JP2008223072A - METHOD FOR PRODUCING Co BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLE - Google Patents

METHOD FOR PRODUCING Co BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLE Download PDF

Info

Publication number
JP2008223072A
JP2008223072A JP2007061857A JP2007061857A JP2008223072A JP 2008223072 A JP2008223072 A JP 2008223072A JP 2007061857 A JP2007061857 A JP 2007061857A JP 2007061857 A JP2007061857 A JP 2007061857A JP 2008223072 A JP2008223072 A JP 2008223072A
Authority
JP
Japan
Prior art keywords
powder
target
oxide
magnetic recording
recording film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007061857A
Other languages
Japanese (ja)
Other versions
JP4962905B2 (en
Inventor
Sohei Nonaka
荘平 野中
Terushi Mishima
昭史 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007061857A priority Critical patent/JP4962905B2/en
Publication of JP2008223072A publication Critical patent/JP2008223072A/en
Application granted granted Critical
Publication of JP4962905B2 publication Critical patent/JP4962905B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a Co based sintered alloy sputtering target for forming a magnetic recording film which is less likely to generate particles. <P>SOLUTION: As raw material powders, an oxide powder obtained by coating each surface of any one kind of oxide powder selected from TiO<SB>2</SB>powder, Ta<SB>2</SB>O<SB>5</SB>powder, Al<SB>2</SB>O<SB>3</SB>powder, MgO powders, ZrO<SB>2</SB>powder and Y<SB>2</SB>O<SB>3</SB>powder with a silicon dioxide layer of 1 to 20 vol.%; and an alloy powder containing two or more kinds selected from Cr powders, Pt, powders, Co powders, Cr, Pt and Co are prepared. These raw material powders are blended and mixed so as to have a composition comprising, by mol, 5 to 20% Cr, 5 to 25% Pt, and any one kind of oxide selected from TiO<SB>2</SB>, Ta<SB>2</SB>O<SB>5</SB>, Al<SB>2</SB>O<SB>3</SB>, MgO, ZrO<SB>2</SB>and Y<SB>2</SB>O<SB>3</SB>, and SiO<SB>2</SB>by 2 to 15% in total, and the balance Co powders, and the mixture is thereafter subjected to press sintering. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、ハードディスクの高密度磁気記録媒体に適用される磁気記録膜、特に垂直磁気記録媒体に適用される磁気記録膜を形成するためのスパッタリングターゲットの製造方法に関するものである。   The present invention relates to a method of manufacturing a sputtering target for forming a magnetic recording film applied to a high-density magnetic recording medium of a hard disk, particularly a magnetic recording film applied to a perpendicular magnetic recording medium.

ハードディスク装置は一般にコンピューターやデジタル家電等の外部記録装置として用いられており、記録密度の一層の向上が求められている。そのため、近年、超高密度の記録を実現できる垂直磁気記録方式が注目されてきた。この垂直磁気記録方式は、従来の面内記録方式と異なり、原理的に高密度化するほど記録磁化が安定すると言われており、すでに実用化が開始されている。この垂直磁気記録方式のハードディスク媒体の磁気記録層用の材料の一つとしてCoCrPt−SiOグラニュラ磁気記録膜が使用されており、このCoCrPt−SiOグラニュラ磁気記録膜はCrおよびPtを含むCo基焼結合金相と二酸化珪素相の混合相を有するCo基焼結合金スパッタリングターゲットを用いてマグネトロンスパッタ法により作製することが知られている(非特許文献1参照)。
このCo基焼結合金スパッタリングターゲットは、通常、二酸化珪素粉末、Cr粉末、Pt粉末およびCo粉末を、二酸化珪素:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Co粉末からなる配合組成となるように混合したのち、ホットプレスまたは熱間静水圧プレスなどの方法で加圧焼結することにより作製されることが知られており、前記二酸化珪素粉末として高温火炎加水分解法で製造された二酸化珪素粉末を使用し、ターゲットの素地中に分散する二酸化珪素相を10μm以下の極めて細かい組織とすることによってパーティクルの発生を少なくしている(特許文献1、特許文献2などを参照)。
さらに、このグラニュラ磁気記録膜を形成するためのCo基焼結合金スパッタリングターゲットには、二酸化珪素(SiO)粉末に換えてTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内の1種または2種以上の酸化物粉末を使用することができ、これら酸化物粉末を使用したCo基焼結合金スパッタリングターゲットによる磁気記録膜の研究も進められている(特許文献3、特許文献4などを参照)。
「富士時報」Vol.75No.3 2002(169〜172ページ) 特開2001‐236643号公報 特開2004‐339586号公報 特開2003‐36525号公報 特開2006‐24346号公報
Hard disk devices are generally used as external recording devices such as computers and digital home appliances, and further improvement in recording density is required. Therefore, in recent years, a perpendicular magnetic recording system that can realize ultra-high-density recording has attracted attention. Unlike the conventional in-plane recording system, this perpendicular magnetic recording system is said to have a stable recording magnetization as the density increases in principle, and has already been put into practical use. A CoCrPt—SiO 2 granular magnetic recording film is used as one of the materials for the magnetic recording layer of this perpendicular magnetic recording type hard disk medium, and the CoCrPt—SiO 2 granular magnetic recording film is a Co base containing Cr and Pt. It is known to produce by a magnetron sputtering method using a Co-based sintered alloy sputtering target having a mixed phase of a sintered alloy phase and a silicon dioxide phase (see Non-Patent Document 1).
This Co-based sintered alloy sputtering target usually comprises silicon dioxide powder, Cr powder, Pt powder and Co powder, silicon dioxide: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol%. It is known that it is produced by pressure sintering by a method such as hot pressing or hot isostatic pressing after mixing so as to have a blending composition consisting of Co powder. Generation of particles is reduced by using silicon dioxide powder produced by a high-temperature flame hydrolysis method as silicon dioxide powder, and making the silicon dioxide phase dispersed in the target substrate a very fine structure of 10 μm or less ( (See Patent Document 1, Patent Document 2, etc.).
Further, in the Co-based sintered alloy sputtering target for forming this granular magnetic recording film, TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder are used instead of silicon dioxide (SiO 2 ) powder. , ZrO 2 powder, Y 2 O 3 powder, one or more oxide powders can be used, and study of magnetic recording film by Co-based sintered alloy sputtering target using these oxide powders (See Patent Literature 3, Patent Literature 4 and the like).
“Fuji Times” Vol. 75No. 3 2002 (pages 169-172) Japanese Patent Laid-Open No. 2001-236643 JP 2004-339586 A JP 2003-36525 A JP 2006-24346 A

このTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末などの酸化物粉末を含むCo基焼結合金スパッタリングターゲットは、二酸化珪素(SiO)粉末を含むCo基焼結合金スパッタリングターゲットと同様にTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Co粉末からなる配合組成となるように混合したのち、ホットプレスまたは熱間静水圧プレスなどの方法で加圧焼結することにより作製できると一般に考えられている。しかし、前記従来の方法で作製したTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末などの酸化物粉末を含むCo基焼結合金スパッタリングターゲットはスパッタリングに際してパーティクルの発生が多く、そのためにパーティクル発生の一層少ないTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末などの酸化物粉末を含むCo基焼結合金スパッタリングターゲットが求められていた。 This Co-based sintered alloy sputtering target containing oxide powders such as TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, Y 2 O 3 powder is silicon dioxide (SiO 2 ) Any one of TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder and Y 2 O 3 powder as well as the Co-based sintered alloy sputtering target containing powder: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol%, the remainder: mixed so as to have a blended composition consisting of Co powder, hot press or hot isostatic press, etc. It is generally considered that it can be produced by pressure sintering by the above method. However, a Co-based sintered alloy sputtering including oxide powders such as TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder produced by the conventional method. The target generates a large amount of particles during sputtering, and therefore oxide powders such as TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder with less generation of particles. There has been a need for a Co-based sintered alloy sputtering target containing:

本発明者は、TiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末などの酸化物粉末を含むパーティクル発生の少ないCo基焼結合金スパッタリングターゲットを得るべく研究を行なった。その結果、
(イ)原料粉末としてTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末などの酸化物粉末をそのまま添加してCr粉末、Pt粉末、Co粉末並びにCr、PtおよびCoのうちのいずれか2種以上を含む合金粉末とともにCr:5〜20モル%、Pt:5〜25モル%、酸化物:2〜15モル%を含有し、残部:Co粉末からなる配合組成となるように混合したのち、加圧焼結することにより得られた磁気記録膜形成用Co基焼結合金スパッタリングターゲットよりも、
TiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末などの酸化物粉末の表面を二酸化珪素(SiO)層で被覆してなる酸化物粉末(以下、被覆酸化物粉末という)を添加して、Cr:5〜20モル%、Pt:5〜25モル%、並びにTiO、Ta、Al、MgO、ZrO、Yの内のいずれか1種の酸化物およびSiOの合計:2〜15モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、加圧焼結することにより得られた磁気記録膜形成用Co基焼結合金スパッタリングターゲットの方がスパッタリングに際してパーティクルの発生が一層少なくなる、
(ロ)前記被覆酸化物粉末は、TiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種の酸化物粉末に対して1〜20体積%の二酸化珪素(SiO)層により被覆してなる被覆酸化物粉末であることが好ましい、などの知見を得たのである。
The present inventor has developed a Co-based sintered alloy sputtering with less particle generation including oxide powders such as TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder. I researched to get a target. as a result,
(A) Oxide powder such as TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, Y 2 O 3 powder is added as it is as raw material powder, and Cr powder, Pt powder, Co: 5-20 mol%, Pt: 5-25 mol%, oxide: 2-15 mol% together with Co powder and alloy powder containing any two or more of Cr, Pt and Co, the balance : Co-based sintered alloy sputtering target for forming a magnetic recording film obtained by pressure sintering after mixing so as to have a composition composed of Co powder,
An oxide formed by coating the surface of an oxide powder such as TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, Y 2 O 3 powder with a silicon dioxide (SiO 2 ) layer. powder (hereinafter, referred to as the coating oxide powder) is added, Cr: 5 to 20 mol%, Pt: 5 to 25 mol%, and TiO 2, Ta 2 O 5, Al 2 O 3, MgO, ZrO 2, The total of any one of the oxides of Y 2 O 3 and SiO 2 : 2 to 15 mol%, and the mixture is mixed and mixed so as to have a composition consisting of the balance: Co, and then subjected to pressure sintering. Co-based sintered alloy sputtering target for forming a magnetic recording film obtained by this, the generation of particles during sputtering is further reduced,
(B) The coating oxide powder may be any one of TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder. On the other hand, it has been found that it is preferably a coated oxide powder formed by coating with 1 to 20% by volume of a silicon dioxide (SiO 2 ) layer.

この発明は、かかる知見に基づいてなされたものであって、
(1)Cr粉末、Pt粉末、Co粉末、Cr、PtおよびCoのうちのいずれか2種以上を含む合金粉末、並びにTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種の酸化物粉末の表面をSiO層で被覆した酸化物粉末(以下、被覆酸化物粉末という)を、
Cr:5〜20モル%、Pt:5〜25モル%、TiO、Ta、Al、MgO、ZrO、Yの内のいずれか1種の酸化物とSiOの合計:2〜15モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、加圧焼結するパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、
(2)前記被覆酸化物粉末は、TiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種の酸化物粉末に対して1〜20体積%のSiO層により被覆してなる被覆酸化物粉末である前記(1)記載のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
This invention has been made based on such knowledge,
(1) Cr powder, Pt powder, Co powder, alloy powder containing any two or more of Cr, Pt and Co, TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, An oxide powder obtained by coating the surface of any one of ZrO 2 powder and Y 2 O 3 powder with an SiO 2 layer (hereinafter referred to as coated oxide powder)
Cr: 5 to 20 mol%, Pt: 5 to 25 mol%, TiO 2, Ta 2 O 5, Al 2 O 3, MgO, or one oxide of the ZrO 2, Y 2 O 3 and SiO total 2: containing 2 to 15 mol%, the balance: After blended and mixed so as to have the composition consisting of Co, particle generation less magnetic recording film forming Co-based sintered alloy sputtering target pressure sintering Manufacturing method,
(2) The coating oxide powder may be any one of TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder. The method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation according to the above (1), which is a coated oxide powder coated with 1 to 20% by volume of SiO 2 layer It is what has.

この発明の方法で作製した磁気記録膜形成用Co基焼結合金スパッタリングターゲットを用いてスパッタリングするとパーティクルの発生が少なくなる理由として下記の事項が考えられる。すなわち、TiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種の酸化物粉末をそのまま原料粉末として使用し混合して作製したCo基焼結合金スパッタリングターゲットは、原料粉末を混合する工程でこれら酸化物粉末が凝集し、ホットプレスして得られたターゲットの素地にはTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種の酸化物粉末が凝集し、直径:10μm以上に成長した酸化物凝集体が分散しており、この素地中に巨大な酸化物凝集体が分散したターゲットを用いてスパッタリングすると、スパッタリング中に素地中に分散している巨大な酸化物凝集体の部分でチャージアップし、異常放電してパーティクル発生する。これに対して、TiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種の酸化物粉末の表面をSiO層で被覆した被覆酸化物粉末を用いて作製したターゲットの素地中にはSiO層により混合工程中の酸化物粒子の凝集が阻止されるために酸化物凝集体が存在せず、酸化物粒子が微細均一に分散されることから酸化物凝集体の部分でチャージアップして発生する異常放電が少なく、したがって、パーティクルの発生が少なくなるものと考えられる。 The following can be considered as the reason why the generation of particles is reduced when sputtering is performed using a Co-based sintered alloy sputtering target for forming a magnetic recording film produced by the method of the present invention. That is, any one of TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder is used as a raw material powder and mixed. In the Co-based sintered alloy sputtering target produced in the above, these oxide powders aggregate in the process of mixing the raw material powder, and the base material of the target obtained by hot pressing includes TiO 2 powder, Ta 2 O 5 powder, Al Any one of oxide powders of 2 O 3 powder, MgO powder, ZrO 2 powder and Y 2 O 3 powder is aggregated, and oxide aggregates grown to a diameter of 10 μm or more are dispersed. Sputtering using a target in which huge oxide aggregates are dispersed in the substrate causes charge up at the portion of the huge oxide aggregates dispersed in the substrate during the sputtering, which is abnormal. The particles generated in power. On the other hand, the surface of any one of TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder is formed on the SiO 2 layer. In the target substrate prepared using the coated oxide powder coated with, the oxide particles do not exist because the SiO 2 layer prevents the aggregation of the oxide particles during the mixing process, and the oxide particles Since it is finely and uniformly dispersed, it is considered that abnormal discharge generated by charging up at the oxide aggregate portion is small, and therefore, generation of particles is reduced.

前記TiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種の酸化物粉末の表面をSiO層で被覆した被覆酸化物粉末は、TiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種の酸化物粉末をSiO粉末のナノ粒子とともに転動造粒機あるいはボールミルなどに投入し、機械的混合を行うことにより作製することがもっとも好ましい。しかし、真空蒸着、スパッタ、CVDなどの方法で作製することもできる。 Coating in which the surface of any one of the TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder is coated with a SiO 2 layer oxide powder, TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, Y 2 O 3 powder of any one of the oxide powder of SiO 2 powder nano of the Most preferably, the particles are put into a rolling granulator or a ball mill together with the particles and mechanically mixed. However, it can also be produced by a method such as vacuum deposition, sputtering, or CVD.

この発明のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において使用する被覆酸化物粉末は、TiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種の酸化物粉末に対して1〜20体積%のSiO層で被覆した被覆酸化物粉末からなることが好ましい。その理由は、SiO層の量が1体積%未満では十分に被覆が行われないため凝集防止効果がなく、一方、SiO層の量が20体積%を越えると、膜の磁気特性が低下するので好ましくないからである。より好ましい範囲は2〜16体積%である。
また、主体となるTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末などの酸化物粉末の平均粒径は1〜5μmが好ましい。その理由は、酸化物粉末の平均粒径が1μmより小さいと表面をコーティングするために必要なSiO量が増加するので主体となる酸化物に対するSiO量が多くなりすぎ、膜の磁気特性が低下するために好ましくないからである。一方、酸化物粉末の平均粒径が5μmを越えるとパーティクルの発生が増加するので好ましくないからである。
The coating oxide powder used in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation according to the present invention includes TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, It is preferably composed of a coated oxide powder coated with 1 to 20% by volume of a SiO 2 layer with respect to any one of ZrO 2 powder and Y 2 O 3 powder. The reason is that if the amount of the SiO 2 layer is less than 1% by volume, the coating is not sufficiently performed, so there is no effect of preventing aggregation. On the other hand, if the amount of the SiO 2 layer exceeds 20% by volume, the magnetic properties of the film deteriorate. This is because it is not preferable. A more preferable range is 2 to 16% by volume.
Moreover, the average particle diameter of oxide powders such as TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder as a main component is preferably 1 to 5 μm. The reason is that if the average particle size of the oxide powder is smaller than 1 μm, the amount of SiO 2 necessary for coating the surface increases, so the amount of SiO 2 with respect to the main oxide becomes too large, and the magnetic properties of the film are reduced. It is because it is not preferable because it decreases. On the other hand, if the average particle size of the oxide powder exceeds 5 μm, the generation of particles increases, which is not preferable.

この発明のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットは、前記被覆酸化物粉末、Cr粉末、Pt粉末、Co粉末並びにCr、PtおよびCoのうちのいずれか2種以上を含む合金粉末をCr:5〜20モル%、Pt:5〜25モル%、TiO、Ta、Al、MgO、ZrO、Yの内のいずれか1種の酸化物とSiOの合計:2〜15モル%を含有し、残部:Coという組成となるように配合し混合したのち、加圧焼結することにより製造することができ、かかる配合組成はすでに知られている範囲であるので、その限定理由の説明は省略する。 The Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation according to the present invention comprises any one or more of the coating oxide powder, Cr powder, Pt powder, Co powder and Cr, Pt and Co. alloy powder containing Cr: 5 to 20 mol%, Pt: 5 to 25 mol%, TiO 2, Ta 2 O 5, Al 2 O 3, MgO, of the ZrO 2, Y 2 O 3 any one of total oxide and SiO 2: containing 2 to 15 mol%, the balance: After blended and mixed so as to have the composition of Co, can be produced by pressure sintering, such blending composition already Since it is a known range, the explanation of the limitation reason is omitted.

この発明は、一層パーティクル発生の少ない優れた磁気記録膜を形成することができるスパッタリングターゲットを提供することができ、コンピューター並びにデジタル家電等の産業の発展に大いに貢献し得るものである。   The present invention can provide a sputtering target capable of forming an excellent magnetic recording film with less generation of particles, and can greatly contribute to the development of industries such as computers and digital home appliances.

原料粉末として、平均粒径:3μmのCo粉末、平均粒径:20μmのCr粉末、平均粒径:2μmのPt粉末、平均粒径:25μmのCo−30原子%Cr合金粉末、平均粒径:25μmのCo−50原子%Pt合金粉末、平均粒径:25μmのCr−40原子%Pt合金粉末を用意した。さらに酸化物粉末として、いずれも平均粒径:2μmを有するTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末をそれぞれ用意した。さらに、平均粒径:16nmの市販の表面に疎水基を修飾したSiOナノ粒子を用意した。 As a raw material powder, an average particle size: 3 μm Co powder, an average particle size: 20 μm Cr powder, an average particle size: 2 μm Pt powder, an average particle size: 25 μm Co-30 atomic% Cr alloy powder, an average particle size: 25 μm Co-50 atomic% Pt alloy powder, average particle diameter: 25 μm Cr-40 atomic% Pt alloy powder were prepared. Further, TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder each having an average particle diameter: 2 μm were prepared as oxide powders. Further, the average particle diameter were prepared SiO 2 nanoparticles modified with the hydrophobic group on the commercially available surface of 16 nm.

まず、先に用意したTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末をそれぞれミキサーに装入して、1000r.p.mの回転数で撹拌しながら、前記酸化物粉末に対する体積比で0.1〜0.3の範囲内の所定の割合のn−ヘキサンを加え、ついで予めSiOナノ粒子をn−ヘキサンに同じく体積比で1:10〜15の範囲内の所定の割合に配合してなるSiOナノ粒子分散溶液を、表1に示される配合体積割合を、各酸化物の理論密度から計算した質量割合に換算して、混合液中の酸化物/SiO比がこの質量割合になるように滴下しながら加えたのち、さらに5分間混合し、この混合粉末をホットプレート上で60℃での温度で乾燥処理を行ってヘキサンを発揮させ、さらに大気中、温度:450℃にて5時間保持の熱処理を行なって残留炭素成分を除去し、得られた造粒粉を乳鉢で解砕することによりTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の表面に表1に示される量のSiO層を形成した被覆酸化物粉末A〜vを作製した。 First, the previously prepared TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder were respectively charged into a mixer, and 1000 r. p. While stirring at a rotational speed of m, n-hexane in a predetermined ratio within a range of 0.1 to 0.3 by volume ratio with respect to the oxide powder was added, and then the SiO 2 nanoparticles were preliminarily made the same as n-hexane. The SiO 2 nanoparticle dispersion solution obtained by blending at a predetermined ratio within the range of 1:10 to 15 by volume ratio, the blend volume ratio shown in Table 1 is calculated as the mass ratio calculated from the theoretical density of each oxide. In terms of conversion, the oxide / SiO 2 ratio in the mixed solution was added dropwise so as to have this mass ratio, and further mixed for 5 minutes, and this mixed powder was dried on a hot plate at a temperature of 60 ° C. The treatment is performed to exhibit hexane, and further a heat treatment is performed in the atmosphere at a temperature of 450 ° C. for 5 hours to remove residual carbon components, and the resulting granulated powder is crushed in a mortar to obtain TiO 2. Powder, Ta 2 O 5 powder, Al Coated oxide powders A to v in which SiO 2 layers in the amounts shown in Table 1 were formed on the surfaces of 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder were prepared.

Figure 2008223072
Figure 2008223072

実施例1
表1に示される被覆酸化物粉末A〜H、Co粉末、Cr粉末、Pt粉末および合金粉末を表2に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:20MPa、5時間保持の条件で真空ホットプレスすることにより表2に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:200mm、厚さ:5mmの寸法を有するターゲットを作製することにより本発明法1〜7および比較法1を実施した。
Example 1
The coating oxide powders A to H, Co powder, Cr powder, Pt powder and alloy powder shown in Table 1 were blended so as to have the blending composition shown in Table 2, and the resulting blended powder was used as a grinding medium. It was put into a 10-liter container together with the balls, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 2 is performed by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 20 MPa, and 5 hours. The present invention methods 1 to 7 and comparative method 1 were carried out by producing a body and cutting the hot press body to produce a target having a diameter of 200 mm and a thickness of 5 mm.

さらに、先に用意したTiO粉末をそのまま使用し、表2に示される配合組成となるように配合し、同様にしてターゲットを作製することにより従来法1を実施した。 Further, accept the TiO 2 powder prepared in advance, were blended so that the blending composition shown in Table 2, were performed prior art 1 by producing targets in the same manner.

本発明法1〜7、比較法1および従来法1で得られたターゲットを銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、
到達真空度:5×10−5Pa以下、
電力:直流800W、
Arガス圧:6.0Pa、
ターゲット基板間距離:60mm、
基板加熱:なし、
の条件で5時間プレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した0.5μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表2に示した。
The targets obtained in the present invention methods 1 to 7, comparative method 1 and conventional method 1 are bonded to a copper backing plate and attached to a commercially available sputtering apparatus,
Ultimate vacuum: 5 × 10 −5 Pa or less,
Power: DC 800W,
Ar gas pressure: 6.0 Pa,
Target substrate distance: 60mm,
Substrate heating: None,
Pre-sputtering was performed for 5 hours under the above conditions to remove the target surface processed layer, and then the chamber was once opened to the atmosphere to clean chamber members such as an adhesion preventing plate. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 0.5 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the result is shown in Table 2.

さらに、成膜後ターゲットをバッキングプレートから剥離し、ターゲットの一部を切断し、切断したターゲットの一部を樹脂埋めし、研磨し、走査電子顕微鏡(SEM)により組織観察を行い、ターゲット素地中に分散している直径:10μmを越える大きさの酸化物粒子を観察し、その結果を表2に示した。 Further, after film formation, the target is peeled off from the backing plate, a part of the target is cut, a part of the cut target is filled with resin, polished, and observed with a scanning electron microscope (SEM). The diameter of the oxide particles dispersed in the sample was observed to be larger than 10 μm, and the results are shown in Table 2.

Figure 2008223072
Figure 2008223072

表2に示される結果から、本発明法1〜7により得られたターゲットは、従来法1により得られたターゲットに比べてパーティクルの発生が格段に少なく、またターゲット素地中に分散している10μm以上の巨大な凝集酸化物粒子が少ないことが分かる。しかし、この発明の範囲から外れた量のSiO層を形成した被覆酸化物粉末を使用して作製する比較法1で作製したターゲットは素地中に巨大な凝集酸化物粒子が分散しており、パーティクルの発生が多くなることが分かる。 From the results shown in Table 2, the targets obtained by the present invention methods 1 to 7 are much less likely to generate particles than the target obtained by the conventional method 1 and are dispersed in the target substrate. It turns out that there are few the above huge aggregated oxide particles. However, the target produced by Comparative Method 1 produced using the coated oxide powder having the SiO 2 layer formed in an amount outside the scope of the present invention has huge aggregated oxide particles dispersed in the substrate, It can be seen that the generation of particles increases.

実施例2
表1に示される被覆酸化物粉末I〜P、Co粉末、Cr粉末、Pt粉末および合金粉末を表3に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:20MPa、5時間保持の条件で真空ホットプレスすることにより表3に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:200mm、厚さ:5mmの寸法を有するターゲットを作製することにより本発明法8〜14および比較法2を実施した。
Example 2
The coating oxide powders I to P, Co powder, Cr powder, Pt powder and alloy powder shown in Table 1 were blended so as to have the blending composition shown in Table 3, and the resulting blended powder was used as a grinding medium. It was put into a 10-liter container together with the balls, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder is filled in a vacuum hot press apparatus, and hot press having the component composition shown in Table 3 by vacuum hot pressing in a vacuum atmosphere under the conditions of temperature: 1100 ° C., pressure: 20 MPa, and holding for 5 hours. The present invention methods 8 to 14 and comparative method 2 were carried out by producing a body and cutting the hot press body to produce a target having a diameter of 200 mm and a thickness of 5 mm.

さらに、先に用意したTa粉末をそのまま使用し、表3に示される配合組成となるように配合し、同様にしてターゲットを作製することにより従来法2を実施した。 Further, the conventional method 2 was carried out by using the previously prepared Ta 2 O 5 powder as it was, blending it so as to have the blending composition shown in Table 3, and preparing the target in the same manner.

本発明法8〜14、比較法2および従来法2で得られたターゲットを銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、実施例1と同じ条件で5時間プレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した0.5μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表3に示した。 The targets obtained in the present invention methods 8 to 14, comparative method 2 and conventional method 2 were bonded to a copper backing plate and mounted on a commercially available sputtering apparatus, and pre-sputtering was performed for 5 hours under the same conditions as in Example 1. After removing the target surface processed layer, the chamber was once opened to the atmosphere, and the chamber members such as the deposition preventive plate were cleaned. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 0.5 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the results are shown in Table 3.

さらに、成膜後ターゲットをバッキングプレートから剥離し、ターゲットの一部を切断し、切断したターゲットの一部を樹脂埋めし、研磨し、走査電子顕微鏡(SEM)により組織観察を行い、ターゲット素地中に分散している直径:10μmを越える大きさの酸化物粒子を観察し、その結果を表3に示した。 Further, after film formation, the target is peeled off from the backing plate, a part of the target is cut, a part of the cut target is filled with resin, polished, and observed with a scanning electron microscope (SEM). The diameter of the oxide particles dispersed in the sample was observed to be more than 10 μm, and the results are shown in Table 3.

Figure 2008223072
Figure 2008223072

表3に示される結果から、本発明法8〜14により得られたターゲットは、従来法2により得られたターゲットに比べてパーティクルの発生が格段に少なく、またターゲット素地中に分散している10μm以上の巨大な凝集酸化物粒子が少ないことが分かる。しかし、この発明の範囲から外れた量のSiO層を形成した被覆酸化物粉末を使用して作製する比較法2で作製したターゲットは素地中に巨大な凝集酸化物粒子が分散しており、パーティクルの発生が多くなることが分かる。 From the results shown in Table 3, the target obtained by the present invention methods 8 to 14 has significantly less generation of particles than the target obtained by the conventional method 2 and is 10 μm dispersed in the target substrate. It turns out that there are few the above huge aggregated oxide particles. However, the target produced by the comparative method 2 produced using the coating oxide powder in which the amount of the SiO 2 layer deviating from the scope of the present invention is produced has huge aggregated oxide particles dispersed in the substrate, It can be seen that the generation of particles increases.

実施例3
表1に示される被覆酸化物粉末Q〜X、Co粉末、Cr粉末、Pt粉末および合金粉末を表4に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:20MPa、5時間保持の条件で真空ホットプレスすることにより表4に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:200mm、厚さ:5mmの寸法を有するターゲットを作製することにより本発明法15〜21および比較法3を実施した。
Example 3
The coated oxide powders Q to X, Co powder, Cr powder, Pt powder and alloy powder shown in Table 1 were blended so as to have the blending composition shown in Table 4, and the resulting blended powder was used as a grinding medium. It was put into a 10-liter container together with the balls, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder is filled in a vacuum hot press apparatus, and hot press having the component composition shown in Table 4 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 20 MPa, and holding for 5 hours. The present invention methods 15 to 21 and comparative method 3 were carried out by producing a target and cutting the hot press body to produce a target having a diameter of 200 mm and a thickness of 5 mm.

さらに、先に用意したAl粉末をそのまま使用し、表4に示される配合組成となるように配合し、同様にしてターゲットを作製することにより従来法3を実施した。 Further, the conventional method 3 was carried out by using the Al 2 O 3 powder prepared in advance and blending it so as to have the blending composition shown in Table 4 and preparing the target in the same manner.

本発明法15〜21、比較法3および従来法3で得られたターゲットを銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、実施例1と同じ条件で5時間プレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した0.5μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表4に示した。 The targets obtained in the present invention methods 15 to 21, comparative method 3 and conventional method 3 were bonded to a copper backing plate and mounted on a commercially available sputtering apparatus, and pre-sputtering was performed for 5 hours under the same conditions as in Example 1. After removing the target surface processed layer, the chamber was once opened to the atmosphere, and the chamber members such as the deposition preventive plate were cleaned. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 0.5 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the result is shown in Table 4.

さらに、成膜後ターゲットをバッキングプレートから剥離し、ターゲットの一部を切断し、切断したターゲットの一部を樹脂埋めし、研磨し、走査電子顕微鏡(SEM)により組織観察を行い、ターゲット素地中に分散している直径:10μmを越える大きさの酸化物粒子を観察し、その結果を表4に示した。 Further, after film formation, the target is peeled off from the backing plate, a part of the target is cut, a part of the cut target is filled with resin, polished, and observed with a scanning electron microscope (SEM). The diameter of the oxide particles dispersed in the sample was observed to exceed 10 μm, and the results are shown in Table 4.

Figure 2008223072
Figure 2008223072

表4に示される結果から、本発明法15〜21により得られたターゲットは、従来法3により得られたターゲットに比べてパーティクルの発生が格段に少なく、またターゲット素地中に分散している10μm以上の巨大な凝集酸化物粒子が少ないことが分かる。しかし、この発明の範囲から外れた量のSiO層を形成した被覆酸化物粉末を使用して作製する比較法3で作製したターゲットは素地中に巨大な凝集酸化物粒子が分散しており、パーティクルの発生が多くなることが分かる。 From the results shown in Table 4, the target obtained by the present invention methods 15 to 21 has remarkably less particle generation than the target obtained by the conventional method 3, and is 10 μm dispersed in the target substrate. It turns out that there are few the above huge aggregated oxide particles. However, the target produced by Comparative Method 3 produced using the coated oxide powder in which the amount of the SiO 2 layer deviating from the scope of the present invention is produced has huge aggregated oxide particles dispersed in the substrate, It can be seen that the generation of particles increases.

実施例4
表1に示される被覆酸化物粉末Y〜f、Co粉末、Cr粉末、Pt粉末および合金粉末を表5に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:20MPa、5時間保持の条件で真空ホットプレスすることにより表5に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:200mm、厚さ:5mmの寸法を有するターゲットを作製することにより本発明法22〜28および比較法4を実施した。
Example 4
The coating oxide powders Y to f, Co powder, Cr powder, Pt powder and alloy powder shown in Table 1 were blended so as to have the blending composition shown in Table 5, and the resulting blended powder was used as a grinding medium. It was put into a 10-liter container together with the balls, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder is filled in a vacuum hot press apparatus, and hot press having the component composition shown in Table 5 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 20 MPa, and holding for 5 hours. The present invention methods 22 to 28 and comparative method 4 were carried out by preparing a target and cutting the hot press body to prepare a target having a diameter of 200 mm and a thickness of 5 mm.

さらに、先に用意したMgO粉末をそのまま使用し、表5に示される配合組成となるように配合し、同様にしてターゲットを作製することにより従来法4を実施した。 Furthermore, the MgO powder prepared previously was used as it was, it mix | blended so that it might become a mixing | blending composition shown in Table 5, and the conventional method 4 was implemented by producing a target similarly.

本発明法22〜28、比較法4および従来法4で得られたターゲットを銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、実施例1と同じ条件で5時間プレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した0.5μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表5に示した。 The targets obtained in the present invention methods 22 to 28, comparative method 4 and conventional method 4 were bonded to a copper backing plate and mounted on a commercially available sputtering apparatus, and pre-sputtering was performed for 5 hours under the same conditions as in Example 1. After removing the target surface processed layer, the chamber was once opened to the atmosphere, and the chamber members such as the deposition preventive plate were cleaned. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 0.5 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the results are shown in Table 5.

さらに、成膜後ターゲットをバッキングプレートから剥離し、ターゲットの一部を切断し、切断したターゲットの一部を樹脂埋めし、研磨し、走査電子顕微鏡(SEM)により組織観察を行い、ターゲット素地中に分散している直径:10μmを越える大きさの酸化物粒子を観察し、その結果を表5に示した。 Further, after film formation, the target is peeled off from the backing plate, a part of the target is cut, a part of the cut target is filled with resin, polished, and observed with a scanning electron microscope (SEM). The diameter of the oxide particles dispersed in the sample was observed to be larger than 10 μm, and the results are shown in Table 5.

Figure 2008223072
Figure 2008223072

表5に示される結果から、本発明法22〜28により得られたターゲットは、従来法4により得られたターゲットに比べてパーティクルの発生が格段に少なく、またターゲット素地中に分散している10μm以上の巨大な凝集酸化物粒子が少ないことが分かる。しかし、この発明の範囲から外れた量のSiO層を形成した被覆酸化物粉末を使用して作製する比較法4で作製したターゲットは素地中に巨大な凝集酸化物粒子が分散しており、パーティクルの発生が多くなることが分かる。 From the results shown in Table 5, the target obtained by the present invention methods 22 to 28 generated significantly less particles than the target obtained by the conventional method 4, and 10 μm dispersed in the target substrate. It turns out that there are few the above huge aggregated oxide particles. However, the target produced by the comparative method 4 produced using the coating oxide powder in which the amount of the SiO 2 layer deviated from the scope of the present invention is produced has huge aggregated oxide particles dispersed in the substrate. It can be seen that the generation of particles increases.

実施例5
表1に示される被覆酸化物粉末g〜n、Co粉末、Cr粉末、Pt粉末および合金粉末を表6に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:20MPa、5時間保持の条件で真空ホットプレスすることにより表6に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:200mm、厚さ:5mmの寸法を有するターゲットを作製することにより本発明法29〜35および比較法5を実施した。
Example 5
The coating oxide powders g to n, Co powder, Cr powder, Pt powder and alloy powder shown in Table 1 are blended so as to have the blending composition shown in Table 6, and the resulting blended powder is used as a grinding medium. It was put into a 10-liter container together with the balls, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder is filled into a vacuum hot press apparatus, and is hot pressed having the composition shown in Table 6 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 20 MPa, and holding for 5 hours. The present invention 29-35 and the comparative method 5 were implemented by producing a target and producing a target having a diameter: 200 mm and a thickness: 5 mm by cutting the hot press body.

さらに、先に用意したZrO粉末をそのまま使用し、表6に示される配合組成となるように配合し、同様にしてターゲットを作製することにより従来法5を実施した。 Further, the previously prepared ZrO 2 powder was used as it was, and blended so as to have the blending composition shown in Table 6, and the target was prepared in the same manner to carry out the conventional method 5.

本発明法29〜35、比較法5および従来法5で得られたターゲットを銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、実施例1と同じ条件で5時間プレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した0.5μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表6に示した。 The target obtained by the present invention method 29 to 35, comparative method 5 and conventional method 5 was bonded to a copper backing plate and mounted on a commercially available sputtering apparatus, and pre-sputtering was performed for 5 hours under the same conditions as in Example 1. After removing the target surface processed layer, the chamber was once opened to the atmosphere, and the chamber members such as the deposition preventive plate were cleaned. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 0.5 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the result is shown in Table 6.

さらに、成膜後ターゲットをバッキングプレートから剥離し、ターゲットの一部を切断し、切断したターゲットの一部を樹脂埋めし、研磨し、走査電子顕微鏡(SEM)により組織観察を行い、ターゲット素地中に分散している直径:10μmを越える大きさの酸化物粒子を観察し、その結果を表6に示した。 Further, after film formation, the target is peeled off from the backing plate, a part of the target is cut, a part of the cut target is filled with resin, polished, and observed with a scanning electron microscope (SEM). The diameter of the oxide particles dispersed in the sample was observed to exceed 10 μm, and the results are shown in Table 6.

Figure 2008223072
Figure 2008223072

表6に示される結果から、本発明法29〜35により得られたターゲットは、従来法5により得られたターゲットに比べてパーティクルの発生が格段に少なく、またターゲット素地中に分散している10μm以上の巨大な凝集酸化物粒子が少ないことが分かる。しかし、この発明の範囲から外れた量のSiO層を形成した被覆酸化物粉末を使用して作製する比較法5で作製したターゲットは素地中に巨大な凝集酸化物粒子が分散しており、パーティクルの発生が多くなることが分かる。 From the results shown in Table 6, the target obtained by the present invention method 29-35 has much less generation of particles than the target obtained by the conventional method 5, and 10 μm dispersed in the target substrate. It turns out that there are few the above huge aggregated oxide particles. However, the target produced by the comparative method 5 produced using the coating oxide powder in which the amount of the SiO 2 layer deviated from the scope of the present invention is produced has huge aggregated oxide particles dispersed in the substrate, It can be seen that the generation of particles increases.

実施例6
表1に示される被覆酸化物粉末o〜v、Co粉末、Cr粉末、Pt粉末および合金粉末を表7に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:20MPa、5時間保持の条件で真空ホットプレスすることにより表7に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:200mm、厚さ:5mmの寸法を有するターゲットを作製することにより本発明法36〜42および比較法6を実施した。
Example 6
The coating oxide powders o to v, Co powder, Cr powder, Pt powder and alloy powder shown in Table 1 are blended so as to have the blending composition shown in Table 7, and the resulting blended powder is used as a grinding medium. It was put into a 10-liter container together with the balls, the atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 7 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 20 MPa, and 5 hours. The present invention methods 36 to 42 and comparative method 6 were carried out by producing a body and cutting the hot press body to produce a target having a diameter of 200 mm and a thickness of 5 mm.

さらに、先に用意したY粉末をそのまま使用し、表7に示される配合組成となるように配合し、同様にしてターゲットを作製することにより従来法6を実施した。 Further, accept the Y 2 O 3 powder prepared in advance, were blended so that the blending composition shown in Table 7, was performed prior art 6 by producing a target in the same manner.

本発明法36〜42、比較法6および従来法6で得られたターゲットを銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、実施例1と同じ条件で5時間プレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した0.5μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表7に示した。 The targets obtained in the present invention methods 36 to 42, comparative method 6 and conventional method 6 were bonded to a copper backing plate and mounted on a commercially available sputtering apparatus, and pre-sputtering was performed for 5 hours under the same conditions as in Example 1. After removing the target surface processed layer, the chamber was once opened to the atmosphere, and the chamber members such as the deposition preventive plate were cleaned. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 0.5 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the result is shown in Table 7.

さらに、成膜後ターゲットをバッキングプレートから剥離し、ターゲットの一部を切断し、切断したターゲットの一部を樹脂埋めし、研磨し、走査電子顕微鏡(SEM)により組織観察を行い、ターゲット素地中に分散している直径:10μmを越える大きさの酸化物粒子を観察し、その結果を表7に示した。 Further, after film formation, the target is peeled off from the backing plate, a part of the target is cut, a part of the cut target is filled with resin, polished, and observed with a scanning electron microscope (SEM). The diameter of the oxide particles dispersed in the sample was observed to be larger than 10 μm, and the results are shown in Table 7.

Figure 2008223072
Figure 2008223072

表7に示される結果から、本発明法36〜42により得られたターゲットは、従来法6により得られたターゲットに比べてパーティクルの発生が格段に少なく、またターゲット素地中に分散している10μm以上の巨大な凝集酸化物粒子が少ないことが分かる。しかし、この発明の範囲から外れた量のSiO層を形成した被覆酸化物粉末を使用して作製する比較法6で作製したターゲットは素地中に巨大な凝集酸化物粒子が分散しており、パーティクルの発生が多くなることが分かる。 From the results shown in Table 7, the target obtained by the present invention methods 36 to 42 generated significantly less particles than the target obtained by the conventional method 6, and 10 μm dispersed in the target substrate. It turns out that there are few the above huge aggregated oxide particles. However, the target produced by Comparative Method 6 produced using the coated oxide powder in which the amount of the SiO 2 layer deviating from the scope of the present invention is produced has huge aggregated oxide particles dispersed in the substrate, It can be seen that the generation of particles increases.

Claims (3)

Cr粉末、Pt粉末、Co粉末、Cr、PtおよびCoのうちのいずれか2種以上を含む合金粉末、並びにTiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種の酸化物粉末の表面をSiO層で被覆した酸化物粉末(以下、被覆酸化物粉末という)を、
Cr:5〜20モル%、Pt:5〜25モル%、TiO、Ta、Al、MgO、ZrO、Yの内のいずれか1種の酸化物とSiOの合計:2〜15モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、加圧焼結することを特徴とするパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。
Cr powder, Pt powder, Co powder, alloy powder containing any two or more of Cr, Pt and Co, and TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder , An oxide powder obtained by coating the surface of any one of the Y 2 O 3 powders with an SiO 2 layer (hereinafter referred to as a coated oxide powder),
Cr: 5 to 20 mol%, Pt: 5 to 25 mol%, TiO 2, Ta 2 O 5, Al 2 O 3, MgO, either one oxide of the ZrO 2, Y 2 O 3 and SiO 2 : Co base for forming a magnetic recording film with less generation of particles, characterized in that it contains 2 to 15 mol%, and is mixed and mixed so as to have a composition consisting of the balance: Co, and then subjected to pressure sintering. Manufacturing method of sintered alloy sputtering target.
前記被覆酸化物粉末は、TiO粉末、Ta粉末、Al粉末、MgO粉末、ZrO粉末、Y粉末の内のいずれか1種の酸化物粉末に対して1〜20体積%のSiO層により被覆してなる被覆酸化物粉末であることを特徴とする請求項1記載のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 The coating oxide powder is 1 for any one of TiO 2 powder, Ta 2 O 5 powder, Al 2 O 3 powder, MgO powder, ZrO 2 powder, and Y 2 O 3 powder. 2. The method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less generation of particles according to claim 1, wherein the powder is a coated oxide powder coated with a SiO2 layer of -20 vol%. 前記加圧焼結は、ホットプレスまたは熱間静水圧プレスであることを特徴とする請求項1または2記載のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 3. The method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less generation of particles according to claim 1, wherein the pressure sintering is hot pressing or hot isostatic pressing.
JP2007061857A 2007-03-12 2007-03-12 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles Expired - Fee Related JP4962905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061857A JP4962905B2 (en) 2007-03-12 2007-03-12 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061857A JP4962905B2 (en) 2007-03-12 2007-03-12 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles

Publications (2)

Publication Number Publication Date
JP2008223072A true JP2008223072A (en) 2008-09-25
JP4962905B2 JP4962905B2 (en) 2012-06-27

Family

ID=39842028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061857A Expired - Fee Related JP4962905B2 (en) 2007-03-12 2007-03-12 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles

Country Status (1)

Country Link
JP (1) JP4962905B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130112555A1 (en) * 2010-07-20 2013-05-09 Jx Nippon Mining & Metals Corporation Sputtering Target of Ferromagnetic Material with Low Generation of Particles
WO2017170138A1 (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Ferromagnetic material sputtering target
CN109844167A (en) * 2016-12-28 2019-06-04 捷客斯金属株式会社 Magnetic material sputtering target and its manufacturing method
WO2020044573A1 (en) * 2018-08-31 2020-03-05 Jx金属株式会社 Sputtering target capable of discharging steadily

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339586A (en) * 2003-05-19 2004-12-02 Mitsubishi Materials Corp Sputtering target for forming magnetic recording film, and its production method
JP2006024346A (en) * 2004-06-07 2006-01-26 Showa Denko Kk Magnetic recording medium, production method for the same and magnetic recording and reproducing device
JP2006176808A (en) * 2004-12-21 2006-07-06 Mitsubishi Materials Corp METHOD FOR PRODUCING CoCrPt-SIO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM
JP2006176810A (en) * 2004-12-21 2006-07-06 Mitsubishi Materials Corp METHOD FOR PRODUCING CoCrPt-SiO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339586A (en) * 2003-05-19 2004-12-02 Mitsubishi Materials Corp Sputtering target for forming magnetic recording film, and its production method
JP2006024346A (en) * 2004-06-07 2006-01-26 Showa Denko Kk Magnetic recording medium, production method for the same and magnetic recording and reproducing device
JP2006176808A (en) * 2004-12-21 2006-07-06 Mitsubishi Materials Corp METHOD FOR PRODUCING CoCrPt-SIO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM
JP2006176810A (en) * 2004-12-21 2006-07-06 Mitsubishi Materials Corp METHOD FOR PRODUCING CoCrPt-SiO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130112555A1 (en) * 2010-07-20 2013-05-09 Jx Nippon Mining & Metals Corporation Sputtering Target of Ferromagnetic Material with Low Generation of Particles
US9181617B2 (en) * 2010-07-20 2015-11-10 Jx Nippon Mining & Metals Corporation Sputtering target of ferromagnetic material with low generation of particles
WO2017170138A1 (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Ferromagnetic material sputtering target
CN108884557A (en) * 2016-03-31 2018-11-23 捷客斯金属株式会社 Ferromagnetic material sputtering target
US10837101B2 (en) 2016-03-31 2020-11-17 Jx Nippon Mining & Metals Corporation Ferromagnetic material sputtering target
CN109844167A (en) * 2016-12-28 2019-06-04 捷客斯金属株式会社 Magnetic material sputtering target and its manufacturing method
CN109844167B (en) * 2016-12-28 2022-01-04 捷客斯金属株式会社 Magnetic material sputtering target and method for producing same
WO2020044573A1 (en) * 2018-08-31 2020-03-05 Jx金属株式会社 Sputtering target capable of discharging steadily

Also Published As

Publication number Publication date
JP4962905B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4885333B1 (en) Ferromagnetic sputtering target
TWI555866B (en) Magnetic particle sputtering target and its manufacturing method
US20180005807A1 (en) Magnetic Material Sputtering Target and Manufacturing Method Thereof
JP5009448B2 (en) Sputtering target for magnetic recording film and manufacturing method thereof
WO2011089760A1 (en) Ferromagnetic-material sputtering target
JP5457615B1 (en) Sputtering target for forming a magnetic recording film and method for producing the same
TWI564416B (en) Magnetic sputtering target for magnetic recording film
WO2012011294A1 (en) Ferromagnetic material sputtering target with little particle generation
WO2012011204A1 (en) Ferromagnetic material sputtering target with little particle generation
JP5705993B2 (en) Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
JP5847203B2 (en) Co-Cr-Pt-based sputtering target and method for producing the same
WO2011034110A1 (en) Metal oxide-metal composite sputtering target
JP4553136B2 (en) Sputtering target for forming magnetic recording film with less generation of particles
JP4962905B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
JPWO2011089760A1 (en) Ferromagnetic sputtering target
JP5024661B2 (en) Co-based sintered alloy sputtering target for magnetic recording film formation with less generation of particles
JP4422574B2 (en) Sputtering target material comprising ceramic-metal composite material and method for producing the same
TW201428122A (en) Sintered sputtering target
JP2006176808A (en) METHOD FOR PRODUCING CoCrPt-SIO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM
JP2006176810A (en) METHOD FOR PRODUCING CoCrPt-SiO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM
JP2008179900A (en) Sputtering target material composed of ceramics-metal composite material, sputtering target, and method for producing them
JP6728094B2 (en) Ferromagnetic material sputtering target
WO2020053973A1 (en) Ferromagnetic material sputtering target
JP5024660B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
JP4819199B1 (en) Ferromagnetic sputtering target with less generation of particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120318

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees