WO2010064438A1 - 制御局装置、送信局装置、通信方法、及び通信システム - Google Patents

制御局装置、送信局装置、通信方法、及び通信システム Download PDF

Info

Publication number
WO2010064438A1
WO2010064438A1 PCT/JP2009/006594 JP2009006594W WO2010064438A1 WO 2010064438 A1 WO2010064438 A1 WO 2010064438A1 JP 2009006594 W JP2009006594 W JP 2009006594W WO 2010064438 A1 WO2010064438 A1 WO 2010064438A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
signal
interference
band
station apparatus
Prior art date
Application number
PCT/JP2009/006594
Other languages
English (en)
French (fr)
Inventor
増野淳
杉山隆利
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2010541243A priority Critical patent/JP5127932B2/ja
Priority to EP09830208.6A priority patent/EP2352351B1/en
Priority to KR1020117011742A priority patent/KR101320010B1/ko
Priority to CN200980147020.9A priority patent/CN102224759B/zh
Priority to US13/128,206 priority patent/US8798024B2/en
Publication of WO2010064438A1 publication Critical patent/WO2010064438A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to communication using a multicarrier signal, and more particularly, to a control station apparatus, a transmission station apparatus, a communication method, and a communication system in a multicarrier communication system to which an error correction code is applied.
  • FIG. 27 is a conceptual diagram showing the whole of two wireless LAN (Local Area Network) systems having different frequency channels as an example of a combination of wireless communication systems sharing a frequency band.
  • the wireless communication system includes wireless LAN base stations 2a and 2b and a receiver 1a.
  • the wireless LAN base station 2a communicates using the frequency band of CH1, which is the center frequency fa.
  • the wireless LAN base station 2b communicates using the frequency band of CH5 having the center frequency fb (fa ⁇ fb).
  • the receiver 1a is arranged at a position where the wireless signals of both the wireless LAN base station 2a and the wireless LAN base station 2b reach, and two wireless signals of a wireless signal of the center frequency fa and a wireless signal of the center frequency fb. Receive signals whose signals partially interfere with each other.
  • the transmission frequency band of the desired wave that is the center frequency fa and the transmission of the interference wave from the wireless LAN base station 2b that is the center frequency fb.
  • Even in the frequency sharing type wireless communication in which the frequency band partially overlaps (overlaps) it is essential that the receiver 1a accurately receives the desired wave.
  • systems having different communication methods such as a combination of a wireless LAN system, Bluetooth (registered trademark), and WiMAX (registered trademark) may share the frequency.
  • the receiver 1a shown in FIG. 27 uses the wireless LAN base station 2a as a communication target.
  • the transmission frequency band of the desired wave from the wireless LAN base station 2a having the center frequency fa and the transmission frequency band of the interference wave from the wireless LAN base station 2b having the center frequency fb partially overlap ( Duplicate.
  • Non-Patent Document 3 describes an adaptive modulation OFDM (Orthogonal Frequency Division Multiplexing) system in which the allocation modulation scheme is changed according to the reception level for each subcarrier.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Non-Patent Document 1 discloses an underlay-type superimposed transmission in which a spread spectrum signal is superimposed on a signal that is not spread spectrum.
  • the superposition ratio is generally 100%, but the spread spectrum system has a problem in that the transmission speed is limited or a huge frequency band is required to realize high-speed transmission.
  • signals cannot be superimposed and transmitted between communication systems that are not spread spectrum.
  • Non-Patent Document 2 shows the downlink when the same communication system is used. For terminal stations that can ensure a sufficient D / U (Desired to Undesired signal ratio). Only superposition transmission using the same subcarrier is performed.
  • the present invention has been made in view of such circumstances and has been made to solve the above-described problems.
  • the object of the present invention is to provide a technology capable of improving frequency utilization efficiency in communication using multicarrier signals. There is to do. More specifically, an object of the present invention is to provide a control station device, a transmission station device, a communication method, and a communication system that can ensure communication quality and effectively use frequencies in a plurality of systems.
  • an object of the present invention is to provide a multicarrier signal transmission station apparatus and communication method capable of realizing wireless communication according to the priority for each user even when interference occurs in a part of the used band. And providing a communication system.
  • the present invention is a communication method in a communication system including a transmitting station apparatus and a receiving station apparatus that transmit and receive a multicarrier signal using a spectrum including a plurality of subcarriers.
  • the communication method is a communication method in which the communication system performs communication three or more at the same time, and the receiving station device is the other in the spectrum arranged in the own communication system.
  • the bandwidth of the spectrum is variable for each communication system, and in the spectrum arrangement step, two spectrums having a narrower bandwidth than the other spectrums among the spectra. May be arranged at the end of the use frequency band, and each spectrum may be arranged so that the superposition rate is constant in each spectrum.
  • the interference suppression step may perform interference suppression by attenuating the received signal in the recognized superimposed band using a frequency filter.
  • the interference suppression step masks the likelihood of the received signal in the recognized superimposed band, and the error correction decoding step applies the likelihood to the received signal masked.
  • the multicarrier signal addressed to the own receiving station apparatus may be received by performing error correction decoding.
  • the spectrum arrangement step may arrange the spectrum based on a result detected by an interference signal detector provided in the receiving station apparatus.
  • the spectrum arrangement step may arrange the spectrum based on a result detected by an interference signal detector provided in the transmission station apparatus.
  • the spectrum allocation step is based on a result detected by an interference signal detection unit provided in a control station apparatus different from both the transmitting station apparatus and the receiving station apparatus.
  • the spectrum may be arranged.
  • the coding / modulation step for coding and modulating the user's data, and the user's data A superposition rate determination step for setting a superposition rate, which is a ratio of an interference band in a frequency band used for transmission, lower than a superposition rate, which is a ratio of an interference band in a frequency band used by the multicarrier signal; and the superposition rate determination
  • the encoded and modulated user data is sent to the subcarrier allocation step.
  • the user's superposition rate is set lower than the superposition rate, which is the ratio of the interference band in the frequency band used by the multicarrier signal, and when the user's service quality requirement is lower than the predetermined service quality,
  • the overlap ratio of the user is the ratio of the interference band in the frequency band used by the multicarrier signal.
  • the user data is assigned to non-interference bands and subcarriers in the interference band, and in the multi-carrier modulation step, the user data encoded and modulated in the encoding / modulation step for each user, You may make it modulate to the subcarrier allocated to the data of the said user in a subcarrier allocation step.
  • the present invention provides a spectrum arrangement when three or more communication systems including a transmission station apparatus and a reception station apparatus that transmit and receive a multicarrier signal using a spectrum including a plurality of subcarriers perform simultaneous communication.
  • a control station apparatus for determining an interference signal detection unit for detecting an interference signal in a superposed band with another communication system in the spectrum, a bandwidth of each spectrum, and a predetermined decision that each spectrum is superposed on another spectrum.
  • a superposition rate derived from the superposed bandwidth a spectrum placement unit for placing each spectrum such that the superposition rate is constant in each spectrum, and transmitting the multicarrier signal using the assigned spectrum Recognizing a superimposed band between the transmitting station apparatus and another communication system in the arranged spectrum, the superimposed band
  • a spectrum allocating unit for allocating a spectrum arranged in a communication system that communicates with the receiving station device that receives a multicarrier signal addressed to the receiving station device by applying error correction decoding to the signal and applying error correction decoding to the signal
  • a control information distribution unit that notifies the allocated spectrum to the transmitting station device of the own communication system and other communication systems.
  • the present invention is a transmission station apparatus in a communication system including a transmission station apparatus and a reception station apparatus that transmit and receive a multicarrier signal using a spectrum including a plurality of subcarriers, and the multicarrier signal And a controller configured to set a superposition rate that is a ratio of using a superimposition band in which interference occurs in the use frequency band so as to increase frequency use efficiency of the use frequency band used for transmission of the superimposition And a transmitter that transmits the multicarrier signal using a spectrum allocated according to a rate.
  • the communication system performs communication three or more simultaneously, and the control unit determines a bandwidth of each spectrum and a predetermined overlapping bandwidth in which each spectrum is superimposed on another spectrum. From the above, a superposition rate may be derived, and a spectrum placement unit that places each spectrum so that the superposition rate is constant in each spectrum, and a spectrum assignment unit that assigns a spectrum placed in the communication system may be provided.
  • the transmission station apparatus of the present invention may include an interference signal detection unit that detects an interference signal in a superimposed band with another communication system in the spectrum in order to perform the spectrum arrangement.
  • an encoding / modulation unit that encodes and modulates user data, and when the user's service quality requirement is higher than a predetermined service quality, A superposition ratio determining unit that sets a superposition ratio that is a ratio of an interference band in a frequency band used for data transmission to be lower than a superposition ratio that is a ratio of an interference band in a frequency band used by the multicarrier signal; and the superposition ratio A subcarrier allocating unit for allocating user data encoded and modulated by the encoding / modulating unit to subcarriers in a non-interference band and an interference band according to a superimposition rate set by a determination unit; and the encoding / modulating unit
  • the user data encoded and modulated by the subcarrier allocator is modulated by the subcarrier allocated by the subcarrier allocation unit.
  • Ji carrier modulation unit a parallel-serial converter for sub-carriers modulated by said multi-carrier modulation section
  • the transmission station apparatus of the present invention a plurality of the encoding / modulating units are provided, each of the plurality of encoding / modulating units performs encoding and modulation of different user data, and the superimposition rate determining unit
  • the service quality requirement of the user is such that the average superposition ratio of the entire user matches the superposition ratio that is the ratio of the interference band in the frequency band used by the multicarrier signal.
  • the user's service quality requirement is set to be lower than the superposition rate, which is a ratio of the interference band in the frequency band used by the multicarrier signal.
  • the subcarrier allocating unit performs encoding and modulation by the encoding / modulating unit for each user according to the superimposition rate of the user set by the superimposition rate determining unit.
  • the modulated user data is allocated to the non-interference band and the subcarriers of the interference band, and the multi-carrier modulation unit assigns the user data encoded and modulated by the encoding / modulation unit for each user.
  • the subcarrier allocation unit may modulate the subcarriers allocated to the user data.
  • the superimposition rate determination unit sets the superimposition rate of the user to be high, and When the data reception quality is lower than the predetermined threshold, the superimposition rate of the user may be set low.
  • the transmission station apparatus of the present invention further includes a modulation and coding level determination unit that determines a modulation and coding level based on a superposition rate set by the superposition rate determination unit, and the encoding / modulation unit May encode and modulate the user data according to the modulation and coding level determined by the modulation and coding level determination unit.
  • the present invention provides a spectrum arrangement when three or more communication systems composed of a transmission station apparatus and a reception station apparatus that transmit and receive a multicarrier signal using a spectrum including a plurality of subcarriers perform simultaneous communication.
  • a superposition ratio is derived from a bandwidth of each spectrum and a pre-determined superposition bandwidth in which each spectrum superimposes another spectrum so that the superposition ratio is constant in each spectrum.
  • a spectrum allocation unit that allocates each spectrum; a spectrum allocation unit that allocates the allocated spectrum; a transmission unit that transmits the multicarrier signal using the allocated spectrum; and other communication in the allocated spectrum Recognizing the overlap band with the system and applying interference suppression technology to the overlap band Signal and a a receiving section that receives a multicarrier signal addressed to its own receiving section by error correction decoding the.
  • frequency utilization efficiency of a used frequency band used for transmission of the multicarrier signal can be improved by setting a superposition rate.
  • the spectrum arrangement Determined when a communication system composed of a transmitting station apparatus and a receiving station apparatus that transmit and receive a multicarrier signal using a spectrum including a plurality of subcarriers performs communication at the same time three or more, the spectrum arrangement Determined.
  • the transmitting station apparatus transmits a multicarrier signal using a spectrum allocated to the own system.
  • the receiving station apparatus recognizes in advance the overlapping band with another communication system in the spectrum arranged in its own system.
  • the receiving station apparatus applies an interference suppression technique to the superimposed band, and receives a multicarrier signal addressed to the receiving station apparatus by performing error correction decoding on a signal to which the interference suppression technique is applied.
  • a superposition rate is derived from the bandwidth of each spectrum and a predetermined superposition bandwidth where each spectrum is superposed on another spectrum, and each spectrum is arranged so that the superposition rate is constant in each spectrum.
  • the frequency placement method can reduce the influence of superposition for each spectrum, ensure substantial communication quality, and effectively use the frequency. Can provide.
  • the spectrum bandwidth is variable for each communication system, and in the spectrum placement step, two spectra having a narrower bandwidth than other spectra are placed at the end of the used frequency band, and the superposition rate Each spectrum is arranged so that is constant in each spectrum. With such an arrangement, a predetermined band can be secured even in a spectrum with a narrow bandwidth. Furthermore, it is possible to increase the overall transmission efficiency by arranging the spectra so that the superposition rate is constant in each spectrum.
  • the receiving station performs interference suppression by attenuating the received signal in the recognized superimposition band using a frequency filter. Thereby, a band including the interference wave can be removed, and the interference wave of the received reception signal can be suppressed.
  • the receiving station masks the likelihood of the received signal in the recognized superimposition band, and performs error correction decoding on the received signal with the masked likelihood, thereby performing a multicarrier signal addressed to the receiving station device. Receive. Thereby, the spectrum including the interference wave can be removed, and the interference wave of the received signal received can be suppressed.
  • the multi-carrier signal transmitting station apparatus when interference occurs in a part of the frequency band of the desired wave, changes the superposition rate according to the priority for each user, It becomes possible to perform wireless communication with quality according to the required priority. Further, it is possible to improve the frequency utilization efficiency by changing the superposition rate according to the data reception quality.
  • FIG. 1 is a block diagram illustrating a communication system according to a first embodiment of the present invention. It is a figure which shows the superimposition of the frequency arrangement
  • FIG. 1 is a block diagram showing a communication system according to a first embodiment of the present invention.
  • communication systems 100, 700, and 800 are shown as three communication systems that perform communication using radio waves of the same frequency.
  • the communication systems 100, 700, and 800 are independent communication systems using the same system configuration.
  • the communication system 100 includes a base station device 110 and a terminal station device 120.
  • the communication system 700 includes a base station device 710 and a terminal station device 720.
  • the communication system 800 includes a base station device 810 and a terminal station device 820.
  • FIG. 2A shows a signal W1 that carries a desired signal assigned to the frequency axis, and a signal W2 that is assigned by overlapping the signal W1 and a part of the band (band fb12).
  • the vertical axis represents power and the horizontal axis represents frequency.
  • Signal W1 has a band fa1 indicated by a Nyquist frequency that accommodates a plurality of subcarriers SC1-1 to SC1-n carrying signal W1.
  • Signal W2 has a band fa2 indicated by a Nyquist frequency that accommodates a plurality of subcarriers SC2-1 to SC2-n carrying signal W2.
  • the desired signal is signal 1
  • the desired wave is transmitted in band fa1
  • the carrier wave that carries signal 2 transmitted in band fa2 becomes an interference wave.
  • FIG. 2B In the frequency array shown in FIG. 2B, an assignment without overlapping bands is shown.
  • the vertical axis represents power and the horizontal axis represents frequency.
  • a signal W1 carrying a desired signal assigned to the frequency axis and a signal W2 adjacent to the signal W1 via a guard band (fg12) are shown.
  • the signal W1 and the signal W2 shown in FIG. 2B have the same band fa1 and band fa2 as in FIG. 2A. Therefore, in the conventional allocation method in which allocation is performed without superimposing, the occupied frequency band is widened and the use efficiency is increased. Decreased.
  • the signal W3 is a signal in which a part of the band (band fb23) overlaps with the signal W2.
  • the vertical axis represents power and the horizontal axis represents frequency. Since the band of the signal W2 shown in this figure is superimposed not only on the signal W1 but also on the signal W3, the superposition ratio is
  • each communication system is assigned one of the bands shown in FIG. 2C.
  • each communication system receives radio waves from other communication systems, it is possible to clearly indicate a range in which the influences of interference may be received from each other.
  • the base station apparatus 110 in the communication system 100 includes a transmission unit 111, a reception unit 112, a control unit 113, and an antenna 114.
  • Transmitting section 111 in base station apparatus 110 generates a transmission signal for terminal station apparatus 120.
  • the transmission unit 111 includes a transmission baseband signal generator 111a and an up-converter device 111b.
  • a transmission baseband signal generator 111a in the transmission unit 111 generates a transmission baseband signal based on information to be transmitted.
  • the generated transmission baseband signal is output in synchronization with the transmission frequency.
  • the transmission frequency is determined according to the allocated band and is controlled by the bandwidth control information.
  • the up-converter device 111b performs frequency conversion on the input transmission baseband signal based on the set transmission frequency, and outputs it.
  • the transmission signal output from the up-converter device 111b is transmitted from the antenna 114 via a transmission signal processing unit (not shown) that performs coding processing, error correction coding processing, modulation processing, and the like (not shown).
  • the output radio signal is assigned to a channel having a band carried by a plurality of subcarriers.
  • the receiving unit 112 performs a reception process on an input reception signal.
  • the receiving unit 112 includes an interference wave detection device 112a.
  • Interference wave detection apparatus 112a detects a frequency band in which interference is generated by a radio signal transmitted from another system, from a received signal, among the use frequency bands in the desired wave of base station apparatus 110. For example, in an environment where the desired wave is not transmitted, the interference wave detecting device 112a detects the presence / absence of other radio signals, signal strength, etc. for each subcarrier in the use frequency band of the desired wave. The specific subcarrier to be detected is detected.
  • the interference wave detection apparatus 112a uses an interference band determination value sequence in which “1” is associated with a subcarrier that is a specific subcarrier and “0” is associated with a subcarrier other than the specific subcarrier. Then, a sequence of specific subcarrier determination values is generated. The interference wave detection device 112a outputs the detection result as interference wave information.
  • the frequency allocation device 113a in the control unit 113 selects a channel to be used in the own communication system according to a predetermined rule based on an interference band determination value indicating an interference state for each subcarrier input as interference wave information.
  • the frequency changing device 113b assigns the frequency used in each subcarrier according to the frequency arrangement in the channel, and changes the transmission frequency according to the assigned frequency.
  • the bandwidth changing device 113c selects a bandwidth that can be transmitted by the communication system according to a predetermined rule based on an interference band determination value indicating an interference state for each subcarrier input as interference wave information.
  • the bandwidth changing device 113c controls the bandwidth transmitted by the transmission unit 111 based on the selected bandwidth.
  • the terminal station device 120 In the communication system 100, the terminal station device 120 always scans the frequency and follows the frequency allocation transmitted by the opposing base station device 110.
  • the terminal station device 120 includes a transmission unit 121, a reception unit 122, and a control unit 123.
  • the transmission unit 121 in the terminal station device 120 converts a signal transmitted from the terminal station device 120 into a radio signal and outputs the radio signal via the antenna 124.
  • the transmission part 121 produces
  • the receiving unit 122 receives a radio signal from the opposing base station apparatus 110.
  • the interference band of the radio signal received by the receiving unit 122 includes an interference signal. In order to reduce the influence of the interference signal, the receiving unit 122 has a configuration for removing the interference signal.
  • FIG. 3 is a block diagram showing the receiving station apparatus according to the first embodiment.
  • the receiving unit 122 includes a BWL filter 122a, a demodulator 122b, an interference wave detection device 122c, a mask processing unit 122d, and a decoder 122e.
  • a BWL filter (Bandwidth Limitation filter) 122a in the receiving unit 122 selectively transmits a band of a desired channel.
  • the demodulator 122b converts the received radio signal including the desired wave subjected to error correction coding into an electric signal for each subcarrier, and outputs demodulated values DM1 to DM8 for each demodulated subcarrier.
  • the interference wave detection device 122c recognizes the interference wave by detecting the interference signal in the interference band from the band of the channel based on the input received signal.
  • the mask processing unit 122d includes a mask code generator 122d1, a mask processing unit 122d2, and a combiner 122d3.
  • the mask code generator 122d1 in the mask processing unit 122d outputs a masking code for masking the demodulated value of the subcarrier to be masked according to the input interference signal for each subcarrier.
  • demodulated values of subcarriers to be masked are demodulated values DM7 and DM8.
  • a subcarrier to be masked is indicated by “0”, and a subcarrier not to be masked is indicated by “1”.
  • the mask processing unit 122d2 performs multiplication processing according to the input demodulated value and the generated masking code. As a result of the multiplication processing, mask processing is performed, demodulated values DM7 and DM8 are replaced with “0”, and signals from other demodulated values DM1 to DM6 are transmitted.
  • the combiner 122d3 combines the signals from the demodulated values DM1 to DM6 with “0” obtained by replacing the demodulated values DM7 and DM8, and outputs the combined signal to the decoder 122e as a selected data string. .
  • the decoder 122e performs error correction processing and decoding processing based on the data sequence selected by the mask processing unit 122d, and outputs a decoding result for each subcarrier.
  • a decoding process corresponding to the desired wave encoding method can be selected.
  • the interference signal included in the interference band is removed by the mask processing unit 122d, and the received signal can be decoded.
  • FIG. 4 is a diagram illustrating a frequency arrangement in the first embodiment.
  • the vertical axis represents power and the horizontal axis represents frequency.
  • five channels having different frequency bands are arranged. Since each channel is overlapped, five channels are assigned to a narrower band than the total of the bands of the respective channels. By overlapping each channel, interference occurs in each channel, but error rate reduction can be prevented by error compensation in decoding processing.
  • the channels to be superimposed are channels ch1, ch2, ch3, ch4, and ch5 in order from the lowest frequency, and an array that maximizes the overall transmission capacity is selected.
  • FIG. 4A shows an arrangement example that does not depend on the arrangement method of the present embodiment.
  • the frequency bandwidths fa and fn of each channel have different frequency bandwidths.
  • the frequency bands are clearly different from each other, for example, fa is 10 MHz and fn is 5 MHz. Therefore, when channels having a narrow frequency band are continuously allocated while being superposed, they are shared as a superposed band from both channels adjacent on the frequency axis of the band. As a result, the frequency band that can be occupied decreases, and the substantial communication quality decreases.
  • FIG. 4B shows an arrangement example according to the arrangement method of the present embodiment.
  • the frequency bandwidth f of each channel shown in this figure is shown in an array, it is expressed by the following equation.
  • Channels indicating different frequency bandwidths are assigned to the frequency bandwidths f1, f2, f3, f4 and f5 of each channel.
  • the frequency bandwidth fa occupies a wide frequency range and has a substantially substantial bandwidth as compared with the frequency bandwidth fn.
  • the narrow band spectrum is arranged at the end of the use frequency band. That is, two spectra having a narrower bandwidth than the other spectra are arranged at the end of the use frequency band. More specifically, the narrowest spectrum and the narrowest spectrum next to the spectrum are arranged at the end of the use frequency band. When there are a plurality of narrowest spectrums, two of these spectra are arranged at the end of the use frequency band.
  • the narrowest spectrum and a plurality of narrow band spectra next to the spectrum are included.
  • One of the spectra is arranged at the end of the use frequency band.
  • FIG. 4C shows a case where spectra having different frequency bandwidths are arranged in three channels. When shown in an array from the lowest frequency, it can be shown as follows.
  • the frequency bandwidths fa and fn have the following relationship.
  • the frequency bandwidth fa of the spectrum allocated to the central channel has a bandwidth twice as large as the frequency bandwidth fn of the spectrum allocated to the end channel. Further, as shown in FIG. 4D, comparison is made with a case where the spectrums allocated to the three channels all have the same frequency bandwidth fa.
  • FIG. 4E shows the frequency utilization efficiency calculated in the cases shown in the above (c) and (d).
  • the condition (c) is shown as “present plan”, and the condition (d) is shown as “conventional method”.
  • the selected conditions are as follows.
  • the applied communication system conforms to the DL-FUSC (Down Link-Full Usage of SubChannelization) mode applied to the downlink in the IEEE 802.16e standard.
  • the modulation method is 64QAM (Quadrature Amplitude Modulation) with a coding rate of 1/2
  • the coding method is CTC (Convolutional Turbo Code). As shown in FIG.
  • the frequency utilization efficiency according to the conventional method is 3 bits / sec / Hz (bits / second / hertz), but the frequency utilization efficiency according to this proposal is 4.17 bits / sec / Hz. (Bits / second / hertz). That is, it is shown that the 1.39 times frequency utilization efficiency is increased.
  • FIG. 5 is a flowchart showing the operation of the communication system in the first embodiment.
  • the reception unit 112 receives a reception signal captured by the antenna 114 (step Sa11).
  • the interference wave detection device 112a of the reception unit 112 detects the interference wave (step Sa12).
  • the frequency allocation device 113a selects and arranges a frequency array according to the frequency allocation rule (step Sa13).
  • the frequency allocation device 113a performs frequency allocation (step Sa14).
  • the frequency change device 113b changes the transmission frequency of the transmission unit 111 (step Sa15).
  • the bandwidth changing device 113c selects a bandwidth that can be transmitted in the own communication system, and the transmission unit based on the selected bandwidth
  • the bandwidth transmitted from 111 is controlled.
  • the transmission unit 111 changes the frequency of the clock output from the transmission baseband signal generator 111a according to the bandwidth control.
  • the transmission unit 111 generates a transmission signal by changing the output frequency of the up-converter device 111b, and transmits the transmission signal via the antenna 114 (step Sa16). According to the above procedure, it is possible to determine the transmission frequency transmitted by the base station apparatus 110 based on the interference state in the received signal received by the base station apparatus 110.
  • FIG. 6 is a block diagram showing a communication system according to the second embodiment of the present invention.
  • communication systems 200, 700, and 800 are shown as three communication systems that perform communication using radio waves of the same frequency.
  • the communication systems 200, 700, and 800 are independent communication systems using the same system configuration.
  • FIG. 6 the same components as those in FIG. Hereinafter, a configuration different from FIG. 1 will be described.
  • the communication system 200 includes a base station apparatus 210 and a terminal station apparatus 220 that communicate with each other.
  • the communication system 200 receives radio signals transmitted in the communication systems 700 and 800 as interference waves.
  • the base station apparatus 210 includes a transmission unit 111, a reception unit 212, a control unit 113, and an antenna 114.
  • the reception unit 212 in the base station apparatus 210 performs a reception process on an input reception signal.
  • the reception unit 212 includes a control information extraction device 212a.
  • the control information extraction device 212a extracts information included in the packet transmitted by the radio signal transmitted from the terminal station device 220.
  • the information sent from the terminal station device 220 includes the reception status on the terminal station device 220 side and various setting information in the terminal station device 220 set to adapt to the reception status.
  • the control information extraction device 212a extracts information on the frequency band detected as causing interference from the use frequency band in the radio signal (desired wave) transmitted from the base station device 210, and outputs the information as interference wave information. Based on the extracted interference wave information, the control unit 113 determines a frequency array according to a predetermined rule, and assigns frequencies according to the array.
  • the defined rule is the same rule as the frequency determination rule shown in the first embodiment.
  • the transmission unit 111 outputs a transmission signal according to the allocated frequency. Details of the control unit 113 and the transmission unit 111 are as described with reference to FIG.
  • the terminal station apparatus 220 includes a transmission unit 221, a reception unit 222, a control unit 223, and an antenna 124.
  • the transmission unit 221 in the terminal station apparatus 220 includes a transmission baseband signal generator 221 a that transmits information to the base station apparatus 210.
  • the transmission baseband signal generator 221a generates a packet including information related to the interference wave in the control information unit based on the input control information.
  • the transmission baseband signal generator 221a generates a transmission baseband signal based on packetized interference wave information.
  • the receiving unit 222 receives the radio signal transmitted from the base station apparatus 210 via the antenna 124.
  • the receiving unit 222 performs reception processing on the received signal and extracts received data.
  • the receiving unit 222 also extracts information indicating the reception status on the terminal station device 220 side based on the received radio signal.
  • the receiving unit 222 includes an interference wave detection device 222a.
  • the interference wave detection device 222a in the reception unit 222 uses a frequency band in which interference is generated by a radio signal transmitted from another system, among the use frequency bands in a desired wave transmitted from the base station device 110, from an input reception signal. Is detected. For example, in the environment where the desired wave is not transmitted, the interference wave detection device 222a detects the presence / absence of other radio signals, signal strength, etc.
  • the specific subcarrier to be detected is detected.
  • the interference wave detection apparatus 222a uses a sequence of interference band determination values in which “1” is associated with a subcarrier that is a specific subcarrier and “0” is associated with a subcarrier other than the specific subcarrier. Then, a sequence of specific subcarrier determination values is generated.
  • the interference wave detector 222a outputs the detection result as interference wave information.
  • the control unit 223 includes a control information adding device 223a. Based on the detected interference wave information, the control information adding device 223a in the control unit 223 generates control information including the interference wave information in the information notified to the base station device 210, and inputs the control information to the transmission unit 221.
  • FIG. 7 is a flowchart showing the operation of the communication system in the second embodiment.
  • the receiving unit 222 receives the received signal captured by the antenna 124 (step Sb11).
  • the interference wave detection device 222a of the reception unit 222 detects the interference wave (step Sb12).
  • the control information adding device 223a generates and outputs control information including information on the interference wave based on the detected interference wave information (step Sb13).
  • the transmission baseband signal generator 221a Based on the input control information, the transmission baseband signal generator 221a generates and outputs a packet including information on the interference wave in the control information section.
  • the output packet is converted into a radio signal and transmitted from the terminal station apparatus 220 (step Sb14).
  • the opposing base station apparatus 210 receives the radio signal transmitted from the terminal station apparatus 220.
  • the control information extraction device 212 a in the reception unit 212 extracts information included in the packet transmitted by the radio signal transmitted from the terminal station device 220.
  • the control information extraction device 212a outputs the interference wave information detected by the terminal station device 210 (step Sb15).
  • the frequency allocation device 113a selects and arranges a frequency array according to the frequency allocation rule based on the output interference wave information (step Sb16). Based on the arranged frequency arrangement, the frequency assignment device 113a assigns frequencies (step Sb17). According to the allocated frequency, the frequency changing device 113b changes the transmission frequency of the transmitter 111 (step Sb18).
  • the bandwidth changing device 113c selects a bandwidth that can be transmitted by the own communication system, and transmits based on the selected bandwidth.
  • the bandwidth transmitted from the unit 111 is controlled.
  • the transmission unit 111 changes the frequency of the clock output from the transmission baseband signal generator 111a according to the bandwidth control.
  • the transmission unit 111 generates a transmission signal by changing the output frequency of the up-converter device 111b, and transmits the transmission signal via the antenna 114 (step Sb19). According to the above procedure, it is possible to determine the transmission frequency transmitted by the base station apparatus 210 based on the interference state in the received signal received by the terminal station apparatus 220.
  • FIG. 8 is a block diagram showing a communication system according to the third embodiment.
  • This figure shows communication systems 300, 700c, and 800c as three communication systems that perform communication using radio waves of the same frequency.
  • the communication systems 300, 700c, and 800c are independent communication systems using the same system configuration.
  • the communication system 300 includes a base station device 310 and a terminal station device 120.
  • the communication system 700c includes a base station device 710c and a terminal station device 720.
  • the communication system 800c includes a base station device 810c and a terminal station device 820. In each communication system, the provided base station apparatus and terminal station apparatus communicate using a predetermined frequency.
  • the communication system 300 includes a base station apparatus 310 and a terminal station apparatus 120, and a control station apparatus 330 that controls the base station apparatus 310 and the terminal station apparatus 120.
  • the communication system 300 receives radio signals transmitted in the communication systems 700c and 800c as interference waves.
  • the control station apparatus 330 detects the interference situation due to the interference wave in the radio signal. Based on the interference state, the result of frequency arrangement is notified to the base station apparatus 310 of the communication system 300 and the communication systems 700c and 800c by the communication means.
  • the base station apparatus 310 includes a transmission unit 311, a reception unit 312, a control unit 313, and an antenna 114.
  • the transmission unit 311 in the base station apparatus 310 generates a transmission signal for the terminal apparatus 120.
  • the transmission unit 311 includes a transmission baseband signal generator 311a and an up-converter device 111b.
  • a transmission baseband signal generator 311a in the transmission unit 311 generates a transmission baseband signal based on information to be transmitted.
  • the generated transmission baseband signal is output in synchronization with the transmission frequency.
  • the receiving unit 312 in the base station apparatus 310 performs a reception process on an input reception signal.
  • the control unit 313 includes a control information receiving device 313a and a frequency changing device 313b.
  • the control information receiving device 313a receives the frequency control information transmitted from the control station device 330 and extracts information included in the packet transmitted by the radio signal.
  • Information sent from the control station device 330 is control information for controlling the frequency used in the communication system 300.
  • the control information receiving device 313a extracts the arrangement information of each channel from the frequency control information notified from the control station device 330.
  • the frequency changing device 313b performs frequency arrangement based on the extracted arrangement information of each channel.
  • the control station device 330 includes an interference wave detection device 331, a frequency allocation device 332, and a control information distribution device 333.
  • the interference wave detection device 331 in the control station device 330 has a frequency band in the communication system 300 in which interference occurs due to a radio signal transmitted from another system, among the use frequency bands in the desired wave transmitted by the base station device 310. Detect from the input received signal. For example, in the environment where the desired wave is not transmitted, the interference wave detecting device 331 detects the presence / absence of other radio signals and the signal intensity for each subcarrier in the use frequency band of the desired wave. The specific subcarrier to be detected is detected.
  • the interference wave detection apparatus 331 associates “1” with a subcarrier that is a specific subcarrier and associates “0” with a subcarrier other than the specific subcarrier as a sequence of interference band determination values. Then, a sequence of specific subcarrier determination values is generated. The interference wave detection device 331 outputs the detection result as interference wave information.
  • the frequency allocation device 332 selects a channel to be used in the own communication system based on a predetermined rule based on an interference band determination value indicating an interference state for each subcarrier input as interference wave information. Further, the frequency allocation device 332 determines a frequency array based on the selected result, and performs frequency allocation according to the array.
  • the defined rule is the same rule as the frequency determination rule shown in the first embodiment.
  • the control information distribution device 333 distributes frequency control information including information on the selected channel to the opposing base station device 310 and the communication systems 700c and 800c.
  • FIG. 9 is a flowchart showing the operation of the communication system in the third embodiment.
  • the control station device 330 that manages the frequency arrangement of the communication system 300 receives the reception signal captured by the antenna 334 (step Sc11).
  • the interference wave detection device 331 detects the interference wave and outputs the interference wave information (step Sc12).
  • the frequency allocation device 332 selects and arranges the frequency array according to the frequency allocation rule based on the output interference wave information. (Step Sc13). Based on the arranged frequency arrangement, the frequency allocation device 332 allocates frequencies (step Sc14). The control information distribution device 333 distributes the frequency control information including the allocated frequency information to the base station device 310 and the communication systems 700c and 800c using the communication means (step Sc15).
  • the opposing base station apparatus 310 receives the frequency control information transmitted from the control station apparatus 330.
  • the control information receiving device 313 a in the control unit 313 extracts the frequency allocation information transmitted from the control station device 330.
  • the frequency changing device 313b changes the transmission frequency of the transmission unit 311 according to the extracted frequency allocation information (step Sc17).
  • the transmission unit 311 generates a transmission signal by changing the output frequency of the up-converter device 111b based on the allocated frequency, and transmits the transmission signal via the antenna 114 (step Sc18).
  • the transmission frequency transmitted by the base station apparatus 310 can be determined based on the interference state in the received signal received by the control station apparatus 330.
  • the communication systems 700c and 800c can efficiently perform the frequency arrangement used in each system in consideration of the frequencies. And it becomes possible to improve the quality of each communication system by reducing mutual interference.
  • FIG. 10 is a block diagram illustrating a functional configuration of a reception function included in the terminal station device 220 illustrated in the second embodiment.
  • the terminal station apparatus 220 includes a transmission unit 221, a reception unit 222, a control unit 223, and an antenna 124. 10, the same components as those shown in FIG. 6 are denoted by the same reference numerals.
  • the reception unit 222 includes a reception processing unit 222b, an interference information extraction unit 222c, a filter control unit 222d, a filter 222e, a demodulation unit 222f, a deinterleaver 222g, and an FEC decoding unit 222h.
  • the reception processing unit 222b performs down-conversion on the received reception signal and further performs analog / digital conversion.
  • the interference information extraction unit 222c based on the desired signal information determined when starting communication with the base station apparatus 210, the interference signal center frequency, the interference signal frequency bandwidth, the interference signal reception power, Interference information extraction processing is performed to extract the interference information including the signal from the received signal. Interference information extraction processing is possible with existing technology. For example, the interference information extraction unit 222c calculates the frequency spectrum of the received signal by performing FFT (Fast Fourier Transform) on the received signal, and obtains it based on the calculated frequency spectrum of the received signal and the desired signal information.
  • FFT Fast Fourier Transform
  • the frequency spectrum of the interference signal is estimated by calculating a difference from the estimation result of the frequency spectrum of the desired signal, and interference information is extracted based on the estimation result. Further, for example, the interference information extraction unit 222c may extract the interference information based on a frequency spectrum in a signal that is transmitted from the base station apparatus 210 at a predetermined timing and power is not allocated to subcarriers.
  • the filter control unit 222d stores desired signal information at the start of communication with the base station apparatus 210, and satisfies the following two conditions based on the desired signal information and the interference information extracted by the interference information extraction unit 222c.
  • the filter parameter is determined, and the determined filter parameter is set in the filter 222e. (1) A received signal in a frequency band in which only a desired signal exists without an interference signal is passed. (2) Attenuate the received signal in the frequency band where the interference signal exists.
  • the filter parameter includes, for example, a filter type and a cutoff frequency.
  • the filter 222e filters the received signal based on the filter parameter filter set by the filter control unit 222d. That is, based on the filter parameter filter set by the filter control unit 222d, the filter 222e filters the received signal referred to by the filter control unit 222d when determining the filter parameter.
  • the demodulator 222f removes the guard interval from the reception signal filtered by the filter 222e, performs FFT, and generates a demodulated signal by performing demodulation.
  • the deinterleaver 222g deinterleaves the demodulated signal generated by the demodulator 222f.
  • the FEC decoding unit 222h decodes the demodulated signal deinterleaved by the deinterleaver 222g in accordance with FEC (Forward Error Collection), generates a bit string in which error bits are corrected, and outputs received data. Further, the FEC decoding unit 222h calculates an error rate when generating a bit string decoded according to FEC and corrected in error bits.
  • FEC Forward Error Collection
  • the control information adding device 223a generates transmission information indicating the filter parameter determined by the filter control unit 222d and the error rate of the received data calculated by the FEC decoding unit 222h. Then, the transmission baseband signal generator 221a in the transmission unit 221 performs transmission information by performing processing such as encoding processing, modulation processing, digital / analog conversion processing, and up-conversion processing on the generated transmission information. A signal is generated, and the generated transmission information signal is transmitted to the base station apparatus 210 via the antenna 124.
  • the filter control unit 222d calculates a relative position between the desired signal and the interference signal based on the desired signal information and the interference information, and determines a filter parameter to be applied to the filter 222e according to the calculation result. Specifically, the filter control unit 222d selects the type of filter to be applied to the filter 222e based on the desired signal information and the interference information from among a high pass filter, a low pass filter, and a notch filter. Furthermore, the filter control unit 222d determines the cutoff frequency of the filter. Then, the filter control unit 222d controls the filter 222e according to the determined filter type and cutoff frequency.
  • FIG. 11A to 11C are schematic diagrams illustrating an outline of the filter control process when the filter control unit 222d sets a low-pass filter in the filter 222e.
  • FIG. 11A is a schematic diagram showing the frequency spectrum of the received signal received by the antenna 124 divided into the frequency spectrum of the desired signal and the spectrum of the interference signal.
  • the vertical axis represents power
  • the horizontal axis represents frequency
  • the symbol DS indicates the frequency spectrum of the desired signal
  • the symbol IS indicates the frequency spectrum of the interference signal.
  • the filter control unit 222d calculates the maximum value (bmax_i) of the frequency band of the interference signal based on the center frequency and the frequency bandwidth of the interference signal, and calculates the frequency band of the desired signal based on the center frequency and the frequency bandwidth of the desired signal.
  • bmax_i is higher than bmax_d (FIG. 11A)
  • a low-pass filter is applied to the filter 222e.
  • FIG. 11B is a schematic diagram illustrating an outline of a low-pass filter that the filter control unit 222d applies to the filter 222e.
  • the vertical axis represents gain (unit: dB), and the horizontal axis represents frequency (unit: Hz).
  • the filter control unit 222d calculates the minimum value (bmin_i) of the frequency band of the interference signal based on the center frequency and the frequency bandwidth of the interference signal, and the cutoff frequency of the low-pass filter (the gain of the low-pass filter is ⁇ 3 dB).
  • Frequency) fc is determined to be bmin_i.
  • the filter control unit 222d sets, in the filter 222e, a filter parameter whose filter type is a low-pass filter and whose cut-off frequency fc is bmin_i, as indicated by reference numeral FP.
  • FIG. 11C shows the result when the signal of FIG. 11A is filtered by the low-pass filter having the characteristics shown in FIG. 11B. As shown in the figure, it is shown that the interference signal is reduced by filtering. As described above, the case where the low-pass filter is applied has been described. However, the high-pass filter and the notch filter can be selected from the state of the detected interference signal. The cutoff frequency at that time is selected as described above.
  • the configuration shown in this figure is not limited to the receiving unit 222 in the terminal station device 220 described above, but the receiving unit 122 in the terminal station device 120 and the receiving unit 112 in the base station device 110 shown in the first embodiment.
  • the present invention can also be applied to the receiving unit 212 in the base station apparatus 210, the receiving unit 312 in the base station apparatus 310, and the like.
  • the spectrum arrangement in the control station that decides the arrangement can be performed.
  • Base station apparatuses 110, 210 and 310 defined as transmitting stations transmit multicarrier signals using a spectrum allocated to the own system.
  • the terminal station devices 120 and 220 defined as receiving stations recognize in advance the overlapping band with the other systems such as the communication systems 700 and 800 in the spectrum arranged in the own system.
  • the terminal station apparatuses 120 and 220 apply the interference suppression technique to the superimposed band, and receive a multicarrier signal addressed to the local station by performing error correction decoding on the signal to which the interference suppression technique is applied.
  • the spectrum is arranged such that the spectrum bandwidth and the superposition rate derived from a predetermined superposition bandwidth to be superposed on another spectrum are constant in each spectrum. In this way, by arranging the spectrum so that the superposition rate is constant in each spectrum, the frequency placement method that reduces the influence of superposition for each spectrum, ensures substantial communication quality, and effectively uses the frequency. Can be provided.
  • the spectrum bandwidth is variable for each communication system.
  • a spectrum with a narrow spectrum bandwidth is placed at the end of the use frequency band, and a spectrum with a wide spectrum bandwidth is placed in the use frequency band.
  • the spectrum is arranged so that the superposition ratio is constant in each spectrum.
  • a predetermined band can be secured even for a spectrum with a narrow bandwidth, and the entire transmission is performed by arranging the spectrum so that the overlapping rate is constant in each spectrum. Efficiency can be increased.
  • the terminal station apparatuses 120 and 220 perform interference suppression processing by removing the recognized superimposed band using a frequency filter. Thereby, a band including the interference wave can be removed, and the interference wave of the received reception signal can be suppressed.
  • the terminal station apparatuses 120 and 220 mask the likelihood of the received signal in the recognized superposed band (corresponding to the demodulated value of the subcarrier described above), and the error correction decoding step applies the received signal whose likelihood is masked.
  • interference correction processing is performed by error correction decoding, and a multicarrier signal addressed to the own station is received. Thereby, the spectrum including the interference wave can be removed, and the interference wave of the received signal received can be suppressed.
  • the spectrum is arranged based on the result detected by the interference wave detecting device 222a (interference signal detecting means) provided in the receiving station such as the terminal station device 220. This makes it possible to select a spectrum suitable for the reception environment at the receiving station, and to improve the reception quality at the receiving station.
  • the interference wave detecting device 222a interference signal detecting means
  • the spectrum is arranged based on the result detected by the interference signal detection device 122a (interference signal detection means) provided in the transmission station such as the base station device 110.
  • the interference signal detection device 122a interference signal detection means
  • the transmission station such as the base station device 110.
  • the spectrum arrangement is detected by an interference wave detecting device 331 (interference signal detecting means) provided in the control station device 330 different from both the base station device 310 (transmitting station) and the terminal station device 320 (receiving station). Arrange based on the results. This makes it possible to select a spectrum suitable for the reception environment in the control station device 330, and based on the information detected by the control station device 330, the own communication system (communication system 300) and other communication systems (communication). It is possible to centrally control the spectral arrangement of the systems 700c and 800c).
  • an interference wave detecting device 331 interference signal detecting means
  • the present invention is not limited to the above embodiments, and can be modified without departing from the spirit of the present invention. Any kind of encoding scheme can be used for the encoding scheme in the receiving method of the present invention, and the number of receivers and the connection form are not particularly limited.
  • the interference wave detection devices 112a and 222a shown in the above-described embodiments can be provided exclusively as an interference signal detection function for the purpose of frequency arrangement, and the purpose is to reproduce received information from a received signal.
  • the interference signal detection function may also be used.
  • band control is performed in the transmission unit 111 has been described in order to further improve frequency use efficiency. By performing the band control, an effect of increasing the frequency use efficiency can be obtained, but transmission may be performed in a predetermined band without performing the band control.
  • the communication system of the present invention corresponds to the communication systems 100, 200, and 300.
  • the transmission station apparatus of the present invention corresponds to the base station apparatuses 110, 210, and 310.
  • the receiving station apparatus of the present invention corresponds to the terminal station apparatuses 120, 220, and 320.
  • the control station apparatus of the present invention corresponds to the control station apparatus 330.
  • the interference signal detection unit of the present invention corresponds to the interference wave detection devices 112a, 222a, and 331.
  • positioning part of this invention is corresponded to the frequency allocation apparatuses 113a and 332.
  • the spectrum allocation unit of the present invention corresponds to the frequency allocation devices 113a and 332.
  • the control information distribution unit of the present invention corresponds to the control information distribution device 333. Further, the control information transmitting unit of the present invention corresponds to the control information adding device 223a.
  • the transmission unit of the present invention corresponds to the transmission units 111 and 311.
  • the receiving unit of the present invention corresponds to the receiving units 122 and 222.
  • control step of the present invention corresponds to a processing process by the control unit 113.
  • transmission step of the present invention corresponds to a processing process by the transmission units 111 and 311.
  • superposition band recognition step of the present invention corresponds to a processing process by the interference wave detection devices 112a, 222a and 331.
  • interference suppression step of the present invention corresponds to a processing process by the receiving units 120 and 220.
  • error correction decoding step of the present invention corresponds to a processing process by the receiving units 122 and 212.
  • spectrum allocation step of the present invention corresponds to a processing process by the frequency allocation devices 113a and 332.
  • spectrum allocation step of the present invention corresponds to a processing process by the frequency allocation apparatuses 113a and 332.
  • FIG. 12 shows an outline of the operation of the signal transmission apparatus (transmission station apparatus) according to the fifth embodiment of the present invention.
  • the signal transmission apparatus transmits a multicarrier signal such as OFDM (Orthogonal Frequency Division Multiplexing) and uses an FEC (Forward Error Correction) code as an error correction code.
  • This signal transmission apparatus transmits a plurality of FEC blocks arranged in the channel frequency band.
  • the signal transmission apparatus uses a subcarrier allocation method or a subcarrier interface in which a superposition rate (a ratio of using a superposition band in which interference occurs in a frequency band used for signal transmission) is variable.
  • a superposition rate a ratio of using a superposition band in which interference occurs in a frequency band used for signal transmission
  • Using the Lleaver scheduling is performed to give a superimposition rate according to the service quality requirement of each user, that is, QoS.
  • QoS the service quality requirement of each user
  • a large non-interference band is allocated for user data having a high QoS and transmitted with a low superposition rate
  • a large superimposition band is allocated for data for a user having a low QoS and a high superimposition rate is transmitted.
  • Control information is transmitted using only the non-interference band. This prevents loss of control information and high priority data.
  • a superimposition rate can also be given for every user according to the reception state of user data.
  • a large superimposition band is allocated and transmitted with a high superposition rate
  • a large non-interference band is allocated and transmitted with a low superposition rate.
  • the reception state is represented by D / U (Desired to Undesired signal ratio).
  • D / U 20 dB
  • the QoS requirement of user 2 is low
  • D / U 0 dB
  • the QoS requirement of user 3 is high
  • D / U 20 dB
  • the frequency band used for data transmission for a certain user is ⁇ and the interference band is ⁇ among the used frequency bands, the superimposition rate of the user is ⁇ / ⁇ .
  • FIG. 13 is a block diagram illustrating a configuration of the signal transmission device 1100 according to the present embodiment.
  • a signal transmission apparatus 1100 includes a variable superposition rate scheduler 1110, an OFDM modulator 1120, a P / S converter (parallel / serial converter) 1130, and a storage unit 1140.
  • the storage unit 1140 stores the QoS of each user, the reception quality received from the signal receiving device (receiving station device), and the SINR value estimated when the signal is received from the signal receiving device.
  • the storage unit 1140 assumes a minimum SINR (Signal-to-Noise ratio) value that can satisfy a required communication quality (Bit Error Rate, Frame Error Rate, etc.) assuming an antenna transmission line, What is calculated for each modulation and coding level for each variable superimposition rate is stored as a modulation and coding level table.
  • SINR Signal-to-Noise ratio
  • the variable superimposition rate scheduler 1110 includes an S / P converter (serial / parallel converter) 1111, a block superimposition rate determination unit 1112, a modulation / coding level determination unit 1113, encoding / modulators 1114-1 to 1114-n, and Subcarrier allocator 1115 is provided.
  • the S / P converter 1111 converts the transmission data from a serial signal to a parallel signal, and outputs a signal of each user to the encoders / modulators 1114-1 to 1114-1 to n for each user.
  • the block superposition rate determiner 1112 determines the superposition rate based on the QoS of each user stored in the storage unit 1140 and the reception quality in the signal receiving apparatus that receives the data of the user.
  • the modulation and coding level determiner 1113 refers to the modulation and coding level table stored in the storage unit 1140, and the superimposition rate determined by the block superimposition rate determiner 1112 and each of the storage units 1140 stored therein.
  • the modulation and coding level is determined from the estimated SINR value corresponding to the signal receiving apparatus that is the user's data transmission destination.
  • the encoders / modulators 1114-1 to 1114-1 to n encode the user data using the FEC code according to the modulation encoding level for each user determined by the modulation encoding level determination unit 1113, and modulate the encoded data. To the subcarrier allocator 1115.
  • the subcarrier assigner 1115 assigns the modulated data to the subcarriers in the interference band and the non-interference band according to the superposition rate determined by the block superposition rate determiner 1112 and outputs the data to the OFDM modulator 1120 as a parallel signal.
  • the OFDM modulator 1120 performs inverse Fourier transform on the parallel signal allocated to each subcarrier by the subcarrier allocator 1115 and outputs the result.
  • P / S converter 1130 serially converts the parallel signal output from OFDM modulator 1120 to generate an OFDM signal, and outputs it as a transmission signal.
  • FIG. 14 is a diagram illustrating a flow in a communication system using the signal transmission device 1100 described above.
  • the signal receiving apparatus performs interference band detection processing (step S111). This is because, for example, the signal receiving apparatus transmits a request for stopping wireless signal transmission using a desired wave to the signal transmitting apparatus 1100, and the subcarrier in the frequency band used for the desired wave in an environment where the desired wave is not transmitted. By detecting the presence / absence of other radio signals, signal strength, etc., the frequency band in which interference occurs can be detected. When the signal receiving device does not detect the interference band (step S112: NO), the process is terminated.
  • the signal receiving apparatus When the interference band is detected (step S112: YES), the signal receiving apparatus notifies the signal transmitting apparatus 1100 of information on the detected interference band (step S113), and turns on the interference compensation / suppression mechanism (step S114). .
  • the signal transmission device 1100 writes information on the interference band received from the signal reception device in the storage unit 1140.
  • the signal transmission device 1100 estimates SINR from the signal received from the signal reception device and writes it in the storage unit 1140.
  • the block superposition ratio determination unit 1112 When transmission data is input to the variable superposition ratio scheduler 1110 of the signal transmission apparatus 1100, the block superposition ratio determination unit 1112 refers to the storage unit 1140 and determines whether or not there is a superimposition band (interference band) (step). S121). When it is determined that there is a superimposition band (step S121: YES), the block superimposition rate determination unit 1112 determines whether the transmission data is control information or user data (step S122). When the transmission data is control information (step S122: control information), the block superimposition rate determiner 1112 determines to set the superimposition rate to 0, and the modulation coding level determination unit 1113 and the subcarrier allocator 1115 transmit the superimposition rate. Is output.
  • a superimposition band interference band
  • the modulation and coding level determiner 1113 calculates the modulation and coding level table stored in the storage unit 1140 based on the superposition rate determined by the block superposition rate determiner 1112 and the estimated SINR value stored in the storage unit 1140. Reference is made to determine the modulation and coding level.
  • the block superimposition rate determination unit 1112 reads the user QoS from the storage unit 1140, and the QoS level is higher or lower than a predetermined service quality level. Determine if there is.
  • the block superimposition rate determiner 1112 determines the superimposition rate of the user so as to be lower than the superimposition rate of the desired wave (step S125). ).
  • the modulation and coding level determiner 1113 uses the modulation and coding level table stored in the storage unit 1140 based on the superposition rate determined by the block superposition rate determiner 1112 and the estimated SINR value stored in the storage unit 1140. The user determines the modulation and coding level of the user.
  • the block superposition rate determiner 1112 determines whether the average superposition rate of all data is equal to the superposition rate of the desired wave calculated from the interference band information received in step S121 (step S126).
  • the subcarrier allocator 1115 performs coding and modulation according to the modulation and coding level determined by the determiner 1113, and the subcarrier allocator 1115 converts the encoded data of the user according to the superposition rate of each user determined by the block superposition rate determiner 1112. Allocation to subcarriers in interference area and non-interference band.
  • step S124 when the QoS level is lower than the predetermined service quality level (step S124: low), the block superimposition rate determiner 1112 determines that the superimposition rate of the user is higher than the superimposition rate of the desired wave. Is determined (step S128).
  • the modulation and coding level determiner 1113 calculates the modulation and coding level table stored in the storage unit 1140 based on the superposition rate determined by the block superposition rate determiner 1112 and the estimated SINR value stored in the storage unit 1140. The user determines the modulation and coding level of the user.
  • the signal transmission apparatus 1100 determines whether or not a communication link with the signal reception apparatus can be established depending on whether the modulation and coding level has been selected in step S128 (step S129). That is, the signal transmission apparatus 1100 refers to the modulation and coding level table, and determines that a communication link cannot be established with a superimposition rate at which no modulation and coding level that satisfies the required communication quality exists. If the communication link can be established (step S129: YES), the process from step S126 is executed to determine whether the average superposition rate of all data is different from the superposition rate of the desired wave. On the other hand, if the establishment of the communication link is not possible (step S129: NO), the processing from step S125 for lowering the superposition rate is executed.
  • the S / P converter 1111 of the signal transmission device 1100 determines which user's transmission data each transmission data is based on control data given to the transmission data or control data received from a control unit (not shown).
  • the transmission data is output to the encoders / modulators 1114-1 to 111-n for each user.
  • the S / P converter 1111 outputs user 1 data to the encoder / modulator 1114-1, outputs user 2 data to the encoder / modulator 1114-2, and encodes user 3 data.
  • the data of the user 4 is output to the encoder / modulator 1114-4.
  • the block superposition rate determiner 1112 determines the superposition rate of the encoded data of each user.
  • the reception quality includes, for example, D / U (Desired to Undesired signal ratio; DU ratio), S / N (Signal-to-Noise ratio; SN ratio), C / I (Carrier-to-interference; desired signal power pair). Interference wave power ratio) can be used, and each user's D / U, S / N, or C / I value is compared with a predetermined threshold value, and the reception quality is divided into two stages, high and low To do.
  • D / U, S / N, or C / I information is normally notified from a signal receiving apparatus by the uplink as request information from a user.
  • the modulation and coding level determiner 1113 uses the superposition rate determined by the block superposition rate determiner 1112 and the SINR value estimated for the signal receiving apparatus that is the transmission destination of the user data, stored in the storage unit 1140. With reference to the modulation and coding level table stored in the storage unit 1140, the modulation and coding level having the maximum transmission bit amount is selected from among the modulation and coding levels satisfying the required communication quality.
  • the modulation and coding level is indicated by the modulation method and coding rate. Examples of the modulation scheme include 16QAM (Quadrature Amplitude Modulation), 64QAM, and QPSK (Quadrature Phase Shift Keying).
  • the coding rate is (number of bits before coding) / (number of bits after coding). Therefore, the modulation and coding level is QPSK 1/2, 16QAM 3/4, or the like.
  • the encoders / modulators 1114-1 to 1114-1 perform encoding of the user data input thereto by applying FEC according to the modulation encoding level of the user set by the modulation encoding level determination unit 1113. Modulate the encoded data.
  • the encoder / modulator 1114-1 performs encoding and modulation based on the modulation encoding level of the user 1, and the encoder / modulator 1114-2 is adjusted to the modulation encoding level of the user 2.
  • the encoder / modulator 1114-3 performs encoding and modulation based on the modulation encoding level of the user 3, and the encoder / modulator 1114-4 performs the modulation encoding of the user 4. Encode and modulate based on level.
  • the subcarrier allocator 1115 assigns subcarriers to the modulation data of each user according to the superposition rate of each user determined by the block superposition rate determiner 1112, and outputs a parallel signal to the OFDM modulator 1120.
  • the OFDM modulator 1120 performs inverse Fourier transform on the parallel signal allocated to each subcarrier by the subcarrier allocator 1115 and outputs the result.
  • P / S converter 1130 serially converts the parallel signal output from OFDM modulator 1120 to generate an OFDM signal, and outputs it as a transmission signal.
  • the signal transmission device 1100 of FIG. 13 includes a plurality of encoders / modulators 1114-1 to 1114-1n, but may include only one.
  • the signal transmission apparatus 1100 uses the continuous subcarrier allocation method for transmission data for which control information and high-rank QoS are required, and allocates resources only to the non-interference band. assign.
  • the signal transmission apparatus 1100 performs scheduling such that resources distributed in the superposed band and the non-interference band are allocated using the distributed subcarrier allocation method. This prevents loss of control information and high priority data.
  • FIG. 17 is a schematic block diagram showing a configuration of a signal receiving apparatus 1300 that performs masking of an interference region.
  • the signal receiving apparatus 1300 includes an interference band detector 1301, a weighting coefficient generator 1302, a demodulator 1303, a weighting calculator 1304, and a decoder 1305, and receives a desired signal from a received signal composed of a desired wave and an interference wave by an error correction code. Extract the signal contained in the wave. Note that the connection between the interference band detector 1301 and the demodulator 1303 is not essential.
  • the interference band detector 1301 causes interference in the use frequency band in the desired wave of its own device by a radio signal transmitted from another system when the signal receiving apparatus 1300 such as FWA (Fixed Wireless Access) is installed. Detect the generated frequency band. For example, the interference band detector 1301 transmits a request to stop transmitting a radio signal using a desired wave to the desired radio wave transmission source radio station. In an environment where the desired wave is not transmitted, the interference band detector 1301 By detecting the presence / absence of other radio signals, signal strength, etc. for each subcarrier, a subcarrier in which interference occurs is detected.
  • FWA Fixed Wireless Access
  • the interference band detector 1301 is, for example, as a sequence of interference band determination values in which “1” is associated with subcarriers that are specific subcarriers and “0” is associated with subcarriers other than the specific subcarriers. Then, a sequence of specific subcarrier determination values is generated. Interference band detector 1301 outputs the detection result to weighting coefficient generator 1302.
  • the weighting coefficient generator 1302 calculates a weighting coefficient for each subcarrier according to the specific subcarrier determination value.
  • the weighting coefficient calculated by the weighting coefficient generator 1302 is a weighting coefficient that reduces the reliability of the subcarrier in which the interference detected by the interference band detector 1301 is generated as compared with other subcarriers.
  • the weighting coefficient generator 1302 outputs a column in which the calculated weighting coefficients are arranged for each subcarrier to the weighting calculator 1304.
  • Demodulator 1303 converts the received radio signal including the desired wave subjected to error correction coding into an electrical signal for each subcarrier, and outputs the demodulated demodulated value for each subcarrier to weighting calculator 1304.
  • the weighting calculator 1304 performs weighting calculation processing on the demodulated value input from the demodulator 1303 for each subcarrier based on the weighting coefficient input from the weighting coefficient generator 1302, and arranges the calculation results for each subcarrier.
  • the sequence is output to the decoder 1305 as a likelihood data sequence.
  • the decoder 1305 performs error correction processing and decoding processing based on the likelihood data string input from the weighting calculator 1304, and acquires a desired wave signal.
  • FIG. 18 is a diagram illustrating a processing flow of the signal reception device 1300.
  • the interference band detector 1301 of the signal receiving apparatus 1300 is a radio in the frequency band for each subcarrier of the desired wave at the time when the signal receiving apparatus 1300 is installed, at the timing where there is no desired wave or in the frequency band of the subcarrier where there is no desired wave.
  • Interference wave information is acquired by measuring and detecting the signal reception level, frequency band, center frequency, overlap band to the desired wave, and the like.
  • the interference band detector 1301 selects (detects) a subcarrier in which the interference wave exists as a specific subcarrier based on the acquired information on the interference wave. For example, based on the value of the reception level, the interference band detector 1301 detects a subcarrier in a frequency band that has received a signal having a reception level equal to or higher than a predetermined value as a specific subcarrier.
  • interference band detector 1301 detects subcarriers SC1 to SC4 included in overlap band W (interference band) where the desired wave and the interference wave overlap as specific subcarriers.
  • Interference band detector 1301 generates a sequence of specific subcarrier determination values in which “1” is associated with subcarriers SC1 to SC4 and “0” is associated with other subcarriers.
  • the interference band detector 1301 outputs the generated sequence of specific subcarrier determination values to the weighting coefficient generator 1302 (step S310).
  • weighting coefficient generator 1302 Based on the specific subcarrier determination value generated by interference band detector 1301, weighting coefficient generator 1302 generates a weighting coefficient that reduces the reliability of the specific subcarrier compared to other subcarriers.
  • This weighting factor is, for example, a weighting factor that converts a demodulated value into a predetermined value, for example, “0”, for a subcarrier associated with “1” in the column of specific subcarrier determination values.
  • the weighting coefficient generator 1302 outputs the generated sequence of weighting coefficients for each subcarrier to the weighting calculator 1304 (step S320).
  • Demodulator 1303 demodulates the radio signal in the frequency band of the desired wave for each subcarrier, and outputs the demodulated digital data for each subcarrier to weighting calculator 1304.
  • the weighting calculator 1304 Based on the weighting coefficient for each subcarrier and the demodulated value for each subcarrier, the weighting calculator 1304 performs a weighting calculation process using a calculation method according to the desired wave encoding method, and sets a column of calculation results as likelihood data. The data is output to the decoder 1305 as a sequence (step S330).
  • a weighting calculation method according to this encoding method a case where the desired wave encoding method is a soft decision positive / negative multi-value encoding method will be described as an example with reference to FIGS. 19B to 19D.
  • the decoding process in this soft decision positive / negative multi-value encoding method is a multi-value output in which the demodulated value of the received signal is positive / negative, and the magnitude of the absolute value is negative as a reliability (value representing likelihood, likelihood)
  • a decoding process is performed in which the value is “+1” and the positive value is “ ⁇ 1”.
  • FIG. 19B is a diagram illustrating a weighting coefficient for each subcarrier.
  • FIG. 19C is a figure which shows the demodulated value of the positive / negative multi-value output for every subcarrier.
  • the subcarrier with the maximum positive value “+27.02” has the highest reliability for being “ ⁇ 1”.
  • the subcarrier with the smallest negative value “ ⁇ 26.34” has the highest reliability of being “+1”.
  • whether the value is “+1” or “ ⁇ 1” is the most ambiguous (low reliability) is the subcarrier having the smallest absolute value, that is, the demodulated value of 0.
  • step S320 in FIG. 18 based on the weighting coefficient calculated by the weighting coefficient generator 1302, the weighting calculator 1304 weights the demodulated values of the subcarriers SC1 to SC4 that are specific subcarriers to “0”. By performing the arithmetic processing, the reliability of the demodulated values of the subcarriers SC1 to SC4 can be reduced.
  • the weighting coefficient generator 1302 generates a logical negation value of the specific subcarrier determination value of FIG. 19A as a string of weighting coefficients associated with each subcarrier.
  • the weighting calculator 1304 includes a weighting coefficient that is a logical negation value of the specific subcarrier determination value as illustrated in FIG. 19B and a weighting coefficient as illustrated in FIG. 19C.
  • the corresponding demodulated value is multiplied for each corresponding subcarrier.
  • the weighting calculator 1304 multiplies the demodulated value “ ⁇ 25.32” and the weighting coefficient “0” for the subcarrier SC1 that is the specific subcarrier, and the multiplication result “0” is weighted.
  • the demodulated value is output to the decoder 1305.
  • weighting calculator 1304 multiplies the demodulated value by the weighting coefficient “1” for subcarriers other than the specific subcarrier. Weighting calculator 1304 then outputs a sequence of multiplication results of all subcarriers to decoder 1305 as a likelihood data sequence.
  • FIG. 19D is a diagram showing a likelihood data string obtained by weighting a weighting coefficient and a positive / negative multilevel demodulated value for each subcarrier by the weighting calculator 1304.
  • the value of the likelihood data after the weight calculation corresponding to the subcarriers SC1 to SC4 which are specific subcarriers is the value “0” having the lowest reliability, and other demodulated values do not change. .
  • the decoder 1305 performs a decoding process corresponding to the desired wave encoding method based on the likelihood data string input from the weighting calculator 1304.
  • a method according to convolutional coding (Convolutional coding) or a combination of iterative decoding and turbo code can be applied (step S340).
  • the interference band detector 1301 measures the interference wave in the frequency band of the desired wave at the time of placement, and based on this measurement result, the weighting coefficient
  • the generator 1302 calculates a weighting coefficient for reducing the reliability
  • the weighting calculator 1304 performs processing for reducing the reliability of the specific subcarrier based on the weighting coefficient for the demodulated value of the received signal.
  • the signal receiving apparatus 1300 performs a weighting operation on the demodulated value according to the reliability of the received signal for each subcarrier, masks the specific subcarrier with low reliability, and demodulates the subcarrier with high reliability. It is possible to improve the reception error correction capability by decoding the received signal using.
  • the weighting coefficient calculated by the weighting coefficient generator 1302 is a logical negation value of the binary specific subcarrier determination value by the interference band detector 1301, and as a result is a bit mask.
  • the present invention is not limited to this, and the following coefficients may be used.
  • 20A to 20B are diagrams showing values before weighting and values after weighting in another example of the above-described weighting coefficients.
  • the weighting coefficient generator 1302 sets the weighting coefficient of a specific subcarrier to a predetermined value ⁇ (where 0 ⁇ ⁇ ⁇ 1) with respect to the demodulated value of positive / negative multilevel output, It is also possible to calculate a weighting coefficient with 1 as the weighting coefficient of the subcarriers.
  • the weighting calculator 1304 multiplies the demodulated value and the predetermined value ⁇ for the specific subcarrier to convert the absolute value of the demodulated value of the specific subcarrier in the 0 direction, thereby reducing the reliability. Further, in the case of a demodulated value of positive multivalue output in the soft decision output type, the bit value is decoded as “ ⁇ 1” as the demodulated value is closer to 0, and the bit value is “1” as the demodulated value is closer to the maximum value. ". In such a case, the weighting coefficient generator 1302 replaces the demodulated value of the specific subcarrier with the median value of the output candidate value (for example, the median value 3 or 4 if the output candidate value is 0 to 7). The weighting coefficient to be calculated may be calculated.
  • the weighting coefficient generator 1302 replaces the binary demodulated value with “0”.
  • the coefficient may be output to the weighting calculator 1304 as a weighting coefficient for the specific subcarrier.
  • error correction codes such as block coding are applied, and even if the demodulated values of some subcarriers are missing, the signal of the desired wave is acquired based on the demodulated values of other subcarriers.
  • the received error correction capability is improved by performing weighted arithmetic processing on the demodulated value using a weighting coefficient that lowers the reliability of subcarriers that have low reliability and cause errors. Can be made.
  • FIG. 21 is a block diagram illustrating a functional configuration of the signal reception device 1400.
  • the signal reception device 1400 includes an antenna 1401, a reception unit 1402, an interference information extraction unit 1403, a filter control unit 1404, a delay unit 1405, a filter 1406, a demodulation unit 1407, and a deinterleaver. 1408 and an FEC decoding unit 1409.
  • the antenna 1401 receives a signal in which a desired signal and an interference signal are combined.
  • the receiving unit 1402 performs down-conversion on the received reception signal, and further performs analog / digital conversion.
  • the interference information extraction unit 1403 receives the interference information including the center frequency of the interference signal and the frequency bandwidth of the interference signal based on the desired signal information determined when communication with the signal transmission apparatus is started. Interference information extraction processing extracted from
  • the interference information extraction unit 1403 calculates the frequency spectrum of the received signal by performing FFT (Fast Fourier Transform) on the received signal, and obtains it based on the calculated frequency spectrum of the received signal and the desired signal information.
  • the frequency spectrum of the interference signal is estimated by calculating a difference from the estimation result of the frequency spectrum of the desired signal, and interference information is extracted based on the estimation result.
  • the filter control unit 1404 stores desired signal information at the start of communication with the signal transmission device, and based on the desired signal information and the interference information extracted by the interference information extraction unit 1403, a filter that satisfies the following two conditions Are determined, and the determined parameters are set in the filter 1406. (1) Pass the received signal in the frequency band where only the desired signal exists without the interference signal (2) Attenuate the received signal in the frequency band where the interference signal exists Note that the filter parameters are, for example, Consists of type and cutoff frequency.
  • the delay unit 1405 adds a time delay corresponding to the time required for the interference information extraction unit 1403 and the filter control unit 1404 to end the processing after the reception unit 1402 ends the processing, To 1406.
  • the amount of delay that the delay unit 1405 adds to the received signal is set in advance by the designer.
  • the filter 1406 filters the received signal to which the delay is added by the delay unit 1405 based on the parameter filter set by the filter control unit 1404. That is, the filter 1406 filters the received signal referred to by the filter control unit 1404 when determining the parameter based on the parameter filter set by the filter control unit 1404.
  • the demodulation unit 1407 generates a demodulated signal by removing the guard interval from the received signal filtered by the filter 1406, performing FFT, and demodulating.
  • the deinterleaver 1408 performs deinterleaving on the demodulated signal generated by the demodulator 1407.
  • the FEC decoding unit 1409 decodes the demodulated signal deinterleaved by the deinterleaver 1408 according to FEC, generates a bit string in which error bits are corrected, and outputs received data.
  • FIG. 22 is a conceptual diagram showing frequency spectra of a received signal, a desired signal, and an interference signal.
  • the vertical axis represents power and the horizontal axis represents frequency.
  • FIG. 22A is a conceptual diagram illustrating a frequency spectrum of a signal received by the antenna 1401.
  • FIG.22 (b) is a conceptual diagram showing the frequency spectrum of the desired signal contained in the received signal of Fig.22 (a).
  • symbol DS indicates the frequency spectrum of the desired signal
  • fc_d indicates the center frequency of the desired signal
  • bw_d indicates the frequency bandwidth of the desired signal.
  • FIG.22 (c) is a conceptual diagram showing the frequency spectrum of the interference signal contained in the received signal of Fig.22 (a).
  • symbol IS indicates the frequency spectrum of the interference signal
  • fc_i indicates the center frequency of the interference signal
  • bw_i indicates the frequency bandwidth of the interference signal.
  • the filter control unit 1404 calculates a relative position between the desired signal and the interference signal based on the desired signal information and the interference information, and determines a filter parameter to be applied to the filter 1406 according to the calculation result. Specifically, the filter control unit 1404 selects a filter type to be applied to the filter 1406 from a high-pass filter, a low-pass filter, and a notch filter based on desired signal information and interference information. Furthermore, the filter control unit 1404 determines the cutoff frequency of the filter. Then, the filter control unit 1404 controls the filter 1406 according to the determined filter type and cutoff frequency.
  • 23 to 25 are schematic diagrams showing an outline of the filter control process performed by the filter control unit 1404. FIG. The details of the filter control process will be described below with reference to FIGS.
  • FIG. 23 is a schematic diagram illustrating an outline of a filter control process when the filter control unit 1404 sets a low-pass filter in the filter 1406.
  • FIG. 23A is a schematic diagram showing the frequency spectrum of the signal received by the antenna 1401 divided into the frequency spectrum of the desired signal and the spectrum of the interference signal.
  • the vertical axis represents power
  • the horizontal axis represents frequency
  • the symbol DS indicates the frequency spectrum of the desired signal
  • the symbol IS indicates the frequency spectrum of the interference signal.
  • the filter control unit 1404 calculates the maximum value (bmax_i) of the frequency band of the interference signal based on the center frequency (fc_i) and the frequency bandwidth (bw_i) of the interference signal, and calculates the center frequency (fc_d) and frequency band of the desired signal Based on the width (bw_d), the maximum value (bmax_d) of the frequency band of the desired signal is calculated.
  • bmax_i is higher than bmax_d (FIG. 23 (a)
  • a low-pass filter is applied to the filter 1406.
  • FIG. 23B is a schematic diagram illustrating an outline of a low-pass filter that the filter control unit 1404 applies to the filter 1406.
  • the vertical axis represents gain (unit: dB), and the horizontal axis represents frequency (unit: Hz).
  • the filter control unit 1404 calculates the minimum value (bmin_i) of the frequency band of the interference signal based on the center frequency (fc_i) and the frequency bandwidth (bw_i) of the interference signal, and the cutoff frequency (low-pass filter) of the low-pass filter.
  • the frequency at which the gain becomes ⁇ 3 dB is determined to be bmin_i.
  • the filter control unit 1404 sets, in the filter 1406, a parameter whose type of filter is a low-pass filter and whose cutoff frequency f_lpf is bmin_i, as indicated by reference numeral FP.
  • FIG. 23C is a schematic diagram showing the frequency spectrum after the received signal shown in FIG. 23A is filtered by the filter 1406 in which the low-pass filter shown in FIG. 23B is set. .
  • the filter 1406 attenuates the power of a signal having a frequency higher than the lowest value (bmin_i) of the frequency band of the interference signal regardless of whether the signal is a desired signal or an interference signal.
  • FIG. 24 is a schematic diagram illustrating an outline of a filter control process when the filter control unit 1404 sets a notch filter in the filter 1406.
  • FIG. 24A is a schematic diagram showing the frequency spectrum of the signal received by the antenna 1401 divided into the frequency spectrum of the desired signal and the spectrum of the interference signal.
  • the vertical axis represents power
  • the horizontal axis represents frequency
  • the symbol DS indicates the frequency spectrum of the desired signal
  • the symbol IS indicates the frequency spectrum of the interference signal.
  • the filter control unit 1404 calculates the highest value (bmax_i) and the lowest value (bmin_i) of the frequency band of the interference signal based on the center frequency (fc_i) and the frequency bandwidth (bw_i) of the interference signal, and the center frequency of the desired signal
  • a notch filter is applied to the filter 1406.
  • FIG. 24B is a schematic diagram illustrating an outline of a notch filter that the filter control unit 1404 applies to the filter 1406.
  • the vertical axis represents gain (unit is dB), and the horizontal axis represents frequency (unit is Hz).
  • the filter control unit 1404 calculates the minimum value (bmin_i) and the maximum value (bmax_i) of the frequency band of the interference signal based on the center frequency (fc_i) and the frequency bandwidth (bw_i) of the interference signal, and the notch filter
  • the values of f_bef1 and f_bef2 are determined to be bmin_i and bmax_i.
  • the filter control unit 1404 sets, in the filter 1406, a parameter in which the filter type is a notch filter and the two cutoff frequencies f_bef1 and f_bef2 are bmin_i and bmax_i, as indicated by reference numeral FP.
  • FIG. 24C is a schematic diagram showing the frequency spectrum after the received signal shown in FIG. 24A is filtered by the filter 1406 in which the notch filter shown in FIG. 24B is set. .
  • the filter 1406 determines the power of a signal having a frequency between the minimum value (bmin_i) and the maximum value (bmax_i) of the frequency band of the interference signal, whether the signal is a desired signal or an interference signal. Attenuate regardless.
  • FIG. 25 is a schematic diagram illustrating an outline of a filter control process when the filter control unit 1404 sets a high-pass filter in the filter 1406.
  • FIG. 25A is a schematic diagram showing the frequency spectrum of the signal received by the antenna 1401 divided into the frequency spectrum of the desired signal and the spectrum of the interference signal.
  • the vertical axis represents power
  • the horizontal axis represents frequency
  • the symbol DS represents the frequency spectrum of the desired signal
  • the symbol IS represents the frequency spectrum of the interference signal.
  • the filter control unit 1404 calculates the minimum value (bmin_i) of the frequency band of the interference signal based on the center frequency (fc_i) and the frequency bandwidth (bw_i) of the interference signal, and calculates the center frequency (fc_d) and frequency band of the desired signal Based on the width (bw_d), the lowest value (bmin_d) of the frequency band of the desired signal is calculated.
  • bmin_i is lower than bmin_d (FIG. 25A)
  • a high-pass filter is applied to the filter 1406.
  • FIG. 25B is a schematic diagram illustrating an outline of a high-pass filter that the filter control unit 1404 applies to the filter 1406.
  • the vertical axis represents gain (unit is dB), and the horizontal axis represents frequency (unit is Hz).
  • the filter control unit 1404 calculates the maximum value (bmax_i) of the frequency band of the interference signal based on the center frequency (fc_i) and the frequency bandwidth (bw_i) of the interference signal, and cuts off the high-pass filter cutoff frequency (high-pass filter).
  • the frequency at which the gain becomes ⁇ 3 dB) f_hpf is determined to be bmax_i.
  • the filter control unit 1404 sets, for the filter 1406, a parameter whose filter type is a high-pass filter and whose cutoff frequency f_hpf is bmax_i, as indicated by reference numeral FP.
  • FIG. 25C is a schematic diagram showing a frequency spectrum after the received signal shown in FIG. 25A is filtered by the filter 1406 in which the high-pass filter shown in FIG. 25B is set. .
  • the filter 1406 attenuates the power of a signal having a frequency lower than the maximum value (bmax_i) of the frequency band of the interference signal regardless of whether the signal is a desired signal or an interference signal.
  • FIG. 26 is a flowchart illustrating a processing procedure when the signal reception device 1400 controls the filter.
  • the antenna 1401 receives a signal, and the receiving unit 1402 performs down-conversion and analog / digital conversion on the received signal (step S410).
  • the interference information extraction unit 1403 extracts interference information from the reception signal processed by the reception unit 1402 (step S420).
  • the filter control unit 1404 sets the determined filter type and filter cutoff frequency in the filter 1406 (step S440).
  • the delay unit 1405 adds a delay to the received signal (step S450).
  • the filter 1406 forms a filter in accordance with the parameters set in the process of step S440, and filters the received signal to which the delay is added, thereby attenuating the power in the frequency band where the interference signal exists in the received signal.
  • the demodulator 1407 demodulates the received signal that has passed through the filter 1406 to generate a demodulated signal (step S470).
  • the deinterleaver 1408 deinterleaves the demodulated signal (step S480).
  • the FEC decoding unit 1409 performs FEC decoding on the deinterleaved demodulated signal (step S490), outputs the decoded received data (step S500), and ends the processing of the entire flowchart.
  • the interference information extraction unit 1403 extracts the interference information
  • the filter control unit 1404 sets a filter parameter for attenuating the signal in the frequency band in which the interference signal exists in the filter 1406. Then, the filter 1406 filters the received signal, whereby the signal in the frequency band where the interference signal exists is attenuated among the signals included in the received signal. Therefore, it is possible to reduce the influence of the interference signal in the received signal.
  • the present invention can be used, for example, for communication of a multicarrier signal using a spectrum including a plurality of subcarriers.
  • ADVANTAGE OF THE INVENTION According to this invention, the frequency utilization efficiency of the utilization frequency band utilized for transmission of a multicarrier signal can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する送信局装置及び受信局装置から構成される通信システムにおいて、前記マルチキャリア信号の送信に利用する利用周波数帯域の周波数利用効率を増加させるように、前記利用周波数帯域において干渉が発生している重畳帯域を利用する割合である重畳率を設定し、設定された前記重畳率に従って割り当てたスペクトルを用いて、前記マルチキャリア信号を送信する。

Description

制御局装置、送信局装置、通信方法、及び通信システム
 本発明は、マルチキャリア信号を用いた通信に関し、特に、誤り訂正符号を適用したマルチキャリア通信方式における制御局装置、送信局装置、通信方法、及び通信システムに関する。
 本願は、2008年12月4日に日本へ出願された特願2008-309815号、および、2008年12月18日に日本へ出願された特願2008-322865号に基づき優先権を主張し、それらの内容をここに援用する。
 近年、無線通信分野においては、周波数資源の枯渇問題の深刻化を受け、周波数共用型の無線通信が求められている。図27は、周波数帯域を共用する無線通信システムの組合せの一例として、周波数チャネルが異なる2つの無線LAN(Local Area Network)システムの全体を示す概念図である。
 同図において、無線通信システムは、無線LAN基地局2a、2bと、受信機1aとを備えている。無線LAN基地局2aは、中心周波数faであるCH1の周波数帯域を用いて通信する。一方、無線LAN基地局2bは、中心周波数fb(ただし、fa<fb)であるCH5の周波数帯域を用いて通信する。
 このとき受信機1aは、無線LAN基地局2aと無線LAN基地局2bとの双方の無線信号が到達する位置に配置され、中心周波数faの無線信号と中心周波数fbの無線信号との二つの無線信号が部分的に互いに干渉した信号を受信する。
 このように、受信機1aが無線LAN基地局2aを通信対象とする場合に、中心周波数faである希望波の送信周波数帯域と、中心周波数fbである無線LAN基地局2bからの干渉波の送信周波数帯域とが、部分的にオーバーラップ(重複)する周波数共用型の無線通信においても、受信機1aは、希望波を正確に受信することが必須となる。
 なお、周波数帯域を共用する他の例として、無線LANシステムと、bluetooth(登録商標)と、WiMAX(登録商標)との組み合わせなど、異なる通信方式のシステム同士が周波数を共用する場合もある。
 例えば、図27に示す受信機1aが無線LAN基地局2aを通信対象とする場合を想定する。この場合、中心周波数faである無線LAN基地局2aからの希望波の送信周波数帯域と、中心周波数fbである無線LAN基地局2bからの干渉波の送信周波数帯域とが、部分的にオーバーラップ(重複)する。このような周波数共用型の無線通信システムにおいて、受信機1aは、希望波を正確に受信することが必須となる。
 このような周波数を有効に利用する目的で、同一時刻の同一地点において、スペクトル多重手法を用いて周波数資源を共有することにより、複数の通信システムにおいて伝送される信号全体の周波数利用効率を改善するための技術が報告されている(例えば、非特許文献1参照)。
 一方、非特許文献3には、サブキャリア毎の受信レベルに応じて割当変調方式を変化させる適応変調OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)システムについて記載されている。
横田強 他、「重畳伝送法を用いた高速無線LANシステムに関する一検討」、電子情報通信学会、信学技報RCS、Vol.99、No.355、pp.121-126、1999年10月 増野淳、秋元守、中津川征士、「OFDMA無線システムにおけるサブキャリアオーバーラップに関する一検討」、2008年総合大会講演論文集、電子情報通信学会、B-5-130、p.516、2008年3月 小林英雄,「OFDM通信方式の基礎と応用技術」,トリケップス社,2004年,pp.113-130
 しかしながら、非特許文献1には、スペクトル拡散した信号を、スペクトル拡散していない信号に重畳配置するアンダーレイ型の重畳伝送について示されている。この条件による通信システムでは、一般に重畳率が100%になるが、スペクトル拡散型のシステムは伝送速度に制約があるか、高速伝送を実現するために膨大な周波数帯域が必要になる問題がある。また、スペクトル拡散していない通信システム同士では、信号を重畳伝送することはできない。
 また、非特許文献2には、同一の通信システムを用いた場合の下りリンクについて示されており、互いに十分なD/U(Desired to Undesired signal ratio;DU比)が確保できる端末局に対してのみ、同一サブキャリアを用いた重畳伝送を行っている。ただし、この下りリンクの送信では、送信局装置同士が互いに周波数同期されていることが必要とされている。
 上記に示したようにこれまでにも、いくつかの方式について報告が行われているが、設定される条件によって適用可能な範囲が制限されている。例えば、マルチキャリア重畳伝送により周波数資源の有効利用が期待されているのに対し、これまでの報告では重畳される信号は、2信号までの組み合わせの報告しかない。実際に利用される状況では、重畳する信号数を2信号までに制限することが現実的でないにもかかわらず、3以上の信号を重畳することについての報告がない。そのため、重畳する信号が3以上の場合に、周波数を有効利用する観点でどのようなスペクトル配置をすべきか明確化されていなかった。
 また、スペクトル配置によっては、無線基地局によって通信が提供されるセル間又はシステム間に伝送特性の優劣が生じる可能性がある。電波利用の公平性を確保する観点からすれば、適切なスペクトル配置が必要とされるにもかかわらず検討されていないという問題があった。
 また、3以上の同一の通信システムのスペクトルを連続的に重畳させる場合には、使用帯域の周波数の端部にスペクトルが配置された通信システムに比べ、中央にスペクトルが配置された通信システムでは、重畳率が高くなることにより、通信品質が低下する。例えば、複数のセルに対してスペクトルを配置したときには、使用帯域の周波数の端部以外のセルの通信品質が低下するという問題があった。
 また、図27に示すような干渉が発生している場合、送信機がチャネル周波数帯域に複数のFEC(Forward Error Correction:前方誤り訂正)符号を順に並べて割り当てると、干渉が発生している周波数帯域を使用するFECブロックについては品質が低下してしまう。非特許文献3においては、サブキャリア毎の受信レベルに応じて割当変調方式を変化させているが、上記のように希望波の送信周波数帯域に干渉が発生している場合、干渉領域及び非干渉状況を考慮してユーザ毎に要求されるQoS(Quality of Service)を実現することは考慮されていない。
 本発明は、このような事情を考慮し、上記の問題を解決すべくなされたもので、その目的は、マルチキャリア信号を用いた通信において、周波数利用効率を向上させることが可能な技術を提供することにある。
 より具体的には、本発明の目的は、複数のシステムにおいて通信品質を確保して周波数を有効利用できる制御局装置、送信局装置、通信方法、及び通信システムを提供することにある。
 また、本発明の目的は、使用帯域の一部に干渉が発生している場合においても、ユーザ毎の優先度に応じた無線通信を実現することができるマルチキャリア信号の送信局装置、通信方法、及び通信システムを提供することにある。
 (1)上記問題を解決するために、本発明は、複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する送信局装置及び受信局装置から構成される通信システムにおける通信方法であって、前記マルチキャリア信号の送信に利用する利用周波数帯域の周波数利用効率を増加させるように、前記利用周波数帯域において干渉が発生している重畳帯域を利用する割合である重畳率を設定する制御ステップと、設定された前記重畳率に従って割り当てたスペクトルを用いて、前記マルチキャリア信号を送信する送信ステップとを有する。
 (2)本発明の通信方法において、前記通信方法は、前記通信システムが3以上同時に通信を行う際の通信方法であって、前記受信局装置が、自通信システムに配置された前記スペクトルにおける他の通信システムとの重畳帯域を予め認識する重畳帯域認識ステップと、前記受信局装置が、前記重畳帯域に対して干渉抑圧技術を適用する干渉抑圧ステップと、前記受信局装置が、前記干渉抑圧技術を適用した信号を誤り訂正復号することで自受信局装置宛のマルチキャリア信号を受信する誤り訂正復号ステップと、をさらに有し、前記制御ステップは、各スペクトルの帯域幅と、各スペクトルが他のスペクトルと重畳する予め決められた重畳帯域幅から前記重畳率を導いて、前記重畳率が各スペクトルで一定となるように各スペクトルを配置するスペクトル配置ステップと、自通信システムに配置されたスペクトルを割り当てるスペクトル割り当てステップとを有し、前記送信ステップにおいて、前記送信局装置が、前記自通信システムに割り当てられた前記スペクトルを用いて前記マルチキャリア信号を送信するようにしても良い。
 (3)また、本発明の通信方法において、前記スペクトルの帯域幅は前記通信システムごとに可変であり、前記スペクトル配置ステップにおいて、前記スペクトルのうち、他のスペクトルよりも帯域幅が狭い2つのスペクトルを前記利用周波数帯域の端部に配置するとともに、前記重畳率が各スペクトルで一定となるように各スペクトルを配置するようにしても良い。
 (4)また、本発明の通信方法において、前記干渉抑圧ステップは、周波数フィルタを用いて前記認識した重畳帯域の受信信号を減衰させることで干渉抑圧を行うようにしても良い。
 (5)また、本発明の通信方法において、前記干渉抑圧ステップは、前記認識した重畳帯域の受信信号の尤度をマスクし、前記誤り訂正復号ステップは、前記尤度をマスクされた受信信号に対して誤り訂正復号することで自受信局装置宛の前記マルチキャリア信号を受信するようにしても良い。
 (6)また、本発明の通信方法において、前記スペクトル配置ステップは、前記受信局装置に設けられた干渉信号検出部によって検出された結果に基づいて前記スペクトルを配置するようにしても良い。
 (7)また、本発明の通信方法において、前記スペクトル配置ステップは、前記送信局装置に設けられた干渉信号検出部によって検出された結果に基づいて前記スペクトルを配置するようにしても良い。
 (8)また、本発明の通信方法において、前記スペクトル配置ステップは、前記送信局装置及び前記受信局装置のいずれとも異なる制御局装置に設けられた干渉信号検出部によって検出された結果に基づいて前記スペクトルを配置するようにしても良い
 (9)また、本発明の通信方法において、ユーザのデータの符号化及び変調を行なう符号化・変調ステップと、前記ユーザのサービス品質要求が所定のサービス品質よりも高い場合に、当該ユーザのデータ送信に使用する周波数帯域における干渉帯域の割合である重畳率を、前記マルチキャリア信号が使用する周波数帯域における干渉帯域の割合である重畳率よりも低く設定する重畳率判定ステップと、前記重畳率判定ステップにおいて設定された重畳率に従って、前記符号化・変調ステップにおいて符号化及び変調されたユーザのデータを非干渉帯域及び干渉帯域のサブキャリアへ割り当てるサブキャリア割当ステップと、前記符号化・変調ステップにおいて符号化及び変調されたユーザのデータを、前記サブキャリア割当ステップにおいて割り当てられたサブキャリアに変調するマルチキャリア変調ステップと、前記マルチキャリア変調ステップにおいて変調されたサブキャリアをシリアル変換して前記マルチキャリア信号を生成する並列直列変換ステップと、を有するようにしても良い。
 (10)また、本発明の通信方法において、前記符号化・変調ステップにおいては、複数の異なるユーザのデータの符号化及び変調を行ない、前記重畳率判定ステップにおいては、ユーザ全体の平均重畳率が、前記マルチキャリア信号の使用する周波数帯域における干渉帯域の割合である重畳率と一致するように、複数の前記ユーザそれぞれについて、当該ユーザのサービス品質要求が前記所定のサービス品質よりも高い場合には、当該ユーザの重畳率を前記マルチキャリア信号の使用する周波数帯域における干渉帯域の割合である前記重畳率よりも低く設定し、当該ユーザのサービス品質要求が前記所定のサービス品質よりも低い場合に、当該ユーザの重畳率を前記マルチキャリア信号の使用する周波数帯域における干渉帯域の割合である重畳率よりも高く設定し、前記サブキャリア割当ステップにおいては、各ユーザそれぞれについて、前記重畳率判定ステップにおいて設定された当該ユーザの重畳率に従って、前記符号化・変調ステップにおいて符号化及び変調された当該ユーザのデータを非干渉帯域及び干渉帯域のサブキャリアへ割り当て、前記マルチキャリア変調ステップにおいては、各ユーザそれぞれについて、前記符号化・変調ステップにおいて符号化及び変調された当該ユーザのデータを、前記サブキャリア割当ステップにおいて当該ユーザのデータへ割り当てられたサブキャリアに変調するようにしても良い。
 (11)また、本発明は、複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する送信局装置及び受信局装置から構成される通信システムが3以上同時に通信を行う際に、スペクトル配置を決める制御局装置であって、前記スペクトルにおける他の通信システムとの重畳帯域の干渉信号を検出する干渉信号検出部と、各スペクトルの帯域幅と、各スペクトルが他のスペクトルと重畳する予め決められた重畳帯域幅から重畳率を導いて、前記重畳率が各スペクトルで一定となるように各スペクトルを配置するスペクトル配置部と、割り当てられた前記スペクトルを用いて前記マルチキャリア信号を送信する前記送信局装置と、配置された前記スペクトルにおける他の通信システムとの重畳帯域を認識し、前記重畳帯域に対して干渉抑圧技術を適用して、信号を誤り訂正復号することで自受信局装置宛のマルチキャリア信号を受信する前記受信局装置とが通信を行う通信システムに配置したスペクトルを割り当てるスペクトル割り当て部と、自通信システムの前記送信局装置及び他の通信システムに対して、割り当てたスペクトルを通知する制御情報配信部と、を備えている。
 (12)また、本発明は、複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する送信局装置及び受信局装置から構成される通信システムにおける送信局装置であって、前記マルチキャリア信号の送信に利用する利用周波数帯域の周波数利用効率を増加させるように、前記利用周波数帯域において干渉が発生している重畳帯域を利用する割合である重畳率を設定する制御部と設定された前記重畳率に従って割り当てられたスペクトルを用いて、前記マルチキャリア信号を送信する送信部とを具備している。
 (13)本発明の送信局装置において、前記通信システムが3以上同時に通信を行い、前記制御部は、各スペクトルの帯域幅と、各スペクトルが他のスペクトルと重畳する予め決められた重畳帯域幅から前記重畳率を導いて、前記重畳率が各スペクトルで一定となるように各スペクトルを配置するスペクトル配置部と、通信システムに配置されたスペクトルを割り当てるスペクトル割り当て部とを備えていても良い。
 (14)また、本発明の送信局装置において、前記スペクトルの配置を行うために前記スペクトルにおける他の通信システムとの重畳帯域の干渉信号を検出する干渉信号検出部を備えていても良い。
 (15)また、本発明の送信局装置において、ユーザのデータの符号化及び変調を行なう符号化・変調部と、前記ユーザのサービス品質要求が所定のサービス品質よりも高い場合に、当該ユーザのデータ送信に使用する周波数帯域における干渉帯域の割合である重畳率を、前記マルチキャリア信号が使用する周波数帯域における干渉帯域の割合である重畳率よりも低く設定する重畳率判定部と、前記重畳率判定部によって設定された重畳率に従って、前記符号化・変調部により符号化及び変調されたユーザのデータを非干渉帯域及び干渉帯域のサブキャリアへ割り当てるサブキャリア割当部と、前記符号化・変調部により符号化及び変調されたユーザのデータを、前記サブキャリア割当部によって割り当てられたサブキャリアに変調するマルチキャリア変調部と、前記マルチキャリア変調部により変調されたサブキャリアをシリアル変換して前記マルチキャリア信号を生成する並列直列変換部と、を備えていても良い。
 (16)また、本発明の送信局装置において、前記符号化・変調部を複数備え、複数の前記符号化・変調部それぞれが異なるユーザのデータの符号化及び変調を行ない、前記重畳率判定部は、ユーザ全体の平均重畳率が、前記マルチキャリア信号の使用する周波数帯域における干渉帯域の割合である重畳率と一致するように、複数の前記ユーザそれぞれについて、当該ユーザのサービス品質要求が前記所定のサービス品質よりも高い場合には、当該ユーザの重畳率を前記マルチキャリア信号の使用する周波数帯域における干渉帯域の割合である前記重畳率よりも低く設定し、当該ユーザのサービス品質要求が前記所定のサービス品質よりも低い場合には、当該ユーザの重畳率を前記マルチキャリア信号が使用する周波数帯域における干渉帯域の割合である重畳率よりも高く設定し、前記サブキャリア割当部は、各ユーザそれぞれについて、前記重畳率判定部によって設定された当該ユーザの重畳率に従って、前記符号化・変調部により符号化及び変調された当該ユーザのデータを非干渉帯域及び干渉帯域のサブキャリアへ割り当て、前記マルチキャリア変調部は、各ユーザそれぞれについて、前記符号化・変調部により符号化及び変調された当該ユーザのデータを、前記サブキャリア割当部によって当該ユーザのデータへ割り当てられたサブキャリアに変調するようにしても良い。
 (17)また、本発明の送信局装置において、前記重畳率判定部は、前記ユーザのデータの受信品質が所定の閾値よりも高い場合に、当該ユーザの重畳率を高く設定し、前記ユーザのデータの受信品質が前記所定の閾値よりも低い場合に、当該ユーザの重畳率を低く設定するようにしても良い。
 (18)また、本発明の送信局装置において、前記重畳率判定部により設定された重畳率に基づいて変調符号化レベルを決定する変調符号化レベル決定部をさらに備え、前記符号化・変調部は、前記変調符号化レベル決定部によって決定された変調符号化レベルにより前記ユーザのデータの符号化及び変調を行なうようにしても良い。
 (19)また、本発明は、複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する送信局装置及び受信局装置から構成される通信システムが3以上同時に通信を行う際に、スペクトル配置を決める通信システムであって、各スペクトルの帯域幅と、各スペクトルが他のスペクトルと重畳する予め決められた重畳帯域幅から重畳率を導いて、前記重畳率が各スペクトルで一定となるように各スペクトルを配置するスペクトル配置部と、配置された前記スペクトルを割り当てるスペクトル割り当て部と、割り当てられた前記スペクトルを用いて前記マルチキャリア信号を送信する送信部と、割り当てられた前記スペクトルにおける他の通信システムとの重畳帯域を認識し、前記重畳帯域に対して干渉抑圧技術を適用して、信号を誤り訂正復号することで自受信部宛のマルチキャリア信号を受信する受信部と、を備えている。
 本発明によれば、複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する通信システムにおいて、重畳率の設定によって、マルチキャリア信号の送信に利用する利用周波数帯域の周波数利用効率を向上できる。
 また、本発明によれば、複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する送信局装置及び受信局装置から構成される通信システムが3以上同時に通信を行う際に、スペクトル配置が決まる。送信局装置は、自システムに割り当てられたスペクトルを用いてマルチキャリア信号を送信する。受信局装置は、自システムに配置されたスペクトルにおける他の通信システムとの重畳帯域を予め認識する。受信局装置は、重畳帯域に対して干渉抑圧技術を適用し、干渉抑圧技術を適用した信号を誤り訂正復号することで自受信局装置宛のマルチキャリア信号を受信する。各スペクトルの帯域幅と、各スペクトルが他のスペクトルと重畳する予め決められた重畳帯域幅から重畳率を導いて、重畳率が各スペクトルで一定となるように各スペクトルを配置する。
 このように、重畳率が各スペクトルで一定となるように各スペクトルを配置することで、スペクトルごとに重畳による影響を低減し、実質的な通信品質を確保して周波数を有効利用できる周波数配置方法を提供できる。
 また、本発明では、スペクトルの帯域幅は通信システムごとに可変であり、スペクトル配置ステップにおいて、他のスペクトルよりも帯域幅が狭い2つのスペクトルを利用周波数帯域の端部に配置するとともに、重畳率が各スペクトルで一定となるように各スペクトルを配置する。
 このような配置によって、帯域幅の狭いスペクトルであっても所定の帯域を確保することができるようになる。さらに、重畳率が各スペクトルで一定となるようにスペクトルを配置することにより全体の伝送効率を高くすることができる。
 また、本発明では、受信局は、認識した重畳帯域の受信信号を周波数フィルタを用いて減衰させることで干渉抑圧を行う。
 これにより、干渉波が含まれる帯域を除去することができ、受信した受信信号の干渉波を抑圧することができる。
 また、本発明では、受信局は、認識した重畳帯域の受信信号の尤度をマスクし、尤度をマスクされた受信信号に対して誤り訂正復号することで自受信局装置宛のマルチキャリア信号を受信する。
 これにより、干渉波が含まれるスペクトルを除去することができ、受信した受信信号の干渉波を抑圧することができる。
 また、本発明によれば、希望波の周波数帯域の一部に干渉が発生している場合、マルチキャリア信号の送信局装置は、ユーザ毎の優先度に応じて重畳率を変化させることにより、要求される優先度に応じた品質の無線通信を行なうことが可能となる。また、データの受信品質に応じて重畳率を変えることにより、周波数利用効率の向上を図ることが可能となる。
本発明の第1実施形態による通信システムを示すブロック図である。 第1実施形態における周波数配置の重畳を示す図である。 第1実施形態における周波数配置の重畳を示す図である。 第1実施形態における周波数配置の重畳を示す図である。 第1実施形態による受信局装置を示すブロック図である。 第1実施形態における周波数配置を示す図である。 第1実施形態における通信システムの動作を示すフローチャートである。 第2実施形態による通信システムを示すブロック図である。 第2実施形態における通信システムの動作を示すフローチャートである。 第3実施形態による通信システムを示すブロック図である。 第3実施形態における通信システムの動作を示すフローチャートである。 第4実施形態による受信局装置を示すブロック図である。 第4実施形態による受信局装置の動作を示す図である。 第4実施形態による受信局装置の動作を示す図である。 第4実施形態による受信局装置の動作を示す図である。 本発明の第5実施形態による信号送信装置の動作概要を示す図である。 第5実施形態による信号送信装置の構成を示すブロック図である。 図13に示す信号送信装置を用いた通信システムにおけるフローを示す図である。 第5実施形態によるQoS及び受信品質の組み合わせと、重畳率の関係を示す図である。 符号化・変調器を1つのみ用いる場合のスケジューリングを示す図である。 符号化・変調器を1つのみ用いる場合のスケジューリングを示す図である。 干渉帯域のマスクを行う信号受信装置の内部構成を示すブロック図である。 図17に示す信号受信装置の動作フローを示す図である。 図17に示す信号受信装置の動作の概念図である。 図17に示す信号受信装置の動作の概念図である。 図17に示す信号受信装置の動作の概念図である。 図17に示す信号受信装置の動作の概念図である。 他の重み付けの例を示す図である。 他の重み付けの例を示す図である。 フィルタリングを行なう受信装置の機能構成を表すブロック図である。 受信信号と、所望信号と、干渉信号との周波数スペクトルを表す概念図である。 図21に示すフィルタ制御部によって行われるフィルタ制御処理の概略を表す概略図である。 図21に示すフィルタ制御部によって行われるフィルタ制御処理の概略を表す概略図である。 図21に示すフィルタ制御部によって行われるフィルタ制御処理の概略を表す概略図である。 図21に示す信号受信装置のフィルタ制御手順を示すフローチャートである。 周波数チャネルが異なる2つの無線通信システムにおける干渉を示す図である。
 以下、本発明の各実施形態による通信システムについて図面を参照して説明する。
 本発明の各実施形態では、従来の通信システムに比べて、全体の周波数利用効率が向上するように、重畳率(すなわち、信号の送信に使用する周波数帯域において干渉が発生している重畳帯域を利用する割合であって、スペクトルの帯域幅と、他のスペクトルと重畳する予め決められた重畳帯域幅から導かれる)を設定することを特徴の一つとしている。
(第1実施形態)
 図1は、本発明の第1実施形態による通信システムを示すブロック図である。
 この図には、同じ周波数の電波を利用して通信を行う3つの通信システムとして、通信システム100、700及び800が示されている。通信システム100、700及び800は、同じシステム構成が用いられたそれぞれ独立した通信システムである。
 通信システム100は、基地局装置110と端末局装置120を備えている。通信システム700は、基地局装置710と端末局装置720を備えている。通信システム800は、基地局装置810と端末局装置820を備えている。
 各通信システムに割り付けられた周波数は、使用する電波の帯域が重畳されるように配置される。
 図2A~図2Cは、第1実施形態における周波数配置の重畳状態を示す概念図である。
 図2Aには、周波数軸に割り付けられる所望の信号が搬送される信号W1、及び信号W1と帯域の一部(帯域fb12)が重複して割り付けられる信号W2が示される。この図において、縦軸はパワーを示し、横軸は周波数を示す。
 信号W1は、信号W1を搬送する複数のサブキャリアSC1-1からSC1-nを収容するナイキスト周波数によって示される帯域fa1を有する。
 信号W2は、信号W2を搬送する複数のサブキャリアSC2-1からSC2-nを収容するナイキスト周波数によって示される帯域fa2を有する。
 ここで、所望の信号を信号1としたとき、希望波は帯域fa1によって送信され、帯域fa2によって送信される信号2を搬送する搬送波が干渉波になる。
 信号W1の搬送波における重畳率は、Rov1=fb12/fa1であり、信号W2の搬送波における重畳率は、Rov2=fb12/fa2である。
 図2Bに示される周波数配列では、重畳する帯域がない割り付けが示されている。この図において、縦軸はパワーを示し、横軸は周波数を示す。この配列では、周波数軸に割り付けられる所望の信号が搬送される信号W1、及び信号W1とガードバンド(fg12)を介して隣接する信号W2が示される。
 図2Bに示される信号W1と信号W2は、図2Aと同じ帯域fa1と帯域fa2を有することから、重畳させないで割り付けを行っていた従来の割り付け方法では、占有する周波数帯域は広くなり、利用効率が低下するものであった。
 図2Cに示される周波数配列では、3つの信号(W1、W2及びW3)を連続した配列に割り付けた状態が示される。なお、信号W3は、信号W2と帯域の一部(帯域fb23)が重複する信号である。この図において、縦軸はパワーを示し、横軸は周波数を示す。この図に示される信号W2は、信号W1だけでなく信号W3とも帯域が重畳することから、その重畳率は、
Rov2’=(fb12+fb23)/fa2
になる。
 このように各通信システムには、図2Cに示したいずれかの帯域がそれぞれ割り付けられる。そして、各通信システムが他の通信システムの電波を受信した場合に、干渉による影響を互いに受けることがある範囲を明示することができる。
 図1に戻り、各通信システムを構成する装置について説明する。以下、通信システム100の下り回線(すなわち基地局装置110から端末局装置120方向)を例にして、各通信システムにおける構成を代表して説明する。
 通信システム100における基地局装置110は、送信部111、受信部112、制御部113及び空中線114を備える。
 基地局装置110における送信部111は、端末局装置120に対しての送信信号を生成する。
 送信部111は、送信ベースバンド信号生成器111aとアップコンバータ装置111bを備える。送信部111における送信ベースバンド信号生成器111aは、送信する情報に基づいて送信ベースバンド信号を生成する。生成された送信ベースバンド信号は、送信周波数に同期して出力される。送信周波数は、割り付けられた帯域に応じて定められ、帯域幅制御情報によって制御される。
 アップコンバータ装置111bは、入力される送信ベースバンド信号を、設定される送出周波数に基づいて周波数変換して出力する。アップコンバータ装置111bから出力された送信信号は、図示されない符号化処理、誤り訂正符号化処理、変調処理などを行う図示されない送信信号処理部を経て、空中線114から送出される。出力される無線信号は、複数のサブキャリアによって搬送される帯域を有するチャネルに割り付けられている。
 受信部112は、入力される受信信号の受信処理を行う。受信部112は、干渉波検出装置112aを備える。干渉波検出装置112aは、基地局装置110の希望波における利用周波数帯域のうち、他のシステムから送信される無線信号によって干渉が発生する周波数帯域を入力される受信信号から検出する。
 干渉波検出装置112aは、例えば、希望波が送信されていない環境において、当該希望波の利用周波数帯域のサブキャリアごとに、他無線信号の有無、信号強度などを検出することにより、干渉が発生する特定サブキャリアを検出する。
 干渉波検出装置112aは、例えば、特定サブキャリアであるサブキャリアに対して「1」を対応付け、特定サブキャリア以外のサブキャリアに対して「0」を対応付けた干渉帯域判定値の列として、特定サブキャリア判定値の列を生成する。干渉波検出装置112aは、検出結果を干渉波情報として出力する。
 制御部113における周波数割当装置113aは、干渉波情報として入力されるサブキャリアごとの干渉状況を示す干渉帯域判定値に基づいて、定められる規則にしたがって自通信システムで用いるチャネルを選定する。周波数変更装置113bは、そのチャネルにおける周波数配列にしたがって、各サブキャリアで利用する周波数を割り付けて、割り付けられた周波数に応じて送信周波数の変更を行う。帯域幅変更装置113cは、干渉波情報として入力されるサブキャリアごとの干渉状況を示す干渉帯域判定値に基づいて、定められる規則にしたがって自通信システムで送信できる帯域幅を選定する。帯域幅変更装置113cは、選定した帯域幅に基づいて送信部111によって送信する帯域幅の制御を行う。
 通信システム100において、端末局装置120は、常に周波数の走査を行い、対向する基地局装置110によって送信される周波数割付に追従する。端末局装置120は、送信部121、受信部122及び制御部123を備える。
 端末局装置120における送信部121は、端末局装置120から送信する信号を無線信号に変換し空中線124を介して出力する。送信部121は、対向する基地局装置110に対しての送信信号を生成する。受信部122は、対向する基地局装置110からの無線信号を受信する。受信部122が受信する無線信号の干渉帯域には、干渉信号が含まれる。この干渉信号の影響を低減するため、受信部122は、干渉信号を除去する構成を備えている。
 受信部122における一形態について説明する。
 図3は、第1実施形態による受信局装置を示すブロック図である。
 受信部122は、BWLフィルタ122a、復調器122b、干渉波検出装置122c、マスク処理部122d及び復号器122eを備える。
 受信部122におけるBWLフィルタ(Bandwidth Limitation filter)122aは、所望のチャネルの帯域を選択的に透過する。
 復調器122bは、受信した誤り訂正符号化された希望波を含む無線信号をサブキャリアごとに電気信号に変換し、復調したサブキャリアごとの復調値DM1~DM8を出力する。
 干渉波検出装置122cは、入力された受信信号に基づいて、そのチャネルが有する帯域から干渉帯域における干渉信号を検出することによって、干渉波を認識する。
 マスク処理部122dは、マスクコード生成器122d1、マスク処理部122d2、及び合成器122d3を備える。
 マスク処理部122dにおけるマスクコード生成器122d1は、入力されるサブキャリアごとの干渉信号に応じてマスクすべきサブキャリアの復調値をマスクするマスキングコードを出力する。図では、マスクすべきサブキャリアの復調値は、復調値DM7及びDM8である。マスクコード生成器122d1が生成したマスクコードでは、マスクを行うサブキャリアを「0」で示し、マスクを行なわないサブキャリアを「1」で示す。マスク処理部122d2は、入力される復調値と生成されたマスキングコードに応じて、乗算処理を行う。乗算処理の結果、マスク処理が行われ、復調値DM7及びDM8は「0」に置換され、他の復調値DM1からDM6までの信号が透過される。合成器122d3は、復調値DM1からDM6までの信号と、復調値DM7及びDM8を置換した「0」とを合波し、合波された信号を選択されたデータ列として復号器122eへ出力する。
 復号器122eは、マスク処理部122dによって選択されたデータ列に基づき、誤り訂正処理及び復号処理を行い、サブキャリアごとの復号結果を出力する。復号器122eにおける復号処理では、希望波の符号化方法に対応する復号処理を選択することができる。
 以上の処理により、干渉帯域に含まれた干渉信号がマスク処理部122dによって除去されて、受信信号の復号処理が行える。
 図を参照し、周波数配置の決定則について説明する。
 図4は、第1実施形態における周波数配置を示す図である。
 この図において、縦軸はパワーを示し、横軸は周波数を示す。この図の周波数軸に示された範囲には、異なる周波数帯域を有する5個のチャネルが配列されている。各チャネルを重畳させていることから、5個のチャネルが、それぞれのチャネルの帯域の合計に比べ狭い帯域に割り付けられている。各チャネルを重畳させることにより各チャネルには干渉が生じるが、復号処理における誤り補償などにより誤り率低下を防ぐことができる。重畳させる各チャネルは、周波数の低い方から順にチャネルch1、ch2、ch3、ch4及びch5とし、全体の伝送容量を最大にする配列を選択する。
 各システムが有するスペクトルをそれぞれのチャネルに割り付ける規則を示す。本実施形態に示すスペクトル配置方法では、それぞれのチャネルは異なったスペクトル幅(周波数幅)及びそのスペクトルを有するチャネルの帯域が異なった周波数帯域幅を有している場合に適したスペクトルの配置方法を示す。
 図4(a)には、本実施形態の配置方法によらない配置例が示されている。この図に示される各チャネルの周波数帯域幅pfを配列で示すと次式に示される。
(pf1,pf2,pf3,pf4,pf5)
=(fa,fa,fn,fn,fa)
 各チャネルの周波数帯域幅fa及びfnは、異なる周波数帯域幅を有している。例えば、faが10MHz、fnが5MHzのように、互いに明らかに異なる周波数帯域幅をそれぞれ有している。そのため、帯域の狭い周波数帯域幅のチャネルが、それぞれが重畳しながら連続して割り付けられると、その帯域の周波数軸上で隣接するチャネルの双方から、重畳帯域として共有されることになる。その結果、占有できる周波数帯域が少なくなり、実質的な通信品質が低下することになる。
 図4(b)には、本実施形態の配置方法による配置例が示されている。この図に示される各チャネルの周波数帯域幅fを配列で示すと次式に示される。
(f1,f2,f3,f4,f5)
=(fn,fa,fa,fa,fn)
 各チャネルの周波数帯域幅f1、f2、f3、f4及びf5は、異なる周波数帯域幅(fa及びfn)を示すチャネルが割り付けられている。図に示されるように周波数帯域幅faは、周波数帯域幅fnに比べ、広い周波数範囲を占有し、実質的な帯域も広いものである。このように、狭帯域のスペクトルを利用周波数帯域の端部に配置する。すなわち、他のスペクトルよりも帯域幅が狭い2つのスペクトルを利用周波数帯域の端部に配置する。より具体的には、最も狭帯域なスペクトル、および、当該スペクトルの次に狭帯域なスペクトルを利用周波数帯域の端部に配置する。なお、最も狭帯域なスペクトルが複数存在する場合には、これらスペクトルのうちの2つを利用周波数帯域の端部に配置する。また、最も狭帯域なスペクトルが1つであり、当該スペクトルの次に狭帯域なスペクトルが複数存在する場合には、最も狭帯域なスペクトル、および、当該スペクトルの次に狭帯域な複数のスペクトルのうちのいずれかのスペクトルを利用周波数帯域の端部に配置する。これにより、前述の図4(a)で示したように狭帯域のスペクトルを中央側に配置したことによって生じる問題を回避することができる。
 続いて、具体的な例を用いて、上記に示したスペクトル配置方法の効果について示す。
 図4(c)には、3つのチャネルに異なる周波数帯域幅を有するスペクトルが配置された場合を示す。周波数の低いほうから配列で示すと次のように示すことができる。
(f1,f2,f3)
=(fn,fa,fn)
 ここで、周波数帯域幅faとfnは次の関係を有する。
fn=fa/2
 すなわち、中央のチャネルに割り付けられたスペクトルの周波数帯域幅faは、端部のチャネルに割り付けられたスペクトルの周波数帯域幅fnの2倍の帯域幅を有している。
 また、図4(d)に示されるように、3つのチャネルに割り付けられたスペクトルが全て同じ周波数帯域幅faを有している場合との比較を行うこととする。
 図4(e)は、上記(c)と(d)とに示された場合の周波数利用効率を算定したものである。上記(c)の条件を「本案」として示し、(d)の条件を「従来法」として示す。
 この選定した条件を次に示す。適用する通信システムは、IEEE802.16e規格におけるダウンリンクに適用されるDL-FUSC(Down Link-Full Usage of SubChannelization)モードに準ずる。また、変調方式は、符号化率を1/2とした64QAM(Quadrature Amplitude Modulation)とし、符号化方式はCTC(Convolutional Turbo Code)とする。
 図4(e)に示されるように、従来法による周波数利用効率は、3bit/sec/Hz(ビット/秒/ヘルツ)であったが、本案による周波数利用効率は、4.17bit/sec/Hz(ビット/秒/ヘルツ)を示す。すなわち、1.39倍周波数利用効率が高くなったことが示される。
 続いて、図を参照して周波数の割り付け手順を説明する。
 図5は、第1実施形態における通信システムの動作を示すフローチャートである。
 送信局となる基地局装置110において、空中線114によって捕捉された受信信号を受信部112が受信する(ステップSa11)。受信部112の干渉波検出装置112aが、干渉波の検出を行う(ステップSa12)。検出された干渉波情報に基づいて周波数割当装置113aが、周波数割付規則にしたがって周波数配列を選択し配置する(ステップSa13)。配置された周波数配列に基づいて周波数割当装置113aが、周波数の割り付けを行う(ステップSa14)。割り付けられた周波数にしたがって、周波数変更装置113bが、送信部111の送信周波数を変更する(ステップSa15)。送信部111では、割り付けられた周波数に基づいて割り付けられた帯域に適応するために、帯域幅変更装置113cは、自通信システムで送信できる帯域幅を選定し、選定した帯域幅に基づいて送信部111から送信する帯域幅の制御を行う。送信部111では、送信ベースバンド信号生成器111aが出力するクロックの周波数を帯域幅の制御に応じて変更する。また送信部111では、アップコンバータ装置111bの出力周波数を変更して送信信号を生成し、空中線114を介して送出する(ステップSa16)。
 上記の手順により、基地局装置110によって受信された受信信号における干渉状況に基づいて、基地局装置110が送信する送信周波数を決定することが可能となる。
(第2実施形態)
 以下、本発明の第2実施形態による通信システムについて図面を参照して説明する。
 図6は、本発明の第2実施形態による通信システムを示すブロック図である。
 この図には、同じ周波数の電波を利用して通信を行う3つの通信システムとして、通信システム200、700及び800が示されている。通信システム200、700及び800は、同じシステム構成が用いられたそれぞれ独立した通信システムである。
 図6において、図1と同じ構成には同じ符号を付している。以下では、図1と異なる構成について説明する。
 通信システム200は、対向して通信する基地局装置210と端末局装置220を備える。通信システム200は、通信システム700及び800において送信される無線信号を干渉波として受信する。
 以下、通信システム200の下り回線(すなわち基地局装置210から端末局装置220方向)を例にして、各通信システムにおける構成を代表して説明する。
 通信システム200において基地局装置210は、送信部111、受信部212、制御部113及び空中線114を備える。
 基地局装置210における受信部212は、入力される受信信号の受信処理を行う。受信部212は、制御情報抽出装置212aを備える。制御情報抽出装置212aは、端末局装置220から送信された無線信号によって伝送されたパケットに含まれる情報を抽出する。端末局装置220から送付される情報は、端末局装置220側における受信状況並びにその受信状況に適応させるために設定した端末局装置220における各種設定情報がある。制御情報抽出装置212aは、基地局装置210が送出する無線信号(希望波)における利用周波数帯域のうち干渉が発生するとして検出された周波数帯域の情報を抽出し、干渉波情報として出力する。
 制御部113は、抽出された干渉波情報に基づいて、定められた規則にしたがって周波数配列を決定し、その配列にしたがって周波数の割当を行う。定められた規則は、第1実施形態に示した周波数決定則と同じ規則である。
 送信部111は割り付けられた周波数によって送信信号を出力する。
 制御部113及び送信部111の詳細は、前述の図1を参照して説明した通りである。
 通信システム200において端末局装置220は、送信部221、受信部222、制御部223及び空中線124を備える。
 端末局装置220における送信部221は、基地局装置210に対して情報を送信する送信ベースバンド信号生成器221aを備える。送信ベースバンド信号生成器221aは、入力された制御情報に基づいて、干渉波に関する情報を制御情報部に含んだパケットを生成する。送信ベースバンド信号生成器221aは、パケット化された干渉波情報による送信ベースバンド信号を生成する。
 受信部222は、基地局装置210から送信された無線信号を空中線124を介して受信する。受信部222は、受信した受信信号の受信処理を行って受信データの抽出を行う。また、受信部222は、受信した無線信号に基づいて、端末局装置220側における受信状況を示す情報を抽出する。
 受信部222は、干渉波検出装置222aを備える。受信部222における干渉波検出装置222aは、入力される受信信号から、基地局装置110が送信した希望波における利用周波数帯域のうち、他のシステムから送信される無線信号によって干渉が発生する周波数帯域を検出する。干渉波検出装置222aは、例えば、希望波が送信されていない環境において、当該希望波の利用周波数帯域のサブキャリアごとに、他無線信号の有無、信号強度などを検出することにより、干渉が発生する特定サブキャリアを検出する。干渉波検出装置222aは、例えば、特定サブキャリアであるサブキャリアに対して「1」を対応付け、特定サブキャリア以外のサブキャリアに対して「0」を対応付けた干渉帯域判定値の列として、特定サブキャリア判定値の列を生成する。干渉波検出装置222aは、検出結果を干渉波情報として出力する。
 制御部223は、制御情報付加装置223aを備える。制御部223における制御情報付加装置223aは、検出された干渉波情報に基づいて、基地局装置210に通知する情報に干渉波情報を含ませた制御情報を生成し、送信部221に入力する。
 続いて、図を参照して周波数の割り付け手順を説明する。
 図7は、第2実施形態における通信システムの動作を示すフローチャートである。
 受信局となる端末局装置220において、空中線124によって捕捉された受信信号を受信部222が受信する(ステップSb11)。受信部222の干渉波検出装置222aが、干渉波の検出を行う(ステップSb12)。
 制御情報付加装置223aが、検出された干渉波情報に基づいて干渉波に関する情報を含んだ制御情報を生成し出力する(ステップSb13)。送信ベースバンド信号生成器221aは、入力された制御情報に基づいて、干渉波に関する情報を制御情報部に含んだパケットを生成し出力する。出力されたパケットは、無線信号に変換され端末局装置220から送出される(ステップSb14)。
 対向する基地局装置210では、端末局装置220から送出された無線信号を受信する。受信部212における制御情報抽出装置212aは、端末局装置220から送信された無線信号によって伝送されたパケットに含まれる情報を抽出する。制御情報抽出装置212aは、端末局装置210において検出された干渉波情報を出力する(ステップSb15)。周波数割当装置113aは、出力された干渉波情報に基づいて、周波数割付規則にしたがって周波数配列を選択し配置する(ステップSb16)。配置された周波数配列に基づいて周波数割当装置113aが、周波数の割り付けを行う(ステップSb17)。割り付けられた周波数にしたがって、周波数変更装置113bが、送信部111の送信周波数を変更する(ステップSb18)。送信部111が、割り付けられた周波数に基づいて、割り付けられた帯域に適応するために、帯域幅変更装置113cは、自通信システムで送信できる帯域幅を選定し、選定した帯域幅に基づいて送信部111から送信する帯域幅の制御を行う。送信部111では、送信ベースバンド信号生成器111aが出力するクロックの周波数を帯域幅の制御に応じて変更する。また送信部111では、アップコンバータ装置111bの出力周波数を変更して送信信号を生成し、空中線114を介して送出する(ステップSb19)。
 上記の手順により、端末局装置220によって受信された受信信号における干渉状況に基づいて、基地局装置210が送信する送信周波数を決定することが可能となる。
(第3実施形態)
 以下、本発明の第3実施形態による通信システムについて図面を参照して説明する。
 図8は、第3実施形態による通信システムを示すブロック図である。
 この図には、同じ周波数の電波を利用して通信を行う3つの通信システムとして、通信システム300、700c及び800cが示されている。通信システム300、700c及び800cは、同じシステム構成が用いられたそれぞれ独立した通信システムである。
 通信システム300は、基地局装置310と端末局装置120を備えている。通信システム700cは、基地局装置710cと端末局装置720を備えている。通信システム800cは、基地局装置810cと端末局装置820を備えている。それぞれの通信システムにおいて、備えられた基地局装置と端末局装置とが定められた周波数を利用して通信する。また、通信システム700c及び800cは、周波数制御に必要とされる周波数制御情報が通信システム300から通知される。
 また、図8において、図1と同じ構成には同じ符号を付している。以下では、図1と異なる構成について説明する。
 通信システム300は、基地局装置310及び端末局装置120、並びに基地局装置310及び端末局装置120の制御を行う制御局装置330を備える。通信システム300は、通信システム700c及び800cにおいて送信される無線信号を干渉波として受信する。無線信号における干渉波による干渉状況は、制御局装置330において検出される。その干渉状況に基づいて、周波数の配置が行われた結果を通信手段によって通信システム300の基地局装置310及び各通信システム700c及び800cに通知する。
 以下、通信システム300の下り回線(すなわち基地局装置310から端末局装置120方向)を例にして、各通信システムにおける構成を代表して説明する。
 通信システム300において基地局装置310は、送信部311、受信部312、制御部313及び空中線114を備える。
 基地局装置310における送信部311は、端末装置120に対しての送信信号を生成する。送信部311は、送信ベースバンド信号生成器311aとアップコンバータ装置111bを備える。送信部311における送信ベースバンド信号生成器311aは、送信する情報に基づいて送信ベースバンド信号を生成する。生成された送信ベースバンド信号は、送信周波数に同期して出力される。
 基地局装置310における受信部312は、入力される受信信号の受信処理を行う。
 制御部313は、制御情報受信装置313a、周波数変更装置313bを備える。制御情報受信装置313aは、制御局装置330から送信された周波数制御情報を受信し、無線信号によって伝送されたパケットに含まれる情報を抽出する。制御局装置330から送付される情報は、通信システム300で用いられる周波数を制御するための制御情報である。制御情報受信装置313aは、制御局装置330から通知される周波数制御情報から各チャネルの配置情報を抽出する。周波数変更装置313bは、抽出された各チャネルの配置情報に基づいて周波数の配置を行う。
 通信システム300において、制御局装置330は、干渉波検出装置331、周波数割当装置332及び制御情報配信装置333を備える。
 制御局装置330における干渉波検出装置331は、通信システム300において、基地局装置310が送信する希望波における利用周波数帯域のうち、他のシステムから送信される無線信号によって干渉が発生する周波数帯域を入力される受信信号から検出する。干渉波検出装置331は、例えば、希望波が送信されていない環境において、当該希望波の利用周波数帯域のサブキャリアごとに、他無線信号の有無、信号強度などを検出することにより、干渉が発生する特定サブキャリアを検出する。干渉波検出装置331は、例えば、特定サブキャリアであるサブキャリアに対して「1」を対応付け、特定サブキャリア以外のサブキャリアに対して「0」を対応付けた干渉帯域判定値の列として、特定サブキャリア判定値の列を生成する。干渉波検出装置331は、検出結果を干渉波情報として出力する。
 周波数割当装置332は、干渉波情報として入力されるサブキャリアごとの干渉状況を示す干渉帯域判定値に基づいて、定められる規則にしたがって自通信システムで用いるチャネルを選定する。また、周波数割当装置332は、選定された結果に基づいて周波数配列を決定し、その配列にしたがって周波数の割当を行う。定められた規則は、第1実施形態に示した周波数決定則と同じ規則である。
 制御情報配信装置333は、対向する基地局装置310及び通信システム700c及び800cに、選定されたチャネルの情報を含んだ周波数制御情報を配信する。
 続いて、図を参照して周波数の割り付け手順を説明する。
 図9は、第3実施形態における通信システムの動作を示すフローチャートである。
 通信システム300の周波数配置を管理する制御局装置330は、空中線334によって捕捉された受信信号を受信する(ステップSc11)。干渉波検出装置331が、干渉波の検出を行って干渉波情報を出力する(ステップSc12)。
 周波数割当装置332は、出力された干渉波情報に基づき、周波数割付規則にしたがって周波数配列を選択し配置する。(ステップSc13)。
 配置された周波数配列に基づいて周波数割当装置332が、周波数を割り付ける(ステップSc14)。制御情報配信装置333は、割り付けられた周波数の情報を含んだ周波数制御情報を基地局装置310及び通信システム700c、800cに通信手段を用いて配信する(ステップSc15)
 対向する基地局装置310では、制御局装置330から送信された周波数制御情報を受信する。制御部313における制御情報受信装置313aは、制御局装置330から送信された周波数の割り付け情報を抽出する。(ステップSc16)。
 抽出された周波数の割り付け情報にしたがって、周波数変更装置313bが、送信部311の送信周波数を変更する(ステップSc17)。送信部311は、割り付けられた周波数に基づいて、アップコンバータ装置111bの出力周波数を変更して送信信号を生成し、空中線114を介して送出する(ステップSc18)。
 上記の手順により、制御局装置330によって受信された受信信号における干渉状況に基づいて、基地局装置310が送信する送信周波数を決定することができる。通信システム300で使用する周波数を通信システム700c及び800cに配信することで、通信システム700c及び800cは、その周波数を考慮してそれぞれのシステムで利用する周波数配置を効率よく行うことが可能となる。そして、お互いの干渉を減らすことにより、それぞれの通信システムの品質を高めることが可能となる。
(第4実施形態)
 以下、本発明の第4実施形態による通信システムにおける受信局(端末局装置)が備える受信部について図面を参照して説明する。
 図10は、上記の第2実施形態に示した端末局装置220が備える受信機能の機能構成を示すブロック図である。
 図に示されるように、端末局装置220は、送信部221、受信部222、制御部223及び空中線124を備える。図10において、図6に示された構成と同じ構成には同じ符号を付してある。以下では、図6と異なる構成について説明する。
 端末局装置220において、受信部222は、受信処理部222b、干渉情報抽出部222c、フィルタ制御部222d、フィルタ222e、復調部222f、デインターリーバ222g及びFEC復号部222hを備える。
 受信処理部222bは、受信された受信信号に対し、ダウンコンバートを行い、さらにアナログ/デジタル変換を行う。
 干渉情報抽出部222cは、基地局装置210との通信を開始する際に決定される所望信号情報に基づいて、干渉信号の中心周波数と、干渉信号の周波数帯域幅と、干渉信号の受信電力とを含む干渉情報を受信信号から抽出する干渉情報抽出処理を行う。干渉情報抽出処理は、既存の技術により可能である。例えば、干渉情報抽出部222cは、受信信号に対してFFT(Fast Fourier Transform)を行うことによって受信信号の周波数スペクトルを算出し、算出された受信信号の周波数スペクトルと、所望信号情報に基づいて得られる所望信号の周波数スペクトルの推定結果との差分を算出することによって干渉信号の周波数スペクトルを推定し、この推定結果に基づいて干渉情報を抽出する。また、例えば、基地局装置210から所定のタイミングで送信される、サブキャリアに電力が割り当てられていない信号における周波数スペクトルに基づいて、干渉情報抽出部222cが干渉情報を抽出しても良い。
 フィルタ制御部222dは、基地局装置210との通信開始時に所望信号情報を記憶し、所望信号情報と、干渉情報抽出部222cによって抽出された干渉情報とに基づいて、以下の二つの条件を満たすフィルタパラメータを決定し、決定されたフィルタパラメータをフィルタ222eに設定する。
(1)干渉信号が存在せず所望信号のみが存在する周波数帯域の受信信号を通過させる。
(2)干渉信号が存在する周波数帯域の受信信号を減衰させる。
 なお、フィルタパラメータは、例えば、フィルタの種類と、遮断周波数とで構成される。
 フィルタ222eは、フィルタ制御部222dによって設定されたフィルタパラメータのフィルタに基づいて、受信信号をフィルタリングする。即ち、フィルタ222eは、フィルタ制御部222dによって設定されたフィルタパラメータのフィルタに基づいて、このフィルタパラメータの決定時にフィルタ制御部222dによって参照された受信信号をフィルタリングする。
 復調部222fは、フィルタ222eによってフィルタリングされた受信信号からガードインターバルを除去し、FFTを行い、復調を行うことによって復調信号を生成する。
 デインターリーバ222gは、復調部222fによって生成された復調信号に対しデインターリーブを行う。
 FEC復号部222hは、デインターリーバ222gによってデインターリーブされた復調信号を、FEC(Forward Error Collection)に従って復号し、誤りビットが訂正されたビット列を生成し、受信データを出力する。さらに、FEC復号部222hは、FECに従って復号し誤りビットが訂正されたビット列を生成する際に、誤り率を算出する。
 制御情報付加装置223aは、フィルタ制御部222dによって決定されたフィルタパラメータと、FEC復号部222hによって算出される受信データの誤り率と、を表す送信用情報を生成する。そして、送信部221における送信ベースバンド信号発生器221aは、生成された送信用情報に対し符号化処理や変調処理やデジタル/アナログ変換処理やアップコンバート処理などの処理を実行することによって送信用情報信号を生成し、生成された送信用情報信号を、空中線124を介して基地局装置210へ送信する。
 次に、フィルタ制御部222dの動作の詳細について説明する。フィルタ制御部222dは、所望信号情報と干渉情報とに基づいて、所望信号と干渉信号との相対的な位置を算出し、この算出結果に応じてフィルタ222eに適用するフィルタパラメータを決定する。具体的には、フィルタ制御部222dは、所望信号情報及び干渉情報に基づいて、フィルタ222eに適用するフィルタの種類を、ハイパスフィルタ、ローパスフィルタ及びノッチフィルタの中から選択する。さらに、フィルタ制御部222dは、フィルタの遮断周波数を決定する。そして、フィルタ制御部222dは、決定したフィルタの種類と遮断周波数とに従って、フィルタ222eを制御する。
 以下、図を用いてフィルタ制御処理の詳細を説明する。
 図11A~図11Cは、フィルタ制御部222dがフィルタ222eにローパスフィルタを設定する場合のフィルタ制御処理の概略を表す概略図である。図11Aは、空中線124によって受信される受信信号の周波数スペクトルを、所望信号の周波数スペクトルと干渉信号のスペクトルとに分けて表す概略図である。図11Aにおいて、縦軸はパワーを表し、横軸は周波数を表し、符号DSは所望信号の周波数スペクトルを示し、符号ISは干渉信号の周波数スペクトルを示す。フィルタ制御部222dは、干渉信号の中心周波数及び周波数帯域幅に基づいて干渉信号の周波数帯域の最高値(bmax_i)を算出し、所望信号の中心周波数及び周波数帯域幅に基づいて所望信号の周波数帯域の最高値(bmax_d)を算出し、bmax_iがbmax_dよりも高い場合には(図11A)、フィルタ222eにローパスフィルタを適用する。
 図11Bは、フィルタ制御部222dがフィルタ222eに適用するローパスフィルタの概略を表す概略図である。図11Bにおいて、縦軸は利得(単位はdB)を表し、横軸は周波数(単位はHz)を表す。この場合、フィルタ制御部222dは、干渉信号の中心周波数及び周波数帯域幅に基づいて干渉信号の周波数帯域の最低値(bmin_i)を算出し、ローパスフィルタの遮断周波数(ローパスフィルタの利得が-3dBとなる周波数)fcの値をbmin_iに決定する。そして、フィルタ制御部222dは、符号FPに示すような、フィルタの種類がローパスフィルタであり遮断周波数fcがbmin_iであるフィルタパラメータを、フィルタ222eに設定する。
 図11Cは、図11Aの信号を、図11Bに示した特性を有するローパスフィルタで、フィルタ処理を行った場合の結果を示す。図に示されるように、干渉信号がフィルタ処理によって低減されていることが示されている。
 以上、ローパスフィルタを適用する場合について示したが、検出された干渉信号の状況からハイパスフィルタ及びノッチフィルタを選択することができる。その際の遮断周波数は、上記の方法のようにして選択する。
 なお、この図に示した構成は、上述の端末局装置220における受信部222に限らず、第1実施形態に示した端末局装置120における受信部122、並びに、基地局装置110における受信部112、基地局装置210における受信部212及び基地局装置310における受信部312等にも適応できる。
 上述した実施形態によるスペクトル配置方法によれば、複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する送信局及び受信局から構成される通信システムが3以上同時に通信を行う際に、スペクトル配置を決める制御局におけるスペクトル配置が行える。送信局として定義された基地局装置110、210及び310は、自システムに割り当てられたスペクトルを用いてマルチキャリア信号を送信する。受信局として定義された端末局装置120及び220は、自システムに配置されたスペクトルにおける他システムである通信システム700及び800等との重畳帯域を予め認識する。端末局装置120及び220は、重畳帯域に対して干渉抑圧技術を適用し、干渉抑圧技術を適用した信号を誤り訂正復号することで自局宛のマルチキャリア信号を受信する。スペクトルの帯域幅と、他のスペクトルと重畳する予め決められた重畳帯域幅から導かれる重畳率を、各スペクトルで一定となるようにスペクトルを配置する。
 このように、重畳率が各スペクトルで一定となるようにスペクトルを配置することで、スペクトルごとに重畳による影響を低減し、実質的な通信品質を確保して周波数を有効利用できる周波数配置方法を提供できる。
 また、スペクトルの帯域幅は通信システムごとに可変であり、スペクトル配置ステップにおいて、スペクトルの帯域幅が狭いスペクトルを利用周波数帯域の端部に配置し、スペクトルの帯域幅が広いスペクトルを利用周波数帯域の中央部に配置することで、前記重畳率を各スペクトルで一定となるようにスペクトルが配置される。
 このような配置によって、帯域幅の狭いスペクトルであっても所定の帯域を確保することができるようになり、さらに重畳率を各スペクトルで一定となるようにスペクトルが配置されることにより全体の伝送効率を高くすることができる。
 また、端末局装置120及び220は、認識した重畳帯域を周波数フィルタを用いて除去することで干渉抑圧処理を行う。
 これにより、干渉波が含まれる帯域を除去することができ、受信した受信信号の干渉波を抑圧することができる。
 また、端末局装置120及び220は、認識した重畳帯域の受信信号の尤度(上述したサブキャリアの復調値に相当)をマスクし、誤り訂正復号ステップは、尤度をマスクされた受信信号に対して誤り訂正復号することで干渉抑圧処理を行い、自局宛のマルチキャリア信号を受信する。
 これにより、干渉波が含まれるスペクトルを除去することができ、受信した受信信号の干渉波を抑圧することができる。
 また、スペクトル配置は、端末局装置220などの受信局に設けられた干渉波検出装置222a(干渉信号検出手段)によって検出された結果に基づいて配置される。
 これにより、受信局における受信環境に適したスペクトルを選択することが可能となり、受信局における受信品質を向上させることが可能となる。
 また、スペクトル配置は、基地局装置110などの送信局に設けられた干渉信号検出装置122a(干渉信号検出手段)によって検出された結果に基づいて配置される。
 これにより、送信局において直接周囲の受信環境を検出することが可能となり、他の地点で検出された結果が伝送されることなく、直接、干渉信号を検出することができるため、環境の変化に追従させる応答性を高めることができる。そして、その時々の通信環境に適したスペクトルを選択することが可能となり、通信品質を向上させることが可能となる。
 また、スペクトル配置は、基地局装置310(送信局)及び端末局装置320(受信局)のいずれとも異なる制御局装置330に設けられた干渉波検出装置331(干渉信号検出手段)によって検出された結果に基づいて配置される。
 これにより、制御局装置330における受信環境に適したスペクトルを選択することが可能となり、制御局装置330で検出された情報をもとに自通信システム(通信システム300)及び他の通信システム(通信システム700c及び800c)のスペクトル配置を集中制御することが可能となる。
 なお、本発明は、上記の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。本発明の受信方法における符号化方式には、あらゆる種類の符号化方式を使用することができ、受信装置の構成数や接続形態についても特に限定されるものではない。
 また、上述した実施形態で示した干渉波検出装置112a、222aは、周波数配置を目的とする干渉信号検出機能として専用に設けることもでき、また、受信信号から受信情報を再生することを目的とする干渉信号検出機能と兼用させてもよい。
 また、上述した説明では、より周波数利用効率を高めるため、送信部111における帯域制御を行う実施形態を示した。帯域制御を行うことにより周波数利用効率を高める効果が得られるが、帯域制御を行わずに定められた帯域で送信することとしてもよい。
 なお、本発明の通信システムは、通信システム100、200及び300に相当する。また、本発明の送信局装置は、基地局装置110、210及び310に相当する。また、本発明の受信局装置は、端末局装置120、220及び320に相当する。また、本発明の制御局装置は、制御局装置330に相当する。また、本発明の干渉信号検出部は、干渉波検出装置112a、222a及び331に相当する。また、本発明のスペクトル配置部は、周波数割当装置113a及び332に相当する。また、本発明のスペクトル割り当て部は、周波数割当装置113a及び332に相当する。また、本発明の制御情報配信部は、制御情報配信装置333に相当する。また、本発明の制御情報送信部は、制御情報付加装置223aに相当する。また、本発明の送信部は、送信部111及び311に相当する。また、本発明の受信部は、受信部122及び222に相当する。
 また、本発明の制御ステップは、制御部113による処理過程に相当する。また、本発明の送信ステップは、送信部111及び311による処理過程に相当する。また、本発明の重畳帯域認識ステップは、干渉波検出装置112a、222a及び331による処理過程に相当する。また、本発明の干渉抑圧ステップは、受信部120及び220による処理過程に相当する。また、本発明の誤り訂正復号ステップは、受信部122及び212による処理過程に相当する。また、本発明のスペクトル配置ステップは、周波数割当装置113a及び332による処理過程に相当する。また、本発明のスペクトル割り当てステップは、周波数割当装置113a及び332による処理過程に相当する。
 以下、本発明の第5実施形態を、図面を用いて説明する。
 図12は、本発明の第5実施形態による信号送信装置(送信局装置)の動作概要を示す。本実施形態による信号送信装置は、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)などのマルチキャリア信号を送信し、誤り訂正符号としてFEC(Forward Error Correction:前方誤り訂正)符号を用いる。この信号送信装置は、チャネル周波数帯域に複数のFECブロックを並べて送信する。このとき、信号送信装置は、それぞれのFECブロックについて、重畳率(信号の送信に使用する周波数帯域において干渉が発生している重畳帯域を利用する割合)が可変のサブキャリア割当法またはサブキャリアインターリーバを使用して、各ユーザのサービス品質要求、すなわち、QoSに応じた重畳率を与えるスケジューリングを行なう。つまり、QoSが高いユーザのデータについては非干渉帯域を多く割り当て、重畳率を低くして送信し、QoSが低いユーザのデータについては重畳帯域を多く割り当て、重畳率を高くして送信する。なお、制御情報については非干渉帯域のみを利用して送信する。これにより、制御情報や優先度の高いデータの欠落を防ぐ。
 また、ユーザデータの受信状態に応じてユーザ毎に重畳率を与えることもできる。つまり、受信状態が良いユーザのデータについては重畳帯域を多く割り当て、重畳率を高くして送信し、受信状態が悪いユーザのデータについては非干渉帯域を多く割り当て、重畳率を低くして送信する。これにより、チャネル全体の周波数利用効率の向上効果を高める。
 図12に示すように、受信状態をD/U(Desired to Undesired signal ratio;DU比)により表すこととする。また、ユーザ1のQoS要求が低、D/U=20dBであり、ユーザ2のQoS要求が低、D/U=0dBであり、ユーザ3のQoS要求が高、D/U=20dBであり、ユーザ4のQoS要求が高、D/U=0dBであったとする。
 あるユーザについてのデータの送信に使用する周波数帯域をα、この使用周波数帯域のうち干渉帯域をβとした場合、当該ユーザの重畳率=β/αである。このとき、ユーザ1、2、3、4の重畳率をそれぞれ66%、50%、30%、10%のように決定することができる。そして、ユーザ全体としての重畳率は、希望波の重畳率=(希望波の重畳帯域b)/(希望波の使用帯域a)と同じになるようにする。
 図13は、本実施形態による信号送信装置1100の構成を示すブロック図である。
 同図において、信号送信装置1100は、可変重畳率スケジューラ1110、OFDM変調器1120、P/S変換器(並列/直列変換器)1130、及び、記憶部1140を備える。
 記憶部1140は、各ユーザのQoSと、信号受信装置(受信局装置)より受信した受信品質と、信号受信装置より信号を受信した際に推定されたSINR値とを記憶している。さらに、記憶部1140は、空中線伝送路を想定して所要通信品質(Bit Error RateやFrame Error Rate等)を満足することのできる最小のSINR(Signal-to-Noise ratio;SN比)値を、可変し得る重畳率ごとに各変調符号化レベルについて算出したものを変調符号化レベルテーブルとして記憶している。
 可変重畳率スケジューラ1110は、S/P変換器(直列/並列変換器)1111、ブロック重畳率判定器1112、変調符号化レベル決定器1113、符号化・変調器1114-1~1114-n、及び、サブキャリア割当器1115を備える。
 S/P変換器1111は、送信データをシリアル信号からパラレル信号へ変換し、各ユーザの信号をユーザ別に符号化・変調器1114-1~nへ出力する。ブロック重畳率判定器1112は、記憶部1140に記憶されている各ユーザのQoSと、当該ユーザのデータを受信する信号受信装置における受信品質とに基づいて重畳率を決定する。変調符号化レベル決定器1113は、記憶部1140に記憶されている変調符号化レベルテーブルを参照して、ブロック重畳率判定器1112により決定された重畳率と、記憶部1140に記憶されている各ユーザのデータの送信先である信号受信装置に対応した推定SINR値とから変調符号化レベルを決定する。符号化・変調器1114-1~nは、変調符号化レベル決定器1113が決定したユーザ毎の変調符号化レベルに従って、FEC符号を用いて当該ユーザのデータを符号化し、符号化したデータを変調してサブキャリア割当器1115に出力する。サブキャリア割当器1115は、ブロック重畳率判定器1112により決定された重畳率に従って、干渉帯域及び非干渉帯域のサブキャリアに変調したデータを割り当て、OFDM変調器1120へパラレル信号として出力する。
 OFDM変調器1120は、サブキャリア割当器1115により各サブキャリアに割り当てられたパラレル信号を逆フーリエ変換して出力する。P/S変換器1130は、OFDM変調器1120により出力されたパラレル信号をシリアル変換してOFDM信号を生成し、送信信号として出力する。
 図14は、上述した信号送信装置1100を用いた通信システムにおけるフローを示す図である。
 同図において、信号受信装置が、干渉帯域の検出処理を行なう(ステップS111)。これは、例えば、信号受信装置が信号送信装置1100に対して、希望波による無線信号送信の停止要求を送信し、希望波が送信されていない環境において、当該希望波の利用周波数帯域のサブキャリアごとに、他無線信号の有無、信号強度などを検出することにより、干渉が発生する周波数帯域を検出することができる。信号受信装置が干渉帯域を検出しなかった場合(ステップS112:NO)、処理を終了する。
 干渉帯域を検出した場合(ステップS112:YES)、信号受信装置は、検出した干渉帯域の情報を信号送信装置1100に通知し(ステップS113)、干渉補償/抑圧機構をONにする(ステップS114)。信号送信装置1100は、信号受信装置より受信した干渉帯域の情報を記憶部1140に書き込む。また、信号送信装置1100は、信号受信装置より受信した信号からSINRを推定して記憶部1140に書き込む。
 信号送信装置1100の可変重畳率スケジューラ1110に送信データが入力されると、ブロック重畳率判定器1112は、記憶部1140を参照し、重畳帯域(干渉帯域)があるか否かを判断する(ステップS121)。重畳帯域があると判断した場合(ステップS121:YES)、ブロック重畳率判定器1112は、送信データが制御情報かユーザのデータかを判断する(ステップS122)。
 送信データが制御情報である場合(ステップS122:制御情報)、ブロック重畳率判定器1112は重畳率を0とすることを決定し、変調符号化レベル決定器1113及びサブキャリア割当器1115に重畳率を出力する。変調符号化レベル決定器1113は、ブロック重畳率判定器1112が決定した重畳率と、記憶部1140に記憶されている推定SINR値とにより、記憶部1140に記憶されている変調符号化レベルテーブルを参照し、変調符号化レベルを決定する。制御情報の送信データが入力された符号化・変調器1114-i(i=1~n)は、変調符号化レベル決定器1113により決定された変調符号化レベルに従って、データの符号化及び変調を行なう。また、サブキャリア割当器1115は、制御情報の符号化データを全て非干渉帯域のサブキャリアに割り当て、OFDM変調器1120へ出力する(ステップS123)。
 送信データがユーザのデータである場合(ステップS122:データ)、ブロック重畳率判定器1112は、ユーザのQoSを記憶部1140から読み出し、QoSレベルが所定のサービス品質レベルよりも高であるか低であるかを判断する。QoSレベルが所定のサービス品質レベルよりも高である場合(ステップS124:高)、ブロック重畳率判定器1112は、希望波の重畳率よりも低くなるようにユーザの重畳率を決定する(ステップS125)。変調符号化レベル決定器1113は、ブロック重畳率判定器1112が決定した重畳率と、記憶部1140に記憶されている推定SINR値とにより、記憶部1140に記憶されている変調符号化レベルテーブルを参照し、ユーザの変調符号化レベルを決定する。
 続いて、ブロック重畳率判定器1112は、全データの平均重畳率が、ステップS121において受信した干渉帯域の情報から算出される希望波の重畳率と等しいかを判断する(ステップS126)。全データの平均重畳率が希望波の重畳率と等しい場合(ステップS126:YES)、ユーザのデータが入力された符号化・変調器1114-i(i=1~n)は、変調符号化レベル決定器1113により決定された変調符号化レベルに従って符号化及び変調を行ない、サブキャリア割当器1115は、ブロック重畳率判定器1112により決定された各ユーザの重畳率に従って、当該ユーザの符号化データを干渉領域及び非干渉帯域のサブキャリアに割り当てる。
 ステップS126において、全データの平均重畳率が、希望波の重畳率と異なる場合(ステップS126:NO)、ユーザのデータが入力された符号化・変調器1114-i(i=1~n)は、入力された送信データを分割し(ステップS127)、再びステップS124からの処理を繰り返す。つまり、与えられた重畳率で伝送し得る容量を超える大きさのデータは伝送できないため、ユーザのデータを複数のブロックに分割する。そして、スケジューリングにより、送りきれないデータをまるごと後続シンボルに割り当て直したり、FECブロック長を短くしたりして1シンボルで送るデータ量を調整する。
 また、ステップS124において、QoSレベルが所定のサービス品質レベルよりも低である場合(ステップS124:低)、ブロック重畳率判定器1112は、希望波の重畳率よりも高くなるようにユーザの重畳率を決定する(ステップS128)。変調符号化レベル決定器1113は、ブロック重畳率判定器1112が決定した重畳率と、記憶部1140に記憶されている推定SINR値とにより、記憶部1140に記憶されている変調符号化レベルテーブルを参照し、ユーザの変調符号化レベルを決定する。
 信号送信装置1100は、ステップS128において、変調符号化レベルが選択できたかにより、信号受信装置との通信リンクの確立が可能かを判断する(ステップS129)。つまり、信号送信装置1100は、変調符号化レベルテーブルを参照し、所要通信品質を満たす変調符号化レベルが一つも存在しない重畳率では通信リンクが確立できないと判断する。通信リンクの確立が可能であれば(ステップS129:YES)、全データの平均重畳率が、希望波の重畳率と異なるかを判断するステップS126からの処理を実行する。一方、通信リンクの確立が可能でなければ(ステップS129:NO)、重畳率を下げるステップS125からの処理を実行する。
 次に、信号送信装置1100における詳細な重畳率設定処理を説明する。
 信号送信装置1100のS/P変換器1111は、送信データに付与されている制御データあるいは図示しない制御部から受信した制御データにより、各送信データがいずれのユーザの送信データであるかを判断し、送信データをユーザ別に符号化・変調器1114-1~nへ出力する。例えば、S/P変換器1111は、ユーザ1のデータを符号化・変調器1114-1に出力し、ユーザ2のデータを符号化・変調器1114-2に出力し、ユーザ3のデータを符号化・変調器1114-3に出力し、ユーザ4のデータを符号化・変調器1114-4に出力する。
 ブロック重畳率判定器1112は、各ユーザの符号化データの重畳率を決定する。
 図15は、QoS及び受信品質の組み合わせと、重畳率の関係を示す図である。QoSには、制御信号用の高品質、ユーザデータ用の高品質及び低品質の3段階がある。制御信号の場合、重畳率=0とし、全ての符号化データを非干渉帯域で送信する。このため、同図においては、ユーザデータ用の高品質及び低品質についてのみ示している。受信品質には、例えば、D/U(Desired to Undesired signal ratio;DU比)、S/N(Signal-to-Noise ratio;SN比)、C/I(Carrier-to-interference;希望波電力対干渉波電力比)などを用いることができ、各ユーザのD/U、S/N、または、C/Iの値を所定の閾値と比較して、受信品質を高/低の2段階に分割する。なお、D/U、S/N、または、C/Iの情報は、通常、ユーザからの要求情報として上りリンクにより信号受信装置から通知される。
 同図において、要求されるサービス品質が低品質、すなわち、QoSが低い場合は、ユーザ全体の平均重畳率よりも高い重畳率を設定している。また、要求されるサービス品質が高品質、すなわち、QoSが高い場合は、ユーザ全体の平均重畳率よりも低い重畳率を設定している。さらに、受信品質が高い場合は、受信品質が低い場合よりも高い重畳率を設定している。つまり、(QoS低かつ受信品質高の重畳率)>(QoS低かつ受信品質低の重畳率)>(ユーザ全体での平均重畳率)>(QoS高かつ受信品質高の重畳率)>(QoS高かつ受信品質低の重畳率)となっている。
 なお、ユーザ全体での平均重畳率=希望波の重畳率=(希望波の重畳帯域)/(希望波の使用帯域)である。
 変調符号化レベル決定器1113は、ブロック重畳率判定器1112が決定した重畳率と、記憶部1140に記憶されている、ユーザのデータの送信先である信号受信装置について推定したSINR値とにより、記憶部1140に記憶されている変調符号化レベルテーブルを参照し、所要通信品質を満足する変調符号化レベルの中で、伝送ビット量が最大の変調符号化レベルを選択する。
 なお、変調符号化レベルは、変調方式と符号化率により示される。変調方式には、例えば、16QAM(Quadrature Amplitude Modulation:直交振幅変調)、64QAM、QPSK(Quadrature Phase Shift Keying:4位相偏移変調)等がある。また、符号化率とは、(符号化前のビット数)/(符号化後のビット数)である。従って、変調符号化レベルはQPSK 1/2、16QAM 3/4などとなる。
 符号化・変調器1114-1~nは、自身に入力されたユーザのデータを、変調符号化レベル決定器1113により設定された当該ユーザの変調符号化レベルに従って、FECを適用した符号化を行い、符号化されたデータを変調する。上記の例であれば、符号化・変調器1114-1はユーザ1の変調符号化レベルに基づいて符号化及び変調を行い、符号化・変調器1114-2はユーザ2の変調符号化レベルに基づいて符号化及び変調を行い、符号化・変調器1114-3はユーザ3の変調符号化レベルに基づいて符号化及び変調を行い、符号化・変調器1114-4はユーザ4の変調符号化レベルに基づいて符号化及び変調を行なう。
 サブキャリア割当器1115は、ブロック重畳率判定器1112によって決定された各ユーザの重畳率に従って、各ユーザの変調データにサブキャリアを割り当て、OFDM変調器1120へパラレル信号を出力する。OFDM変調器1120は、サブキャリア割当器1115により各サブキャリアに割り当てられたパラレル信号を逆フーリエ変換して出力する。P/S変換器1130は、OFDM変調器1120により出力されたパラレル信号をシリアル変換してOFDM信号を生成し、送信信号として出力する。
 なお、図13の信号送信装置1100では、複数の符号化・変調器1114-1~nを備えているが、1つのみを備えるようにすることもできる。この場合、図16Aに示すように、信号送信装置1100は、制御情報や高ランクのQoSが要求される送信データについては、連続型サブキャリア割当法を活用して、非干渉帯域にのみリソースを割り当てる。一方、図16Bに示すように、その他の送信データについて、信号送信装置1100は、分散型サブキャリア割当法を活用し、重畳帯域と非干渉帯域に分散したリソースを割り当てるようなスケジューリングを行なう。これにより、制御情報や優先度の高いデータの欠落を防ぐ。
 以下に、信号受信装置の例として、干渉領域のマスクを行う信号受信装置と、フィルタリングを行なう信号受信装置について説明する。
 図17は、干渉領域のマスクを行なう信号受信装置1300の構成を示す概略ブロック図である。
 信号受信装置1300は、干渉帯域検出器1301、重み付け係数生成器1302、復調器1303、重み付け演算器1304、復号器1305を備え、誤り訂正符号による希望波と干渉波とからなる受信信号から、希望波に含まれる信号を抽出する。なお、干渉帯域検出器1301と復調器1303との間の接続は必須ではない。干渉帯域検出器1301は、例えば、FWA(Fixed Wireless Access)などの信号受信装置1300の置局時に、他のシステムから送信される無線信号により、自装置の希望波における利用周波数帯域のうち干渉が発生する周波数帯域を検出する。干渉帯域検出器1301は、例えば、希望波の送信元無線局に対し、希望波による無線信号送信の停止要求を送信し、希望波が送信されていない環境において、当該希望波の利用周波数帯域のサブキャリアごとに、他無線信号の有無、信号強度などを検出することにより、干渉が発生するサブキャリアを検出する。干渉帯域検出器1301は、例えば、特定サブキャリアであるサブキャリアに対して「1」を対応付け、特定サブキャリア以外のサブキャリアに対して「0」を対応付けた干渉帯域判定値の列として、特定サブキャリア判定値の列を生成する。干渉帯域検出器1301は、検出結果を重み付け係数生成器1302に出力する。
 重み付け係数生成器1302は、特定サブキャリア判定値に応じたサブキャリアごとの重み付け係数を算出する。重み付け係数生成器1302が算出する重み付け係数は、干渉帯域検出器1301により検出された干渉が発生するサブキャリアに関し、他のサブキャリアに比して信頼度を低減させる重み付け係数である。重み付け係数生成器1302は、算出した重み付け係数をサブキャリアごとに並べた列を重み付け演算器1304に出力する。
 復調器1303は、受信した誤り訂正符号化された希望波を含む無線信号をサブキャリアごとに電気信号に変換し、復調したサブキャリアごとの復調値を重み付け演算器1304に出力する。
 重み付け演算器1304は、重み付け係数生成器1302から入力される重み付け係数に基づき、サブキャリアごとに、復調器1303から入力される復調値に重み付け演算処理を行い、演算結果をサブキャリアごとに並べた列を尤度データ列として復号器1305に出力する。
 復号器1305は、重み付け演算器1304から入力される尤度データ列に基づき、誤り訂正処理、及び復号処理を行い、希望波の信号を取得する。
 図18は、信号受信装置1300の処理フローを示す図である。
 信号受信装置1300の干渉帯域検出器1301は、信号受信装置1300の置局時に、希望波がないタイミングや、希望波がないサブキャリアの周波数帯域において、希望波のサブキャリアごとの周波数帯域における無線信号の受信レベル、周波数帯域、中心周波数、希望波へのオーバーラップ帯域などを測定、検出することにより、干渉波の情報を取得する。
 また、干渉帯域検出器1301は、取得した干渉波の情報に基づき、干渉波が存在するサブキャリアを特定サブキャリアとして選択(検出)する。干渉帯域検出器1301は、例えば、受信レベルの値に基づき、所定の値以上の受信レベルの信号を受信した周波数帯域のサブキャリアを特定サブキャリアとして検出する。
 図19A~図19Dは、信号受信装置1300の処理内容の概念図である。干渉帯域検出器1301は、図19Aにおいて、希望波と干渉波とが重複するオーバーラップ帯域W(干渉帯域)に含まれるサブキャリアSC1~SC4を特定サブキャリアとして検出する。干渉帯域検出器1301は、サブキャリアSC1~SC4に対し「1」を対応付けて、他のサブキャリアに「0」を対応付けた特定サブキャリア判定値の列を生成する。
 図18に戻り、干渉帯域検出器1301は、生成した特定サブキャリア判定値の列を重み付け係数生成器1302に出力する(ステップS310)。
 重み付け係数生成器1302は、干渉帯域検出器1301が生成した特定サブキャリア判定値に基づき、特定サブキャリアの信頼度を他のサブキャリアに比して低減させる重み付け係数を生成する。この重み付け係数は、例えば、特定サブキャリア判定値の列において「1」が対応付けられているサブキャリアに対し、復調値を所定の値、例えば、「0」に変換させる重み付け係数である。
 重み付け係数生成器1302は、生成したサブキャリアごとの重み付け係数の列を重み付け演算器1304に出力する(ステップS320)。
 なお、上述したステップS310~S320の処理は、信号受信装置1300において、信号を受信する前に行う処理である。次に、希望波による無線信号の受信処理について説明する。復調器1303は、希望波の周波数帯域の無線信号をサブキャリアごとに復調し、復調したサブキャリアごとの復調値のデジタルデータを重み付け演算器1304に出力する。
 重み付け演算器1304は、サブキャリアごとの重み付け係数とサブキャリアごとの復調値とに基づき、希望波の符号化方法に応じた演算方法により、重み付け演算処理を行い、演算結果の列を尤度データ列として復号器1305に出力する(ステップS330)。
 この符号化方法に応じた重み付け演算方法の一例として、希望波の符号化方法が軟判定正負多値の符号化方法である場合を例に図19B~図19Dを用いて説明する。この軟判定正負多値の符号化方法における復号処理は、受信信号の復調値が正負の多値出力であり、絶対値の大きさを信頼度(尤もらしさを表す値、尤度)として負の値を値「+1」、正の値を値「-1」と判定する復号処理を行う。
 図19Bは、サブキャリアごとの重み付け係数を示す図である。また、図19Cは、サブキャリアごとの正負多値出力の復調値を示す図である。同図において、最も「-1」であることへの信頼度が高いのは、最大の正値「+27.02」のサブキャリアである。一方、最も「+1」であることへの信頼度が高いのは、最小の負値「-26.34」のサブキャリアである。
 一方、「+1」と「-1」とのいずれであるか、最もあいまいである(信頼度が低い)のは、絶対値が最も小さい値、すなわち、復調値が0のサブキャリアである。
 したがって、図18のステップS320において、重み付け係数生成器1302により算出される重み付け係数に基づき、重み付け演算器1304が、特定サブキャリアであるサブキャリアSC1~4の復調値を「0」に変換させる重み付け演算処理を行うことにより、サブキャリアSC1~4の復調値の信頼度を低減させることが可能になる。ここでは、重み付け係数生成器1302は、図19Bに示すように、図19Aの特定サブキャリア判定値の論理否定の値をサブキャリアごとに対応付けた重み付け係数の列として生成することとする。
 重み付け演算器1304による重み付け演算の一例として、重み付け演算器1304は、図19Bに示されているような特定サブキャリア判定値の論理否定の値である重み付け係数と、図19Cに示されているような復調値とを対応するサブキャリアごとに乗算する。具体的には、重み付け演算器1304が、特定サブキャリアであるサブキャリアSC1について、復調値「-25.32」と重み付け係数「0」とを乗算し、乗算結果「0」を重み付け演算後の復調値として復号器1305に出力する。同様に、重み付け演算器1304は、特定サブキャリア以外のサブキャリアについては、復調値と重み付け係数「1」とを乗算する。そして、重み付け演算器1304は、全サブキャリアの乗算結果の列を尤度データ列として復号器1305に出力する。
 図19Dは、重み付け演算器1304により、重み付け係数と、正負多値復調値とをサブキャリアごとに重み付け演算した尤度データ列を示す図である。同図に示すように、特定サブキャリアであるサブキャリアSC1~SC4に対応する重み付け演算後の尤度データの値は、信頼度が最も低い値「0」であり、他の復調値は変化しない。
 図18に戻り、復号器1305は、重み付け演算器1304から入力される尤度データ列に基づき、希望波の符号化方法に対応する復号処理を行う。希望波に適用する誤り訂正用の符号化方法としては、例えば、畳み込み符号(Convolutional coding)や、繰り返し復号とターボ符号とを組み合わせた方法などに応じた方法が適用可能である(ステップS340)。
 上述の信号受信装置1300では、置局時に希望波の周波数帯域における干渉波を干渉帯域検出器1301が計測し、この計測結果に基づき、受信信号の干渉波が存在する特定サブキャリアについて、重み付け係数生成器1302が信頼度を低減させる重み付け係数を算出し、重み付け演算器1304が受信信号の復調値に対して重み付け係数に基づき特定サブキャリアの信頼度を低減させる処理を行う。
 このように、信号受信装置1300が、サブキャリアごとの受信信号の信頼度に応じて復調値に重み付け演算を行い、信頼度の低い特定サブキャリアをマスクし、信頼度の高いサブキャリアの復調値を用いて受信信号を復号することにより、受信誤り訂正能力を向上させることが可能になる。
 なお、本実施形態においては、重み付け係数生成器1302により算出される重み付け係数が、干渉帯域検出器1301による2値の特定サブキャリア判定値の論理否定の値であり、結果としてビットマスクである場合を例として説明した。しかし、これに限らず、次の係数を用いることでもよい。
 図20A~図20Bは、上述した重み付け係数の他の例における重み付け前の値と、重み付け後の値を示す図面である。
 例えば、図20Aの軟判定出力型において、重み付け係数生成器1302は、正負多値出力の復調値に対し、特定サブキャリアの重み付け係数を所定値α(ただし、0≦α<1)とし、他のサブキャリアの重み付け係数を1とする重み付け係数を算出することでもよい。
 重み付け演算器1304が、特定サブキャリアについて、復調値と所定値αとを乗算することにより、特定サブキャリアの復調値の絶対値を0方向に変換し、それにより、信頼度を低減させる。
 また、軟判定出力型において、正数多値出力の復調値の場合、復調値が0に近いほどビット値を「-1」として復号し、復調値が最大値に近いほどビット値を「1」として復号する。このような場合において、重み付け係数生成器1302は、特定サブキャリアの復調値を出力候補値の中央値(例えば、出力候補値が0~7であれば、その中央値の3または4)に置換する重み付け係数を算出することでもよい。
 また、図20Bに示されるような硬判定出力型における「-1」と「+1」との二値出力型の場合、重み付け係数生成器1302は、二値の復調値を「0」に置換する係数を特定サブキャリアの重み付け係数として重み付け演算器1304に出力することでもよい。
 このように、ブロック符号化など、誤り訂正符号を適用しており、一部のサブキャリアの復調値等が欠落していても他のサブキャリアの復調値に基づき希望波の信号を取得することが可能な通信方式の場合、信頼度が低く、誤り発生の要因となるサブキャリアに対し、信頼度を下げる重み付け係数を用いて復調値に重み付け演算処理を行うことで、受信誤り訂正能力を向上させることができる。
 次に、干渉領域のフィルタリングを行なう受信装置について以下に説明する。
 図21は、信号受信装置1400の機能構成を表すブロック図である。図示するように、信号受信装置1400は、アンテナ1401と、受信部1402と、干渉情報抽出部1403と、フィルタ制御部1404と、遅延部1405と、フィルタ1406と、復調部1407と、デインターリーバ1408と、FEC復号部1409とを備える。
 アンテナ1401は、所望信号と干渉信号とが合成された信号を受信する。
 受信部1402は、受信された受信信号に対し、ダウンコンバートを行い、さらにアナログ/デジタル変換を行う。
 干渉情報抽出部1403は、信号送信装置との通信を開始する際に決定される所望信号情報に基づいて、干渉信号の中心周波数と、干渉信号の周波数帯域幅と、を含む干渉情報を受信信号から抽出する干渉情報抽出処理を行う。
 干渉情報抽出処理は、既存の技術により可能である。例えば、干渉情報抽出部1403は、受信信号に対してFFT(Fast Fourier Transform)を行うことによって受信信号の周波数スペクトルを算出し、算出された受信信号の周波数スペクトルと、所望信号情報に基づいて得られる所望信号の周波数スペクトルの推定結果との差分を算出することによって干渉信号の周波数スペクトルを推定し、この推定結果に基づいて干渉情報を抽出する。
 フィルタ制御部1404は、信号送信装置との通信開始時に所望信号情報を記憶し、所望信号情報と、干渉情報抽出部1403によって抽出された干渉情報とに基づいて、以下の二つの条件を満たすフィルタのパラメータを決定し、決定されたパラメータをフィルタ1406に設定する。
(1)干渉信号が存在せず所望信号のみが存在する周波数帯域の受信信号を通過させる
(2)干渉信号が存在する周波数帯域の受信信号を減衰させる
 なお、フィルタのパラメータは、例えば、フィルタの種類と、遮断周波数とで構成される。
 遅延部1405は、受信部1402が処理を終了してから、干渉情報抽出部1403と、フィルタ制御部1404とが処理を終了するまでに要する時間に相当する時間遅延を受信信号に付加し、フィルタ1406へ出力する。遅延部1405が受信信号に対して付加する遅延の量は、予め設計者によって設定される。
 フィルタ1406は、フィルタ制御部1404によって設定されたパラメータのフィルタに基づいて、遅延部1405によって遅延が付加された受信信号をフィルタリングする。即ち、フィルタ1406は、フィルタ制御部1404によって設定されたパラメータのフィルタに基づいて、このパラメータの決定時にフィルタ制御部1404によって参照された受信信号をフィルタリングする。
 復調部1407は、フィルタ1406によってフィルタリングされた受信信号からガードインターバルを除去し、FFTを行い、復調を行うことによって復調信号を生成する。
 デインターリーバ1408は、復調部1407によって生成された復調信号に対しデインターリーブを行う。
 FEC復号部1409は、デインターリーバ1408によってデインターリーブされた復調信号を、FECに従って復号し、誤りビットが訂正されたビット列を生成し、受信データを出力する。
 図22は、受信信号と、所望信号と、干渉信号との周波数スペクトルを表す概念図である。図22において、縦軸はパワーを表し、横軸は周波数を表す。図22(a)は、アンテナ1401によって受信される信号の周波数スペクトルを表す概念図である。図22(b)は、図22(a)の受信信号に含まれる所望信号の周波数スペクトルを表す概念図である。図22(b)において、符号DSは所望信号の周波数スペクトルを示し、fc_dは所望信号の中心周波数を示し、bw_dは所望信号の周波数帯域幅を示す。図22(c)は、図22(a)の受信信号に含まれる干渉信号の周波数スペクトルを表す概念図である。図22(c)において、符号ISは干渉信号の周波数スペクトルを示し、fc_iは干渉信号の中心周波数を示し、bw_iは干渉信号の周波数帯域幅を示す。
 次に、フィルタ制御部1404の動作の詳細について説明する。フィルタ制御部1404は、所望信号情報と干渉情報とに基づいて、所望信号と干渉信号との相対的な位置を算出し、この算出結果に応じてフィルタ1406に適用するフィルタパラメータを決定する。具体的には、フィルタ制御部1404は、所望信号情報及び干渉情報に基づいて、フィルタ1406に適用するフィルタの種類を、ハイパスフィルタと、ローパスフィルタと、ノッチフィルタの中から選択する。さらに、フィルタ制御部1404は、フィルタの遮断周波数を決定する。そして、フィルタ制御部1404は、決定したフィルタの種類と遮断周波数とに従って、フィルタ1406を制御する。
 図23~図25は、フィルタ制御部1404によって行われるフィルタ制御処理の概略を表す概略図である。以下、図23~図25を用いてフィルタ制御処理の詳細を説明する。
 図23は、フィルタ制御部1404がフィルタ1406にローパスフィルタを設定する場合のフィルタ制御処理の概略を表す概略図である。図23(a)は、アンテナ1401によって受信される信号の周波数スペクトルを、所望信号の周波数スペクトルと干渉信号のスペクトルとに分けて表す概略図である。図23(a)において、縦軸はパワーを表し、横軸は周波数を表し、符号DSは所望信号の周波数スペクトルを示し、符号ISは干渉信号の周波数スペクトルを示す。フィルタ制御部1404は、干渉信号の中心周波数(fc_i)及び周波数帯域幅(bw_i)に基づいて干渉信号の周波数帯域の最高値(bmax_i)を算出し、所望信号の中心周波数(fc_d)及び周波数帯域幅(bw_d)に基づいて所望信号の周波数帯域の最高値(bmax_d)を算出し、bmax_iがbmax_dよりも高い場合には(図23(a))、フィルタ1406にローパスフィルタを適用する。
 図23(b)は、フィルタ制御部1404がフィルタ1406に適用するローパスフィルタの概略を表す概略図である。図23(b)において、縦軸は利得(単位はdB)を表し、横軸は周波数(単位はHz)を表す。この場合、フィルタ制御部1404は、干渉信号の中心周波数(fc_i)及び周波数帯域幅(bw_i)に基づいて干渉信号の周波数帯域の最低値(bmin_i)を算出し、ローパスフィルタの遮断周波数(ローパスフィルタの利得が-3dBとなる周波数)f_lpfの値をbmin_iに決定する。そして、フィルタ制御部1404は、符号FPに示すような、フィルタの種類がローパスフィルタであり遮断周波数f_lpfがbmin_iであるパラメータを、フィルタ1406に設定する。
 図23(c)は、図23(b)に表されるローパスフィルタが設定されたフィルタ1406によって図23(a)に表される受信信号がフィルタリングされた後の周波数スペクトルを表す概略図である。図示するように、フィルタ1406は、干渉信号の周波数帯域の最低値(bmin_i)よりも高い周波数の信号のパワーを、その信号が所望信号であるか干渉信号であるかに関わらず減衰させる。
 図24は、フィルタ制御部1404がフィルタ1406にノッチフィルタを設定する場合のフィルタ制御処理の概略を表す概略図である。図24(a)は、アンテナ1401によって受信される信号の周波数スペクトルを、所望信号の周波数スペクトルと干渉信号のスペクトルとに分けて表す概略図である。図24(a)において、縦軸はパワーを表し、横軸は周波数を表し、符号DSは所望信号の周波数スペクトルを示し、符号ISは干渉信号の周波数スペクトルを示す。フィルタ制御部1404は、干渉信号の中心周波数(fc_i)及び周波数帯域幅(bw_i)に基づいて干渉信号の周波数帯域の最高値(bmax_i)及び最低値(bmin_i)を算出し、所望信号の中心周波数(fc_d)及び周波数帯域幅(bw_d)に基づいて所望信号の周波数帯域の最高値(bmax_d)及び最低値(bmin_d)を算出し、bmax_iがbmax_dよりも低く且つbmin_iがbmin_dよりも高い場合には(図24(a))、フィルタ1406にノッチフィルタを適用する。
 図24(b)は、フィルタ制御部1404がフィルタ1406に適用するノッチフィルタの概略を表す概略図である。図24(b)において、縦軸は利得(単位はdB)を表し、横軸は周波数(単位はHz)を表す。この場合、フィルタ制御部1404は、干渉信号の中心周波数(fc_i)及び周波数帯域幅(bw_i)に基づいて干渉信号の周波数帯域の最低値(bmin_i)及び最高値(bmax_i)を算出し、ノッチフィルタの2つの遮断周波数(ノッチフィルタの利得が-3dBとなる2つの周波数)f_bef1およびf_bef2の値をbmin_i及びbmax_iに決定する。そして、フィルタ制御部1404は、符号FPに示すような、フィルタの種類がノッチフィルタであり2つの遮断周波数f_bef1およびf_bef2がbmin_i及びbmax_iであるパラメータを、フィルタ1406に設定する。
 図24(c)は、図24(b)に表されるノッチフィルタが設定されたフィルタ1406によって図24(a)に表される受信信号がフィルタリングされた後の周波数スペクトルを表す概略図である。図示するように、フィルタ1406は、干渉信号の周波数帯域の最低値(bmin_i)と最高値(bmax_i)との間の周波数の信号のパワーを、その信号が所望信号であるか干渉信号であるかに関わらず減衰させる。
 図25は、フィルタ制御部1404がフィルタ1406にハイパスフィルタを設定する場合のフィルタ制御処理の概略を表す概略図である。図25(a)は、アンテナ1401によって受信される信号の周波数スペクトルを、所望信号の周波数スペクトルと干渉信号のスペクトルとに分けて表す概略図である。図25(a)において、縦軸はパワーを表し、横軸は周波数を表し、符号DSは所望信号の周波数スペクトルを示し、符号ISは干渉信号の周波数スペクトルを示す。フィルタ制御部1404は、干渉信号の中心周波数(fc_i)及び周波数帯域幅(bw_i)に基づいて干渉信号の周波数帯域の最低値(bmin_i)を算出し、所望信号の中心周波数(fc_d)及び周波数帯域幅(bw_d)に基づいて所望信号の周波数帯域の最低値(bmin_d)を算出し、bmin_iがbmin_dよりも低い場合には(図25(a))、フィルタ1406にハイパスフィルタを適用する。
 図25(b)は、フィルタ制御部1404がフィルタ1406に適用するハイパスフィルタの概略を表す概略図である。図25(b)において、縦軸は利得(単位はdB)を表し、横軸は周波数(単位はHz)を表す。この場合、フィルタ制御部1404は、干渉信号の中心周波数(fc_i)及び周波数帯域幅(bw_i)に基づいて干渉信号の周波数帯域の最高値(bmax_i)を算出し、ハイパスフィルタの遮断周波数(ハイパスフィルタの利得が-3dBとなる周波数)f_hpfの値をbmax_iに決定する。そして、フィルタ制御部1404は、符号FPに示すような、フィルタの種類がハイパスフィルタであり遮断周波数f_hpfがbmax_iであるパラメータを、フィルタ1406に設定する。
 図25(c)は、図25(b)に表されるハイパスフィルタが設定されたフィルタ1406によって図25(a)に表される受信信号がフィルタリングされた後の周波数スペクトルを表す概略図である。図示するように、フィルタ1406は、干渉信号の周波数帯域の最高値(bmax_i)よりも低い周波数の信号のパワーを、その信号が所望信号であるか干渉信号であるかに関わらず減衰させる。
 次に、信号受信装置1400の動作及び処理手順について説明する。
 図26は、信号受信装置1400がフィルタの制御を行う場合の処理手順を示すフローチャートである。
 図26に示すように、まずアンテナ1401が信号を受信し、受信部1402がダウンコンバート及びアナログ/デジタル変換を受信信号に対して行う(ステップS410)。次に、受信部1402によって処理がなされた受信信号から、干渉情報抽出部1403が干渉情報を抽出する(ステップS420)。次に、フィルタ制御部1404が、干渉情報抽出部1403によって抽出された干渉情報と、フィルタ制御部1404が記憶している所望信号情報とに基づいて、上述したようにフィルタ1406に適用されるフィルタの種類と、フィルタの遮断周波数とを決定する(ステップS430)。そして、フィルタ制御部1404が、決定されたフィルタの種類とフィルタの遮断周波数とをフィルタ1406に設定する(ステップS440)。
 ステップS420~ステップS440の処理と並行して、遅延部1405が受信信号に遅延を付加する(ステップS450)。次に、フィルタ1406が、ステップS440の処理において設定されたパラメータに従ってフィルタを形成し、遅延が付加された受信信号をフィルタリングすることによって、受信信号において干渉信号が存在する周波数帯域のパワーを減衰させる(ステップS460)。次に、復調部1407が、フィルタ1406を通過した受信信号を復調し、復調信号を生成する(ステップS470)。次に、デインターリーバ1408が、復調信号をデインターリーブする(ステップS480)。そして、FEC復号部1409が、デインターリーブされた復調信号をFEC復号し(ステップS490)、復号された受信データを出力し(ステップS500)、このフローチャート全体の処理を終了する。
 このように、信号受信装置1400においては、干渉情報抽出部1403が干渉情報を抽出し、フィルタ制御部1404が干渉信号の存在する周波数帯域の信号を減衰させるフィルタのパラメータをフィルタ1406に設定する。そして、フィルタ1406が受信信号をフィルタリングすることによって、受信信号に含まれる信号のうち、干渉信号が存在する周波数帯域の信号が減衰する。そのため、受信信号における干渉信号の影響を軽減させることが可能となる。
 以上、本発明の実施形態を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で構成の付加,省略,置換,およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付の請求の範囲によってのみ限定される。
 本発明は、例えば、複数のサブキャリアを含むスペクトルを用いたマルチキャリア信号の通信に利用可能である。本発明によれば、マルチキャリア信号の送信に利用する利用周波数帯域の周波数利用効率を向上することができる。
 100 通信システム
 110 基地局装置
 111 送信部
 112 受信部
 113 制御部
 114 空中線
 111a 送信ベースバンド信号生成器
 111b アップコンバータ装置
 112a 干渉波検出装置
 113a 周波数割当装置
 113b 周波数変更装置
 113c 帯域幅変更装置
 120 端末局装置
 121 送信部
 122 受信部
 123 制御部
 124 空中線
1100 信号送信装置
1110 可変重畳率スケジューラ
1111 直列/並列変換器
1112 ブロック重畳率判定器
1113 変調符号化レベル決定器
1114-1~1114-n 符号化・変調器
1115 サブキャリア割当器
1120 OFDM変調器
1130 並列/直列変換器
1140 記憶部
1300 信号受信装置
1301 干渉帯域検出器
1302 重み付け係数生成器
1303 復調器
1304 重み付け演算器
1305 復号器
1400 信号受信装置
1401 アンテナ
1402 受信部
1403 干渉情報抽出部
1404 フィルタ制御部
1405 遅延部
1406 フィルタ
1407 復調部
1408 デインターリーバ
1409 FEC復号部

Claims (19)

  1.  複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する送信局装置及び受信局装置から構成される通信システムにおける通信方法であって、
     前記マルチキャリア信号の送信に利用する利用周波数帯域の周波数利用効率を増加させるように、前記利用周波数帯域において干渉が発生している重畳帯域を利用する割合である重畳率を設定する制御ステップと、
     設定された前記重畳率に従って割り当てたスペクトルを用いて、前記マルチキャリア信号を送信する送信ステップと
     を有する通信方法。
  2.  前記通信方法は、前記通信システムが3以上同時に通信を行う際の通信方法であって、
     前記受信局装置が、自通信システムに配置された前記スペクトルにおける他の通信システムとの重畳帯域を予め認識する重畳帯域認識ステップと、
     前記受信局装置が、前記重畳帯域に対して干渉抑圧技術を適用する干渉抑圧ステップと、
     前記受信局装置が、前記干渉抑圧技術を適用した信号を誤り訂正復号することで自受信局装置宛のマルチキャリア信号を受信する誤り訂正復号ステップと、
     をさらに有し、
     前記制御ステップは、
     各スペクトルの帯域幅と、各スペクトルが他のスペクトルと重畳する予め決められた重畳帯域幅から前記重畳率を導いて、前記重畳率が各スペクトルで一定となるように各スペクトルを配置するスペクトル配置ステップと、
     自通信システムに配置されたスペクトルを割り当てるスペクトル割り当てステップと
     を有し、
     前記送信ステップにおいて、前記送信局装置が、前記自通信システムに割り当てられた前記スペクトルを用いて前記マルチキャリア信号を送信する請求項1に記載の通信方法。
  3.  前記スペクトルの帯域幅は前記通信システムごとに可変であり、
     前記スペクトル配置ステップにおいて、
     前記スペクトルのうち、他のスペクトルよりも帯域幅が狭い2つのスペクトルを前記利用周波数帯域の端部に配置するとともに、前記重畳率が各スペクトルで一定となるように各スペクトルを配置する請求項2に記載の通信方法。
  4.  前記干渉抑圧ステップは、
     周波数フィルタを用いて前記認識した重畳帯域の受信信号を減衰させることで干渉抑圧を行う
     請求項2または請求項3のいずれかに記載の通信方法。
  5.  前記干渉抑圧ステップは、
     前記認識した重畳帯域の受信信号の尤度をマスクし、
     前記誤り訂正復号ステップは、
     前記尤度をマスクされた受信信号に対して誤り訂正復号することで自受信局装置宛の前記マルチキャリア信号を受信する
     請求項2または請求項3のいずれかに記載の通信方法。
  6.  前記スペクトル配置ステップは、
     前記受信局装置に設けられた干渉信号検出部によって検出された結果に基づいて前記スペクトルを配置する
     請求項2または請求項3のいずれかに記載の通信方法。
  7.  前記スペクトル配置ステップは、
     前記送信局装置に設けられた干渉信号検出部によって検出された結果に基づいて前記スペクトルを配置する
     請求項2または請求項3のいずれかに記載の通信方法。
  8.  前記スペクトル配置ステップは、
     前記送信局装置及び前記受信局装置のいずれとも異なる制御局装置に設けられた干渉信号検出部によって検出された結果に基づいて前記スペクトルを配置する
     請求項2または請求項3のいずれかに記載の通信方法。
  9.  ユーザのデータの符号化及び変調を行なう符号化・変調ステップと、
     前記ユーザのサービス品質要求が所定のサービス品質よりも高い場合に、当該ユーザのデータ送信に使用する周波数帯域における干渉帯域の割合である重畳率を、前記マルチキャリア信号が使用する周波数帯域における干渉帯域の割合である重畳率よりも低く設定する重畳率判定ステップと、
     前記重畳率判定ステップにおいて設定された重畳率に従って、前記符号化・変調ステップにおいて符号化及び変調されたユーザのデータを非干渉帯域及び干渉帯域のサブキャリアへ割り当てるサブキャリア割当ステップと、
     前記符号化・変調ステップにおいて符号化及び変調されたユーザのデータを、前記サブキャリア割当ステップにおいて割り当てられたサブキャリアに変調するマルチキャリア変調ステップと、
     前記マルチキャリア変調ステップにおいて変調されたサブキャリアをシリアル変換して前記マルチキャリア信号を生成する並列直列変換ステップと、
     を有する請求項1に記載の通信方法。
  10.  前記符号化・変調ステップにおいては、複数の異なるユーザのデータの符号化及び変調を行ない、
     前記重畳率判定ステップにおいては、ユーザ全体の平均重畳率が、前記マルチキャリア信号の使用する周波数帯域における干渉帯域の割合である重畳率と一致するように、複数の前記ユーザそれぞれについて、当該ユーザのサービス品質要求が前記所定のサービス品質よりも高い場合には、当該ユーザの重畳率を前記マルチキャリア信号の使用する周波数帯域における干渉帯域の割合である前記重畳率よりも低く設定し、当該ユーザのサービス品質要求が前記所定のサービス品質よりも低い場合に、当該ユーザの重畳率を前記マルチキャリア信号の使用する周波数帯域における干渉帯域の割合である重畳率よりも高く設定し、
     前記サブキャリア割当ステップにおいては、各ユーザそれぞれについて、前記重畳率判定ステップにおいて設定された当該ユーザの重畳率に従って、前記符号化・変調ステップにおいて符号化及び変調された当該ユーザのデータを非干渉帯域及び干渉帯域のサブキャリアへ割り当て、
     前記マルチキャリア変調ステップにおいては、各ユーザそれぞれについて、前記符号化・変調ステップにおいて符号化及び変調された当該ユーザのデータを、前記サブキャリア割当ステップにおいて当該ユーザのデータへ割り当てられたサブキャリアに変調する請求項9に記載の通信方法。
  11.  複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する送信局装置及び受信局装置から構成される通信システムが3以上同時に通信を行う際に、スペクトル配置を決める制御局装置であって、
     前記スペクトルにおける他の通信システムとの重畳帯域の干渉信号を検出する干渉信号検出部と、
     各スペクトルの帯域幅と、各スペクトルが他のスペクトルと重畳する予め決められた重畳帯域幅から重畳率を導いて、前記重畳率が各スペクトルで一定となるように各スペクトルを配置するスペクトル配置部と、
     割り当てられた前記スペクトルを用いて前記マルチキャリア信号を送信する前記送信局装置と、配置された前記スペクトルにおける他の通信システムとの重畳帯域を認識し、前記重畳帯域に対して干渉抑圧技術を適用して、信号を誤り訂正復号することで自受信局装置宛のマルチキャリア信号を受信する前記受信局装置とが通信を行う通信システムに配置したスペクトルを割り当てるスペクトル割り当て部と、
     自通信システムの前記送信局装置及び他の通信システムに対して、割り当てたスペクトルを通知する制御情報配信部と、
    を備える制御局装置。
  12.  複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する送信局装置及び受信局装置から構成される通信システムにおける送信局装置であって、
     前記マルチキャリア信号の送信に利用する利用周波数帯域の周波数利用効率を増加させるように、前記利用周波数帯域において干渉が発生している重畳帯域を利用する割合である重畳率を設定する制御部と、
     設定された前記重畳率に従って割り当てられたスペクトルを用いて、前記マルチキャリア信号を送信する送信部と
     を具備する送信局装置。
  13.  前記通信システムが3以上同時に通信を行い、
     前記制御部は、
     各スペクトルの帯域幅と、各スペクトルが他のスペクトルと重畳する予め決められた重畳帯域幅から前記重畳率を導いて、前記重畳率が各スペクトルで一定となるように各スペクトルを配置するスペクトル配置部と、
     自通信システムに配置されたスペクトルを割り当てるスペクトル割り当て部と
     を備える請求項12に記載の送信局装置。
  14.  前記スペクトルの配置を行うために前記スペクトルにおける他の通信システムとの重畳帯域の干渉信号を検出する干渉信号検出部を備える請求項13に記載の送信局装置。
  15.  ユーザのデータの符号化及び変調を行なう符号化・変調部と、
     前記ユーザのサービス品質要求が所定のサービス品質よりも高い場合に、当該ユーザのデータ送信に使用する周波数帯域における干渉帯域の割合である重畳率を、前記マルチキャリア信号が使用する周波数帯域における干渉帯域の割合である重畳率よりも低く設定する重畳率判定部と、
     前記重畳率判定部によって設定された重畳率に従って、前記符号化・変調部により符号化及び変調されたユーザのデータを非干渉帯域及び干渉帯域のサブキャリアへ割り当てるサブキャリア割当部と、
     前記符号化・変調部により符号化及び変調されたユーザのデータを、前記サブキャリア割当部によって割り当てられたサブキャリアに変調するマルチキャリア変調部と、
     前記マルチキャリア変調部により変調されたサブキャリアをシリアル変換して前記マルチキャリア信号を生成する並列直列変換部と、
     を備える請求項12に記載の送信局装置。
  16.  前記符号化・変調部を複数備え、
     複数の前記符号化・変調部それぞれが異なるユーザのデータの符号化及び変調を行ない、
     前記重畳率判定部は、ユーザ全体の平均重畳率が、前記マルチキャリア信号の使用する周波数帯域における干渉帯域の割合である重畳率と一致するように、複数の前記ユーザそれぞれについて、当該ユーザのサービス品質要求が前記所定のサービス品質よりも高い場合には、当該ユーザの重畳率を前記マルチキャリア信号の使用する周波数帯域における干渉帯域の割合である前記重畳率よりも低く設定し、当該ユーザのサービス品質要求が前記所定のサービス品質よりも低い場合には、当該ユーザの重畳率を前記マルチキャリア信号が使用する周波数帯域における干渉帯域の割合である重畳率よりも高く設定し、
     前記サブキャリア割当部は、各ユーザそれぞれについて、前記重畳率判定部によって設定された当該ユーザの重畳率に従って、前記符号化・変調部により符号化及び変調された当該ユーザのデータを非干渉帯域及び干渉帯域のサブキャリアへ割り当て、
     前記マルチキャリア変調部は、各ユーザそれぞれについて、前記符号化・変調部により符号化及び変調された当該ユーザのデータを、前記サブキャリア割当部によって当該ユーザのデータへ割り当てられたサブキャリアに変調する請求項15に記載の送信局装置。
  17.  前記重畳率判定部は、前記ユーザのデータの受信品質が所定の閾値よりも高い場合に、当該ユーザの重畳率を高く設定し、前記ユーザのデータの受信品質が前記所定の閾値よりも低い場合に、当該ユーザの重畳率を低く設定する請求項16に記載の送信局装置。
  18.  前記重畳率判定部により設定された重畳率に基づいて変調符号化レベルを決定する変調符号化レベル決定部をさらに備え、
     前記符号化・変調部は、前記変調符号化レベル決定部によって決定された変調符号化レベルにより前記ユーザのデータの符号化及び変調を行なう請求項15から請求項17のいずれかの項に記載の送信局装置。
  19.  複数のサブキャリアを含むスペクトルを用いてマルチキャリア信号を送受信する送信局装置及び受信局装置から構成される通信システムが3以上同時に通信を行う際に、スペクトル配置を決める通信システムであって、
     各スペクトルの帯域幅と、各スペクトルが他のスペクトルと重畳する予め決められた重畳帯域幅から重畳率を導いて、前記重畳率が各スペクトルで一定となるように各スペクトルを配置するスペクトル配置部と、
     配置された前記スペクトルを割り当てるスペクトル割り当て部と、
     割り当てられた前記スペクトルを用いて前記マルチキャリア信号を送信する送信部と、
     割り当てられた前記スペクトルにおける他の通信システムとの重畳帯域を認識し、前記重畳帯域に対して干渉抑圧技術を適用して、信号を誤り訂正復号することで自受信部宛のマルチキャリア信号を受信する受信部と、
     を備える通信システム。
PCT/JP2009/006594 2008-12-04 2009-12-03 制御局装置、送信局装置、通信方法、及び通信システム WO2010064438A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010541243A JP5127932B2 (ja) 2008-12-04 2009-12-03 制御局装置、送信局装置、通信方法、及び通信システム
EP09830208.6A EP2352351B1 (en) 2008-12-04 2009-12-03 Control station apparatus, transmitter station apparatus and communication method
KR1020117011742A KR101320010B1 (ko) 2008-12-04 2009-12-03 제어국 장치, 송신국 장치, 통신 방법 및 통신 시스템
CN200980147020.9A CN102224759B (zh) 2008-12-04 2009-12-03 控制站装置、发送站装置、通信方法和通信系统
US13/128,206 US8798024B2 (en) 2008-12-04 2009-12-03 Control station device, transmitting station device, communication method, and communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-309815 2008-12-04
JP2008309815 2008-12-04
JP2008322865 2008-12-18
JP2008-322865 2008-12-18

Publications (1)

Publication Number Publication Date
WO2010064438A1 true WO2010064438A1 (ja) 2010-06-10

Family

ID=42233096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006594 WO2010064438A1 (ja) 2008-12-04 2009-12-03 制御局装置、送信局装置、通信方法、及び通信システム

Country Status (6)

Country Link
US (1) US8798024B2 (ja)
EP (1) EP2352351B1 (ja)
JP (1) JP5127932B2 (ja)
KR (1) KR101320010B1 (ja)
CN (1) CN102224759B (ja)
WO (1) WO2010064438A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018002A1 (ja) * 2010-08-06 2012-02-09 シャープ株式会社 無線通信システム、通信装置、通信方法、及び通信プログラム
JP2012147253A (ja) * 2011-01-12 2012-08-02 Toshiba Corp 無線通信装置
JP5399412B2 (ja) * 2008-12-19 2014-01-29 日本電信電話株式会社 無線通信システム、及び無線通信方法
JP2014192840A (ja) * 2013-03-28 2014-10-06 Noritz Corp 通信装置
JP2015027069A (ja) * 2013-07-29 2015-02-05 エフシーアイ インク Ofdm受信信号の処理方法及びこれを用いたofdm受信装置
JP2015057905A (ja) * 2014-10-29 2015-03-26 シャープ株式会社 無線制御装置、無線端末装置、無線通信システム、制御プログラムおよび集積回路
KR101534583B1 (ko) * 2011-11-07 2015-07-07 퀄컴 인코포레이티드 플렉서블 대역폭 시스템들에 대한 역방향 링크 스루풋 관리
JP2017535155A (ja) * 2014-10-03 2017-11-24 クゥアルコム・インコーポレイテッドQualcomm Incorporated Ue支援型干渉学習
JP2017536769A (ja) * 2014-11-24 2017-12-07 華為技術有限公司Huawei Technologies Co.,Ltd. 信号伝送装置および信号伝送方法、ならびにワイヤレスアクセスノード

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968605B1 (ko) * 2011-11-17 2019-04-15 삼성전자주식회사 무선 전력 전송에서의 데이터 통신를 위한 방법 및 장치
CN103813346A (zh) * 2012-11-08 2014-05-21 华为技术有限公司 一种通信信号传输方法、装置及系统
US8948324B2 (en) * 2012-12-05 2015-02-03 Harris Corporation Communications device and related method that detects radio frequency (RF) interferer on a communications channel
CN103068053B (zh) * 2013-01-09 2018-02-16 中兴通讯股份有限公司 一种应用于集群通信系统的干扰抑制方法及装置
CN105557009A (zh) * 2013-04-19 2016-05-04 新加坡科技研究局 一种执行通信网络的操作的方法以及网络组件
JP2015032992A (ja) * 2013-08-02 2015-02-16 株式会社東芝 受信装置および受信方法
KR101769785B1 (ko) * 2013-11-01 2017-08-21 한국전자통신연구원 레이더 신호 처리 장치 및 레이더 신호 처리 방법
US9882756B2 (en) 2014-01-16 2018-01-30 Crestcom, Inc. Communication system with PAPR management using noise-bearing subcarriers
CN104811287B (zh) * 2014-01-29 2018-06-22 晨星半导体股份有限公司 多载波信号的接收方法与接收器
JP7099391B2 (ja) * 2019-04-02 2022-07-12 日本電信電話株式会社 無線通信特性評価方法および無線通信特性評価装置
CN110987014B (zh) * 2019-12-13 2024-02-23 西安航天精密机电研究所 光纤陀螺信号处理电路信号干扰检测方法、存储介质及计算机设备
CN113630209B (zh) * 2020-05-08 2023-11-07 中国科学院大学 基于窄带解码的WiFi到低功耗蓝牙(BLE)跨技术通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007047503A1 (en) * 2005-10-14 2007-04-26 Qualcomm Incorporated Methods and apparatus for determining, communicating and using information including loading factors for interference control
JP2008017074A (ja) * 2006-07-05 2008-01-24 Nec Corp セルラシステム及びその周波数キャリア割当方法並びにそれに用いる基地局制御装置及び基地局
WO2008126602A1 (ja) * 2007-03-16 2008-10-23 Ntt Docomo, Inc. 通信システム、送信装置、受信装置及び通信方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493331B1 (en) * 2000-03-30 2002-12-10 Qualcomm Incorporated Method and apparatus for controlling transmissions of a communications systems
JP3732830B2 (ja) 2002-10-10 2006-01-11 松下電器産業株式会社 マルチキャリア送信装置及びマルチキャリア送信方法
DE10350063A1 (de) * 2003-10-27 2005-05-25 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur Messung von Funkstörpegeln mit Frequenznachführung
KR100587975B1 (ko) * 2004-11-30 2006-06-08 한국전자통신연구원 이동통신 시스템에서의 다중대역 무선접속 시스템간주파수 공유를 통한 적응형 스펙트럼 할당 방법 및 그를이용한 시스템 제어 방법
US7620018B2 (en) * 2005-02-02 2009-11-17 Samsung Electronics Co., Ltd. Apparatus and method for a multi-channel orthogonal frequency division multiplexing wireless network
US20080031205A1 (en) * 2006-08-02 2008-02-07 Mika Kahola Scalable WLAN wireless communications device and radio for WPAN and WRAN operation
US7813701B2 (en) * 2006-08-29 2010-10-12 Piping Hot Networks Limited Interference optimized OFDM
US20080240032A1 (en) * 2007-03-27 2008-10-02 Clearwire Corporation System and method for condensed frequency reuse in a wireless communication system
US7929623B2 (en) * 2007-03-30 2011-04-19 Microsoft Corporation FEC in cognitive multi-user OFDMA
US7796698B2 (en) * 2007-06-04 2010-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Interference suppression in a multicarrier receiver
JP4575409B2 (ja) * 2007-08-22 2010-11-04 株式会社東芝 無線通信装置
GB0720559D0 (en) * 2007-10-19 2007-11-28 Fujitsu Ltd MIMO wireless communication system
US8374130B2 (en) * 2008-01-25 2013-02-12 Microsoft Corporation Orthogonal frequency division multiple access with carrier sense
US8331482B2 (en) * 2008-12-22 2012-12-11 Industrial Technology Research Institute System and method for subcarrier allocation and permutation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007047503A1 (en) * 2005-10-14 2007-04-26 Qualcomm Incorporated Methods and apparatus for determining, communicating and using information including loading factors for interference control
JP2008017074A (ja) * 2006-07-05 2008-01-24 Nec Corp セルラシステム及びその周波数キャリア割当方法並びにそれに用いる基地局制御装置及び基地局
WO2008126602A1 (ja) * 2007-03-16 2008-10-23 Ntt Docomo, Inc. 通信システム、送信装置、受信装置及び通信方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIDEO KOBAYASHI: "Triceps Co.", 2004, article "Fundamental and Applied Technology of OFDM Communication Scheme", pages: 113 - 130
JUN MASHINO ET AL.: "OFDMA Musen System ni Okeru Subcarrier Overlap ni Kansuru Ichi Kento", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, 5 March 2008 (2008-03-05), pages 516 - ABSTR B-5-130, XP008146915 *
JUN MASHINO, MAMORU AKIMOTO, MASASHI NAKATSUGAWA: "Proceedings of the 2008 IEICE General Conference", vol. B-5-130, March 2008, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, article "A Study on Subcarrier Overlapping for OFDMA Wireless Systems", pages: 516
See also references of EP2352351A4
TSUYOSHI YOKOTA ET AL.: "A Study on High Speed Wireless LAN System employing Superposed Transmission Scheme", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, TECHNICAL REPORT OF IEICE RCS, vol. 99, no. 355, October 1999 (1999-10-01), pages 121 - 126
TSUYOSHI YOKOTA ET AL.: "Chojo Densoho o Mochiita Kosoku Musen LAN System ni Kansuru Ichi Kento", IEICE TECHNICAL REPORT, RCS99-139, 15 October 1999 (1999-10-15), pages 121 - 126, XP008146920 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399412B2 (ja) * 2008-12-19 2014-01-29 日本電信電話株式会社 無線通信システム、及び無線通信方法
US8644404B2 (en) 2008-12-19 2014-02-04 Nippon Telegraph And Telephone Corporation Wireless communication system and wireless communication method
US9179442B2 (en) 2010-08-06 2015-11-03 Sharp Kabushiki Kaisha Wireless communication system, communication apparatus, communication method, and communication program
JP2012039382A (ja) * 2010-08-06 2012-02-23 Sharp Corp 無線通信システム、通信装置、通信方法、及び通信プログラム
WO2012018002A1 (ja) * 2010-08-06 2012-02-09 シャープ株式会社 無線通信システム、通信装置、通信方法、及び通信プログラム
JP2012147253A (ja) * 2011-01-12 2012-08-02 Toshiba Corp 無線通信装置
KR101534583B1 (ko) * 2011-11-07 2015-07-07 퀄컴 인코포레이티드 플렉서블 대역폭 시스템들에 대한 역방향 링크 스루풋 관리
JP2014192840A (ja) * 2013-03-28 2014-10-06 Noritz Corp 通信装置
JP2015027069A (ja) * 2013-07-29 2015-02-05 エフシーアイ インク Ofdm受信信号の処理方法及びこれを用いたofdm受信装置
JP2017535155A (ja) * 2014-10-03 2017-11-24 クゥアルコム・インコーポレイテッドQualcomm Incorporated Ue支援型干渉学習
US11139913B2 (en) 2014-10-03 2021-10-05 Qualcomm Incorporated UE assisted interference learning
JP2015057905A (ja) * 2014-10-29 2015-03-26 シャープ株式会社 無線制御装置、無線端末装置、無線通信システム、制御プログラムおよび集積回路
JP2017536769A (ja) * 2014-11-24 2017-12-07 華為技術有限公司Huawei Technologies Co.,Ltd. 信号伝送装置および信号伝送方法、ならびにワイヤレスアクセスノード
US10470046B2 (en) 2014-11-24 2019-11-05 Huawei Technologies Co., Ltd. Signal transmission apparatus and method, and wireless access node
US11019499B2 (en) 2014-11-24 2021-05-25 Huawei Technologies Co., Ltd. Signal transmission apparatus and method, and wireless access node

Also Published As

Publication number Publication date
EP2352351A4 (en) 2012-04-11
KR20110090944A (ko) 2011-08-10
CN102224759B (zh) 2014-12-24
EP2352351A1 (en) 2011-08-03
EP2352351B1 (en) 2015-02-25
US20110211646A1 (en) 2011-09-01
US8798024B2 (en) 2014-08-05
JP5127932B2 (ja) 2013-01-23
KR101320010B1 (ko) 2013-10-18
JPWO2010064438A1 (ja) 2012-05-10
CN102224759A (zh) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5127932B2 (ja) 制御局装置、送信局装置、通信方法、及び通信システム
JP5247822B2 (ja) 通信システム、送信装置、受信装置、送信方法及び通信方法
JP5247915B2 (ja) 移動通信システムにおけるハイブリッド多重アクセス装置及び方法
JP4575318B2 (ja) 基地局、無線端末および無線通信方法
JP5602849B2 (ja) ワイヤレス・システムにおける干渉低減のための方法および装置
KR100943572B1 (ko) 직교 주파수 분할 다중 접속 시스템에서 주파수재사용율을 고려한 적응적 부채널 할당 장치 및 방법
JP5480262B2 (ja) 直交周波数多重接続方式の移動通信システムにおいて複数の周波数帯域に資源を割り当てる方法及び装置
US8670298B2 (en) Method, system and apparatus for signal generation and message transmission in broadband wireless communications
RU2472292C2 (ru) Устройство и способ назначения поднесущих при кластерном мультиплексировании с ортогональным частотным разделением и дискретным преобразованием фурье
KR100995830B1 (ko) 이동 통신 시스템에서 채널 상태 정보를 이용한 데이터 송수신 방법 및 시스템
WO2006011524A1 (ja) 無線送信装置および無線受信装置
WO2013084908A1 (ja) 基地局装置、無線通信システム、無線通信装置、周波数帯域割り当て方法およびプログラム
JP5180112B2 (ja) 無線基地局装置、移動端末装置及び無線通信方法
JP6088596B2 (ja) 受信装置、送信装置及び無線通信方法
Kang et al. Simulation analysis of prototype filter bank multicarrier cognitive radio under different performance parameters
CN103634256B (zh) 基带信号的旁瓣功率抑制、旁瓣功率抑制处理方法及装置
JP5014318B2 (ja) スペクトル配置方法、制御局装置、送信局装置、受信局装置及び通信システム
JP5063573B2 (ja) スペクトル配置方法、制御局装置、送信局装置、受信局装置及び通信システム
JP2011119826A (ja) 送信装置、及び送信方法
KR20050031840A (ko) 직교 주파수 분할 다중 접속 통신 시스템에서 전송률보장을 위한 데이터 송수신 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147020.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830208

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010541243

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13128206

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009830208

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117011742

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE