WO2010064381A1 - リアルタイム制御ネットワークシステム - Google Patents
リアルタイム制御ネットワークシステム Download PDFInfo
- Publication number
- WO2010064381A1 WO2010064381A1 PCT/JP2009/006340 JP2009006340W WO2010064381A1 WO 2010064381 A1 WO2010064381 A1 WO 2010064381A1 JP 2009006340 W JP2009006340 W JP 2009006340W WO 2010064381 A1 WO2010064381 A1 WO 2010064381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference signal
- controller
- communication cycle
- transmission
- processing unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L12/403—Bus networks with centralised control, e.g. polling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L2012/40208—Bus networks characterized by the use of a particular bus standard
- H04L2012/40241—Flexray
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L2012/40267—Bus for use in transportation systems
- H04L2012/40273—Bus for use in transportation systems the transportation system being a vehicle
Definitions
- the present invention relates to a real-time control network system used for real-time processing, and is used for a vehicle control network, an industrial computer, and the like.
- a network for time-synchronized communication is used in order to ensure real-time communication.
- a method of time synchronous communication for example, there is FlexRay.
- FlexRay one communication cycle is called a communication cycle.
- the communication cycle is composed of a plurality of slots, and is assigned in advance to each controller on the network. Each controller performs a frame transmission process or a frame reception process during the assigned slot.
- FIG. 1 is a schematic configuration diagram showing a configuration of an in-vehicle network and a controller using a time synchronous communication network.
- each controller 1, 2 connected to a network is mainly composed of a processor 11, a memory 12, and a communication control device 13.
- the communication control device 13 counts the communication cycle and holds it in the communication cycle counter 14.
- Each of the communication control devices 13 of the controller 1 and the controller 2 exchanges the communication cycle 1004 between the communication control devices, and controls so as to always have the same value.
- the slot counter 18 is counted up with the communication cycle start time as 0.
- the filtering condition 17 defines the conditions of the communication cycle and the slot value when performing frame transmission and frame reception.
- the communication control device 13 transmits a frame whose communication cycle and slot value match from the transmission buffer 15 assigned for each frame.
- the communication control device 13 receives a frame whose slot value matches the communication cycle based on the filtering condition 17 from the network 3 and stores it in the reception buffer 16 that is statically assigned to each frame. To do.
- FIG. 14 shows an example of slot assignment in the case where frames A and C are periodically transmitted from the controller 1 to the controller 2.
- the cycle length of the communication cycle is 10 msec (the length of the communication cycle counter), and the communication cycle of each frame is 20 msec (2 in terms of the communication cycle counter).
- the number of frames A and C can be transmitted and received using the same slot.
- the filtering condition 17 is limited to a power of 2 in which the communication cycle is from 1 to 64, that is, 1, 2, 4, 8, 16, 32, 64. Therefore, frame transmission / reception other than these communication cycles needs to be implemented by software stored in the memory 12.
- the communication cycle of frame B is 30 msec (3 when converted to a communication cycle), and the communication cycle for performing frame B communication circulates as 0, 3, 2, 1, 0. Accordingly, since it is impossible to synchronize from which communication cycle of the above-mentioned communication cycle communication is started between the transmission controller and the reception controller, there is a communication cycle in which the reception side controller receives the frame B from the transmission side controller. do not know. Therefore, the transmission side controller transmits the frame B every communication cycle using the continuous transmission mode of the static segment or the dynamic segment. The receiving controller receives frame B every time the communication cycle counter advances by 3. In this method, the slot 1 is occupied by the frame B, but the efficiency is poor because only 1/3 of the network bandwidth can be used.
- the transmission controller performs cycle control.
- the frame B is transmitted from the transmission side controller every communication cycle 3 using the single shot mode of the static segment or the dynamic segment.
- the receiving-side controller reads the frame B every communication cycle, and therefore reads the reception buffer in slot 1. If there is no new frame in the reception buffer, it is determined that the communication cycle is not to be received. Even in this method, the slot 1 is occupied by the frame B, but the efficiency is poor because only 1/3 of the network bandwidth can be used. Further, since the processor 11 of the receiving controller must read the receiving buffer every communication cycle, the overhead is large.
- An object of the present invention is to provide a real-time control network system that improves the network usage efficiency and reduces the overhead of the processor of the controller even when the same communication cycle as the frame cannot be set as the filtering condition of the communication control device. It is to provide an in-vehicle network system.
- the real-time control network system of the present invention has one or more reference signal transmission controllers that broadcast a reference signal on a time-synchronized network, and all the controllers perform transmission processing or reception processing in synchronization with the reference signal. It is characterized by starting.
- a plurality of controllers are connected via a bus, and each controller designates a slot and transmits a frame for each communication cycle, and a frame from the designated slot.
- the communication cycle is counted again from 0 when counted from 0 to the maximum value, and the plurality of controllers are ,
- At least one reference signal transmission controller having a reference signal generation unit that receives the communication cycle and generates a reference signal that is a reference for starting transmission or reception of the frame, and a reference signal transmission unit that transmits the reference signal And a reference signal receiving unit for receiving the reference signal.
- At least one reference signal receiving controller each controller further comprising a communication cycle updating unit for maintaining the same communication cycle among a plurality of controllers, and when the transmission processing unit starts transmission or the reception processing unit
- a filtering condition table having a communication cycle and a reference signal when the reception starts, and comparing the reference signal, the communication cycle, and the filtering condition table, and the communication cycle and the reference signal are set as conditions of the filtering condition table.
- a filtering processing unit that activates the transmission processing unit or the reception processing unit when they match.
- another real-time control network includes a plurality of controllers connected via a bus, and each controller includes a transmission processing unit that designates a slot and transmits a frame for each communication cycle, and a designated slot.
- the communication cycle is counted again from 0 when counted from 0 to the maximum value.
- a communication cycle update unit that maintains the same communication cycle between a plurality of controllers, a reference signal generation unit that receives the communication cycle and generates a reference signal that is a reference for starting transmission or reception of the frame, and the reference signal
- a reference signal transmitter for transmitting the reference signal and a reference signal for receiving the reference signal Communication unit
- a switching unit that selects one of the reference signal of the reference signal transmission unit and the reference signal of the reference signal reception unit, and a communication cycle in which the transmission processing unit starts transmission or the reception processing unit starts reception
- a filtering condition table having the reference signal
- a filtering processing unit that activates the transmission processing unit or the reception processing unit when the reference signal passed from the switching unit matches the communication cycle and the filtering condition table. It is what you have.
- the reference signal transmission controller or the reference signal reception controller captures the frame in synchronization with the frame of the reference signal transmission controller. Periodic transmission is possible. Therefore, the use efficiency of the network can be improved, and the overhead of the processor of the controller can be reduced.
- FIG. 1 is a schematic diagram showing a hardware configuration of a real-time control network system (hereinafter referred to as “network system”) according to the first embodiment.
- network system a real-time control network system
- the hardware configuration of a plurality of controllers (two in the figure) 1 and 2 connected to the network 3 is basically the same as the controller in the conventional network system.
- 2 includes a processor 11, a memory 12, and a communication control device 13, each connected by a bus (internal bus). Although only two controllers are shown in the figure, the number of controllers may be three or more, and the controller 2 has the same configuration as the controller 1.
- Each controller functions as either a reference signal transmission controller that transmits a reference signal, which will be described later, or a reference signal reception controller that receives a reference signal.
- the plurality of controllers includes at least one reference signal transmission controller and at least one reference signal transmission controller. It consists of two reference signal receiving controllers.
- the controller that is first turned on (started up) is the reference signal transmission controller, and the other controllers are the reference signal reception controllers.
- a controller that outputs a network synchronization signal among a plurality of controllers may be used as a reference signal transmission controller.
- the processor 11 executes a program stored in the memory 12 and reads / writes data stored in the memory 12.
- the communication control device 13 is hardware that performs time-synchronized communication, and has the same function as the FlexRay communication controller.
- the communication control device 13 includes a communication cycle counter 14, a transmission buffer 15, a reception buffer 16, a filter (filtering condition) 17, and a slot counter 18.
- the communication control device 13 counts the communication cycle and holds it in the communication cycle counter 14.
- the communication control device 13 of the controller 1 and the communication control device of the controller 2 are controlled so as to always have the same value by exchanging the communication cycle 1004 between the communication control devices.
- the slot counter 18 is counted up with the communication cycle start time as 0.
- the filtering condition 17 defines the communication cycle and slot value conditions when frame transmission and frame reception are performed using a static segment. In frame transmission, based on the filtering condition 17, the communication control device 13 transmits a frame whose communication cycle and slot value match from the transmission buffer 15 assigned for each frame.
- the communication control device 13 receives a frame whose slot value matches the communication cycle based on the filtering condition 17 from the network 3 and stores it in the reception buffer 16 that is statically assigned to each frame. To do.
- the communication control device 13 transmits a frame from the transmission buffer 15 when the filtering condition 17 is satisfied and a transmission request is made from the processor 11.
- FIG. 2 is a schematic block diagram showing the software configuration of the reference signal transmission controller.
- the software shown in FIG. 2 is held in the memory 12 and executed by the processor 11.
- the reference signal transmission controller and the reference signal reception controller are implemented by software, but may be implemented as hardware.
- the reference signal transmission controller program includes a filtering unit 1001, a transmission processing unit 1002, a reception processing unit 1003, a communication cycle update unit 1006, a round count unit 1007, and a reference signal transmission unit 1011.
- the data of the reference signal transmission controller includes a communication cycle 1004, a filtering condition table 1005, and a round value 1008.
- the reference signal is a signal that serves as a reference for starting transmission or reception of a frame.
- a round value 1008 is used as the reference signal.
- a reference signal generation unit 1021 is configured by a round count unit 1007 that is a program and a round value that is data.
- the communication cycle update unit 1006 is a program that copies the communication cycle counter 14 to the communication cycle at the beginning of the communication cycle and keeps the communication cycle 1004 of all controllers the same.
- the communication cycle update unit 1006 is activated by a global timer interrupt synchronized with the clock of the communication control device 13.
- the global timer interrupt is set to a timing with sufficient time until the next reference signal transmission even if the round count unit 1007 or the reference signal transmission unit 1011 is executed, such as the head of NIT (network idle time). .
- the round count unit 1007 is called.
- the round count unit 1007 is a program that counts the round value 1008.
- the round count unit 1007 sets the round value 1008 to 0 when the controller power is turned on. Thereafter, the communication cycle 1004 is read, and the round value 1008 is incremented by 1 every time the communication cycle 1004 reaches the maximum value.
- the round count unit 1007 holds the maximum value of the round value 1008. After the round value 1008 is increased by 1, if “round value 1008 ⁇ maximum value of round value 1008” is satisfied, the round value 1008 is cleared to zero. When the round value is increased or cleared, the reference signal transmission unit 1011 is called.
- the maximum value of the round is preferably the least common multiple of the transmission / reception cycle of all frames.
- the transmission / reception timing of all the frames can be determined by a combination of the unique round value 1008 and the communication cycle 1004.
- the reference signal transmission unit 1011 transmits the round value 1008 in a statically determined cycle and in a slot assigned in advance. Specifically, a reference signal frame including a round value is written to the transmission buffer 16, and transmission is activated in the case of a dynamic frame.
- the transmission timing of the round value 1008 is a communication cycle or every communication cycle when the round value increases (or clears).
- the filtering processing unit 1001 is a program that activates the transmission processing unit 1002 or the reception processing unit 1003 based on the communication cycle, the round value, and the conditions of the filtering condition table 1005.
- the filtering processing unit 1001 is activated by a global timer interrupt synchronized with the clock of the communication control device 13.
- the global timer interrupt is set at a timing such as the head of NIT (network idle time) that has sufficient time to execute the transmission processing unit 1002 and the reception processing unit 1003.
- the filtering processing unit 1001 reads the communication cycle 1004 and the round value 1008 after activation. Thereafter, an entry that matches the combination of the communication cycle 1004 and the round value 1008 is detected from the filtering condition table 1005.
- FIG. 5A and FIG. 5B are the filtering condition table 1005 of this embodiment. As shown in FIGS. 5A and 5B, a round value, a communication cycle, a reception frame ID, and a transmission frame ID are stored in each entry.
- the filtering processing unit 1001 calls the transmission processing unit 1002 using the transmission frame ID of the entry as an argument. Also, the reception processing unit 1003 is called using the received frame ID of the detected entry as an argument.
- the transmission processing unit 1002 creates a transmission frame from data generated by the application program. Further, when called from the filtering unit 1001, the transmission processing unit 1002 writes the frame of the transmission frame ID to the transmission buffer 15.
- the communication control device 13 When a dynamic segment is used for frame transmission of the transmission buffer 15, the communication control device 13 is activated for transmission and transmitted over the network.
- the transmission buffer 15 When the static segment is used, the transmission buffer 15 is automatically periodically transmitted for each filtering condition 17 by the communication control device 13, so that the transmission processing unit 1002 does not need to explicitly activate transmission.
- the reception processing unit 1003 When the reception processing unit 1003 is called from the filtering processing unit 1001, the reception processing unit 1003 reads the frame from the reception buffer 16 and stores the received frame. Also, data is extracted from the received frame and passed to the application program. In both cases where a dynamic segment is used for frame reception of the reception buffer 16 and a static segment is used, the reception buffer is read to check whether the latest frame has arrived.
- FIG. 3 is a schematic block diagram showing the software configuration of the reference signal receiving controller.
- the reference signal reception controller program includes a filtering processing unit 1001, a transmission processing unit 1002, a reception processing unit 1003, a communication cycle updating unit 1006, and a reference signal receiving unit 1010.
- the data includes a communication cycle value 1004, a filtering condition table 1005, and a round value 1008.
- the filtering processing unit 1001, the transmission processing unit 1002, the reception processing unit 1003, the communication cycle updating unit 1006, the communication cycle value 1004, the filtering condition table 1005, and the round value 1008 are the above-mentioned reference signal controller.
- the reference signal receiving unit 1010 is different.
- the reference signal receiving unit 1010 is a program that receives the reference signal frame and copies the round value in the frame to the round value 1008.
- the reference signal receiving unit 1010 is activated by a global timer interrupt synchronized with the clock of the communication control device 13 or a reception interrupt of the communication control device 13.
- the filtering condition table in this example is shown in FIGS. 5 (a) and 5 (b).
- frame B is transmitted / received in slot 1 and the round value is transmitted / received in slot 2.
- round 0 is transmitted to all controllers, and the round value 1008 of all controllers becomes 0.
- the filtering processing unit 1001 searches the filtering condition table 1005 and detects an entry that matches the round value 1008 and the communication cycle 1004.
- the filtering processing unit 1001 searches the filtering condition table 1005 and transmits / receives a frame every cycle, so that transmission / reception is possible even in a communication cycle that cannot be supported by the filtering condition 17 defined in the communication control device 13. Become.
- the processor 1 of the receiving controller knows the reception timing even in the cycle transmission / reception other than the power of 2, so it is not necessary to read the reception buffer every communication cycle and check the validity of the reception data. Therefore, according to the network system of this embodiment, the network usage efficiency can be improved, and the overhead of the processor of the controller can be reduced.
- the hardware configuration of the network system of this embodiment is basically the same as the hardware configuration of FIG. Further, the reference signal transmission controller and the reference signal reception controller are configured by software as in the previous embodiment. In the previous embodiment, a round value is used as a reference signal. In the present embodiment, a command signal described later is used as a reference signal.
- FIG. 6 is a block diagram showing a software configuration of the reference signal transmission controller.
- the program of the reference signal transmission controller of this embodiment includes a filtering unit 1001, a transmission processing unit 1002, a reception processing unit 1003, a communication cycle update unit 1006, a round count unit 1007, a reference signal transmission unit 1011, and The command signal generation unit 1014 is configured.
- the data of the reference signal transmission controller includes a communication cycle 1004, a filtering condition table 1005, a round value 1008, a command signal 1012, and a command signal condition table 1018.
- the reference signal generation unit 1022 includes the round count unit 1007 and the command signal generation unit 1014 that are programs, and the round value 1008, the command signal 1012, and the command signal condition table 1018 that are data.
- the command signal generation unit 1014 is a program that creates a command to be a reference signal.
- the command signal generation unit 1014 starts execution from the interrupt of the global timer of the communication control device 13 so that command signal generation is in time for the start of the next communication cycle, such as at the end of each cycle.
- the command signal generation unit 1014 reads the round value 1008 and the communication cycle 1004, and calculates the round value and the communication cycle of the next communication cycle. After calculating the round value and the communication cycle, the command signal condition table 1018 is searched for an entry that matches the calculation result.
- FIG. 10 is a diagram showing the configuration of the command signal condition table 1018.
- a round, a communication cycle, and a command signal are recorded in each entry of the command signal condition table 1018.
- the command signal indicates a frame communication period and an offset from the beginning of round 0.
- the frame B transmitted / received at the timing shown in FIG. 4 is transmitted / received every 3 communication cycles from round 0, communication cycle 1, and therefore has a period of 3 and an offset of 1.
- This timing is entered as “period 3 offset 1 communication command” in the command signal condition table 1018.
- a command of one cycle is entered, but a transmission / reception command of a plurality of cycles may be entered.
- the command signal of the entry is written to the command signal 1012, and the reference signal transmission unit 1011 is called using this as an argument. If there is no matching entry, the command signal 1012 is cleared.
- the reference signal transmission unit 1011 When the reference signal transmission unit 1011 is called from the command signal generation unit 1014, the reference signal transmission unit 1011 transmits the command signal 1012 in a slot assigned in advance. Specifically, a reference signal frame including a command signal is written in the transmission buffer 16, and transmission is activated in the case of a dynamic frame.
- the filtering processing unit 1001 is a program that activates the transmission processing unit 1002 or the reception processing unit 1003 based on the command signal 1012 and the filtering condition table 1005.
- the filtering processing unit 1001 is activated by a global timer interrupt synchronized with the clock of the communication control device 13.
- the global timer interrupt is set at a timing such as the head of NIT (network idle time) that has sufficient time to execute the transmission processing unit 1002 and the reception processing unit 1003.
- the filtering processing unit 1001 reads the command signal 1012 after being activated. Thereafter, an entry matching the command signal is detected from the filtering condition table 1005.
- FIG. 9A and FIG. 9B are the filtering condition table 1005 of this embodiment. As shown in FIGS. 9A and 9B, a command signal, a reception frame ID, and a transmission frame ID are stored in each entry.
- the filtering processing unit 1005 detects an entry that matches the condition, the filtering processing unit 1005 calls the transmission processing unit 1002 using the transmission frame ID of the detected entry as an argument. Also, the reception processing unit 1003 is called using the received frame ID of the detected entry as an argument.
- FIG. 7 shows the software configuration of the reference signal reception controller.
- the reference signal reception controller program includes a filtering unit 1001, a transmission processing unit 1002, a reception processing unit 1003, a communication cycle updating unit 1006, and a reference signal receiving unit 1010. Consists of a communication cycle value 1004, a filtering condition table 1005, and a command signal 1012. Among these programs and data, except for the reference signal receiving unit 1010, it is the same as that of the above-mentioned reference signal controller.
- the reference signal receiving unit 1010 is a program that receives the reference signal frame and copies the command signal in the frame to the command signal 1012.
- the reference signal receiving unit 1010 is started every communication cycle from a global timer interrupt synchronized with the clock of the communication control device 13. If no command signal is received, the command signal 1012 is cleared.
- the filtering condition table 1005 in this example is shown in FIGS. 9A and 9B.
- the frame B is transmitted / received in the slot 1, and the command signal is transmitted / received in the slot 2.
- the command signal “period 3 offset 1” is transmitted to all the controllers, and the command signal 1012 of all the controllers becomes zero.
- the filtering processing unit 1001 searches the filtering condition table 1005 and detects an entry that matches the command signal 1012.
- the reference signal transmission controller having the filtering condition table shown in FIG.
- the reference signal receiving controller having the filtering condition table shown in FIG. 9B receives the frame B.
- the filtering processing unit 1004 does not search for an entry, and no controller performs transmission / reception.
- the filtering processing unit 1001 searches the filtering condition table 1005 and transmits / receives a frame, so that transmission / reception is possible even in a cycle that cannot be supported by the filtering condition 17. Therefore, as in the previous embodiment, this embodiment can also improve the network usage efficiency and reduce the overhead of the processor of the controller.
- the hardware configuration of the network system of this embodiment is basically the same as the hardware configuration of FIG.
- the controller of the present embodiment is configured by software as in the above-described embodiment.
- the reference signal transmission controller and the reference signal reception controller are configured by software as in the above-described embodiment.
- another controller (reference signal reception controller) becomes the reference signal transmission controller.
- FIG. 11 shows the software configuration of the controller (reference signal transmission / reception controller).
- the controller has both functions of a reference signal transmission controller and a reference signal reception controller by switching.
- the controller is different from the reference signal transmission controller shown in FIG. 2 and the reference signal reception controller shown in FIG. 3 in that the filtering processing unit 1023 and the round count unit 1024 are different.
- This is a configuration in which a rank table 1016, an error detection unit 1017, and a controller type 1019 are added. Description of the same program and data in FIG. 2 or FIG. 3 is omitted.
- Controller type 1019 is data indicating whether the controller is a “reference signal transmission controller” or a “reference signal reception controller”.
- the controller type 1019 is set by the switching unit 1015.
- the round count unit 1024 is a program that counts the round value 1008, and is the same as the round count unit 1007 described above except the points described below.
- the reference signal transmission unit 1011 is called after counting the round value.
- the round count unit 1024 calls the switching unit 1015 after counting the round value. If the controller type 1019 is “reference signal transmission controller”, the switching unit 1015 calls the reference signal transmission unit 1011.
- the filtering processing unit 1023 is a program that activates the transmission processing unit 1002 or the reception processing unit 1003 when the communication cycle value 1004 and the round values 1008 and 1009 match the conditions of the filtering condition table 1005. Points described below Is the same as the filtering processing unit 1001 described above.
- the above-described filtering processing unit 1001 directly reads the round value 1008, whereas in this embodiment, the filtering processing unit 1023 calls the switching unit 1015. If the controller type 1019 is “reference signal transmission controller”, the switching unit 1015 returns a round value 1008. If the controller type 1019 is “reference signal reception controller”, the round value 1009 is returned.
- the error detection unit 1017 is a program that detects the reception timeout of the reference signal frame from the reference signal transmission controller. When the controller type is “reference signal reception controller”, the error detection unit 1017 sets a timer that is equal to or longer than the transmission cycle of the reference signal frame. If the reference signal receiving unit 1010 receives a correct reference signal frame before the timeout occurs, the timer is reset. If a timeout occurs, the switching unit 1015 is called. The subsequent processing is described in the processing of the switching unit 1015.
- the switching unit 1015 is a program that determines whether the controller functions as a reference signal transmission controller or a reference signal reception controller and switches processing of the round count unit 1007 and the filtering processing unit 1001.
- the switching unit 1015 is called when the controller is activated or when the error detection unit 1017 detects an error after the controller activation is completed.
- the switching unit 1015 searches the priority table 1016 and reads the controller ID having the highest priority. When the controller ID of the controller itself matches the read controller ID, the controller sets the controller type as “reference signal transmission controller”. When the controller ID of the controller itself does not match the read controller ID, the controller type is set to “reference signal receiving controller”.
- FIG. 12 is a diagram showing the priority order table 1016.
- the priority table 1016 has a combination of priority and controller ID.
- the switching unit 1015 is called from the error detection unit 1017 in the controller that is activated as another reference signal receiving controller, and priority is given.
- the new reference signal transmission controller transmits the reference signal frame using the slot used by the previous reference signal transmission controller.
- a new reference signal transmission controller transmits a reference signal frame using its own slot, a predetermined slot is entered in the priority table, and the reference signal reception unit 1010 of the reference signal reception controller It may be switched to receive a slot.
- the use efficiency of the network can be improved, the overhead of the processor of the controller can be reduced, and even if the reference signal transmission controller fails, the other controller becomes the reference signal transmission controller. Other than the failure controller, the periodic transmission can be continued.
- the hardware configuration of the network system of this embodiment is basically the same as the hardware configuration of FIG.
- the controller of the present embodiment is configured by software as in the above-described embodiment.
- the reference signal transmission controller and the reference signal reception controller are configured by software as in the above-described embodiment.
- FIG. 13 shows the software configuration of the controller (reference signal transmission / reception controller).
- the controller has both functions of a reference signal transmission controller and a reference signal reception controller by switching.
- the controller differs from the reference signal transmission controller shown in FIG. 6 and the reference signal reception controller shown in FIG. 7 in that the filtering processing unit 1023 and the command signal generation unit 1025 are different.
- This configuration includes a priority table 1016, an error detection unit 1017, and a controller type 1019. Description of the same program and data in FIG. 6 or FIG. 7 is omitted.
- the switching unit 1015, the error detection unit 1017, the priority order table 1016, and the controller type 1019 are the same as those described in the third embodiment, and thus description thereof is omitted.
- the command signal generation unit 1025 is a program that creates a command to be a reference signal, and is the same as the command signal generation unit 1014 described above except for the points described below.
- the reference signal transmission unit 1011 is called using the command signal 1012 as an argument.
- the command signal generation unit 1025 calls the switching unit 1015 using the command signal 1012 as an argument. .
- the filtering processing unit 1023 is a program that activates the transmission processing unit 1002 or the reception processing unit 1003 when the conditions of the filtering condition table 1005 match. Except for the points described below, the filtering processing unit 1023 performs filtering according to the second embodiment. This is the same as the processing unit 1001. The filtering processing unit 1023 of the second embodiment directly reads the command signal 1013, whereas the filtering processing unit 1023 of the present embodiment calls the switching unit 1015.
- the network usage efficiency can be improved, the processor overhead of the controller can be reduced, and even when the reference signal transmission controller fails. Since the other controller becomes the reference signal transmission controller, the periodic transmission can be continued except for the failure controller.
- the present invention is not limited to the above-described embodiment, and various other ones are assumed.
- the example in which the configuration of each controller is one of the reference signal transmission controller and the reference signal reception controller has been described.
- one controller can perform the reference signal transmission controller and the reference signal reception. It is good also as a structure which has both functions of a controller and switches and uses both functions.
- the configuration shown in FIG. 11 described in the third embodiment is the configuration excluding the priority table and the error detection unit, and in the case of the second embodiment.
- the priority table and the error detection unit are excluded.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Small-Scale Networks (AREA)
Abstract
Description
時間同期通信の方式としては、例えば、FlexRayがある。FlexRayでは、通信の1周期を通信サイクルとよぶ。通信サイクルは複数のスロットで構成され、ネットワーク上の各コントローラに予め割り当てられる。各コントローラは、割り当てられたスロットの間に、フレームの送信処理またはフレームの受信処理を行う。
[第1の実施形態]
図1は、第1の実施形態のリアルタイム制御ネットワークシステム(以下、「ネットワークシステム」と称する)のハードウェア構成を示す概略図である。図1に示すように、ネットワーク3に接続された複数のコントローラ(図では2つ)1,2のハードウェア構成は、基本的には従来のネットワークシステムにおけるコントローラと同様であり、各コントローラ1,2は、各々バス(内部バス)で接続されたプロセッサ11、メモリ12、通信制御装置13で構成される。なお、図中、コントローラは2つのみ記載されているが、コントローラの数は3つ以上でもよく、コントローラ2もコントローラ1と同様な構成を有する。また、各コントローラは、後述する基準信号を送信する基準信号送信コントローラ或いは基準信号を受信する基準信号受信コントローラのどちらかとして機能し、複数のコントローラは、少なくとも1つの基準信号送信コントローラと、少なくとも1つの基準信号受信コントローラとで構成される。
次に、本発明に係るネットワークシステムの第2の実施形態を図6~図10に基づいて説明する。
次に、本発明に係るネットワークシステムの第3の実施形態を図11、図12に基づいて説明する。
次に、本発明に係るネットワークシステムの第4の実施形態を図13に基づいて説明する。
3 ネットワーク
13 通信制御装置
14 通信サイクルカウンタ
17 フィルタリング条件
1001,1023フィルタリング処理部
1002 送信処理部
1003 受信処理部
1004 通信サイクル
1005 フィルタリング条件テーブル
1006 通信サイクル更新部
1007,1024ラウンドカウント部
1008,1009 ラウンド値
1010 基準信号受信部
1011 基準信号送信部
1012,1013 コマンド信号
1014,1025コマンド信号生成部
1015 切換え部
1016 優先順位テーブル
1017 エラー検出部
1018 コマンド信号条件テーブル
1021,1022 基準信号生成部
Claims (11)
- 複数のコントローラがバスを介して接続され、各コントローラは、スロットを指定して通信サイクルごとにフレームを送信する送信処理部と、指定したスロットからフレームを受信する受信処理部とを有し、前記コントローラ間でフレームの送受信を行うリアルタイム制御ネットワークにおいて、
前記通信サイクルは、0から最大値までカウントされると再び0からカウントされ、
前記複数のコントローラは、
前記通信サイクルを受け取り、前記フレームの送信開始又は受信開始の基準となる基準信号を生成する基準信号生成部と、前記基準信号を送信する基準信号送信部とを有する少なくとも1つの基準信号送信コントローラと、
前記基準信号を受信する基準信号受信部を有する少なくとも1つの基準信号受信コントローラとで構成され、
各コントローラは、さらに、複数のコントローラ間の通信サイクルを同一に保つ通信サイクル更新部と、前記送信処理部が送信を開始するとき又は前記受信処理部が受信を開始するときの通信サイクルと前記基準信号を持つフィルタリング条件テーブルと、前記基準信号と前記通信サイクルと前記フィルタリング条件テーブルとを比較し前記通信サイクル及び前記基準信号が前記フィルタリング条件テーブルの条件に合致したとき前記送信処理部または前記受信処理部を起動するフィルタリング処理部とを有することを特徴とするリアルタイム制御ネットワークシステム。 - 請求項1記載のリアルタイム制御ネットワークシステムにおいて、
前記コントローラは、前記通信サイクルの繰り返し回数をカウントするラウンド値を有し、前記基準信号生成部は、前記通信サイクルが最大値になった時に前記ラウンド値を更新するラウンドカウント部を有し、前記基準信号として、前記ラウンド値を用いることを特徴とするリアルタイム制御ネットワークシステム。 - 請求項1記載のリアルタイム制御ネットワークシステムにおいて、
前記コントローラは、前記通信サイクルの繰り返し回数をカウントするラウンド値を有し、
前記基準信号生成部は、前記通信サイクルが最大値になった時に前記ラウンド値を更新するラウンドカウント部と、前記送信処理部が送信を開始または前記受信処理部が受信を開始するときの通信サイクルと前記ラウンド値を少なくとも持つコマンド信号条件テーブルと、前記ラウンド値と前記通信サイクルとフィルタリング条件テーブルとを比較し条件が合致したとき前記フレームの通信周期とラウンド0からのオフセットを示すコマンド信号を生成するコマンド信号生成部を有し、前記基準信号として、前記コマンド信号を用いることを特徴とするリアルタイム制御ネットワークシステム。 - 請求項2又は3記載のリアルタイム制御ネットワークシステムにおいて、前記基準信号送信コントローラは、前記複数のコントローラのうちで、最初に電源が投入されるコントローラであることを特徴とするリアルタイム制御ネットワークシステム。
- 請求項2又は3記載のリアルタイム制御ネットワークシステムにおいて、前記基準信号送信コントローラは、前記コントローラのうちで、ネットワークの同期信号を出力するコントローラであることを特徴とするリアルタイム制御ネットワークシステム。
- 複数のコントローラがバスを介して接続され、各コントローラは、スロットを指定して通信サイクルごとにフレームを送信する送信処理部と、指定したスロットからフレームを受信する受信処理部とを有し、前記コントローラ間でフレームの送受信を行うリアルタイム制御ネットワークにおいて、
前記通信サイクルは、0から最大値までカウントされると再び0からカウントされ、
各コントローラは、複数のコントローラ間の通信サイクルを同一に保つ通信サイクル更新部と、前記通信サイクルを受け取り、前記フレームの送信開始又は受信開始の基準となる基準信号を生成する基準信号生成部と、前記基準信号を送信する基準信号送信部と、前記基準信号を受信する基準信号受信部と、前記基準信号送信部の基準信号と前記基準信号受信部の基準信号のいずれかを選択する切換え部と、前記送信処理部が送信を開始または受信処理部が受信を開始する通信サイクルと前記基準信号を持つフィルタリング条件テーブルと、前記切換え部から渡された前記基準信号と前記通信サイクルとフィルタリング条件テーブルとを比較して合致したとき送信処理部または受信処理部を起動するフィルタリング処理部を持つことを特徴とするリアルタイム制御ネットワークシステム。 - 請求項6記載のリアルタイム制御ネットワークシステムにおいて、
複数のコントローラの中から基準信号送信コントローラ又は基準信号受信コントローラを決定するための優先順位テーブルと、前記基準信号送信コントローラの送信エラーを検出するエラー検出部とをさらに有し、前記切換部は、前記優先順位テーブルの優先順位に基づいて基準信号送信コントローラを選択することを特徴とするリアルタイム制御ネットワークシステム。 - 請求項6又は7記載のリアルタイム制御ネットワークシステムにおいて、
前記コントローラは、前記通信サイクルの繰り返し回数をカウントするラウンド値を有し、前記基準信号生成部は、前記通信サイクルが最大値になった時に前記ラウンド値を更新するラウンドカウント部を有し、前記基準信号として、前記ラウンド値を用いることを特徴とするリアルタイム制御ネットワークシステム。 - 請求項6又は7記載のリアルタイム制御ネットワークシステムにおいて、
前記コントローラは、前記通信サイクルの繰り返し回数をカウントするラウンド値を有し、
前記基準信号生成部は、前記通信サイクルが最大値になった時に前記ラウンド値を更新するラウンドカウント部と、前記送信処理部が送信を開始または前記受信処理部が受信を開始するときの通信サイクルと前記ラウンド値を少なくとも持つコマンド信号条件テーブルと、前記ラウンド値と前記通信サイクルとフィルタリング条件テーブルとを比較し条件が合致したとき前記フレームの通信周期とラウンド0からのオフセットを示すコマンド信号を生成するコマンド信号生成部を有し、前記基準信号として、前記コマンド信号を用いることを特徴とするリアルタイム制御ネットワークシステム。 - 請求項2~5,8,9のいずれか1項記載のリアルタイム制御ネットワークシステムにおいて、前記ラウンド値の最大値は、各フレームの送受信周期の最小公倍数であることを特徴とするリアルタイム制御ネットワークシステム。
- 車両に搭載された複数の車載電子機器間で時間同期通信を行う車載ネットワークシステムにおいて、請求項1乃至10のいずれか1項記載のリアルタイム制御ネットワークシステムを用いたことを特徴とする車載ネットワークシステム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/131,512 US8774162B2 (en) | 2008-12-01 | 2009-11-25 | Real time control network system |
CN200980148317.7A CN102232280B (zh) | 2008-12-01 | 2009-11-25 | 实时控制网络系统 |
EP09830152.6A EP2372955A4 (en) | 2008-12-01 | 2009-11-25 | REAL-TIME CONTROL NETWORK SYSTEM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008305818A JP5078857B2 (ja) | 2008-12-01 | 2008-12-01 | リアルタイム制御ネットワークシステム |
JP2008-305818 | 2008-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010064381A1 true WO2010064381A1 (ja) | 2010-06-10 |
Family
ID=42233040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/006340 WO2010064381A1 (ja) | 2008-12-01 | 2009-11-25 | リアルタイム制御ネットワークシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US8774162B2 (ja) |
EP (1) | EP2372955A4 (ja) |
JP (1) | JP5078857B2 (ja) |
CN (1) | CN102232280B (ja) |
WO (1) | WO2010064381A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011087472B4 (de) * | 2011-11-30 | 2016-10-20 | Continental Automotive Gmbh | Verfahren zur Synchronisation von Uhren in Knoten eines Fahrzeugnetzes und zur Durchführung des Verfahrens eingerichteter Knoten |
WO2015194406A1 (ja) * | 2014-06-18 | 2015-12-23 | 日立オートモティブシステムズ株式会社 | 車載プログラム書込み装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006525725A (ja) * | 2003-05-06 | 2006-11-09 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Tdmaバスにおける異なるサイクルでのタイムスロット共有 |
JP2006317238A (ja) * | 2005-05-11 | 2006-11-24 | Keyence Corp | 多光軸光電式安全装置 |
JP2008509584A (ja) | 2004-08-05 | 2008-03-27 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | フレックスレイ(FlexRay)通信コントローラ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3149328B2 (ja) * | 1995-01-09 | 2001-03-26 | 松下電器産業株式会社 | 送信装置と受信装置 |
ATE305197T1 (de) * | 2002-04-16 | 2005-10-15 | Bosch Gmbh Robert | Verfahren zur datenübertragung in einem kommunikationssystem |
JP4023341B2 (ja) * | 2003-03-07 | 2007-12-19 | 株式会社デンソー | 通信方法および通信端末装置 |
US7310327B2 (en) * | 2003-04-28 | 2007-12-18 | Temic Automotive Of North America, Inc. | Method and apparatus for time synchronizing an in-vehicle network |
DE102004027503B4 (de) * | 2004-06-04 | 2012-08-16 | Robert Bosch Gmbh | Verfahren zur Etablierung einer globalen Zeitbasis in einem zeitgesteuerten Kommunikationssystem und Kommunikationssystem |
DE102004030969A1 (de) * | 2004-06-26 | 2006-01-12 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung eines Bussystems sowie entsprechendes Bussystem |
-
2008
- 2008-12-01 JP JP2008305818A patent/JP5078857B2/ja not_active Expired - Fee Related
-
2009
- 2009-11-25 US US13/131,512 patent/US8774162B2/en not_active Expired - Fee Related
- 2009-11-25 WO PCT/JP2009/006340 patent/WO2010064381A1/ja active Application Filing
- 2009-11-25 EP EP09830152.6A patent/EP2372955A4/en not_active Withdrawn
- 2009-11-25 CN CN200980148317.7A patent/CN102232280B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006525725A (ja) * | 2003-05-06 | 2006-11-09 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Tdmaバスにおける異なるサイクルでのタイムスロット共有 |
JP2008509584A (ja) | 2004-08-05 | 2008-03-27 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | フレックスレイ(FlexRay)通信コントローラ |
JP2006317238A (ja) * | 2005-05-11 | 2006-11-24 | Keyence Corp | 多光軸光電式安全装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2372955A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2372955A1 (en) | 2011-10-05 |
US20110228796A1 (en) | 2011-09-22 |
US8774162B2 (en) | 2014-07-08 |
EP2372955A4 (en) | 2014-12-03 |
JP2010130596A (ja) | 2010-06-10 |
CN102232280B (zh) | 2014-10-29 |
JP5078857B2 (ja) | 2012-11-21 |
CN102232280A (zh) | 2011-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100239973B1 (ko) | 데이타 처리장치에서의 데이타교환 및/또는 신호처리의 동기를 위한 구조화 메시지방법 | |
JP4571668B2 (ja) | 時間制御される通信システム内にグローバルなタイムベースを確立する方法および通信システム | |
US7171579B2 (en) | Method and device for exchanging data between at least two stations connected via a bus system | |
CN101111826B (zh) | 一种用于保证通信系统的实时消息传输的装置及方法 | |
JP5382472B2 (ja) | データ中継装置、及び当該装置で用いられるデータ中継方法 | |
CN107453770B (zh) | 跳频的控制方法、控制装置、发射机以及接收机 | |
CN111818632A (zh) | 一种设备同步的方法、装置、设备及存储介质 | |
KR20190074026A (ko) | 이더캣 기반의 슬레이브 시스템에 포함된 복수의 마이크로 프로세서간 동기화 방법 및 시스템 | |
JP4594124B2 (ja) | 通信システム及び通信方法 | |
CN101309184B (zh) | 检测微引擎故障的方法及装置 | |
Claesson et al. | Efficient TDMA synchronization for distributed embedded systems | |
JP5078857B2 (ja) | リアルタイム制御ネットワークシステム | |
JP5372699B2 (ja) | 車載ネットワーク装置 | |
JP2011227795A (ja) | データ収集装置 | |
JP7006295B2 (ja) | 攻撃検知装置および攻撃検知方法 | |
CN112162866B (zh) | 基于相对时间的异构执行体程序同步方法及装置 | |
JP4236650B2 (ja) | ネットワークシステム | |
CN114301563A (zh) | 集群间多余度同步电路、总线系统及集群间同步的方法 | |
CN109586978B (zh) | 总线拓扑网络自组网方法 | |
JP3293089B2 (ja) | Plcのリモートi/oシステム及びplcのリモートi/oシステムの実行方法 | |
US20020003848A1 (en) | Synchronous network | |
CN111130675B (zh) | 一种基于时间触发网络的时间同步装置 | |
CN114979180B (zh) | 数据同步方法、系统及设备 | |
JP2010200091A (ja) | 通信システム及び通信方法 | |
CN103297090A (zh) | 工频载波通讯总线的抢占方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980148317.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09830152 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3865/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13131512 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009830152 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |