで基板上に少なくとも第1のデータ記録薄膜層をスパッタリングする工程を含み、そのデータ記録薄膜層用スパッタターゲットは、コバルト(Co)、白金(Pt)、多成分酸化物及び金属添加物を含む。前記金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   FIG. 5 is a flowchart showing a method of manufacturing a magnetic recording medium according to another embodiment of the present invention. Briefly speaking, the method of the present embodiment includes a step of sputtering at least a first data recording thin film layer on a substrate with a sputter target, and the sputter target for the data recording thin film layer includes cobalt (Co), platinum ( Pt), single component oxides and metal additives. The metal additive has a reduction potential greater than −0.03 electron volts and is substantially insoluble in cobalt (Co) at room temperature. Another method includes sputtering at least a first data recording thin film layer on a substrate with a sputter target, the sputter target for the data recording thin film layer comprising cobalt (Co), platinum (Pt), a multicomponent oxide. And metal additives. The metal additive has a reduction potential greater than −0.03 electron volts and is substantially insoluble in cobalt (Co) at room temperature.

本発明は、より良い熱安定性とSNRを提供する改善されたスパッタターゲット合金組成を有する新たな粒状磁気媒体の製造に利用される。特に、本発明は、CoPtを主成分とする系で酸化物を含有する粒界領域と関連して、銅(Cu)、銀(Ag)及び金(Au)のような金属の取り込みにより、粒状磁気媒体の磁気結晶異方性、粒子の微粒化及び分離性を改善する。   The present invention is utilized in the manufacture of new granular magnetic media having an improved sputter target alloy composition that provides better thermal stability and SNR. In particular, the present invention relates to a grain boundary region containing an oxide in a CoPt-based system, and by incorporating metals such as copper (Cu), silver (Ag) and gold (Au), Improves magnetic crystal anisotropy, grain atomization and separation of magnetic media.

より詳細には、本プロセスは、ステップ300で開始し、ステップ301で少なくとも第1のデータ記録薄膜層をスパッタターゲットで基板上にスパッタし、ステップ302でプロセスを終了する。データ記録薄膜層用スパッタターゲットは、コバルト(Co)、白金(Pt)、多成分酸化物或いは単一成分酸化物及び金属添加物を含み、この金属添加物は、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶である。   More specifically, the process begins at step 300, at least a first data recording thin film layer is sputtered onto the substrate with a sputter target at step 301, and the process ends at step 302. Sputter targets for data recording thin film layers include cobalt (Co), platinum (Pt), multi-component oxides or single-component oxides and metal additives, the metal additives being greater than -0.03 electron volts. It has a reduction potential and is substantially insoluble in cobalt (Co) at room temperature.

磁気結晶異方性の増強と増大された粒子間の分離性による熱安定性とSNRの著しい改善は、コバルト(Co)を含有する磁気層に不溶で酸化に対して抵抗力がある金属添加物と共に単一成分酸化物或いは多成分酸化物を含有する組成を用いることにより可能である。本発明は、マグネトロンスパッタリングを用いて製造されたPMR媒体に対してより良好な磁性を提供する金属添加物を用いることにより改善されたスパッタターゲット合金組成を提供する。   Significant improvement in thermal stability and SNR due to enhanced magnetocrystalline anisotropy and increased separation between particles is a metal additive that is insoluble in the magnetic layer containing cobalt (Co) and resistant to oxidation In addition, it is possible to use a composition containing a single component oxide or a multicomponent oxide. The present invention provides an improved sputter target alloy composition by using a metal additive that provides better magnetism for PMR media produced using magnetron sputtering.

より高い磁気結晶異方性及び保磁力(Hc)を実現するため、金属添加物は元素形態であり、スパッタリング中及びスパッタターゲット形態で酸化に対する低い性向を達成するために金属添加物は酸素と結合されない。更に、金属添加物は、半化学量論酸化物を形成せず、また、粒界領域の酸化物を半化学量論にしないような酸化性向を有する。ターゲットと同様、磁気媒体の非化学量論酸素は、磁気粒子間で、電子或いは正孔の伝導は媒体処理中の酸素分圧の機能でもある陽イオン/陰イオンの空隙を償う電気伝導を生じ、マグネトロンスパッタリングの間、与えられた磁場と相互に作用して、ターゲットのスパッタ特性と同様、媒体の磁気特性に悪影響を与える。   To achieve higher magnetocrystalline anisotropy and coercivity (Hc), the metal additive is in elemental form, and the metal additive combines with oxygen to achieve a low propensity to oxidation during sputtering and in the sputter target form. Not. Furthermore, the metal additive does not form a substoichiometric oxide, and has an oxidizing tendency such that the oxide in the grain boundary region does not become a substoichiometric amount. As with the target, non-stoichiometric oxygen in the magnetic medium results in electrical conduction between the magnetic particles and the conduction of electrons or holes compensates for the cation / anion gap, which is also a function of oxygen partial pressure during media processing. During magnetron sputtering, it interacts with the applied magnetic field and adversely affects the magnetic properties of the medium as well as the sputtering properties of the target.

従って、本発明は、マグネトロンスパッタリングを用いて製造されたCoPt(Cr)(B)−MOY−X(ここで、MOYは単一成分酸化物或いは多成分酸化物であり、Xは銅(Cu)、銀(Ag)或いは金(Au)である)を含有する粒状磁気媒体をもたらす改善された合金組成を請求し、従来組成に比べてより良い熱安定性とSNR特性を提供する。 Accordingly, the present invention relates to CoPt (Cr) (B) -MO Y -X (where MO Y is a single-component oxide or multi-component oxide, and X is copper ( It claims an improved alloy composition that results in a granular magnetic medium containing Cu), silver (Ag) or gold (Au) and provides better thermal stability and SNR characteristics compared to conventional compositions.

単一成分酸化物或いは多成分酸化物を含有する合金組成の使用は、磁気媒体の異なる構成酸化物の酸化物特性を調整することにより、粒子間のミクロ組織的及び電気的な分離性を改善する。この目的のために用いられる特定の金属酸化物は、磁気粒子を封じ込める単一成分或いは多成分の分離した酸化物母材を形成するために、SiO2/Al23やその他のような公知の酸化物と共に用いることが可能である。 Use of alloy compositions containing single or multicomponent oxides improves the microstructural and electrical separation between particles by adjusting the oxide properties of different constituent oxides of the magnetic medium To do. Certain metal oxides used for this purpose are known in the art, such as SiO 2 / Al 2 O 3 and others, to form single or multi-component separate oxide matrixes that contain magnetic particles. It is possible to use together with the oxides.

まれに金属と固溶体を形成する酸化物は、CoCrPt或いはCoPtを主成分とする粒状媒体の粒界領域に析出する特有の傾向を有している。その結果、磁気粒子のミクロ組織的な分離性を増大する。これら酸化物は、酸素を含有するCoCrPt或いはCoPtを主成分とする薄膜媒体のエピタキシャル成長を妨げない。従って、磁気異方性エネルギ(Ku)の減少を抑制する。   Oxides that rarely form solid solutions with metals have a unique tendency to precipitate in grain boundary regions of granular media containing CoCrPt or CoPt as the main component. As a result, the microscopic separation of magnetic particles is increased. These oxides do not hinder the epitaxial growth of CoCrPt containing oxygen or a thin film medium mainly containing CoPt. Therefore, a decrease in magnetic anisotropy energy (Ku) is suppressed.

酸素は、粒界の酸素含有量を高めるために薄膜磁気媒体に反応的スパッタリングにより導入される。酸素を含有する媒体による上述の確認された効果によって、CoCrPt或いはCoPtと共に単一成分酸化物を使用することにより、PMR媒体内でより良好な磁気的挙動が生じる。しかしながら、酸化物を含有するターゲットを用いて製造された酸素含有粒状磁気媒体は、反応的スパッタリングにより取り込まれた酸素を含有する媒体よりも優れた磁気特性を実証した。   Oxygen is introduced into the thin film magnetic medium by reactive sputtering to increase the oxygen content of the grain boundaries. Due to the above-described confirmed effect with oxygen-containing media, better magnetic behavior occurs in PMR media by using single component oxides with CoCrPt or CoPt. However, oxygen-containing granular magnetic media produced using oxide-containing targets have demonstrated better magnetic properties than oxygen-containing media incorporated by reactive sputtering.

上記実施形態では、特定な具体的実施形態について記述したが、本発明は、上述の実施形態に限定されるものではなく、種々の変更や変形が本発明の精神及び範囲から逸脱することなく当業者によってなされるであろうことは理解されるであろう。   In the above embodiments, specific specific embodiments have been described. However, the present invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the spirit and scope of the present invention. It will be understood that it will be done by a vendor.

本発明の一実施形態による改善された酸化物含有スパッタターゲット合金組成からなるスパッタターゲットによってスパッタ成膜された磁気データ記録層を備える積層構造を示す図である。FIG. 3 is a diagram illustrating a laminated structure comprising a magnetic data recording layer sputtered by a sputter target comprising an improved oxide-containing sputter target alloy composition according to an embodiment of the present invention. コバルト−銅(Co−Cu)を主成分とする系の2元状態図である。It is a binary phase diagram of a system having cobalt-copper (Co-Cu) as a main component. コバルト−銀(Co−Ag)を主成分とする系の2元状態図である。It is a binary phase diagram of a system having cobalt-silver (Co-Ag) as a main component. コバルト−金(Co−Au)を主成分とする系の2元状態図である。It is a binary phase diagram of a system having cobalt-gold (Co-Au) as a main component. 本発明の第2実施形態による磁気記録媒体の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the magnetic-recording medium by 2nd Embodiment of this invention. 従来の磁気記録媒体の代表的な積層構造を示す図である。It is a figure which shows the typical laminated structure of the conventional magnetic recording medium.

符号の説明Explanation of symbols

200 磁気記録媒体
201 基板
202 シード層
204 非磁性下地層
205 中間層
206 データ記録薄膜層
208 カーボン潤滑層
200 Magnetic recording medium 201 Substrate 202 Seed layer 204 Nonmagnetic underlayer 205 Intermediate layer 206 Data recording thin film layer 208 Carbon lubricating layer

Claims (22)

コバルト(Co)、白金(Pt)、単一成分酸化物及び金属添加物を含み、該金属添加物が、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶であることを特徴とするスパッタターゲット。   Cobalt (Co), platinum (Pt), a single component oxide and a metal additive, the metal additive having a reduction potential greater than -0.03 electron volts and cobalt (Co) at room temperature Sputter target characterized by being substantially insoluble with respect to. 前記金属添加物が、銅(Cu)、銀(Ag)又は金(Au)であることを特徴とする請求項1に記載のスパッタターゲット。   The sputter target according to claim 1, wherein the metal additive is copper (Cu), silver (Ag), or gold (Au). 更に、クロム(Cr)を含むことを特徴とする請求項1に記載のスパッタターゲット。   The sputter target according to claim 1, further comprising chromium (Cr). 更に、ホウ素(B)を含むことを特徴とする請求項1に記載のスパッタターゲット。   The sputter target according to claim 1, further comprising boron (B). 2原子%〜10原子%の範囲の金属添加物を含むことを特徴とする請求項1に記載のスパッタターゲット。   The sputter target according to claim 1, comprising a metal additive in a range of 2 atomic% to 10 atomic%. 基板と、
前記基板上に形成されたデータ記録薄膜層と、
を備え、
前記データ記録薄膜層用スパッタターゲットが、コバルト(Co)、白金(Pt)、単一成分酸化物及び金属添加物を含み、該金属添加物が、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶であることを特徴とする磁気記録媒体。
A substrate,
A data recording thin film layer formed on the substrate;
With
The sputter target for the data recording thin film layer includes cobalt (Co), platinum (Pt), a single component oxide and a metal additive, and the metal additive has a reduction potential greater than -0.03 electron volts. And a magnetic recording medium that is substantially insoluble in cobalt (Co) at room temperature.
前記金属添加物が、銅(Cu)、銀(Ag)又は金(Au)であることを特徴とする請求項6に記載の磁気記録媒体。   The magnetic recording medium according to claim 6, wherein the metal additive is copper (Cu), silver (Ag), or gold (Au). 前記データ記録薄膜層が、更に、クロム(Cr)を含むことを特徴とする請求項6に記載の磁気記録媒体。   The magnetic recording medium according to claim 6, wherein the data recording thin film layer further contains chromium (Cr). 前記データ記録薄膜層が、更に、ホウ素(B)を含むことを特徴とする請求項6に記載の磁気記録媒体。   The magnetic recording medium according to claim 6, wherein the data recording thin film layer further contains boron (B). 前記スパッタターゲットが、2原子%〜10原子%の範囲の金属添加物を含むことを特徴とする請求項6に記載の磁気記録媒体。   The magnetic recording medium according to claim 6, wherein the sputter target contains a metal additive in a range of 2 atomic% to 10 atomic%. スパッタターゲットで基板上に少なくとも第1のデータ記録薄膜層をスパッタリングする工程を含み、前記データ記録薄膜層用スパッタターゲットが、コバルト(Co)、白金(Pt)、単一成分酸化物及び金属添加物を含み、該金属添加物が、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶であることを特徴とする磁気記録媒体の製造方法。   Sputtering at least a first data recording thin film layer onto a substrate with a sputtering target, wherein the sputtering target for the data recording thin film layer comprises cobalt (Co), platinum (Pt), a single component oxide, and a metal additive And the metal additive has a reduction potential greater than −0.03 electron volts and is substantially insoluble in cobalt (Co) at room temperature. Method. コバルト(Co)、白金(Pt)、多成分酸化物及び金属添加物を含み、該金属添加物が、−0.03電子ボルト以上の還元電位を有し、且つ、実質的に室温でコバルト(Co)に不溶であることを特徴とするスパッタターゲット。   Cobalt (Co), platinum (Pt), a multicomponent oxide and a metal additive, wherein the metal additive has a reduction potential of −0.03 eV or more and is substantially cobalt ( A sputter target that is insoluble in Co). 前記金属添加物が、銅(Cu)、銀(Ag)又は金(Au)であることを特徴とする請求項12に記載のスパッタターゲット。   The sputter target according to claim 12, wherein the metal additive is copper (Cu), silver (Ag), or gold (Au). 更に、クロム(Cr)を含むことを特徴とする請求項12に記載のスパッタターゲット。   The sputter target according to claim 12, further comprising chromium (Cr). 更に、ホウ素(B)を含むことを特徴とする請求項12に記載のスパッタターゲット。   The sputter target according to claim 12, further comprising boron (B). 2原子%〜10原子%の範囲の金属添加物を含むことを特徴とする請求項12に記載のスパッタターゲット。   The sputter target according to claim 12, comprising a metal additive in the range of 2 atomic% to 10 atomic%. 基板と、
前記基板上に形成されたデータ記録薄膜層と、
を備え、
前記データ記録薄膜層用スパッタターゲットが、コバルト(Co)、白金(Pt)、多成分酸化物及び金属添加物を含み、該金属添加物が、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶であることを特徴とする磁気記録媒体。
A substrate,
A data recording thin film layer formed on the substrate;
With
The sputter target for the data recording thin film layer includes cobalt (Co), platinum (Pt), a multi-component oxide and a metal additive, and the metal additive has a reduction potential greater than −0.03 electron volts. A magnetic recording medium characterized by being substantially insoluble in cobalt (Co) at room temperature.
前記金属添加物が、銅(Cu)、銀(Ag)又は金(Au)であることを特徴とする請求項17に記載の磁気記録媒体。   The magnetic recording medium according to claim 17, wherein the metal additive is copper (Cu), silver (Ag), or gold (Au). 前記データ記録薄膜層が、更に、クロム(Cr)を含むことを特徴とする請求項17に記載の磁気記録媒体。   The magnetic recording medium according to claim 17, wherein the data recording thin film layer further contains chromium (Cr). 前記データ記録薄膜層が、更に、ホウ素(B)を含むことを特徴とする請求項17に記載の磁気記録媒体。   The magnetic recording medium according to claim 17, wherein the data recording thin film layer further contains boron (B). 前記スパッタターゲットが、2原子%〜10原子%の範囲の金属添加物を含むことを特徴とする請求項17に記載の磁気記録媒体。   The magnetic recording medium according to claim 17, wherein the sputter target includes a metal additive in a range of 2 atomic% to 10 atomic%. スパッタターゲットで基板上に少なくとも第1のデータ記録薄膜層をスパッタリングする工程を含み、前記データ記録薄膜層用スパッタターゲットが、コバルト(Co)、白金(Pt)、多成分酸化物及び金属添加物を含み、該金属添加物が、−0.03電子ボルトより大きい還元電位を有し、且つ、室温でコバルト(Co)に対して実質的に不溶であることを特徴とする磁気記録媒体の製造方法。   Sputtering at least a first data recording thin film layer onto a substrate with a sputtering target, wherein the sputtering target for the data recording thin film layer comprises cobalt (Co), platinum (Pt), a multi-component oxide, and a metal additive. And the metal additive has a reduction potential greater than −0.03 electron volts and is substantially insoluble in cobalt (Co) at room temperature. .
JP2006088246A 2005-06-15 2006-03-28 Sputtering target, magnetic recording medium, method of manufacturing magnetic recording medium Pending JP2006351164A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/152,104 US20060286414A1 (en) 2005-06-15 2005-06-15 Enhanced oxide-containing sputter target alloy compositions

Publications (1)

Publication Number Publication Date
JP2006351164A true JP2006351164A (en) 2006-12-28

Family

ID=36659946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088246A Pending JP2006351164A (en) 2005-06-15 2006-03-28 Sputtering target, magnetic recording medium, method of manufacturing magnetic recording medium

Country Status (8)

Country Link
US (1) US20060286414A1 (en)
EP (1) EP1734513A1 (en)
JP (1) JP2006351164A (en)
KR (1) KR20060131609A (en)
CN (1) CN1880501A (en)
CZ (1) CZ2006126A3 (en)
SG (1) SG128541A1 (en)
TW (1) TW200643206A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178310A1 (en) * 2013-04-30 2014-11-06 Jx日鉱日石金属株式会社 Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body
WO2016133047A1 (en) * 2015-02-19 2016-08-25 Jx金属株式会社 Sputtering target for forming magnetic thin film
JP2016160530A (en) * 2015-03-05 2016-09-05 光洋應用材料科技股▲分▼有限公司 Magnetic alloy sputtering target and recording layer for magnetic recording media

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080057350A1 (en) * 2006-09-01 2008-03-06 Heraeus, Inc. Magnetic media and sputter targets with compositions of high anisotropy alloys and oxide compounds
US8394243B1 (en) 2008-07-24 2013-03-12 Wd Media, Inc. Sputtered cobalt oxide for perpendicular magnetic recording medium with low media noise
US8488276B1 (en) 2008-09-30 2013-07-16 WD Media, LLC Perpendicular magnetic recording medium with grain isolation magnetic anistropy layer
US8168309B2 (en) * 2009-08-13 2012-05-01 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular recording media with sublayers of oxide dopant magnetic materials
US8993133B1 (en) 2010-12-23 2015-03-31 WD Media, LLC Intermediate layer for perpendicular magnetic recording medium with high permeability grain boundaries
CN104174851B (en) * 2014-08-12 2016-05-18 贵研铂业股份有限公司 A kind of Co-Cr-Pt-SiO2The preparation method of target
US9685184B1 (en) 2014-09-25 2017-06-20 WD Media, LLC NiFeX-based seed layer for magnetic recording media
TWI702294B (en) * 2018-07-31 2020-08-21 日商田中貴金屬工業股份有限公司 Sputtering target for magnetic recording media

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147112A (en) * 1961-01-19 1964-09-01 Du Pont Ferromagnetic mn-ga alloy and method of production
JPS5789450A (en) * 1980-11-21 1982-06-03 Matsushita Electric Ind Co Ltd Amorphous magnetic alloy
US4868070A (en) * 1984-11-29 1989-09-19 Fuji Photo Film Co., Ltd. Vertical magnetization type recording medium and manufacturing method therefor
JPH06105499B2 (en) * 1985-02-22 1994-12-21 松下電器産業株式会社 Magnetic recording medium
US4994321A (en) * 1986-01-24 1991-02-19 Fuji Photo Film Co., Ltd. Perpendicular magnetic recording medium and the method for preparing the same
DE3707522A1 (en) * 1986-03-12 1987-09-24 Matsushita Electric Ind Co Ltd MAGNETIC NITRIDE FILM
JP2513205B2 (en) * 1987-02-04 1996-07-03 ソニー株式会社 Composite magnetic head
JP2524514B2 (en) * 1987-09-21 1996-08-14 日立マクセル株式会社 Magnetic recording media
US5772797A (en) * 1989-01-26 1998-06-30 Fuji Photo Film Co., Ltd. Soft magnetic thin film, method for preparing same and magnetic head
KR920003999B1 (en) * 1989-03-08 1992-05-21 알프스 덴기 가부시기가이샤 Molted membrane of soft magnetics
JPH02292721A (en) * 1989-05-02 1990-12-04 Tdk Corp Magnetic disk
JPH03116409A (en) * 1989-09-29 1991-05-17 Canon Electron Inc Magnetic head
JPH03157801A (en) * 1989-11-16 1991-07-05 Tdk Corp Magnetic recording and reproducing method
CA2030446C (en) * 1989-11-22 2001-01-23 Yoshihito Yoshizawa Magnetic alloy with ultrafine crystal grains and method of producing same
US5182693A (en) * 1989-12-29 1993-01-26 Tdk Corporation Magnetic disk
JPH0785452B2 (en) * 1990-04-20 1995-09-13 日本電気株式会社 Magnetic film and method for manufacturing the same
JP2789806B2 (en) * 1990-09-28 1998-08-27 松下電器産業株式会社 Fabrication method of soft magnetic nitride alloy film
JPH04214205A (en) * 1990-12-12 1992-08-05 Fuji Electric Co Ltd Thin-film magnetic head and its production
WO1993011531A1 (en) * 1991-12-02 1993-06-10 Nikko Kyodo Company, Limited Thin film magnetic head
JP2586367B2 (en) * 1992-04-15 1997-02-26 日本電気株式会社 Soft magnetic material, method of manufacturing the same, and magnetic head
ES2087766T3 (en) * 1992-09-07 1996-07-16 British Nuclear Fuels Plc ROTOR REINFORCED WITH FIBERS.
US5931032A (en) * 1998-04-16 1999-08-03 Gregory; Edwin H. Cutter and blow resistant lock
JPH0850715A (en) * 1994-01-28 1996-02-20 Komag Inc Magnetic recording medium with low noise,high coercive forceand excellent squareness and formation of magnetic recordingmedium
JPH07268610A (en) * 1994-03-28 1995-10-17 Alps Electric Co Ltd Soft magnetic alloy thin film
US5620574A (en) * 1994-08-26 1997-04-15 Stormedia, Inc. Method of fabricating sputter induced, micro-texturing of thin film, magnetic disc media
US5800931A (en) * 1994-09-29 1998-09-01 Carnegie Mellon University Magnetic recording medium with a MgO sputter deposited seed layer
JPH0917632A (en) * 1995-06-28 1997-01-17 Sony Corp Soft magnetic film and magnetic head using the same
US5909345A (en) * 1996-02-22 1999-06-01 Matsushita Electric Industrial Co., Ltd. Magnetoresistive device and magnetoresistive head
TW367493B (en) * 1996-04-30 1999-08-21 Toshiba Corp Reluctance component
KR100265986B1 (en) * 1997-01-31 2000-09-15 가타오카 마사타카 Composite-typed thin film magnetic head and method for manufacturing the same
JPH10340431A (en) * 1997-06-04 1998-12-22 Fujitsu Ltd Magneto-resistance effect type head and magnetic recording/reproducing device
JP3544293B2 (en) * 1997-07-31 2004-07-21 株式会社日鉱マテリアルズ Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film
US6042897A (en) * 1997-11-17 2000-03-28 Alps Electric Co., Ltd. Combination read/write thin film magnetic head and its manufacturing method
JPH11175920A (en) * 1997-12-05 1999-07-02 Nec Corp Magneto-resistance effect type combined head and its manufacture
JP3263018B2 (en) * 1997-12-09 2002-03-04 アルプス電気株式会社 Magnetoresistive element and method of manufacturing the same
US6232775B1 (en) * 1997-12-26 2001-05-15 Alps Electric Co., Ltd Magneto-impedance element, and azimuth sensor, autocanceler and magnetic head using the same
US5996213A (en) * 1998-01-30 1999-12-07 Read-Rite Corporation Thin film MR head and method of making wherein pole trim takes place at the wafer level
US6228515B1 (en) * 1998-02-17 2001-05-08 Korea Institute Of Science And Technology Underlayer for use in a high density magnetic recording media
JP3087715B2 (en) * 1998-02-19 2000-09-11 日本電気株式会社 Magnetic disk drive
KR100270605B1 (en) * 1998-04-23 2000-12-01 박호군 Fe based soft magnetic film alloys and their manufacturing method
JP4082785B2 (en) * 1998-05-15 2008-04-30 富士通株式会社 Magnetic recording medium and method for manufacturing the same
JP2000187808A (en) * 1998-12-22 2000-07-04 Alps Electric Co Ltd Soft magnetic film and its production and thin film magnetic head using this soft magnetic film
US6524491B1 (en) * 1999-04-26 2003-02-25 Headway Technologies, Inc. Double plate-up process for fabrication of composite magnetoresistive shared poles
US6730421B1 (en) * 1999-05-11 2004-05-04 Hitachi, Maxell, Ltd. Magnetic recording medium and its production method, and magnetic recorder
JP2000339635A (en) * 1999-05-31 2000-12-08 Toshiba Corp Magnetic head and magnetic recording and reproducing device
US6440589B1 (en) * 1999-06-02 2002-08-27 International Business Machines Corporation Magnetic media with ferromagnetic overlay materials for improved thermal stability
EP1143421B1 (en) * 1999-09-10 2005-06-15 TDK Corporation Production method for magnetic recording medium
JP3731640B2 (en) * 1999-11-26 2006-01-05 株式会社日立グローバルストレージテクノロジーズ Perpendicular magnetic recording medium and magnetic storage device
US6620531B1 (en) * 1999-12-20 2003-09-16 Seagate Technology Llc Magnetic recording media with oxidized seedlayer for reduced grain size and reduced grain size distribution
US6524724B1 (en) * 2000-02-11 2003-02-25 Seagate Technology Llc Control of magnetic film grain structure by modifying Ni-P plating of the substrate
JP2001236643A (en) * 2000-02-23 2001-08-31 Fuji Electric Co Ltd Sputtering target for manufacturing magnetic recording medium, method of manufacturing magnetic recording medium by using the same, and magnetic recording medium
US6716543B2 (en) * 2000-02-23 2004-04-06 Fuji Electric Co., Ltd. Magnetic recording medium and method for producing same
US6738234B1 (en) * 2000-03-15 2004-05-18 Tdk Corporation Thin film magnetic head and magnetic transducer
JP4207140B2 (en) * 2000-04-06 2009-01-14 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof
SG91343A1 (en) * 2000-07-19 2002-09-17 Toshiba Kk Perpendicular magnetic recording medium and magnetic recording apparatus
JP4309075B2 (en) * 2000-07-27 2009-08-05 株式会社東芝 Magnetic storage
JP3665261B2 (en) * 2000-09-01 2005-06-29 株式会社日立製作所 Perpendicular magnetic recording medium and magnetic storage device
US7029772B2 (en) * 2000-09-11 2006-04-18 Showa Denko Kabushiki Kaisha Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US6821653B2 (en) * 2000-09-12 2004-11-23 Showa Denko Kabushiki Kaisha Magnetic recording medium, process for producing the same, and magnetic recording and reproducing apparatus
JP2002100030A (en) * 2000-09-21 2002-04-05 Toshiba Corp Perpendicular magnetic recording medium
JP2002100018A (en) * 2000-09-25 2002-04-05 Fujitsu Ltd Magnetic recording medium, method for producing the same, and magnetic storage device
JP2002133645A (en) * 2000-10-20 2002-05-10 Fuji Electric Co Ltd Magnetic recording medium and its manufacturing method
US20020076579A1 (en) * 2000-10-27 2002-06-20 Showa Denko Kabushiki Kaisha Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and medium substrate
US20020106297A1 (en) * 2000-12-01 2002-08-08 Hitachi Metals, Ltd. Co-base target and method of producing the same
JP3730518B2 (en) * 2001-01-19 2006-01-05 株式会社東芝 Magnetic recording medium
US6777066B1 (en) * 2001-03-07 2004-08-17 Seagate Technology Llc Perpendicular magnetic recording media with improved interlayer
SG115476A1 (en) * 2001-05-23 2005-10-28 Showa Denko Kk Magnetic recording medium, method of manufacturing therefor and magnetic replay apparatus
US6682826B2 (en) * 2001-08-01 2004-01-27 Showa Denko K.K. Magnetic recording medium, method of manufacturing therefor, and magnetic read/write apparatus
US6692619B1 (en) * 2001-08-14 2004-02-17 Seagate Technology Llc Sputtering target and method for making composite soft magnetic films
US6723458B2 (en) * 2001-08-17 2004-04-20 Showa Denko K.K. Magnetic recording medium, method of manufacture therefor, and magnetic read/write apparatus
US6818331B2 (en) * 2001-08-28 2004-11-16 Showa Denko Kabushiki Kaisha Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP4626840B2 (en) * 2001-08-31 2011-02-09 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof
JP2003099911A (en) * 2001-09-26 2003-04-04 Fujitsu Ltd Magnetic recording medium and its manufacturing method
US6926977B2 (en) * 2001-10-22 2005-08-09 Showa Denko Kabushiki Kaisha Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US7138196B2 (en) * 2001-11-09 2006-11-21 Maxtor Corporation Layered thin-film media for perpendicular magnetic recording
US6567236B1 (en) * 2001-11-09 2003-05-20 International Business Machnes Corporation Antiferromagnetically coupled thin films for magnetic recording
US7842409B2 (en) * 2001-11-30 2010-11-30 Seagate Technology Llc Anti-ferromagnetically coupled perpendicular magnetic recording media with oxide
JP4019703B2 (en) * 2001-12-07 2007-12-12 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof
JP4157707B2 (en) * 2002-01-16 2008-10-01 株式会社東芝 Magnetic memory
JP4011355B2 (en) * 2002-02-04 2007-11-21 富士通株式会社 Soft magnetic film and thin film magnetic head
AU2003216441A1 (en) * 2002-02-28 2003-09-16 Seagate Technology Llc Chemically ordered, cobalt-platinum alloys for magnetic recording
JP4270797B2 (en) * 2002-03-12 2009-06-03 Tdk株式会社 Magnetic detection element
US6723450B2 (en) * 2002-03-19 2004-04-20 Hitachi Global Storage Technologies Netherlands B.V. Magnetic recording medium with antiparallel coupled ferromagnetic films as the recording layer
US6912106B1 (en) * 2002-08-06 2005-06-28 Western Digital (Fremont), Inc. Writer with a hot seed zero throat and substantially flat top pole
JP2004079058A (en) * 2002-08-14 2004-03-11 Toshiba Corp Perpendicular magnetic recording medium and magnetic recording/reproducing device
JP4047114B2 (en) * 2002-09-13 2008-02-13 アルプス電気株式会社 Thin film magnetic head
KR20050085232A (en) * 2002-12-09 2005-08-29 허니웰 인터내셔널 인코포레이티드 High purity nickel/vanadium sputtering components; and methods of making sputtering components
JP2004220656A (en) * 2003-01-10 2004-08-05 Fuji Photo Film Co Ltd Magnetic recording medium
US20040191578A1 (en) * 2003-03-24 2004-09-30 Jingsheng Chen Method of fabricating L10 ordered fePt or FePtX thin film with (001) orientation
US7470474B2 (en) * 2003-04-07 2008-12-30 Kabushiki Kaisha Toshiba Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus including both oxide and non-oxide perpendicular magnetic layers
US7033685B2 (en) * 2003-10-07 2006-04-25 Seagate Technology Llc High coercivity perpendicular magnetic recording media on polymer substrates
US20050196608A1 (en) * 2003-10-08 2005-09-08 Dominique Wouters Sound damping adhesive
KR100590530B1 (en) * 2003-12-10 2006-06-15 삼성전자주식회사 Perpendicular magnetic recording media
US7297422B2 (en) * 2003-12-19 2007-11-20 Seagate Technology Llc Method for sputtering magnetic recording media
US20050181239A1 (en) * 2004-02-12 2005-08-18 Seagate Technology Llc Granular magnetic recording media with improved corrosion resistance by pre-carbon overcoat ion etching
US7837836B2 (en) * 2004-02-12 2010-11-23 Seagate Technology Llc Method and apparatus for multi-stage sputter deposition of uniform thickness layers
US7310202B2 (en) * 2004-03-25 2007-12-18 Seagate Technology Llc Magnetic recording head with clad coil
JP2005276365A (en) * 2004-03-25 2005-10-06 Toshiba Corp Granular thin film, vertical magnetic recording medium, and magnetic recording/reproducing device
US20060042938A1 (en) * 2004-09-01 2006-03-02 Heraeus, Inc. Sputter target material for improved magnetic layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178310A1 (en) * 2013-04-30 2014-11-06 Jx日鉱日石金属株式会社 Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body
JP5878242B2 (en) * 2013-04-30 2016-03-08 Jx金属株式会社 Sintered body, sputtering target for forming a magnetic recording film comprising the sintered body
WO2016133047A1 (en) * 2015-02-19 2016-08-25 Jx金属株式会社 Sputtering target for forming magnetic thin film
JPWO2016133047A1 (en) * 2015-02-19 2017-11-09 Jx金属株式会社 Sputtering target for magnetic thin film formation
JP2016160530A (en) * 2015-03-05 2016-09-05 光洋應用材料科技股▲分▼有限公司 Magnetic alloy sputtering target and recording layer for magnetic recording media

Also Published As

Publication number Publication date
CN1880501A (en) 2006-12-20
KR20060131609A (en) 2006-12-20
TW200643206A (en) 2006-12-16
EP1734513A1 (en) 2006-12-20
CZ2006126A3 (en) 2007-01-17
US20060286414A1 (en) 2006-12-21
SG128541A1 (en) 2007-01-30

Similar Documents

Publication Publication Date Title
JP2006351164A (en) Sputtering target, magnetic recording medium, method of manufacturing magnetic recording medium
JP5646865B2 (en) Perpendicular magnetic recording medium and method for manufacturing perpendicular magnetic recording medium
US20060234091A1 (en) Enhanced multi-component oxide-containing sputter target alloy compositions
JP2007004957A (en) Manufacturing method of magnetic recording medium
US20020127433A1 (en) Magnetic recording medium, method of producing the same and magnetic recording and reproducing device
JP2008146801A (en) Magnetic recording medium, sputtering target and manufacturing method of magnetic recording medium
JP4213001B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
KR20060109817A (en) Enhanced formulation of cobalt alloy matrix compositions
US20070099032A1 (en) Deposition of enhanced seed layer using tantalum alloy based sputter target
JPWO2010035810A1 (en) Perpendicular magnetic recording medium and method for manufacturing perpendicular magnetic recording medium
KR20070011039A (en) Enhanced sputter target alloy compositions
JP2005276366A (en) Magnetic recording medium and magnetic recording/reproducing device using the same
JP2007317255A (en) Manufacturing method of perpendicular magnetic recording medium, perpendicular magnetic recording medium, and magnetic recording and reproducing device
JPH05274644A (en) Magnetic recording medium and its production
US6821618B2 (en) Magnetic recording medium and process for producing the same
US6753077B2 (en) Magnetic recording medium and process for producing the same
US20140178714A1 (en) Method and Manufacture Process for Exchange Decoupled First Magnetic Layer
JPS6367325B2 (en)
JPH06349047A (en) Magnetic recording medium and magnetic storage device
US6916530B2 (en) Perpendicular magnetic recording medium
JP5620071B2 (en) Perpendicular magnetic recording medium
JP2007102833A (en) Perpendicular magnetic recording medium
JPWO2014103815A1 (en) Magnetic recording medium and method for manufacturing the same
JP2011192319A (en) Perpendicular magnetic recording medium
JP2009134797A (en) Perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118