WO2010063664A1 - Method and device for the semi-active reduction of pressure oscillations in a hydraulic system - Google Patents

Method and device for the semi-active reduction of pressure oscillations in a hydraulic system Download PDF

Info

Publication number
WO2010063664A1
WO2010063664A1 PCT/EP2009/066020 EP2009066020W WO2010063664A1 WO 2010063664 A1 WO2010063664 A1 WO 2010063664A1 EP 2009066020 W EP2009066020 W EP 2009066020W WO 2010063664 A1 WO2010063664 A1 WO 2010063664A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic system
pressure
actuator
hydraulic
variable
Prior art date
Application number
PCT/EP2009/066020
Other languages
German (de)
French (fr)
Inventor
Anton Pirko
Georg Keintzel
Original Assignee
Siemens Vai Metals Technologies Gmbh & Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Vai Metals Technologies Gmbh & Co filed Critical Siemens Vai Metals Technologies Gmbh & Co
Priority to JP2011538977A priority Critical patent/JP2012510900A/en
Priority to CN200980148832.5A priority patent/CN102271832B/en
Priority to BRPI0922291A priority patent/BRPI0922291A2/en
Priority to RU2011127440/02A priority patent/RU2527496C2/en
Priority to CA2745804A priority patent/CA2745804A1/en
Priority to US13/132,975 priority patent/US20110302976A1/en
Priority to EP09799567A priority patent/EP2355941A1/en
Priority to MX2011005501A priority patent/MX2011005501A/en
Publication of WO2010063664A1 publication Critical patent/WO2010063664A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids
    • F16L55/045Devices damping pulsations or vibrations in fluids specially adapted to prevent or minimise the effects of water hammer
    • F16L55/05Buffers therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/008Reduction of noise or vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/007Control for preventing or reducing vibration, chatter or chatter marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/62Roll-force control; Roll-gap control by control of a hydraulic adjusting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/66Roll eccentricity compensation systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/8613Control during or prevention of abnormal conditions the abnormal condition being oscillations

Definitions

  • the present invention relates to a method and an apparatus for the semi-active reduction of pressure oscillations in a hydraulic system of a cold or hot rolling mill or a strip processing plant for iron, steel or aluminum materials.
  • pressure oscillations in hydraulic systems cause various problems, for example excessive noise, reduction of the life of components, disturbance of control circuits, etc.
  • Pressure oscillations can either be caused in the hydraulic system itself, e.g. caused by the non-uniformity of the delivery of pumps or by the control of valves, etc., or also externally, e.g. due to periodic load fluctuations in hydraulic cylinders or motors.
  • hydraulic systems with high dynamics for example consisting of a highly dynamic continuous hydraulic valve (for example an electrically controlled proportional or servo valve) and a hydraulic cylinder or motor, strong pressure oscillations can occur in the hydraulic system.
  • Damage to the frameworks of a rolling mill and / or defects in the rolling stock can lead. This is mainly due to the fact that on the one hand - due to higher rolling forces or speeds - faster and faster reacting hydraulic systems (higher dynamics) are used and on the other hand - due to higher demands on the reaction time and economy - the damping in the hydraulic systems (eg the viscous damping in the seals of cylinders) is reduced.
  • a device for the active suppression of pressure oscillations in a hydraulic power unit which comprises a pressure sensor, a control device with associated amplifier and a
  • Volume compensator has. Concrete regulations for the method to be performed or further indications for an advantageous application of the device in a hydraulic system of a rolling mill or strip processing plant can not be found in the disclosure.
  • the object of the invention is to provide a method and a device for the semi-active reduction of pressure oscillations in a hydraulic system of a cold or hot rolling mill or a strip processing plant with which occurring pressure oscillations can be effectively reduced by means of a simple and inexpensive device
  • a method of the type mentioned comprising the following method steps in the order mentioned: a) detection of a pressure signal by means of a pressure transducer by permanently measuring a pressure in the hydraulic system; b) determination of an alternating component of the pressure signal; c) determination of at least one temporally variable manipulated variable in real time with the aid of a controller below
  • a pressure signal by means of a pressure transducer (eg with a piezoelectric, piezoresistive or DMS (Dehn-measuring strip) measuring cell) by permanently measuring a pressure in a hydraulic system, for example, a rolling stand of a rolling mill, detected.
  • a hydraulic system is understood to mean a section (typically a hydraulic circuit or a hydraulic axis) of a hydraulic system which is hydraulically connected to one another, for example the area between a hydraulic valve and a hydraulic cylinder including the hydraulic lines or hoses.
  • an alternating component is determined from the pressure signal, ie. it will be a DC component of the pressure signal removed, and fed to a controller.
  • the determination of the alternating component can be carried out either by an electronic filter module or by a digital filter (eg removal of the DC component by means of a viewing window English, "sliding window", consisting of n measured values of the pressure oscillations (filter order n), of course, however, the removal of the DC component
  • the determination of the alternating component can also take place by means of a piezoelectric pressure transducer and a charge amplifier which is either connected downstream of the pressure transducer or integrated in the pressure transducer variable manipulated variable in real time, which is used for
  • a vibration damper means a per se passive element for vibration damping, e.g. a ⁇ / 4 resonator, a Helmholtz resonator, etc.
  • the term "semi-active reduction of pressure oscillations" should be understood to mean the attenuation of an amplitude of pressure oscillations in a hydraulic system by means of a passive vibration absorber
  • Natural frequency of the passive vibration absorber is variable by means of an actuator.
  • a particularly strong reduction in the amplitude of the pressure oscillations is possible when a natural frequency of the vibration absorber is changed by a targeted actuation of the actuator with the manipulated variable, that the natural frequency of the vibration is brought into agreement with a frequency of the pressure oscillation.
  • the transmission of the manipulated variable signal from Controller for the actuator can be wired or wireless (eg via radio).
  • the alternating component of the pressure signal is subjected to bandpass filtering.
  • bandpass filtering it is possible to use the alternating component either particularly disturbing frequency components (which coincide, for example, with a natural frequency of the rolling mill or a subsystem) or frequency components with high amplitude or intensity (eg from a spectrum of an FFT (Fast Fourier Transform) or PSD (Power Signal Density)) and feed it to the controller.
  • FFT Fast Fourier Transform
  • PSD Power Signal Density
  • the actuator changes a volume corresponding to the manipulated variable in the vibration absorber, the volume corresponding to the manipulated variable (a manipulated variable of zero corresponds for example to an undeflected (neutral) position of the actuator, a maximum manipulated variable can then be, for example, a maximum deflection in one direction) and thereby a natural frequency of the vibration absorber is changed.
  • the inventive method can be carried out when the actuator changes the volume of a Helmholtz resonator or the active length of a ⁇ / 4 resonator.
  • the natural frequency can be adjusted in a simple manner.
  • the device comprises a pressure sensor connected to the hydraulic system for detecting a pressure signal, a member for determining a change proportion of the pressure signal, to which the pressure signal can be supplied, at least one control device to which the alternating component can be supplied and with the aid of which at least one control variable can be determined, at least one vibration damper connected to the hydraulic system and at least one actuator connected to the vibration damper with a variable volume, the the manipulated variable can be supplied and over which a resonator volume of the vibration absorber can be changed.
  • a natural frequency of the vibration absorber can be adjusted via the resonator volume, whereby the natural frequency can be adapted to a frequency of the pressure oscillations.
  • vibration damper is designed as a ⁇ / 4 or Helmholtz resonator.
  • a particularly inexpensive device can be achieved if the actuator as an electric lifting spindle
  • Actuator or hydraulic actuator is executed. Since the adjustment of the actuator can be slow compared to systems with active vibration compensation, conventional electrical or hydraulic actuators are completely sufficient.
  • the device according to the invention can be used when the device is in communication with a hydraulic valve and a hydraulic cylinder of a hydraulic roller adjustment.
  • a hydraulic valve and a hydraulic cylinder of a hydraulic roller adjustment By means of this installation, the reduction of vibrations on the rolls of a roll stand is particularly easy, whereby the quality of the rolling stock can be effectively improved.
  • the installation is particularly compact when the device is installed in an intermediate plate of the hydraulic valve.
  • Fig. 1 Scheme of a controlled system for the semi-active reduction of pressure oscillations in a hydraulic system
  • Fig. 2 Scheme of a device according to the invention for reducing pressure oscillations in a hydraulic system of a rolling mill
  • Figs. 3 and 4 schemes of a vibration damper with integrated actuator
  • Fig. 1 shows the basic structure of a controlled system for the reduction of pressure oscillations in a hydraulic system a rolling mill.
  • a pressure transducer 1 Via a pressure transducer 1, a pressure signal of a pressure in the hydraulic system is detected, the pressure signal 2 is passed to a high-pass filter 3 (for details on the electronic circuit, see eg P. 35 in P. Horowitz, W. Hill, The Art of Electronics, Cambridge University Press).
  • Manipulated variable signal is then fed to an amplifier 8, which controls an actuator 9, designed as an electric lifting spindle actuator.
  • the actuator 9 the resonator volume of a designed as a Helmholtz resonator vibration absorber 13 is changed, wherein the change of the resonator volume corresponds to the manipulated variable 6.
  • a natural frequency of the vibration absorber 13 is changed, whereby the natural frequency of the vibration absorber is made to coincide with a frequency of the pressure vibration.
  • FIG. 2 is a schematic device for suppressing pressure oscillations in a hydraulic system of a scaffold for rolling iron-steel or aluminum materials is shown.
  • a pressure signal 2 is detected by means of a pressure transducer 1 by permanently measuring a pressure in a hydraulic system 10, the hydraulic system comprising a hydraulic valve 11, a hydraulic cylinder 12 and a hydraulic line.
  • the hydraulic system is used to hire a roller 14 for rolling a rolling stock 15.
  • the pressure transducer 1 can either in the section between a vibration damper 13 and the hydraulic cylinder 12 (as shown) or in the portion between the hydraulic valve 11 and the vibration damper 13 are located.
  • a plurality of pressure transducers between the vibration damper 13 and the hydraulic cylinder 12 or between the hydraulic valve 11 and the vibration damper 13 are arranged.
  • the pressure signal 2 is transmitted to a digital controller 4, which determines a frequency band of the alternating component of the pressure signal and calculates a temporally variable manipulated variable 6 with the aid of a control algorithm.
  • the manipulated variable is supplied after amplification in an amplifier, not shown, designed as an electric actuator stroke actuator actuator 9, which changes a corresponding with the manipulated variable 6 resonator volume in the designed as a Helmholtz resonator vibration absorber 13, so that a natural frequency of the vibration 13 to a frequency of Pressure oscillations is adjusted, whereby the amplitude of a pressure oscillation is reduced.
  • FIG. 3 shows a vibration damper 13 embodied as a Helmholtz resonator with an integrated actuator 9.
  • Vibration modifier 13 variable, wherein the natural frequency f of the Helmholtz resonator by the condition
  • c is the speed of sound in the pressure fluid
  • S ' is the cross-sectional area and L' the Length in the resonator throat
  • L the length and S the cross-sectional area of the resonator volume V (see Chapter 8.3.3 Resonators in the textbook H. Kuttruff, Acoustics - An introduction, Taylor and Francis, 2007).
  • FIG. 4 shows a vibration damper 13 embodied as a ⁇ / 4 resonator with an integrated actuator 9.
  • the actuator 9, a manipulated variable 6 can be supplied, whereby the active length L of the ⁇ / 4 resonator is variable.
  • the active length L is a
  • Natural frequency of the vibration absorber 13 variable wherein the natural frequency f of the ⁇ / 4 resonator by the condition given is.
  • the velocity of sound in the pressure fluid is indicated by c and the active length by L.
  • the method or the device according to the invention can be used in any hydraulic systems of mobile or industrial hydraulics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Metal Rolling (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Metal Rolling (AREA)

Abstract

The invention relates to a method and a device for the semi-active reduction of pressure oscillations in a hydraulic system of a cold- or warm-rolling train or a strip conditioning installation for iron, steel or aluminum materials. The aim of the invention is to provide a method and a device by means of which occurring pressure oscillations can be effectively suppressed by means of a simple and cost-effective device. This aim is achieved by a method of the type mentioned above, comprising the following method steps in the sequence specified: a) detecting a pressure signal by means of a pressure sensor through permanent pressure measurement in the hydraulic system; b) determining an alternating component of the pressure signal; c) determining in real time at least one variable that changes over time with the aid of a controller while taking the alternating component into consideration; d) subjecting at least one actuator to the variable, wherein the actuator changes a natural frequency of an oscillation absorber that is connected to the hydraulic system, thereby reducing the amplitude of the pressure oscillations in the hydraulic system.

Description

Verfahren und Vorrichtung zur semi-aktiven Reduktion von Druckschwingungen in einem Hydrauliksystem Method and device for the semi-active reduction of pressure oscillations in a hydraulic system
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur semi-aktiven Reduktion von Druckschwingungen in einem Hydrauliksystem einer Kalt- oder Warmwalzstraße oder einer Bandbehandlungsanlage für Eisen-, Stahl- oder Aluminiumwerkstoffe .The present invention relates to a method and an apparatus for the semi-active reduction of pressure oscillations in a hydraulic system of a cold or hot rolling mill or a strip processing plant for iron, steel or aluminum materials.
Es ist bekannt, dass periodisch auftretende Druckschwingungen in Hydrauliksystemen verschiedene Probleme verursachen, beispielsweise übermäßige Geräuschentwicklung, Reduktion der Lebensdauer von Komponenten, Störung von Regelkreisen etc. Druckschwingungen können entweder im Hydrauliksystem selbst hervorgerufen werden, z.B. durch die Ungleichförmigkeit der Fördermenge von Pumpen oder durch die Ansteuerung von Ventilen usw., oder auch extern verursacht werden, z.B. durch periodische Lastschwankungen bei Hydraulikzylindern oder - motoren. Es ist weiters bekannt, dass es insbesondere bei Hydrauliksystemen mit hoher Dynamik, beispielsweise bestehend aus einem hochdynamischen stetigen Hydraulikventil (z.B. ein elektrisch angesteuertes Proportional- oder Servoventil) und einem Hydraulikzylinder oder -motor, zu starken Druckschwingungen im Hydrauliksystem kommen kann.It is known that periodically occurring pressure oscillations in hydraulic systems cause various problems, for example excessive noise, reduction of the life of components, disturbance of control circuits, etc. Pressure oscillations can either be caused in the hydraulic system itself, e.g. caused by the non-uniformity of the delivery of pumps or by the control of valves, etc., or also externally, e.g. due to periodic load fluctuations in hydraulic cylinders or motors. It is further known that, particularly in hydraulic systems with high dynamics, for example consisting of a highly dynamic continuous hydraulic valve (for example an electrically controlled proportional or servo valve) and a hydraulic cylinder or motor, strong pressure oscillations can occur in the hydraulic system.
Es hat sich gezeigt, dass es auch in den Hydrauliksystemen moderner Walzstraßen oder Bandbehandlungsanlagen - z.B. bei der hydraulischen Walzenanstellung - zu starken Druckschwingungen kommen kann, welche zu einer Verringerung der Lebensdauer von Komponenten, aber auch zu erheblichenIt has also been found that it can also be used in the hydraulic systems of modern rolling mills or strip processing plants - e.g. in the hydraulic roller adjustment - can come to strong pressure oscillations, resulting in a reduction in the life of components, but also to considerable
Schäden an den Gerüsten einer Walzstraße und/oder zu Defekten am Walzgut führen können. Dies wird vor allem dadurch bedingt, dass auf der einen Seite - bedingt durch höhere Walzkräfte oder -geschwindigkeiten - immer schneller reagierende Hydrauliksysteme (höhere Dynamik) verwendet werden und auf der anderen Seite - bedingt durch höhere Anforderungen an die Reaktionszeit und Wirtschaftlichkeit - die Dämpfung in den Hydrauliksystemen (z.B. die viskose Dämpfung in den Dichtungen von Zylindern) reduziert wird.Damage to the frameworks of a rolling mill and / or defects in the rolling stock can lead. This is mainly due to the fact that on the one hand - due to higher rolling forces or speeds - faster and faster reacting hydraulic systems (higher dynamics) are used and on the other hand - due to higher demands on the reaction time and economy - the damping in the hydraulic systems (eg the viscous damping in the seals of cylinders) is reduced.
Aus der DE 4 302 977 Al ist eine Vorrichtung zur aktiven Unterdrückung von Druckschwingungen in einem Hydraulikaggregat bekannt, welche einen Drucksensor, eine Regeleinrichtung mit zugeordnetem Verstärker und einenFrom DE 4 302 977 Al a device for the active suppression of pressure oscillations in a hydraulic power unit is known, which comprises a pressure sensor, a control device with associated amplifier and a
Volumen-Kompensator aufweist. Konkrete Vorschriften für das durchzuführende Verfahren bzw. weitergehende Hinweise für eine vorteilhafte Anwendung der Vorrichtung in einem Hydrauliksystem einer Walzstraße bzw. Bandbehandlungsanlage können der Offenbarung nicht entnommen werden.Volume compensator has. Concrete regulations for the method to be performed or further indications for an advantageous application of the device in a hydraulic system of a rolling mill or strip processing plant can not be found in the disclosure.
Aufgrund der hohen Frequenzen der zu unterdrückenden Druckschwingungen und den hohen Drücken in modernen Hydrauliksystemen werden insbesondere an die Aktuatoren aktiver Schwingungskompensationssysteme sehr hoheDue to the high frequencies of the pressure vibrations to be suppressed and the high pressures in modern hydraulic systems, the actuators of active vibration compensation systems in particular become very high
Anforderungen gestellt. Dies führt dazu, dass die Aktuatoren nicht mehr kompakt sind (insbesondere großes Volumen aufweisen) und aufgrund der hohen Anforderungen an die Leistungsdichte nur mehr sehr hochwertige und teure Aktuatoren verwendet werden können. Ein weiterer Nachteil aktiver Schwingungskompensationssysteme ist, dass über den Aktuator zusätzlich Energie in das Hydrauliksystem eingebracht wird, was die Stabilität des Gesamtsystems grundsätzlich verschlechtert und insbesondere bei einem nicht exakt eingestellten Regler sogar zu einer Verschlechterung des Systemverhaltens führen kann (dh. dass unter Umständen die Amplitude der Druckschwingungen nicht reduziert sondern sogar verstärkt werden ) . Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zur semi-aktiven Reduktion von Druckschwingungen in einem Hydrauliksystem einer Kalt- oder Warmwalzstraße bzw. einer Bandbehandlungsanlage zu schaffen, mit denen auftretende Druckschwingungen mittels einer einfachen und kostengünstigen Vorrichtung effektiv reduziert werden könnenRequirements made. This means that the actuators are no longer compact (in particular, have large volume) and due to the high power density requirements only very high quality and expensive actuators can be used. A further disadvantage of active vibration compensation systems is that additional energy is introduced into the hydraulic system via the actuator, which fundamentally worsens the stability of the overall system and can even lead to a deterioration of the system behavior, in particular if the controller is not set exactly (ie the pressure oscillations are not reduced but even amplified). The object of the invention is to provide a method and a device for the semi-active reduction of pressure oscillations in a hydraulic system of a cold or hot rolling mill or a strip processing plant with which occurring pressure oscillations can be effectively reduced by means of a simple and inexpensive device
Diese Aufgabe wird durch ein Verfahren der eingangs genannten Art gelöst, umfassend folgende Verfahrensschritte in der genannten Reihenfolge: a) Erfassung eines Drucksignals mittels eines Druckaufnehmers durch permanentes Messen eines Drucks im Hydrauliksystem; b) Ermittlung eines Wechselanteils des Drucksignals; c) Ermittlung zumindest einer zeitlich veränderlichen Stellgröße in Echtzeit mit Hilfe eines Reglers unterThis object is achieved by a method of the type mentioned, comprising the following method steps in the order mentioned: a) detection of a pressure signal by means of a pressure transducer by permanently measuring a pressure in the hydraulic system; b) determination of an alternating component of the pressure signal; c) determination of at least one temporally variable manipulated variable in real time with the aid of a controller below
Berücksichtigung des Wechselanteils; d) Beaufschlagung mindestens eines Aktuators mit der Stellgröße, wobei der Aktuator eine Eigenfrequenz eines mit dem Hydrauliksystem in Verbindung stehenden Schwingungstilgers verändert und dadurch eine Amplitude der Druckschwingungen im Hydrauliksystem reduziert wird.Consideration of the share of exchange; d) Actuation of at least one actuator with the manipulated variable, wherein the actuator changes a natural frequency of an associated with the hydraulic system vibration damper and thereby an amplitude of the pressure oscillations in the hydraulic system is reduced.
Hierbei wird ein Drucksignal mittels eines Druckaufnehmers (z.B. mit einer piezoelektrischen, piezoresistiven oder aus DMS (Dehn-Mess-Streifen) Messzelle) durch permanentes Messen eines Drucks in einem Hydrauliksystem, beispielweise eines Walzgerüsts einer Walzanlage, erfasst. Unter einem Hydrauliksystem versteht man einen Abschnitt (typischerweise ein hydraulischer Kreis bzw. eine hydraulische Achse) einer Hydraulikanlage, welche hydraulisch miteinander in Verbindung steht, beispielsweise der Bereich zwischen einem Hydraulikventil und einem Hydraulikzylinder inkl. der Hydraulikleitungen bzw. -schlauche. Anschließend wird aus dem Drucksignal ein Wechselanteil ermittelt, dh. es wird ein Gleichanteil des Drucksignals entfernt, und einem Regler zugeführt. Die Ermittlung des Wechselanteils kann entweder durch einen elektronischen Filterbaustein oder durch einen digitalen Filter erfolgen (z.B. Entfernung des Gleichanteils mittels eines Betrachtungsfensters engl, „sliding window", bestehend aus n Messwerten der Druckschwingungen (Filterordnung n) ; selbstverständlich kann die Entfernung des DC Anteils aber auch erst im Algorithmus des Reglers erfolgen) ; alternativ kann die Ermittlung des Wechselanteils auch mittels eines piezoelektrischen Druckaufnehmers und eines Ladungsverstärkers, der entweder dem Druckaufnehmer nachgeschaltet oder in den Druckaufnehmer integriert ist, erfolgen . Der Regler ermittelt unter Berücksichtigung des Wechselanteils des Drucksignals mindestens eine zeitlich veränderliche Stellgröße in Echtzeit, welche zurHere, a pressure signal by means of a pressure transducer (eg with a piezoelectric, piezoresistive or DMS (Dehn-measuring strip) measuring cell) by permanently measuring a pressure in a hydraulic system, for example, a rolling stand of a rolling mill, detected. A hydraulic system is understood to mean a section (typically a hydraulic circuit or a hydraulic axis) of a hydraulic system which is hydraulically connected to one another, for example the area between a hydraulic valve and a hydraulic cylinder including the hydraulic lines or hoses. Subsequently, an alternating component is determined from the pressure signal, ie. it will be a DC component of the pressure signal removed, and fed to a controller. The determination of the alternating component can be carried out either by an electronic filter module or by a digital filter (eg removal of the DC component by means of a viewing window English, "sliding window", consisting of n measured values of the pressure oscillations (filter order n), of course, however, the removal of the DC component Alternatively, the determination of the alternating component can also take place by means of a piezoelectric pressure transducer and a charge amplifier which is either connected downstream of the pressure transducer or integrated in the pressure transducer variable manipulated variable in real time, which is used for
Beaufschlagung mindestens eines Aktuators verwendet wird, wodurch eine Eigenfrequenz eines mit dem Hydrauliksystem in Verbindung stehenden Schwingungstilgers verändert wird. In dieser Anmeldung versteht man unter einem Schwingungstilger ein per se passives Element zur Schwingungstilgung, z.B. ein λ/4-Resonator (engl, „side branch resonator") , ein Helmholtz- Resonator etc. Unter „semi-aktiver Reduktion von Druckschwingungen" soll die Abschwächung einer Amplitude von Druckschwingungen in einem Hydrauliksystem mittels eines passiven Schwingungstilgers verstanden werden, wobei dieActuation of at least one actuator is used, whereby a natural frequency of an associated with the hydraulic system vibration damper is changed. In this application, a vibration damper means a per se passive element for vibration damping, e.g. a λ / 4 resonator, a Helmholtz resonator, etc. The term "semi-active reduction of pressure oscillations" should be understood to mean the attenuation of an amplitude of pressure oscillations in a hydraulic system by means of a passive vibration absorber
Eigenfrequenz des passiven Schwingungstilgers mittels eines Aktuators veränderlich ist. Eine besonders starke Reduktion der Amplitude der Druckschwingungen ist dann möglich, wenn durch eine gezielte Beaufschlagung des Aktuators mit der Stellgröße eine Eigenfrequenz des Schwingungstilgers so verändert wird, dass die Eigenfrequenz des Schwingungstilgers mit einer Frequenz der Druckschwingung in Übereinstimmung gebracht wird. Die Übertragung des Stellgrößensignals vom Regler zum Aktuator kann kabelgeführt oder kabellos (z.B. über Funk) erfolgen.Natural frequency of the passive vibration absorber is variable by means of an actuator. A particularly strong reduction in the amplitude of the pressure oscillations is possible when a natural frequency of the vibration absorber is changed by a targeted actuation of the actuator with the manipulated variable, that the natural frequency of the vibration is brought into agreement with a frequency of the pressure oscillation. The transmission of the manipulated variable signal from Controller for the actuator can be wired or wireless (eg via radio).
In einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens wird der Wechselanteil des Drucksignals einer Bandpassfilterung unterzogen. Durch diese Filterung ist es möglich, aus dem Wechselanteil entweder besonders störende Frequenzanteile (welche z.B. mit einer Eigenfrequenz des Walzgerüsts bzw. eines Subsystems zusammenfallen) oder Frequenzanteile mit hoher Amplitude bzw. Intensität (z.B. aus einem Spektrum einer FFT (Fast Fourier Transform) oder PSD (Power Signal Density) ) herauszufiltern und dem Regler zuzuführen .In an advantageous embodiment of the method according to the invention, the alternating component of the pressure signal is subjected to bandpass filtering. By this filtering, it is possible to use the alternating component either particularly disturbing frequency components (which coincide, for example, with a natural frequency of the rolling mill or a subsystem) or frequency components with high amplitude or intensity (eg from a spectrum of an FFT (Fast Fourier Transform) or PSD (Power Signal Density)) and feed it to the controller.
In einer vorteilhaften Ausführungsform verändert der Aktuator ein mit der Stellgröße korrespondierendes Volumen im Schwingungstilger, wobei das Volumen mit der Stellgröße korrespondiert (eine Stellgröße von Null entspricht beispielsweise einer nicht ausgelenkten (neutralen) Stellung des Aktuators; eine maximale Stellgröße kann dann beispielsweise einer max . Auslenkung in einer Richtung entsprechen) und dadurch eine Eigenfrequenz des Schwingungstilgers verändert wird.In an advantageous embodiment, the actuator changes a volume corresponding to the manipulated variable in the vibration absorber, the volume corresponding to the manipulated variable (a manipulated variable of zero corresponds for example to an undeflected (neutral) position of the actuator, a maximum manipulated variable can then be, for example, a maximum deflection in one direction) and thereby a natural frequency of the vibration absorber is changed.
In besonders vorteilhafter Weise lässt sich das erfindungsgemäße Verfahren durchführen, wenn der Aktuator das Volumen eines Helmholtz-Resonators oder die aktive Länge eines λ/4-Resonators verändert. Bei diesen Schwingungstilgern lässt sich die Eigenfrequenz auf einfache Art und Weise verstellen.In a particularly advantageous manner, the inventive method can be carried out when the actuator changes the volume of a Helmholtz resonator or the active length of a λ / 4 resonator. With these vibration absorbers, the natural frequency can be adjusted in a simple manner.
Da die Druckschwingungen in einem Hydrauliksystem eines Anstellzylinders eines Gerüsts zum Walzen von Eisen-, Stahl oder Aluminiumwerkstoffen einen direkten Einfluss auf die Qualität des Walzguts haben und daher besonders störend sind, ist es vorteilhaft, das erfindungsgemäße Verfahren auf ein Hydrauliksystem eines Anstellzylinders eines Walzgerüsts anzuwenden .Since the pressure oscillations in a hydraulic system of a setting cylinder of a framework for rolling iron, steel or aluminum materials have a direct influence on the Quality of the rolling stock and are therefore particularly disturbing, it is advantageous to apply the inventive method to a hydraulic system of a Anstellzylinders a rolling mill.
Um eine möglichst unmittelbare Umsetzung des erfindungsgemäßen Verfahrens zu ermöglichen, welche die der Erfindung zugrunde liegende Aufgabe löst, ist es vorteilhaft, dass die Vorrichtung aufweist einen mit dem Hydrauliksystem in Verbindung stehenden Druckaufnehmer zur Erfassung eines Drucksignals, ein Glied zur Ermittlung eins Wechselanteils des Drucksignals, dem das Drucksignals zuführbar ist, wenigstens eine Regelvorrichtung, dem der Wechselanteil zuführbar ist und mit dessen Hilfe zumindest eine Stellgröße ermittelbar ist, wenigstens einen mit dem Hydrauliksystem in Verbindung stehenden Schwingungstilger und wenigstens einen mit dem Schwingungstilger in Verbindung stehenden Aktuator mit einem veränderlichen Volumen, dem die Stellgröße zuführbar ist und über dem ein Resonatorvolumen des Schwingungstilgers veränderbar ist. Über das Resonatorvolumen lässt sich wiederum eine Eigenfrequenz des Schwingungstilgers verstellen, wodurch die Eigenfrequenz an eine Frequenz der Druckschwingungen angepasst werden kann.In order to enable as direct an implementation of the method according to the invention, which solves the problem underlying the invention, it is advantageous that the device comprises a pressure sensor connected to the hydraulic system for detecting a pressure signal, a member for determining a change proportion of the pressure signal, to which the pressure signal can be supplied, at least one control device to which the alternating component can be supplied and with the aid of which at least one control variable can be determined, at least one vibration damper connected to the hydraulic system and at least one actuator connected to the vibration damper with a variable volume, the the manipulated variable can be supplied and over which a resonator volume of the vibration absorber can be changed. In turn, a natural frequency of the vibration absorber can be adjusted via the resonator volume, whereby the natural frequency can be adapted to a frequency of the pressure oscillations.
Eine besonders einfache Verstellung der Eigenfrequenz ist möglich, wenn der Schwingungstilger als λ/4- oder Helmholtz- Resonator ausgeführt ist.A particularly simple adjustment of the natural frequency is possible if the vibration damper is designed as a λ / 4 or Helmholtz resonator.
Eine besonders kostengünstige Vorrichtung lässt sich erzielen, wenn der Aktuator als elektrischer HubspindelA particularly inexpensive device can be achieved if the actuator as an electric lifting spindle
Aktuator oder hydraulischer Aktuator ausgeführt ist. Da die Verstellung des Aktuators - im Vergleich zu Systemen mit aktiver Schwingungskompensation - langsam erfolgen kann, reichen handelsübliche elektrische oder hydraulische Aktuatoren völlig aus.Actuator or hydraulic actuator is executed. Since the adjustment of the actuator can be slow compared to systems with active vibration compensation, conventional electrical or hydraulic actuators are completely sufficient.
In besonders vorteilhafter Weise lässt sich die erfindungsgemäße Vorrichtung anwenden, wenn die Vorrichtung mit einem Hydraulikventil und einem Hydraulikzylinder einer hydraulischen Walzenanstellung in Verbindung steht. Mittels dieses Einbaus ist die Reduktion von Schwingungen an den Walzen eines Walzgerüsts besonders einfach möglich, wodurch die Qualität des Walzguts effektiv verbessert werden kann. Der Einbau ist dann besonders kompakt, wenn die Vorrichtung in eine Zwischenplatte des Hydraulikventils eingebaut wird.In a particularly advantageous manner, the device according to the invention can be used when the device is in communication with a hydraulic valve and a hydraulic cylinder of a hydraulic roller adjustment. By means of this installation, the reduction of vibrations on the rolls of a roll stand is particularly easy, whereby the quality of the rolling stock can be effectively improved. The installation is particularly compact when the device is installed in an intermediate plate of the hydraulic valve.
Besondere Vorteile ergeben sich beim Einsatz in einer Gießwalzverbundanlage, insbesondere bei Dünnbandgießanlagen, ganz besonders bevorzugt bei Zweirollen-Gießanlagen und Dünnbrammengießanlagen des Typs ESP (Endless Strip Production) .Particular advantages arise when used in a Gießwalzverbundanlage, especially in Dünnbandgießanlagen, most preferably in two-roll casters and Dünnbrammengießanlagen the type ESP (Endless Strip Production).
Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung nicht einschränkender Ausführungsbeispiele, wobei auf die folgenden Figuren Bezug genommen wird, die Folgendes zeigen:Further advantages and features of the present invention will become apparent from the following description of non-limiting embodiments, reference being made to the following figures, which show the following:
Fig. 1 Schema einer Regelstrecke zur semi-aktiven Reduktion von Druckschwingungen in einem Hydrauliksystem Fig. 2 Schema einer erfindungsgemäßen Vorrichtung zur Reduktion von Druckschwingungen in einem Hydrauliksystem einer Walzstraße Fig. 3 und 4 Schemen eines Schwingungstilgers mit integriertem AktuatorFig. 1 Scheme of a controlled system for the semi-active reduction of pressure oscillations in a hydraulic system Fig. 2 Scheme of a device according to the invention for reducing pressure oscillations in a hydraulic system of a rolling mill Figs. 3 and 4 schemes of a vibration damper with integrated actuator
Fig. 1 zeigt den grundsätzlichen Aufbau einer Regelstrecke zur Reduktion von Druckschwingungen in einem Hydrauliksystem einer Walzstraße. Über einen Druckaufnehmer 1 wird ein Drucksignal eines Drucks im Hydrauliksystem erfasst, das Drucksignal 2 wird einem Hochpassfilter 3 (Details zur elektronischen Schaltung siehe z.B. S. 35 in P. Horowitz, W. Hill. The Art of Electronics , Cambridge University Press,Fig. 1 shows the basic structure of a controlled system for the reduction of pressure oscillations in a hydraulic system a rolling mill. Via a pressure transducer 1, a pressure signal of a pressure in the hydraulic system is detected, the pressure signal 2 is passed to a high-pass filter 3 (for details on the electronic circuit, see eg P. 35 in P. Horowitz, W. Hill, The Art of Electronics, Cambridge University Press).
Second edition, 1989) zugeführt, welcher den Wechselanteil 2' des Drucksignals 2 bestimmt und einem Regler 4 zuführt. Dieser Regler 4 errechnet in Echtzeit mittels eines Regelgesetzes unter Berücksichtigung des Wechselanteils 2' eine zeitlich veränderliche Stellgröße 6. DasSecond edition, 1989), which determines the alternating component 2 'of the pressure signal 2 and a controller 4 supplies. This controller 4 calculates in real time by means of a control law, taking into account the alternating component 2 'a time-variable manipulated variable 6. Das
Stellgrößensignal wird anschließend einem Verstärker 8 zugeführt, welcher einen Aktuator 9, ausgeführt als elektrischer Hubspindel Aktuator, ansteuert. Durch den Aktuator 9 wird das Resonatorvolumen eines als Helmholtz- Resonator ausgeführten Schwingungstilgers 13 verändert, wobei die Änderung des Resonatorvolumens mit der Stellgröße 6 korrespondiert. Durch die Änderung des Resonatorvolumens wird eine Eigenfrequenz des Schwingungstilgers 13 verändert, wodurch die Eigenfrequenz des Schwingungstilgers in Übereinstimmung mit einer Frequenz der Druckschwingung gebracht wird. Durch diese Maßnahme wird die Amplitude der Druckschwingung im Hydrauliksystem auf sehr einfache aber wirkungsvolle Art und Weise reduziert.Manipulated variable signal is then fed to an amplifier 8, which controls an actuator 9, designed as an electric lifting spindle actuator. By the actuator 9, the resonator volume of a designed as a Helmholtz resonator vibration absorber 13 is changed, wherein the change of the resonator volume corresponds to the manipulated variable 6. By changing the resonator volume, a natural frequency of the vibration absorber 13 is changed, whereby the natural frequency of the vibration absorber is made to coincide with a frequency of the pressure vibration. By this measure, the amplitude of the pressure oscillation in the hydraulic system is reduced in a very simple but effective manner.
In Fig. 2 ist eine schematische Vorrichtung zur Unterdrückung von Druckschwingungen in einem Hydrauliksystem eines Gerüsts zum Walzen von Eisen- Stahl- oder Aluminiumwerkstoffen dargestellt. Ein Drucksignal 2 wird mittels eines Druckaufnehmers 1 durch permanentes Messen eines Drucks in einem Hydrauliksystem 10 erfasst, wobei das Hydrauliksystem ein Hydraulikventil 11, einen Hydraulikzylinder 12 und eine Hydraulikleitung umfasst. Das Hydrauliksystem dient zur Anstellung einer Walze 14 zum Walzen eines Walzguts 15. Dabei kann sich der Druckaufnehmer 1 entweder im Abschnitt zwischen einem Schwingungstilger 13 und dem Hydraulikzylinder 12 (wie gezeichnet) oder im Abschnitt zwischen dem Hydraulikventil 11 und dem Schwingungstilger 13 befinden. Selbstverständlich ist es auch möglich, dass mehrere Druckaufnehmer zwischen dem Schwingungstilger 13 und dem Hydraulikzylinder 12 oder zwischen dem Hydraulikventil 11 und dem Schwingungstilger 13 angeordnet sind. Das Drucksignal 2 wird an einen digitalen Regler 4 übertragen, welcher ein Frequenzband des Wechselanteils des Drucksignals bestimmt und unter Zuhilfenahme eines Regelalgorithmus eine zeitlich veränderliche Stellgröße 6 errechnet. Die Stellgröße wird nach einer Verstärkung in einem nicht dargestellten Verstärker einem als elektrischen Hubspindel Aktuator ausgeführten Aktuator 9 zugeführt, welcher ein mit der Stellgröße 6 korrespondierendes Resonatorvolumen in dem als Helmholtz-Resonator ausgeführten Schwingungstilger 13 verändert, sodass eine Eigenfrequenz des Schwingungstilgers 13 an eine Frequenz der Druckschwingungen angepasst wird, wodurch die Amplitude einer Druckschwingung reduziert wird.In Fig. 2 is a schematic device for suppressing pressure oscillations in a hydraulic system of a scaffold for rolling iron-steel or aluminum materials is shown. A pressure signal 2 is detected by means of a pressure transducer 1 by permanently measuring a pressure in a hydraulic system 10, the hydraulic system comprising a hydraulic valve 11, a hydraulic cylinder 12 and a hydraulic line. The hydraulic system is used to hire a roller 14 for rolling a rolling stock 15. In this case, the pressure transducer 1 can either in the section between a vibration damper 13 and the hydraulic cylinder 12 (as shown) or in the portion between the hydraulic valve 11 and the vibration damper 13 are located. Of course, it is also possible that a plurality of pressure transducers between the vibration damper 13 and the hydraulic cylinder 12 or between the hydraulic valve 11 and the vibration damper 13 are arranged. The pressure signal 2 is transmitted to a digital controller 4, which determines a frequency band of the alternating component of the pressure signal and calculates a temporally variable manipulated variable 6 with the aid of a control algorithm. The manipulated variable is supplied after amplification in an amplifier, not shown, designed as an electric actuator stroke actuator actuator 9, which changes a corresponding with the manipulated variable 6 resonator volume in the designed as a Helmholtz resonator vibration absorber 13, so that a natural frequency of the vibration 13 to a frequency of Pressure oscillations is adjusted, whereby the amplitude of a pressure oscillation is reduced.
In Fig. 3 ist ein als Helmholtz-Resonator ausgeführter Schwingungstilgers 13 mit einem integrierten Aktuator 9 dargestellt. Dem Aktuator 9 ist eine Stellgröße 6 zuführbar, wodurch das Resonatorvolumen V, V = LS , wobei L die Länge und S die Querschnittsfläche des Resonatorvolumens des Helmholtz- Resonators angeben, veränderlich ist. Durch die Änderung des Resonatorvolumens V ist eine Eigenfrequenz desFIG. 3 shows a vibration damper 13 embodied as a Helmholtz resonator with an integrated actuator 9. A manipulated variable 6 can be supplied to the actuator 9, as a result of which the resonator volume V, V = LS, L indicating the length and S the cross-sectional area of the resonator volume of the Helmholtz resonator, is variable. Due to the change of the resonator volume V is a natural frequency of
Schwingungstilgers 13 veränderlich, wobei die Eigenfrequenz f des Helmholtz-Resonators durch die BedingungVibration modifier 13 variable, wherein the natural frequency f of the Helmholtz resonator by the condition
Figure imgf000011_0001
gegeben ist. Hierbei wird mit c die Schallgeschwindigkeit in der Druckflüssigkeit, S' die Querschnittsfläche und L' die Länge im Resonatorhals (engl, neck), L die Länge und S die Querschnittsfläche des Resonatorvolumens V angegeben (vgl. Kapitel 8.3.3 Resonators in dem Fachbuch H. Kuttruff. Acoustics - An introduction , Taylor and Francis, 2007) .
Figure imgf000011_0001
given is. Here, c is the speed of sound in the pressure fluid, S 'is the cross-sectional area and L' the Length in the resonator throat, L the length and S the cross-sectional area of the resonator volume V (see Chapter 8.3.3 Resonators in the textbook H. Kuttruff, Acoustics - An introduction, Taylor and Francis, 2007).
In Fig. 4 ist ein als λ/4-Resonator ausgeführter Schwingungstilgers 13 mit einem integrierten Aktuator 9 dargestellt. Dem Aktuator 9 ist eine Stellgröße 6 zuführbar, wodurch die aktive Länge L des λ/4-Resonators veränderlich ist. Durch die Änderung der aktiven Länge L ist eineFIG. 4 shows a vibration damper 13 embodied as a λ / 4 resonator with an integrated actuator 9. The actuator 9, a manipulated variable 6 can be supplied, whereby the active length L of the λ / 4 resonator is variable. By changing the active length L is a
Eigenfrequenz des Schwingungstilgers 13 veränderlich, wobei die Eigenfrequenz f des λ/4 Resonators durch die Bedingung
Figure imgf000012_0001
gegeben ist. Hierbei wird mit c die Schallgeschwindigkeit in der Druckflüssigkeit und mit L die aktive Länge angegeben.
Natural frequency of the vibration absorber 13 variable, wherein the natural frequency f of the λ / 4 resonator by the condition
Figure imgf000012_0001
given is. Here, the velocity of sound in the pressure fluid is indicated by c and the active length by L.
Selbstverständlich kann das erfindungsgemäße Verfahren oder die Vorrichtung in beliebigen Hydrauliksystemen der Mobiloder Industriehydraulik eingesetzt werden. Of course, the method or the device according to the invention can be used in any hydraulic systems of mobile or industrial hydraulics.
Bezugs zeichenlisteReference sign list
1 Druckaufnehmer1 pressure transducer
2 Drucksignal2 pressure signal
2' Wechselanteil des Drucksignals2 'alternating part of the pressure signal
3 Bandpassfilter3 bandpass filter
4 Regler4 controllers
6 Stellgröße6 manipulated variable
8 Verstärker8 amplifiers
9 Aktuator9 actuator
10 Hydrauliksystem10 hydraulic system
11 Hydraulikventil11 hydraulic valve
12 Hydraulikzylinder12 hydraulic cylinders
13 Schwingungstilger13 vibration absorber
14 Walze14 roller
15 Walzgut 15 rolling stock

Claims

Patentansprüche claims
1. Verfahren zur semi-aktiven Reduktion von Druckschwingungen in einem Hydrauliksystem einer Kalt- oder Warmwalzstraße oder einer Bandbehandlungsanlage für Eisen-, Stahl- oder Aluminiumwerkstoffe, umfassend folgende Verfahrensschritte in der genannten Reihenfolge: a) Erfassung eines Druckssignals mittels eines Druckaufnehmers durch permanentes Messen eines Drucks im Hydrauliksystem ; b) Ermittlung eines Wechselanteils des Drucksignals; c) Ermittlung zumindest einer zeitlich veränderlichen Stellgröße in Echtzeit mit Hilfe eines Reglers unter Berücksichtigung des Wechselanteils; d) Beaufschlagung mindestens eines Aktuators mit der1. A method for the semi-active reduction of pressure oscillations in a hydraulic system of a cold or hot rolling mill or a strip processing plant for iron, steel or aluminum materials, comprising the following steps in the order mentioned: a) detection of a pressure signal by means of a pressure transducer by permanently measuring a Pressure in the hydraulic system; b) determination of an alternating component of the pressure signal; c) determination of at least one temporally variable manipulated variable in real time with the aid of a regulator taking into account the alternating component; d) loading at least one actuator with the
Stellgröße, wobei der Aktuator eine Eigenfrequenz eines mit dem Hydrauliksystem in Verbindung stehendenManipulated variable, wherein the actuator has a natural frequency of a related to the hydraulic system
Schwingungstilgers verändert und dadurch eine Amplitude der Druckschwingungen im Hydrauliksystem reduziert wird.Vibration damper changed and thereby an amplitude of the pressure oscillations in the hydraulic system is reduced.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Wechselanteil einer Bandpassfilterung unterzogen wird.2. The method according to claim 1, characterized in that the alternating component of a bandpass filtering is subjected.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Aktuator ein mit der Stellgröße korrespondierendes Volumen im Schwingungstilger verändert.3. The method according to claim 1, characterized in that the actuator changes a volume corresponding to the manipulated variable in the vibration damper.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Aktuator das Volumen eines Helmholtz-Resonators oder über die aktive Länge eines λ/4-Resonators verändert. 4. The method according to claim 3, characterized in that the actuator changes the volume of a Helmholtz resonator or over the active length of a λ / 4 resonator.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verfahren auf ein Hydrauliksystem eines Anstellzylinders eines Walzgerüsts angewendet wird.5. The method according to claim 1, characterized in that the method is applied to a hydraulic system of a positioning cylinder of a roll stand.
6. Vorrichtung zur semi-aktiven Reduktion von6. Apparatus for the semi-active reduction of
Druckschwingungen in einem Hydrauliksystem einer Kalt- oder Warmwalzstraße oder einer Bandbehandlungsanlage für Eisen-, Stahl- oder Aluminiumwerkstoffe, aufweisend einen mit dem Hydrauliksystem in Verbindung stehenden Druckaufnehmer zur Erfassung eines Drucksignals, ein Glied zur Ermittlung eines Wechselanteils des Drucksignals, dem das Drucksignal zuführbar ist, wenigstens eine Regelvorrichtung, dem der Wechselanteil zuführbar ist und mit dessen Hilfe zumindest eine Stellgröße ermittelbar ist, wenigstens einen mit dem Hydrauliksystem in Verbindung stehenden Schwingungstilger und wenigstens einen mit dem Schwingungstilger in Verbindung stehenden Aktuator mit einem veränderlichen Volumen, dem die Stellgröße zuführbar ist und über dem ein Resonatorvolumen des Schwingungstilgers veränderbar ist.Pressure oscillations in a hydraulic system of a cold or hot rolling line or a strip processing plant for iron, steel or aluminum materials, comprising a pressure sensor connected to the hydraulic system for detecting a pressure signal, a member for determining an alternating component of the pressure signal to which the pressure signal can be supplied, at least one control device to which the alternating component can be supplied and by means of which at least one manipulated variable can be determined, at least one vibration damper connected to the hydraulic system and at least one actuator connected to the vibration absorber with a variable volume to which the manipulated variable can be supplied and via a resonator volume of the vibration absorber is variable.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Schwingungstilger als λ/4- oder Helmholtz-Resonator ausgeführt ist.7. Apparatus according to claim 6, characterized in that the vibration damper is designed as a λ / 4 or Helmholtz resonator.
8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Aktuator als elektrischer Hubspindel Aktuator oder hydraulischer Aktuator ausgeführt ist.8. The device according to claim 6, characterized in that the actuator is designed as an electric lifting spindle actuator or hydraulic actuator.
9. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Vorrichtung mit einem Hydraulikventil und einem Hydraulikzylinder einer hydraulischen Walzenanstellung in Verbindung steht.9. Apparatus according to claim 6, characterized in that the device with a hydraulic valve and a Hydraulic cylinder of a hydraulic roller adjustment is in communication.
10. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 5 oder der Vorrichtung nach einem der Ansprüche 6 bis 9 bei der Bearbeitung und/oder Herstellung metallischer Stoffe, insbesondere bei einer Gießwalzverbundanlage .10. Application of the method according to any one of claims 1 to 5 or the device according to one of claims 6 to 9 in the processing and / or production of metallic materials, in particular in a Gießwalzverbundanlage.
11. Anwendung nach Anspruch 10, wobei die Gießwalzverbundanlage eine Dünnbandgießanlage oder eine Dünnbrammengießanlage (ESP) ist. 11. Application according to claim 10, wherein the Gießwalzverbundanlage is a Dünnbandgießanlage or Dünnbrammengießanlage (ESP).
PCT/EP2009/066020 2008-12-05 2009-11-30 Method and device for the semi-active reduction of pressure oscillations in a hydraulic system WO2010063664A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2011538977A JP2012510900A (en) 2008-12-05 2009-11-30 Method and apparatus for semi-actively reducing pressure vibration in a hydraulic system
CN200980148832.5A CN102271832B (en) 2008-12-05 2009-11-30 Method and device for the semi-active reduction of pressure oscillations in a hydraulic system
BRPI0922291A BRPI0922291A2 (en) 2008-12-05 2009-11-30 Method and apparatus for semi-active reduction of pressure oscillations in a hydraulic system.
RU2011127440/02A RU2527496C2 (en) 2008-12-05 2009-11-30 Method and device for semi-active suppression of pressure oscillations in hydraulic system
CA2745804A CA2745804A1 (en) 2008-12-05 2009-11-30 Method and apparatus for semiactive reduction of pressure oscillations in a hydraulic system
US13/132,975 US20110302976A1 (en) 2008-12-05 2009-11-30 Method and apparatus for semiactive reduction of pressure oscillations in a hydraulic system
EP09799567A EP2355941A1 (en) 2008-12-05 2009-11-30 Method and device for the semi-active reduction of pressure oscillations in a hydraulic system
MX2011005501A MX2011005501A (en) 2008-12-05 2009-11-30 Method and device for the semi-active reduction of pressure oscillations in a hydraulic system.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1896/2008 2008-12-05
AT0189608A AT507087B1 (en) 2008-12-05 2008-12-05 METHOD AND DEVICE FOR THE SEMI-ACTIVE REDUCTION OF PRESSURE VIBRATIONS IN A HYDRAULIC SYSTEM

Publications (1)

Publication Number Publication Date
WO2010063664A1 true WO2010063664A1 (en) 2010-06-10

Family

ID=41664439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/066020 WO2010063664A1 (en) 2008-12-05 2009-11-30 Method and device for the semi-active reduction of pressure oscillations in a hydraulic system

Country Status (11)

Country Link
US (1) US20110302976A1 (en)
EP (1) EP2355941A1 (en)
JP (1) JP2012510900A (en)
KR (1) KR20110094322A (en)
CN (1) CN102271832B (en)
AT (1) AT507087B1 (en)
BR (1) BRPI0922291A2 (en)
CA (1) CA2745804A1 (en)
MX (1) MX2011005501A (en)
RU (1) RU2527496C2 (en)
WO (1) WO2010063664A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20101843A1 (en) * 2010-10-08 2012-04-09 Danieli Off Mecc VIBRATION DAMPING SYSTEM OF A MILL

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT507088B1 (en) * 2008-12-05 2010-02-15 Siemens Vai Metals Tech Gmbh METHOD AND DEVICE FOR THE ACTIVE SUPPRESSION OF PRESSURE VIBRATIONS IN A HYDRAULIC SYSTEM
ITMI20120476A1 (en) * 2012-03-26 2013-09-27 Danieli Off Mecc VIBRATION DAMPING SYSTEM BY MEANS OF A HYDRAULIC IMPLEMENTATION SYSTEM
DE102012023902B3 (en) 2012-12-07 2014-03-20 Arburg Gmbh + Co. Kg Method for operating a hydraulic device with pump and servomotor and associated hydraulic device
ITMI20132170A1 (en) 2013-12-20 2015-06-21 Danieli Off Mecc ACTIVE VIBRATION DAMPING SYSTEM OF A MILL
JP6564184B2 (en) * 2014-12-18 2019-08-21 日本電産トーソク株式会社 Electromagnetic valve control device and electromagnetic valve control method
US9829139B2 (en) * 2015-02-19 2017-11-28 Robert Bosch Gmbh Method of dampening pressure pulsations in a working fluid within a conduit
CN106762995B (en) * 2017-02-22 2018-09-25 中冶华天南京工程技术有限公司 A kind of adjustable inhibition servo valve self-oscillation device
JP6898559B2 (en) * 2017-09-07 2021-07-07 シンフォニアテクノロジー株式会社 Air nozzle and parts feeder equipped with it
EP3610961B1 (en) * 2018-08-15 2023-04-19 Muhr und Bender KG Device, rolling mill and method for regulating strip tension during the flexible rolling of metal strips
DE102018126185A1 (en) * 2018-10-22 2020-04-23 Schaeffler Technologies AG & Co. KG Tool and method for mechanical surface processing
DE102019204724B3 (en) * 2019-04-03 2020-10-01 Audi Ag Method for operating a hydraulic valve of a hydraulic device of a motor vehicle transmission device and motor vehicle transmission device
WO2020239589A1 (en) * 2019-05-24 2020-12-03 Primetals Technologies Austria GmbH Industrial installation having a damping system for damping vibrations
DE102020205139A1 (en) 2020-04-23 2021-10-28 Zf Friedrichshafen Ag Adaptive friction minimization for electrohydraulic actuators
CN114576458A (en) * 2020-11-18 2022-06-03 北京机械设备研究所 Fluid pulsation vibration absorber with adjustable structure and vibration absorbing method thereof
EP4094857A1 (en) * 2021-05-28 2022-11-30 Primetals Technologies Austria GmbH Stabilization of the working and supporting rolls of a roll stand during hot rolling of a rolling stock into a strip in the roll stand
EP4252929A1 (en) 2022-03-28 2023-10-04 Primetals Technologies Austria GmbH Design and arrangement of a dissipator for suppressing vibrations in a rolling stand
CN116107293B (en) * 2023-04-10 2023-06-16 商飞软件有限公司 Civil aircraft flight control system actuation loop fault diagnosis system and diagnosis method
CN116550767B (en) * 2023-07-10 2023-09-22 太原理工大学 Semi-automatic adjusting device for inhibiting tension fluctuation in rolling process of ultrathin strip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379718A2 (en) * 1988-12-28 1990-08-01 Allweiler AG Device and method for moving fluid mediums
JPH03179501A (en) * 1989-12-08 1991-08-05 Kobe Steel Ltd Controller for hydraulic servo system
DE4302977A1 (en) * 1993-02-03 1994-03-31 Bosch Gmbh Robert Hydraulic plant with pump or motor - generates 180 deg. phase-displaced compensation wave against uneven surface of pressure medium flow
EP1457274A2 (en) * 2003-03-10 2004-09-15 Voest-Alpine Industrieanlagenbau GmbH & Co. Method and device for avoiding vibrations
EP1647713A2 (en) * 2004-10-15 2006-04-19 CNH Italia S.p.A. Fluid pumping apparatus with Helmholtz-resonator

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572032A (en) * 1968-07-18 1971-03-23 William M Terry Immersible electrohydraulic failsafe valve operator
US3806202A (en) * 1971-03-18 1974-04-23 Toyota Motor Co Ltd Skid controlling system for vehicles
US3918302A (en) * 1973-09-20 1975-11-11 British Steel Corp Rolling mill test equipment
US3991655A (en) * 1974-11-11 1976-11-16 Hydroacoustics Inc. Hydroacoustic apparatus and valving mechanisms for use therein
US3969987A (en) * 1974-11-11 1976-07-20 Hydroacoustics Inc. Hydroacoustic apparatus and valving mechanisms for use therein
US4266606A (en) * 1979-08-27 1981-05-12 Teleco Oilfield Services Inc. Hydraulic circuit for borehole telemetry apparatus
JPS6145130A (en) * 1984-08-07 1986-03-05 Toyo Tire & Rubber Co Ltd Liquid damping type vibration insulating supporting device
US4718490A (en) * 1986-12-24 1988-01-12 Mobil Oil Corporation Creation of multiple sequential hydraulic fractures via hydraulic fracturing combined with controlled pulse fracturing
US4774976A (en) * 1987-09-23 1988-10-04 Applied Power Inc. Modulating hydraulic pressure control valve and assembly method therefor
JPH0729564B2 (en) * 1987-09-29 1995-04-05 トヨタ自動車株式会社 Four-wheel drive control method
SU1507467A1 (en) * 1987-12-21 1989-09-15 Производственное объединение "Новокраматорский машиностроительный завод" Stand train
GB8827556D0 (en) * 1988-11-25 1988-12-29 Crosfield Electronics Ltd Data compression
US5343752A (en) * 1992-04-20 1994-09-06 Team Corporation High frequency vibration test fixture with hydraulic servo valve and piston actuator
US5228510A (en) * 1992-05-20 1993-07-20 Mobil Oil Corporation Method for enhancement of sequential hydraulic fracturing using control pulse fracturing
US5385329A (en) * 1993-02-16 1995-01-31 Techco Corporation Method and apparatus for enhancing stability in hydraulic flow control
US5492451A (en) * 1994-10-03 1996-02-20 Caterpillar Inc. Apparatus and method for attenuation of fluid-borne noise
US5518219A (en) * 1995-01-31 1996-05-21 Applied Power Inc. Proportional pressure control pilot valve
JP3035185B2 (en) * 1995-03-02 2000-04-17 本田技研工業株式会社 Control device for hydraulically operated transmission for vehicles
JP3602599B2 (en) * 1995-03-02 2004-12-15 本田技研工業株式会社 Control device for hydraulically operated transmission for vehicles
US5582265A (en) * 1995-05-26 1996-12-10 Trw Inc. Power steering assembly
RU2117204C1 (en) * 1996-06-25 1998-08-10 Акционерное общество "АвтоВАЗ" Throttling device
DE19747158A1 (en) * 1997-10-24 1999-04-29 Wolf Woco & Co Franz J Pulsation damper
US5984259A (en) * 1997-11-26 1999-11-16 Saturn Electronics & Engineering, Inc. Proportional variable force solenoid control valve with armature damping
US6179268B1 (en) * 1998-04-21 2001-01-30 Saturn Electronics & Engineering, Inc. Proportional variable force solenoid control valve with segmented permanent magnet
GB9826322D0 (en) * 1998-12-02 1999-01-20 Mandeville Eng Ltd Directional control valves
DE19918555C1 (en) * 1999-04-23 2001-06-07 Oskar Bschorr Stabilization of rolling mills against self-excited chatter vibrations
AUPQ120999A0 (en) * 1999-06-25 1999-07-22 Industrial Automation Services Pty Ltd Vibration suppressing piston
US6234758B1 (en) * 1999-12-01 2001-05-22 Caterpillar Inc. Hydraulic noise reduction assembly with variable side branch
US8409847B2 (en) * 2000-10-06 2013-04-02 ICE Development Technologies, LLC System and method for controlling the diameter of a mammilian hybrid coronary bypass graft
DE50100952D1 (en) * 2001-02-23 2003-12-18 Visteon Global Tech Inc Damping valve for hydraulically assisted steering system
DE10112674C1 (en) * 2001-03-16 2002-02-14 Fte Automotive Gmbh Device, for reducing vibrations in hydraulic force transmission system, has chamber connected between master and slave cylinders so that membrane forming chamber wall is acted on hydraulically
JP2002274358A (en) * 2001-03-23 2002-09-25 Unisia Jecs Corp Anti-skid control device
US6640409B2 (en) * 2001-09-25 2003-11-04 Case Corporation Method for retrofitting a swing damping valve circuit to a work vehicle
JP2004155236A (en) * 2002-11-05 2004-06-03 Advics:Kk Hydraulic brake device for vehicle
DE10316946A1 (en) * 2003-04-12 2004-10-21 Daimlerchrysler Ag Device and method for damping pressure oscillations in hydraulic lines
DE102004012945A1 (en) * 2004-03-17 2005-10-13 Cnh Baumaschinen Gmbh Apparatus and method for Bewegungsstilgung in construction machinery
US7225657B2 (en) * 2004-05-05 2007-06-05 United States Steel Corporation Elimination of rolling mill chatter
FR2877862B1 (en) * 2004-11-12 2007-02-16 Vai Clecim Soc Par Actions Sim METHOD FOR DETECTING VIBRATIONS OF A ROLLER CAGE
CN100410549C (en) * 2004-12-28 2008-08-13 东芝机械株式会社 Hydraulic control apparatus
US7278262B2 (en) * 2005-06-03 2007-10-09 Board Of Control Of Michigan Technological University Control system for suppression of boom or arm oscillation
WO2007021810A2 (en) * 2005-08-11 2007-02-22 Eksigent Technologies, Llc Microfluidic methods and apparatuses for fluid mixing and valving
CN1775394A (en) * 2005-11-29 2006-05-24 苏州有色金属加工研究院 Thickness adaptive fuzzy control method for aluminium plate band rolling mill
DE102005058547B4 (en) * 2005-12-08 2012-04-12 Airbus Operations Gmbh Device for reducing hydrofluidic vibrations in a hydraulic system
US8127791B2 (en) * 2005-12-21 2012-03-06 Saturn Electronics & Engineering, Inc. Solenoid operated fluid control valve
DE102006008574A1 (en) * 2006-02-22 2007-08-30 Siemens Ag Reducing the influence of roller excentricity on the thickness of a rolled material, comprises identifying the roller excentricity and determining a correction signal for a control unit
DE102006024101A1 (en) * 2006-05-23 2007-11-29 Sms Demag Ag Roll stand and method for rolling a rolled strip
US7614307B2 (en) * 2006-06-06 2009-11-10 Eaton Corporation Manifold assembly having a centralized pressure sensing package
JP4545127B2 (en) * 2006-09-15 2010-09-15 株式会社デンソー Valve timing adjustment device
US20080314591A1 (en) * 2007-06-21 2008-12-25 Hales John H Single trip well abandonment with dual permanent packers and perforating gun
AT506398B1 (en) * 2008-06-18 2009-09-15 Siemens Vai Metals Tech Gmbh METHOD AND DEVICE FOR SUPPRESSING VIBRATIONS IN A ROLLING SYSTEM
US20100084588A1 (en) * 2008-10-07 2010-04-08 Diamond Offshore Drilling, Inc. Deepwater Hydraulic Control System
DE102010046285B4 (en) * 2009-09-29 2022-05-05 Mando Corporation Electronically controlled braking system with a pump unit
US8640545B2 (en) * 2009-10-05 2014-02-04 Pcb Piezotronics, Inc. Vibration sensor with mechanical isolation member
WO2011081018A1 (en) * 2009-12-28 2011-07-07 シンフォニアテクノロジー株式会社 Vibration control device, motorized actuator drive device, and vehicle
US20110289911A1 (en) * 2010-06-01 2011-12-01 Mark Phillip Vonderwell Hydraulic system and method of actively damping oscillations during operation thereof
DE102010061337B4 (en) * 2010-12-20 2015-07-09 Hilite Germany Gmbh Hydraulic valve for a Schwenkmotorversteller
US20130062934A1 (en) * 2011-09-13 2013-03-14 Kelsey-Hayes Company Mechanical attenuator for a vehicle braking system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379718A2 (en) * 1988-12-28 1990-08-01 Allweiler AG Device and method for moving fluid mediums
JPH03179501A (en) * 1989-12-08 1991-08-05 Kobe Steel Ltd Controller for hydraulic servo system
DE4302977A1 (en) * 1993-02-03 1994-03-31 Bosch Gmbh Robert Hydraulic plant with pump or motor - generates 180 deg. phase-displaced compensation wave against uneven surface of pressure medium flow
EP1457274A2 (en) * 2003-03-10 2004-09-15 Voest-Alpine Industrieanlagenbau GmbH & Co. Method and device for avoiding vibrations
EP1647713A2 (en) * 2004-10-15 2006-04-19 CNH Italia S.p.A. Fluid pumping apparatus with Helmholtz-resonator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2355941A1 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20101843A1 (en) * 2010-10-08 2012-04-09 Danieli Off Mecc VIBRATION DAMPING SYSTEM OF A MILL
WO2012046211A1 (en) 2010-10-08 2012-04-12 Danieli & C. Officine Meccaniche S.P.A. Vibration damping system for a rolling mill with first and second passive hydraulic elements
CN103180063A (en) * 2010-10-08 2013-06-26 丹尼尔和科菲森梅克尼齐有限公司 Vibration damping system for a rolling mill with first and second passive hydraulic elements
CN103180063B (en) * 2010-10-08 2015-05-13 丹尼尔和科菲森梅克尼齐有限公司 Vibration damping system for a rolling mill with first and second passive hydraulic elements
US9211576B2 (en) 2010-10-08 2015-12-15 Danieli & C. Officine Meccaniche S.P.A. Vibration damping system for a rolling mill with first and second passive hydraulic elements
EA024914B1 (en) * 2010-10-08 2016-11-30 Даньели Энд К. Оффичине Мекканике С.П.А. Vibration damping system for a rolling mill with first and second passive hydraulic elements

Also Published As

Publication number Publication date
AT507087A4 (en) 2010-02-15
KR20110094322A (en) 2011-08-23
CN102271832B (en) 2014-06-11
CA2745804A1 (en) 2010-06-10
AT507087B1 (en) 2010-02-15
CN102271832A (en) 2011-12-07
BRPI0922291A2 (en) 2015-12-29
US20110302976A1 (en) 2011-12-15
RU2527496C2 (en) 2014-09-10
JP2012510900A (en) 2012-05-17
RU2011127440A (en) 2013-01-10
MX2011005501A (en) 2011-06-16
EP2355941A1 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
AT507087B1 (en) METHOD AND DEVICE FOR THE SEMI-ACTIVE REDUCTION OF PRESSURE VIBRATIONS IN A HYDRAULIC SYSTEM
AT507088B1 (en) METHOD AND DEVICE FOR THE ACTIVE SUPPRESSION OF PRESSURE VIBRATIONS IN A HYDRAULIC SYSTEM
WO2009153101A1 (en) Method and apparatus to suppress vibrations in a rolling mill
DE102006008574A1 (en) Reducing the influence of roller excentricity on the thickness of a rolled material, comprises identifying the roller excentricity and determining a correction signal for a control unit
EP3352921B1 (en) Roll stand, rolling system and method for actively damping vibrations in a roll stand
EP2125258B1 (en) Regulation device for a rolling stand and items corresponding thereto
AT500766B1 (en) METHOD AND DEVICE FOR AVOIDING VIBRATIONS
DE3422762A1 (en) METHOD FOR COMPENSATING FRICTION IN A ROLLING MILL
DE102007050911A1 (en) Method and apparatus for suppressing the chattering of work rolls of a rolling stand
DE102014226634B3 (en) Method for operating a hydraulic drive, computing unit, computer program and machine-readable storage medium
EP2268427B1 (en) Operating method for a cold-rolling line with improved dynamics
DE102021209714A1 (en) Device and method for rolling metal strip
DE102007050866A1 (en) Method for monitoring malfunction in steering system, particularly castor steering system, involves measuring actual value for steering angle of secondary steering axle by sensor
DE102010062199A1 (en) Concept for setting process parameters of a rolling process by means of a measured bearing slip
WO2015079055A1 (en) Arrangement and method for setting a working gap between working rollers of a roller and/or guide stand
EP4094857A1 (en) Stabilization of the working and supporting rolls of a roll stand during hot rolling of a rolling stock into a strip in the roll stand
DE102015202266A1 (en) Method and device for determining the total force generated by a piston-cylinder unit
DE102009000576A1 (en) Method and device for suspension control of a motor vehicle
DE1918207A1 (en) Control device for a rolling mill
WO2011051035A1 (en) Method for chassis control of a vehicle and corresponding device
DE102015117799A1 (en) Method for controlling a power transmission of a driving dynamics support of a drive unit
DE102013214742A1 (en) Device and method for chassis control
DE10102037A1 (en) Control of working rollers with slight horizontal yaw in multiple-roller stand, measures axial roller force, signaling if excessive

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148832.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09799567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009799567

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/005501

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 4139/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2745804

Country of ref document: CA

Ref document number: 2011538977

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117015148

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011127440

Country of ref document: RU

Ref document number: a201107048

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 13132975

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0922291

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110606