JP2004339586A - Sputtering target for forming magnetic recording film, and its production method - Google Patents

Sputtering target for forming magnetic recording film, and its production method Download PDF

Info

Publication number
JP2004339586A
JP2004339586A JP2003139889A JP2003139889A JP2004339586A JP 2004339586 A JP2004339586 A JP 2004339586A JP 2003139889 A JP2003139889 A JP 2003139889A JP 2003139889 A JP2003139889 A JP 2003139889A JP 2004339586 A JP2004339586 A JP 2004339586A
Authority
JP
Japan
Prior art keywords
powder
silica
phase
magnetic recording
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003139889A
Other languages
Japanese (ja)
Inventor
Akira Mori
暁 森
Terushi Mishima
昭史 三島
Takanori Shirai
孝典 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003139889A priority Critical patent/JP2004339586A/en
Publication of JP2004339586A publication Critical patent/JP2004339586A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sputtering target for forming a magnetic recording layer, and to provide its production method. <P>SOLUTION: The sputtering target for forming a magnetic recording layer has a composition comprising, by atom, 4 to 20% silica and one or two kinds of metals selected from Cr and Pt by 5 to 40% in total, and the balance Co, and a structure consisting of a mixed phase where a silica phase and a Co based alloy phase comprising one or two kinds of metals selected from Cr and Pt are coexistent. In the silica phase, the average width obtained by linear analysis lies in the range of 0.5 to 5 μm, and, as the silica powder used at this time as one of the raw material powder, the one produced by a high temperature flame hydrolysis method or the one obtained by subjecting the silica powder to surface treatment and having hydrophobicity is adopted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、ハードディスクの高密度磁気記録媒体に適用される磁気記録膜、特に垂直磁気記録媒体に適用される磁気記録膜を形成するためにスパッタリングターゲットおよびその製造方法に関するものである
【0002】
【従来の技術】
ハードディスク装置は一般にコンピュータの外部記録装置として用いられており、記録密度の一層の向上が求められている。そのため、近年、超高密度の記録を実現できる垂直磁気記録方式が注目されてきた。この垂直磁気記録方式は、高密度化するほど記録磁化が安定すると言われており、この垂直磁気記録方式を備えた磁気記録媒体には磁気記録膜が積層されており、この磁気記録膜は高性能な磁気記録膜であることが必要である。これに適用可能な磁気記録膜の一つとしてCoCrPt−SiOグラニュラ磁気記録膜が提案されており、このCoCrPt−SiOグラニュラ磁気記録膜はCrおよび/またはPtを含むCo基焼結合金相とシリカ相の混合相を有する複合ターゲットを用いてRFマグネトロンスパッタ法により作製することができることが知られている(非特許文献1参照)。
この複合ターゲットは、急冷凝固法により作製したCr粉末、Pt粉末のうちの1種もしくは2種およびCo粉末の各要素粉末を混合した混合粉末、または急冷凝固法により作製したCrおよび/またはPtを含むCo基合金粉末に、粉砕して得られたシリカ粉末を、シリカ:4〜20原子%、CrおよびPtの内の1種または2種を合計で5〜40原子%を含有し、残部:Coからなる組成となるように配合し、通常のV型混合機による混合法またはメカニカルアロイング法により混合したのち、ホットプレスすることにより作製される。この中でもメカニカルアロイング法による混合が最も好ましいとされている(特許文献1参照)。
【0003】
【非特許文献1】
「富士時報」Vol.75No.3 2002(169〜172ページ)
【特許文献1】
特開平10‐88333号公報
【0004】
【発明が解決しようとする課題】
しかし、前記従来のメカニカルアロイング法により混合して得られた混合粉末をホットプレスして得られたターゲットは、
(イ)メカニカルアロイングするには長時間(例えば、96時間)の混合が必要で、生産性が低く、またコストが高くなるとともに長時間混合するとチャンバーや振動子などから不純物が混入する、
(ロ)十分にシリカ相がCo基焼結合金相中に十分に分散されないために、低透磁率にならず、そのために異常放電したり、スパッタ初期に安定した放電が得られない、という問題点があった。
【0005】
【課題を解決するための手段】
そこで、本発明者は、かかる課題を解決すべく研究を行なったところ、
(a)原料粉末であるシリカ粉末を高温火炎加水分解法で製造されたシリカ粉末を使用し、このシリカ粉末に、Cr粉末、Pt粉末のうちの1種もしくは2種およびCo粉末の各金属要素粉末またはCr、Ptのうちの1種もしくは2種を含むCo基合金粉末をシリカ:4〜20原子%、CrおよびPtの内の1種もしくは2種を合計で5〜40原子%を含有し、残部:Coからなる組成を有するように配合し混合したのち、ホットプレスすることにより得られたスパッタリングターゲットは、シリカ相とCrおよび/またはPtを含有するCo基焼結合金相とが混合している混合相からなる組織を有し、前記シリカ相は線分法で求めた平均幅が0.5〜5μmの範囲内にある極めて細かい組織となり、シリカ相とCrおよび/またはPtを含有するCo基焼結合金相とが一層均一に混在した組織を有するスパッタリングターゲットが得られ、このようにして得られたターゲットは透磁率が一層低くなって安定した放電が得られ、異常放電が少ないために発生するパーティクルも少なく、製品の歩留向上にも寄与する、
(b)前記原料粉末の高温火炎加水分解法で製造されたシリカ粉末は、表面処理によって疎水性を付与さしたシリカ粉末であることが一層好ましい、などの知見を得たのである。
【0006】
この発明は、かかる知見に基づいてなされたものであって、
(1)シリカ:4〜20原子%、CrおよびPtの内の1種または2種を合計で5〜40原子%を含有し、残部:Coからなる組成を有し、シリカ相とCrおよびPtの内の1種または2種を含有するCo基焼結合金相とが混在している混合相からなる組織を有する磁気記録膜形成用スパッタリングターゲットであって、前記シリカ相は、線分法で求めた平均幅が0.5〜5μmの範囲内にある磁気記録膜形成用スパッタリングターゲット、
(2)Cr粉末、Pt粉末のうちの1種もしくは2種およびCo粉末の各金属要素粉末、またはCr、Ptのうちの1種もしくは2種を含むCo基合金粉末に、シリカ粉末を、シリカ:4〜20原子%、CrおよびPtの内の1種または2種を合計で5〜40原子%を含有し、残部:Coからなる組成を有するように配合し混合したのち、ホットプレスする磁気記録膜形成用スパッタリングターゲットの製造方法であって、前記シリカ粉末は高温火炎加水分解法で製造されたシリカ粉末である(1)記載の磁気記録膜形成用スパッタリングターゲットの製造方法、
(3)前記シリカ粉末は、表面処理により疎水性が付与されたシリカ粉末である(2)記載の磁気記録膜形成用スパッタリングターゲットの製造方法、に特徴を有するものである。
【0007】
この発明の磁気記録膜形成用スパッタリングターゲットの組織において、線分法で求めた平均幅が0.5〜5μmの範囲内にあるように限定したのは、シリカ相の平均幅が5μmを越えると、透磁率が大きくなり、その結果、スパッタが不安定となってパーティクルの発生が激増し、エロージョン部分(スパッタで減った部分)によりプラズマが集中するためにエロージョンの幅が狭く深くなり、ターゲットの使用効率が低下するようになるので好ましくなく、一方、シリカ相の平均幅が0.5μm未満ではCo基焼結合金相の大きさが大きくなり、やはり透磁率が高くなるので前記問題が発生するので好ましくない理由によるものである。
【0008】
この発明の磁気記録膜形成用スパッタリングターゲットの素地を構成するCo基焼結合金相は、CoとCrおよび/またはPtが固溶したCo基合金の単一相であることが好ましいが、Cr粉末,Pt粉末およびCo粉末が十分に拡散されずにCr,PtまたはCoの純金属相となって点在していたり、その他、金属間化合物相が含まれていてもかまわない。
【0009】
【発明の実施の形態】
原料粉末として、いずれも純度:99.9質量%以上の市販のCo粉末(400メッシュアンダー)、Cr粉末(150メッシュアンダー)およびPt粉末(100メッシュアンダー)を用意した。
さらに原料粉末として日本アエロジル株式会社製の高温火炎加水分解法で製造され表面処理によって疎水性を付与されたBET値:110を有する疎水性シリカ粉末(型番R972)およびBET値:250を有する疎水性シリカ粉末(型番R812)を用意した。
さらに原料粉末として、市販の合成石英からなるシリカ粉砕粉末(純度:99.9質量%以上、平均粒径:3μm)を用意した。
【0010】
実施例1
先に用意したCo粉末、Cr粉末、Pt粉末およびBET値:110を有する疎水性シリカ粉末(型番R972)を、Pt粉末:10原子%、Cr粉末:10原子%、疎水性シリカ粉末(型番R972):10原子%、残部:Co粉末となるように配合し、ジルコニアボールミルで3時間乾式混合し、得られた混合粉末をホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:15MPa、1.5時間保持の条件でホットプレスすることにより前記配合組成と同じ成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工することにより直径6インチ、厚さ:5mmの寸法を有する本発明ターゲット1を作製した。
【0011】
従来例1
先に用意したCo粉末、Cr粉末、Pt粉末および市販の合成石英からなるシリカ粉砕粉末を、Pt粉末:10原子%、Cr粉末:10原子%、シリカ粉砕粉末:10原子%、残部:Co粉末となるように配合し、ボールミルで96時間乾式混合することによりメカニカルアロイングして混合粉末を作製し、得られた混合粉末をホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:15MPa、1.5時間保持の条件でホットプレスすることにより前記配合組成と同じ成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工することにより直径6インチ、厚さ:5mmの寸法を有する従来ターゲット1を作製した。
【0012】
実施例1で得られた本発明ターゲット1および従来例1で得られた従来ターゲット1についてSEMによる組織写真を撮り、線分法によりシリカ相の平均幅を測定し、その結果を表1に示した。本発明ターゲット1のSEMによる組織写真を図1に示し、従来ターゲット1のSEMによる組織写真を図2に示した。図1および図2の組織写真において白く見える所がCo基焼結合金相、黒く見える所がシリカ相である。図1および図2の組織写真からも明らかなように、本発明ターゲット1は従来ターゲット1に比べてシリカ相の幅が狭く、したがって微細に均一に分散していることが分かる。
さらに、本発明ターゲット1および従来ターゲット1についてBHループトレーサー(理研電子株式会社製)を用いて透磁率を測定し、それらの結果を表1に示した。
【0013】
【表1】

Figure 2004339586
【0014】
表1に示される結果から、疎水性シリカ粉末を使用して作製した本発明ターゲット1は、市販の合成石英からなるシリカ粉砕粉末を使用して作製した従来ターゲット1に比べて、シリカ相の平均幅が各段に小さく、透磁率が小さいことが分かる。
【0015】
実施例2
先に用意したCo粉末、Cr粉末およびPt粉末、並びにBET値:110を有する疎水性シリカ粉末(型番R972)およびBET値:250を有する疎水性シリカ粉末(型番R812)を、表2に示される成分組成となるように配合し、ジルコニアボールミルで3時間乾式混合し、得られた混合粉末をホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:15MPa、1.5時間保持の条件でホットプレスすることにより前記配合組成と同じ成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工することにより直径6インチ、厚さ:5mmの寸法を有する本発明ターゲット2〜7を作製した。
【0016】
比較例1
先に用意したCo粉末、Cr粉末、Pt粉末および市販の合成石英からなるシリカ粉砕粉末を表2に示される割合となるように配合し、以下、実施例2と同じ条件で比較ターゲット1を作製した。
【0017】
本発明ターゲット2〜7および比較ターゲット1についてSEMによる組織写真を撮り、線分法によりシリカ相の平均幅を測定し、その結果を表2に示した。さらに、本発明ターゲット2〜7および比較ターゲット1についてBHループトレーサー(理研電子株式会社製)を用いて透磁率を測定し、それらの結果を表2に示した。
【0018】
【表2】
Figure 2004339586
【0019】
表2に示される結果から、疎水性シリカ粉末を使用して作製した本発明ターゲット2〜7は、合成石英からなるシリカ粉砕粉末を使用して作製した比較ターゲット1に比べて、シリカ相の平均幅が各段に小さく、また透磁率が小さいことが分かる。
なお、先に用意したCo粉末、Cr粉末、Pt粉末を日新技研株式会社製の超小型アトマイズ装置でアトマイズすることによりCo基合金粉末を作製し、このCo基合金粉末を100メッシュアンダーに分級した後シリカ粉末と混合して作製しても同じ結果が得られた。
【0020】
【発明の効果】
上述のように、この発明は、一層優れた磁気記録膜を形成することができるスパッタリングターゲットを提供することができ、コンピューター産業の発展に大いに貢献し得るものである。
【図面の簡単な説明】
【図1】この発明のスパッタリングターゲットのSEMによる組織写真である。
【図2】従来のスパッタリングターゲットのSEMによる組織写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sputtering target for forming a magnetic recording film applied to a high-density magnetic recording medium of a hard disk, particularly to a magnetic recording film applied to a perpendicular magnetic recording medium, and a method for manufacturing the same.
[Prior art]
A hard disk device is generally used as an external recording device of a computer, and further improvement in recording density is required. Therefore, in recent years, a perpendicular magnetic recording system capable of realizing ultra-high-density recording has attracted attention. In this perpendicular magnetic recording method, it is said that the higher the recording density, the more stable the recording magnetization becomes. A magnetic recording medium provided with this perpendicular magnetic recording method is laminated with a magnetic recording film. It is necessary that the magnetic recording film has high performance. As one of the magnetic recording films applicable to this, a CoCrPt-SiO 2 granular magnetic recording film has been proposed, and this CoCrPt-SiO 2 granular magnetic recording film has a Co-based sintered alloy phase containing Cr and / or Pt. It is known that a composite target having a mixed phase of a silica phase can be produced by an RF magnetron sputtering method (see Non-Patent Document 1).
The composite target is made of a Cr powder produced by the rapid solidification method, a mixed powder obtained by mixing one or two of the Pt powders and each element powder of the Co powder, or Cr and / or Pt produced by the rapid solidification method. A silica powder obtained by pulverizing a Co-based alloy powder containing 4 to 20 atomic% of silica and one or two of Cr and Pt in total of 5 to 40 atomic%, and the balance: It is prepared by blending so as to have a composition of Co, mixing by an ordinary V-type mixer or a mechanical alloying method, and then hot pressing. Among these, mixing by a mechanical alloying method is considered to be most preferable (see Patent Document 1).
[0003]
[Non-patent document 1]
"Fuji Times" Vol. 75 No. 3 2002 (pages 169-172)
[Patent Document 1]
JP 10-88333 A
[Problems to be solved by the invention]
However, the target obtained by hot pressing the mixed powder obtained by mixing by the conventional mechanical alloying method,
(A) Mixing for a long time (for example, 96 hours) is necessary for mechanical alloying, which results in low productivity, high cost, and mixing for a long time causes impurities to be mixed in from a chamber or a vibrator.
(B) Since the silica phase is not sufficiently dispersed in the Co-based sintered alloy phase, the magnetic permeability does not become low, which causes an abnormal discharge or a problem that a stable discharge cannot be obtained at the initial stage of sputtering. there were.
[0005]
[Means for Solving the Problems]
Therefore, the present inventor conducted research to solve such a problem,
(A) A silica powder as a raw material powder is prepared by using a silica powder produced by a high-temperature flame hydrolysis method, and one or two of Cr powder and Pt powder and each metal element of Co powder are used as the silica powder. Powder or a Co-based alloy powder containing one or two of Cr and Pt; silica: 4 to 20 at%, and one or two of Cr and Pt in a total of 5 to 40 at%; The balance: The sputtering target obtained by blending and mixing so as to have a composition of Co, followed by hot pressing is mixed with a silica phase and a Co-based sintered alloy phase containing Cr and / or Pt. The silica phase has an extremely fine structure having an average width in the range of 0.5 to 5 μm obtained by a line segment method, and the silica phase and Cr and / or Pt are mixed. A sputtering target having a structure in which the Co-based sintered alloy phase and the Co-based sintered alloy phase are more uniformly mixed is obtained, and the thus obtained target has a lower magnetic permeability, a stable discharge is obtained, and an abnormal discharge is less. Fewer particles are generated, which contributes to improving product yield.
(B) It has been found that the silica powder produced by the high-temperature flame hydrolysis method of the raw material powder is more preferably a silica powder imparted with hydrophobicity by surface treatment.
[0006]
The present invention has been made based on such knowledge,
(1) Silica: 4 to 20 atomic%, one or two of Cr and Pt are contained in a total of 5 to 40 atomic%, and the balance is a composition of Co, and a silica phase and Cr and Pt A sputtering target for forming a magnetic recording film having a structure composed of a mixed phase in which a Co-based sintered alloy phase containing one or two of the above is mixed. A sputtering target for forming a magnetic recording film whose average width is in the range of 0.5 to 5 μm;
(2) Silica powder is added to one or two kinds of Cr powder, Pt powder and each metal element powder of Co powder, or Co-based alloy powder containing one or two kinds of Cr and Pt, : Magnet containing 4 to 20 atomic%, one or two of Cr and Pt in a total amount of 5 to 40 atomic%, and the balance: Co. A method for producing a sputtering target for forming a magnetic recording film according to (1), wherein the silica powder is a silica powder produced by a high-temperature flame hydrolysis method.
(3) The method for producing a sputtering target for forming a magnetic recording film according to (2), wherein the silica powder is a silica powder to which hydrophobicity has been imparted by a surface treatment.
[0007]
In the structure of the sputtering target for forming a magnetic recording film according to the present invention, the average width determined by the line segment method is limited to be in the range of 0.5 to 5 μm because the average width of the silica phase exceeds 5 μm. As a result, the magnetic permeability is increased, and as a result, the spatter becomes unstable, and the generation of particles increases drastically. As the plasma concentrates at the erosion portion (the portion reduced by the sputter), the width of the erosion becomes narrow and deep, and the On the other hand, if the average width of the silica phase is less than 0.5 μm, the size of the Co-based sintered alloy phase increases, and the magnetic permeability also increases, so that the above problem occurs. This is because of unfavorable reasons.
[0008]
The Co-based sintered alloy phase constituting the base of the sputtering target for forming a magnetic recording film according to the present invention is preferably a single phase of a Co-based alloy in which Co and Cr and / or Pt are dissolved in a solid solution. , Pt powder and Co powder may not be sufficiently diffused and may be scattered as a pure metal phase of Cr, Pt or Co, or may contain other intermetallic compound phases.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
As raw material powders, commercially available Co powder (400 mesh under), Cr powder (150 mesh under), and Pt powder (100 mesh under) each having a purity of 99.9% by mass or more were prepared.
Hydrophobic silica powder (model number R972) having a BET value of 110 and a hydrophobicity having a BET value of 250 which is produced by a high-temperature flame hydrolysis method manufactured by Nippon Aerosil Co., Ltd. A silica powder (model number R812) was prepared.
Further, as a raw material powder, a commercially available powdered silica made of synthetic quartz (purity: 99.9% by mass or more, average particle size: 3 μm) was prepared.
[0010]
Example 1
The previously prepared Co powder, Cr powder, Pt powder and hydrophobic silica powder having a BET value: 110 (model number R972) were obtained by adding 10 atomic% of Pt powder, 10 atomic% of Cr powder, and hydrophobic silica powder (model number R972). ): 10 atomic%, balance: Co powder, dry-mixing with a zirconia ball mill for 3 hours, filling the resulting mixed powder into a hot press, temperature: 1100 ° C. in a vacuum atmosphere, pressure: By hot pressing under the conditions of 15 MPa and holding for 1.5 hours, a hot pressed body having the same component composition as the above-mentioned composition was prepared, and the hot pressed body was cut into a 6 inch diameter, 5 mm thick. The target 1 of the present invention having dimensions was produced.
[0011]
Conventional example 1
Pulverized silica powder composed of Co powder, Cr powder, Pt powder and commercially available synthetic quartz prepared above was prepared by dividing Pt powder: 10 atomic%, Cr powder: 10 atomic%, silica pulverized powder: 10 atomic%, balance: Co powder And mixed by dry mixing in a ball mill for 96 hours to produce a mixed powder by mechanical alloying. The obtained mixed powder is filled in a hot press, and the temperature is set to 1100 ° C. in a vacuum atmosphere. : Hot pressing under the conditions of 15 MPa and holding for 1.5 hours to produce a hot pressed body having the same composition as the above-mentioned composition, and cutting the hot pressed body to a diameter of 6 inches and a thickness of 5 mm A conventional target 1 having the following dimensions was produced.
[0012]
Photographs of the structure of the target 1 of the present invention obtained in Example 1 and the conventional target 1 obtained in Conventional Example 1 were taken by SEM, and the average width of the silica phase was measured by a line segment method. The results are shown in Table 1. Was. FIG. 1 shows a SEM micrograph of the target 1 of the present invention, and FIG. 2 shows a micrograph of the conventional target 1 by SEM. In the micrographs of FIGS. 1 and 2, white portions indicate the Co-based sintered alloy phase, and black portions indicate the silica phase. As is clear from the micrographs of FIGS. 1 and 2, the target 1 of the present invention has a narrower silica phase width than the conventional target 1, and is therefore finely and uniformly dispersed.
Further, the magnetic permeability of the target 1 of the present invention and the conventional target 1 was measured using a BH loop tracer (manufactured by Riken Denshi Co., Ltd.), and the results are shown in Table 1.
[0013]
[Table 1]
Figure 2004339586
[0014]
From the results shown in Table 1, the target 1 of the present invention produced using the hydrophobic silica powder has a more average silica phase than the conventional target 1 produced using the commercially available silica crushed powder made of synthetic quartz. It can be seen that the width is small in each step and the magnetic permeability is small.
[0015]
Example 2
The previously prepared Co powder, Cr powder and Pt powder, as well as the hydrophobic silica powder having a BET value of 110 (model number R972) and the hydrophobic silica powder having a BET value of 250 (model number R812) are shown in Table 2. The components were blended so as to have the component composition, and dry-mixed in a zirconia ball mill for 3 hours, and the obtained mixed powder was filled in a hot press apparatus, and kept in a vacuum atmosphere at a temperature of 1100 ° C, a pressure of 15 MPa and 1.5 hours. By hot pressing under the conditions, a hot pressed body having the same component composition as the above-mentioned composition was prepared, and the hot pressed body was cut to obtain a target 2 to 2 of the present invention having a diameter of 6 inches and a thickness of 5 mm. 7 was produced.
[0016]
Comparative Example 1
The previously prepared Co powder, Cr powder, Pt powder, and commercially available silica crushed powder composed of synthetic quartz were blended so as to have the ratio shown in Table 2, and the comparative target 1 was prepared under the same conditions as in Example 2 below. did.
[0017]
Structural photographs were taken by SEM of the targets 2 to 7 of the present invention and the comparative target 1, and the average width of the silica phase was measured by the line segment method. The results are shown in Table 2. Further, the magnetic permeability of the targets 2 to 7 of the present invention and the comparative target 1 were measured using a BH loop tracer (manufactured by RIKEN ELECTRONICS CO., LTD.). The results are shown in Table 2.
[0018]
[Table 2]
Figure 2004339586
[0019]
From the results shown in Table 2, the targets 2 to 7 of the present invention produced using the hydrophobic silica powder had an average silica phase average value as compared with the comparative target 1 produced using the silica crushed powder composed of synthetic quartz. It can be seen that the width is small in each step and the magnetic permeability is small.
The Co powder, Cr powder, and Pt powder prepared above were atomized with a micro atomizing device manufactured by Nissin Giken Co., Ltd. to produce a Co-based alloy powder, and the Co-based alloy powder was classified into a mesh under 100 mesh. After that, the same result was obtained by mixing with a silica powder to produce the mixture.
[0020]
【The invention's effect】
As described above, the present invention can provide a sputtering target capable of forming a more excellent magnetic recording film, and can greatly contribute to the development of the computer industry.
[Brief description of the drawings]
FIG. 1 is an SEM micrograph of a sputtering target of the present invention.
FIG. 2 is a SEM micrograph of a conventional sputtering target.

Claims (3)

シリカ:4〜20原子%、CrおよびPtの内の1種または2種を合計で5〜40原子%を含有し、残部:Coからなる組成を有し、シリカ相とCrおよびPtの内の1種または2種を含有するCo基焼結合金相とが混在しているている混合相からなる組織を有する磁気記録膜形成用スパッタリングターゲットであって、前記シリカ相は、線分法で求めた平均幅が0.5〜5μmの範囲内にあることを特徴とする磁気記録膜形成用スパッタリングターゲット。Silica: 4 to 20 atomic%, containing one or two of Cr and Pt in total of 5 to 40 atomic%, the balance being: a composition of Co, and a silica phase and Cr and Pt of A sputtering target for forming a magnetic recording film having a structure composed of a mixed phase in which a Co-based sintered alloy phase containing one or two types is mixed, wherein the silica phase is determined by a line segment method. An average width in the range of 0.5 to 5 [mu] m. Cr粉末、Pt粉末のうちの1種もしくは2種およびCo粉末の各金属要素粉末、またはCr、Ptのうちの1種もしくは2種を含むCo基合金粉末に、シリカ粉末を、シリカ:4〜20原子%、CrおよびPtの内の1種または2種を合計で5〜40原子%を含有し、残部:Coからなる組成を有するように配合し混合したのちホットプレスする磁気記録膜形成用スパッタリングターゲットの製造方法であって、前記シリカ粉末は高温火炎加水分解法で製造されたシリカ粉末であることを特徴とする請求項1記載の磁気記録膜形成用スパッタリングターゲットの製造方法。Silica powder is added to one or two or more of Cr powder and Pt powder and each metal element powder of Co powder, or a Co-based alloy powder containing one or two of Cr and Pt, silica: 20% by atom, one or two of Cr and Pt are contained in a total of 5 to 40% by atom, and the balance is Co. The method for manufacturing a sputtering target for forming a magnetic recording film according to claim 1, wherein the silica powder is a silica powder manufactured by a high-temperature flame hydrolysis method. 前記シリカ粉末は、表面処理により疎水性が付与されたシリカ粉末であることを特徴とする請求項2記載の磁気記録膜形成用スパッタリングターゲットの製造方法。3. The method according to claim 2, wherein the silica powder is a silica powder to which hydrophobicity has been imparted by a surface treatment.
JP2003139889A 2003-05-19 2003-05-19 Sputtering target for forming magnetic recording film, and its production method Pending JP2004339586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139889A JP2004339586A (en) 2003-05-19 2003-05-19 Sputtering target for forming magnetic recording film, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139889A JP2004339586A (en) 2003-05-19 2003-05-19 Sputtering target for forming magnetic recording film, and its production method

Publications (1)

Publication Number Publication Date
JP2004339586A true JP2004339586A (en) 2004-12-02

Family

ID=33528771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139889A Pending JP2004339586A (en) 2003-05-19 2003-05-19 Sputtering target for forming magnetic recording film, and its production method

Country Status (1)

Country Link
JP (1) JP2004339586A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080781A1 (en) * 2006-01-13 2007-07-19 Nippon Mining & Metals Co., Ltd. Nonmagnetic material particle dispersed ferromagnetic material sputtering target
WO2007114356A1 (en) * 2006-03-31 2007-10-11 Mitsubishi Materials Corporation Sputtering target for vertical magnetic recording medium film formation and method for manufacturing the same
WO2007116834A1 (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Corporation METHOD FOR MANUFACTURING Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLES, AND Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM
JP2007270253A (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Corp Method for manufacturing sputtering target for forming optical recording medium protective film
JP2007291512A (en) * 2006-03-31 2007-11-08 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Co-BASED SINTERED ALLOY SPUTTERING TARGET TO BE USED IN FORMING MAGNETIC RECORDING FILM WITH LITTLE PARTICLE GENERATION
JP2007291489A (en) * 2006-03-31 2007-11-08 Mitsubishi Materials Corp Method for manufacturing sputtering target to be used in forming film of perpendicular magnetic recording medium having low relative magnetic permeability in in-plane direction
JP2008088546A (en) * 2006-09-08 2008-04-17 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLE
JP2008223072A (en) * 2007-03-12 2008-09-25 Mitsubishi Materials Corp METHOD FOR PRODUCING Co BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLE
JP2008240012A (en) * 2007-03-26 2008-10-09 Mitsubishi Materials Corp Sputtering target for vertical magnetic recording medium film formation having high leakage magnetic flux density
JP2008240011A (en) * 2007-03-26 2008-10-09 Mitsubishi Materials Corp Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLE
JP2009001860A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP2009001862A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
WO2009054369A1 (en) * 2007-10-24 2009-04-30 Mitsui Mining & Smelting Co., Ltd. Sputtering target for magnetic recording film and method for manufacturing such sputtering target
JP2010001562A (en) * 2008-06-18 2010-01-07 China Steel Corp Method for manufacturing of metal-ceramic composite target containing precious metal
US7645363B2 (en) * 2005-05-06 2010-01-12 Hitachi Global Storage Technologies Netherlands B.V. Manufacturing of magnetic recording medium
WO2010067446A1 (en) * 2008-12-11 2010-06-17 三菱マテリアル株式会社 Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability
WO2012011329A1 (en) * 2010-07-23 2012-01-26 Jx日鉱日石金属株式会社 Magnetic material sputtering target provided with groove in rear face of target
WO2012086300A1 (en) * 2010-12-21 2012-06-28 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording film, and process for production thereof
US20130112555A1 (en) * 2010-07-20 2013-05-09 Jx Nippon Mining & Metals Corporation Sputtering Target of Ferromagnetic Material with Low Generation of Particles
US8568576B2 (en) 2008-03-28 2013-10-29 Jx Nippon Mining & Metals Corporation Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material
US9103023B2 (en) 2009-03-27 2015-08-11 Jx Nippon Mining & Metals Corporation Nonmagnetic material particle-dispersed ferromagnetic material sputtering target
US9793099B2 (en) 2012-03-15 2017-10-17 Jx Nippon Mining & Metals Corporation Magnetic material sputtering target and manufacturing method thereof

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645363B2 (en) * 2005-05-06 2010-01-12 Hitachi Global Storage Technologies Netherlands B.V. Manufacturing of magnetic recording medium
US9034153B2 (en) * 2006-01-13 2015-05-19 Jx Nippon Mining & Metals Corporation Nonmagnetic material particle dispersed ferromagnetic material sputtering target
JP4975647B2 (en) * 2006-01-13 2012-07-11 Jx日鉱日石金属株式会社 Non-magnetic particle dispersed ferromagnetic sputtering target
US20090242393A1 (en) * 2006-01-13 2009-10-01 Nippon Mining & Metals Co., Ltd. Nonmagnetic Material Particle Dispersed Ferromagnetic Material Sputtering Target
TWI393794B (en) * 2006-01-13 2013-04-21 Jx Nippon Mining & Metals Corp Non - magnetic Particle Dispersive Type Strong Magnetic Sputtering Target
WO2007080781A1 (en) * 2006-01-13 2007-07-19 Nippon Mining & Metals Co., Ltd. Nonmagnetic material particle dispersed ferromagnetic material sputtering target
JP2007270253A (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Corp Method for manufacturing sputtering target for forming optical recording medium protective film
JP2007291489A (en) * 2006-03-31 2007-11-08 Mitsubishi Materials Corp Method for manufacturing sputtering target to be used in forming film of perpendicular magnetic recording medium having low relative magnetic permeability in in-plane direction
JP2007291512A (en) * 2006-03-31 2007-11-08 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Co-BASED SINTERED ALLOY SPUTTERING TARGET TO BE USED IN FORMING MAGNETIC RECORDING FILM WITH LITTLE PARTICLE GENERATION
WO2007116834A1 (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Corporation METHOD FOR MANUFACTURING Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLES, AND Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM
JP4697441B2 (en) * 2006-03-31 2011-06-08 三菱マテリアル株式会社 Method of manufacturing sputtering target for forming protective film for optical recording medium
WO2007114356A1 (en) * 2006-03-31 2007-10-11 Mitsubishi Materials Corporation Sputtering target for vertical magnetic recording medium film formation and method for manufacturing the same
JP2008088546A (en) * 2006-09-08 2008-04-17 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLE
JP2008223072A (en) * 2007-03-12 2008-09-25 Mitsubishi Materials Corp METHOD FOR PRODUCING Co BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLE
JP2008240011A (en) * 2007-03-26 2008-10-09 Mitsubishi Materials Corp Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLE
JP2008240012A (en) * 2007-03-26 2008-10-09 Mitsubishi Materials Corp Sputtering target for vertical magnetic recording medium film formation having high leakage magnetic flux density
JP2009001862A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP2009001860A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP2009102707A (en) * 2007-10-24 2009-05-14 Mitsui Mining & Smelting Co Ltd Sputtering target for magnetic recording film and its manufacturing method
WO2009054369A1 (en) * 2007-10-24 2009-04-30 Mitsui Mining & Smelting Co., Ltd. Sputtering target for magnetic recording film and method for manufacturing such sputtering target
US8568576B2 (en) 2008-03-28 2013-10-29 Jx Nippon Mining & Metals Corporation Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material
US8936707B2 (en) 2008-03-28 2015-01-20 Jx Nippon Mining & Metals Corporation Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material
US8932444B2 (en) 2008-03-28 2015-01-13 Jx Nippon Mining & Metals Corporation Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material
TWI449801B (en) * 2008-03-28 2014-08-21 Jx Nippon Mining & Metals Corp Non - magnetic Particle Dispersive Type Strong Magnetic Sputtering Target
JP2010001562A (en) * 2008-06-18 2010-01-07 China Steel Corp Method for manufacturing of metal-ceramic composite target containing precious metal
WO2010067446A1 (en) * 2008-12-11 2010-06-17 三菱マテリアル株式会社 Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability
US9103023B2 (en) 2009-03-27 2015-08-11 Jx Nippon Mining & Metals Corporation Nonmagnetic material particle-dispersed ferromagnetic material sputtering target
US20130112555A1 (en) * 2010-07-20 2013-05-09 Jx Nippon Mining & Metals Corporation Sputtering Target of Ferromagnetic Material with Low Generation of Particles
US9181617B2 (en) * 2010-07-20 2015-11-10 Jx Nippon Mining & Metals Corporation Sputtering target of ferromagnetic material with low generation of particles
JP5596118B2 (en) * 2010-07-23 2014-09-24 Jx日鉱日石金属株式会社 Magnetic material sputtering target with grooves on the back of the target
CN103080369A (en) * 2010-07-23 2013-05-01 吉坤日矿日石金属株式会社 Magnetic material sputtering target provided with groove in rear face of target
WO2012011329A1 (en) * 2010-07-23 2012-01-26 Jx日鉱日石金属株式会社 Magnetic material sputtering target provided with groove in rear face of target
CN103262166A (en) * 2010-12-21 2013-08-21 吉坤日矿日石金属株式会社 Sputtering target for magnetic recording film, and process for production thereof
JP5009447B1 (en) * 2010-12-21 2012-08-22 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording film and manufacturing method thereof
WO2012086300A1 (en) * 2010-12-21 2012-06-28 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording film, and process for production thereof
US9605339B2 (en) 2010-12-21 2017-03-28 Jx Nippon Mining & Metals Corporation Sputtering target for magnetic recording film and process for production thereof
US9793099B2 (en) 2012-03-15 2017-10-17 Jx Nippon Mining & Metals Corporation Magnetic material sputtering target and manufacturing method thereof
US10325761B2 (en) 2012-03-15 2019-06-18 Jx Nippon Mining & Metals Corporation Magnetic material sputtering target and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2004339586A (en) Sputtering target for forming magnetic recording film, and its production method
US8679268B2 (en) Sputtering target of ferromagnetic material with low generation of particles
JP4975647B2 (en) Non-magnetic particle dispersed ferromagnetic sputtering target
JP5563102B2 (en) Sintered sputtering target
US9228251B2 (en) Ferromagnetic material sputtering target
JP4837801B2 (en) Sputtering target in which oxide phase is dispersed in Co or Co alloy phase
SG188601A1 (en) Ferromagnetic material sputtering target
WO2013190943A1 (en) Sputtering target for magnetic recording film
US20140001038A1 (en) Ferromagnetic Sputtering Target with Less Particle Generation
JP5847203B2 (en) Co-Cr-Pt-based sputtering target and method for producing the same
WO2012017952A1 (en) Target for magnetron sputtering and process for production thereof
JP5375707B2 (en) Sputtering target for forming a magnetic recording film and method for producing the same
JPWO2013175884A1 (en) Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
SG189202A1 (en) Ferromagnetic sputtering target
JP2008078496A (en) OXIDE CONTAINING Co-BASED ALLOY MAGNETIC FILM, OXIDE CONTAINING Co-BASED ALLOY TARGET, AND MANUFACTURING METHOD THEREOF
JP2011175725A (en) Sputtering target for forming magnetic recording medium film and method for manufacturing the same
JP5768029B2 (en) Magnetron sputtering target and method for manufacturing the same
JP2011174174A (en) Sputtering target for forming magnetic recording medium film, and method for producing the same
JP2006176808A (en) METHOD FOR PRODUCING CoCrPt-SIO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM
JP2010095794A (en) METHOD FOR PRODUCING Co-Fe-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
JP2006176810A (en) METHOD FOR PRODUCING CoCrPt-SiO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM
JP4758522B1 (en) Ferromagnetic sputtering target with less generation of particles
JP7492831B2 (en) Sputtering target material
JP5748639B2 (en) Magnetron sputtering target and method for manufacturing the same
JP2009132976A (en) Sputtering target for depositing perpendicular magnetic recording medium film having low relative magnetic permeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060331

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Effective date: 20081112

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090304

Free format text: JAPANESE INTERMEDIATE CODE: A02