WO2010064375A1 - 空気調和装置 - Google Patents
空気調和装置 Download PDFInfo
- Publication number
- WO2010064375A1 WO2010064375A1 PCT/JP2009/006308 JP2009006308W WO2010064375A1 WO 2010064375 A1 WO2010064375 A1 WO 2010064375A1 JP 2009006308 W JP2009006308 W JP 2009006308W WO 2010064375 A1 WO2010064375 A1 WO 2010064375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow fan
- line flow
- coil
- air
- air conditioner
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
- H05B6/108—Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0067—Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/02—Air heaters with forced circulation
- F24H3/04—Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
- F24H3/0405—Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/12—Air heaters with additional heating arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0018—Indoor units, e.g. fan coil units characterised by fans
- F24F1/0025—Cross-flow or tangential fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2221/00—Details or features not otherwise provided for
- F24F2221/34—Heater, e.g. gas burner, electric air heater
Definitions
- the present invention relates to an air conditioner that performs heating by a heat pump, and more particularly to an air conditioner that obtains warm air by heating a line flow fan, which is an air flow generating means used in an indoor unit of the air conditioner, by induction heating.
- An air conditioner known as an air conditioner is an apparatus that performs air conditioning by moving heat indoors and outdoors using a refrigeration cycle.
- the refrigeration cycle is sometimes called a heat pump because it can transfer heat from the low temperature side to the high temperature side.
- the heat of the outside air can be used to heat the room, so CO 2 emissions can be reduced and it can contribute to the prevention of global warming compared to heating devices that use fuel such as oil and gas.
- an induction heating coil is installed in a compressor or an indoor heat exchanger, and a metal in contact with the refrigerant is induction heated by an eddy current generated by an induction magnetic field to heat the refrigerant.
- the metal in contact with the refrigerant is induction-heated using the margin of the input power capacity when starting the air conditioner, and warm air is blown out quickly (for example, see Patent Document 1).
- line flow fans are used in indoor units of air conditioners.
- Line flow fans are sometimes called cross flow fans.
- the line flow fan has a substantially cylindrical shape that is long in the axial direction, and has a plurality of blades along the circumference of the cylindrical shape, and a plurality of discs or donut plates for fixing these blades perpendicular to the blades. It is provided to form a hollow, generally cylindrical shape. In the line flow fan, air flows in and out from a cylindrical side surface.
- a hot air heater that heats a fan, which is an air flow generating means, by induction heating to obtain hot air.
- a magnetic material having a high resistivity and a high relative magnetic permeability that is, a disc made of a material that generates heat by electromagnetic induction, and a light metal such as aluminum fixed radially on the surface of the disc
- a spiral coil is arranged facing a circular plate of a blower turbofan constituted by a plurality of blades made of material.
- a coil made by twisting litz wire is wound around a pipe having a round cross section formed of a non-magnetic material such as ceramics, and a cylindrical metal is wound inside the pipe.
- the filter is disposed on the cylindrical shaft so as to be rotatable.
- the material of the metal filter is a material having a magnetic permeability that is likely to cause electromagnetic induction, such as martensitic stainless steel, nickel alloy, chromium alloy, etc.
- the cross-sectional structure of the metal filter is a plate member or small diameter pipe that extends in the axial direction. A large number of members are regularly arranged, and these members are joined by welding or metal brazing so as to enable electrical conduction.
- the metal filter also has an air blowing means (fan), and the air blowing means is composed of a blade-shaped portion formed on both ends of the metal filter and an air blowing motor that rotates the air blowing shaft.
- air blowing means is composed of a blade-shaped portion formed on both ends of the metal filter and an air blowing motor that rotates the air blowing shaft.
- Japanese Patent Laid-Open No. 11-341813 paragraphs [0037], [0046], [0057], FIG. 4) JP-A-4-320759 (paragraphs [0011] to [0014], [0017] to [0021], FIGS. 1 and 2) Japanese Patent Laid-Open No. 9-184631 (paragraphs [0009] to [0013], FIGS. 1 and 2)
- a coil is disposed so as to surround the side surface of a metal filter that also serves as a cylindrical air blowing means, and air is flowed in the axial direction of the cylindrical shape to heat it.
- air flows in and out from the side surface of the cylindrical shape. Therefore, if the coil is arranged so as to surround the cylindrical side surface, the air flow is hindered. For this reason, when the coil is tightly wound, no airflow is obtained, and even when the coil is loosely wound, the line flow fan generates airflow due to the pressure difference between the air inflow and outflow, There was a problem that the pressure difference was disturbed and the fan performance was greatly reduced.
- the line flow fan has a hollow cylindrical shape, so that the eddy current flows by induction heating in the circular plate or donut plate portion, and the eddy current in the blade portion. Has a problem that the blades do not sufficiently generate heat due to induction heating, and hot air cannot be obtained.
- the present invention has been made to solve the above-described problems, and can generate hot air by generating heat by induction heating on the outer peripheral surface side of the line flow fan inside the indoor unit.
- An air conditioner that enables quick hot air blowing immediately after startup is obtained.
- An air conditioner includes a heat exchanger, a cylindrical and conductive line flow fan that blows air that has passed through the heat exchanger, and a line flow fan that is disposed substantially in parallel with the cylindrical axis direction of the line flow fan.
- An indoor unit having a coil for inductively heating the flow fan is provided.
- the air conditioner according to the present invention is disposed substantially parallel to the cylindrical axis direction of the line flow fan and has a coil for induction heating of the line flow fan inside the indoor unit, so that the outer peripheral surface side of the line flow fan generates heat. Hot air can be obtained, and quick hot air can be blown out from the line flow fan immediately after the start of the heating operation.
- FIG. 1 It is a partially exploded perspective view which shows the indoor unit of the air conditioning apparatus in Embodiment 1 of this invention. It is sectional drawing of the indoor unit of the air conditioning apparatus in Embodiment 1 of this invention. It is the perspective view which showed the relative positional relationship of the line flow fan and coil in Embodiment 1 of this invention, and is the figure which showed the mode of the eddy current which flows into a line flow fan. It is the perspective view which showed the relative positional relationship of another line flow fan and coil in Embodiment 1 of this invention. It is the figure which showed typically an example of the electric power pattern at the time of starting in the case of carrying out heating operation of the air conditioning apparatus in Embodiment 1 of this invention.
- Embodiment 2 of this invention It is a perspective view of the flame-retardant board
- FIG. 2 of this invention It is a partially exploded perspective view which shows the indoor unit of the air conditioning apparatus in Embodiment 2 of this invention. It is sectional drawing of the indoor unit of the air conditioning apparatus in Embodiment 2 of this invention. It is the perspective view and sectional drawing which show the structure of the coil of the air conditioning apparatus in Embodiment 2 of this invention. It is a perspective view which shows the structure of another coil of the air conditioning apparatus in Embodiment 2 of this invention.
- FIG. 1 is a partially exploded perspective view showing an indoor unit of an air-conditioning apparatus according to Embodiment 1 for carrying out the present invention
- FIG. 2 is a cross-sectional view of the indoor unit of the air-conditioning apparatus in plane A of FIG. It is. 1 and FIG. 2, a cylindrical line-shaped conductive line flow fan 2 and fins disposed on the inflow side of the air flow (F) of the line flow fan 2 are provided in the indoor unit 1 of the air conditioner.
- a tube-type heat exchanger 3, a rear casing 4 disposed on the outflow side of the air flow (F) of the line flow fan 2, and a coil 5 disposed to face the side surface of the line flow fan 2 are provided. ing.
- the line flow fan 2, the heat exchanger 3, the rear casing 4, and the like are shown separated for easy understanding of the configuration, but in actuality, they are configured in a positional relationship as shown in FIG. 2.
- the coil 5 is described as being disposed inside the rear casing 4 (side facing the line flow fan 2).
- the coil 5 is disposed outside the rear casing 4 as shown in FIG.
- flaps, louvers, filters, control circuits, outdoor units, etc. which are originally provided as an air conditioner but are not directly related to the present invention, are omitted.
- the line flow fan 2 takes in air through the heat exchanger 3 from the outside of the indoor unit 1 and blows air to the outside of the indoor unit 1.
- the line flow fan 2 is formed of a metal material such as iron or aluminum or a resin that is an insulating material, and then a plated film such as nickel plating, copper plating, tin plating, or aluminum plating is applied to the resin surface. It is formed and has conductivity, and has a substantially cylindrical shape.
- the line flow fan 2 is formed of a metal material, the heat capacity of the line flow fan 2 can be reduced and hot air can be blown out sharply.
- the line flow fan 2 When the line flow fan 2 is formed of an insulating material and a conductive film is provided on the surface of the insulating material, the aerodynamics can be easily optimized and the line flow fan 2 can be manufactured at low cost. Furthermore, since the conductive film is formed by copper plating or aluminum plating, the conductive film having a small electric resistance can be thinly formed, so that the line flow fan 2 can be efficiently induction-heated while maintaining aerodynamics. it can.
- the heat exchanger 3 is a fin tube type heat exchanger that is generally used for an indoor unit of an air conditioner, and is made of 1.0 to 1.5 mm of a perforated aluminum plate having a thickness of about 0.1 mm. A large number of layers are stacked at a certain interval, and pipes such as copper and aluminum are passed through the holes in the aluminum plate, and heat exchange is performed between the air passing between the aluminum plates and the refrigerant passing through the pipes. Is.
- the number of the heat exchangers 3 is 3, the number of heat exchangers may be arbitrary.
- the coil 5 has an oval or rectangular shape, and a direction substantially parallel to the longitudinal direction of the blades 10 of the line flow fan 2 described later (that is, the direction of the cylindrical axis of the line flow fan 2) is the longitudinal direction.
- the coil 5 is disposed on the downstream side (exhaust side) of the line flow fan 2.
- the coil 5 is desirably arranged in contact with the back surface or the surface of the flame retardant plate 6 provided in a part of the rear casing 4 located on the exhaust side of the line flow fan 2.
- the flame retardant plate 6 is made of a flame retardant insulator such as a flame retardant resin, glass or ceramics, or a nonmagnetic metal such as aluminum or copper.
- a nonmagnetic metal plate is used as the flame retardant plate material 6, the nonmagnetic metal plate can function as a heat radiating fin to efficiently cool the coil 5.
- Both terminals of the coil 5 are connected to the drive circuit 8.
- the drive circuit 8 supplies a high frequency current of 20 to 100 kHz to the coil 5.
- a high frequency current is supplied to the coil 5
- an alternating magnetic field is generated from the coil 5, and an eddy current flows through the conductive line flow fan 2 by this alternating magnetic field, and the line flow fan 2 is induced by this eddy current.
- the drive circuit 8 may be formed on the same substrate as the control circuit of the indoor unit 1 or may be formed on a separate substrate, but is disposed in the indoor unit 1 in order to reduce radiation noise. Is desirable.
- the cover 9 is provided in the outer side of the heat exchanger 3, and the indoor unit 1 of an air conditioning apparatus is comprised.
- FIG. 3 is a perspective view showing the relative positional relationship between the line flow fan 2 and the coil 5, and shows the state of eddy current (E) flowing through the line flow fan 2 when a high frequency current is supplied to the coil 5.
- the line flow fan 2 has the same shape as that generally used for an indoor unit of an air conditioner.
- the line flow fan 2 has a plurality of strip-shaped blades 10 along a cylindrical circumference, and the strip-shaped blades 10 are sandwiched and fixed by a plurality of plates having a circular outer shape to form a generally cylindrical shape as a whole. It rotates around a cylindrical axis.
- the plurality of plates having a circular outer shape are substantially orthogonal to the cylindrical axis of the line flow fan 2.
- the plurality of plates may all be discs, may be all donut plates, or may be a combination of a disc and a donut plate.
- discs 11 are arranged at both ends, and donut plates 12 are arranged at other intermediate portions.
- a plurality of strip-shaped blades 10 are provided between the circular plate 11 and the donut plate 12 so as to be substantially orthogonal to the circular plate 11 and the donut plate 12.
- the plurality of strip-shaped blades 10 are electrically connected to the disc 11 and the donut plate 12.
- a cylindrical portion formed by sandwiching the blade 10 between the disc 11 and the donut plate 12 or between the donut plates 12 is referred to as a section (SG).
- the longitudinal direction of the blade 10 is not parallel to the cylindrical axis of the line flow fan 2 but is slightly inclined or parallel to the cylindrical axis of the line flow fan 2. May be out of position.
- a plurality of strip-shaped blades 10 are arranged in the circumferential direction of the disc 11 or the donut plate 12 and sandwiched and fixed by the disc 11 or the donut plate 12. If there is, it is a line flow fan to which the present invention can be applied.
- the line flow fan 2 is formed of a metal such as iron or aluminum, or is formed of a resin, a conductive film such as nickel plating, copper plating, tin plating, or aluminum plating is formed on the resin surface.
- the blade 10 and the disc 11 or the donut plate 12 are electrically connected. For this reason, as shown by the arrows in FIG. 3, the induced eddy current passes from the blade 10 through the disk 11 and the donut plate 12, through another blade 10, and through another disk 11 and the donut plate 12. It flows through a loop-shaped conductive path that reaches the original blade 10.
- the loop through which the eddy current flows is formed by one section of the line flow fan 2, is formed by a plurality of sections, or is formed by a large loop over the entire length of the line flow fan 2 in the longitudinal direction.
- the coil 5 is disposed so that the direction of the conducting wire in the longitudinal direction of the coil 5 is substantially parallel to the longitudinal direction of the blade 10 of the line flow fan 2, the magnetic flux generated by the high-frequency current is generated by the blade.
- the eddy currents induced in the blades 10 are substantially maximized by interlinking at a right angle with 10 so that a large eddy current can flow through the line flow fan 2. By this eddy current, the efficiency of induction heating of the line flow fan 2 can be increased.
- FIG. 3 a case where one coil 5 is arranged on the cylindrical side surface of the line flow fan 2 for one line flow fan 2 is shown.
- the line flow fan 2 is made conductive and the blades 10 and the disks 11 and donut plates 12 are electrically connected to each other, a path through which an eddy current flows in a unit of the line flow fan 2 is formed.
- two or more coils 5 may be provided in accordance with the section (SG).
- the number of the coils 5 may be equal to or greater than the number of sections of the line flow fan 2, but even if the number is larger than the number of sections, the number of terminals of the coil 5 increases and becomes complicated, so the number is equal to or less than the number of sections. It is desirable.
- the winding directions of the coils 5a and 5b do not have to be the same as shown in FIG. 4 and may be different directions.
- a high-frequency current is allowed to flow only through the left coil 5a so that only the left side of the line flow fan 2 is provided.
- induction heating it is possible to obtain hot air only from the left side by concentrating power on the left side. In other words, hot air can be obtained only from the left side when half the power is input.
- switching between selectively heating a part of the line flow fan 2 or heating all of the line flow fans 2 is advantageous in that optimal air conditioning can be performed according to changes in the number of users and preferences. There is.
- an insulating magnetic body 7 such as a ferrite core or a ferrite sheet is disposed so that the coil 5 is positioned between the line flow fan 2.
- the magnetic body 7 By arranging the magnetic body 7 on the opposite side of the line flow fan 2, the magnetic flux generated on the side opposite to the line flow fan 2 out of the magnetic flux generated from the coil 5 passes through the magnetic body 7. For this reason, it is possible to prevent magnetic flux from leaking to the outside of the magnetic body 7, that is, outside the indoor unit 1, and a metal that is easily heated by induction, such as iron, on the wall of a house or the like that normally exists on the back side of the indoor unit 1. Even if is utilized, such a metal can be prevented from being heated.
- FIG. 5 is a diagram schematically illustrating an example of an electric power pattern at the time of startup when the air-conditioning apparatus is in a heating operation.
- the vertical axis represents electric power
- the horizontal axis represents the elapsed time since the air conditioner started the heating operation.
- the IH electric power (Pih) is electric power for inductively heating the line flow fan 2 by supplying a high frequency current to the coil 5 of the air conditioner.
- the compressor power (Pc) is the power supplied to the compressor. The larger the compressor power, the higher the speed of the compressor.
- Total power (Pa) is the sum of IH power and compressor power.
- the maximum power of this air conditioner shown as an example is 2 kW
- the input power capacity is 2 kW.
- the maximum of the IH power is 1.5 kW, and all of the surplus power 2 kW that is not used in the compressor immediately after startup is not used, but all may be used.
- the power pattern is not limited to this.
- the line flow fan 2 rotates, a high-frequency current is supplied from the drive circuit 8 to the coil 5, and the line flow fan 2 Induction heating. Since the frequency of the high-frequency current is orders of magnitude higher than the rotational speed of the line flow fan 2, the line flow fan 2 can be induction-heated even when the line flow fan 2 is rotating.
- the line flow fan 2 rotates, air is blown out from the blowout port of the indoor unit 1, and this air passes through the line flow fan 2 as shown in FIG. Is heated and blown out as hot air.
- the line flow fan 2 Since the line flow fan 2 has a smaller heat capacity than the heat exchanger 3, when the line flow fan 2 is induction-heated, the temperature of the line flow fan 2 rapidly increases. Further, since the line flow fan 2 is close to the outlet of the indoor unit 1, the air heated by the line flow fan 2 is blown out without taking heat away from other parts in the indoor unit 1. Thus, since the warm air is blown out in a short time after the user switches on the air conditioner, the user can get warm immediately.
- the refrigeration cycle starts to operate, taking in heat from the outside air, and releasing heat from the heat exchanger 3. Then, when the total power approaches the input power capacity of the air conditioner and reaches the input power capacity, control is performed so that the IH power decreases, and the operation is performed so that the total power does not exceed the input power capacity.
- control is performed so that the IH power becomes zero.
- FIG. 6 is a diagram showing the rising characteristics of the temperature rise of the blown air of the indoor unit 1 of the air conditioner.
- the line flow fan 2 is inductively heated to obtain hot air as in the present invention
- the temperature rise over time (LFF) and the heat exchanger 3 is inductively heated to obtain hot air as in Patent Document 1.
- HE time-dependent change
- FIG. 6 the vertical axis represents the temperature rise value of the air at the outlet of the indoor unit, and the horizontal axis represents the elapsed time since the air conditioner started the heating operation.
- the indoor unit 1 of the air conditioner used in the experiment has a structure with three heat exchangers 3 as shown in FIGS.
- the fan 2 was a line flow fan made of iron (the one used in the experiment was magnetic stainless steel).
- the wind speed (FS) at the outlet of the indoor unit 1 was set to 2 m / s and rotated in advance, suddenly the power (P) for induction heating was turned on, and the power was turned on. The temperature rise of the air at the outlet was measured.
- the power input to the coil 5 for induction heating is 1.5 kW, and either the case where the line flow fan 2 is induction-heated or the case where the heat exchanger is induction-heated is hot air with a higher temperature in a shorter time. As shown in FIG. 5, the input power is not changed with the passage of time.
- the frequency of the high-frequency current passed through the coil 5 is 26 kHz.
- the efficiency of induction heating was estimated for several types of line flow fans 2.
- the efficiency of induction heating is defined as the ratio of the power consumed by the line flow fan 2 in the input power.
- the input electric power is converted into heat and consumed mainly by the line flow fan 2 and the coil 5. Strictly speaking, it is considered that there is also power consumed by the magnetic body 7 and power radiated as electromagnetic waves, but these are considered to be very small and are ignored.
- the efficiency of induction heating was estimated by impedance measurement.
- FIG. 7 is an equivalent circuit when the line flow fan 2 is induction-heated.
- L (f) Inductance when a coil is arranged near the line flow fan
- Rt (f) Resistance when a coil is arranged near the line flow fan
- Rc (f) Resistance of the coil
- Rf (f) Line flow fan
- the relationship between the resistances Rt (f), Rc (f) and Rf (f) is as shown in equation (1).
- Rt (f) Rc (f) + Rf (f) ⁇ (1)
- This equivalent circuit is almost the same as the equivalent circuit of the transformer, the coil 5 corresponds to the primary side of the transformer, and the line flow fan 2 corresponds to the secondary side of the transformer.
- the resistance Rf (f) of the line flow fan 2 and the resistance Rc (f) of the coil 5 change depending on the frequency of the high-frequency current flowing through the coil 5. Since the total power consumption when a high frequency current is passed through the coil 5 is consumed by the resistance Rc (f) of the coil 5 and the resistance Rf (f) of the line flow fan 2, the line flow fan 2 out of the total power consumption. It can be said that the higher the ratio of the electric power consumed by the resistor Rf (f), the higher the efficiency of induction heating.
- the resistance Rc (f) of the coil 5 and the resistance Rt (f) when the coil 5 is arranged in the line flow fan 2 can be measured. That is, the resistance Rc (f) of the coil 5 may be measured by connecting a single coil to an impedance analyzer, and the resistance Rt (f) when the coil 5 is disposed on the line flow fan 2 is the coil resistance of the line flow fan 2. 5 may be arranged and both ends of the coil may be connected to an impedance analyzer for measurement.
- the ratio of the power consumed by the line flow fan 2 out of the total power consumption that is, the efficiency ⁇ (f) can be estimated.
- the power consumption is I 2 ⁇ Rt (f)
- the power consumption of the line flow fan 2 is I 2 ⁇ Rf (f). Therefore, the ratio (efficiency) of the electric power input to the heat exchanger 3 in the input electric power is as shown in Expression (2).
- FIG. 8 is a diagram comparing the efficiency calculated from the impedance measurement result with the actual measurement value, and is a result of verifying the validity of the efficiency estimation of the induction heating by the above method.
- the vertical axis represents the efficiency of induction heating
- the horizontal axis represents the frequency of the high-frequency current flowing through the coil.
- the calculated value (Cal (Rt)) of the tin plating fan (SN) at room temperature is indicated by a solid line
- the calculated value (Cal (Rt)) of the nickel plating fan (NI) at room temperature is indicated by a broken line. Impedance measurement was performed at room temperature. However, when the indoor unit 1 is actually operated, the temperature of the line flow fan 2 and the coil 5 rises and the electric resistance changes. Therefore, the temperature of the line flow fan 2 and the temperature of the coil 5 are measured to measure impedance. The resistance values of the line flow fan 2 and the coil 5 obtained from the above were corrected by the operating temperature. For this reason, in FIG. 8, the calculated value after temperature correction is shown as “ ⁇ (Cal (Cr))” or “ ⁇ (Cal (Cr))”.
- the actual measurement value of the efficiency is obtained by measuring the power consumption of the coil 5 from the temperature rise of the coil 5 during operation and assuming that the difference between the input power and the power consumption of the coil 5 is the power consumed by the line flow fan 2. It is a thing. In FIG. 8, the actually measured values are shown as “ ⁇ (Mea)” or “ ⁇ (Mea)”.
- 9 and 10 are diagrams showing the efficiency of induction heating estimated from the impedance measurement results for several types of line flow fans 2.
- the vertical axis represents the efficiency of induction heating
- the horizontal axis represents the frequency of the high-frequency current flowing through the coil.
- Impedance measurement was performed with the line flow fan 2 and the coil 5 incorporated in the indoor unit 1 as shown in FIGS.
- the line flow fan 2 used for the measurement is obtained by plating an iron fan, an aluminum fan, or a resin fan.
- the resin fan was plated by nickel plating, copper plating, and tin plating, and all were produced by electroplating. Electroplating on a resin fan can be produced by first forming a conductive film by electroless nickel plating or the like and then performing electroplating of each metal.
- the produced nickel plating is electroplating, it is a magnetic film.
- the thickness of the plating film three types of 10 ⁇ m, 20 ⁇ m, and 40 ⁇ m were prepared for nickel plating, 10 ⁇ m for copper plating, and 62 ⁇ m for tin plating.
- the electrical conductivity (unit: ⁇ 10 6 / m ⁇ ) of each metal used for plating is 14.3 for nickel, 59.6 for copper, and 9.17 for tin. Therefore, nickel plating is 40 ⁇ m and copper plating is 10 ⁇ m.
- the 62 ⁇ m tin plating has almost the same electrical resistance.
- FE is an iron fan
- AL is an aluminum fan
- NI is a nickel plating fan
- CU is a copper plating fan
- SN is a tin plating fan.
- the iron fan and the aluminum fan are the line flow fan 2 in which the blade 10, the disk 11, and the donut 12 are made of iron or aluminum.
- Aluminum fans are the same as those widely used in air conditioning equipment for trains.
- the diameter of the cylindrical shape of each fan is 105 mm.
- the efficiency of induction heating is not uniquely determined by the type of the line flow fan 2, but the distance between the line flow fan 2 and the coil 5, the size and shape of the coil 5, and the conductive wire used for the coil 5. It depends on the type.
- the efficiency of induction heating is 90% or more when the frequency of the high-frequency current flowing through the coil 5 is set to 20 to 40 kHz in the case of an iron fan, for example.
- High efficiency can be obtained not only by metal fans such as iron fans and aluminum fans, but also by line flow fans 2 in which a plating film is formed on the surface of a resin fan. I understand that I can do it.
- the thinner the plating film thickness the lower the efficiency, and it can be seen that it is necessary to form a plating film with a certain film thickness in order to perform induction heating efficiently.
- the thick plating film means that the electric resistance is low, and it can be said that the electric resistance needs to be small to some extent.
- the high-frequency current for induction heating can be easily passed through the coil 5 if it is approximately 20 kHz to 100 kHz.
- the higher the frequency the more the switching loss of the drive circuit 8 increases, so the circuit efficiency decreases. Therefore, it is desirable to apply a high frequency current of 20 to 50 kHz.
- IGBT Insulated Gate Bipolar Transistor
- the input power for induction heating can be easily increased.
- the efficiency of induction heating is low, the heat generation of the coil increases, and it is necessary to increase the cost of cooling means for cooling the coil. Therefore, it is desirable that the efficiency of induction heating is obtained by 80% or more.
- the nickel plating film thickness should be 20 ⁇ m or more. This can be expressed in terms of electrical resistance as long as it is a plating film of 3.5 m ⁇ or less per 1 cm 2 .
- the upper limit of the film thickness is more largely determined by the ease of forming the plating film and the aerodynamic characteristics of the line flow fan 2 than the efficiency of induction heating, and is preferably about 100 ⁇ m or less. Aerodynamics is an index that expresses the performance of a fan. Good aerodynamics means that aerodynamic noise for producing the same air volume is low, or that the air resistance is low and more air can be produced with the same energy. is there.
- FIG. 10 shows the efficiency of a nickel plating fan having a plating film thickness of 40 ⁇ m, a copper plating fan having a plating film thickness of 10 ⁇ m, and a tin plating fan having a plating film thickness of 62 ⁇ m.
- the thickness of the plating film is adjusted so that the electric resistance of the plating film is substantially equal.
- the efficiency of induction heating at a certain frequency in the frequency range of 20 to 50 kHz of the high frequency current is 90% or more, and it can be seen that the line flow fan 2 can be induction heated efficiently.
- induction heating can be similarly performed not only with a magnetic film nickel plating fan but also with a nonmagnetic film copper plating fan or tin plating fan.
- nickel plating fans and copper plating fans have very similar characteristics. Therefore, the fact that the electrical resistance of the plating film described above is preferably 3.5 m ⁇ or less per 1 cm 2 is not applied only to the nickel plating film of the magnetic film, but is formed by copper plating, tin plating or electroless plating. This can be said for all metal plating films such as non-magnetic nickel plating films.
- a means of forming a conductive film on the surface of the resin fan with a conductive paint is also conceivable.
- the electrical resistance of the conductive film should be 3.5 m ⁇ or less per 1 cm 2.
- a conductive paint that can be obtained was not obtained.
- the conductive film may be formed on the surface of the resin line flow fan with a conductive paint as long as a conductive paint with a conductive film of 3.5 m ⁇ or less per 1 cm 2 is obtained.
- a film forming method such as sputtering or vapor deposition can be used as sputtering or vapor deposition can be used. If a conductive film having an electric resistance of 3.5 m ⁇ or less per 1 cm 2 can be obtained by these methods, A conductive film may be formed on the surface of the resin line flow fan by sputtering or vapor deposition.
- substantially the same induction heating efficiency is obtained for copper plating with a plating thickness of 10 ⁇ m and nickel plating with a plating thickness of 40 ⁇ m. It is desirable that the plating film thickness be thin because the cost for forming the plating film can be reduced and the aerodynamic characteristics of the line flow fan 2 are difficult to be lowered. That is, when forming a conductive film on the surface of the resin line flow fan, it is desirable to use a metal material having a high conductivity. Gold plating and silver plating are also desirable from the viewpoint of induction heating, but are expensive. Therefore, copper plating and aluminum plating are preferable because they are less expensive and can reduce the electric resistance even with a thin film thickness.
- a protective film may be formed on the surface of the conductive film by resin coating or the like for the purpose of protecting the conductive film such as a plating film.
- resin line flow fans are generally used in many cases, the line flow fan for forming the conductive film has been described as being made of resin. However, if the line flow fan is formed of an insulator, it is limited to being made of resin. For example, a similar effect can be obtained even with a line flow fan formed of an inorganic insulating material such as glass fiber.
- FIG. 11 is a diagram showing the rising characteristics of the temperature rise of the air blown from the indoor unit when the above-described line flow fans of several kinds of materials are applied.
- the vertical axis represents the temperature rise value of the air at the outlet of the indoor unit
- the horizontal axis represents the elapsed time since the air conditioner started the heating operation.
- the line flow fan 2 was rotated in advance, and the temperature rise of the blown air after suddenly inputting power was measured.
- coils 5a and 5b are arranged so that half of the line flow fan 2 can be induction-heated as shown in FIG. Half is induction heated.
- the wind speed of the blown air was 3 m / s, and the input power was 1.5 kW.
- the temperature rise of the blown air is the steepest in the iron fan.
- the three types of plating fans showed almost the same tendency, and the temperature rise of the blown air was more gradual than the metal fans.
- the temperature rise was 33K for the iron fan, 31K for the aluminum fan, and 23K for the three types of plating fans.
- the reason why the temperature rise of the blown air in the plating fan is slow is because the conductive fan is formed on the surface of the resin fan by plating, so the heat capacity of the resin fan is larger than that of the iron fan or aluminum fan Because.
- the saturated blown air temperature rise after 6 minutes is 40K, whereas the temperature rises by 23K after 0.5 minutes, so 57.5% after 0.5 minutes. It can be seen that an increase in temperature is obtained.
- the line flow fan 2 is obtained by forming the conductive film on the surface of the resin fan having a large heat capacity by inductively heating the line flow fan 2 to obtain hot air.
- the temperature rise of the blown air can be made steep.
- the temperature rise of the blown air can be made steeper in the case of a metal fan such as an iron fan or an aluminum fan. This is because the metal fan is made of a magnetic material such as iron. It is also clear that it is not based on whether it is a non-magnetic material such as aluminum. Of course, a metal fan made of another metal material such as copper may be used. Further, a film made of an insulating material such as a protective film or a rust preventive film may be provided on the surface of the metal fan.
- the line flow fan 2 in which the conductive film is formed on the surface of the resin fan the heat capacity is larger than that of the metal fan, so the temperature rise of the blown air becomes moderate.
- the resin fan is less expensive than the metal fan. It is easy to fabricate the blades with the optimum aerodynamics. Therefore, the line flow fan 2 in which a conductive film is formed on a resin fan is suitable if aerodynamics is important, and the metal line flow fan 2 is suitable if the temperature rise of the blown air is important.
- FIG. 12 is a perspective view of a flame retardant plate and coil formed of a nonmagnetic metal. A plurality of slits 13 are provided in the longitudinal direction of the coil 5 so as to cross the conducting wire of the coil 5 in the flame retardant plate material 16 on which the coil 5 is disposed.
- the width of the slit 13 may be extremely narrow, for example, 0.1 mm or 1 mm.
- a high-frequency current flows through the coil 5, a magnetic flux is generated, and the magnetic flux is also linked to the flame-retardant plate 16 made of a nonmagnetic metal.
- This magnetic flux works to flow an eddy current along the coil 5 in the flame retardant plate 16.
- the eddy current cannot flow to the flame retardant plate 16 along the coil 5.
- the eddy current tries to flow around the slit 13 but cannot flow in a sufficient size, and the flame-retardant plate 16 is hardly heated by induction.
- the flame retardant plate 16 Since the flame retardant plate 16 is a metal, it has a high thermal conductivity. When the flame retardant plate 16 is in contact with the coil 5, it can absorb heat from the coil 5 and efficiently radiate heat from the surface opposite to the coil 5. For example, as shown in FIG. 12, when the coil 5 is arranged, the heat radiating surface of the flame-retardant plate 16 made of a nonmagnetic metal provided with the slit 13 comes into contact with the blowout air path of the indoor unit 1. The heat generated can be dissipated as hot air that can be used for heating.
- the surface area of the flame-retardant plate 16 made of nonmagnetic metal larger than the outer area of the coil 5, the heat dissipation area can be increased, and the coil 5 can be efficiently cooled. That is, the flame retardant plate 16 can be used as a heat radiating fin of the coil 5. Furthermore, if the surface of the flame-retardant board
- the coil 5 when the coil 5 is arranged on the rear surface side of the rear casing 4 (the side not facing the line flow fan 2) and the heat of the coil 5 is dissipated from the rear surface side of the rear casing 4, it is separately provided on the rear side of the indoor unit 1.
- An air cooling fan for cooling the coil may be provided.
- it is more energy efficient to use the heat energy obtained by the heat radiation of the coil 5 for heating it is desirable that the heat of the coil 5 be radiated from the surface side of the rear casing 4.
- FIG. 13 shows the relationship between the blowing air velocity at the outlet of the indoor unit 1 and the heat transfer coefficient from the surface of the coil 5 when the coil 5 is arranged on the surface side of the rear casing 4 as shown in FIG. FIG.
- the vertical axis represents the heat transfer rate from the surface of the coil 5
- the horizontal axis represents the air blowing speed at the outlet of the indoor unit 1.
- the power consumption of the coil 5 is 150 W.
- the outer area of the coil may be 0.033 m 2 or more. This external area can be dealt with by a coil occupying an area of about 33 cm wide ⁇ 10 cm long, for example, and is a size that can be arranged with a margin in a part of the rear casing 4 of the indoor unit 1.
- the coil 5 can be cooled by the blown air, so that it is not necessary to separately provide a cooling means for the coil 5. Moreover, the heat generation of the coil 5 can be used for heating, and energy efficiency can be increased.
- the coil 5 for induction heating the line flow fan 2 is provided in the indoor unit 1, the heat capacity is small but the heat transfer coefficient is high, and the line flow fan installed at the position closest to the outlet Warm air can be obtained by induction heating the outer peripheral surface side of 2, and quick hot air blowing can be performed immediately after the start of the heating operation.
- FIG. 14 is a partially exploded perspective view showing an indoor unit of an air conditioner according to Embodiment 2 for carrying out the present invention
- FIG. 15 is a cross-sectional view of the indoor unit of the air conditioner on plane A in FIG. It is.
- the same reference numerals as those in FIG. 1 and FIG. 2 are the same or equivalent, and this is common throughout the entire specification.
- the aspect of the component which appears in the whole specification is an illustration to the last, and is not limited to these description.
- the indoor unit 21 in the present embodiment The case where the coil 25 is disposed on the upstream side (intake side) of the air flow (F) of the line flow fan 2, that is, between the line flow fan 2 and the heat exchanger 3 will be described.
- FIG. 14 a part of the heat exchanger 3 is cut and shown so that the inside of the heat exchanger 3 can be seen.
- FIG. 16 is a perspective view and a sectional view showing the structure of the coil 25 in more detail. 16A is a perspective view, and FIG. 16B is a cross-sectional view taken along plane B in FIG.
- the coil 25 is formed by winding a conducting wire in a ring shape in a rectangular or oval shape, and the interval W between the long sides of the coil 25 is set to be substantially the same as an integral multiple of the interval of the pipes of the heat exchanger 3. .
- the coil 25 is disposed inside the heat exchanger 3 at a position where the pipe of the heat exchanger 3 and the long-side conductor of the coil 25 face each other, and the air flow caused by the coil 25 being disposed.
- the coil 25 can be disposed to face the cylindrical side surface of the line flow fan 2 without increasing the pressure loss.
- the coil 25 wound in the ring shape shown in FIG. 16 is applied to the configuration in which the coil is arranged in the rear casing 4 of the first embodiment, and the ring-shaped coil 25 is replaced with the rear casing instead of the flat coil 5. 4 may be used.
- the coil 25 may be attached to the pipe of the heat exchanger 3 by an attachment formed of a metal such as aluminum or a resin, or the coil 25 and the pipe of the heat exchanger 3 may be fixed with a thin metal such as a wire. It may be attached to. It is desirable that a magnetic body 17 such as a ferrite core is disposed between the coil 25 and the heat exchanger 3 along the coil 25. That is, it is desirable to arrange the magnetic body 17 so that the coil 25 is positioned between the line flow fan 2. The reason for this is as follows.
- the heat exchanger 3 When a high frequency current is passed through the coil 25, a magnetic flux is generated around the coil conductor. This magnetic flux not only links with the line flow fan 2, but also links with the heat exchanger 3. When the magnetic flux interlinks with the heat exchanger 3, the heat exchanger 3 is also induction-heated and the temperature rises. If the temperature of the heat exchanger 3 rises, it will eventually be used as hot air and will not lose energy. However, as described in the first embodiment, the heat exchanger 3 has a large heat capacity, so the line flow fan 2 This is because it is desirable that as much power as possible be consumed by the line flow fan in order to obtain a steep rise in the temperature of the blown air since the temperature rise is slow.
- the line flow fan 2 As the line flow fan 2, a metal fan such as an iron fan or an aluminum fan described in the first embodiment, or a line flow fan in which a conductive film is formed on a resin fan by a method such as plating is used. As described in the first embodiment, when a high-frequency current is passed from the drive circuit 8 to the coil 25, the loop path between the blade 10 and the disk 11 or the donut plate 12 is located at the position facing the coil 25 of the line flow fan 2. Eddy current flows. Thereby, the line flow fan 2 is induction-heated, and warm air is obtained from the outlet of the indoor unit 21 as the line flow fan 2 rotates.
- a metal fan such as an iron fan or an aluminum fan described in the first embodiment, or a line flow fan in which a conductive film is formed on a resin fan by a method such as plating is used.
- the cross section of the conductor of the coil 25 is shown as a rectangle that is long in the direction of the airflow.
- the cross section of the conducting wire of the coil 25 is made a rectangle (or an ellipse) that is long in the direction of the airflow, not only can the pressure loss hindering the airflow by the coil 25 be reduced, but also the surface area of the coil 25 is increased. The heat dissipation area can be increased and the temperature rise of the coil can be suppressed.
- the coil 25 is formed of, for example, a litz wire formed by gently twisting 19 coated copper wires having a diameter of about 0.3 mm, the cross-sectional shape of the coil 25 can be easily deformed to an arbitrary shape.
- the surface of the coil 25 may be covered with an insulator such as a resin, and the conducting wire may be fixed to help protect the coil 25.
- the coil 26 may be wound in a double ring or a plurality of rings. However, even if it is a case where it is set as a some ring shape, it is desirable to arrange
- the coil 25 may be disposed in any heat exchanger 3.
- the coil 25 may be disposed in the heat exchanger 3.
- a plurality of coils are arranged in the longitudinal direction of the line flow fan 2 to heat the line flow fan 2 by partially controlling, or the right half of the line flow fan 2 or A coil may be arrange
- a cover 9 is provided outside the heat exchanger 3, but a magnetic sheet 14 such as a ferrite sheet for suppressing electromagnetic waves radiated from the coil 25 to the outside is provided inside the cover 9. It is desirable.
- FIG. 18 is a diagram showing rising characteristics of the temperature rise of the blown air of the indoor unit 21 of the air conditioner according to the present embodiment.
- the line flow fan 2 is inductively heated to obtain hot air as in the present embodiment
- the temperature rise over time (LFF) and the heat exchanger 3 is inductively heated to generate hot air as in Patent Document 1.
- HE time-dependent change
- FIG. 18 the vertical axis represents the temperature rise value of the air at the outlet of the indoor unit, and the horizontal axis represents the elapsed time since the air conditioner started the heating operation.
- the temperature of the blown air was measured in the same manner as the experiment described in the first embodiment.
- the line flow fan 2 was rotated in advance to blow out air at a wind speed (FS) of 2 m / s, and a power (P) of 1.5 kW was suddenly input to measure the temperature rise of the blown air.
- the line flow fan 2 was an iron line flow fan.
- FIG. 18 the blown air temperature rise when the heat exchanger 3 is induction-heated is also shown for comparison.
- the temperature rise after 0.5 minutes is 15K, and the heat exchanger 3 is induction-heated It can be seen that the temperature rise of the blown air is steep compared to 8K.
- the temperature rise of the blown air is 18 K after 0.5 minutes, so that the indoor unit 21 of the second embodiment has 0.5. After a minute, the temperature rise of the blown air is 3K lower.
- a part of the input electric power is used for induction heating of the heat exchanger 3, and the electric power used for induction heating of the line flow fan 2 is smaller than that of the first embodiment. It is because it has become.
- the temperature rise of the blown air is steep, and hot air can be obtained in a short time.
- the coil 25 for inductively heating the line flow fan 2 is arranged on the upstream side (intake side) of the line flow fan 2, so that the heat capacity is small, but the heat transfer coefficient is high and is closest to the outlet.
- the outer peripheral surface side of the line flow fan 2 installed at the position can be inductively heated to obtain hot air, and quick hot air can be blown out immediately after the start of the heating operation. Furthermore, the pressure loss of the air flow for the intake of the line flow fan 2 can be reduced.
- FIG. 19 is a partially exploded perspective view showing an indoor unit of an air conditioner according to Embodiment 3 for carrying out the present invention
- FIG. 20 is a cross-sectional view of the indoor unit of the air conditioner on plane A in FIG. It is.
- the coil 35 is different from the second embodiment in that the coil 35 is disposed at the boundary between the air flow (F) suction portion and the blowout portion of the line flow fan 2.
- the coil in the present embodiment is a rectangular ring-shaped coil like the coil shown in the second embodiment.
- the line flow fan 2 Since the line flow fan 2 has an axisymmetric cylindrical shape, an air flow cannot be obtained simply by rotating the line flow fan 2 arranged in the space. For this reason, an obstacle is generally provided on a part of the cylindrical side surface of the line flow fan, and an air flow is generated from the high pressure side to the low pressure side by generating an air pressure difference in the circumferential direction with respect to the cylindrical axis.
- an obstacle is generally provided on a part of the cylindrical side surface of the line flow fan, and an air flow is generated from the high pressure side to the low pressure side by generating an air pressure difference in the circumferential direction with respect to the cylindrical axis.
- the position where the obstacle is installed corresponds to the boundary between the intake side and the exhaust side of the line flow fan.
- the air conditioner according to the present embodiment is one in which the coil 35 is installed at a position where the obstacle is installed, and the coil 35 serves both as a function for inductively heating the line flow fan 2 and as
- the coil 35 formed by winding a conducting wire in a rectangular ring shape is slightly inclined from the diameter direction of the line flow fan 2, and the conducting wire in the long side direction of the coil 35 is line-flowed. It is provided so as to be in a state along the cylindrical side surface of the fan 2.
- the coil 35 can induction-heat the line flow fan 2 also as an obstacle for generating an air flow. That is, when a high-frequency current is passed through the coil 35, as described in the first embodiment, an eddy current flows by forming a loop-shaped path between the blade 10 of the line flow fan 2 and the disk 11 or the donut plate 12, and the line The flow fan 2 is induction heated.
- the coil 35 can be arranged close to the line flow fan 2 by serving as an obstacle as in the present embodiment. it can. For this reason, the magnetic flux generated by flowing a high-frequency current through the coil 35 is efficiently linked with the line flow fan 2, and the efficiency of induction heating the line flow fan 2 can be increased. Furthermore, since the obstacle is originally necessary, there is an advantage that the aerodynamic force of the indoor unit 31 is not deteriorated by arranging the coil 35.
- the line flow fan 2 the one described in the first embodiment can be used. Since the heat exchanger 3 is not induction-heated, all of the electric power for induction heating is consumed by the line flow fan, and a steep blown air temperature rise is obtained as in the case described in the first embodiment.
- the coil 35 for inductively heating the line flow fan 2 is disposed at the position where the obstacle of the line flow fan 2 is installed (the boundary between the intake side and the exhaust side of the line flow fan 2). Is arranged close to the line flow fan 2, and the line flow fan 2 can be efficiently induction-heated. Furthermore, aerodynamic degradation due to the coil arrangement can be suppressed.
- FIG. 21 and 22 are cross-sectional views of the indoor unit of the air-conditioning apparatus according to Embodiment 4 for carrying out the present invention.
- the arrangement of the coils is not limited to this.
- the coil is arranged so that a loop-shaped eddy current path is formed by the blade 10 of the conductive line flow fan 2 and the disk 11 or donut plate 12.
- the line flow fan 2 can be efficiently induction-heated.
- the coil conductors are arranged along the blades 10 of the line flow fan 2 as described in the first to third embodiments.
- Such a rectangular or oval flat plate or ring coil may be arranged along the line flow fan 2.
- a part of the conductive wire of the coil 45 may be provided in the rear casing 4, and a part thereof may be disposed between the heat exchanger 3 and the line flow fan 2.
- the coil 45 may be arrange
- an indoor unit of an air conditioner called a wall-mounted room air conditioner mainly used for homes has been described.
- the air conditioner to which the present invention is applied is not limited to this.
- the air conditioner may be a ceiling-embedded air conditioner, a floor-standing air conditioner, or an air conditioner used for a moving body such as a train.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- General Induction Heating (AREA)
- Direct Air Heating By Heater Or Combustion Gas (AREA)
Abstract
暖房運転の起動直後にラインフローファンから迅速な温風吹出しを行うことができる空気調和装置を得るために、室内ユニット1の内部に、熱交換器3と、熱交換器3を通過した空気を送風する円筒状で導電性のラインフローファン2と、ラインフローファンの円筒軸方向と略平行に配置され、ラインフローファン2を誘導加熱するコイル5とを備えた。コイル5は、ラインフローファン2の下流側、上流側、下流と上流との境界部のいずれかの位置に配置される。
Description
この発明は、ヒートポンプによる暖房を行う空気調和装置に係り、特に空気調和装置の室内ユニットに用いられる気流発生手段であるラインフローファンを誘導加熱により加熱して温風を得る空気調和装置に関する。
エアコンディショナとして知られている空気調和装置は冷凍サイクルを使用して室内外で熱を移動させて冷暖房を行う装置である。冷凍サイクルは低温側から高温側に熱を移動させることができるためヒートポンプと呼ばれることがある。特にヒートポンプを利用した暖房運転では外気の熱を利用して室内を暖房できるため、石油やガスなどの燃料を使用する暖房装置に比べ、CO2排出量を削減でき地球温暖化防止に貢献できるといったメリットがある。しかしながら、冷凍サイクルを利用したヒートポンプによる暖房運転では、空気調和装置のスイッチを入れてから温風が得られるまでに数分間の時間を要する。これは空気調和装置のスイッチを入れてすぐに、冷媒を圧縮するためのヒートポンプの圧縮機を急速に高回転させることができないといった要因によるものである。このため、空気調和装置の起動直後には入力電力容量に余裕があり、この起動直後の入力電力容量の余裕を利用して暖気を得るまでの時間を短縮しようとする試みが為されている。
従来の空気調和装置では、誘導加熱コイルを圧縮機や室内熱交換器に設置し、誘導磁界によって生じた渦電流によって冷媒が接触する金属を誘導加熱して冷媒を加熱するものがある。このような構成により、空気調和装置の起動時における入力電力容量の余裕を利用して冷媒が接触する金属を誘導加熱し、暖かい空気を迅速に吹出している(例えば、特許文献1参照)。
一方、空気調和装置の室内ユニットにはラインフローファンが多く用いられている。ラインフローファンはクロスフローファンと呼ばれることもある。ラインフローファンは概略軸方向に長い円筒形状をしており、円筒形状の円周に沿って複数の羽根を有し、これらの羽根を固定するための円板あるいはドーナツ板を羽根と垂直に複数設けて中空の概略円筒形状を形成したものである。ラインフローファンでは円筒形状の側面から空気が流入し且つ流出する。
他方、従来から気流発生手段であるファンを誘導加熱により加熱して温風を得る温風暖房機が知られている。従来の温風暖房機では、抵抗率が大きく比透磁率の高い磁性材料、即ち、電磁誘導作用によって発熱する材料からなる円板と、円板の表面に放射状に固定された例えばアルミニウムの如き軽金属材料からなる複数の羽根板によって構成された送風ターボファンの円板に面して渦巻状のコイルが配置されている。コイルに20~50kHz程度の高周波電流を流すと、コイルの励磁により磁束が発生し、電磁誘導作用により送風ターボファンの円板に交番的な渦電流が発生し、円板は急速に発熱すると共にこれに取付けられた羽根板を加熱する。送風ターボファンが回転すると温風暖房機の後方及び前方の空気は、空気取入口から導かれ、円板及び加熱板に沿って移動する間に、円板及び加熱板を冷却すると共に円板及び加熱板の熱を吸収して加熱され温風となって温風吹出口から外部に吹き出される。つまり、電磁誘導作用によりファン自体を発熱させるようにしたので、暖房機を小型軽量かつ薄型化することができ、熱の放散効率の高い温風暖房機を実現することができる(例えば、特許文献2参照)。
また、従来の空気清浄形暖房装置では、セラミックスの如く非磁性体の材料で形成された断面丸形のパイプの周囲にリッツ線を撚り合わせたコイルを巻いて、パイプの内部に円筒形の金属フィルターが円筒軸に回転可能な状態で配置されている。金属フィルターの材質は電磁誘導が生じやすい程度の透磁率を有した材料であり、マルテンサイト系ステンレス、ニッケル合金、クロム合金などであり、金属フィルターの断面構造は軸方向に延びる板部材又は小径パイプ部材の多数を規則的に配列したものであり、これらの部材は電気的導通が可能なように溶接又は金属ろう付けで接合されている。これらの部材が電気的に独立することなく、金属フィルターが配置されるパイプの半径方向に導通しやすい構造になっているため、パイプの周囲に巻いたコイルに高周波電流を流したときの電磁誘導による渦電流の発生が金属フィルターの断面の略全域にわたって生じ、断面での発熱ムラが少なくなる。金属フィルターは送風手段(ファン)を兼ね備えており、送風手段は金属フィルターの両端側に形成された翼形状部と送風軸を回動させる送風用モータから構成されている。このような構造で送風用モータを動かすと、翼形状部により空気が連続的に金属フィルターに送込まれ、空気が加熱されて排出される(例えば、特許文献3参照)。
特許文献1に記載された従来の空気調和装置では、圧縮機や室内熱交換器を誘導加熱して空気調和装置の起動直後に迅速に温風を得ようとした場合には、以下のような問題点があった。空気調和装置の起動直後に圧縮機や室内熱交喚器を誘導加熱して冷媒を加熱することにより温風の吹出し時間を短縮することができるが、それでも数分間の時間を要し、燃料を使用する暖房装置に比べ大幅に時間を要していた。また、誘導加熱される室内熱交喚器からの放熱により迅速に温風を得ることを期待しても、室内熱交換器の熱容量が大きいため、温風を得るためには、十分に室内熱交換器の温度を高くするまでに時間を要し、やはり燃料を使用する暖房装置に比べ温風が吹出すまでに長い時間を要するといった問題点があった。
特許文献2に記載された誘導加熱によりファンを加熱して温風を得る温風暖房機を空気調和装置のラインフローファンに適用する場合には、以下のような問題点があった。この温風暖房機では、磁性材料からなる円板に面してコイルを配置し、円板を誘導加熱して発熱させ、円板の表面に対して垂直に設けた羽根板を円板からの熱伝導によって加熱している。これをラインフローファンに適用すると、ラインフローファンは円筒軸方向に長いため、円筒形状の両端に設けられた円板を誘導加熱で発熱させても中央付近の羽根までの距離が長いため熱伝導では十分に加熱されない。また、ラインフローファンでは円筒形状の両端面の円板に沿って気流が発生しないので、円板が気流によって冷却されず高温になるため十分な電力を入力することができず、羽根の部分は十分に加熱されない。従って、このような方法でラインフローファンを誘導加熱しても迅速に十分な温風を得ることはできないといった問題点があった。
特許文献3に記載された暖房装置では、円筒形状の送風手段を兼ねた金属フィルターの側面を取巻くようにコイルを配置し、円筒形状の軸方向に空気を流して加熱しているが、ラインフローファンでは円筒形状の側面から空気の流入出を行うので、円筒形状の側面を取巻くようにコイルを配置すると空気流が妨げられる。このため、コイルを密に巻いた場合には気流が得られず、コイルを疎に巻いた場合でも、ラインフローファンは空気の流入部と流出部の圧力差によって気流を発生しているため、圧力差に乱れが生じファン性能が大幅に低下するといった問題点があった。また、ファン性能の低下を許容するとしても、ラインフローファンは中空の円筒形状であるので、誘導加熱によって渦電流が流れるのは円板やドーナツ板の部分であり、羽根の部分には渦電流がほとんど流れないため、羽根が誘導加熱により十分発熱せず温風を得ることができないといった問題点があった。
この発明は、上述のような課題を解決するためになされたもので、室内ユニット内部のラインフローファンの外周面側を誘導加熱により発熱させて温風を得ることができ、これにより暖房運転の起動直後に迅速な温風吹出しを可能にする空気調和装置を得るものである。
この発明に係る空気調和装置は、熱交換器と、熱交換器を通過した空気を送風する円筒状で導電性のラインフローファンと、ラインフローファンの円筒軸方向と略平行に配置され、ラインフローファンを誘導加熱するコイルとを内部に有する室内ユニットを備えたものである。
この発明に係る空気調和装置は、ラインフローファンの円筒軸方向と略平行に配置され、ラインフローファンを誘導加熱するコイルを室内ユニット内部に有するので、ラインフローファンの外周面側を発熱させて温風を得ることができ、暖房運転の起動直後にラインフローファンから迅速な温風吹出しを行うことができる。
実施の形態1.
図1は、この発明を実施するための実施の形態1における空気調和装置の室内ユニットを示す一部分解斜視図であり、図2は、図1の面Aにおける空気調和装置の室内ユニットの断面図である。図1及び図2において、空気調和装置の室内ユニット1の内部には、円筒状で導電性を有するラインフローファン2と、ラインフローファン2の空気流(F)の流入側に配置されたフィンチューブ型の熱交換器3と、ラインフローファン2の空気流(F)の流出側に配置されたリアケーシング4と、ラインフローファン2の側面に対向して配置されたコイル5とが設けられている。
図1は、この発明を実施するための実施の形態1における空気調和装置の室内ユニットを示す一部分解斜視図であり、図2は、図1の面Aにおける空気調和装置の室内ユニットの断面図である。図1及び図2において、空気調和装置の室内ユニット1の内部には、円筒状で導電性を有するラインフローファン2と、ラインフローファン2の空気流(F)の流入側に配置されたフィンチューブ型の熱交換器3と、ラインフローファン2の空気流(F)の流出側に配置されたリアケーシング4と、ラインフローファン2の側面に対向して配置されたコイル5とが設けられている。
図1において、構成を分かりやすくするためにラインフローファン2、熱交換器3、リアケーシング4などを離して示しているが、実際には図2に示すような位置関係で構成される。また、図1において、ラインフローファン2とコイル5の位置関係をわかりやすくするために、コイル5がリアケーシング4の内側(ラインフローファン2と対向する側)に配置されているように記載されているが、実際には図2に示すように、コイル5はリアケーシング4の外側に配置されている。なお、図1及び図2では、空気調和装置として本来備わっているものの、本発明とは直接関係ないフラップ、ルーバー、フィルター、制御回路、室外ユニットなどを省略している。
ラインフローファン2は、室内ユニット1の外側から熱交換器3を通過させて空気を取り込み、室内ユニット1の外部に空気を送風するものである。ラインフローファン2は、鉄やアルミなどの金属材料で形成されたものや、絶縁材料である樹脂で形成された後、樹脂表面にニッケルめっき、銅めっき、スズめっき、アルミめっきなどのめっき膜を形成し導電性を有するようにしたものであり、略円筒形状である。ラインフローファン2を金属材料で形成した場合には、ラインフローファン2の熱容量を小さくして温風を急峻に吹出すことができる。ラインフローファン2を絶縁材料で形成し、絶縁材料の表面に導電膜を設けた場合には、空力を容易に最適にすることができるとともに、ラインフローファン2を安価に作製することができる。さらに、導電膜を銅めっきあるいはアルミめっきにより形成することによって、電気抵抗が小さい導電膜を薄く形成することができるので、空力を良好に保ったままラインフローファン2を効率良く誘導加熱することができる。
熱交換器3は、一般的に空気調和装置の室内ユニットに用いられているフィンチューブ型の熱交換器であって、厚さ0.1mm前後の穴あきアルミプレートを1.0~1.5mm程度の間隔を設けて多数積層し、アルミプレートの穴に銅やアルミなどのパイプを通した構造をしており、各アルミプレート間を通る空気とパイプを通る冷媒との間で熱交換を行うものである。なお、図1及び図2においては、熱交換器3の数を3個としているが、熱交換器の数は任意であってよい。
コイル5は、長円形あるいは長方形の形状であり、後述するラインフローファン2の羽根10の長手方向(つまり、ラインフローファン2の円筒軸の方向)と略平行な方向が長手方向となるようにリアケーシング4に配置されている。つまり、コイル5は、ラインフローファン2の下流側(排気側)に配置されている。このような配置によって、コイル5の長手方向の導線とラインフローファン2の羽根10とが略平行になるので、羽根10に渦電流が誘起されやすくなり、ラインフローファン2を誘導加熱する効率を高くすることができる。さらに、ラインフローファン2からの吹出し風によってコイル5を冷却することができる。
コイル5は、ラインフローファン2の排気側に位置するリアケーシング4の一部に設けた難燃性板材6の裏面あるいは表面に接して配置されることが望ましい。難燃性板材6は、難燃性樹脂、ガラス、セラミックスなどの難燃性絶縁物、あるいはアルミや銅などの非磁性金属で形成される。非磁性金属板が難燃性板材6として用いられた場合には、非磁性金属板が放熱フィンの役割をしてコイル5を効率的に冷却することができる。
コイル5の両端子は、駆動回路8に接続される。駆動回路8は、20~100kHzの高周波電流をコイル5へ供給する。コイル5に高周波電流が供給されると、コイル5から交番磁界が発生するため、この交番磁界によって導電性を有するラインフローファン2には渦電流が流れ、この渦電流によってラインフローファン2が誘導加熱される。駆動回路8は、室内ユニット1の制御回路と同一基板上に形成してもよいし、別基板上に形成してもよいが、放射ノイズを低減するために室内ユニット1内に配置されることが望ましい。そして、カバー9が熱交換器3の外側に設けられて空気調和装置の室内ユニット1が構成される。
図3は、ラインフローファン2とコイル5との相対的な位置関係を示した斜視図で、コイル5に高周波電流を供給されたときにラインフローファン2に流れる渦電流(E)の様子を示した図である。ラインフローファン2は、空気調和装置の室内ユニットに一般的に用いられているものと同一の形状である。ラインフローファン2は、円筒形状の円周に沿って複数の短冊状の羽根10を有し、外形が円形である複数の板に短冊状の羽根10が挟まれて固定され全体として概略円筒形状をしており、円筒軸を中心にして回転するものである。外形が円形である複数の板は、ラインフローファン2の円筒軸に略直交している。複数の板は、全て円板であってもよいし、全てドーナツ板であってもよいし、円板とドーナツ板とを組合せてもよい。なお、本実施の形態においては、両端に円板11を配置し、それ以外の中間部にはドーナツ板12を配置している。短冊状の羽根10は、複数であり、円板11やドーナツ板12に略直交するように円板11やドーナツ板12の間に設けられている。複数の短冊状の羽根10は、円板11やドーナツ板12と電気的に接続されている。
ここで、図3に示すように、羽根10が円板11とドーナツ板12、あるいはドーナツ板12同士で挟まれて構成される円筒形状部分を区画(SG)と称する。羽根10の長手方向は、ラインフローファン2の円筒軸に対して平行ではなく、少し角度を持っている場合や、ラインフローファン2の円筒軸に平行であるが、隣り合った区画では羽根10の位置がずれている場合などがある。しかしながら、このような場合であっても、複数の短冊状の羽根10が円板11やドーナツ板12の円周方向に並んで、円板11やドーナツ板12で挟まれて固定された構造であれば、本発明が適用できるラインフローファンである。
次に、ラインフローファン2の誘導加熱について説明する。駆動回路8を用いて、ラインフローファン2の円筒側面に対向して配置されたコイル5に高周波電流を流すと、コイル5の長手方向の導線に流れる高周波電流によって発生する磁束がラインフローファン2の羽根10と略直交して鎖交し、羽根10にはこの磁束を打ち消す向きに渦電流が誘起される。
ラインフローファン2は、鉄やアルミなどの金属で形成されていたり、樹脂で形成された後、樹脂表面にニッケルめっき、銅めっき、スズめっき、アルミめっきなどの導電膜が形成されていたりするので、羽根10と円板11やドーナツ板12とは電気的に接続されている。このため、図3に示した矢印のように、誘起された渦電流は、羽根10から円板11やドーナツ板12を通り、別の羽根10を通り、別の円板11やドーナツ板12を通って、元の羽根10にたどり着くといったループ状の導電性経路を形成して流れる。この渦電流が流れるループは、ラインフローファン2の1つの区画で形成されたり、複数の区画で形成されたり、ラインフローファン2の長手方向の全長に渡る大きなループで形成されたりする。本実施の形態では、コイル5の長手方向の導線の方向がラインフローファン2の羽根10の長手方向と略平行になるようにコイル5が配置されているので、高周波電流によって発生した磁束が羽根10と略直交して鎖交することによって羽根10に誘起される渦電流はほぼ最大となり、ラインフローファン2に大きな渦電流を流すことができる。この渦電流によって、ラインフローファン2を誘導加熱する効率を高くすることができる。
なお、図3においては、1個のラインフローファン2に対して1個のコイル5をラインフローファン2の円筒形状側面に配置した場合について示した。しかしながら、ラインフローファン2を導電性にして羽根10と円板11やドーナツ板12を電気的に接続し、ラインフローファン2の区画単位で渦電流が流れる経路も形成しているので、図4に示すように区画(SG)に合せて、コイル5が2個以上であってもよい。コイル5の数は、ラインフローファン2の区画の数以上であってもよいが、区画の数より多くあってもコイル5の端子が増加し煩雑になるので、区画の数と同数以下であることが望ましい。また、コイル5を複数とした場合、図4のようにコイル5a、5bの巻き方向は同じである必要はなく、異なる方向であっても良い。さらに、図4のように1個のラインフローファン2に対して左右2個のコイル5a、5bを配置した場合、例えば左側のコイル5aだけに高周波電流を流してラインフローファン2の左側だけを誘導加熱することによって、左側に集中して電力を投入して左側からだけ高温風を得たりすることができる。つまり、半分の電力の投入で左側からだけ高温風を得たりするといったことができる。このようにラインフローファン2の一部を選択的に加熱したり、全部を加熱したりするということが切り替えられることは、利用者の人数変化や趣向に応じて最適な空気調和ができるといった利点がある。
なお、図2に示すように、ラインフローファン2との間にコイル5が位置するように、フェライトコアやフェライトシートなど絶縁物の磁性体7が配置されることが望ましい。ラインフローファン2の反対側には磁性体7が配置されることによって、コイル5から発生する磁束のうちラインフローファン2と反対側に発生する磁束は磁性体7を通る。このため、磁性体7より外側に、つまり、室内ユニット1の外側に磁束が漏れることを防ぐことができ、室内ユニット1の裏側に通常存在する住宅などの壁に鉄などの誘導加熱されやすい金属が利用されていても、このような金属が加熱されることを防ぐことができる。
次に、空気調和装置の動作について説明する。特許文献1にも記載されているように冷凍サイクルを利用した空気調和装置の暖房運転では、スイッチを入れてすぐに圧縮機を高回転させることができず、圧縮機が高回転になるまでには数分間要し、この期間中、入力電力容量に余裕が生じる。図5は、空気調和装置を暖房運転する場合の起動時における電力パターンの一例を模式的に示した図である。
図5において、縦軸は電力、横軸は空気調和装置が暖房運転の起動を開始してからの経過時間である。ここで、IH電力(Pih)とは空気調和装置のコイル5に高周波電流を供給しラインフローファン2を誘導加熱するための電力である。圧縮機電力(Pc)とは圧縮機に供給される電力であり、圧縮機電力が大きいほど圧縮機は高回転である。全電力(Pa)はIH電力と圧縮機電力を合計したものである。図5から分かるように、一例として示したこの空気調和装置の最大電力は2kWであるから入力電力容量は2kWである。IH電力の最大は1.5kWであり、起動直後に圧縮機で利用されない余裕電力2kWの全てを使用していないが、全てを使用してもよい。また、電力パターンはこれに限るものではない。
利用者が空気調和装置のスイッチを入れて、空気調和装置が暖房運転の起動を開始すると、ラインフローファン2が回転し、駆動回路8からコイル5へ高周波電流が供給され、ラインフローファン2が誘導加熱される。ラインフローファン2の回転数に比べて、高周波電流の周波数が桁違いに高いため、ラインフローファン2が回転していてもラインフローファン2を誘導加熱することができる。ラインフローファン2が回転すると室内ユニット1の吹出し口から空気が吹出されるが、この空気は図2に示すようにラインフローファン2を通過するため、誘導加熱により高温となったラインフローファン2によって加熱され温風となって吹出される。ラインフローファン2は熱交換器3に比べて熱容量が小さいので、ラインフローファン2が誘導加熱されると急速にラインフローファン2の温度が上昇する。また、ラインフローファン2は、室内ユニット1の吹出し口に近いので、ラインフローファン2によって加熱された空気が室内ユニット1内の他の部品によって熱を奪われることなく吹出される。このようにして利用者が空気調和装置のスイッチを入れてから短時間のうちに温風が吹出されるため、利用者はすぐに暖を得ることができる。
その後、圧縮機電力が徐々に増加し圧縮機の回転数が高くなってくると、冷凍サイクルが動作し始め外気から熱を取り入れ、熱交換器3から熱を放出するようになってくる。そして、全電力が空気調和装置の入力電力容量に近づき、入力電力容量に達すると、IH電力が減少するように制御して、全電力が入力電力容量を超えないように運転する。圧縮機電力が最大となって冷凍サイクルが定常動作になると、IH電力がゼロになるように制御する。
図6は、空気調和装置の室内ユニット1の吹出し空気の温度上昇の立ち上がり特性を示した図である。本発明のようにラインフローファン2を誘導加熱して温風を得る場合の温度上昇の経時変化(LFF)と、特許文献1のように熱交換器3を誘導加熱して温風を得る場合の温度上昇の経時変化(HE)とを比較した実験結果である。図6において、縦軸は室内ユニットの吹出し口での空気の温度上昇値、横軸は空気調和装置が暖房運転の起動を開始してからの経過時間である。実験に使用した空気調和装置の室内ユニット1は、図1及び図2に示すように、熱交換器3が3個ある構造のものであり、ラインフローファン2を誘導加熱する場合は、ラインフローファン2には鉄製(実験に使用したものは磁性ステンレス)のラインフローファンを用いた。熱交換器を誘導加熱する場合は、3個の熱交換器のうち1個を誘導加熱し、樹脂製のラインフローファンを用いた。実験では、あらかじめ室内ユニット1の吹出し口での風速(FS)を2m/sに設定して回転させておき、いきなり誘導加熱のための電力(P)を投入し、電力を投入してからの吹出し口での空気の温度上昇を測定した。誘導加熱のためにコイル5に入力した電力は1.5kWであり、ラインフローファン2を誘導加熱した場合と熱交換器を誘導加熱した場合とで、どちらの方が短時間に高温の温風を吹出すことができるか調べるために、図5のように時間の経過とともに入力電力は変化させることはしていない。コイル5に流した高周波電流の周波数は26kHzである。
図6から分かるように、ラインフローファン2を誘導加熱した場合には、吹出し空気の温度上昇は、電力投入直後から0.25分程度まで急峻であり、その後緩やかに上昇した。この理由は、ラインフローファン2は誘導加熱により急速に温度上昇し、空気への熱伝達率が高いために急峻に空気温度上昇を大きくするが、入力した電力のうち一部はコイル5の損失として消費され、コイル5の熱容量が大きいためにコイル5の温度上昇は遅く、コイル5によって加熱される空気の温度上昇が遅いためである。一方、熱交換器を誘導加熱した場合には、空気温度上昇は緩やかである。この理由は、熱交換器の熱容量が大きいためである。なお、この実験では3個のうち1個の熱交換器を誘導加熱したが、3個とも誘導加熱した場合は、熱交換器の熱容量がさらに大きくなるので空気の温度上昇はさらに遅くなる。0.5分後の吹出し空気の温度上昇を比較すると、ラインフローファン2を誘導加熱した場合は18Kであるが、熱交換器を誘導加熱した場合は8Kであり、本発明の空気調和装置の方が短時間に温風を得ることができることが分かる。つまり、ラインフローファン2を誘導加熱する場合は、ラインフローファン2の熱容量が熱交換器3の熱容量に比べて小さいため、ラインフローファン2の温度上昇が急峻であり、ラインフローファン2は吹出し口に近く、ラインフローファン2によって加熱された空気は室内ユニット1の他の部分に熱を奪われることが非常に少ないため短時間に高温の温風を吹出すことができる。
次に、ラインフローファン2を誘導加熱するためのラインフローファン2の材質について検討を行った。はじめに数種類のラインフローファン2について誘導加熱の効率を見積もった。誘導加熱の効率とは、本実施の形態の場合、入力した電力のうちラインフローファン2で消費される電力の割合であると定義する。入力した電力は主としてラインフローファン2及びコイル5によって熱に変換され消費される。厳密に言えば、磁性体7で消費される電力や、電磁波として放射される電力も存在すると考えられるが、これらは非常に小さいものと考えられるので無視する。誘導加熱の効率はインピーダンス測定によって見積もった。
まず、インピーダンス測定による誘導加熱の効率を見積もる方法について述べる。図7は、ラインフローファン2を誘導加熱するときの等価回路である。図7に示した各パラメータを次のように定義する。
L(f) :ラインフローファン近傍にコイルを配置したときのインダクタンス
Rt(f):ラインフローファン近傍にコイルを配置したときの抵抗
Rc(f):コイルの抵抗
Rf(f):ラインフローファンの抵抗
Rt(f)、Rc(f)及びRf(f)の関係は、式(1)のとおりである。
Rt(f)=Rc(f)+Rf(f) -(1)
L(f) :ラインフローファン近傍にコイルを配置したときのインダクタンス
Rt(f):ラインフローファン近傍にコイルを配置したときの抵抗
Rc(f):コイルの抵抗
Rf(f):ラインフローファンの抵抗
Rt(f)、Rc(f)及びRf(f)の関係は、式(1)のとおりである。
Rt(f)=Rc(f)+Rf(f) -(1)
この等価回路は、変圧器の等価回路とほぼ同じであり、コイル5は変圧器の1次側、ラインフローファン2は変圧器の2次側に相当する。ラインフローファン2の抵抗Rf(f)とコイル5の抵抗Rc(f)は、コイル5を流れる高周波電流の周波数によって変化する。コイル5に高周波電流を流したときの全消費電力は、コイル5の抵抗Rc(f)とラインフローファン2の抵抗Rf(f)によって消費されるから、全消費電力のうちラインフローファン2の抵抗Rf(f)で消費される電力の割合が高いほど誘導加熱の効率が高いといえる。インピーダンスアナライザなどの測定器を用いることによって、コイル5の抵抗Rc(f)とラインフローファン2にコイル5を配置したときの抵抗Rt(f)は測定できる。つまり、コイル5の抵抗Rc(f)はコイル単体をインピーダンスアナライザに接続して測定すればよく、ラインフローファン2にコイル5を配置したときの抵抗Rt(f)は、ラインフローファン2にコイル5を配置してコイル両端をインピーダンスアナライザに接続して測定すればよい。
このようにして測定したRc(f)とRt(f)から、全消費電力のうちラインフローファン2で消費される電力の割合、つまり、効率η(f)を見積もることができる。コイル電流をIとして、ラインフローファン2にコイル5を配置したときの消費電力はI2×Rt(f)であり、ラインフローファン2の消費電力はI2×Rf(f)である。従って、入力電力のうち熱交換器3に入力される電力の割合(効率)は、式(2)のとおりである。
η(f)={I2×Rf(f)}/{I2×Rt(f)}=Rf(f)/Rt(f) ={Rt(f)-Rc(f)}/Rt(f)×100 (%) -(2)
η(f)={I2×Rf(f)}/{I2×Rt(f)}=Rf(f)/Rt(f) ={Rt(f)-Rc(f)}/Rt(f)×100 (%) -(2)
図8は、インピーダンス測定結果から算出した効率と実測値とを比較した図であり、上記の方法によって誘導加熱の効率見積りの妥当性を検証した結果である。図8において、縦軸は誘導加熱の効率、横軸はコイルを流れる高周波電流の周波数である。樹脂製のラインフローファン2にスズめっき(非磁性めっき膜)、あるいはニッケルめっき(磁性めっき膜)を施した2種類の室内ユニット1を作製し、インピーダンス測定から効率を計算した後、実際に室内ユニット1を動作させたときの効率を測定した。スズめっきファン(SN)の室温での計算値(Cal(Rt))を実線で示し、ニッケルめっきファン(NI)の室温での計算値(Cal(Rt))を破線で示した。インピーダンス測定は室温で実施した。しかしながら、室内ユニット1を実際に動作させると、ラインフローファン2とコイル5は温度上昇するため各々の電気抵抗が変化するので、ラインフローファン2の温度とコイル5の温度を測定し、インピーダンス測定から得たラインフローファン2とコイル5の抵抗値を動作中の温度で補正した。このため、図8には温度補正をした計算値を「○(Cal(Cr))」又は「△(Cal(Cr))」として示した。また、効率の実測値は、動作中のコイル5の温度上昇からコイル5の消費電力を測定し、入力電力とコイル5の消費電力の差がラインフローファン2で消費される電力であるとして求めたものである。図8には実測値を「●(Mea)」又は「▲(Mea)」として示した。
図8に示すように、スズめっきを施したラインフローファンにおいても、ニッケルめっきを施したラインフローファンにおいても、”計算値(温度補正)”と”実測値”は極めてよく一致しており、上記の方法によって誘導加熱の効率を見積もることは極めて妥当であることが確認できた。
図9及び図10は、数種類のラインフローファン2についてインピーダンス測定結果から見積もった誘導加熱の効率を示した図である。図9及び図10において、縦軸は誘導加熱の効率、横軸はコイルを流れる高周波電流の周波数である。図1及び図2に示したような室内ユニット1にラインフローファン2とコイル5を組み込んだ状態でインピーダンス測定を行った。測定に用いたラインフローファン2は、鉄製ファン、アルミ製ファン、樹脂製ファンをめっきしたものである。樹脂製ファンのめっきは、ニッケルめっき、銅めっき、スズめっきで行い、いずれも電気めっきで作製した。樹脂製ファンへの電気めっきは、はじめに無電解ニッケルめっきなどで導電膜を形成した後、各金属の電気めっきを行うことによって作製することができる。作製したニッケルめっきは、電気めっきなので磁性膜である。めっき膜の厚みは、ニッケルめっきでは10μm、20μm、40μmの3種類を作製し、銅めっきでは10μm、スズめっきでは62μmを作製した。めっきに用いた各金属の導電率(単位:×106/mΩ)は、ニッケルが14.3、銅が59.6、スズが9.17であるので、ニッケルめっきの40μm、銅めっきの10μm、スズめっきの62μmは、電気抵抗がほぼ同じである。なお、各図において、「FE」は鉄製ファン、「AL」はアルミ製ファン、「NI」はニッケルめっきファン、「CU」は銅めっきファン、「SN」はスズめっきファンのそれぞれの効率特性を示している。「NI-10」、「NI-20」、「NI-40」は、めっき膜の厚みがそれぞれ10μm、20μm、40μmであることを示している。
また、鉄製ファンとアルミ製ファンは、羽根10、円板11、ドーナツ板12が鉄やアルミで作製されたラインフローファン2である。アルミ製ファンは、電車の空気調和装置に広く用いられているものと同じものである。なお、各ファンの円筒形状の直径は105mmである。なお、誘導加熱の効率はラインフローファン2の種類によって一義的に決定されるものではなく、ラインフローファン2とコイル5との間の距離や、コイル5の大きさや形状、コイル5に用いる導線の種類などによって異なる。
図9より、誘導加熱の効率は、例えば、鉄製ファンの場合、コイル5を流れる高周波電流の周波数を20~40kHzとすることによって90%以上の誘導加熱の効率が得られた。鉄製ファン、アルミ製ファンなどの金属製ファンだけでなく、樹脂製ファンの表面にめっき膜を形成したラインフローファン2であっても高い効率が得られ、ラインフローファン2を誘導加熱することができることが分かる。しかしながら、測定したニッケルめっきファンでは、めっき膜厚が薄いほど効率は低く、効率良く誘導加熱を行うためには、ある程度の膜厚のめっき膜を形成する必要があることが分かる。めっき膜の膜厚が厚いということは、言い換えれば電気抵抗が小さいということであり、電気抵抗がある程度小さいことが必要であると言える。
誘導加熱するための高周波電流は、概ね20kHz~100kHzであれば容易にコイル5へ流すことができるが、周波数が高いほど駆動回路8のスイッチング損失が増大するため回路効率が低下する。従って、好ましくは20~50kHzの高周波電流を流すことが望ましい。また、50kHz以下の周波数であれば駆動回路8のスイッチング素子にIGBT(Insulated Gate Bipolar Transistor)を用いることができるため、誘導加熱のための入力電力を容易に大きくすることができる。また、誘導加熱の効率が低いとコイルの発熱が大きくなり、コイル冷却のための冷却手段などのコストアップが必要になる。従って、誘導加熱の効率は80%以上得られることが望ましい。
図9より、高周波電流の周波数が20~50kHzの範囲の或る周波数で誘導加熱の効率80%以上を得るためにはニッケルめっきの膜厚は20μm以上であればよいことが分かる。これは電気抵抗で表すと、1cm2あたり3.5mΩ以下のめっき膜であればよいということになる。一方、膜厚の上限値は誘導加熱の効率よりもめっき膜の形成しやすさやラインフローファン2の空力特性から決定される要因の方が大きく、概ね100μm以下が望ましい。なお、空力とはファンの性能を表す指標で、空力が良いとは、同一風量を出すための空気力学的な騒音が小さい、あるいは空気抵抗が小さく同一エネルギーでより多くの風量を出せるということである。
図10は、めっき膜厚40μmのニッケルめっきファン、めっき膜厚10μmの銅めっきファン、めっき膜厚62μmのスズめっきファンの効率を各々示したものである。先述のとおり、めっき膜の電気抵抗がほぼ等しくなるようにめっき膜の厚みを調整して作製したものである。高周波電流の周波数20~50kHzの範囲の或る周波数での誘導加熱の効率はいずれも90%以上得られており、効率良くラインフローファン2を誘導加熱することができることが分かる。つまり、磁性膜のニッケルめっきファンだけでなく、非磁性膜の銅めっきファンやスズめっきファンであっても同様に誘導加熱できることが分かる。特にニッケルめっきファンと銅めっきファンは極めて酷似した特性が得られている。従って、先述しためっき膜の電気抵抗は1cm2あたり3.5mΩ以下が望ましいということは、磁性膜のニッケルめっき膜のみに適用されるのではなく、銅めっきやスズめっきあるいは無電解めっきで形成した非磁性のニッケルめっき膜などあらゆる金属めっき膜についていえる。
なお、めっきだけでなく、導電性塗料により樹脂製ファンの表面に導電膜を形成する手段も考えられるが、発明者らの実験では導電膜の電気抵抗を1cm2あたり3.5mΩ以下にすることができる導電塗料は得られなかった。しかしながら、1cm2あたり3.5mΩ以下の導電膜が得られる導電塗料が得られれば、導電塗料により樹脂製ラインフローファンの表面に導電膜を形成してもよい。また、樹脂製ファンに導電膜を形成する手段としてはスパッタや蒸着などの成膜方法を用いることもでき、これらの方法によって電気抵抗が1cm2あたり3.5mΩ以下の導電膜を得られれば、スパッタや蒸着により樹脂製ラインフローファンの表面に導電膜を形成してもよい。
また、図10より、めっき膜厚10μmの銅めっきとめっき膜厚40μmのニッケルめっきとでは、ほぼ同じ誘導加熱の効率が得られている。めっき膜厚が薄くてよいということは、めっき膜を形成するコストを下げることができ、ラインフローファン2の空力特性を低下させにくいので望ましい。つまり、樹脂製ラインフローファンの表面に導電膜を形成する場合には、導電率が大きい金属材料を用いることが望ましい。金めっきや銀めっきも誘導加熱の特性からすると望ましいが高価であるので、銅めっきやアルミめっきの方が安価で薄い膜厚でも電気抵抗を小さくすることができるので望ましい。なお、めっき膜などの導電膜を保護する目的で、導電膜表面に樹脂コーティングなどにより保護膜を形成してもよい。また、樹脂製ラインフローファンは一般的に多く用いられているため、導電膜を形成するラインフローファンを樹脂製として述べたが、絶縁物で形成されたラインフローファンであれば樹脂製に限るものではなく、例えばガラスファイバーなどの無機絶縁物材料で形成されたラインフローファンであっても同様の効果が得られる。
図11は、上述の数種類の材質のラインフローファンを適用した場合の室内ユニットの吹出し空気の温度上昇の立ち上がり特性を示した図である。図11において、縦軸は室内ユニットの吹出し口での空気の温度上昇値、横軸は空気調和装置が暖房運転の起動を開始してからの経過時間である。図6に結果を示した実験と同様に、予めラインフローファン2を回転させており、いきなり電力を入力してからの吹出し空気の温度上昇を測定した。ただし、図6に結果を示した実験とは異なり、図4に示すようにラインフローファン2の半分を誘導加熱することが可能なようにコイル5a、5bを配置して、ラインフローファン2の半分を誘導加熱している。吹出し空気の風速は3m/sとし、入力電力は1.5kWとした。
図11に示すように、鉄製ファンが最も吹出し空気の温度上昇は急峻である。一方、めっきファンは3種類ともほぼ同じ傾向を示し、金属製のファンより吹出し空気の温度上昇が緩やかであった。0.5分後の温度上昇は、鉄製ファンが33K、アルミ製ファンが31K、3種類のめっきファンはほぼ同じで23Kであった。めっきファンでの吹出し空気の温度上昇が緩やかな理由は、めっきファンは樹脂製ファンの表面にめっきにより導電膜を形成しているため、樹脂製ファンの熱容量が鉄製ファンやアルミ製ファンよりも大きいためである。しかし、めっきファンであっても6分後の飽和した吹出し空気温度上昇が40Kであるのに対して、0.5分後に23K温度上昇しているから、0.5分後で57.5%の温度上昇が得られていることが分かる。
一方、図6に示したように、熱交換器を誘導加熱した場合は、6分後の飽和した吹出し空気温度上昇が23Kであるのに対して、0.5分後には8Kしか得られていないから、0.5分後には34.8%の温度上昇しか得られていないことが分かる。つまり、実施の形態1で示したようにラインフローファン2を誘導加熱して温風を得ることにより、ラインフローファン2が熱容量の大きな樹脂製のファンの表面に導電膜を形成したものであっても、特許文献1に記載された熱交換器を誘導加熱して温風を得る場合に比べて、吹出し空気の温度上昇を急峻にすることができる。
なお、鉄製ファンやアルミ製ファンなどの金属製ファンであれば、吹出し空気の温度上昇をさらに急峻にできることは図11より明らかであり、これは金属製ファンの材質が鉄のように磁性体であるか、アルミのように非磁性体であるかによるものではないことも明らかである。当然のことながら銅など他の金属材料で作製された金属製ファンであってもよい。また、金属製ファンの表面に保護膜や防錆膜などの絶縁物材料からなる皮膜を設けてもよい。
一方、樹脂製ファンの表面に導電膜を形成したラインフローファン2では、金属製ファンに比べ熱容量が大きいため吹出し空気の温度上昇は緩やかになるが、樹脂製ファンは金属製ファンに比べて安価で作製可能であり、羽根の肉厚などを最適な空力で作製することが容易である。従って、空力を重視したい場合であれば樹脂製ファンに導電膜を形成したラインフローファン2が適しており、吹出し空気の温度上昇を重視する場合は金属製のラインフローファン2が適している。
ところで、図1の説明においてコイル5を難燃性板材6の表面あるいは裏面に配置されるとし、難燃性板材6はアルミや銅などの非磁性金属でもよいとしたが、ここでは、難燃性板材6が金属の場合について述べる。図12は、非磁性金属で形成された難燃性板材及びコイルの斜視図である。コイル5が配置される難燃性板材16には、コイル5の導線を横切るようにスリット13が、コイル5の長手方向に複数設けられている。
スリット13の幅は極めて細くてもよく、例えば0.1mmや1mmでもよい。コイル5に高周波電流が流れると磁束が発生し、その磁束は非磁性金属からなる難燃性板材16とも鎖交する。この磁束は難燃性板材16にコイル5に沿って渦電流を流そうと働く。しかしながら、難燃性板材16上のコイルに沿った渦電流の経路はスリット13によって切断されているので、コイル5に沿って難燃性板材16に渦電流が流れることはできない。渦電流はスリット13を迂回して流れようとするが十分な大きさで流れることはできず、難燃性板材16は殆ど誘導加熱されなくなる。
難燃性板材16は金属であるので熱伝導率が高く、コイル5と接することによりコイル5から熱を吸収し、コイル5と反対側の面から効率良く放熱することができる。例えば、図12に示すように、コイル5を配置すると、スリット13を設けた非磁性金属からなる難燃性板材16の放熱面は室内ユニット1の吹出し風路に接することになるので、コイル5の発熱を暖房に利用可能な温風として放熱することができる。さらに非磁性金属からなる難燃性板材16の表面積をコイル5の外形面積より大きくすることによって放熱面積を大きくすることができ、コイル5を効率良く冷却することができる。つまり、難燃性板材16をコイル5の放熱フィンとして働かせることができる。さらに難燃性板材16の表面に凹凸を設ければ放熱面積をより大きくすることができる。
一方、リアケーシング4の裏面側(ラインフローファン2と対向しない側)にコイル5を配置し、リアケーシング4の裏面側からコイル5の熱を放熱する場合には、室内ユニット1の裏側に別途コイル冷却用の空冷ファンを設けてもよい。しかしながら、コイル5の放熱によって得られる熱エネルギーも暖房に利用した方が、エネルギー効率が高いので、リアケーシング4の表面側からコイル5の熱を放熱する構成にすることが望ましい。
図13は、図1に示したようにリアケーシング4の表面側にコイル5を配置したときの、室内ユニット1の吹出し口での吹出し風速とコイル5の表面からの熱伝達率との関係を示した図である。図13において、縦軸はコイル5の表面からの熱伝達率、横軸は室内ユニット1の吹出し口での空気の吹出し風速である。熱伝達率が風速に依存していることからラインフローファン2を通って吹出される風によってコイル5を冷却できることが分かる。ラインフローファン2を通った風はラインフローファン2によって加熱された温風であるが、コイル5を冷却することは可能である。
例えば、誘導加熱の効率を90%とし入力電力が1.5kWとすると、コイル5の消費電力は150Wとなる。吹出し風速3m/sでラインフローファン2を通った温風の温度が40℃とし、コイルの温度を100℃以下に抑えるためには、風速3m/sでの熱伝達率が76W/m2Kであるから、コイルの外形面積は0.033m2以上あればよい。この外形面積は、例えば横33cm×縦10cm程度の面積を占めるコイルで対応することができ、室内ユニット1のリアケーシング4の一部に余裕をもって配置できる大きさである。つまり、リアケーシング4の近傍にコイル5を設けることによって、吹出し空気によりコイル5を冷却することができるため、別途コイル5の冷却手段を設ける必要がない。また、コイル5の発熱を暖房に利用し、エネルギー効率を高くすることができる。
以上のように、ラインフローファン2を誘導加熱するコイル5を室内ユニット1の内部に設けたので、熱容量は小さいが、熱伝達率は高く、吹き出し口に最も近い位置に設置されたラインフローファン2の外周面側を誘導加熱させることによって温風を得ることができ、暖房運転の起動直後に迅速な温風吹出しを行うことができる。
実施の形態2.
図14は、この発明を実施するための実施の形態2における空気調和装置の室内ユニットを示す一部分解斜視図であり、図15は、図14の面Aにおける空気調和装置の室内ユニットの断面図である。図14及び図15において、図1及び図2と同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することである。また、明細書全文に表れている構成要素の態様は、あくまで例示であってこれらの記載に限定されるものではない。
図14は、この発明を実施するための実施の形態2における空気調和装置の室内ユニットを示す一部分解斜視図であり、図15は、図14の面Aにおける空気調和装置の室内ユニットの断面図である。図14及び図15において、図1及び図2と同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することである。また、明細書全文に表れている構成要素の態様は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1では、ラインフローファン2を誘導加熱するためのコイル5をラインフローファン2の下流側、つまり、リアケーシング4に配置した場合について説明したが、本実施の形態における室内ユニット21の内部には、コイル25をラインフローファン2の空気流(F)の上流側(吸気側)、つまり、ラインフローファン2と熱交換器3との間に配置した場合について説明する。図14において、熱交換器3の一部を切り裂いて示し、熱交換器3の内側の様子が分かるように示した。
また、実施の形態1では、コイル5は導線を平板状に巻いて形成した場合について示したが、実施の形態2では、コイル25をラインフローファン2の上流側に配置するために、導線をリング状に巻いたコイルであり、リング状のコイル25の内側に空気流を通すことができる。図16は、コイル25の構造をより詳しく示した斜視図及び断面図である。図16(a)は斜視図、図16(b)は図16(a)の面Bにおける断面図である。
コイル25は、導線をリング状に長方形状あるいは長円形状に巻いたものであり、コイル25の長辺の導線の間隔Wを熱交換器3のパイプの間隔の整数倍とほぼ同じにしている。このような構成によって、コイル25は熱交換器3の内側に、熱交換器3のパイプとコイル25の長辺の導線とが対向する位置に配置されて、コイル25を配置したことによる空気流の圧損を大きくすることなく、コイル25をラインフローファン2の円筒形状側面に対向して配置することができる。なお、図16に示したリング状に巻いたコイル25を、実施の形態1のリアケーシング4にコイルを配置する構成に適用し、平板状のコイル5の代わりにリング形状のコイル25をリアケーシング4に配置して用いてもよい。
コイル25は、熱交換器3のパイプにアルミなどの金属や樹脂で形成されたアタッチメントによって取り付けられてもよいし、針金などの細い金属でコイル25と熱交換器3のパイプとを固定するように取り付けられてもよい。なお、コイル25と熱交換器3との間にはコイル25に沿ってフェライトコアなどの磁性体17が配置されることが望ましい。つまり、ラインフローファン2との間にコイル25が位置するように、磁性体17が配置されることが望ましい。この理由は次のとおりである。
コイル25に高周波電流を流すとコイルの導線の周囲に磁束が発生するが、この磁束はラインフローファン2と鎖交するだけでなく熱交換器3とも鎖交する。磁束が熱交換器3と鎖交することによって、熱交換器3も誘導加熱されて温度上昇する。熱交換器3が温度上昇すれば、最終的には温風として使用されるためエネルギー損失にはならないが、実施の形態1で述べたように熱交換器3は熱容量が大きいためラインフローファン2と比較して温度上昇が遅く、急峻な吹出し空気の温度上昇を得ようとすれば、ラインフローファンでできるだけ多くの電力が消費されることが望ましいためである。つまり、コイル25と熱交換器3との間に磁性体17を配置することにより、熱交換器3側に発生する磁束の多くは磁性体17を通り熱交換器3と鎖交する磁束が減少するので、熱交換器3で消費される電力が低減し、ラインフローファン2で消費される電力が増加する。
ラインフローファン2には、実施の形態1で述べたものと同じ鉄製ファン、アルミ製ファンなどの金属ファンや、樹脂製ファンにめっきなどの方法で導電膜を形成したラインフローファンが用いられる。実施の形態1で説明したように、コイル25に駆動回路8から高周波電流を流すと、ラインフローファン2のコイル25に面した位置に、羽根10と円板11あるいはドーナツ板12とでループ経路を作って渦電流が流れる。これによって、ラインフローファン2は誘導加熱され、ラインフローファン2が回転することによって室内ユニット21の吹出し口から温風が得られる。
なお、図16(b)の断面図では、コイル25の導線の断面を気流の方向に長い長方形として示している。このようにコイル25の導線の断面を気流の方向に長い長方形(あるいは長円)とすることによって、コイル25による気流を妨げる圧損を小さくすることができるだけでなく、コイル25の表面積を増大させて放熱面積を増加し、コイルの温度上昇を抑制することができる。コイル25は、例えば直径0.3mm程度の被覆銅線19本を緩やかに撚ったリッツ線などで形成されるから、コイル25の断面形状は容易に変形させて任意の形状とすることができる。なお、リッツ線などの導線をリング状に巻いてコイルを形成した後、コイル25の表面を樹脂などの絶縁物で覆い、導線を固定してコイル25の保護に役立ててもよい。なお、図17に示すように、コイル26の巻き方を二重リングあるいは複数のリング状としてもよい。ただし、複数のリング状とする場合であっても、コイル26の導線の位置と熱交換器3のパイプの位置が重なるように配置することが望ましい。
また、図14に示したような室内ユニット21の前面側に配置された熱交換器3にのみコイル25を配置するだけではなく、どの熱交換器3にコイル25を配置してもよく、全ての熱交換器3にコイル25を配置してもよい。また、実施の形態1で示したように、ラインフローファン2の長手方向に複数のコイルを配置してラインフローファン2を部分的に制御して加熱したり、ラインフローファン2の右半分あるいは左半分というように、ラインフローファン2の一部分に対向する位置にコイルを配置してラインフローファン2を部分的に誘導加熱したりしてもよい。
なお、熱交換器3の外側にはカバー9が設けられるが、カバー9の内側にはコイル25から外部に放射される電磁波を抑制するためのフェライトシートなどの磁性体シート14が設けられていることが望ましい。
図18は、本実施の形態における空気調和装置の室内ユニット21の吹出し空気の温度上昇の立ち上がり特性を示した図である。本実施の形態のようにラインフローファン2を誘導加熱して温風を得る場合の温度上昇の経時変化(LFF)と、特許文献1のように熱交換器3を誘導加熱して温風を得る場合の温度上昇の経時変化(HE)とを比較した実験結果である。図18において、縦軸は室内ユニットの吹出し口での空気の温度上昇値、横軸は空気調和装置が暖房運転の起動を開始してからの経過時間である。吹出し空気の温度の測定は、実施の形態1で説明した実験と同じように行った。予めラインフローファン2を回転させて風速(FS)2m/sの空気を吹出させておき、1.5kWの電力(P)をいきなり入力して吹出し空気の温度上昇を測定した。ラインフローファン2には鉄製のラインフローファンを用いた。図18において、比較のために熱交換器3を誘導加熱した場合の吹出し空気温度上昇も示した。
図18に示すように、本実施の形態の室内ユニット21においてラインフローファン2を誘導加熱した場合には、0.5分後の温度上昇は15Kであり、熱交換器3を誘導加熱した場合の8Kに比べて吹出し空気の温度上昇が急峻であることが分かる。実施の形態1の室内ユニット1でラインフローファン2を誘導加熱した場合の吹出し空気の温度上昇は0.5分後で18Kであったから、実施の形態2の室内ユニット21の方が0.5分後の吹出し空気の温度上昇は3K低くなっている。これは先述したように、入力した電力の一部が熱交換器3を誘導加熱するのに使用されており、ラインフローファン2の誘導加熱に使用される電力が実施の形態1に比べて小さくなっているためである。しかしながら、熱交換器3を誘導加熱する場合に比べると吹出し空気の温度上昇が急峻になっており、短時間に温風を得ることができている。
以上のように、ラインフローファン2を誘導加熱するためのコイル25をラインフローファン2の上流側(吸気側)に配置したので、熱容量は小さいが、熱伝達率は高く、吹き出し口に最も近い位置に設置されたラインフローファン2の外周面側を誘導加熱させて温風を得ることができ、暖房運転の起動直後に迅速な温風吹出しを行うことができる。さらに、ラインフローファン2の吸気のための空気流の圧損を小さくすることができる。
実施の形態3.
図19は、この発明を実施するための実施の形態3における空気調和装置の室内ユニットを示す一部分解斜視図であり、図20は、図19の面Aにおける空気調和装置の室内ユニットの断面図である。コイル35がラインフローファン2の空気流(F)の吸い込み部と吹出し部との境界部に配置される点が実施の形態2とは異なる。本実施の形態におけるコイルは、実施の形態2で示したコイルと同様、長方形のリング状コイルである。
図19は、この発明を実施するための実施の形態3における空気調和装置の室内ユニットを示す一部分解斜視図であり、図20は、図19の面Aにおける空気調和装置の室内ユニットの断面図である。コイル35がラインフローファン2の空気流(F)の吸い込み部と吹出し部との境界部に配置される点が実施の形態2とは異なる。本実施の形態におけるコイルは、実施の形態2で示したコイルと同様、長方形のリング状コイルである。
ラインフローファン2は軸対称の円筒形状をしているため、空間に配置されたラインフローファン2を回転させただけでは空気流が得られない。このため、一般にラインフローファンの円筒形状側面の一部に障害物を設け、円筒軸に対する円周方向に空気圧差を発生させることによって高圧側から低圧側へ空気流を発生させる。一般に空気調和装置の室内ユニットでは、この障害物は2箇所ある。障害物が設置される位置は、ラインフローファンの吸気側と排気側との境界に相当する。この障害物が設置される位置にコイル35を設置し、コイル35がラインフローファン2を誘導加熱するため機能と、障害物としての機能とを兼ねたものが本実施の形態の空気調和装置である。
図19及び図20に示すように、長方形のリング状に導線を巻いて形成したコイル35が、ラインフローファン2の直径方向からやや傾いた位置に、コイル35の長辺方向の導線がラインフローファン2の円筒形状側面に沿った状態になるように設けられる。このような構成によって、コイル35は空気流を発生させるための障害物を兼ねてラインフローファン2を誘導加熱することができる。つまり、コイル35に高周波電流を流すと、実施の形態1で説明したように、ラインフローファン2の羽根10と円板11あるいはドーナツ板12でループ状の経路を作って渦電流が流れ、ラインフローファン2が誘導加熱される。
通常、障害物はラインフローファン2と数mmの位置に配置されるため、本実施の形態のように、障害物を兼ねることにより、コイル35をラインフローファン2に接近させて配置することができる。このため、コイル35に高周波電流を流すことにより発生した磁束はラインフローファン2と効率よく鎖交し、ラインフローファン2を誘導加熱する効率を高くすることができる。さらに、障害物は元々必要であるため、コイル35を配置することによって室内ユニット31の空力が悪化することがないといったメリットがある。なお、ラインフローファン2には実施の形態1で述べたものを使用することができる。熱交換器3は誘導加熱されないので、誘導加熱のための電力は全てラインフローファンで消費され、実施の形態1で説明した場合と同様に、急峻な吹出し空気温度上昇が得られる。
以上のように、ラインフローファン2を誘導加熱するコイル35をラインフローファン2の障害物が設置される位置(ラインフローファン2の吸気側と排気側との境界)に配置したので、コイル35がラインフローファン2に近づけて配置され、ラインフローファン2を効率的に誘導加熱することができる。さらに、コイル配置による空力低下を抑制することができる。
実施の形態4.
図21及び図22は、この発明を実施するための実施の形態4における空気調和装置の室内ユニットの断面図である。実施の形態1~3では、コイルがラインフローファンの下流側、上流側、下流と上流の境界部に配置される場合について示したが、コイルの配置はこれに限るものではない。つまり、実施の形態1で詳細に述べたように、導電性を有するラインフローファン2の羽根10と円板11やドーナツ板12でループ状の渦電流の経路を形成するようにコイルを配置すればラインフローファン2を効率良く誘導加熱することができるのであって、具体的には実施の形態1~3で述べたようなラインフローファン2の羽根10に沿ってコイルの導線が配置されるような長方形状あるいは長円形状の平板状あるいはリング状コイルが、ラインフローファン2に沿って配置されていればよい。
図21及び図22は、この発明を実施するための実施の形態4における空気調和装置の室内ユニットの断面図である。実施の形態1~3では、コイルがラインフローファンの下流側、上流側、下流と上流の境界部に配置される場合について示したが、コイルの配置はこれに限るものではない。つまり、実施の形態1で詳細に述べたように、導電性を有するラインフローファン2の羽根10と円板11やドーナツ板12でループ状の渦電流の経路を形成するようにコイルを配置すればラインフローファン2を効率良く誘導加熱することができるのであって、具体的には実施の形態1~3で述べたようなラインフローファン2の羽根10に沿ってコイルの導線が配置されるような長方形状あるいは長円形状の平板状あるいはリング状コイルが、ラインフローファン2に沿って配置されていればよい。
例えば、図21に示すように、コイル45の導線が、一部はリアケーシング4に設けられ、一部が熱交換器3とラインフローファン2との間に配置されていてもよい。あるいは図22のようにコイル45が2個の熱交換器3にまたがって配置されていてもよい。このような構成によって、コイル45がラインフローファン2に近づけて配置され、ラインフローファン2を効率的に誘導加熱することができる。
実施の形態1~4においては、主に家庭用に用いられる壁掛け型のルームエアコンと呼ばれる空気調和装置の室内ユニットについて述べたが、本発明が適用される空気調和装置はこれに限るものではなく、ラインフローファンを用いた空気調和装置であれば、天井埋め込み型の空気調和装置、床置き型の空気調和装置、あるいは電車などの移動体に用いられる空気調和装置であってもよい。
1,21,31 室内ユニット、2 ラインフローファン、3 熱交換器、4 リアケーシング、5,25,26,35,45 コイル、6,16 難燃性板材、7,17 磁性体、8 駆動回路、9 カバー、10 羽根、11 円板、12 ドーナツ板、13 スリット、14 磁性体シート。
Claims (12)
- 熱交換器と、前記熱交換器を通過した空気を送風する円筒状で導電性のラインフローファンと、前記ラインフローファンの円筒軸方向と略平行に配置され、前記ラインフローファンを誘導加熱するコイルとを内部に有する室内ユニットを備えたことを特徴とする空気調和装置。
- 前記ラインフローファンは、前記ラインフローファンの円筒軸に略直交し、外形が円形である複数の板と、前記複数の板に略直交するように前記複数の板の間に設けられ、前記複数の板と電気的に接続された複数の短冊状の羽根とによって構成され、
前記コイルは、誘導加熱によって流れる渦電流が前記板及び前記羽根においてループ状の経路を形成するように配置されたことを特徴とする請求項1に記載の空気調和装置。 - 前記コイルは、外形が略長方形あるいは長円形であって、前記コイルの長軸が前記ラインフローファンの円筒軸に対して略平行となるように配置されたことを特徴とする請求項1に記載の空気調和装置。
- 前記ラインフローファンの排気側に非磁性金属板が配置され、前記コイルは、前記非磁性金属板に接して配置されたことを特徴とする請求項1に記載の空気調和装置。
- 前記非磁性金属板は、前記コイルの導線を横切るように設けられたスリットを有することを特徴とする請求項4に記載の空気調和装置。
- 前記コイルは、外形が平面状あるいは曲面状に形成され、前記ラインフローファンの排気側に配置されたことを特徴とする請求項1に記載の空気調和装置。
- 前記コイルは、リング状に形成され、前記ラインフローファンの吸気側に配置されたことを特徴とする請求項1に記載の空気調和装置。
- 前記コイルは、リング状に形成され、前記ラインフローファンの吸気側と排気側との境界に配置されたことを特徴とする請求項1に記載の空気調和装置。
- 前記ラインフローファンは、金属で形成されたことを特徴とする請求項1に記載の空気調和装置。
- 前記ラインフローファンは、絶縁材料で形成され、前記絶縁材料の表面に導電膜が設けられたことを特徴とする請求項1に記載の空気調和装置。
- 前記導電膜は、銅めっきあるいはアルミめっきによって形成されたことを特徴とする請求項10に記載の空気調和装置。
- 前記ラインフローファンとの間に前記コイルが位置するように配置された磁性体を備えたことを特徴とする請求項1に記載の空気調和装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010541206A JP5310736B2 (ja) | 2008-12-04 | 2009-11-24 | 空気調和装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-309725 | 2008-12-04 | ||
JP2008309725 | 2008-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010064375A1 true WO2010064375A1 (ja) | 2010-06-10 |
Family
ID=42233034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/006308 WO2010064375A1 (ja) | 2008-12-04 | 2009-11-24 | 空気調和装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5310736B2 (ja) |
WO (1) | WO2010064375A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015212598A (ja) * | 2014-05-06 | 2015-11-26 | 株式会社日本自動車部品総合研究所 | 空調装置用送風ユニット |
US9404669B2 (en) | 2012-10-04 | 2016-08-02 | Carrier Corporation | Application of electric heat coil in fan unit |
CN114151310A (zh) * | 2021-11-24 | 2022-03-08 | 杭州佐帕斯工业有限公司 | 一种用于模拟进气的加温模块 |
CN114484564A (zh) * | 2021-12-27 | 2022-05-13 | 珠海格力电器股份有限公司 | 一种加热出风结构和风扇 |
JPWO2023026456A1 (ja) * | 2021-08-27 | 2023-03-02 | ||
WO2023157255A1 (ja) * | 2022-02-18 | 2023-08-24 | 三菱電機株式会社 | リアクトル装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6500995B2 (ja) | 2015-10-26 | 2019-04-17 | 株式会社デンソー | 車両用空調装置 |
CN108826450B (zh) * | 2018-05-14 | 2020-11-10 | 义乌市诠铈新材料有限公司 | 横向摆风空调 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04320759A (ja) * | 1991-04-19 | 1992-11-11 | Mitsubishi Electric Home Appliance Co Ltd | 温風暖房機 |
JPH08219476A (ja) * | 1995-02-13 | 1996-08-30 | Hitachi Ltd | 空気調和機 |
JPH11262600A (ja) * | 1998-03-18 | 1999-09-28 | Matsushita Seiko Co Ltd | 換気乾燥機 |
JP2000146301A (ja) * | 1998-11-13 | 2000-05-26 | Matsushita Seiko Co Ltd | 温風ユニット |
JP2000243545A (ja) * | 1999-02-16 | 2000-09-08 | Canon Inc | 加熱装置用励磁コイルおよびその製造方法、加熱装置、画像形成装置 |
JP2002043049A (ja) * | 2000-07-24 | 2002-02-08 | Sharp Corp | 誘導加熱装置 |
JP2009109141A (ja) * | 2007-10-31 | 2009-05-21 | Daikin Ind Ltd | 空気調和装置 |
-
2009
- 2009-11-24 WO PCT/JP2009/006308 patent/WO2010064375A1/ja active Application Filing
- 2009-11-24 JP JP2010541206A patent/JP5310736B2/ja not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04320759A (ja) * | 1991-04-19 | 1992-11-11 | Mitsubishi Electric Home Appliance Co Ltd | 温風暖房機 |
JPH08219476A (ja) * | 1995-02-13 | 1996-08-30 | Hitachi Ltd | 空気調和機 |
JPH11262600A (ja) * | 1998-03-18 | 1999-09-28 | Matsushita Seiko Co Ltd | 換気乾燥機 |
JP2000146301A (ja) * | 1998-11-13 | 2000-05-26 | Matsushita Seiko Co Ltd | 温風ユニット |
JP2000243545A (ja) * | 1999-02-16 | 2000-09-08 | Canon Inc | 加熱装置用励磁コイルおよびその製造方法、加熱装置、画像形成装置 |
JP2002043049A (ja) * | 2000-07-24 | 2002-02-08 | Sharp Corp | 誘導加熱装置 |
JP2009109141A (ja) * | 2007-10-31 | 2009-05-21 | Daikin Ind Ltd | 空気調和装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9404669B2 (en) | 2012-10-04 | 2016-08-02 | Carrier Corporation | Application of electric heat coil in fan unit |
JP2015212598A (ja) * | 2014-05-06 | 2015-11-26 | 株式会社日本自動車部品総合研究所 | 空調装置用送風ユニット |
JPWO2023026456A1 (ja) * | 2021-08-27 | 2023-03-02 | ||
CN114151310A (zh) * | 2021-11-24 | 2022-03-08 | 杭州佐帕斯工业有限公司 | 一种用于模拟进气的加温模块 |
CN114484564A (zh) * | 2021-12-27 | 2022-05-13 | 珠海格力电器股份有限公司 | 一种加热出风结构和风扇 |
WO2023157255A1 (ja) * | 2022-02-18 | 2023-08-24 | 三菱電機株式会社 | リアクトル装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010064375A1 (ja) | 2012-05-10 |
JP5310736B2 (ja) | 2013-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5310736B2 (ja) | 空気調和装置 | |
KR100762734B1 (ko) | 전기 온풍기용의 유도가열 발열체와 이를 이용한 온풍기 | |
WO2016086795A1 (zh) | 一种电磁发热装置 | |
AU2016310968B2 (en) | Induction heater and water dispenser | |
CN107095591A (zh) | 利用气流烹饪的烹饪设备 | |
KR200414996Y1 (ko) | 전기 온풍기용의 유도가열 발열체와 이를 이용한 온풍기 | |
JP4807042B2 (ja) | 冷媒加熱装置 | |
JP2005302393A (ja) | 誘導加熱調理器 | |
JP2897083B2 (ja) | 温風暖房機 | |
JPH11185947A (ja) | 誘導加熱調理器 | |
JP2003077637A (ja) | 誘導加熱調理器 | |
US20200037403A1 (en) | Magnetic induction style furnace or heat pump or magnetic refrigerator having electromagnetic controller functionality and varying rotating disk package conductor plate configurations | |
US5253261A (en) | Gas laser solenoid and cooling apparatus | |
JP2009144977A (ja) | 電磁誘導加熱式給湯器 | |
KR101064408B1 (ko) | 인덕션 가열 방식의 전기 온풍기 | |
JP2010051170A (ja) | 発電機を冷却するための方法及び装置 | |
JP2011202873A (ja) | 空気調和装置 | |
JP6319513B2 (ja) | 送風装置 | |
JPH1055881A (ja) | 誘導発熱ローラ装置 | |
JP2009295411A (ja) | 誘導加熱調理器 | |
CN209861206U (zh) | 速热模块及空调器 | |
WO2010146809A1 (ja) | 冷凍装置 | |
JP3497444B2 (ja) | 画像形成装置 | |
JP6871731B2 (ja) | 変圧器 | |
JP2017010669A (ja) | 温風発生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09830146 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010541206 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09830146 Country of ref document: EP Kind code of ref document: A1 |