WO2010061798A1 - インクジェット記録用水系インク - Google Patents

インクジェット記録用水系インク Download PDF

Info

Publication number
WO2010061798A1
WO2010061798A1 PCT/JP2009/069730 JP2009069730W WO2010061798A1 WO 2010061798 A1 WO2010061798 A1 WO 2010061798A1 JP 2009069730 W JP2009069730 W JP 2009069730W WO 2010061798 A1 WO2010061798 A1 WO 2010061798A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous dispersion
particles
water
inkjet recording
polymer
Prior art date
Application number
PCT/JP2009/069730
Other languages
English (en)
French (fr)
Inventor
篤司 平石
将之 成田
孝洋 佐藤
代田 協一
土井 康広
吉田 宏之
清水 祐介
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008299491A external-priority patent/JP5342856B2/ja
Priority claimed from JP2009118468A external-priority patent/JP2010265398A/ja
Priority claimed from JP2009134413A external-priority patent/JP2010280792A/ja
Priority claimed from JP2009164736A external-priority patent/JP5438406B2/ja
Priority claimed from JP2009254289A external-priority patent/JP5438467B2/ja
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to EP09829046A priority Critical patent/EP2351800A1/en
Priority to US13/131,221 priority patent/US8394871B2/en
Priority to CN2009801471413A priority patent/CN102224206B/zh
Publication of WO2010061798A1 publication Critical patent/WO2010061798A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/324Inkjet printing inks characterised by colouring agents containing carbon black
    • C09D11/326Inkjet printing inks characterised by colouring agents containing carbon black characterised by the pigment dispersant

Definitions

  • the present invention relates to an aqueous dispersion for inkjet recording, an aqueous ink for inkjet recording containing the aqueous dispersion, and a method for producing an aqueous dispersion for inkjet recording.
  • the ink jet recording method is a recording method in which ink droplets are directly ejected and adhered to a recording member from very fine nozzles to obtain characters and images. This method is widely spread because it is easy to make full color and is inexpensive, and has many advantages such as the ability to use plain paper as a recording member and non-contact with the object to be printed. Recently, inks using an organic pigment as a colorant have been widely used in order to impart weather resistance and water resistance to printed matter and perform color printing.
  • Japanese Patent Laid-Open No. 10-60352 discloses an aqueous pigment ink containing a pigment, a polymer dispersant, polyethyleneimine, and a water-soluble solvent for the purpose of improving the fixability of the pigment to an OHP sheet or the like.
  • Japanese Patent Application Laid-Open No. 2004-123865 discloses an aqueous pigment ink comprising a pigment, an anionic dispersant, a cationic water-soluble polymer compound such as polyethyleneimine, and an aqueous medium for the purpose of improving the saturation and density in plain paper printing. Is disclosed.
  • the dispersed pigment particles are composed of an aggregate of pigment particles having a particle diameter smaller than the particle diameter of the particles and a dispersant.
  • An ink is disclosed.
  • Japanese Patent Application Laid-Open No. 2006-169325 discloses an inkjet recording liquid containing a pigment, a water-soluble resin, a water-soluble organic solvent, and water.
  • a high structure type in which carbon particles are connected in a rosary shape. are listed.
  • 2008-38090 discloses an inkjet aqueous ink containing a colorant and beaded or elongated metal oxide secondary particles formed by connecting a plurality of primary particles for the purpose of improving printing density.
  • Japanese Patent Application Laid-Open No. 2006-82073 discloses a surface potential adjustment step in which a polymer compound is modified on the surface of fine particles to adjust the surface potential of the fine particles, a fluid containing fine particles having a positive surface potential, and a negative surface potential.
  • a method for producing composite particles having a mixing step of mixing a fluid containing the fine particles in a microchannel or the like is disclosed.
  • JP 2009-197097 for the purpose of obtaining fine pigment particles having a uniform particle size, two or more kinds of solutions including a particle forming material solution and a poor solvent solution are brought into contact with each other in a mixing unit such as a microreactor.
  • a forming method is disclosed.
  • the present invention relates to the following [1] to [8].
  • a water-based ink for ink-jet recording containing the water dispersion of [1] or [2].
  • An aqueous dispersion (A) containing anionic organic pigment particles and an aqueous solution (B) containing a cationic polymer have a channel cross-sectional area of 0.001 to 0.5 mm 2 and a channel length of 0.
  • a method including a step of mixing in a flow path of 1 to 10 mm, wherein a linear velocity in a hole at a position where the aqueous dispersion (A) and the aqueous solution (B) merge is 1 m / second or more;
  • a method for producing an aqueous dispersion for inkjet recording wherein a polymer is added and contacted. [7] Obtained in steps (a) and (a) of adding a cationic polymer after adjusting the pH of an aqueous dispersion containing water-insoluble anionic polymer particles containing an organic pigment to 8-12 [2] The method for producing an aqueous dispersion for ink-jet recording as described in [2] above, comprising the step (b) of lowering the pH of the aqueous dispersion to adjust the pH to 7-9. [8] A water-based ink for ink-jet recording containing the water dispersion for ink-jet recording obtained by the production method of [4] to [7].
  • FIG. 1 is a transmission electron microscope (TEM) photograph of anionic polymer particles containing the organic pigment obtained in Preparation Example 1.
  • FIG. 2 is a TEM photograph of the chain particles obtained in Example I-1.
  • FIG. 3 is an enlarged TEM photograph of one of the chain particles obtained in Example I-1.
  • FIG. 4 is a TEM photograph of the organic pigment particles obtained in Comparative Example I-1.
  • FIG. 5 is a TEM photograph of the organic pigment particles obtained in Comparative Example I-2.
  • 6A and 6B are schematic views showing an example of a T-type microchannel and FIG. 6B is an example of a Y-type microchannel.
  • FIG. 7 is a schematic diagram of T-type microchannels used in Examples III-1 to III-6, III-8, and Comparative Examples III-1 and III-3.
  • An object of the present invention is to provide an aqueous dispersion for ink-jet recording excellent in printing density using an organic pigment, an aqueous ink containing the aqueous dispersion, and a method for producing the aqueous dispersion.
  • the present inventor has considered that the reason why it is difficult to obtain a sufficient print density with an ink for ink jet recording using a pigment is that the pigment is fine particles and easily penetrates into paper.
  • the anionic organic pigment particles and the cationic polymer are aggregated by ionic interaction and used as a chain-connected particle, thereby suppressing the penetration of ink on the paper surface and improving the printing density. I found it.
  • the present invention relates to the following [1] to [8].
  • a water-based ink for ink-jet recording containing the water dispersion of [1] or [2].
  • [6] Cationic polymer under a shear condition of a shear rate of 1 m / sec or more by using a rotary shear type stirring device having a rotor-stator structure in an aqueous dispersion containing water-insoluble anionic polymer particles containing an organic pigment
  • the aqueous dispersion containing the water-insoluble anionic polymer particles containing the organic pigment is made cationic in the region within the cylinder whose bottom is a circle having a radius twice the rotor radius from the center of the rotor rotating shaft of the stirring device.
  • a method for producing an aqueous dispersion for inkjet recording wherein a polymer is added and contacted.
  • An aqueous system for inkjet recording containing the aqueous dispersion for inkjet recording obtained by the production method of [4] to [7] ink.
  • each component and each process used for this invention are demonstrated.
  • anionic organic pigment particles are used as the colorant component.
  • the anionic organic pigment particles have a desired particle size by subjecting the organic pigment to a dispersion treatment or the like.
  • anionic means that when an unneutralized substance is dispersed or dissolved in pure water, the pH becomes less than 7, or the substance is insoluble in pure water, and the pH is clearly measured. When it cannot, it means that the zeta potential of the dispersion dispersed in pure water becomes negative.
  • the average particle diameter of the anionic organic pigment particles is preferably 40 to 200 nm, more preferably 50 to 150 nm, and still more preferably 60 to 100 nm from the viewpoint of printing density.
  • the average particle diameter of the anionic organic pigment particles is measured by a dynamic light scattering method, and specifically measured by the method of the example.
  • Organic pigment used for the anionic organic pigment particles is not particularly limited.
  • a surfactant a polymer, or the like to form fine particles that are stable in the ink.
  • an organic pigment is preferably contained in the polymer particles.
  • Specific examples of the organic pigment include azo pigments, diazo pigments, phthalocyanine pigments, quinacridone pigments, isoindolinone pigments, dioxazine pigments, perylene pigments, perinone pigments, thioindigo pigments, anthraquinone pigments, and quinophthalone pigments.
  • the hue is not particularly limited, and any chromatic pigment such as red, yellow, blue, orange, and green can be used.
  • Specific examples of preferred organic pigments include C.I. I. Pigment yellow, C.I. I. Pigment Red, C.I. I. Pigment orange, C.I. I. Pigment violet, C.I. I. Pigment blue, and C.I. I.
  • One or more types of products selected from the group consisting of pigment green are listed.
  • quinacridone pigments are preferable from the viewpoint of color developability.
  • a solid solution pigment containing dichloroquinacridone can also be suitably used.
  • Dichloroquinacridone when used as one component of a solid solution pigment, shows the effect of increasing the transparency and saturation of the solid solution pigment itself due to a change in the electronic state derived from the chlorine group, and therefore is used from the viewpoint of color development.
  • Examples of dichloroquinacridone include 2,9-dichloroquinacridone, 3,10-dichloroquinacridone, and 4,11-dichloroquinacridone.
  • Examples of the pigment to be formed into a solid solution with dichloroquinacridone include unsubstituted quinacridone such as ⁇ -type and ⁇ -type, and dimethylquinacridone.
  • solid solution pigments a solid solution pigment composed of a combination of 2,9-dichloroquinacridone (CI Pigment Red 202) and unsubstituted quinacridone (CI Pigment Violet 19) is more preferable.
  • the content of dichloroquinacridone in the solid solution pigment is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, still more preferably 15 to 85% by weight.
  • Said solid solution pigment can be used individually or in mixture of 2 or more types in arbitrary ratios, and may use together with another coloring agent, for example, a pigment, in the range which does not impair the effect of this invention.
  • Self-dispersing organic pigment In the present invention, a self-dispersing organic pigment can also be used.
  • Self-dispersing organic pigments are those in which one or more hydrophilic functional groups (anionic hydrophilic groups such as carboxy groups and sulfonic acid groups, or cationic hydrophilic groups such as quaternary ammonium groups) are directly or other atomic groups. It means an organic pigment that can be dispersed in an aqueous medium without using a surfactant or a resin by bonding to the surface of the organic pigment via the.
  • examples of the “other atomic group” include an alkanediyl group having 1 to 12 carbon atoms, a phenylene group, or a naphthylene group.
  • the hydrophilic functional group is preferably an anionic hydrophilic group such as a carboxy group or a sulfonic acid group.
  • a necessary amount of a hydrophilic functional group may be chemically bonded to the surface of the organic pigment by a conventional method.
  • the amount of the hydrophilic functional group is not particularly limited, but is preferably 100 to 3,000 ⁇ mol per gram of the self-dispersing organic pigment, and preferably 200 to 700 ⁇ mol per gram of the self-dispersing organic pigment when the hydrophilic functional group is a carboxy group.
  • Said organic pigment can be used individually or in mixture of 2 or more types in arbitrary ratios.
  • the anionic organic pigment particles are not particularly limited, but are preferably self-dispersing organic pigments and anionic polymer particles containing organic pigments, and contain organic pigments from the viewpoint of improving the aqueous dispersion and ink printing density.
  • Water-insoluble anionic polymer particles (hereinafter also referred to as “anionic polymer particles containing an organic pigment” or simply “anionic polymer particles”) are more preferable.
  • the “water-insoluble polymer” refers to a polymer having a dissolution amount of 10 g or less when the polymer which has been dried at 105 ° C. for 2 hours and reaches a constant weight is dissolved in 100 g of water at 25 ° C.
  • the amount of the water-insoluble polymer dissolved is preferably 5 g or less, more preferably 1 g or less.
  • the dissolution amount is the dissolution amount when the anionic group of the polymer is neutralized 100% with sodium hydroxide.
  • polymers used include polyesters, polyurethanes, and vinyl polymers. From the viewpoint of storage stability of aqueous dispersions and inks, addition polymerization of vinyl monomers (vinyl compounds, vinylidene compounds, vinylene compounds) can be used. The resulting anionic vinyl polymer is preferred.
  • Anionic vinyl polymers include (a) anionic monomer (hereinafter also referred to as “(a) component”), (b) macromer (hereinafter also referred to as “(b) component”) and / or (c) hydrophobicity.
  • a vinyl polymer obtained by copolymerizing a monomer mixture (hereinafter also simply referred to as “monomer mixture”) containing a monomer (hereinafter also referred to as “component (c)”) is preferable.
  • This vinyl polymer has a structural unit derived from the component (a), a structural unit derived from the component (b) and / or a structural unit derived from the component (c). Especially, what contains all the structural units derived from (a) component, the structural unit derived from (b) component, and (c) component is preferable.
  • An anionic monomer is an anion from the viewpoint of stably dispersing water-insoluble anionic polymer particles containing an organic pigment in an aqueous dispersion and ink, and promoting ionic interaction with the cationic polymer. Used as a monomer component of a conductive polymer.
  • the anionic monomer include a carboxylic acid monomer, a sulfonic acid monomer, and a phosphoric acid monomer.
  • Examples of the carboxylic acid monomer include acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, and 2-methacryloyloxymethyl succinic acid.
  • sulfonic acid monomer examples include styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, 3-sulfopropyl (meth) acrylate, and bis- (3-sulfopropyl) -itaconate.
  • phosphoric acid monomers include vinylphosphonic acid, vinyl phosphate, bis (methacryloxyethyl) phosphate, diphenyl-2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, dibutyl-2-acryloyloxyethyl phosphate, and the like. It is done.
  • anionic monomers a carboxylic acid monomer is preferable, and acrylic acid and methacrylic acid are more preferable from the viewpoint of dispersion stability of the anionic polymer particles and the obtained chain particles in an aqueous dispersion and ink.
  • a macromer is a compound having a polymerizable functional group at one end and a number average molecular weight of 500 to 100,000, in a water-insoluble anionic polymer particle, an aqueous dispersion of chain particles containing it, and an aqueous ink. From the viewpoint of storage stability in, it is used as a monomer component of an anionic polymer.
  • the polymerizable functional group present at one end is preferably an acryloyloxy group or a methacryloyloxy group, and more preferably a methacryloyloxy group.
  • the number average molecular weight of the macromer is preferably 500 to 100,000, more preferably 1,000 to 10,000.
  • the number average molecular weight is measured using polystyrene as a standard substance by a gel chromatography method using chloroform containing 1 mmol / L dodecyldimethylamine as a solvent.
  • styrenic macromer from the viewpoint of dispersion stability in an aqueous dispersion of anionic polymer particles and chain-like particles and ink, styrenic macromer, aromatic group-containing (meth) acrylate macromer, and silicone macromer include preferable.
  • the styrenic macromer include a styrene monomer homopolymer or a copolymer of a styrene monomer and another monomer.
  • the content of the styrenic monomer is preferably 50% by weight or more, more preferably 70% by weight or more from the viewpoint of dispersion stability in an aqueous dispersion of anionic polymer particles and chain-like particles and ink. preferable.
  • the styrene monomer include styrene, 2-methylstyrene, vinyl toluene, ethyl vinyl benzene, vinyl naphthalene, chlorostyrene, and the like.
  • Other monomers to be copolymerized include aromatic group-containing (meth) acrylates or acrylonitrile.
  • Specific examples of the styrenic macromer include AS-6 (S), AN-6 (S), HS-6 (S) (trade name of Toagosei Co., Ltd.) and the like.
  • Examples of the aromatic group-containing (meth) acrylate-based macromer include a homopolymer of an aromatic group-containing (meth) acrylate or a copolymer thereof with another monomer.
  • the content of the aromatic group-containing (meth) acrylate monomer is preferably 50% by weight or more from the viewpoint of dispersion stability in an aqueous dispersion of anionic polymer particles and chain-like particles and in ink. 70% by weight or more is more preferable.
  • examples include (meth) acrylates having 6 to 22 aryl groups. Specific examples thereof include benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-methacryloyloxyethyl-2-hydroxypropyl phthalate, and the like. Acrylate is preferred. Examples of other monomers to be copolymerized include styrene monomers and acrylonitrile.
  • the macromer may be a silicone-based macromer, and examples of the silicone-based macromer include organopolysiloxane having a polymerizable functional group at one end.
  • the hydrophobic monomer is used as a monomer component of the anionic polymer from the viewpoint of improving the print density of the aqueous dispersion and the ink.
  • the hydrophobic monomer include alkyl (meth) acrylates and aromatic group-containing monomers.
  • the alkyl (meth) acrylate those having an alkyl group having 1 to 22 carbon atoms, preferably 6 to 18 carbon atoms are preferable.
  • (iso or tertiary)” and “(iso)” mean both the case where these groups are present and the case where these groups are not present. Indicates. “(Meth) acrylate” indicates acrylate and / or methacrylate.
  • aromatic group-containing monomer a vinyl monomer having an aromatic group having 6 to 22 carbon atoms, which may have a substituent containing a hetero atom, is preferable, and a styrene monomer, an aromatic group-containing (meth) acrylate Are more preferable, and it is also preferable to use these in combination.
  • styrene monomer styrene, 2-methylstyrene, and divinylbenzene are preferable, and styrene is more preferable.
  • aromatic group containing (meth) acrylate benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, etc. are preferable, and benzyl methacrylate and / or benzyl acrylate are more preferable.
  • the monomer mixture may further contain (d) a nonionic monomer (hereinafter also referred to as “component (d)”).
  • the commercially available component (d) include NK Esters M-20G, 40G, 90G, and 230G from Shin-Nakamura Chemical Co., Ltd., Bremer PE-90 and 200 from NOF Corporation. 350, PME-100, 200, 400, 1000, PP-500, 800, 1000, AP-150, 400, 550, 800, 50PEP-300, 50POEP-800B, 43PAPE- 600B etc. are mentioned.
  • the above components (a) to (d) can be used alone or in admixture of two or more.
  • the content of the structural unit derived from is as follows.
  • the content of the component (a) is that the anionic polymer particles containing the pigment and the resulting chain particles are stably dispersed in the aqueous dispersion and the ink, and the ionic interaction between the anionic polymer particles and the cationic polymer From the viewpoint of promoting the heat treatment, the content is preferably 3 to 40% by weight, more preferably 4 to 30% by weight, and particularly preferably 5 to 25% by weight.
  • the content of the component (b) is preferably from 1 to 25% by weight, more preferably from the viewpoint of dispersion stability of the anionic polymer particles containing the pigment and the resulting chain particles in an aqueous dispersion and ink. 5 to 20% by weight.
  • the content of the component (c) is preferably 5 to 98% by weight, more preferably 10 to 80% by weight, from the viewpoint of improving the print density of the aqueous dispersion and the ink.
  • the weight ratio of [(a) component / [(b) component + (c) component]]] is such that the dispersion of the anionic polymer particles containing the pigment and the resulting chain particles in water dispersion and ink is stable. From the standpoint of the properties and the print density of the aqueous dispersion and the ink, it is preferably 0.01 to 1, more preferably 0.02 to 0.67, still more preferably 0.03 to 0.50.
  • the polymer constituting the anionic polymer particles is preferably a structural unit derived from benzyl methacrylate and / or benzyl acrylate as component (c) from the viewpoint of saturation, storage stability and printing density, preferably 30 to 80% by weight, more preferably 40-80% by weight, still more preferably 50-75% by weight, particularly preferably 60-75% by weight.
  • the anionic polymer particles are preferably composed of structural units derived from monomers having the same polymerizable group from the viewpoint of printing density and storage stability, and the same polymerizable group is a methacryloyl group. Those are more preferred.
  • the anionic polymer is produced by copolymerizing a monomer mixture by a known polymerization method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, or an emulsion polymerization method.
  • a known polymerization method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, or an emulsion polymerization method.
  • the solution polymerization method is preferable.
  • a polar organic solvent is preferable. When the polar organic solvent is miscible with water, it can be used by mixing with water.
  • the polar organic solvent examples include aliphatic alcohols having 1 to 3 carbon atoms such as methanol, ethanol and propanol; ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate and the like. Among these, methanol, ethanol, acetone, methyl ethyl ketone, or a mixed solvent of one or more of these and water is preferable.
  • azo compounds such as 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), t-butyl peroxyoctate, dibenzoyl oxide, etc.
  • radical polymerization initiators such as organic peroxides can be used.
  • the amount of the radical polymerization initiator is preferably 0.001 to 5 mol, more preferably 0.01 to 2 mol per 1 mol of the monomer mixture (1 mol of the total molar amount of each monomer).
  • a known polymerization chain transfer agent such as mercaptans such as octyl mercaptan and 2-mercaptoethanol and thiuram disulfide may be added.
  • the polymerization conditions of the monomer mixture vary depending on the type of radical polymerization initiator, monomer, solvent, etc. used, and thus cannot be determined unconditionally. Usually, however, the polymerization temperature is preferably 30 to 100 ° C., more preferably 50 The polymerization time is preferably 1 to 20 hours.
  • the polymerization atmosphere is preferably a nitrogen gas atmosphere or an inert gas atmosphere such as argon. After completion of the polymerization reaction, the produced polymer can be isolated from the reaction solution by a known method such as reprecipitation or solvent distillation. In addition, unreacted monomers and the like can be removed from the obtained polymer by reprecipitation, membrane separation, chromatographic methods, extraction methods and the like.
  • the weight average molecular weight of the anionic polymer used in the present invention is such that the water-insoluble anionic polymer particles containing the pigment and the dispersion stability of the chain-like particles containing the same in the aqueous dispersion and aqueous ink, the aqueous dispersion and From the viewpoint of the print density of the water-based ink, 5,000 to 500,000 are preferable, 10,000 to 400,000 are more preferable, 10,000 to 300,000 are more preferable, and 20,000 to 200,000 are more preferable. In addition, the weight average molecular weight of the polymer was measured by the method shown in the Examples.
  • the water-insoluble anionic polymer containing a pigment used in the present invention is preferably used by neutralizing an anionic group derived from (a) an anionic monomer with a neutralizing agent.
  • the neutralizing agent include bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and various amines.
  • the degree of neutralization of the anionic group of the anionic polymer is preferably 10 to 300%, more preferably 20 to 200%, still more preferably 30 to 150% from the viewpoint of dispersion stability.
  • the degree of neutralization of the anionic group of the polymer before crosslinking is preferably 10 to 90%, more preferably 20 to 80%, from the viewpoint of dispersion stability and crosslinking efficiency.
  • the degree of neutralization can be determined by the following equation. ⁇ [Weight of neutralizing agent (g) / equivalent of neutralizing agent] / [acid value of polymer (KOH mg / g) ⁇ polymer weight (g) / (56 ⁇ 1000)] ⁇ ⁇ 100
  • the acid value can be calculated from the structural unit of the polymer. Alternatively, it can also be determined by a method in which a polymer is dissolved in an appropriate solvent (for example, methyl ethyl ketone) and titrated.
  • An aqueous dispersion of anionic polymer particles containing an organic pigment can be efficiently produced by a method having the following steps (1) and (2).
  • step (1) an anionic polymer is first dissolved in an organic solvent, and then an organic pigment, water, and, if necessary, a neutralizer and a surfactant are added to the obtained organic solvent solution and mixed.
  • a method of obtaining an oil-in-water type dispersion is preferred.
  • the organic pigment is preferably 5 to 50% by weight, more preferably 10 to 40% by weight
  • the organic solvent is preferably 10 to 70% by weight, more preferably 10 to 50% by weight
  • the anionic polymer is It is preferably 2 to 40% by weight, more preferably 3 to 20% by weight
  • water is preferably 10 to 70% by weight, more preferably 20 to 70% by weight.
  • the weight ratio of the amount of the organic pigment to the amount of the anionic polymer [organic pigment / anionic polymer] is preferably 50/50 to 90/10, and 70/30 to 85 / More preferably, it is 15.
  • the neutralizing agent include bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and various amines.
  • the anionic polymer may be neutralized in advance.
  • the organic solvent include alcohol solvents such as ethanol, isopropanol and isobutanol, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and diethyl ketone, and ether solvents such as dibutyl ether, tetrahydrofuran and dioxane.
  • the amount of the organic solvent dissolved in 100 g of water is preferably 5 g or more, more preferably 10 g or more at 20 ° C., and methyl ethyl ketone and methyl isobutyl ketone are preferred.
  • the average particle size of the anionic polymer particles containing the pigment can be atomized only by this dispersion until the desired particle size is obtained, it is preferably predispersed and then subjected to further dispersion by applying shear stress. It is preferable to control the average particle size of the anionic polymer particles containing the pigment to a desired particle size.
  • the temperature in the dispersion in the step (1) is preferably 0 to 40 ° C., more preferably 5 to 30 ° C., and the dispersion time is preferably 1 to 30 hours, more preferably 2 to 25 hours.
  • mixing and stirring devices such as anchor blades and disper blades, such as Ultra Disper, Desperm (Asada Tekko Co., Ltd., trade name), Milder (Ebara Manufacturing Co., Ltd.)
  • High-speed agitation and mixing devices such as TK Homomixer, TK Pipeline Mixer, TK Homojetter, TK Homomic Line Flow, and Fillmix (hereinafter, Primix Co., Ltd., trade name) are preferred.
  • Examples of means for applying the shear stress of this dispersion include a kneader such as a roll mill, a kneader, and an extruder, and a high pressure homogenizer represented by a high pressure homogenizer (Izumi Food Machinery Co., Ltd., trade name), a microfluidizer (Microfluidics). Company name, Nanomizer (Yoshida Kikai Kogyo Co., Ltd., trade name), Optimizer, Starburst (Sugino Machine Co., Ltd., trade name) and other chamber type high-pressure homogenizers, paint shakers, bead mills and other media-type dispersers Is mentioned.
  • a kneader such as a roll mill, a kneader, and an extruder
  • a high pressure homogenizer represented by a high pressure homogenizer (Izumi Food Machinery Co., Ltd., trade name), a microfluidizer (Microflui
  • media-type dispersers include Ultra Apex Mill (trade name, manufactured by Kotobuki Industries Co., Ltd.), Picomill (trade name, manufactured by Asada Tekko Co., Ltd.), Dino Mill (trade name, manufactured by Shinmaru Enterprises Co., Ltd.), etc. Is mentioned. A plurality of these devices can be combined. Among these, from the viewpoint of reducing the particle size of the anionic polymer particles containing an organic pigment, it is preferable to use a media-type disperser and a high-pressure homogenizer in combination.
  • an aqueous dispersion of anionic polymer particles containing an organic pigment can be obtained by distilling off the organic solvent from the obtained dispersion by a known method.
  • the organic solvent in the aqueous dispersion containing the anionic polymer particles containing the obtained pigment is preferably substantially removed, but may remain as long as the object of the present invention is not impaired.
  • the amount of the residual organic solvent is preferably 0.1% by weight or less, and more preferably 0.01% by weight or less. If necessary, the dispersion can be heated and stirred before the organic solvent is distilled off.
  • the obtained aqueous dispersion of anionic polymer particles containing an organic pigment is one in which the solid content of the polymer containing an organic pigment is dispersed in water as a main medium.
  • the form of the polymer particles is not particularly limited as long as the particles are formed of at least an organic pigment and an anionic polymer.
  • a particle form in which an organic pigment is included in the polymer a particle form in which the organic pigment is uniformly dispersed in the polymer, a particle form in which the organic pigment is exposed on the surface of the polymer particle, and the like are included. Is also included.
  • cationic polymer in the aqueous dispersion for inkjet recording of the present invention, chain-like particles containing the anionic organic pigment particles and the cationic polymer are used from the viewpoint of improving the printing density.
  • “cationic” of the cationic polymer means that when an unneutralized polymer is dispersed or dissolved in pure water, the pH becomes higher than 7, or a polymer having a quaternary ammonium salt or the like. When the counter ion is dispersed or dissolved in pure water as a hydroxide ion, the pH becomes higher than 7, or the polymer or the like is insoluble in pure water, and the pH cannot be measured clearly.
  • the cationic polymer is preferably a water-soluble cationic polymer from the viewpoint of efficiently interacting with anionic polymer particles containing an organic pigment and improving the print density of the aqueous dispersion or ink.
  • the “water-soluble polymer” is a polymer in which the cationic polymer is dried at 105 ° C. for 2 hours, and when the polymer that has reached a constant weight is dissolved in 100 g of water at 25 ° C., the dissolved amount exceeds 10 g.
  • the dissolution amount is preferably 20 g or more, more preferably 100 g or more.
  • the reason why the print density is improved by using a water-soluble cationic polymer is not clear, but on the medium after printing, anionic polymer particles containing organic pigment and ions
  • the organic pigment remains on the surface of the medium without causing the anionic polymer particles containing the organic pigment to permeate into the medium, particularly paper, and thus the print density is considered to be improved.
  • the interaction is strong, in the aqueous dispersion, a plurality of polymer particles become chain-like secondary particles, and physical resistance and catching on the paper fiber as the medium increase, and the medium surface It is considered that the printing density is excellent because a large amount of organic pigment can be left on the surface.
  • the number average molecular weight of the water-soluble cationic polymer is preferably 1,000 to 300,000, more preferably 10,000 to 80,000, from the viewpoint of printing density.
  • a cationic group such as a primary to tertiary amino group, an imino group, a quaternary ammonium base, or hydrazine is used from the viewpoint of improving the printing density of an aqueous dispersion or an ink containing the aqueous dispersion.
  • a polymer having an amino group and / or an imino group is more preferable, and a polymer having an amino group is still more preferable.
  • the polymer is preferably a homopolymer of a monomer having a cationic group, a copolymer with another monomer, or a condensation polymer.
  • cationic polymer examples include polyethyleneimine, polyallylamine, polyvinylamine, polyvinylpyridine, polyethyleneimine-epichlorohydrin reaction product, polyamide-polyamine resin, polyamide-epichlorohydrin resin, chitosans, cationized starch, polyamine sulfone, polyvinylimidazole.
  • cationic polymer having an amino group examples include polyethyleneimine, polyallylamine, polyvinylamine and the like, polyethyleneimine and polyallylamine are more preferable, and polyethyleneimine is still more preferable.
  • the cationic polymer can be used alone or in combination of two or more.
  • Polyethyleneimine is a water-soluble polymer compound represented by — (CH 2 CH 2 NH) n —, in which ethyleneimine units are polymerized in a linear, branched or network form. Polyethyleneimine exists as a polycation in the aqueous dispersion, and when the pH of the aqueous dispersion is adjusted to 7 to 9, it interacts with the anionic group of the polymer particles containing the organic pigment, It is considered that the printing density is improved in order to promote aggregation due to ionic interaction and suppress ink permeation on the paper surface.
  • the number average molecular weight determined by the method for raising the boiling point of polyethyleneimine is preferably 300 to 300,000, more preferably 300 to 100,000, still more preferably 400 to 80,000, and particularly preferably 500 to 70,000.
  • the number average molecular weight is 300 or more, the fixability of the pigment on the surface of the printing paper is improved, and the effect of improving the printing density is increased.
  • polyethyleneimine When the number average molecular weight is 100,000 or less, the viscosity of the aqueous dispersion or ink is low, and the dispersion It is excellent in stability.
  • the production method of polyethyleneimine is not particularly limited, and can be produced by a known polymerization method. For example, [1] ring-opening polymerization of ethyleneimine using carbon dioxide, hydrochloric acid, hydrobromic acid or the like as a catalyst, [2] method of polycondensation of ethylene chloride and ethylenediamine, [3] method of heating oxazolidone-2 Etc. Polyethyleneimine can be used individually or in combination of 2 or more types.
  • the content of the cationic polymer, particularly polyethyleneimine, in the aqueous dispersion is preferably 0.01 to 10% by weight with respect to the anionic organic pigment particles, from the viewpoint of the balance between the basic physical properties of the ink and the improvement in print density. More preferably, it is 0.03 to 3% by weight, still more preferably 0.05 to 2% by weight, and particularly preferably 0.1 to 1% by weight.
  • the chain-like particles used in the present invention contain anionic organic pigment particles and a cationic polymer, but the cationic polymer interacts electrically between the anionic organic pigment particles, and the anionic organic pigment particles It is thought that is constituted by being linked with a cationic polymer.
  • the reason why the printing density of the aqueous dispersion using the chain-like particles and the ink is excellent is not clear, but if it is an organic pigment particle or agglomerated particles, the paper fibers after the ink droplets have landed on the paper In the meantime, it penetrates with the ink solvent and the printing density is lowered.
  • the chain-like particles increase the physical resistance between the paper fibers and easily leave the organic pigment on the paper surface.
  • the shape of the chain-like particles can be confirmed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the anionic polymer particle containing an organic pigment is observed with a TEM, the polymer is hardly visible, so that only the organic pigment is substantially observed.
  • examples of the “chain particles” include those in which primary pigment particles are linked in a linear shape, a bent shape, a branched shape, a cyclic shape, and the like. More specifically, the chain-like particles used in the present invention are those in which the area occupation ratio of secondary particles calculated by the following formula (I) is less than 40%. That is, a circumscribed circle is drawn on one independent secondary particle in the TEM photograph, and the area of the circle is A0 (nm 2 ).
  • Secondary particles in which anionic organic pigment particles are connected with a cationic polymer include the above-mentioned chain-like particles. However, since the degree of connection is distributed, the chain shape is usually highly developed. To those that maintain the shape of the pigment primary particles.
  • the ratio (number%) of the primary pigment particles constituting the chain particles to the total primary pigment particles is 10% by number or more of the pigment particles contained in the aqueous dispersion of the present invention from the viewpoint of improving the printing density. Yes, preferably 20% by number or more, more preferably 30% by number or more, and even more preferably 50% by number or more.
  • the average particle size of the chain particles is preferably 70 to 400 nm, more preferably 90 to 300 nm, still more preferably 120 to 250 nm, and still more preferably 150 to 200 nm, from the viewpoint of improving printing density.
  • Ratio of average particle size of particles in water dispersion containing chained particles to average particle size of anionic organic pigment particles (average particle size of particles in water dispersion containing chained particles / anionic organic
  • the average particle diameter of the pigment particles is preferably 1.5 to 5.0, more preferably 1.5 to 4.0, and still more preferably 1.5 to 3.0.
  • the average particle diameter of the particles in the aqueous dispersion containing the chain particles is the average particle diameter of the whole particles including secondary particles having other shapes in the chain particles.
  • the average particle diameter is measured by a dynamic light scattering method, and specifically measured by the method of the example.
  • Step (I) A step of preparing a mixed solution containing anionic organic pigment particles, a cationic polymer and water, and then removing water to obtain a viscous product or a solid product.
  • step (I) the anionic organic pigment particles obtained by the above production method, etc., in particular, an anionic polymer particle containing an organic pigment, and a mixture containing a cationic polymer and water are prepared, and then water is removed.
  • a viscous material or a solid material is obtained.
  • viscous material refers to a mud or viscous material
  • solid material refers to a mass or the like that does not have fluidity at 25 ° C.
  • a method for preparing a mixed solution containing anionic organic pigment particles, a cationic polymer and water includes (i) a cationic polymer or a cationic polymer in an aqueous dispersion of anionic organic pigment particles.
  • a method of adding an aqueous dispersion of anionic organic pigment particles to a cationic polymer or an aqueous solution of a cationic polymer, (iii) Cationic to an aqueous dispersion of anionic organic pigment particles examples thereof include a method of adding a polymer and further adding an aqueous dispersion of anionic organic pigment particles, and each method can be added in a plurality of times.
  • the weight ratio of the anionic organic pigment particles to the cationic polymer used in this step is preferably 40 to 5000 from the viewpoint of increasing the printing density of the aqueous dispersion. More preferably, it is 80-2000, and still more preferably 100-1000.
  • Examples of the method for removing moisture include a method for evaporating moisture by a decompression method, a heating method, or the like, but a heating method is preferable.
  • the heating temperature is preferably 50 to 100 ° C, more preferably 60 to 90 ° C, and still more preferably 70 to 85 ° C.
  • Evaporation is carried out until it becomes a viscous product or a solid product. From the viewpoint of obtaining a uniform particle size by the dispersion treatment in step (II), it is preferable to use a viscous product.
  • the solid content concentration of the viscous material or solid material is preferably 40 to 90% by weight, more preferably 45 to 80% by weight, and still more preferably 50 to 70% by weight.
  • step (II) the viscous material or solid material obtained in step (I) is mixed with water to obtain an aqueous dispersion (A).
  • the amount of water mixed in this step is increased from the viewpoint of increasing the mixing efficiency and obtaining a uniform aqueous dispersion.
  • the weight ratio of the viscous material or solid material obtained in step (I) [water / step
  • the viscous or solid product obtained in (I)] is preferably 0.5 to 45, more preferably 1 to 25, and still more preferably 2 to 15.
  • step (II) There is no particular limitation on the mixing method in step (II), and it is sufficient to add water to a viscous or solid material, but in order to obtain a uniform particle size, a process for producing anionic polymer particles containing an organic pigment
  • the mixing / dispersing method used in (1), the ultrasonic disperser, a three-one motor equipped with stirring blades, a method using a stirrer such as a magnetic stirrer, or the like can be employed.
  • the aqueous dispersion (A) obtained in this step (II) is an aqueous dispersion containing chain particles.
  • the aqueous dispersion (A) containing the chain particles and the aqueous ink containing the aqueous dispersion (A) are excellent in printing density.
  • Step (III) is an optional step, but is a step in which the aqueous dispersion (A) obtained in Step (II) and a crosslinking agent are mixed and subjected to crosslinking treatment to obtain an aqueous dispersion (B).
  • the step (III) is preferably performed from the viewpoint of the storage stability of the aqueous dispersion and the ink.
  • the cross-linking agent is preferably a compound having a functional group that reacts with the anionic group of the anionic polymer, and more preferably a compound having 2 or more, preferably 2 to 6 in the molecule.
  • the amount of the crosslinking agent dissolved is preferably 50 g or less, more preferably 40 g or less when dissolved in 100 g of water at 25 ° C. from the viewpoint of efficiently crosslinking the surface of the polymer, particularly the water-insoluble polymer. More preferably, it is 30 g or less.
  • the molecular weight is preferably 120 to 2000, more preferably 150 to 1500, and still more preferably 150 to 1000, from the viewpoint of easy reaction and storage stability of the aqueous dispersion.
  • crosslinking agent Preferable examples of the crosslinking agent include the following (a) to (c).
  • (B) Compounds having two or more oxazoline groups in the molecule: for example, bisoxazoline compounds such as 2,2′-bis (2-oxazoline), 1,3-phenylenebisoxazoline, 1,3-benzobisoxazoline, A compound having a terminal oxazoline group obtained by reacting the compound with a polybasic carboxylic acid.
  • (C) Compound having two or more isocyanate groups in the molecule: for example, organic polyisocyanate or isocyanate group-terminated prepolymer. Among these, (a) a compound having two or more epoxy groups in the molecule is preferable, and trimethylolpropane polyglycidyl ether is more preferable.
  • the amount of the crosslinking agent used is preferably 0.3 / 100 to 50/100, and preferably 1/100 to 40/100 in terms of the weight ratio of [crosslinking agent / anionic polymer] from the viewpoint of storage stability of the aqueous dispersion and the ink. 100 is more preferable, 2/100 to 30/100 is more preferable, and 5/100 to 25/100 is particularly preferable.
  • the amount of the crosslinking agent used is preferably an amount that reacts with 0.1 to 20 mmol of the anionic group of the polymer in terms of the amount of anionic group per 1 g of the anionic polymer. The amount that reacts is more preferable, and the amount that reacts with 1 to 10 mmol is even more preferable.
  • the crosslinked polymer obtained by the crosslinking treatment preferably contains 0.5 mmol or more of an anionic group (particularly preferably a carboxy group) neutralized with a base per 1 g of the crosslinked polymer.
  • the anionic group neutralized with the base in the crosslinked polymer is considered to be dissociated in the aqueous dispersion and contribute to the stability of the crosslinked polymer particles containing the organic pigment due to charge repulsion between the anions.
  • the crosslinking rate (mol%) of the crosslinked polymer obtained from the following formula is preferably 10 to 80 mol%, more preferably 20 to 70 mol%, and further preferably 30 to 60 mol%.
  • the crosslinking rate should be calculated by the following formula (III) from the amount of crosslinking agent used and the number of moles of reactive groups, the amount of polymer used and the number of moles of reactive groups of the polymer that can react with the reactive group of the crosslinking agent Can do.
  • Crosslinking rate (mol%) [number of moles of reactive group of crosslinking agent ⁇ 100 / number of moles of reactive group capable of reacting with crosslinking agent of polymer] (III)
  • “the number of moles of the reactive group of the crosslinking agent” is a value obtained by dividing the weight of the crosslinking agent used by the equivalent of the reactive group. That is, the number of moles of the crosslinking agent used is multiplied by the number of reactive groups in one molecule of the crosslinking agent.
  • the aqueous dispersion for inkjet recording of the present invention can also be efficiently produced by the following production method 2. That is, an aqueous dispersion (A) containing anionic organic pigment particles and an aqueous solution (B) containing a cationic polymer have a channel cross-sectional area of 0.001 to 0.5 mm 2 and a channel length of 0.1.
  • This is a method of mixing so that the amount of the cationic group of the cationic polymer is 5 to 50 mol% with respect to the amount of the anionic group of the anionic organic pigment particles, and further includes a crosslinking step as necessary.
  • the cationic polymer is removed from the water without causing local aggregation of the polymer particles. It can be uniformly dispersed in the dispersion. As a result, an aqueous dispersion containing particles in a form in which anionic organic pigment particles are linked in a chain can be obtained without generating coarse particles. The obtained aqueous dispersion is considered to be excellent in printing density and filterability.
  • the cross-sectional area of the flow path is 0.001 to 0.5 mm 2 from the viewpoint of suppressing the formation of aggregates by laminar flow formation and non-uniform mixing, and improving the printing density and filterability. It is preferable to use a microchannel (microchannel) having a channel having a length of 0.1 to 10 mm.
  • the channel cross-sectional area of the microchannel used is preferably 0.005 to 0.2 mm 2 , more preferably 0.01 to 0.1 mm 2 , and the channel length is preferably 0.2 to 8 mm. Preferably, it is 0.5 to 5 mm.
  • the channel length means the length of the channel in the section where the channel cross-sectional area is in the range of 0.001 to 0.5 mm 2 .
  • the linear velocity in the pores at the position where the aqueous dispersion (A) containing the anionic organic pigment particles and the aqueous solution (B) containing the water-soluble cationic polymer merge is 1 m / second or more.
  • the linear velocity in the hole is an average linear velocity in the hole at the position where the aqueous dispersion (A) and the aqueous solution (B) merge, and the amount of liquid passing through the mixing position in a certain time is allowed to flow. The value divided by the road cross-sectional area.
  • the linear velocity in the hole is 1 m / second or more, and preferably 2 m / second or more, more preferably 4 m / second or more, and still more preferably from the viewpoint of achieving both printing density and filterability, particularly from the viewpoint of improving printing density.
  • Is 10 m / second or more and is preferably 1000 m / second or less, more preferably 100 m / second or less, and further preferably 30 m / second or less, from the viewpoint of improving operability and print density.
  • the amount of the cationic group of the cationic polymer when mixed in the microchannel is 5 to 50 mol% in terms of the ratio of the anionic group of the anionic colored particles from the viewpoint of improving the printing density.
  • the amount is preferably 8 to 30 mol%, more preferably 10 to 25 mol%, still more preferably 12 to 20 mol%.
  • the weight ratio of the anionic organic pigment particles to the cationic polymer is preferably 40 to 5000, more preferably 80 to 2000, and more preferably from the viewpoint of increasing the printing density of the aqueous dispersion. Preferably it is 100 to 1000, particularly preferably 200 to 400.
  • the concentration of the anionic organic pigment particles in the aqueous dispersion (A) containing the anionic organic pigment particles before mixing in the microchannel is preferably 1 to 40% by weight, more preferably 10 to 35% by weight, More preferably, it is 20 to 35% by weight.
  • the concentration of the cationic polymer in the aqueous solution (B) containing the cationic polymer before mixing in the microchannel is preferably 0.01 to 5% by weight, more preferably 0.05 to 1% by weight, still more preferably. Is 0.1 to 0.5% by weight.
  • aqueous dispersion excellent in printing density and filterability can be obtained by adding a cationic polymer to the aqueous dispersion (A) containing anionic organic pigment particles using a microchannel in this manner.
  • a cationic polymer added to the aqueous dispersion (A) containing anionic organic pigment particles using a microchannel in this manner.
  • each liquid becomes a laminar flow with a very small contact area and forms a very close state.
  • An aqueous dispersion (A) containing anionic organic pigment particles and an aqueous solution (B) containing a cationic polymer are produced by the dissipation that occurs when this laminar flow is released and ejected from a channel having a small channel cross-sectional area.
  • the cationic polymer is homogeneously adhered to the anionic organic pigment particles, and the particles are repeatedly collided with each other, and the chaining of the particles proceeds.
  • microchannels do not contact droplets with a large contact area before mixing, and do not generate a partial shear force. It is considered that polymer particles in a form connected in a chain of diameters can be obtained, and an aqueous dispersion excellent in printing density and filterability can be obtained.
  • the microchannel used in the present invention is not particularly limited in material, shape of the inner surface, mixing angle, etc., as long as the position where at least two liquids are mixed and the shape of the flow path after mixing satisfy the above conditions.
  • the material of the microchannel is preferably a material that can handle an aqueous solution or an aqueous dispersion under high-pressure conditions, and examples thereof include metals and glass, and stainless steel is preferable.
  • the shape of the inner surface is preferably such that the friction is reduced from the viewpoint of reducing pressure loss.
  • the mixing angle is preferably a structure in which the liquid before mixing can flow in at 0 to 90 ° with respect to the flow direction after mixing.
  • T-type structure there are three modes shown by (a-1), (a-2), and (a-3) in FIG. Among these, a Y-type structure is more preferable.
  • microchannel for example, a commercially available micromixer or microreactor, or a connector or adapter that is a thin tube connecting part can be used.
  • a chromatograph joint low dead volume type union tee SS-1F0-3GC (T type, channel cross-sectional area 0.07 mm 2 , channel length 1.25 mm) manufactured by Swagelok, GL Sciences Micro volume connector MT1XCS6 (T type, channel cross-sectional area 0.018 mm 2 , channel length 1.25 mm) and MY1XCS6 (Y type, channel cross-sectional area 0.018 mm 2 , channel length 1.25 mm), etc.
  • a slit type Micro Mixers SSIMM manufactured by IMM, a micromixer YM-2 manufactured by Yamatake Corporation, or the like can be used.
  • a pump with little pulsation of liquid feeding into the microchannel and a syringe pump is preferably used.
  • the syringe pump is preferably one that can supply a high pressure of 1 MPa or more.
  • a syringe pump such as Toray Engineering Co., Ltd., Harvard Apparatus, etc. can be used.
  • low pulsation type diaphragm pumps and plunger pumps such as Takumina Co., Ltd. and Fuji Techno Industry Co., Ltd. can also be used.
  • the aqueous dispersion for inkjet recording of the present invention can also be efficiently produced by the following production method 3. That is, a cationic polymer is applied to an aqueous dispersion containing water-insoluble anionic polymer particles containing an organic pigment under shear conditions with a shear rate of 1 m / sec or more using a rotary shear type stirring device having a rotor-stator structure. It is a method including a step of adding, and, if necessary, a cross-linking step.
  • the shear rate is a value obtained by multiplying the maximum circumferential length of the rotor by the number of rotations.
  • the rotor is added to the water dispersion containing water-insoluble anionic polymer particles containing the organic pigment obtained by the method having the steps (1) and (2).
  • the cationic polymer By adding the cationic polymer under the shearing condition, the cationic polymer can be uniformly dispersed in the aqueous dispersion without causing local aggregation. As a result, an aqueous dispersion containing polymer particles in a form in which water-insoluble anionic polymer particles containing an organic pigment are linked in a chain can be obtained without generating coarse particles. The resulting aqueous dispersion of polymer particles containing the organic pigment is excellent in printing density and filterability.
  • the place where the cationic polymer is added may be a place where the shearing condition is obtained after mixing, but is preferably a place where the aqueous dispersion is flowing under the shearing condition from the viewpoint of filterability, and the rotor of the stirring device It is preferable to add from the center of the rotating shaft in a region in a cylinder whose bottom is a circle having a radius twice the rotor radius.
  • the rotary shear type stirring device having the rotor / stator structure used for the shearing condition can be used alone or in combination.
  • the weight ratio of water-insoluble anionic polymer particles containing an organic pigment to the cationic polymer [water-insoluble anionic polymer particles containing an organic pigment / cationic polymer] used in this step is a print of an aqueous dispersion. From the viewpoint of increasing the concentration, it is preferably 40 to 5000, more preferably 80 to 2000, still more preferably 100 to 1000, still more preferably 200 to 600, and still more preferably 200 to 400.
  • a rotary shearing type stirring apparatus having a rotor / stator structure is a stirring apparatus that includes a rotor and a stator and applies a shearing force to a fluid at a gap between the rotor and the stator and a slit portion of the rotor. More specifically, a cylindrical stator (fixed ring) that also functions as a baffle plate fixed in the stirring chamber, and a rotor (turbine blade) that is housed in a hollow portion of the stator and is given a predetermined number of rotations by a motor. And a plurality of flow paths are formed radially in the stator and the rotor.
  • a centrifugal force acts on the solution or dispersion of the cationic polymer, and it is ejected from the radial flow path formed in the rotor, enters the gap between the rotor and the stator, and further enters the radial flow path of the stator. Infiltrate. Since the stator is fixed without rotating, when the rotor rotates, a vortex flow is generated in the liquid existing in the radial flow paths of the rotor and the stator, and the liquid that has entered the gap between the rotor and the stator. A shearing force according to the rotational speed of the rotor acts on the. For this reason, the water dispersion containing the anionic polymer particles containing the organic pigment and the solution or dispersion of the cationic polymer are homogenized by the energy of the vortex and shear.
  • the rotary shear type stirrer having the rotor-stator structure is uniformly spread and homogenized throughout the liquid as soon as it is added. Since partial shearing force does not occur in part, polymer particles can be obtained in a chained form with a uniform particle size, and an aqueous dispersion excellent in printing density and filterability can be obtained. Conceivable.
  • the dispersion is preferably added to and brought into contact with an aqueous dispersion containing anionic polymer particles containing an organic pigment.
  • the region is more preferably a region obtained by removing a cylinder whose bottom surface is a circle having a radius 0.5 times the rotor radius from a cylinder whose bottom surface is a circle having a radius 1.8 times the rotor radius.
  • a region obtained by removing a cylinder whose bottom surface is a circle having a radius of 1.0 times the rotor radius from a cylinder whose bottom surface is a circle having a radius of 7 times is more preferable, and a circle having a radius 1.6 times the rotor radius is a bottom surface.
  • a region obtained by removing a cylinder whose bottom surface is a circle having a radius of 1.4 times the radius of the rotor from the cylinder is more preferable.
  • the cationic polymer is uniformly diffused in the liquid simultaneously with the contact with the aqueous dispersion containing the anionic polymer particles containing the organic pigment.
  • An aqueous dispersion for inkjet recording having few particles and excellent filterability can be obtained.
  • the gap between the inner peripheral surface of the stator and the outer peripheral surface of the rotor is preferably 5 mm or less, more preferably 0.01 to 2 mm, and still more preferably 0.1 to 0.2 mm.
  • the turbine blade peripheral speed of the rotor is preferably 2 m / second or more, more preferably 4 m / second or more, and further preferably 8 to 40 m / second.
  • Examples of commercial products of the rotary shear type agitator include Biomixer BM and MBM series (Nippon Seiki Seisakusho Co., Ltd., trade name), TK homomixer, TK pipeline mixer, TK homojetter, and TK homomic line flow as homomixers.
  • NS Biomixer (trade name) manufactured by Primix Co., Ltd., TK homomixer (trade name) manufactured by Primix Co., Ltd., Ultra Turrax (trade name) manufactured by IKA Japan Co., Ltd., and the like are more preferable. preferable.
  • the rotational speed of the rotor is preferably 10,000 revolutions / minute or more, more preferably 15,000 revolutions / minute or more, and further preferably 20,000 revolutions / minute or more.
  • the aqueous dispersion for inkjet recording of the present invention can also be efficiently produced by the production method 4 including the following steps (a) and (b) and, if necessary, further a step (c).
  • Step (a) the pH of the aqueous dispersion containing the water-insoluble anionic polymer particles containing the organic pigment obtained by the above production method is adjusted to 8 to 12, and then the cationic polymer is added.
  • a method for adjusting the pH of the aqueous dispersion containing water-insoluble anionic polymer particles containing an organic pigment to 8 to 12 include a method of adding a base.
  • the base include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, ammonium hydroxide, various amines and the like.
  • the cationic polymer added later is not uniformly reacted with the anionic polymer constituting the water-insoluble anionic polymer particles containing the organic pigment, and is uniformly dispersed in the aqueous dispersion.
  • Ani water-insoluble anionic polymer particles containing organic pigments The aqueous dispersion containing the on-polymer particles has a pH of 8 to 12, preferably 9 to 12, more preferably 10 to 12, still more preferably 10.5 to 11.
  • the anionic group of the polymer constituting the water-insoluble anionic polymer particles containing the organic pigment is converted to a salt.
  • the polymer constituting the water-insoluble anionic polymer particles containing an organic pigment has a carboxy group and polyethyleneimine is used as the cationic polymer will be described as an example.
  • the polyethyleneimine is such that the carboxy group becomes a sodium salt.
  • pH since it does not react with the carboxy group, polyethyleneimine is uniformly dissolved or dispersed in the aqueous dispersion without causing local aggregation.
  • Step (b) In the step (b), the pH of the aqueous dispersion obtained by uniformly dissolving or dispersing the cationic polymer obtained in the step (a) is lowered to 7-9.
  • This step will be described with reference to the example shown in step (a).
  • the sodium salt of the carboxy group (—COONa) again becomes a carboxy group and interacts with cationic polyethyleneimine. As a result, it interacts with anionic groups of water-insoluble anionic polymer particles containing organic pigments, promotes aggregation of water-insoluble anionic polymer particles, and suppresses permeation to paper after printing. It is thought to improve.
  • the cationic polymer has an increased adsorptivity to the polymer particle surface, and the cationic polymer is dissolved or dispersed alone in the aqueous dispersion or ink. Is expected to decrease. Therefore, it is considered that an aqueous dispersion having high dispersion stability of the aqueous dispersion or ink and excellent in filterability and storage stability can be obtained.
  • Examples of the method for lowering the pH of the aqueous dispersion to adjust the pH to 7 to 9 include a method by adding an acid or an acidic aqueous solution, or a contact treatment with a solid acid or a cation exchange resin.
  • Examples of the acid component used in the acid or the acidic aqueous solution include inorganic acids such as hydrochloric acid, acetic acid, propionic acid, phosphoric acid, and sulfuric acid, citric acid, lactic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, glycolic acid, and glucone. Examples thereof include organic acids such as acid and glyceric acid. Examples of the solid acid include activated clay, acidic clay, silica, and alumina. Examples of the cation exchange resin include synthetic resins having a sulfonic acid group, a carboxy group, a phosphoric acid group, and the like.
  • SK series such as Diaion SK1B, SK1BH and SK102 manufactured by Mitsubishi Chemical Corporation
  • PK series such as Diaion PK208 and PK212
  • chelating resins such as Diaion CR10, and manufactured by Rohm and Haas, USA 100 series
  • Amberlite 200CT Amberlite 200CT
  • IR120B IR124, IR118
  • W series such as Dowex 50W ⁇ X1 manufactured by Dow Chemical Co., etc.
  • the cation exchange resin which has a sulfonic acid group is preferable.
  • the cation exchange resin having a sulfonic acid group is roughly classified into a hydrogen ion type and a metal ion type such as sodium ion and potassium ion, and the hydrogen ion type is preferable from the viewpoint of pH adjustment efficiency.
  • strong ion cation exchange resins include Amberlite IR120B manufactured by Rohm and Haas, USA, Diaion SK-1B manufactured by Mitsubishi Chemical Co., Ltd., and SK-1BH which has been previously subjected to hydrogen ion exchange. It is done.
  • the contact treatment with the cation exchange resin can be carried out in a batch, semi-batch, semi-continuous or continuous manner.
  • a method in which the cation exchange resin particles are put into an aqueous dispersion and stirred, a cation For example, a method in which an aqueous dispersion is continuously passed through a packed bed of exchange resin.
  • the contact treatment between the aqueous dispersion and the cation exchange resin is preferred.
  • Step (c) In the step (c), a crosslinking agent is added to the aqueous dispersion of the water-insoluble anionic polymer particles containing the organic pigment obtained in the step (b), and the aqueous dispersion of the anionic crosslinked polymer particles containing the organic pigment is added. It can be obtained as a body.
  • the crosslinking treatment of the anionic polymer may be performed before or after the step (2) or in a state where the organic solvent remains. However, the organic pigment is more preferably subjected to the crosslinking treatment in the step (c).
  • the storage stability of the water-insoluble anionic polymer particles contained in the aqueous dispersion can be further improved.
  • the cross-linking agent is preferably a compound having a functional group that reacts with the anionic group of the anionic polymer, and more preferably a compound having 2 or more, preferably 2 to 6 in the molecule.
  • the crosslinking agent used in the present invention is preferably 50 g or less, more preferably 40 g or less, when dissolved in 100 g of water at 25 ° C. from the viewpoint of efficiently crosslinking the surface of the water-insoluble anionic polymer particles. More preferably, it is 30 g or less.
  • the molecular weight is preferably 120 to 2000, more preferably 150 to 1500, and still more preferably 150 to 1000, from the viewpoint of easy reaction and storage stability of the aqueous dispersion.
  • the aqueous dispersion of the present invention obtained by the above production method has a solid content of anionic organic pigment particles, particularly chain-like particles containing water-insoluble anionic (crosslinked) polymer particles containing an organic pigment and a cationic polymer. It is dispersed in water as the main medium.
  • the chain particles are as described above.
  • a moisturizing agent and an organic solvent can be added to the aqueous dispersion of the present invention to prevent drying, and it can also be used as an aqueous ink as it is.
  • the content of each component in the aqueous dispersion of the present invention is as follows.
  • the content of the organic pigment contained in the anionic organic pigment particles used in the aqueous dispersion of the present invention is preferably 2 to 35% by weight in the aqueous dispersion from the viewpoint of increasing the printing density of the aqueous dispersion.
  • the amount is preferably 3 to 30% by weight, more preferably 5 to 25% by weight.
  • the weight ratio of the anionic organic pigment particles (water-insoluble anionic polymer particles containing an organic pigment, etc.) to the cationic polymer [anionic organic pigment particles / cationic polymer] is an aqueous dispersion and an aqueous system containing the same.
  • the ink is preferably 40 to 5000, more preferably 80 to 2000, still more preferably 100 to 1000, and particularly preferably 200 to 600.
  • the water content is preferably 20 to 90% by weight, more preferably 30 to 80% by weight, and still more preferably 40 to 70% by weight.
  • the preferred surface tension (20 ° C.) of the aqueous dispersion of the present invention is 30 to 70 mN / m, more preferably 35 to 65 mN / m.
  • the viscosity (20 ° C.) of 20% by weight (solid content) of the aqueous dispersion of the present invention is preferably 1 to 12 mPa ⁇ s, more preferably 1 to 9 mPa ⁇ s, more preferably 2 to 6 mPa ⁇ s, and still more preferably. Is 2 to 5 mPa ⁇ s.
  • the water-based ink for ink-jet recording of the present invention contains the water dispersion of the present invention, but wetting agents, penetrants, dispersants, surfactants, viscosity modifiers, antifoaming agents usually used in water-based inks. Preservatives, antifungal agents, rust inhibitors and the like can be added.
  • the content of each component in the aqueous ink of the present invention is as follows.
  • the content of the organic pigment contained in the anionic organic pigment particles used in the aqueous ink of the present invention is preferably 1 to 25% by weight, more preferably 2% in the aqueous ink from the viewpoint of increasing the printing density of the aqueous ink.
  • the water content is preferably 20 to 90% by weight, more preferably 30 to 80% by weight, and still more preferably 40 to 70% by weight.
  • the surface tension (20 ° C.) of the water-based ink of the present invention is preferably 23 to 50 mN / m, more preferably 23 to 45 mN / m, still more preferably 25 to 40 mN / m.
  • the viscosity (20 ° C.) of the aqueous ink of the present invention is preferably 2 to 20 mPa ⁇ s, more preferably 2.5 to 16 mPa ⁇ s, and still more preferably 2. in order to maintain good ejection reliability. 5 to 12 mPa ⁇ s.
  • the ink jet method to which the water-based ink of the present invention is applied is not limited, but is particularly suitable for a piezo ink jet printer.
  • parts and % are “parts by weight” and “% by weight” unless otherwise specified.
  • the weight average molecular weight, average particle size, secondary particle area occupancy (%), and proportion of chain particles (number%) are measured by the following method.
  • the print density was evaluated by printing.
  • the number of primary particles of 100 to 150 pigments was measured to be N0 (number)
  • the number of pigment primary particles constituting the chained particles was N1 (number)
  • the ratio of the chained particles was determined.
  • Viscosity change rate (%) (([viscosity after storage] ⁇ [viscosity before storage]) / [viscosity before storage]) ⁇ 100
  • Printing was performed on commercially available plain paper (trade name: XEROX 4200, manufactured by XEROX, high-quality plain paper) using the adjusted solid image of Duty. (7) Measurement of print density The printed matter was allowed to stand at 25 ° C. and 50% humidity for 24 hours, and then the print density on the printed surface was measured. Macbeth densitometer (product number: RD914, manufactured by Gretag Macbeth Co., Ltd.) was used to measure the print density. The measurement conditions were an observation light source of D65, an observation field of view of 2 degrees, a density reference of DIN16536, and a magenta color density component. The number of was read. The number of times of measurement was changed, and 5 points were selected at random from the portion printed in the forward path of bidirectional printing, and 5 points were selected from the portion printed on the return path, and an average value of a total of 10 points was obtained.
  • Macbeth densitometer product number: RD914, manufactured by Gretag Macbeth Co., Ltd.
  • Preparation Example 1 (Preparation of an aqueous dispersion of anionic polymer particles containing an organic pigment) (1) Synthesis of anionic polymer 58 parts of benzyl methacrylate, 42 parts of methacrylic acid, 20 parts of styrene, 40 parts of styrene macromer (trade name: AS-6S, manufactured by Toagosei Co., Ltd.) (solid content 50%), polyethylene glycol methacrylate (NOF Corporation, trade name: Blenmer PP-800) 30 parts, phenoxypoly (ethylene glycol propylene glycol) methacrylate (NOF Corporation, trade name: Blenmer 43PAPE-600B) 30 parts are mixed, and a monomer mixed solution Was prepared.
  • anionic polymer 58 parts of benzyl methacrylate, 42 parts of methacrylic acid, 20 parts of styrene, 40 parts of styrene macromer (trade name: AS-6S, manufactured by Toagosei Co.
  • a reaction vessel 18 parts of methyl ethyl ketone, 0.03 part of a polymerization chain transfer agent (2-mercaptoethanol) and 10% of the above monomer mixture were mixed and thoroughly replaced with nitrogen gas. Meanwhile, in the dropping funnel, the remaining 90% of the monomer mixture, 0.27 part of the polymerization chain transfer agent, 42 parts of methyl ethyl ketone, and a polymerization initiator (trade name: V-65, 2 manufactured by Wako Pure Chemical Industries, Ltd.) , 2′-azobis (2,4-dimethylvaleronitrile)) 1.2 parts and mixed, and under nitrogen atmosphere, the mixed solution in the reaction vessel was heated to 75 ° C. with stirring, The mixed solution in the dropping funnel was dropped over 3 hours.
  • a polymerization chain transfer agent 2-mercaptoethanol
  • the obtained dispersion was further subjected to a 5-pass dispersion treatment at a pressure of 180 MPa using a microfluidizer (manufactured by Microfluidics, high-pressure homogenizer, trade name, model M-140K). Methyl ethyl ketone was removed from the obtained dispersion at 60 ° C.
  • Example I-1 (Preparation of Aqueous Dispersion for Inkjet Recording (1) Containing Chain Particles) 50 g of an aqueous dispersion of anionic polymer particles containing the organic pigment obtained in Preparation Example 1 was placed in a beaker and stirred to dilute to 10% with ion-exchanged water (model number: SP-006, Inc.) 0.73 g of Nippon Shokubai, number average molecular weight (Mn) 600) was added dropwise. Further, 50 g of the aqueous dispersion obtained in Preparation Example 1 was added to the obtained dispersion, and the water was evaporated while stirring in a warm bath at 80 ° C. to obtain a viscous product having a solid concentration of about 60%.
  • ion-exchanged water model number: SP-006, Inc.
  • step (I) After adding 50 parts of ion-exchanged water to the solid content obtained in the step (I) and dispersing it with a magnetic stirrer (manufactured by Yamato Kagaku Co., Ltd., MD-41 type), the filter (manufactured by Sartorius Stedim Biotech) , Pore diameter: 5 ⁇ m), coarse particles were removed, and an aqueous dispersion adjusted to a solid content concentration of 30% was obtained [step (II)].
  • a magnetic stirrer manufactured by Yamato Kagaku Co., Ltd., MD-41 type
  • step (II) To 40 g of the aqueous dispersion obtained in the step (II), 0.53 g of an epoxy crosslinking agent (trade name: Denacol EX321, epoxy equivalent 140, manufactured by Nagase ChemteX Corporation) is added and stirred in a 90 ° C. warm bath. However, it was held for 1 hour to carry out a crosslinking treatment [step (III)]. After cooling, the mixture is filtered through the filter (Sartorius Stedim Biotech, pore size: 5 ⁇ m) to remove coarse particles, and an aqueous dispersion for ink jet recording (1) containing chain-like particles having an average particle size of 181 nm (solid content concentration: 30).
  • an epoxy crosslinking agent trade name: Denacol EX321, epoxy equivalent 140, manufactured by Nagase ChemteX Corporation
  • Comparative Example I-1 (Preparation of Inkjet Recording Water Dispersion (2)) 50 g of an aqueous dispersion of anionic polymer particles containing the organic pigment obtained in Preparation Example 1 was placed in a beaker and stirred to dilute to 10% with ion-exchanged water (model number: SP-006, Inc.) 0.73 g of Nippon Shokubai, number average molecular weight (Mn) 600) was added dropwise. Further, 50 g of the aqueous dispersion obtained in Preparation Example 1 was added to the obtained dispersion and stirred, and then the water was not evaporated and the filter (Sartorius Stedim Biotech, pore size: 5 ⁇ m) was used.
  • Example I-1 shows a TEM photograph of the organic pigment particles contained in the obtained aqueous dispersion (2).
  • Comparative Example I-2 Preparation of Inkjet Recording Water Dispersion (3)
  • Example I-1 an inkjet recording water dispersion (3) was prepared in the same manner as in Example I-1, except that polyethyleneimine was not added.
  • the average particle diameter of the organic pigment particles contained in the obtained water dispersion (3) was 100 nm.
  • FIG. 5 shows a TEM photograph of the organic pigment particles contained in the obtained aqueous dispersion (3).
  • Example I-2 (Production of water-based ink)
  • the aqueous dispersion (1) for inkjet recording obtained in Example I-1 was prepared so as to be 13.3 parts in terms of solid content and 10.0 parts in terms of pigment content.
  • 1,2-hexanediol manufactured by Tokyo Chemical Industry Co., Ltd.
  • 2-pyrrolidone manufactured by Wako Pure Chemical Industries, Ltd.
  • Surfynol 465 manufactured by Nissin Chemical Industry Co., Ltd.
  • Surfynol 465 manufactured by Nissin Chemical Industry Co., Ltd.
  • Olphine E1010 manufactured by Nissin Chemical Industry Co., Ltd.
  • glycerin manufactured by Kao Corporation
  • triethylene glycol monobutyl ether trade name: butyl triglycol, manufactured by Nippon Emulsifier Co., Ltd.
  • 10 0.0 part, 0.3 part of Proxel XL2 manufactured by Avicia Co.
  • the blending amount of ion-exchanged water is an amount adjusted so that the total amount of the mixed solution and the water dispersion for inkjet recording (1) is 100 parts.
  • stirring the aqueous dispersion for ink jet recording (1) prepared in advance with a magnetic stirrer the above mixed solution was added and filtered through a 1.2 ⁇ m filter (cellulose acetate membrane, manufactured by Sartorius Stedim Biotech). A water-based ink was obtained. The results are shown in Table 1.
  • Comparative Example I-3 (Production of water-based ink)
  • Example I-2 instead of the aqueous dispersion for inkjet recording (1) containing the chain-like particles obtained in Example I-1, the aqueous dispersion for inkjet recording (2) obtained in Comparative Example 1 was used.
  • a water-based ink was produced in the same manner as in Example I-2 except that it was used. The results are shown in Table 1.
  • Comparative Example I-4 (Production of water-based ink) In Example I-2, instead of the aqueous dispersion for inkjet recording (1) containing the chain-like particles obtained in Example I-1, the aqueous dispersion for inkjet recording (3) obtained in Comparative Example I-2 A water-based ink was produced in the same manner as in Example I-2, except that The results are shown in Table 1.
  • Comparative Example I-5 (Production of water-based ink) In Example I-2, anionic polymer particles containing the organic pigment obtained in Preparation Example 1 instead of the aqueous dispersion (1) for ink jet recording containing the chain-like particles obtained in Example I-1. A water-based ink was produced in the same manner as in Example I-2 except that the aqueous dispersion was used. The results are shown in Table 1.
  • Example I-2 containing the aqueous dispersion of Example I-1 is Comparative Example I-3 or I- containing the aqueous dispersion of Comparative Example I-1 or I-2. It can be seen that the print density is superior to the aqueous ink of No. 4 and the aqueous ink of Comparative Example I-5 containing only anionic polymer particles containing an organic pigment.
  • Preparation Example 2 (Preparation of aqueous dispersion of solid solution pigment-containing anionic polymer particles) (1) Synthesis of anionic polymer 142 parts of benzyl methacrylate, 38 parts of methacrylic acid and 40 parts of a styrene macromer having a methacryloyl group at the end (trade name: AS-6S, manufactured by Toagosei Co., Ltd.) (solid content 50%) Then, a monomer mixed solution was prepared. In a reaction vessel, 18 parts of methyl ethyl ketone, 0.03 part of a polymerization chain transfer agent (2-mercaptoethanol) and 10% of the above monomer mixture were mixed and thoroughly replaced with nitrogen gas.
  • anionic polymer 142 parts of benzyl methacrylate, 38 parts of methacrylic acid and 40 parts of a styrene macromer having a methacryloyl group at the end (trade name: AS-6S, manufactured by Toagosei Co., Ltd
  • the dropping funnel the remaining 90% of the monomer mixture, 0.27 part of the polymerization chain transfer agent, 42 parts of methyl ethyl ketone, and a polymerization initiator (trade name: V-65, 2, manufactured by Wako Pure Chemical Industries, Ltd.)
  • a polymerization initiator trade name: V-65, 2, manufactured by Wako Pure Chemical Industries, Ltd.
  • a mixture of 1.2 parts of 2′-azobis (2,4-dimethylvaleronitrile)) was added, and the mixture was heated to 75 ° C. while stirring the mixed solution in a reaction vessel in a nitrogen atmosphere. The mixed solution was added dropwise over 3 hours. After 2 hours at 75 ° C.
  • a part of water was further removed, and the mixture was centrifuged, and a filter (manufactured by Sartorius Stedim Biotech, mini-Salto syringe filter, pore size: 5 ⁇ m, material: By filtering through cellulose acetate), coarse particles were removed to obtain an aqueous dispersion (solid content concentration: 30.0%, average particle size of 80 nm) of anionic polymer particles containing a solid solution pigment.
  • a filter manufactured by Sartorius Stedim Biotech, mini-Salto syringe filter, pore size: 5 ⁇ m, material: By filtering through cellulose acetate
  • Example II-1 (Preparation of aqueous dispersion for inkjet recording) 50 g of the aqueous dispersion of solid solution pigment-containing anionic polymer particles obtained in Preparation Example 2 (2) was placed in a beaker, immersed in a water bath at 0 ° C., and dispersed at 7000 rpm with a homogenizer. 9.5 g of a 0.3% aqueous solution of Epomin SP-200, number average molecular weight 10,000) was added dropwise at a rate of 20 ml / min.
  • the obtained dispersion was filtered through the filter (Sartorius Stedim Biotech, pore size: 5 ⁇ m) to remove coarse particles, and an aqueous dispersion for inkjet recording having an average particle size of 110 nm was obtained. Furthermore, 0.47 g of an epoxy-based crosslinking agent (manufactured by Nagase ChemteX Corporation, trade name: Denacol EX321, epoxy equivalent 140) and 1.07 g of ion-exchanged water were added to 40 g of the obtained water dispersion, and a 90 ° C. warm bath And held for 1 hour with stirring.
  • an epoxy-based crosslinking agent manufactured by Nagase ChemteX Corporation, trade name: Denacol EX321, epoxy equivalent 140
  • the mixture is filtered through the filter (Sartorius Stedim Biotech, pore size: 5 ⁇ m) to remove coarse particles, and anionic crosslinked polymer particles containing a solid solution pigment having an average particle size of 115 nm (of the crosslinked polymer according to the formula (1)).
  • a water dispersion for inkjet recording containing a crosslinking ratio: 56.8 mol%) and polyethyleneimine was obtained.
  • Example II-2 (Preparation of aqueous dispersion for inkjet recording) (1) Synthesis of anionic polymer An anionic polymer solution (weight average molecular weight of polymer: 90,000) in the same manner as in Preparation Example 2 (1) except that benzyl methacrylate was replaced with benzyl acrylate in Preparation Example 2 (1). ) (2) Preparation of aqueous dispersion of solid solution pigment-containing anionic polymer particles In Preparation Example 2 (2), the anionic polymer solution obtained in (1) above was used as the anionic polymer obtained in Preparation Example 2 (1).
  • An aqueous dispersion of anionic polymer particles containing a solid solution pigment (solid content concentration: 30.0%, average particle size of 80 nm) was obtained in the same manner as in Preparation Example 2 (2) except that the polymer solution was used. .
  • (3) Preparation of aqueous dispersion for inkjet recording In Example II-1, the aqueous dispersion of solid solution pigment-containing anionic polymer particles obtained in Preparation Example 2 (2) was used as the solid solution pigment obtained in (2) above.
  • An aqueous dispersion for inkjet recording was obtained in the same manner as in Example II-1, except that the aqueous dispersion of the contained anionic polymer particles was used.
  • Comparative Example II-1 (Preparation of aqueous dispersion for inkjet recording) (1) Synthesis of anionic polymer An anionic polymer solution (polymer weight average molecular weight: 90000) in the same manner as in Preparation Example 2 (1) except that benzyl methacrylate was replaced with styrene in Preparation Example 2 (1). Got. (2) Preparation of aqueous dispersion of solid solution pigment-containing anionic polymer particles In Preparation Example 2 (2), the anionic polymer solution obtained in Preparation Example 2 (1) was obtained in Comparative Example II-1 (1).
  • Example II-1 An aqueous dispersion of anionic polymer particles containing a solid solution pigment (solid content concentration: 30.0%, average particle diameter of 85 nm) in the same manner as in Preparation Example 2 (2) except that the anionic polymer solution was replaced.
  • Example II-1 the aqueous dispersion of pigment-containing anionic polymer particles obtained in Preparation Example 2 (2) was obtained in Comparative Example II-1 (2).
  • An aqueous dispersion for inkjet recording was obtained in the same manner as in Example II-1, except that the solid dispersion pigment-containing anionic polymer particles were replaced with an aqueous dispersion.
  • the solid solution pigment was a solid solution pigment composed of 2,9-dimethylquinacridone and unsubstituted quinacridone (manufactured by DIC Corporation, trade name: An aqueous dispersion of anionic polymer particles containing a solid solution pigment (solid content concentration: 30.0%, average particle size of 85 nm), except that it was replaced with Fastgen Super Magenta RY), in the same manner as in Preparation Example 2 (2).
  • Example II- in Example II-1 (3) Preparation of Water Dispersion for Inkjet Recording Example II- in Example II-1, except that the aqueous dispersion of solid solution pigment-containing anionic polymer particles obtained in Comparative Example II-2 (2) was used. In the same manner as in Example 1, an aqueous dispersion for inkjet recording was obtained.
  • Comparative Example II-3 (Preparation of water dispersion for inkjet recording) (1) Synthesis of anionic polymer An anionic polymer solution (polymer weight average molecular weight: 90000) was obtained in the same manner as in Preparation Example 2 (1).
  • the solid solution pigment is a pigment composed of 2,9-dimethylquinacridone (manufactured by DIC Corporation, trade name: Fastgen Super Magenta RG).
  • Example II-1 Example II- was used except that the aqueous dispersion of quinacridone pigment-containing anionic polymer particles obtained in Comparative Example II-3 (2) was used. In the same manner as in Example 1, an aqueous dispersion for inkjet recording was obtained.
  • Comparative Example II-4 (Preparation of water dispersion for inkjet recording) (1) Synthesis of anionic polymer An anionic polymer solution (polymer weight average molecular weight: 90000) was obtained in the same manner as in Preparation Example 2 (1). (2) Preparation of aqueous dispersion of anionic polymer particles containing quinacridone pigment An aqueous dispersion of anionic polymer particles containing a solid solution pigment (solid content concentration: 30.0%, in the same manner as in Preparation Example 2 (2) An average particle size of 80 nm) was obtained. (3) Preparation of aqueous dispersion for inkjet recording An aqueous dispersion for inkjet recording was obtained in the same manner as in Example II-1, except that polyethyleneimine was not added in Example II-1.
  • Example II-3 [Production of Ink] 1,2-hexanediol (manufactured by Tokyo Chemical Industry Co., Ltd.) 2.0 parts, 2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) 2.0 parts, Surfynol 465 (manufactured by Nissin Chemical Industry Co., Ltd.) 0.5 Part, Olphine E1010 (manufactured by Nissin Chemical Industry Co., Ltd.) 0.5 part, 2.0 parts of glycerin (manufactured by Kao Corporation), triethylene glycol monobutyl ether (trade name: butyl triglycol, manufactured by Nippon Emulsifier Co., Ltd.) 10 0.0 part, 0.3 part of Proxel XL2 (manufactured by Avicia Co., Ltd.) and ion-exchanged water were mixed while stirring with a magnetic stirrer, and further stirred at room temperature for 15 minutes to obtain a mixed solution.
  • the blending amount of the ion exchange water is an amount adjusted so that the total amount of the mixed solution and the water dispersion for ink jet recording obtained in Example II-1 is 100 parts.
  • stirring 41.7 parts (12.5 parts in terms of solid content, 10.0 parts in terms of pigment content) of the aqueous dispersion for inkjet recording obtained in Example II-1 with a magnetic stirrer was added and filtered through a 1.2 ⁇ m filter (cellulose acetate membrane, manufactured by Sartorius Stedim Biotech) to obtain a water-based ink.
  • Table 2 shows the evaluation results of the obtained water-based ink.
  • Example II-4 [Production of Ink]
  • Example II-3 a water-based ink was obtained in the same manner as in Example II-3, except that the aqueous dispersion prepared in Example II-2 was used.
  • the evaluation results are shown in Table 2.
  • Comparative Example II-5 [Ink Production]
  • Example II-3 a water-based ink was obtained in the same manner as in Example II-3, except that the aqueous dispersion prepared in Comparative Example II-1 was used.
  • the evaluation results are shown in Table 2.
  • Comparative Example II-6 [Ink Production]
  • Example II-3 a water-based ink was obtained in the same manner as in Example II-3, except that the aqueous dispersion prepared in Comparative Example II-2 was used.
  • the evaluation results are shown in Table 2.
  • Comparative Example II-7 [Ink Production] A water-based ink was obtained in the same manner as in Example II-3, except that in Example II-3, the aqueous dispersion prepared in Comparative Example II-3 was used. The evaluation results are shown in Table 2. Comparative Example II-8 [Ink Production] A water-based ink was obtained in the same manner as in Example II-3, except that in Example II-3, the aqueous dispersion prepared in Comparative Example II-4 was used. The evaluation results are shown in Table 2.
  • Preparation Example 3 (Preparation of aqueous dispersion of solid solution pigment-containing anionic polymer particles) The same basic operation as in Preparation Example 2 was performed to obtain an aqueous dispersion (A-1) of anionic polymer particles containing a pigment (solid content concentration: 28.5%, average particle size of 77 nm).
  • Example III-1 (Production of Water Dispersion for Inkjet Recording) Two syringe pumps PHD-4400 from Harvard Aparatus, microchannel shown in Fig.
  • aqueous dispersion (A-1) of the solid solution pigment-containing anionic polymer particles obtained in Preparation Example 3 was placed in a stainless syringe DCI 70-2255 manufactured by Harvard Aparatus and syringe pump PHD- manufactured by Harvard Aparatus. Attached to 4400.
  • 50 g of 0.105 wt% aqueous solution (B-1) of polyethyleneimine (number average molecular weight (Mn) 70,000, manufactured by Wako Pure Chemical Industries, Ltd.) was similarly attached to another syringe pump PHD-4400. . Then, the syringe pump was started at the same time, and in FIG.
  • the aqueous dispersion (A-1) was injected from the left side and the aqueous solution (B-1) was injected from the right side at a rate of 10 mL / min (bore extension in the microchannel). (Speed is 4.7m / sec).
  • an epoxy-based cross-linking agent (trade name: Denacol EX321, epoxy equivalent 140, manufactured by Nagase ChemteX Corporation) is added and kept in a 90 ° C. warm bath for 1.5 hours with stirring. did.
  • Example III-2 (Production of water dispersion for inkjet recording) An aqueous dispersion for inkjet recording was obtained in the same manner as in Example III-1, except that in Example III-1, the injection rate was changed to 60 mL / min (in-hole linear velocity 28.3 m / sec). The flow rate in the filterability evaluation was 20 g.
  • Example III-3 (Production of water dispersion for inkjet recording)
  • the injection rate of the aqueous dispersion (A-1) of the solid solution pigment-containing anionic polymer particles obtained in Preparation Example 3 was 60 mL / min
  • the injection rate of the polyethyleneimine aqueous solution (B-1) was
  • An aqueous dispersion for ink jet recording was obtained in the same manner as in Example III-1, except that the flow rate was changed to 40 mL / min (in-hole linear velocity 23.6 m / sec). In the filterability evaluation, the flow rate was 25 g or more (25 g total flow rate).
  • Example III-4 (Production of water dispersion for inkjet recording)
  • the aqueous solution (A-1) of solid solution pigment-containing anionic polymer particles obtained in Preparation Example 3 was diluted to 15.0% by weight with ion-exchanged water, and an aqueous solution of polyethyleneimine (B-1) was used.
  • the same procedure as in Example III-1 was conducted, except that the concentration was 0.055% by weight, to obtain an aqueous dispersion for inkjet recording.
  • the flow rate was 25 g or more (25 g total flow rate).
  • Example III-5 (Production of water dispersion for inkjet recording)
  • Example III-2 the same procedure as in Example III-2 was carried out except that polyethyleneimine was changed to one having a number average molecular weight (Mn) of 10,000 (manufactured by Wako Pure Chemical Industries, Ltd.). A dispersion was obtained.
  • the flow rate was 25 g or more (25 g total flow rate).
  • Example III-6 (Production of water dispersion for inkjet recording) Example III- except that the polyethyleneimine used in Example III-1 was changed to one having a number average molecular weight (Mn) of 1,800 (manufactured by Wako Pure Chemical Industries, Ltd.) and the concentration was changed to 0.070%. The same operation as in No. 1 was performed to obtain an aqueous dispersion for inkjet recording. In the filterability evaluation, the flow rate was 25 g or more (25 g total flow rate).
  • Example III-7 (Production of water dispersion for inkjet recording)
  • the microchannel used in Example III-1 was changed to a micro volume connector MY1XCS6 (Y-type, channel cross-sectional area 0.018 mm 2 , channel length 1.25 mm) manufactured by GL Sciences (in-hole linear velocity 18.9 m) / Second), the same operation as in Example III-1 was carried out to obtain an aqueous dispersion for inkjet recording.
  • the flow rate was 25 g or more (25 g total flow rate).
  • Example III-8 (Production of water dispersion for inkjet recording) Example III- except that the concentration of the polyethyleneimine aqueous solution (B-1) in Example III-1 was 0.210 wt% and the injection speed was changed to 40 mL / min (in-hole linear velocity 18.9 m / sec). The same operation as in No. 1 was performed to obtain an aqueous dispersion for inkjet recording. The flow rate in the filterability evaluation was 5 g.
  • Example III-9 (Production of water dispersion for inkjet recording)
  • the microchannel used in Example III-1 was changed to a micromixer YM-2 (channel cross-sectional area 0.126 mm 2 , channel length about 8 mm, stainless steel) manufactured by Yamatake Corporation, and the injection rate was 80 mL /
  • a water dispersion for inkjet recording was obtained in the same manner as in Example III-1, except for changing to minutes (in-hole linear velocity 21.2 m / sec).
  • the flow rate in the filterability evaluation was 5 g.
  • Comparative Example III-1 (Production of Water Dispersion for Inkjet Recording) The same as Example III-1, except that the solid dispersion pigment-containing anionic polymer particle aqueous dispersion (A-1) obtained in Preparation Example 3 was diluted with ion-exchanged water and the solid content concentration was adjusted to 20% by weight. Thus, an aqueous dispersion for ink jet recording was obtained. In the filterability evaluation, the flow rate was 25 g or more (25 g total flow rate).
  • Comparative Example III-2 (Production of water dispersion for inkjet recording) 50.0 g of the aqueous dispersion (A-1) of solid solution pigment-containing anionic polymer particles obtained in Preparation Example 3 and 50.0 g of a 0.105% by weight aqueous solution of polyethyleneimine were placed in a beaker (polyethyleneimine cationic property). The amount of the group was 15 mol% with respect to the amount of the anionic group of the anionic organic pigment particles), and mixing was performed using a magnetic stirrer, but there were many coarse aggregates and filtration was impossible.
  • Comparative Example III-3 (Production of water dispersion for inkjet recording) The same operation as in Example III-1 was carried out except that the injection rate of Example III-1 was changed to 2 mL / min (in-hole linear velocity of 0.9 m / sec), but there were many coarse aggregates and filtration was performed. could not.
  • Comparative Example III-4 (Production of water dispersion for inkjet recording) An aqueous dispersion for ink jet recording was obtained in the same manner as in Example III-2 except that the aqueous polyethyleneimine solution (B-1) in Example III-2 was changed to ion-exchanged water. In the filterability evaluation, the flow rate was 25 g or more (25 g total flow rate).
  • Comparative Example III-5 Production of water dispersion for inkjet recording
  • the microchannel of Example III-1 was changed to a microchemical chip ICC-SY-10 (channel cross-sectional area 0.004 mm 2 , channel length 80 mm) manufactured by Micro Chemical Engineering Co., Ltd., and the injection rate was 0.3 mL each. Except for the change to 1 / min (in-hole linear velocity of 2.0 m / sec), the same operation as in Example III-1 was performed, but aggregates were generated in the flow path and the flow path was blocked, so that the water dispersion could not get.
  • Example III-10 [Production of water-based ink] 1,2-hexanediol (manufactured by Tokyo Chemical Industry Co., Ltd.) 2.0 parts, 2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) 2.0 parts, Surfynol 465 (manufactured by Nissin Chemical Industry Co., Ltd.) 0.5 Part, Olfine E1010 (manufactured by Nissin Chemical Industry Co., Ltd.) 0.5 part, 2.0 parts of glycerin (manufactured by Kao Corporation), triethylene glycol monobutyl ether (trade name: butyl triglycol, manufactured by Nippon Emulsifier Co., Ltd.) 10 0.0 part, 0.3 part of Proxel XL2 (manufactured by Avicia Co., Ltd.) and ion-exchanged water were mixed while stirring with a magnetic stirrer, and further stirred at room temperature for 15 minutes to obtain a mixed solution.
  • the blending amount of the ion-exchanged water is an amount adjusted so that the total amount of the mixed solution and the water dispersion for inkjet recording obtained in Example III-1 is 100 parts.
  • the above mixed solution was added while stirring 62.5 parts of the aqueous dispersion for ink jet recording obtained in Example III-1 (10.0 parts in terms of pigment content (in water-based ink)) with a magnetic stirrer.
  • the solution was filtered through a filter having a pore size of 5 ⁇ m to obtain a water-based ink.
  • Table 3 The results are shown in Table 3.
  • Examples III-11 to 18, Comparative Examples III-6 to 9 [Production of water-based ink] Similar to Example III-10, except that the aqueous dispersions for inkjet recording obtained in Examples III-2 to III-9 and Comparative Examples III-1 to III-4 were combined as shown in Table 3. A water-based ink was obtained. The results are shown in Table 3.
  • Example IV-1 (Production of Water Dispersion for Inkjet Recording)
  • a biomixer Nihon Seiki Seisakusho Co., Ltd., in which 50.0 g of an aqueous dispersion of solid solution pigment-containing anionic polymer particles obtained in Preparation Example 2 was placed in a 100 ml tall beaker and a stainless steel tube having an inner diameter of 0.7 mm was adhered to the outside of the stator.
  • an epoxy-based crosslinking agent (trade name: Denacol EX321, epoxy equivalent 140, manufactured by Nagase ChemteX Corporation) was added and held in a 90 ° C. warm bath with stirring for 1.5 hours. . After cooling, the mixture was filtered with the filter having a pore size of 5 ⁇ m to remove coarse particles, and an aqueous dispersion for inkjet recording containing pigment-containing polymer particles having an average particle size of 115 nm was obtained. The evaluation results of filterability are shown in Table 4.
  • Example IV-2 (Production of water dispersion for inkjet recording) The same procedure as in Example IV-1 was carried out except that the rotation speed of the biomixer in Example IV-1 was changed to 10,000 rpm, and an aqueous dispersion for inkjet recording containing pigment-containing polymer particles having an average particle diameter of 116 nm was obtained. It was.
  • Example IV-3 (Production of water dispersion for inkjet recording) This was carried out except that the 0.45% by weight aqueous solution of the polyethyleneimine of Example IV-1 (number average molecular weight of about 10,000) (manufactured by Wako Pure Chemical Industries, Ltd.) was changed to 14.2 g of a 0.35% by weight aqueous solution.
  • Example IV-4 Production of water dispersion for inkjet recording
  • a homomixer manufactured by Primix Co., Ltd., model number: TK homomixer, rotating part uses TK Robomix, rotational speed: 7500 rpm, rotor diameter: 26 mm, stator inner peripheral surface
  • An aqueous dispersion for inkjet recording containing pigment-containing polymer particles having an average particle diameter of 105 nm was obtained in the same manner as in Example IV-1, except that a gap of 1.3 mm from the outer peripheral surface of the rotor was used.
  • Comparative Example IV-1 (Production of Aqueous Dispersion for Inkjet Recording) The same operation as in Example IV-1 was carried out except that the rotation speed of the biomixer of Example IV-1 was 2000 rpm, but the filterability was poor and it was possible to obtain an evaluable amount of coloring material. could not.
  • Comparative Example IV-2 (Production of water dispersion for inkjet recording) Example IV-1 is the same as Example IV-1, except that a disperser (manufactured by PRIMIX Co., Ltd., model number: TK Homodispa 2.5 type, rotation speed: 3000 rpm, blade diameter: 28 mm) is used instead of the biomixer of Example IV-1.
  • a disperser manufactured by PRIMIX Co., Ltd., model number: TK Homodispa 2.5 type, rotation speed: 3000 rpm, blade diameter: 28 mm
  • the same operation was performed to obtain an aqueous dispersion for inkjet recording containing pigment-containing polymer particles having an average particle diameter of 96 nm.
  • the distance from the center of the rotating blade rotation axis) / (rotating blade radius) 20 mm / 14 mm from the center of the rotating blade rotation axis, and a circle having a radius 1.43 times the rotating blade radius from the center of the rotating blade It was in a cylinder.
  • Example IV-3 Production of water dispersion for inkjet recording
  • a sand mill (model number: sand grinder 6TSG-1 / 4) manufactured by a bead mill type disperser (IMEX Co., Ltd.), media particles: zirconia beads, particle size: 0.05 mm, filled with beads
  • the distance from the center of the rotating blade rotation axis of the liquid contact surface of the tube) / (rotating blade radius) 45 mm / 35 mm. From the center of the rotating blade rotation shaft, a circle having a radius of 1.29 times the rotating blade radius is defined as the bottom surface. It was in a cylinder.
  • Comparative Example IV-4 Production of water dispersion for inkjet recording
  • a magnetic stirrer manufactured by ASONE, model number: REXIM RS-6A, rotation speed: 300 rpm, Teflon (registered trademark) stirrer: 20 mm ⁇ 8 mm diameter
  • ASONE model number: REXIM RS-6A
  • rotation speed 300 rpm
  • Teflon registered trademark stirrer
  • Comparative Example IV-5 Production of water dispersion for inkjet recording
  • mixing was carried out by the following method, and this was carried out except that a step of removing impurities with a centrifuge (6000 G, 20 minutes) was added as a pretreatment for filtration before the crosslinking reaction.
  • the same operation as in Example IV-1 was carried out to obtain an aqueous dispersion for inkjet recording containing pigment-containing polymer particles having an average particle diameter of 88 nm.
  • Comparative Example IV-6 (Production of water dispersion for inkjet recording) Instead of the biomixer of Example IV-1, operation was performed in the same manner as in Example IV-1, except that mixing was performed in the following manner. However, the filterability was poor, and an evaluable amount of coloring material was obtained. I could't.
  • Example IV-7 (Production of water dispersion for inkjet recording) Example IV-1 except that 6.1 g of an aqueous solution of 0.45% by weight polyethyleneimine (number average molecular weight of about 10,000) (manufactured by Wako Pure Chemical Industries, Ltd.) in Example IV-1 was replaced with 6.1 g of ion-exchanged water. The same operation as in -1 was performed. An aqueous dispersion for inkjet recording containing pigment-containing polymer particles having an average particle size of 83 nm was obtained.
  • Example IV-5 [Production of Ink] 1,2-hexanediol (manufactured by Tokyo Chemical Industry Co., Ltd.) 2.0 parts, 2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) 2.0 parts, Surfynol 465 (manufactured by Nissin Chemical Industry Co., Ltd.) 0.5 Part, Olfine E1010 (manufactured by Nissin Chemical Industry Co., Ltd.) 0.5 part, 2.0 parts of glycerin (manufactured by Kao Corporation), triethylene glycol monobutyl ether (trade name: butyl triglycol, manufactured by Nippon Emulsifier Co., Ltd.) 10 0.0 part, 0.3 part of Proxel XL2 (manufactured by Avicia Co., Ltd.) and ion-exchanged water were mixed while stirring with a magnetic stirrer, and further stirred at room temperature for 15 minutes to obtain a mixed solution.
  • the blending amount of the ion-exchanged water is an amount adjusted so that the total amount of the mixed solution and the water dispersion for inkjet recording obtained in Example IV-1 is 100 parts.
  • 41.7 parts (10.0 parts in terms of pigment content) of the aqueous dispersion for ink jet recording obtained in Example IV-1 was stirred with a magnetic stirrer, and the mixed solution was added, so that the pore diameter was 5 ⁇ m. Filtration through a filter gave a water-based ink.
  • Table 4 shows the evaluation results of the print density.
  • Examples IV-6 to IV-8 and Comparative Examples IV-8 to IV-14 [Production of ink] Inkjet recording water obtained in Examples IV-2 to 4 and Comparative Examples 1 to 7 as shown in Table 4 in place of the aqueous dispersion for inkjet recording obtained in Example IV-1 of Example IV-5 A water-based ink was obtained in the same manner as in Example IV-5 except that the dispersion was used.
  • the aqueous dispersions of Examples IV-1 to IV-4 have better filterability than the aqueous dispersions of Comparative Examples IV-1, IV-2, IV-4, and IV-6.
  • the inks of Examples IV-5 to IV-8 have a higher print density than the inks of Comparative Examples IV-9, IV-10, IV-12, and IV-14. It can be seen that the body and water-based ink are excellent in print density and filterability.
  • Example V-1 (Preparation of Inkjet Recording Water Dispersion (3)) Step (a): 50 parts of the aqueous dispersion of solid solution pigment-containing anionic polymer particles obtained in Preparation Example 2 was placed in a glass beaker having a capacity of 100 ml, and 1N aqueous sodium hydroxide solution was added while stirring at 20 ° C. The pH of the aqueous dispersion was adjusted to 11 while confirming the pH inside with a pH meter (trade name: F-23 type, manufactured by Horiba, Ltd.).
  • polyethyleneimine trade name: Epomin SP-200, number average molecular weight (Mn) 10,000, manufactured by Nippon Shokubai Co., Ltd.
  • a cation exchange resin trade name: Amberlite IR120BNA, manufactured by Rohm and Haas
  • an epoxy crosslinking agent trade name: Denacol EX321, epoxy equivalent 140, manufactured by Nagase ChemteX Corporation
  • the mixture is filtered through the filter (Sartorius Stedim Biotech, pore size: 5 ⁇ m) to remove coarse particles, and anionic crosslinked polymer particles containing a pigment having an average particle size of 147 nm (crosslinking of the crosslinked polymer by the formula (3)) Ratio: 56.8 mol%) and an aqueous dispersion (3) for inkjet recording containing polyethyleneimine.
  • Example V-2 Preparation of water dispersion for inkjet recording (4)
  • polyethyleneimine in step (b) of Example V-1
  • 2.5 parts of a 1% solid content aqueous solution of polyallylamine (trade name: PAA-15, molecular weight: 15,000, manufactured by Nittobo Co., Ltd.)
  • An aqueous dispersion (4) for inkjet recording containing an anionic polymer particle containing a pigment and polyallylamine was obtained in the same manner as in Example V-1 except for the addition.
  • Example V-3 Preparation of water dispersion for inkjet recording (5)
  • a pigment is contained in the same manner as in Example V-1, except that a 1N aqueous hydrochloric acid solution was added until the pH in the system reached 8 instead of the cation exchange resin in step (b) of Example V-1.
  • Example V-4 (Preparation of water dispersion for inkjet recording (6)) Anionic polymer particles containing pigment and polyethylene in the same manner as in Example V-1, except that the 1N sodium hydroxide aqueous solution in step (a) of Example V-1 was added until the pH in the system reached 9 An aqueous dispersion for inkjet recording (6) containing imine was obtained.
  • Example V-1 Preparation of water dispersion for inkjet recording (7)
  • the 1N sodium hydroxide aqueous solution was not used and the pH in the system was not adjusted in the steps (a) and (b) of Example V-1, the pigment was used.
  • An aqueous dispersion for ink-jet recording (7) containing anionic polymer particles containing polyethyleneimine and polyethyleneimine was obtained.
  • Comparative Example V-3 (Preparation of aqueous dispersion for ink jet recording (9)) An anionic polymer containing a pigment in the same manner as in Example V-1, except that no cation exchange resin was used and the pH in the system was not adjusted in step (b) of Example V-1. An aqueous dispersion (9) for ink jet recording containing particles and polyethyleneimine was obtained. Comparative Example V-4 (Preparation of aqueous dispersion for inkjet recording (10)) In step (a) and step (b) of Example V-1, after adding a cation exchange resin, the system was stirred until the pH in the system reached 5, and as soon as the pH reached 5, the mesh opening was 200 mesh.
  • Comparative Example V-5 (Preparation of aqueous dispersion for ink jet recording (11))
  • the aqueous 1N sodium hydroxide solution in step (a) of Example V-1 was added until the pH in the system reached 8, and the system was used in Step (b) of Example V-1 without using a cation exchange resin.
  • An aqueous dispersion for inkjet recording (11) containing an anionic polymer particle containing a pigment and polyethyleneimine was obtained in the same manner as in Example V-1, except that the pH in the inside was not adjusted.
  • Formulation example production of water-based ink
  • And (10) and the aqueous dispersion for ink jet recording (8) containing anionic polymer particles containing a pigment obtained in Comparative Example 2 is 12.5 parts in terms of solid content and 10.5 in terms of pigment content. Prepared to be 0 parts.
  • 1,2-hexanediol manufactured by Tokyo Chemical Industry Co., Ltd.
  • 2-pyrrolidone manufactured by Wako Pure Chemical Industries, Ltd.
  • Surfynol 465 manufactured by Nissin Chemical Industry Co., Ltd.
  • Olphine E1010 manufactured by Nissin Chemical Industry Co., Ltd.
  • glycerin manufactured by Kao Corporation
  • triethylene glycol monobutyl ether trade name: butyl triglycol, manufactured by Nippon Emulsifier Co., Ltd.
  • 10 0.0 part, 0.3 part of Proxel XL2 manufactured by Avicia Co., Ltd.
  • ion-exchanged water were mixed while stirring with a magnetic stirrer, and further stirred at room temperature for 15 minutes to obtain a mixed solution.
  • the blending amount of the ion exchange water is an amount adjusted so that the total amount of the mixed solution and the water dispersions for ink jet recording (3) to (11) is 100 parts.
  • the mixed solution was added, and a 1.2 ⁇ m filter (cellulose acetate membrane, manufactured by Sartorius Stedim Biotech) was used. Filtration was performed to obtain a water-based ink.
  • the aqueous dispersions and inks of Examples V-1 to V-4 are more filterable, storage stability, and print density than the aqueous dispersions and inks of Comparative Examples V-1 to V-5. It turns out that it is excellent in.
  • the water dispersion for ink jet recording of the present invention and the water-based ink containing the same are excellent in printing density, filterability, storage stability and the like. Therefore, it can be suitably used in a wide range for inkjet recording.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

〔1〕アニオン性有機顔料粒子とカチオン性ポリマーとを含む連鎖状粒子を含有し、該連鎖状粒子を構成する有機顔料一次粒子の全顔料一次粒子に占める割合が10個数%以上である、インクジェット記録用水分散体、〔2〕その水分散体を含有するインクジェット記録用水系インク、〔3〕前記〔1〕のインクジェット記録用水分散体の製造方法、〔4〕その方法で得られる水分散体を含有するインクジェット記録用水系インクである。このインクジェット記録用水分散体及び水系インクは印字濃度に優れている。

Description

インクジェット記録用水系インク
 本発明は、インクジェット記録用水分散体、その水分散体を含有するインクジェット記録用水系インク、及びインクジェット記録用水分散体の製造方法に関する。
 インクジェット記録方式は、非常に微細なノズルからインク液滴を記録部材に直接吐出し、付着させて、文字や画像を得る記録方式である。この方式は、フルカラー化が容易で、かつ安価であり、記録部材として普通紙が使用可能、被印字物に対して非接触、という数多くの利点があるため普及が著しい。
 最近では、印刷物に耐候性や耐水性を付与し、カラー印刷を行うために、着色剤として有機顔料を用いるインクが広く用いられている。
 特開平10-60352号には、OHPシート等への顔料の定着性改善を目的として、顔料、高分子分散剤、ポリエチレンイミン、及び水溶性溶剤を含む水系顔料インクが開示されている。
 特開2004-123865号には、普通紙印刷における彩度、濃度等の改善を目的として、顔料、アニオン性分散剤、ポリエチレンイミン等のカチオン性水溶性高分子化合物及び水性媒体からなる水性顔料インクが開示されている。
 特開2004-149633号には、画像彩度等の向上を目的として、分散顔料粒子が、該粒子の粒子径よりも小さい粒子径の顔料粒子と分散剤との凝集体よりなる顔料系インクジェット用インクが開示されている。
 特開2006-169325号には、顔料、水溶性樹脂、水溶性有機溶剤、及び水を含むインクジェット用記録液が開示されており、ブラック顔料インクにおいて、カーボン粒子が数珠状に繋がったハイストラクチャータイプのものが記載されている。
 特開2008-38090号には、印字濃度の向上を目的として、着色剤、及び複数の一次粒子が連結されてなる数珠状又は細長形状の金属酸化物二次粒子を含有するインクジェット水系インクが開示されている。
 特開2006-82073号には、微粒子の表面に高分子化合物を修飾して、該微粒子の表面電位を調整する表面電位調整工程、表面電位が正の微粒子を含有する流体と、表面電位が負の微粒子を含有する流体とを微小流路内等で混合する混合工程を有する複合粒子の製造方法が開示されている。
 特開2009-197097号には、均一な粒径の顔料微粒子を得ることを目的として、粒子形成材料溶液と貧溶媒溶液とを含む2種類以上の溶液をマイクロリアクタ等の混合部内にて接触させて微粒子を形成する工程、該微粒子に凝集剤を流路内で接触させて凝集体を形成する工程、濾過工程、及び該凝集体をpH調整により再分散して微粒子を形成する工程を有する微粒子の形成方法が開示されている。
 本発明は、次の〔1〕~〔8〕に関する。
〔1〕アニオン性有機顔料粒子とカチオン性ポリマーとを含む連鎖状粒子を含有し、該連鎖状粒子を構成する有機顔料一次粒子の全顔料一次粒子に占める割合が10個数%以上である、インクジェット記録用水分散体。
〔2〕アニオン性有機顔料粒子が有機顔料を含有する水不溶性アニオン性ポリマー粒子である、前記〔1〕のインクジェット記録用水分散体。
〔3〕前記〔1〕又は〔2〕の水分散体を含有するインクジェット記録用水系インク。
〔4〕アニオン性有機顔料粒子、カチオン性ポリマー及び水を含有する混合液を調製した後、水を除去して粘稠物又は固形物を得る工程(I)、及び得られた粘稠物又は固形物と水を混合して水分散体(A)を得る工程(II)を含む前記〔1〕のインクジェット記録用水分散体の製造方法。
〔5〕アニオン性有機顔料粒子を含有する水分散体(A)とカチオン性ポリマーを含有する水溶液(B)を、流路断面積が0.001~0.5mm2で流路長が0.1~10mmである流路内で混合する工程を有する方法であって、該水分散体(A)と該水溶液(B)が合流する位置における孔内の線速度が1m/秒以上であり、該カチオン性ポリマーのカチオン性基の量が、該アニオン性有機顔料粒子のアニオン性基に対して5~50モル%である、前記〔1〕のインクジェット記録用水分散体の製造方法。
〔6〕有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散液に、ロータ・ステータ構造を有する回転剪断型撹拌装置を用いて、剪断速度1m/秒以上の剪断条件下でカチオン性ポリマーを添加する工程を有する、前記〔2〕のインクジェット記録用水分散体の製造方法であって、
 撹拌装置のロータ回転軸の中心から、ロータ半径の2倍の半径の円を底面とする円柱内の領域で、有機顔料を含有する水不溶性アニオン性ポリマー粒子を含有する水分散液に、カチオン性ポリマーを添加して接触させる、インクジェット記録用水分散体の製造方法。
〔7〕有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散体のpHを8~12に調整した後、カチオン性ポリマーを添加する工程(a)、及び工程(a)で得られた水分散体のpHを下げて、pHを7~9に調整する工程(b)を含む前記〔2〕のインクジェット記録用水分散体の製造方法。
〔8〕前記〔4〕~〔7〕の製造方法で得られるインクジェット記録用水分散体を含有する、インクジェット記録用水系インク。
図1は、調製例1で得られた有機顔料を含有するアニオン性ポリマー粒子の透過型電子顕微鏡(TEM)写真である。 図2は、実施例I-1で得られた連鎖状粒子のTEM写真である。 図3は、実施例I-1で得られた連鎖状粒子の1つを拡大したTEM写真である。 図4は、比較例I-1で得られた有機顔料粒子のTEM写真である。 図5は、比較例I-2で得られた有機顔料粒子のTEM写真である。 図6の(a-1)、(a-2)、(a-3)はT型マイクロチャネル、(b)はY型マイクロチャネルの1例を示す模式図である。 図7は、実施例III-1~6、III-8、及び比較例III-1、III-3で用いたT型マイクロチャネルの模式図である。
 インクジェット記録用水系インクの着色剤として有機顔料を用いた場合、染料を用いた場合に比べて印字濃度が不十分であるという問題がある。
 本発明は、有機顔料を用いた印字濃度に優れたインクジェット記録用水分散体、該水分散体を含有する水系インク、及び該水分散体の製造方法を提供することを課題とする。
 本発明者は、顔料を用いたインクジェット記録用インクで十分な印字濃度が得られ難い原因は、顔料が微細粒子であるため紙へ浸透しやすいことにあると考えて検討を行った。その結果、アニオン性有機顔料粒子とカチオン性ポリマーとをイオン的相互作用により凝集させ、連鎖状に繋いだ粒子として用いることにより、紙表面でのインクの浸透を抑制し、印字濃度を向上できることを見出した。
 すなわち、本発明は、次の〔1〕~〔8〕に関する。
〔1〕アニオン性有機顔料粒子とカチオン性ポリマーとを含む連鎖状粒子を含有し、該連鎖状粒子を構成する有機顔料一次粒子の全顔料一次粒子に占める割合が10個数%以上である、インクジェット記録用水分散体。
〔2〕アニオン性有機顔料粒子が有機顔料を含有する水不溶性アニオン性ポリマー粒子である、前記〔1〕のインクジェット記録用水分散体。
〔3〕前記〔1〕又は〔2〕の水分散体を含有するインクジェット記録用水系インク。
〔4〕下記工程(I)及び(II)を含む前記〔1〕のインクジェット記録用水分散体の製造方法。
 工程(I):アニオン性有機顔料粒子、カチオン性ポリマー及び水を含有する混合液を調製した後、水を除去して粘稠物又は固形物を得る工程
 工程(II):工程(I)で得られた粘稠物又は固形物と水を混合して水分散体(A)を得る工程
〔5〕アニオン性有機顔料粒子を含有する水分散体(A)とカチオン性ポリマーを含有する水溶液(B)を、流路断面積が0.001~0.5mm2で流路長が0.1~10mmである流路内で混合する工程を有する方法であって、該水分散体(A)と該水溶液(B)が合流する位置における孔内の線速度が1m/秒以上であり、該カチオン性ポリマーのカチオン性基の量が、該アニオン性有機顔料粒子のアニオン性基の量に対して5~50モル%である、前記〔1〕のインクジェット記録用水分散体の製造方法。
〔6〕有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散液に、ロータ・ステータ構造を有する回転剪断型撹拌装置を用いて、剪断速度1m/秒以上の剪断条件下でカチオン性ポリマーを添加する工程を有する、前記〔2〕のインクジェット記録用水分散体の製造方法であって、
 撹拌装置のロータ回転軸の中心から、ロータ半径の2倍の半径の円を底面とする円柱内の領域で、有機顔料を含有する水不溶性アニオン性ポリマー粒子を含有する水分散液に、カチオン性ポリマーを添加して接触させる、インクジェット記録用水分散体の製造方法。
〔7〕下記工程(a)及び(b)を含む前記〔2〕のインクジェット記録用水分散体の製造方法。
 工程(a):有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散体のpHを8~12に調整した後、カチオン性ポリマーを添加する工程
 工程(b):工程(a)で得られた水分散体のpHを下げて、pHを7~9に調整する工程
〔8〕前記〔4〕~〔7〕の製造方法で得られるインクジェット記録用水分散体を含有する、インクジェット記録用水系インク。
 以下、本発明に用いられる各成分、各工程について説明する。
[アニオン性有機顔料粒子]
 本発明の連鎖状粒子を含有するインクジェット記録用水分散体においては、着色剤成分として、アニオン性有機顔料粒子を用いる。
 アニオン性有機顔料粒子は、有機顔料に分散処理等を施すことによって、所望の粒径としたものである。
 ここで、「アニオン性」とは、未中和の物質を、純水に分散又は溶解させた場合、pHが7未満となること、又は物質が純水に不溶であり、pHが明確に測定できない場合には、純水に分散させた分散体のゼータ電位が負となることをいう。
 アニオン性有機顔料粒子の平均粒径は、印字濃度の観点から、40~200nmが好ましく、50~150nmがより好ましく、60~100nmが更に好ましい。
 アニオン性有機顔料粒子の平均粒径は、動的光散乱法で測定されるものであり、具体的には実施例の方法によって測定される。
(有機顔料)
 アニオン性有機顔料粒子に用いられる有機顔料は、特に制限されない。
 有機顔料は、水系インクに使用する場合には、界面活性剤、ポリマー等を用いて、インク中で安定な微粒子にすることが好ましい。特に、分散安定性、耐水性等の観点から、有機顔料をポリマーの粒子中に含有させることが好ましい。
 有機顔料の具体例としては、アゾ顔料、ジアゾ顔料、フタロシアニン顔料、キナクリドン顔料、イソインドリノン顔料、ジオキサジン顔料、ペリレン顔料、ペリノン顔料、チオインジゴ顔料、アントラキノン顔料、キノフタロン顔料等が挙げられる。
 色相は特に限定されず、赤色、黄色、青色、オレンジ、グリーン等の有彩色顔料をいずれも用いることができる。
 好ましい有機顔料の具体例としては、C.I.ピグメント・イエロー、C.I.ピグメント・レッド、C.I.ピグメント・オレンジ、C.I.ピグメント・バイオレット、C.I.ピグメント・ブルー、及びC.I.ピグメント・グリーンからなる群から選ばれる1種以上の各品番製品が挙げられる。これらの中でも発色性の観点から、キナクリドン系顔料が好ましい。
(固溶体顔料)
 本発明においては、ジクロロキナクリドンを含有する固溶体顔料も好適に用いることができる。
 ジクロロキナクリドンは、固溶体顔料の1成分として用いたとき、その塩素基由来の電子状態の変化により、固溶体顔料自体の透明性や彩度を高めるという効果を示すため、発色性の観点から用いられる。
 ジクロロキナクリドンとしては、2,9-ジクロロキナクリドン、3,10-ジクロロキナクリドン、4,11-ジクロロキナクリドン等が挙げられる。
 ジクロロキナクリドンと固溶体化される顔料としては、β型、γ型等の無置換キナクリドン、ジメチルキナクリドン等が挙げられる。
 固溶体顔料の中では、2,9-ジクロロキナクリドン(C.I.ピグメント・レッド202)と無置換キナクリドン(C.I.ピグメント・バイオレット19)との組合せからなる固溶体顔料がより好ましい。
 固溶体顔料中、ジクロロキナクリドンの含有量は、5~95重量%が好ましく、10~90重量%がより好ましく、15~85重量%が更に好ましい。
 上記の固溶体顔料は、単独で又は2種以上を任意の割合で混合して用いることができ、本発明の効果を損なわない範囲で、他の着色剤、例えば顔料を併用してもよい。
(自己分散型有機顔料)
 本発明においては、自己分散型有機顔料を用いることもできる。自己分散型有機顔料とは、親水性官能基(カルボキシ基やスルホン酸基等のアニオン性親水基、又は第4級アンモニウム基等のカチオン性親水基)の1種以上を直接又は他の原子団を介して有機顔料の表面に結合することで、界面活性剤や樹脂を用いることなく水系媒体に分散可能である有機顔料を意味する。ここで、「他の原子団」としては、炭素数1~12のアルカンジイル基、フェニレン基又はナフチレン基等が挙げられる。アニオン性顔料粒子に用いる場合には、親水性官能基が、カルボキシ基やスルホン酸基等のアニオン性親水基であることが好ましい。有機顔料を自己分散型有機顔料とするには、例えば、親水性官能基の必要量を、常法のより有機顔料表面に化学結合させればよい。
 親水性官能基の量は特に限定されないが、自己分散型有機顔料1g当たり100~3,000μmolが好ましく、親水性官能基がカルボキシ基の場合は、自己分散型有機顔料1g当たり200~700μmolが好ましい。
 上記の有機顔料は、単独で又は2種以上を任意の割合で混合して用いることができる。
[有機顔料を含有する水不溶性アニオン性ポリマー粒子]
 アニオン性有機顔料粒子としては、特に制限はないが、自己分散型有機顔料、及び有機顔料を含有するアニオン性ポリマー粒子が好ましく、水分散体及びインクの印字濃度向上の観点から、有機顔料を含有する水不溶性アニオン性ポリマー粒子(以下、「有機顔料を含有するアニオン性ポリマー粒子」、又は単に「アニオン性ポリマー粒子」ともいう)がより好ましい。
 本発明において、「水不溶性ポリマー」とは、105℃で2時間乾燥させ、恒量に達したポリマーを、25℃の水100gに溶解させたときに、その溶解量が10g以下であるポリマーをいう。水不溶性ポリマーの前記溶解量は好ましくは5g以下、より好ましくは1g以下である。アニオン性ポリマーの場合、前記溶解量は、ポリマーのアニオン性基を水酸化ナトリウムで100%中和した時の溶解量である。
 用いられるポリマーとしては、ポリエステル、ポリウレタン、ビニル系ポリマー等が挙げられるが、水分散体及びインクの保存安定性の観点から、ビニル単量体(ビニル化合物、ビニリデン化合物、ビニレン化合物)の付加重合により得られるアニオン性ビニル系ポリマーが好ましい。
 アニオン性ビニル系ポリマーとしては、(a)アニオン性モノマー(以下「(a)成分」ともいう)と、(b)マクロマー(以下「(b)成分」ともいう)及び/又は(c)疎水性モノマー(以下「(c)成分」ともいう)とを含むモノマー混合物(以下、単に「モノマー混合物」ともいう)を共重合させてなるビニル系ポリマーが好ましい。このビニル系ポリマーは、(a)成分由来の構成単位と、(b)成分由来の構成単位及び/又は(c)成分由来の構成単位を有する。なかでも(a)成分由来の構成単位、(b)成分由来の構成単位、(c)成分由来の構成単位を全て含有するものが好ましい。
〔(a)アニオン性モノマー〕
 (a)アニオン性モノマーは、有機顔料を含有する水不溶性アニオン性ポリマー粒子を水分散体及びインク中で安定に分散させる観点、及びカチオン性ポリマーとのイオン的相互作用を促進させる観点から、アニオン性ポリマーのモノマー成分として用いられる。
 アニオン性モノマーとしては、カルボン酸モノマー、スルホン酸モノマー、リン酸モノマー等が挙げられる。
 カルボン酸モノマーとしては、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸、2-メタクリロイルオキシメチルコハク酸等が挙げられる。
 スルホン酸モノマーとしては、スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、3-スルホプロピル(メタ)アクリレート、ビス-(3-スルホプロピル)-イタコン酸エステル等が挙げられる。
 リン酸モノマーとしては、ビニルホスホン酸、ビニルホスフェート、ビス(メタクリロキシエチル)ホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、ジブチル-2-アクリロイルオキシエチルホスフェート等が挙げられる。
 上記アニオン性モノマーの中では、アニオン性ポリマー粒子及び得られる連鎖状粒子の水分散体及びインク中での分散安定性の観点から、カルボン酸モノマーが好ましく、アクリル酸及びメタクリル酸がより好ましい。
〔(b)マクロマー〕
 (b)マクロマーは、片末端に重合性官能基を有する数平均分子量500~100,000の化合物であり、水不溶性アニオン性ポリマー粒子と、それを含む連鎖状粒子の水分散体及び水系インク中における保存安定性の観点から、アニオン性ポリマーのモノマー成分として用いられる。片末端に存在する重合性官能基としては、アクリロイルオキシ基又はメタクリロイルオキシ基が好ましく、メタクリロイルオキシ基がより好ましい。
 (b)マクロマーの数平均分子量は500~100,000が好ましく、1,000~10,000がより好ましい。なお、数平均分子量は、溶媒として1mmol/Lのドデシルジメチルアミンを含有するクロロホルムを用いたゲルクロマトグラフィー法により、標準物質としてポリスチレンを用いて測定される。
 (b)マクロマーとしては、アニオン性ポリマー粒子及び連鎖状粒子の水分散体及びインク中での分散安定性の観点から、スチレン系マクロマー、芳香族基含有(メタ)アクリレート系マクロマー及びシリコーン系マクロマーが好ましい。
 スチレン系マクロマーとしては、スチレン系モノマー単独重合体、又はスチレン系モノマーと他のモノマーとの共重合体が挙げられる。共重合体の場合、アニオン性ポリマー粒子及び連鎖状粒子の水分散体及びインク中での分散安定性の観点から、スチレン系モノマーの含有量は50重量%以上が好ましく、70重量%以上がより好ましい。スチレン系モノマーとしては、スチレン、2-メチルスチレン、ビニルトルエン、エチルビニルベンゼン、ビニルナフタレン、クロロスチレン等が挙げられる。共重合される他のモノマーとしては、芳香族基含有(メタ)アクリレート又はアクリロニトリル等が挙げられる。スチレン系マクロマーの具体例としては、AS-6(S)、AN-6(S)、HS-6(S)(東亞合成株式会社の商品名)等が挙げられる。
 芳香族基含有(メタ)アクリレート系マクロマーとしては、芳香族基含有(メタ)アクリレートの単独重合体又はそれと他のモノマーとの共重合体が挙げられる。共重合体の場合、アニオン性ポリマー粒子及び連鎖状粒子の水分散体及びインク中での分散安定性の観点から、芳香族基含有(メタ)アクリレート系モノマーの含有量は50重量%以上が好ましく、70重量%以上がより好ましい。
 芳香族基含有(メタ)アクリレートとしては、ヘテロ原子を含む置換基を有していてもよい炭素数7~22のアリールアルキル基、又はヘテロ原子を含む置換基を有していてもよい炭素数6~22のアリール基を有する(メタ)アクリレートが挙げられる。その具体例としては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-メタクリロイロキシエチル-2-ヒドロキシプロピルフタレート等が挙げられ、ベンジル(メタ)アクリレートが好ましい。共重合される他のモノマーとしては、スチレン系モノマー又はアクリロニトリル等が挙げられる。
 (b)マクロマーはシリコーン系マクロマーであってもよく、シリコーン系マクロマーとしては、片末端に重合性官能基を有するオルガノポリシロキサン等が挙げられる。
〔(c)疎水性モノマー〕
 (c)疎水性モノマーは、水分散体及びインクの印字濃度の向上の観点から、アニオン性ポリマーのモノマー成分として用いられる。疎水性モノマーとしては、アルキル(メタ)アクリレート、芳香族基含有モノマー等が挙げられる。
 アルキル(メタ)アクリレートとしては、炭素数1~22、好ましくは炭素数6~18のアルキル基を有するものが好ましく、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、(イソ)プロピル(メタ)アクリレート、(イソ又はターシャリー)ブチル(メタ)アクリレート、(イソ)アミル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、(イソ)オクチル(メタ)アクリレート、(イソ)デシル(メタ)アクリレート、(イソ)ドデシル(メタ)アクリレート、(イソ)ステアリル(メタ)アクリレート等が挙げられる。
 なお、本明細書において、「(イソ又はターシャリー)」及び「(イソ)」は、これらの基が存在する場合としない場合の双方を意味し、これらの基が存在しない場合には、ノルマルを示す。また、「(メタ)アクリレート」は、アクリレート及び/又はメタクリレートを示す。
 芳香族基含有モノマーとしては、ヘテロ原子を含む置換基を有していてもよい、炭素数6~22の芳香族基を有するビニルモノマーが好ましく、スチレン系モノマー、芳香族基含有(メタ)アクリレートがより好ましく、これらを併用することも好ましい。
 スチレン系モノマーとしてはスチレン、2-メチルスチレン、及びジビニルベンゼンが好ましく、スチレンがより好ましい。
 また、芳香族基含有(メタ)アクリレートとしては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等が好ましく、ベンジルメタクリレート及び/又はベンジルアクリレートがより好ましい。
〔(d)ノニオン性モノマー〕
 モノマー混合物には、更に、(d)ノニオン性モノマー(以下「(d)成分」ともいう)が含有されていてもよい。
 (d)成分としては、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコール(n=2~30、nはオキシアルキレン基の平均付加モル数を示す。以下同じ)(メタ)アクリレート、ポリプロピレングリコール(n=2~30)(メタ)アクリレート、ポリ(エチレングリコール(n=1~15)・プロピレングリコール(n=1~15))(メタ)アクリレート、メトキシポリエチレングリコール(1~30)(メタ)アクリレート、メトキシポリテトラメチレングリコール(1~30)(メタ)アクリレート、エトキシポリエチレングリコール(1~30)(メタ)アクリレート、オクトキシポリエチレングリコール(1~30)(メタ)アクリレート、ポリエチレングリコール(1~30)(メタ)アクリレート2-エチルヘキシルエーテル、(イソ)プロポキシポリエチレングリコール(1~30)(メタ)アクリレート、ブトキシポリエチレングリコール(1~30)(メタ)アクリレート、メトキシポリプロピレングリコール(1~30)(メタ)アクリレート、メトキシ(エチレングリコール・プロピレングリコール共重合)(1~30、その中のエチレングリコール:1~29)(メタ)アクリレート、フェノキシ(エチレングリコール・プロピレングリコール共重合)(1~30、その中のエチレングリコール:1~29)(メタ)アクリレート等が挙げられる。
 商業的に入手しうる(d)成分の具体例としては、新中村化学工業株式会社のNKエステルM-20G、同40G、同90G、同230G、日油株式会社のブレンマーPE-90、同200、同350、PME-100、同200、同400、同1000、PP-500、同800、同1000、AP-150、同400、同550、同800、50PEP-300、50POEP-800B、43PAPE-600B等が挙げられる。
 上記(a)~(d)成分は、それぞれ単独で又は2種以上を混合して用いることができる。
 アニオン性ポリマー製造時における、上記(a)~(c)成分のモノマー混合物中における含有量(未中和量としての含有量。以下同じ)又はアニオン性ポリマー中における(a)~(c)成分に由来する構成単位の含有量は、次のとおりである。
 (a)成分の含有量は、顔料を含有するアニオン性ポリマー粒子及び得られる連鎖状粒子を水分散体及びインク中で安定に分散させ、アニオン性ポリマー粒子とカチオン性ポリマーとのイオン的相互作用を促進する観点から、好ましくは3~40重量%、より好ましくは4~30重量%、特に好ましくは5~25重量%である。
 (b)成分の含有量は、顔料を含有するアニオン性ポリマー粒子及び得られる連鎖状粒子の水分散体及びインク中での分散安定性の観点から、好ましくは1~25重量%、より好ましくは5~20重量%である。
 (c)成分の含有量は、水分散体及びインクの印字濃度向上の観点から、好ましくは5~98重量%、より好ましくは10~80重量%である。
 また、〔(a)成分/[(b)成分+(c)成分]〕の重量比は、顔料を含有するアニオン性ポリマー粒子及び得られる連鎖状粒子の水分散体及びインク中での分散安定性及び水分散体及びインクの印字濃度の観点から、好ましくは0.01~1、より好ましくは0.02~0.67、更に好ましくは0.03~0.50である。
 特に、アニオン性ポリマー粒子を構成するポリマーは、彩度、保存安定性、印字濃度の観点から、(c)成分であるベンジルメタクリレート及び/又はベンジルアクリレートを由来とする構成単位を、好ましくは30~80重量%、より好ましくは40~80重量%、更に好ましくは50~75重量%、特に好ましくは60~75重量%含有する。
 また、アニオン性ポリマー粒子は、印字濃度及び保存安定性の観点から、全て同一の重合性基を有するモノマーを由来とする構成単位からなるものが好ましく、同一の重合性基が、メタクリロイル基であるものがより好ましい。これは、同一の重合性基を有するモノマーの重合速度はほぼ等しくなるため、得られるポリマー分子の組成が均一になり、ポリマー分子中に設計した通りの比率でモノマーを導入することができるためであると考えられる。
 本発明においては、ベンジルメタクリレート及び/又はベンジルアクリレート由来の構成単位による固溶体顔料への吸着性と、アニオン性基によるカチオン性ポリマーとの相互作用を両立させることができるため、印字濃度及び保存安定性が向上するものと考えられる。
(アニオン性ポリマーの製造)
 前記アニオン性ポリマーは、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の重合法により、モノマー混合物を共重合させることによって製造される。これらの重合法の中では、溶液重合法が好ましい。
 溶液重合法で用いる溶媒としては、極性有機溶媒が好ましい。極性有機溶媒が水混和性を有する場合には、水と混合して用いることもできる。極性有機溶媒としては、例えば、メタノール、エタノール、プロパノール等の炭素数1~3の脂肪族アルコール;アセトン、メチルエチルケトン等のケトン類;酢酸エチル等のエステル類等が挙げられる。これらの中では、メタノール、エタノール、アセトン、メチルエチルケトン又はこれらの1種以上と水との混合溶媒が好ましい。
 重合の際には、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物や、t-ブチルペルオキシオクトエート、ジベンゾイルオキシド等の有機過酸化物等の公知のラジカル重合開始剤を用いることができる。ラジカル重合開始剤の量は、モノマー混合物1モル(各モノマーの合計モル量の1モル)あたり、好ましくは0.001~5モル、より好ましくは0.01~2モルである。
 重合の際には、さらに、オクチルメルカプタン、2-メルカプトエタノール等のメルカプタン類、チウラムジスルフィド類等の公知の重合連鎖移動剤を添加してもよい。
 モノマー混合物の重合条件は、使用するラジカル重合開始剤、モノマー、溶媒の種類等によって異なるので一概には決定することができないが、通常、重合温度は、好ましくは30~100℃、より好ましくは50~80℃であり、重合時間は、好ましくは1~20時間である。また、重合雰囲気は、窒素ガス雰囲気、アルゴン等の不活性ガス雰囲気であることが好ましい。
 重合反応の終了後、反応溶液から再沈澱、溶媒留去等の公知の方法により、生成したポリマーを単離することができる。また、得られたポリマーは、再沈澱、膜分離、クロマトグラフ法、抽出法等により、未反応のモノマー等を除去することができる。
 本発明で用いられるアニオン性ポリマーの重量平均分子量は、顔料を含有する水不溶性アニオン性ポリマー粒子と、それを含む連鎖状粒子の水分散体及び水系インク中における分散安定性と、水分散体及び水系インクの印字濃度の観点から、5,000~50万が好ましく、1万~40万がより好ましく、1万~30万がより好ましく、2万~20万が更に好ましい。なお、ポリマーの重量平均分子量は、実施例で示す方法により測定した。
 本発明で用いられる顔料を含有する水不溶性アニオン性ポリマーは、(a)アニオン性モノマー由来のアニオン性基を中和剤により中和して用いることが好ましい。中和剤としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、各種アミン等の塩基が挙げられる。
 アニオン性ポリマーのアニオン性基の中和度は、分散安定性の観点から、10~300%であることが好ましく、20~200%がより好ましく、30~150%が更に好ましい。
 アニオン性ポリマーを架橋させる場合は、架橋前のポリマーのアニオン性基の中和度は、分散安定性と架橋効率の観点から、10~90%であることが好ましく、20~80%がより好ましく、30~70%が更に好ましい。
 ここで中和度は、下記式によって求めることができる。
 {[中和剤の重量(g)/中和剤の当量]/[ポリマーの酸価(KOHmg/g)×ポリマーの重量(g)/(56×1000)]}×100
 酸価は、ポリマーの構成単位から、計算で算出することができる。又は、適当な溶剤(例えばメチルエチルケトン)にポリマーを溶解して、滴定する方法でも求めることができる。
[有機顔料を含有するアニオン性ポリマー粒子の製造]
 有機顔料を含有するアニオン性ポリマー粒子の水分散体は、下記の工程(1)及び(2)を有する方法により、効率的に製造することができる。
 工程(1):アニオン性ポリマー、有機溶媒、有機顔料、及び水を含有する混合物を分散処理して、有機顔料を含有するアニオン性ポリマー粒子の分散体を得る工程
 工程(2):工程(1)で得られた分散体から前記有機溶媒を除去して、有機顔料を含有する水不溶性アニオン性ポリマー粒子の水分散体を得る工程
工程(1)
 工程(1)では、まず、アニオン性ポリマーを有機溶媒に溶解させ、次に有機顔料、水、及び必要に応じて中和剤、界面活性剤等を、得られた有機溶媒溶液に加えて混合し、水中油型の分散体を得る方法が好ましい。アニオン性ポリマーの有機溶媒溶液に加える順序に制限はないが、中和剤、水、有機顔料の順に加えることが好ましい。
 混合物中、有機顔料は、5~50重量%が好ましく、10~40重量%が更に好ましく、有機溶媒は、10~70重量%が好ましく、10~50重量%が更に好ましく、アニオン性ポリマーは、2~40重量%が好ましく、3~20重量%が更に好ましく、水は、10~70重量%が好ましく、20~70重量%が更に好ましい。
 前記アニオン性ポリマーの量に対する有機顔料の量の重量比〔有機顔料/アニオン性ポリマー〕は、分散安定性の観点から、50/50~90/10であることが好ましく、70/30~85/15であることがより好ましい。
 中和剤を用いて中和する場合、最終的に得られる水分散体のpHが7~11であるように中和することが好ましい。中和剤としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、各種アミン等の塩基が挙げられる。また、アニオン性ポリマーを予め中和しておいてもよい。
 有機溶媒としては、エタノール、イソプロパノール、イソブタノール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン等のケトン系溶媒及びジブチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒が挙げられる。これらは単独で又は2種以上を組み合わせて用いてもよい。
 該有機溶媒の水100gに対する溶解量は、20℃において、好ましくは5g以上、更に好ましくは10g以上であり、メチルエチルケトン及びメチルイソブチルケトンが好ましい。
 工程(1)における混合物の分散方法に特に制限はない。本分散だけで顔料を含有するアニオン性ポリマー粒子の平均粒径を所望の粒径となるまで微粒化することもできるが、好ましくは予備分散させた後、さらに剪断応力を加えて本分散を行い、顔料を含有するアニオン性ポリマー粒子の平均粒径を所望の粒径とするよう制御することが好ましい。工程(1)の分散における温度は、0~40℃が好ましく、5~30℃がより好ましく、分散時間は1~30時間が好ましく、2~25時間がより好ましい。
 混合物を予備分散させる際には、アンカー翼、ディスパー翼等の一般に用いられている混合撹拌装置、具体例としては、ウルトラディスパー、デスパミル(浅田鉄工株式会社、商品名)、マイルダー(株式会社荏原製作所、太平洋機工株式会社、商品名)、TKホモミクサー、TKパイプラインミクサー、TKホモジェッター、TKホモミックラインフロー、フィルミックス(以上、プライミクス株式会社、商品名)等の高速撹拌混合装置が好ましい。
 本分散の剪断応力を与える手段としては、例えば、ロールミル、ニーダー、エクストルーダ等の混練機、高圧ホモゲナイザー(株式会社イズミフードマシナリ、商品名)に代表されるホモバルブ式の高圧ホモジナイザー、マイクロフルイダイザー(Microfluidics 社、商品名)、ナノマイザー(吉田機械興業株式会社、商品名)、アルティマイザー、スターバースト(スギノマシン株式会社、商品名)等のチャンバー式の高圧ホモジナイザー、ペイントシェーカー、ビーズミル等のメディア式分散機が挙げられる。市販のメディア式分散機としては、ウルトラ・アペックス・ミル(寿工業株式会社製、商品名)、ピコミル(浅田鉄工株式会社製、商品名)、ダイノーミル(シンマルエンタープライゼス社製、商品名)等が挙げられる。これらの装置は複数を組み合わせることもできる。これらの中では、有機顔料を含有するアニオン性ポリマー粒子を小粒子径化する観点から、メディア式分散機と高圧ホモジナイザーを併用することが好ましい。
工程(2)
 工程(2)では、得られた分散体から、公知の方法で有機溶媒を留去することで、有機顔料を含有するアニオン性ポリマー粒子の水分散体を得ることができる。得られた顔料を含有するアニオン性ポリマー粒子を含む水分散体中の有機溶媒は実質的に除去されていることが好ましいが、本発明の目的を損なわない限り、残存していてもよく、架橋工程を後に行う場合は、必要により架橋後に再除去すればよい。残留有機溶媒の量は0.1重量%以下が好ましく、0.01重量%以下であることがより好ましい。
 また必要に応じて、有機溶媒を留去する前に分散体を加熱撹拌処理することもできる。
 得られた有機顔料を含有するアニオン性ポリマー粒子の水分散体は、有機顔料を含有する該ポリマーの固体分が水を主媒体とする中に分散しているものである。ここで、ポリマー粒子の形態は特に制限はなく、少なくとも有機顔料とアニオン性ポリマーにより粒子が形成されていればよい。例えば、該ポリマーに有機顔料が内包された粒子形態、該ポリマー中に有機顔料が均一に分散された粒子形態、該ポリマー粒子表面に有機顔料が露出された粒子形態等が含まれ、これらの混合物も含まれる。
[カチオン性ポリマー]
 本発明のインクジェット記録用水分散体においては、印字濃度向上の観点から、前記アニオン性有機顔料粒子とカチオン性ポリマーとを含む連鎖状粒子を用いる。
 ここで、カチオン性ポリマーの「カチオン性」とは、未中和のポリマーを純水に分散又は溶解させた場合、pHが7より大となること、第4級アンモニウム塩等を有するポリマーの場合はその対イオンを水酸化物イオンとして純水に分散又は溶解させた場合、pHが7より大となること、又はポリマー等が純水に不溶であり、pHが明確に測定できない場合には、純水に分散させた分散体のゼータ電位が正となることをいう。
 また、カチオン性ポリマーは、有機顔料を含有するアニオン性ポリマー粒子と効率的に相互作用を生じさせ、水分散体又はインクの印字濃度を向上させる観点から、水溶性カチオン性ポリマーであることが好ましい。ここで、「水溶性ポリマー」とは、カチオン性ポリマーを105℃で2時間乾燥させ、恒量に達したポリマーを、25℃の水100gに溶解させたときに、その溶解量が10gを超えるポリマーをいい、その溶解量は好ましくは20g以上、より好ましくは100g以上である。
 本発明のインクジェット記録用水分散体において、水溶性カチオン性ポリマーを用いることで印字濃度が向上する理由は定かではないが、印刷した後の媒体上で、有機顔料を含有するアニオン性ポリマー粒子とイオン的な相互作用を起こし、媒体、特に紙中に、有機顔料を含有するアニオン性ポリマー粒子が浸透することなく、有機顔料が媒体表面に残存するため、印字濃度が向上するものと考えられる。また、相互作用が強固な場合には、水分散体中で、複数のポリマー粒子が、連鎖状の二次粒子となり、媒体である紙繊維への物理的な抵抗、ひっかかりが多くなり、媒体表面に有機顔料を大量に残留させることができるために、印字濃度が優れるものと考えられる。
 水溶性カチオン性ポリマーの数平均分子量は、印字濃度の観点から、好ましくは1,000~300,000、より好ましくは10,000~80,000である。
 カチオン性ポリマーとしては、水分散体又はその水分散体を含むインクの印字濃度を向上させる観点から、第1~第3級アミノ基、イミノ基、第4アンモニウム塩基、ヒドラジン等のカチオン性基を有するポリマーが好ましく、アミノ基及び/又はイミノ基を有するポリマーがより好ましく、アミノ基を有するポリマーが更に好ましい。該ポリマーは、カチオン性基を有するモノマーの単独重合体やその他のモノマーとの共重合体又は縮重合体であることが好ましい。
 カチオン性ポリマーの具体例としては、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリビニルピリジン、ポリエチレンイミン-エピクロルヒドリン反応物、ポリアミド-ポリアミン樹脂、ポリアミド-エピクロルヒドリン樹脂、キトサン類、カチオン化デンプン、ポリアミンスルフォン、ポリビニルイミダゾール、ポリアミジン、ジシアンアミドポリアルキレンポリアミン縮合物、ポリアルキレンポリアミンジシアンジアミドアンモニウム塩縮合物、ジシアンジアミドホルマリン縮合物、ジアリルジメチルアンモニウムクロライド重合物及び共重合物、ビニルピロリドン・ビニルイミダゾール共重合体、ビニルベンジルトリメチルアンモニウムクロライド重合物及び共重合物、ジメチルアミノエチル(メタ)アクリレート重合物及び共重合物、(メタ)アクリロイルオキシアルキルトリアルキルアンモニウムクロライド重合物及び共重合物、(メタ)アクリロイルオキシアルキルジアルキルベンジルアンモニウムクロライド重合物及び共重合物、又はそれらの酸中和物等が挙げられる。
 アミノ基を有するカチオン性ポリマーの好適例としては、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン等が挙げられ、ポリエチレンイミン、ポリアリルアミンがより好ましく、ポリエチレンイミンが更に好ましい。
 前記カチオン性ポリマーは、単独で又は2種以上を組み合わせて用いることができる。
(ポリエチレンイミン)
 ポリエチレンイミンは、-(CH2CH2NH)n-で表され、エチレンイミン単位が直鎖状、分岐状又は網目状に重合した水溶性高分子化合物である。ポリエチレンイミンは、水分散体中でポリカチオンとして存在し、水分散体のpHを7~9に調整すると、有機顔料を含有するポリマー粒子のアニオン性基と相互作用し、複数のポリマー粒子同士のイオン的相互作用による凝集を促進し、紙表面でのインクの浸透を抑制するため、印字濃度を向上させるものと考えられる。更にポリカチオンであることから、ポリマー粒子表面への吸着性が高く、水分散体又はインク中で溶解しているものが少なくなると考えられる。そのため、水分散体又はインクの分散安定性が高く、濾過性及び保存安定性にも優れると考えられる。
 ポリエチレンイミンの沸点上昇法で求められる数平均分子量は、300~300,000が好ましく、300~100,000がより好ましく、400~80,000が更に好ましく、500~70,000が特に好ましい。数平均分子量が300以上であると印刷紙面上への顔料の定着性が向上し、印字濃度の向上効果が高くなり、100,000以下であれば、水分散体又はインクの粘度が低く、分散安定性に優れるものとなる。
 ポリエチレンイミンの製法は特に制限されず、公知の重合法により製造することができる。例えば、〔1〕エチレンイミンを二酸化炭素、塩酸、臭化水素酸等を触媒として開環重合させる方法、〔2〕塩化エチレンとエチレンジアミンを重縮合させる方法、〔3〕オキサゾリドン-2を加熱する方法等が挙げられる。
 ポリエチレンイミンは、単独で又は2種以上を組み合わせて用いることができる。
 水分散体中のカチオン性ポリマー、特にポリエチレンイミンの含有量は、インクの基本物性と印字濃度向上のバランスの観点から、アニオン性有機顔料粒子に対して、好ましくは0.01~10重量%、より好ましくは0.03~3重量%、更に好ましくは0.05~2重量%、特に好ましくは0.1~1重量%である。
[連鎖状粒子]
 本発明に用いられる連鎖状粒子は、アニオン性有機顔料粒子とカチオン性ポリマーとを含むものであるが、アニオン性有機顔料粒子間にカチオン性ポリマーが電気的に相互作用し、アニオン性有機顔料の粒子同士がカチオン性ポリマーで連結されて構成されていると考えられる。
 該連鎖状粒子を用いた水分散体及びインクの印字濃度が優れる理由は定かではないが、有機顔料粒子や塊状に凝集した粒子であれば、インク液滴が紙上に着弾した後に、紙の繊維の間にインク溶媒とともに浸透してしまい印字濃度が低くなるが、連鎖状粒子では、紙繊維間への物理的な抵抗が大きくなり、紙表面に有機顔料を残留させやすいためと考えられる。
 連鎖状粒子の形状は透過型電子顕微鏡(TEM)で確認することができる。なお、有機顔料を含有するアニオン性ポリマー粒子をTEM観察した場合、ポリマーは見えにくいため、実質的に有機顔料だけを観察することになる。
 ここで、「連鎖状粒子」としては、直鎖状、屈曲状、分枝鎖状、環状等に顔料一次粒子が連なったものが挙げられる。より具体的には、本発明に用いられる連鎖状粒子は、下記式(I)で算出される二次粒子の面積占有率が40%未満のものをいう。
 すなわち、TEM写真中の1つの独立した二次粒子に外接円を描き、その円の面積をA0(nm2)とする。次に、二次粒子を構成する顔料一次粒子(TEM写真で四角に見える一つひとつの粒子)の一つずつの面積を合計した総面積をA1(nm2)とする。そうすると、外接円の中の二次粒子が占める部分の比率、いわゆる面積占有率は下記式(I)で表される。
  二次粒子の面積占有率(%)=(A1/A0)×100   (I)
 前記の二次粒子の形状が直鎖状の場合、上記外接円の中の面積占有率は最小となり、塊状の場合、上記外接円の中の面積占有率は最大となる。
 アニオン性有機顔料粒子をカチオン性ポリマーで連結した二次粒子の中には、前記の連鎖状粒子が含まれるが、連結の度合には分布があるため、通常、連鎖形状が非常に発達した連鎖状粒子から、顔料一次粒子の形状を保つものまでが含まれる。
 前記連鎖状粒子を構成する顔料一次粒子の全顔料一次粒子に占める割合(個数%)は、印字濃度向上の観点から、本発明の水分散体に含まれる顔料粒子のうち、10個数%以上であり、好ましくは20個数%以上、より好ましくは30個数%以上、更に好ましくは50個数%以上である。
 連鎖状粒子の割合(個数%)を測定するには、電子顕微鏡観察下、まず100個以上の二次粒子を構成する顔料一次粒子の数を計測し、これをN0(個)とする。その中で、連鎖状粒子を構成している顔料一次粒子の個数を数え、これをN1(個)とすると、連鎖状粒子の割合(個数%)は下記式(II)で表される。
  連鎖状粒子の割合(個数%)=(N1/N0)×100   (II)
 該連鎖状粒子の平均粒径は、印字濃度向上の観点から、好ましくは70~400nm、より好ましくは90~300nm、更に好ましくは120~250nm、更に好ましくは150~200nmである。
 アニオン性有機顔料粒子の平均粒径に対する前記連鎖状粒子を含有する水分散体中の粒子の平均粒径の比(連鎖状粒子を含有する水分散体中の粒子の平均粒径/アニオン性有機顔料粒子の平均粒径)は好ましくは1.5~5.0、より好ましくは1.5~4.0、更に好ましくは1.5~3.0である。
 ここで、連鎖状粒子を含有する水分散体中の粒子の平均粒径は、連鎖状粒子の他の形状の二次粒子等を含む粒子全体の平均粒径となる。
 前記平均粒径は、動的光散乱法で測定されるものであり、具体的には実施例の方法によって測定される。
[インクジェット記録用水分散体の製造法1]
 本発明のインクジェット記録用水分散体の製造方法には制限はないが、下記工程(I)及び(II)を含む製造方法によって得ることが好ましい。
 工程(I):アニオン性有機顔料粒子、カチオン性ポリマー及び水を含有する混合液を調製した後、水を除去して粘稠物又は固形物を得る工程
 工程(II):工程(I)で得られた粘稠物又は固形物と水を混合して水分散体(A)を得る工程
 本発明のインクジェット記録用水分散体は、更に下記工程(III)を含む方法によって得ることがより好ましい。
 工程(III):工程(II)で得られた水分散体(A)と架橋剤を混合し、架橋処理して水分散体(B)を得る工程
(工程(I))
 工程(I)では、前記製造法等で得られたアニオン性有機顔料粒子、特に有機顔料を含有するアニオン性ポリマー粒子と、カチオン性ポリマー及び水を含有する混合液を調製した後、水を除去して粘稠物又は固形物を得る。
 ここで、「粘稠物」とは、泥状、粘稠状である状態の物をいい、「固形物」とは、25℃において流動性がない塊状等の物をいう。
 工程(I)において、アニオン性有機顔料粒子、カチオン性ポリマー及び水を含有する混合液を調製する方法としては、(i)アニオン性有機顔料粒子の水分散体に、カチオン性ポリマー又はカチオン性ポリマーの水溶液を添加する方法、(ii)カチオン性ポリマー又はカチオン性ポリマーの水溶液に、アニオン性有機顔料粒子の水分散体を添加する方法、(iii)アニオン性有機顔料粒子の水分散体にカチオン性ポリマーを加え、更にアニオン性有機顔料粒子の水分散体を加える方法等が挙げられ、それぞれ複数回にわけて添加することができる。これらの中では、前記(iii)の方法が好ましい。
 また、本工程において用いられる、カチオン性ポリマーに対するアニオン性有機顔料粒子の重量比〔アニオン性有機顔料粒子/カチオン性ポリマー〕は、水分散体の印字濃度を高める観点から、好ましくは40~5000、より好ましくは80~2000、更に好ましくは100~1000である。
 水分を除去する方法としては、減圧法、加熱法等により水分を蒸発させる方法が挙げられるが、加熱法が好ましい。加熱温度としては、50~100℃が好ましく、60~90℃がより好ましく、70~85℃が更に好ましい。
 蒸発は粘稠物又は固形物になるまで行なうが、工程(II)における分散処理によって均一な粒径を得る観点から、粘稠物とすることが好ましい。粘稠物又は固形物の固形分濃度は、40~90重量%が好ましく、45~80重量%がより好ましく、50~70重量%が更に好ましい。
(工程(II))
 工程(II)では、工程(I)で得られた粘稠物又は固形物と水を混合して水分散体(A)を得る。
 また、本工程で混合される水の量は、混合の効率を高め、均一な水分散体を得る観点から、工程(I)で得られた粘稠物又は固形物に対する重量比〔水/工程(I)で得られた粘稠物又は固形物〕で、好ましくは0.5~45、より好ましくは1~25、更に好ましくは2~15である。
 工程(II)における混合方法に特に制限はなく、粘稠物又は固形物に水を添加するのみでもよいが、均一な粒径を得るために、有機顔料を含有するアニオン性ポリマー粒子の製造工程(1)で用いた混合、分散方法や、超音波分散機、攪拌羽を備えたスリーワンモーター、マグネチックスターラー等の攪拌機を用いる方法等を採用することができる。
 この工程(II)で得られる水分散体(A)は連鎖状粒子を含む水分散体である。この連鎖状粒子を含む水分散体(A)、及び該水分散体(A)を含有する水系インクは、印字濃度に優れたものである。
(工程(III))
 工程(III)は、任意の工程であるが、工程(II)で得られた水分散体(A)と架橋剤を混合し、架橋処理して水分散体(B)を得る工程である。工程(III)を行うことが、水分散体及びインクの保存安定性の観点から好ましい。
 ここで、架橋剤としては、アニオン性ポリマーのアニオン性基と反応する官能基を有する化合物が好ましく、該官能基を分子中に2以上、好ましくは2~6有する化合物がより好ましい。
 また、架橋剤の溶解量は、ポリマー、特に水不溶性ポリマーの表面を効率よく架橋する観点から、25℃の水100gに溶解させたときの溶解量が、好ましくは50g以下、より好ましくは40g以下、更に好ましくは30g以下である。また、その分子量は、反応のし易さ及び水分散体の保存安定性の観点から、好ましくは120~2000、より好ましくは150~1500、更に好ましくは150~1000である。
(架橋剤)
 架橋剤の好適例としては、次の(a)~(c)が挙げられる。
(a)分子中に2以上のエポキシ基を有する化合物:例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、グリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、レゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、水添ビスフェノールA型ジグリシジルエーテル等のポリグリシジルエーテル。
(b)分子中に2以上のオキサゾリン基を有する化合物:例えば、2,2’-ビス(2-オキサゾリン)、1,3-フェニレンビスオキサゾリン、1,3-ベンゾビスオキサゾリン等のビスオキサゾリン化合物、該化合物と多塩基性カルボン酸とを反応させて得られる末端オキサゾリン基を有する化合物。
(c)分子中に2以上のイソシアネート基を有する化合物:例えば、有機ポリイソシアネート又はイソシアネート基末端プレポリマー。
 これらの中では、(a)分子中に2以上のエポキシ基を有する化合物が好ましく、トリメチロールプロパンポリグリシジルエーテルがより好ましい。
 架橋剤の使用量は、水分散体及びインクの保存安定性の観点から、〔架橋剤/アニオン性ポリマー〕の重量比で0.3/100~50/100が好ましく、1/100~40/100がより好ましく、2/100~30/100が更に好ましく、5/100~25/100が特に好ましい。
 また、架橋剤の使用量は、該アニオン性ポリマー1g当たりのアニオン性基量換算で、該ポリマーのアニオン性基0.1~20mmolと反応する量であることが好ましく、0.5~15mmolと反応する量であることがより好ましく、1~10mmolと反応する量であることが更に好ましい。
 架橋処理して得られた架橋ポリマーは、架橋ポリマー1g当たり、塩基で中和されたアニオン性基(特に好ましくはカルボキシ基)を0.5mmol以上含有することが好ましい。かかる架橋ポリマー中の塩基で中和されたアニオン性基は、水分散体中で解離して、アニオン同士の電荷反発により、有機顔料を含有する架橋ポリマー粒子の安定性に寄与すると考えられる。
 ここで、下記式から求められる架橋ポリマーの架橋率(モル%)は、好ましくは10~80モル%、より好ましくは20~70モル%、更に好ましくは30~60モル%である。架橋率は、架橋剤の使用量と反応性基のモル数、ポリマーの使用量と架橋剤の反応性基と反応できるポリマーの反応性基のモル数から、下記式(III)により算出することができる。
 架橋率(モル%)=[架橋剤の反応性基のモル数×100/ポリマーが有する架橋剤と反応できる反応性基のモル数]   (III)
 上記式(III)において、「架橋剤の反応性基のモル数」とは、使用する架橋剤の重量を反応性基の当量で除した値である。即ち、使用する架橋剤のモル数に架橋剤1分子中の反応性基の数を乗じたものである。
[インクジェット記録用水分散体の製造法2]
 本発明のインクジェット記録用水分散体は、以下の製造法2によっても効率的に製造することができる。
 すなわち、アニオン性有機顔料粒子を含有する水分散体(A)とカチオン性ポリマーを含有する水溶液(B)を、流路断面積が0.001~0.5mm2で流路長が0.1~10mmである流路内で混合する工程を有する方法であって、該水分散体(A)と該水溶液(B)が合流する位置における孔内の線速度が1m/秒以上であり、該カチオン性ポリマーのカチオン性基の量が、該アニオン性有機顔料粒子のアニオン性基の量に対して5~50モル%であるように混合する方法であり、必要に応じて更に架橋工程を含むこともできる。
 上記工程では、例えば、前記工程(1)及び(2)を有する方法で得られた有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散体等のアニオン性有機顔料粒子を含有する水分散体(A)とカチオン性ポリマーを含有する水溶液(B)とを、前記流路内で、前記条件下で混合することによって、ポリマー粒子の局所的な凝集を起こすことなく、カチオン性ポリマーを水分散体中に均一に分散させることができる。この結果、アニオン性有機顔料粒子が連鎖状に繋がれた形態の粒子を含む水分散体を、粗大粒子を発生させることなく得ることができる。得られる水分散体は、印字濃度及び濾過性に優れたものとなると考えられる。
(マイクロチャネルによる混合)
 製造法2においては、層流形成と不均一混合により、凝集物の生成を抑制し、印字濃度及び濾過性を向上させる観点から、流路断面積が0.001~0.5mm2で流路長が0.1~10mmである流路を有するマイクロチャネル(微小流路)を用いることが好ましい。
 用いられるマイクロチャネルの流路断面積は、好ましくは0.005~0.2mm2、より好ましくは0.01~0.1mm2であり、流路長は、好ましくは0.2~8mm、より好ましくは0.5~5mmである。ここで、流路長とは、流路断面積が0.001~0.5mm2の範囲である区間の流路の長さを意味する。
 また、前記観点から、アニオン性有機顔料粒子を含有する水分散体(A)と水溶性カチオン性ポリマーを含有する水溶液(B)が合流する位置における孔内の線速度は1m/秒以上である。ここで、孔内の線速度とは、該水分散体(A)と該水溶液(B)が合流する位置における孔内の平均線速度であり、混合位置を一定時間に通過する液量を流路断面積で割った値である。
 前記孔内の線速度は、1m/秒以上であり、印字濃度と濾過性を両立する観点、特に印字濃度向上の観点から、好ましくは2m/秒以上、より好ましくは4m/秒以上、更に好ましくは10m/秒以上であり、操作性と印字濃度向上の観点から、好ましくは1000m/秒以下、より好ましくは100m/秒以下、更に好ましくは30m/秒以下である。
 また、マイクロチャネル内で混合するときの、カチオン性ポリマーのカチオン性基の量は、印字濃度を向上させる観点から、アニオン性着色粒子のアニオン性基の量に対する比率で5~50モル%であり、好ましくは8~30モル%、より好ましくは10~25モル%、更に好ましくは12~20モル%である。
 カチオン性ポリマーに対するアニオン性有機顔料粒子の重量比〔アニオン性有機顔料粒子/カチオン性ポリマー〕は、水分散体の印字濃度を高める観点から、好ましくは40~5000、より好ましくは80~2000、更に好ましくは100~1000、特に好ましくは200~400である。
 マイクロチャネル内で混合する前の、アニオン性有機顔料粒子を含有する水分散体(A)のアニオン性有機顔料粒子の濃度は、好ましくは1~40重量%、より好ましくは10~35重量%、更に好ましくは20~35重量%である。
 マイクロチャネル内で混合する前の、カチオン性ポリマーを含有する水溶液(B)のカチオン性ポリマーの濃度は、好ましくは0.01~5重量%、より好ましくは0.05~1重量%、更に好ましくは0.1~0.5重量%である。
 このようにマイクロチャネルを用いて、アニオン性有機顔料粒子を含有する水分散体(A)にカチオン性ポリマーを添加することによって、印字濃度及び濾過性に優れた水分散体が得られる理由は定かではないが、以下のように考えられる。
 マイクロチャネル内では、それぞれの液が非常に接触面積の小さな層流になり、極めて接近した状態を形成する。この層流が、流路断面積の小さい流路から開放され噴出する際に生じる散逸によって、アニオン性有機顔料粒子を含有する水分散液(A)とカチオン性ポリマーを含有する水溶液(B)は均質化され、アニオン性有機顔料粒子にカチオン性ポリマーが均質に付着し、更に粒子同士が衝突を繰り返して粒子の連鎖化が進行すると考えられる。
 このようにマイクロチャネルは、他の攪拌機や分散機のように、混合される前に接触面積の大きな液滴を接触させたり、一部に偏った剪断力が生じることもないため、均一な粒径の連鎖状に繋がれた形態のポリマー粒子を得ることができ、印字濃度及び濾過性に優れた水分散体が得られると考えられる。
 更に、有機顔料を含有する水不溶性アニオン性ポリマー粒子を用いれば、前記混合工程でのポリマーの溶出がないため、カチオン性ポリマーが粒子との相互作用に有効に働くとともに、マイクロチャネル内で十分均質化でき、連鎖状に繋がれた粒子は該ポリマー同士の絡み合いや融着により、強固な異型粒子となり、より紙への浸透を抑えることができるため、印字濃度及び濾過性に優れるものと考えられる。
 本発明で用いられるマイクロチャネルは、少なくとも2液を混合する位置及び混合後の流路の形状が前記条件を満たすものであれば、材質、内面の形状、混合角度等は特に制限されないが、以下のものが好適に用いられる。
 マイクロチャネルの材質は、高圧条件下で水溶液や水分散液を扱える材質であることが好ましく、例えば、金属、ガラス等が挙げられ、ステンレス鋼が好ましい。
 また、その内面の形状は、圧力損失を低減する観点から摩擦が低くなるものが好ましい。
 マイクロチャネルを用いる場合の混合角度は、混合後の流れ方向に対して、混合前の液が0~90°で流入できる構造であることが好ましく、具体的には、T型構造(図6(a)参照)、Y型構造(図6(b)参照)及び2重管構造が挙げられる。T型構造を使用する場合は、図6の(a-1)、(a-2)、(a-3)で示される3つの態様がある。これらの中では、Y型構造がより好ましい。
 マイクロチャネルとしては、例えば市販のマイクロミキサーやマイクロリアクター、又は細管接続部品であるコネクターやアダプター等を使用することができる。具体的には、Swagelok社製のクロマトグラフ用継手ロー・デッド・ボリューム型ユニオン・ティーSS-1F0-3GC(T型、流路断面積0.07mm2、流路長1.25mm)、ジーエルサイエンス社製のマイクロボリュームコネクターMT1XCS6(T型、流路断面積0.018mm2、流路長1.25mm)及びMY1XCS6(Y型、流路断面積0.018mm2、流路長1.25mm)等の継手部品や、IMM社製のスリット型Micro Mixers SSIMM、株式会社山武製のマイクロミキサーYM-2等を使用することができる。
 また、マイクロチャネル内への送液の脈動が少ないポンプを使用することが好ましく、シリンジポンプが好ましく用いられる。シリンジポンプは、圧力1MPa以上の高圧供給可能なものが好ましく、例えば東レエンジニアリング株式会社、Harvard Aparatus社等のシリンジポンプが使用できる。また、株式会社タクミナ、富士テクノ工業株式会社等の低脈動型ダイヤフラムポンプやプランジャーポンプを使用することもできる。
[インクジェット記録用水分散体の製造法3]
 本発明のインクジェット記録用水分散体は、以下の製造法3によっても効率的に製造することができる。
 すなわち、有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散液に、ロータ・ステータ構造を有する回転剪断型撹拌装置を用いて、剪断速度1m/秒以上の剪断条件下でカチオン性ポリマーを添加する工程、及び必要に応じて更に架橋工程を含む方法である。
 剪断速度は、ロータの最大円周長さに回転数を乗じた数値とする。例えば、直径8mmのロータを用いて、20000回転/分で回転させた場合の剪断速度は、以下のように算出される。
 (0.008(m)×3.14)×333(回転/秒)=8.37(m/秒)
(カチオン性ポリマーの添加工程)
 製造法3において、カチオン性ポリマーの添加工程では、例えば、前記工程(1)及び(2)を有する方法で得られた有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散体に、ロータ・ステータ構造を有する回転剪断型撹拌装置を用いて、剪断速度1m/秒以上、好ましくは2m/秒以上、より好ましくは4m/秒以上、更に好ましくは8~40m/秒の剪断条件下でカチオン性ポリマー(溶液又は分散液)を添加する。前記剪断条件下でカチオン性ポリマーを添加することによって、局所的な凝集を起こすことなく、カチオン性ポリマーを水分散体中に均一に分散させることができる。この結果、有機顔料を含有する水不溶性アニオン性ポリマー粒子が連鎖状に繋がれた形態のポリマー粒子を含む水分散体を、粗大粒子を発生させることなく得ることができる。得られる有機顔料を含有するポリマー粒子の水分散体は、印字濃度及び濾過性に優れたものとなっている。
 カチオン性ポリマーを添加する場所は、混合後に前記剪断条件となる場所でも構わないが、水分散体が前記剪断条件で流動している場所であることが濾過性の観点から好ましく、撹拌装置のロータ回転軸の中心から、ロータ半径の2倍の半径の円を底面とする円柱内の領域で、添加することが好ましい。
 前記剪断条件とするために用いるロータ・ステータ構造を有する回転剪断型撹拌装置は、単独で又は複数を組み合わせて用いることができる。
 また、本工程において用いられる、カチオン性ポリマーに対する有機顔料を含有する水不溶性アニオン性ポリマー粒子の重量比〔有機顔料を含有する水不溶性アニオン性ポリマー粒子/カチオン性ポリマー〕は、水分散体の印字濃度を高める観点から、好ましくは40~5000、より好ましくは80~2000、更に好ましくは100~1000、更に好ましくは200~600、更に好ましくは200~400である。
(ロータ・ステータ構造を有する回転剪断型撹拌装置)
 ロータ・ステータ構造を有する回転剪断型撹拌装置は、ロータとステータを具備し、ロータとステータの間隙及びロータのスリット部で流体に剪断力を与える撹拌装置である。より具体的には、撹拌室内に固定された邪魔板の役目もする円筒状のステータ(固定環)と、このステータの中空部内に収容され、モータによって所定の回転数を与えられるロータ(タービン翼)とから構成されており、ステータ及びロータには複数の流路が放射状に形成されている。
 この回転剪断型撹拌装置を用いて、カチオン性ポリマーを添加することによって、印字濃度及び濾過性に優れた水分散体が得られる理由は定かではないが、以下のように考えられる。
 この回転剪断型撹拌装置を用いて、カチオン性ポリマーを添加する場合は、有機顔料を含有するアニオン性ポリマー粒子を含む水分散液中に該回転剪断型撹拌装置を設置し、ロータを回転させながら、カチオン性ポリマーの溶液又は分散液をロータの中空部近傍に供給する。すると、カチオン性ポリマーの溶液又は分散液には遠心力が作用し、ロータに形成された放射状の流路から噴出して、ロータとステータとの隙間に浸入し、更にはステータの放射状流路に浸入する。ステータは回転せずに固定されていることから、ロータが回転すると、ロータ及びステータの放射状流路に内に存在する液体には渦流れが発生し、また、ロータとステータの隙間に浸入した液体にはロータの回転速度に応じた剪断力が作用する。このため、これら渦流れや剪断のエネルギーによって、有機顔料を含有するアニオン性ポリマー粒子を含む水分散液とカチオン性ポリマーの溶液又は分散液は均質化される。
 このようにロータ・ステータ構造を有する回転剪断型撹拌装置は、他の攪拌機や分散機と異なり、添加されると同時に液全体に均一に拡散され、均質化され、更にメディア型分散機のように一部に偏った剪断力が生じることもないため、均一な粒径の連鎖状に繋がれた形態のポリマー粒子を得ることができ、印字濃度及び濾過性に優れた水分散体が得られると考えられる。
 更に本発明において、有機顔料を含有する水不溶性アニオン性ポリマー粒子を用いることで、添加工程でのポリマーの溶出がないため、凝集が起こりにくく、回転剪断型撹拌装置によって十分均質化でき、連鎖状に繋がれた粒子は該ポリマー同士の絡み合いや融着により、強固な粒子となるため、印字濃度及び濾過性に優れるものと考えられる。
 カチオン性ポリマーの溶液又は分散液を添加する場合は、該撹拌装置のロータ回転軸の中心から、ロータ半径の2倍の半径の円を底面とする円柱内の領域で、カチオン性ポリマーの溶液又は分散液を、有機顔料を含有するアニオン性ポリマー粒子を含有する水分散液に添加して接触させることが好ましい。前記領域は、ロータ半径の1.8倍の半径の円を底面とする円柱からロータ半径の0.5倍の半径の円を底面とする円柱を除いた領域がより好ましく、ロータ半径の1.7倍の半径の円を底面とする円柱からロータ半径の1.0倍の半径の円を底面とする円柱を除いた領域が更に好ましく、ロータ半径の1.6倍の半径の円を底面とする円柱からロータ半径の1.4倍の半径の円を底面とする円柱を除いた領域が更に好ましい。カチオン性ポリマーの溶液又は分散液を前記領域に添加することにより、有機顔料を含有するアニオン性ポリマー粒子を含有する水分散液との接触と同時にカチオン性ポリマーが液中に均一に拡散され、粗大粒子が少なく、濾過性の優れたインクジェット記録用水分散体を得ることができる。
 この回転剪断型撹拌装置において、均質分散をより効率的に行うためには、ロータとステータとの間に導かれた液体に対して大きな剪断力を作用させることが好ましく、そのためにはステータの内周面とロータの外周面とが形成する隙間を小さく設定すると共に、ロータのタービン翼周速(回転数)を高めることが好ましい。この観点から、ステータの内周面とロータの外周面との隙間は、好ましくは5mm以下、より好ましくは0.01~2mm、更に好ましくは0.1~0.2mmである。また、ロータのタービン翼周速は、好ましくは2m/秒以上、より好ましくは4m/秒以上、更に好ましくは8~40m/秒である。
 前記回転剪断型撹拌装置の市販品例としては、バイオミキサーBM及びMBMシリーズ(株式会社日本精機製作所、商品名)、ホモミキサーとしてTKホモミクサー、TKパイプラインミクサー、TKホモジェッター、TKホモミックラインフロー(以上、プライミクス株式会社、商品名)等、マイルダー(株式会社荏原製作所、太平洋機工株式会社、商品名)、ウルトラタラックス(IKAジャパン株式会社、商品名)等が挙げられ、株式会社日本精機製作所製のバイオミキサー(商品名)、プライミクス株式会社製のTKホモミクサー(商品名)、IKAジャパン株式会社製のウルトラタラックス(商品名)等がより好ましく、株式会社日本精機製作所製のバイオミキサーが更に好ましい。
 バイオミキサーを用いる場合のロータの回転数は、10000回転/分以上が好ましく、15000回転/分以上がより好ましく、20000回転/分以上が更に好ましい。
[インクジェット記録用水分散体の製造法4]
 本発明のインクジェット記録用水分散体は、下記の工程(a)、(b)、及び必要に応じて更に工程(c)を含む製造法4によっても効率的に製造することができる。
 工程(a):有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散体のpHを8~12に調整した後、カチオン性ポリマーを添加する工程
 工程(b):工程(a)で得られた水分散体のpHを下げて、pHを7~9に調整する工程
 工程(c):工程(b)で得られた有機顔料を含有する水不溶性アニオン性ポリマー粒子の水分散体に架橋剤を添加して、有機顔料を含有するアニオン性架橋ポリマー粒子を得る工程
工程(a)
 工程(a)では、前記製造法で得られた有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散体のpHを8~12に調整した後、カチオン性ポリマーを添加する。
 有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散体のpHを8~12に調整する方法としては、塩基を添加する方法等が挙げられる。塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化アンモニウム、各種アミン等が挙げられる。
 工程(a)では、後で添加するカチオン性ポリマーが、有機顔料を含有する水不溶性アニオン性ポリマー粒子を構成するアニオン性ポリマーと反応しないようにして、水分散体中に均一に分散させるため、有機顔料を含有するアニ水不溶性アニオン性ポリマー粒子オン性ポリマー粒子を含む水分散体のpHを8~12、好ましくは9~12、より好ましくは10~12、更に好ましくは10.5~11.5に調整し、有機顔料を含有する水不溶性アニオン性ポリマー粒子を構成するポリマーが有するアニオン性基を塩に変換する。
 有機顔料を含有する水不溶性アニオン性ポリマー粒子を構成するポリマーがカルボキシ基を有し、カチオン性ポリマーとして、ポリエチレンイミンを用いた場合を例として説明すると、塩基として水酸化ナトリウムを用いて、pHを8~12、好ましくは9~12に調整し、アニオン性ポリマー中のカルボキシ基をナトリウム塩(-COONa)に変えた後、ポリエチレンイミンを添加すると、ポリエチレンイミンはカルボキシ基がナトリウム塩となる程度のpHにおいては、カルボキシ基と反応しないので、局所的な凝集が起こることなく、ポリエチレンイミンが水分散体中に均一に溶解又は分散する。
工程(b)
 工程(b)では、工程(a)で得られた、カチオン性ポリマーが水分散体中に均一に溶解又は分散した水分散体のpHを下げて、pHを7~9に調整する。
 この工程を、工程(a)で示した例で説明すると、前記カルボキシ基のナトリウム塩(-COONa)は、再びカルボキシ基となり、カチオン性であるポリエチレンイミンと相互作用する。
 この結果、有機顔料を含有する水不溶性アニオン性ポリマー粒子のアニオン性基と相互作用し、複数の水不溶性アニオン性ポリマー粒子同士の凝集を促進し、印刷後に紙への浸透が抑えられ、印字濃度を向上させるものと考えられる。更にpHを下げて、本工程のpH範囲に調整することで、カチオン性ポリマーの、ポリマー粒子表面への吸着性が高まり、水分散体又はインク中で単独で溶解又は分散しているカチオン性ポリマーが少なくなると考えられる。そのため、水分散体又はインクの分散安定性が高く、濾過性及び保存安定性にも優れる水分散体が得られると考えられる。
 水分散体のpHを下げて、pHを7~9に調整する方法としては、酸又は酸性水溶液の添加、固体酸又は陽イオン交換樹脂との接触処理による方法等が挙げられる。
 酸又は酸性水溶液に用いられる酸成分としては、例えば、塩酸、酢酸、プロピオン酸、リン酸、硫酸等の無機酸、クエン酸、乳酸、酒石酸、コハク酸、リンゴ酸、アスコルビン酸、グリコール酸、グルコン酸、グリセリン酸等の有機酸が挙げられる。
 固体酸としては、活性白土、酸性白土、シリカ、アルミナ等が挙げられる。
 陽イオン交換樹脂としては、スルホン酸基、カルボキシ基、リン酸基等を有する合成樹脂が挙げられる。市販品としては、三菱化学株式会社製のダイヤイオンSK1B、SK1BH、SK102等のSKシリーズ、ダイヤイオンPK208、PK212等のPKシリーズ、ダイヤイオンCR10等のキレート樹脂、米国ローム・アンド・ハース社製のアンバーライト200CT、IR120B、IR124、IR118等の100番シリーズ、ダウケミカル社製のダウエックス50W・X1等のWシリーズ等が挙げられる。
 なかでもスルホン酸基は強イオン陽イオン交換能を有するため、スルホン酸基を有する陽イオン交換樹脂が好ましい。スルホン酸基を有する陽イオン交換樹脂は、水素イオン型とナトリウムイオン、カリウムイオン等の金属イオン型とに大別されるが、pH調整効率の観点から水素イオン型が好ましい。このような、強イオン陽イオン交換樹脂としては、米国ローム・アンド・ハース社製のアンバーライトIR120B、三菱化学株式会社製のダイヤイオンSK-1Bや予め水素イオン交換を行ったSK-1BHが挙げられる。
 陽イオン交換樹脂との接触処理は、バッチ式、半バッチ式、半連続式又は連続式で行うことができ、例えば、陽イオン交換樹脂粒子を水分散体に投入して撹拌する方法、陽イオン交換樹脂の充填層に水分散体を連続的に通液させる方法等が挙げられる。
 pH調整の操作性、プロセスの簡便性の観点、及び塩等の副生成物が少なく、保存安定性を向上させる観点から、水分散体と陽イオン交換樹脂との接触処理が好ましい。
工程(c)
 工程(c)では、工程(b)で得られた有機顔料を含有する水不溶性アニオン性ポリマー粒子の水分散体に架橋剤を添加して、有機顔料を含有するアニオン性架橋ポリマー粒子の水分散体として得ることができる。アニオン性ポリマーを架橋処理することによって、有機顔料を含有する水不溶性アニオン性ポリマー粒子の水分散体中での保存安定性を向上させることができる。アニオン性ポリマーの架橋処理は、前記工程(2)の前後、又は有機溶媒が残存している状態で架橋処理を行ってもよいが、工程(c)において架橋処理を行う方が、有機顔料を含有する水不溶性アニオン性ポリマー粒子の水分散体中での保存安定性をより向上させることができる。なお、前記架橋処理と工程(c)の架橋処理を併用してもよい。
 ここで、架橋剤としては、アニオン性ポリマーのアニオン性基と反応する官能基を有する化合物が好ましく、該官能基を分子中に2以上、好ましくは2~6有する化合物がより好ましい。
 本発明で用いられる架橋剤は、水不溶性アニオン性ポリマー粒子の表面を効率よく架橋する観点から、25℃の水100gに溶解させたときの溶解量が、好ましくは50g以下、より好ましくは40g以下、更に好ましくは30g以下である。また、その分子量は、反応のし易さ及び水分散体の保存安定性の観点から、好ましくは120~2000、より好ましくは150~1500、更に好ましい150~1000である。
[インクジェット記録用水分散体]
 上記の製造方法により得られる本発明の水分散体は、アニオン性有機顔料粒子、特に有機顔料を含有する水不溶性アニオン性(架橋)ポリマー粒子とカチオン性ポリマーとを含む連鎖状粒子の固体分が水を主媒体とする中に分散しているものである。連鎖状粒子については、前記のとおりである。
 本発明の水分散体には、乾燥防止のために、保湿剤、有機溶媒を添加することができ、そのまま水系インクとして用いることもできる。
 本発明の水分散体中の各成分の含有量は、下記のとおりである。
 本発明の水分散体に用いられるアニオン性有機顔料粒子に含まれる有機顔料の含有量は、水分散体の印字濃度を高める観点から、水分散体中で、好ましくは2~35重量%、より好ましくは3~30重量%、更に好ましくは5~25重量%である。
 また、カチオン性ポリマーに対するアニオン性有機顔料粒子(有機顔料を含有する水不溶性アニオン性ポリマー粒子等)の重量比〔アニオン性有機顔料粒子/カチオン性ポリマー〕は、水分散体及びそれを含有する水系インクの印字濃度を高める観点から、好ましくは40~5000、より好ましくは80~2000、更に好ましくは100~1000、特に好ましくは200~600である。
 水の含有量は、好ましくは20~90重量%,より好ましくは30~80重量%、更に好ましくは40~70重量%である。
 本発明の水分散体の好ましい表面張力(20℃)は、30~70mN/m、より好ましくは35~65mN/mである。
 本発明の水分散体の20重量%(固形分)の粘度(20℃)は、好ましくは1~12mPa・s、より好ましくは1~9mPa・s、より好ましくは2~6mPa・s、更に好ましくは2~5mPa・sである。
[インクジェット記録用水系インク]
 本発明のインクジェット記録用水系インクは、本発明の水分散体を含有するものであるが、水系インクに通常用いられる湿潤剤、浸透剤、分散剤、界面活性剤、粘度調整剤、消泡剤、防腐剤、防黴剤、防錆剤等を添加することができる。
 本発明の水系インク中の各成分の含有量は、下記のとおりである。
 本発明の水系インクに用いられるアニオン性有機顔料粒子に含まれる有機顔料の含有量は、水系インクの印字濃度を高める観点から、水系インク中で、好ましくは1~25重量%、より好ましくは2~20重量%、より好ましくは4~15重量%、更に好ましくは5~12重量である。
 水の含有量は、好ましくは20~90重量%、より好ましくは30~80重量%、更に好ましくは40~70重量%である。
 本発明の水系インクの好ましい表面張力(20℃)は、23~50mN/m、より好ましくは23~45mN/m、更に好ましくは25~40mN/mである。
 本発明の水系インクの粘度(20℃)は、良好な吐出信頼性を維持するために、好ましくは2~20mPa・sであり、より好ましくは2.5~16mPa・s、更に好ましくは2.5~12mPa・sである。
 本発明の水系インクを適用するインクジェットの方式は制限されないが、ピエゾ方式のインクジェットプリンターに特に好適である。
 以下の調製例、実施例及び比較例において、「部」及び「%」は特記しない限り「重量部」及び「重量%」である。なお、ポリマーの重量平均分子量、平均粒径、二次粒子の面積占有率(%)、連鎖状粒子の割合(個数%)の測定は、以下の方法により行い、水系インクについて、以下の印刷方法により印刷して印字濃度を評価した。
(1)アニオン性ポリマーの重量平均分子量の測定
 N,N-ジメチルホルムアミドに、リン酸及びリチウムブロマイドをそれぞれ60mmol/Lと50mmol/Lの濃度となるように溶解した液を溶媒として、ゲルクロマトグラフィー法〔東ソー株式会社製GPC装置(HLC-8120GPC)、東ソー株式会社製カラム(TSK-GEL、α-M×2本)、流速:1mL/min〕により、標準物質としてポリスチレンを用いて測定した。
(2)有機顔料を含有するアニオン性ポリマー粒子の平均粒径、及び連鎖状粒子等の二次粒子を含有する水分散体の平均粒径の測定
 大塚電子株式会社のレーザー粒子解析システムELS-8000(キュムラント解析)を用いて測定した。測定する粒子の濃度を、約5×10-3重量%となるよう水で希釈した分散液を用いた。測定条件は、温度25℃、入射光と検出器との角度90°、積算回数100回であり、分散溶媒の屈折率として水の屈折率(1.333)を入力した。
(3)二次粒子の面積占有率(%)、連鎖状粒子の割合(個数%)の測定
 実施例で得られた水分散体にイオン交換水を加え、有機顔料を含有するアニオン性ポリマー粒子の固形分濃度を0.01%に調整し、コロジオン支持膜(応研商事株式会社製、グリッドピッチ150μm)上に展開して乾燥させた後、透過型電子顕微鏡(TEM)(日本電子株式会社製、「JEM-2100型」、加速電圧80KV使用)を用いてTEM写真を撮影した。
 二次元画像解析ソフトウェアWinROOF(三谷商事株式会社製)を用いて、得られたTEM写真中の1つの独立した二次粒子に外接円を描き、その円の面積をA0(nm2)とする。次に、二次粒子を構成する一次粒子(TEM写真で四角に見える一つひとつの粒子)の一つずつの面積に近似して描画した楕円の面積を合計した総面積をA1(nm2)とする。ここで求められたA0及びA1から二次粒子の面積占有率(%)〔=(A1/A0)×100〕を求めた。
 また、同じソフトウェアを用い、100~150個の顔料一次粒子の数を計測してN0(個)とし、連鎖状粒子を構成する顔料一次粒子の数をN1(個)として、連鎖状粒子の割合(個数%)〔=(N1/N0)×100〕を求めた。
(4)濾過性
 水分散体を5μmのフィルター〔酢酸セルロース膜、外径: 2.5cm、Sartorius Stedim Biotech社製〕を取り付けた容量25mLの針なしシリンジ〔テルモ(株)製〕で濾過し、フィルター1個が目詰まりするまでの通液量により評価した。目詰まりするまでの通液量が大きいほど、濾過性が良好であることを示す。
(5)保存安定性
 水系インクをガラス製密閉容器に充填し、70℃で14日間保存し、保存前後の水系インクの粘度をE型粘度計(東機産業株式会社製、RE80L、ローター1)を用いて、20℃、50r/minの条件で粘度を測定し、下記式より粘度変化率を求めた。
 測定した粘度の値を用い、下記式より粘度変化率を算出し、以下の評価基準に基づいて
保存安定性を評価した。粘度変化率の絶対値が小さいほど、保存安定性が良好である。
 粘度変化率(%)=((〔保存後の粘度〕-〔保存前の粘度〕)/〔保存前の粘度〕)×100
(6)印刷方法
 水系インクを、シリコンチューブを介して、インクジェットプリンター(セイコーエプソン株式会社製、型番:EM-930C、ピエゾ方式)のブラックヘッド上部のインク注入口に充填する。次いで、フォトショップ(アドビ社製、商品名)によりベタ印字の印刷パターン(横204mm×縦275mmの大きさ)を作成し、ベタのDutyを変化させて試し印字〔印字条件=用紙種類:普通紙、モード設定:ブラック、ファイン、双方向〕を行い、実際の吐出量が0.75±0.01mg/cm2となるようにDutyを調整した。吐出量は、インクが入ったスクリュー管の重量変化を測定した。調整したDutyのベタ画像を用い、市販の普通紙(商品名:XEROX4200、XEROX社製、上質普通紙)に印字を行った。
(7)印字濃度の測定
 印字物を25℃湿度50%で24時間放置後、印字面の印字濃度を測定した。印字濃度の測定にはマクベス濃度計(グレタグマクベス社製、品番:RD914)を用い、測定条件は、観測光源を D65とし、観測視野を2度とし、濃度基準を DIN16536とし、マゼンタの色濃度成分の数値を読み取った。測定回数は、測定する場所を変え、双方向印字の往路において印字された部分から5点、復路において印字された部分から5点をランダムに選び、合計10点の平均値を求めた。
(8)彩度の測定
 印字物を25℃湿度50%で24時間放置後、前記のマクベス濃度計を用い、測定モードをL***に設定し、観測光源をD65とし、観測視野を2度とし、CIELAB基準で、印字面のa*値、b*値を測定し、彩度(メトリック彩度)を算出した。測定回数は、測定する場所を変え、双方向印字の往路において印字された部分から5点、復路において印字された部分から5点をランダムに選び、合計10点の平均値を求めた。
 彩度は、L***表色系で、下記式のとおり、中心(a*、b*が共に0の位置:無彩色)からの距離で表される。彩度は、数値が大きいほど、色があざやかで良好である。
 彩度=〔(a*2+(b*21/2
調製例1(有機顔料を含有するアニオン性ポリマー粒子の水分散体の調製)
(1)アニオン性ポリマーの合成
 ベンジルメタクリレート58部、メタクリル酸42部、スチレン20部、スチレンマクロマー(東亞合成株式会社製、商品名:AS-6S)(固形分50%)40部、ポリエチレングリコールメタクリレート(日油株式会社、商品名:ブレンマーPP-800)30部、フェノキシポリ(エチレングリコール・プロピレングリコール)メタクリレート(日油株式会社、商品名:ブレンマー43PAPE-600B)30部を混合し、モノマー混合液を調製した。
 反応容器内に、メチルエチルケトン18部及び重合連鎖移動剤(2-メルカプトエタノール)0.03部、前記モノマー混合液の10%を入れて混合し、窒素ガス置換を十分に行った。
 一方、滴下ロートに、モノマー混合液の残りの90%と前記重合連鎖移動剤0.27部、メチルエチルケトン42部、及び重合開始剤(和光純薬工業株式会社製、商品名:V-65、2,2'-アゾビス(2,4-ジメチルバレロニトリル))1.2部を入れて混合した混合液を入れ、窒素雰囲気下、反応容器内の混合溶液を攪拌しながら75℃まで昇温し、滴下ロート中の混合溶液を3時間かけて滴下した。滴下終了から75℃で2時間経過後、前記重合開始剤0.3部をメチルエチルケトン5部に溶解した溶液を加え、更に75℃で2時間、80℃で2時間熟成させ、ポリマー溶液(ポリマーの重量平均分子量:100000)を得た。
(2)有機顔料を含有するアニオン性ポリマー粒子の水分散体の調製
 上記(1)で得られたポリマー溶液を減圧乾燥させて得られたポリマー45部をメチルエチルケトン300部に溶かし、その中に中和剤として5N水酸化ナトリウム水溶液10.2部と25%アンモニア水12.2部、及びイオン交換水1150部を加え、更にマゼンタ顔料(無置換キナクリドンと2,9-ジクロロキナクリドンからなる固溶体顔料、チバ・ジャパン株式会社製、商品名:クロモフタルジェットマゼンタ2BC)135部を加え、ディスパー翼を用いて7000rpm、20℃の条件下で1時間混合した後、ビーズミル型分散機(寿工業株式会社製、ウルトラ・アペックス・ミル、型式UAM-05、メディア粒子:ジルコニアビーズ、粒径:0.05mm)を用いて20℃で40分間混合分散した。得られた分散液をマイクロフルイダイザー(Microfluidics 社製、高圧ホモジナイザー、商品名、型式M-140K)を用いて、180MPaの圧力でさらに5パス分散処理した。
 得られた分散液を、減圧下60℃でメチルエチルケトンを除去し、更に一部の水を除去し、遠心分離し、フィルター(Sartorius Stedim Biotech社製、ミニザルトシリンジフィルター、孔径:5μm、材質:酢酸セルロース)でろ過して粗大粒子を除き、有機顔料を含有するアニオン性ポリマー粒子の水分散体〔固形分濃度:30.0%、平均粒径75nm〕を得た。得られたTEM写真を図1に示す。
実施例I-1(連鎖状粒子を含有するインクジェット記録用水分散体(1)の調製)
 調製例1で得られた有機顔料を含有するアニオン性ポリマー粒子の水分散体50gをビーカーに入れ、攪拌しながら、イオン交換水で10%に希釈したポリエチレンイミン(型番:SP-006、株式会社日本触媒製、数平均分子量(Mn)600)0.73gを滴下した。さらに、得られた分散液に調整例1で得られた前記水分散体50gを添加して、80℃の温浴中で攪拌しながら水分を蒸発させ、固形分濃度約60%の粘稠状物を得た後、この粘稠状物を冷却して固形分を得た〔工程(I)〕。
 工程(I)で得られた固形分にイオン交換水50部を加えてマグネチックスターラー(ヤマト科学株式会社製、MD-41型)を用いて分散させた後、前記フィルター(Sartorius Stedim Biotech社製、孔径:5μm)でろ過して粗大粒子を取り除き、固形分濃度30%に調整した水分散体を得た〔工程(II)〕。
 工程(II)で得られた水分散体40gに、エポキシ系架橋剤(商品名:デナコールEX321、エポキシ当量140、ナガセケムテックス株式会社製)0.53gを加えて、90℃温浴で、撹拌しながら1時間保持して、架橋処理を行なった〔工程(III)〕。
 冷却後、前記フィルター(Sartorius Stedim Biotech社製、孔径:5μm)でろ過して粗大粒子を取り除き、平均粒径181nmの連鎖状粒子を含有するインクジェット記録用水分散体(1)(固形分濃度:30%、上記式(1)により算出した架橋ポリマーの架橋率:51.4モル%)を得た。
 得られた水分散体(1)に含有された連鎖状粒子のTEM写真を図2に示す。
 また、得られた連鎖状粒子の1つを拡大したTEM写真を図3に示す。
 図3において、二次粒子の面積占有率は、(A1/A0)×100=(17085nm2/46860nm2)×100=37.9%であり、この粒子は連鎖状粒子である。
 実施例I-1において、連鎖状粒子の割合(個数%)は60%であった。
比較例I-1(インクジェット記録用水分散体(2)の調製)
 調製例1で得られた有機顔料を含有するアニオン性ポリマー粒子の水分散体50gをビーカーに入れ、攪拌しながら、イオン交換水で10%に希釈したポリエチレンイミン(型番:SP-006、株式会社日本触媒製、数平均分子量(Mn)600)0.73gを滴下した。さらに、得られた分散液に調整例1で得られた前記水分散体50gを添加して、攪拌した後、水分を蒸発させることなく、前記フィルター(Sartorius Stedim Biotech社製、孔径:5μm)でろ過して粗大粒子を取り除き、水分散体を得た。
 得られた水分散体を実施例I-1における工程(III)と同様に架橋処理を行い、インクジェット記録用水分散体(2)を調製した。
 得られた水分散体(2)に含有された有機顔料粒子の平均粒径は100nmであった。
 得られた水分散体(2)に含有された有機顔料粒子のTEM写真を図4に示す。
比較例I-2(インクジェット記録用水分散体(3)の調製)
 実施例I-1において、ポリエチレンイミンを添加しなかったこと以外は、実施例I-1と同様にしてインクジェット記録用水分散体(3)を調製した。
 得られた水分散体(3)に含有された有機顔料粒子の平均粒径は100nmであった。
 得られた水分散体(3)に含有された有機顔料粒子のTEM写真を図5に示す。
実施例I-2(水系インクの製造)
 実施例I-1で得られたインクジェット記録用水分散体(1)を固形分換算で13.3部、顔料分換算で10.0部となるようにして用意した。
 1,2-ヘキサンジオール(東京化成工業株式会社製)2.0部、2-ピロリドン(和光純薬株式会社製)2.0部、サーフィノール465(日信化学工業株式会社製)0.5部、オルフィンE1010(日信化学工業株式会社製)0.5部、グリセリン(花王株式会社製)2.0部、トリエチレングリコールモノブチルエーテル(商品名:ブチルトリグリコール、日本乳化剤株式会社製)10.0部、プロキセルXL2(アビシア株式会社製)0.3部、及びイオン交換水をマグネチックスターラーで撹拌しながら、混合し、更に室温で15分間攪拌して、混合溶液を得た。ここでイオン交換水の配合量は、混合溶液と前記のインクジェット記録用水分散体(1)を加えた全量が100部となるように調整した量である。
 次に、予め用意したインクジェット記録用水分散体(1)をマグネチックスターラーで撹拌しながら、前記混合溶液を添加し、1.2μmのフィルター(酢酸セルロース膜、Sartorius Stedim Biotech社製)で濾過して水系インクを得た。結果を表1に示す。
比較例I-3(水系インクの製造)
 実施例I-2において、実施例I-1で得られた連鎖状粒子を含有するインクジェット記録用水分散体(1)に代えて、比較例1で得られたインクジェット記録用水分散体(2)を用いた他は、実施例I-2と同様にして水系インクを製造した。結果を表1に示す。
比較例I-4(水系インクの製造)
 実施例I-2において、実施例I-1で得られた連鎖状粒子を含有するインクジェット記録用水分散体(1)に代えて、比較例I-2で得られたインクジェット記録用水分散体(3)を用いた他は、実施例I-2と同様にして水系インクを製造した。結果を表1に示す。
比較例I-5(水系インクの製造)
 実施例I-2において、実施例I-1で得られた連鎖状粒子を含有するインクジェット記録用水分散体(1)に代えて、調製例1で得られた有機顔料を含有するアニオン性ポリマー粒子の水分散体を用いた他は、実施例I-2と同様にして水系インクを製造した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例I-1の水分散体を含有する実施例I-2の水系インクは、比較例I-1又はI-2の水分散体を含有する比較例I-3又はI-4の水系インク、及び有機顔料を含有するアニオン性ポリマー粒子のみを含有する比較例I-5の水系インクに比べて、印字濃度が優れていることが分かる。
調製例2(固溶体顔料含有アニオン性ポリマー粒子の水分散体の調製)
(1)アニオン性ポリマーの合成
 ベンジルメタクリレート142部、メタクリル酸38部、末端にメタクリロイル基を有するスチレンマクロマー(東亞合成株式会社製、商品名:AS-6S)(固形分50%)40部を混合し、モノマー混合液を調製した。
 反応容器内に、メチルエチルケトン18部及び重合連鎖移動剤(2-メルカプトエタノール)0.03部、前記モノマー混合液の10%を入れて混合し、窒素ガス置換を十分に行った。
 一方、滴下ロートに、モノマー混合液の残りの90%と前記重合連鎖移動剤0.27部とメチルエチルケトン42部及び重合開始剤(和光純薬工業株式会社製、商品名:V-65、2,2'-アゾビス(2,4-ジメチルバレロニトリル))1.2部を入れて混合したものを入れ、窒素雰囲気下、反応容器内の混合溶液を攪拌しながら75℃まで昇温し、滴下ロート中の混合溶液を3時間かけて滴下した。滴下終了から75℃で2時間経過後、前記重合開始剤0.3部をメチルエチルケトン5部に溶解した溶液を加え、更に75℃で2時間、80℃で2時間熟成させ、ベンジルメタクリレートを由来とする構成単位を71重量%含むアニオン性ポリマー溶液(ポリマーの重量平均分子量:90000)を得た。
(2)固溶体顔料含有アニオン性ポリマー粒子の水分散体の調製
 上記(1)で得られたアニオン性ポリマー溶液を減圧乾燥させて得られたアニオン性ポリマー45部をメチルエチルケトン300部に溶かし、その中に中和剤5N水酸化ナトリウム水溶液10.2部と25%アンモニア水12.2部、及びイオン交換水1150部を加え、更にマゼンタ顔料(2,9-ジクロロキナクリドンと無置換キナクリドンからなる固溶体顔料、チバ・ジャパン株式会社製、商品名:クロモフタルジェットマゼンタ2BC)180部を加え、ディスパー翼7000rpmで20℃で1時間混合したのち、ビーズミル型分散機(寿工業株式会社製、ウルトラ・アペックス・ミル、型式UAM-05、メディア粒子:ジルコニアビーズ、粒径:0.05mm)を用いて20℃で40分間混合分散した。得られた分散液をマイクロフルイダイザー(Microfluidics 社製、高圧ホモジナイザー、商品名、型式M-140K)を用いて、180MPaの圧力でさらに5パス分散処理した。
 得られた分散液を、減圧下60℃でメチルエチルケトンを除去し、更に一部の水を除去し、遠心分離し、フィルター(Sartorius Stedim Biotech社製、ミニザルトシリンジフィルター、孔径:5μm、材質:酢酸セルロース)でろ過して粗大粒子を除き、固溶体顔料を含有するアニオン性ポリマー粒子の水分散体(固形分濃度:30.0%、平均粒径80nm)を得た。
実施例II-1(インクジェット記録用水分散体の調製)
 調製例2(2)で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体50gをビーカーに入れ、0℃の水浴に漬け、ホモジナイザーで7000rpmで分散しながら、ポリエチレンイミン(株式会社日本触媒製、エポミンSP-200、数平均分子量1万)の0.3%水溶液9.5gを20ml/分の速度で滴下した。得られた分散液を前記フィルター(Sartorius Stedim Biotech社製、孔径:5μm)でろ過して粗大粒子を除き、平均粒径110nmのインクジェット記録用水分散体を得た。さらに、得られた水分散体40gに、エポキシ系架橋剤(ナガセケムテックス株式会社製、商品名:デナコールEX321、エポキシ当量140)0.47gとイオン交換水1.07gを加えて、90℃温浴で、撹拌しながら1時間保持した。冷却後、前記フィルター(Sartorius Stedim Biotech社製、孔径:5μm)でろ過して粗大粒子を除き、平均粒径115nmの固溶体顔料を含有するアニオン性架橋ポリマー粒子(前記式(1)による架橋ポリマーの架橋率:56.8モル%)とポリエチレンイミンを含有するインクジェット記録用水分散体を得た。
実施例II-2(インクジェット記録用水分散体の調製)
(1)アニオン性ポリマーの合成
 調製例2(1)において、ベンジルメタクリレートをベンジルアクリレートに代えた以外は、調製例2(1)と同様にして、アニオン性ポリマー溶液(ポリマーの重量平均分子量:90000)を得た。
(2)固溶体顔料含有アニオン性ポリマー粒子の水分散体の調製
 調製例2(2)において、上記(1)で得られたアニオン性ポリマー溶液を、調製例2(1)で得られたアニオン性ポリマー溶液に代えた以外は、調製例2(2)と同様にして、固溶体顔料を含有するアニオン性ポリマー粒子の水分散体(固形分濃度:30.0%、平均粒径80nm)を得た。
(3)インクジェット記録用水分散体の調製
 実施例II-1において、調製例2(2)で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体を、上記(2)で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体に代えた以外は、実施例II-1と同様にして、インクジェット記録用水分散体を得た。
比較例II-1(インクジェット記録用水分散体の調製)
(1)アニオン性ポリマーの合成
 調製例2(1)において、ベンジルメタクリレートをスチレンに代えた以外は、調製例2(1)と同様にして、アニオン性ポリマー溶液(ポリマーの重量平均分子量:90000)を得た。
(2)固溶体顔料含有アニオン性ポリマー粒子の水分散体の調製
 調製例2(2)において、調製例2(1)で得られたアニオン性ポリマー溶液を、比較例II-1(1)で得られたアニオン性ポリマー溶液に代えた以外は、調製例2(2)と同様にして、固溶体顔料を含有するアニオン性ポリマー粒子の水分散体(固形分濃度:30.0%、平均粒径85nm)を得た。
(3)インクジェット記録用水分散体の調製
 実施例II-1において、調製例2(2)で得られた顔料含有アニオン性ポリマー粒子の水分散体を、比較例II-1(2)で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体に代えた以外は、実施例II-1と同様にして、インクジェット記録用水分散体を得た。
比較例II-2(インクジェット記録用水分散体の調製)
(1)アニオン性ポリマーの合成
 調製例2(1)と同様にして、アニオン性ポリマー溶液(ポリマーの重量平均分子量:90000)を得た。
(2)固溶体顔料含有アニオン性ポリマー粒子の水分散体の調製
 調製例2(2)において、固溶体顔料を2,9-ジメチルキナクリドンと無置換キナクリドンからなる固溶体顔料(DIC株式会社製、商品名:Fastgen Super Magenta RY)、に代えた以外は、調製例2(2)と同様にして、固溶体顔料を含有するアニオン性ポリマー粒子の水分散体(固形分濃度:30.0%、平均粒径85nm)を得た。
(3)インクジェット記録用水分散体の調製
 実施例II-1において、比較例II-2(2)で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体を用いた以外は、実施例II-1と同様にしてインクジェット記録用水分散体を得た。
 比較例II-3(インクジェット記録用水分散体の調製)
(1)アニオン性ポリマーの合成
 調製例2(1)と同様にして、アニオン性ポリマー溶液(ポリマーの重量平均分子量:90000)を得た。
(2)キナクリドン顔料含有アニオン性ポリマー粒子の水分散体の調製
 調製例2(2)において、固溶体顔料を2,9-ジメチルキナクリドンからなる顔料(DIC株式会社製、商品名:Fastgen Super Magenta RG)、に代えた以外は、調製例2(2)と同様にして、キナクリドン顔料を含有するアニオン性ポリマー粒子の水分散体〔固形分濃度:30.0%、平均粒径90nm〕を得た。
(3)インクジェット記録用水分散体の調製
 実施例II-1において、比較例II-3(2)で得られたキナクリドン顔料含有アニオン性ポリマー粒子の水分散体を用いた以外は、実施例II-1と同様にしてインクジェット記録用水分散体を得た。
比較例II-4(インクジェット記録用水分散体の調製)
(1)アニオン性ポリマーの合成
 調製例2(1)と同様にして、アニオン性ポリマー溶液(ポリマーの重量平均分子量:90000)を得た。
(2)キナクリドン顔料含有アニオン性ポリマー粒子の水分散体の調製
 調製例2(2)と同様にして、固溶体顔料を含有するアニオン性ポリマー粒子の水分散体(固形分濃度:30.0%、平均粒径80nm)を得た。
(3)インクジェット記録用水分散体の調製
 実施例II-1でポリエチレンイミンを添加しなかったこと以外は、実施例II-1と同様にしてインクジェット記録用水分散体を得た。
実施例II-3〔インクの製造〕
1,2-ヘキサンジオール(東京化成工業株式会社製)2.0部、2-ピロリドン(和光純薬株式会社製)2.0部、サーフィノール465(日信化学工業株式会社製)0.5部、オルフィンE1010(日信化学工業株式会社製)0.5部、グリセリン(花王株式会社製)2.0部、トリエチレングリコールモノブチルエーテル(商品名:ブチルトリグリコール、日本乳化剤株式会社製)10.0部、プロキセルXL2(アビシア株式会社製)0.3部、及びイオン交換水をマグネチックスターラーで撹拌しながら、混合し、更に室温で15分間攪拌して、混合溶液を得た。ここでイオン交換水の配合量は、混合溶液と前記実施例II-1で得られたインクジェット記録用水分散体を加えた全量が100部となるように調整した量である。
 次に実施例II-1で得られたインクジェット記録用水分散体41.7部(固形分換算12.5部、顔料分換算10.0部)をマグネチックスターラーで撹拌しながら、前記混合溶液を添加し、1.2μmのフィルター(酢酸セルロース膜、Sartorius Stedim Biotech社製)で濾過し、水系インクを得た。得られた水系インクの評価結果を表2に示す。
実施例II-4〔インクの製造〕
 実施例II-3において、実施例II-2で調製した水分散体を用いたこと以外は、実施例II-3と同様にして水系インクを得た。評価結果を表2に示す。
比較例II-5〔インクの製造〕
 実施例II-3において、比較例II-1で調製した水分散体を用いたこと以外は、実施例II-3と同様にして水系インクを得た。評価結果を表2に示す。
比較例II-6〔インクの製造〕
 実施例II-3において、比較例II-2で調製した水分散体を用いたこと以外は、実施例II-3と同様にして水系インクを得た。評価結果を表2に示す。
比較例II-7〔インクの製造〕
 実施例II-3において、比較例II-3で調製した水分散体を用いたこと以外は、実施例II-3と同様にして水系インクを得た。評価結果を表2に示す。
比較例II-8〔インクの製造〕
 実施例II-3において、比較例II-4で調製した水分散体を用いたこと以外は、実施例II-3と同様にして水系インクを得た。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、実施例II-3~II-4のインクは、比較例II-5~II-8のインクに比べて、印字濃度、保存安定性に優れ、彩度が高いことが分かる。
調製例3(固溶体顔料含有アニオン性ポリマー粒子の水分散体の調製)
 調製例2と同様の基本操作をして、顔料を含有するアニオン性ポリマー粒子の水分散体(A-1)〔固形分濃度:28.5%、平均粒径77nm〕を得た。
実施例III-1(インクジェット記録用水分散体の製造)
 Harvard Aparatus社製のシリンジポンプ PHD-4400を2台、図2に示すマイクロチャネル(Swagelok社製、クロマトグラフ用継手ロー・デッド・ボリューム型ユニオン・ティーSS-1F0-3GC、内径0.3mm、流路断面積0.071mm2、流路長1.25mm、ステンレス製)をポリエチレンチューブを用いて接続した。2台のシリンジポンプから送られた液がマイクロチャネル内で最小角度180度で送液されて接触するように接続し、混合液は、混合前の液が通過する流路を基準にして最小角度90度でマイクロチャネル内からビーカーに送液されるように接続した。
 次に、調製例3で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体(A-1)50.0gをHarvard Aparatus社製ステンレスシリンジ DCI70-2255に入れ、Harvard Aparatus社製シリンジポンプ PHD-4400に装着した。一方、ポリエチレンイミン(数平均分子量(Mn)70,000、和光純薬工業社製)の0.105重量%水溶液(B-1)50gを同様にして、別のシリンジポンプ PHD-4400に装着した。
 そして、シリンジポンプを同時に起動し、図7において左側から水分散体(A-1)を、右側から水溶液(B-1)を、各々10mL/分の速度で注入した(マイクロチャネル内の孔内線速度は4.7m/秒)。
 得られた分散液80gに、エポキシ系架橋剤(商品名:デナコールEX321、エポキシ当量140、ナガセケムテックス株式会社製)0.4gを加えて、90℃温浴で、撹拌しながら1.5時間保持した。冷却後、顔料の固形分濃度が16%になるまで濃縮し、前記孔径5μmのフィルター(Sartorius Stedim Biotech社製)で濾過して粗大粒子を除き、平均粒径145nmのインクジェット記録用水分散体を得た。
 濾過性評価の結果を表3に示す。濾過性評価における通液量は10gであった。
実施例III-2(インクジェット記録用水分散体の製造)
 実施例III-1において、注入速度を各々60mL/分に変更した(孔内線速度28.3m/秒)以外は実施例III-1と同様の操作を行い、インクジェット記録用水分散体を得た。濾過性評価における通液量は20gであった。
実施例III-3(インクジェット記録用水分散体の製造)
 実施例III-1において、調製例3で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体(A-1)の注入速度を60mL/分、ポリエチレンイミン水溶液(B-1)の注入速度を40mL/分に変更した(孔内線速度23.6m/秒)以外は実施例III-1と同様の操作を行い、インクジェット記録用水分散体を得た。濾過性評価における通液量は25g以上(25g全量通液)であった。
実施例III-4(インクジェット記録用水分散体の製造)
 調製例3で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体(A-1)をイオン交換水で15.0重量%に希釈したものを使用し、ポリエチレンイミン水溶液(B-1)の濃度を0.055重量%とした以外は実施例III-1と同様の操作を行い、インクジェット記録用水分散体を得た。濾過性評価における通液量は25g以上(25g全量通液)であった。
実施例III-5(インクジェット記録用水分散体の製造)
 実施例III-2において、ポリエチレンイミンを数平均分子量(Mn)10,000のもの(和光純薬工業株式会社製)に変更した以外は実施例III-2と同様の操作を行い、インクジェット記録用水分散体を得た。濾過性評価における通液量は25g以上(25g全量通液)であった。
実施例III-6(インクジェット記録用水分散体の製造)
 実施例III-1で用いたポリエチレンイミンを数平均分子量(Mn)1,800のもの(和光純薬工業株式会社製)に変更し、濃度を0.070%に変更した以外は実施例III-1と同様の操作を行い、インクジェット記録用水分散体を得た。濾過性評価における通液量は25g以上(25g全量通液)であった。
実施例III-7(インクジェット記録用水分散体の製造)
 実施例III-1で用いたマイクロチャネルをジーエルサイエンス社製のマイクロボリュームコネクターMY1XCS6(Y型、流路断面積0.018mm2、流路長1.25mm)に変更した(孔内線速度18.9m/秒)以外は実施例III-1と同様の操作を行い、インクジェット記録用水分散体を得た。濾過性評価における通液量は25g以上(25g全量通液)であった。
実施例III-8(インクジェット記録用水分散体の製造)
 実施例III-1のポリエチレンイミン水溶液(B-1)の濃度を0.210重量%とし、注入速度を各々40mL/分に変更した(孔内線速度18.9m/秒)以外は実施例III-1と同様の操作を行い、インクジェット記録用水分散体を得た。濾過性評価における通液量は5gであった。
実施例III-9(インクジェット記録用水分散体の製造)
 実施例III-1で用いたマイクロチャネルを株式会社山武製のマイクロミキサーYM-2(流路断面積0.126mm2、流路長約8mm、ステンレス製)に変更し、注入速度を各々80mL/分に変更した(孔内線速度21.2m/秒)以外は実施例III-1と同様の操作を行い、インクジェット記録用水分散体を得た。濾過性評価における通液量は5gであった。
比較例III-1(インクジェット記録用水分散体の製造)
 調製例3で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体(A-1)をイオン交換水で希釈し、固形分濃度を20重量%に調整した以外は実施例III-1と同様の操作を行い、インクジェット記録用水分散体を得た。濾過性評価における通液量は25g以上(25g全量通液)であった。
比較例III-2(インクジェット記録用水分散体の製造)
 調製例3で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体(A-1)50.0gと、ポリエチレンイミンの0.105重量%水溶液50.0gをビーカーに入れ(ポリエチレンイミンのカチオン性基の量は、該アニオン性有機顔料粒子のアニオン性基の量に対して15モル%)、マグネティックスターラーを用いて混合したが、粗大な凝集物が多く濾過ができなかった。
比較例III-3(インクジェット記録用水分散体の製造)
 実施例III-1の注入速度を各々2mL/分に変更した(孔内線速度0.9m/秒)以外は実施例III-1と同様の操作を行ったが、粗大な凝集物が多く濾過ができなかった。
比較例III-4(インクジェット記録用水分散体の製造)
 実施例III-2のポリエチレンイミン水溶液(B-1)をイオン交換水に変更した以外は実施例III-2と同様の操作を行い、インクジェット記録用水分散体を得た。濾過性評価における通液量は25g以上(25g全量通液)であった。
比較例III-5(インクジェット記録用水分散体の製造)
 実施例III-1のマイクロチャネルをマイクロ化学技研株式会社製、マイクロ化学チップICC-SY-10(流路断面積0.004mm2、流路長80mm)に変更し、注入速度を各々0.3mL/分に変更した(孔内線速度2.0m/秒)以外は実施例III-1と同様の操作を行ったが、流路内で凝集物が生成し、流路が閉塞したため、水分散体を得ることができなかった。
実施例III-10〔水系インクの製造〕
 1,2-ヘキサンジオール(東京化成工業株式会社製)2.0部、2-ピロリドン(和光純薬株式会社製)2.0部、サーフィノール465(日信化学工業株式会社製)0.5部、オルフィンE1010(日信化学工業株式会社製)0.5部、グリセリン(花王株式会社製)2.0部、トリエチレングリコールモノブチルエーテル(商品名:ブチルトリグリコール、日本乳化剤株式会社製)10.0部、プロキセルXL2(アビシア株式会社製)0.3部、及びイオン交換水をマグネチックスターラーで撹拌しながら、混合し、更に室温で15分間撹拌して、混合溶液を得た。ここでイオン交換水の配合量は、混合溶液と実施例III-1で得られたインクジェット記録用水分散体を加えた全量が100部となるように調整した量である。
 次に実施例III-1で得られたインクジェット記録用水分散体62.5部(顔料分換算10.0部(水系インク中))をマグネチック・スターラーで撹拌しながら、前記混合溶液を添加し、前記孔径5μmのフィルターで濾過し、水系インクを得た。結果を表3に示す。
実施例III-11~18、比較例III-6~9〔水系インクの製造〕
 実施例III-2~III-9及び比較例III-1~III-4で得られたインクジェット記録用水分散体を用いて、表3に示すように組み合わせた以外は、実施例III-10と同様にして水系インクを得た。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、実施例III-1~III-9の水分散体の濾過性、及び実施例III-10~III-18の水系インクの印字濃度は、比較例の水分散体の濾過性、及び水系インクの印字濃度に比べていずれもが優れており、これらの性能を両立するものであることが分かる。
実施例IV-1(インクジェット記録用水分散体の製造)
 調製例2で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体50.0gを100mlトールビーカーに入れ、ステータ外部に内径0.7mmのステンレスチューブを接着したバイオミキサー(株式会社日本精機製作所、型番:BM-2、ジェネレーターシャフト型番:NS-10、ロータ直径8mm、ステータの内周面とロータの外周面との隙間0.14mm)を設置し、5℃の水浴に漬け、回転数20000回転/分にて撹拌しながら、ポリエチレンイミン(数平均分子量約10,000)(和光純薬工業株式会社製)の0.45重量%水溶液6.1gを3.5ml/分の速度で注入した。得られた分散液を前記孔径5μmのフィルター(Sartorius Stedim Biotech社製)で濾過して粗大粒子を除いた。
 得られた分散液に、エポキシ系架橋剤(商品名:デナコールEX321、エポキシ当量140、ナガセケムテックス株式会社製)0.31gを加えて、90℃温浴で、撹拌しながら1.5時間保持した。冷却後、前記孔径5μmのフィルターで濾過して粗大粒子を除き、平均粒径115nmの顔料含有ポリマー粒子を含むインクジェット記録用水分散体を得た。濾過性の評価結果を表4に示す。
 なお、剪断速度は、(0.008(m)×3.14)×333(回転/秒)=8.4(m/秒)であり、カチオン性ポリマーを添加して接触させる位置は(ステンレスチューブの接液面のロータ回転軸の中心からの距離)/(ロータ半径)=6mm/4mm、ロータ回転軸の中心から、ロータ半径の1.5倍の半径の円を底面とする円柱内であった。
実施例IV-2(インクジェット記録用水分散体の製造)
 実施例IV-1のバイオミキサーの回転数を10000回転/分にした以外は実施例IV-1と同様に操作を行い、平均粒径116nmの顔料含有ポリマー粒子を含むインクジェット記録用水分散体を得た。
実施例IV-3(インクジェット記録用水分散体の製造)
 実施例IV-1のポリエチレンイミン(数平均分子量約10,000)(和光純薬工業株式会社製)の0.45重量%水溶液を、0.35重量%水溶液14.2gに変更した以外は実施例IV-1と同様に操作を行い、平均粒径125nmの顔料含有ポリマー粒子を含むインクジェット記録用水分散体を得た。
実施例IV-4(インクジェット記録用水分散体の製造)
 実施例IV-1のバイオミキサーに替えて、ホモミキサー(プライミクス株式会社製、型番:TKホモミクサー、回転部はTKロボミックスを使用、回転数:7500rpm、ロータ径:26mm、ステータの内周面とロータの外周面との隙間1.3mm)を用いた以外は、実施例IV-1と同様に操作を行い、平均粒径105nmの顔料含有ポリマー粒子を含むインクジェット記録用水分散体を得た。
 なお、剪断速度は、(0.026(m)×3.14)×125(回転/秒)=10.2(m/秒)であり、カチオン性ポリマーを添加して接触させる位置は(ステンレスチューブの接液面のロータ回転軸の中心からの距離)/(ロータ半径)=18mm/13mm、ロータ回転軸の中心から、ロータ半径の1.38倍の半径の円を底面とする円柱内であった。
比較例IV-1(インクジェット記録用水分散体の製造)
 実施例IV-1のバイオミキサーの回転数を2000回転/分にした以外は実施例IV-1と同様に操作を行ったが、濾過性が悪く、評価可能な量の色材を得ることはできなかった。
比較例IV-2(インクジェット記録用水分散体の製造)
 実施例IV-1のバイオミキサーに替えて、ディスパ(プライミクス株式会社製、型番:TKホモディスパ2.5型、回転数:3000rpm、翼径:28mm)を用いた以外は、実施例IV-1と同様に操作を行い、平均粒径96nmの顔料含有ポリマー粒子を含むインクジェット記録用水分散体を得た。
 なお、剪断速度は、(0.028(m)×3.14)×50(回転/秒)=4.4(m/秒)であり、カチオン性ポリマーを添加して接触させる位置は(ステンレスチューブの接液面の回転翼回転軸の中心からの距離)/(回転翼半径)=20mm/14mm、回転翼回転軸の中心から、回転翼半径の1.43倍の半径の円を底面とする円柱内であった。
比較例IV-3(インクジェット記録用水分散体の製造)
 実施例IV-1のバイオミキサーに替えて、ビーズミル型分散機(アイメックス株式会社)製サンドミル(型番:サンドグラインダー6TSG-1/4)、メディア粒子:ジルコニアビーズ、粒径:0.05mm、ビーズ充填率:65%、回転数:1500rpm、翼径:70mm)を用い、架橋反応前の濾過の前処理として遠心分離機(6000G、20分)により不純物を除去する工程を加えた以外は、実施例IV-1と同様に操作を行い、平均粒径85nmの顔料含有ポリマー粒子を含むインクジェット記録用水分散体を得た。
 なお、剪断速度は、(0.7(m)×3.14)×25(回転/秒)=5.5(m/秒)であり、カチオン性ポリマーを添加して接触させる位置は(ステンレスチューブの接液面の回転翼回転軸の中心からの距離)/(回転翼半径)=45mm/35mm、回転翼回転軸の中心から、回転翼半径の1.29倍の半径の円を底面とする円柱内であった。
比較例IV-4(インクジェット記録用水分散体の製造)
 実施例IV-1のバイオミキサーに替えて、マグネティック・スターラー(アズワン社製、型番:REXIM RS-6A、回転数:300rpm、テフロン(登録商標)撹拌子:20mm×径8mm)を用いた以外は、実施例IV-1と同様に操作を行ったが、濾過性が悪く、評価可能な量の色材を得ることはできなかった。
 なお、剪断速度は、(0.02(m)×3.14)×5(回転/秒)=0.3(m/秒)であり、カチオン性ポリマーを添加して接触させる位置は(ステンレスチューブの接液面の撹拌子回転軸の中心からの距離)/(撹拌子の長さ/2)=12.5mm/10mm、撹拌子回転軸の中心から、撹拌子回転半径の1.25倍の半径の円を底面とする円柱内であった。
比較例IV-5(インクジェット記録用水分散体の製造)
 実施例IV-1のバイオミキサーに替えて、次の方法で混合し、架橋反応前の濾過の前処理として遠心分離機(6000G、20分)により不純物を除去する工程を加えた以外は、実施例IV-1と同様に操作を行い、平均粒径88nmの顔料含有ポリマー粒子を含むインクジェット記録用水分散体を得た。
 混合方法:比較例4と同様にマグネティック・スターラーで攪拌しながら、調製例2で得られた顔料含有アニオン性ポリマー粒子の水分散体500gに0.45重量%ポリエチレンイミン(数平均分子量約10,000)水溶液61gを加え、マイクロフルイダイザー(Microfluidics 社製、高圧ホモジナイザー、商品名、型式M-140K)を用いて、150MPaの圧力で5パス分散処理した。
比較例IV-6(インクジェット記録用水分散体の製造)
 実施例IV-1のバイオミキサーに替えて、次の方法で混合した以外は、実施例IV-1と同様に操作を行ったが、濾過性が悪く、評価可能な量の色材を得ることはできなかった。
 混合方法:調製例2で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体50.0gを100mlスクリュー管に入れ、さらに0.45重量%ポリエチレンイミン(数平均分子量約10,000)(和光純薬工業株式会社製)水溶液6.1gを加えて、フタをして、約1分間手で振って混合した。
比較例IV-7(インクジェット記録用水分散体の製造)
 実施例IV-1の0.45重量%ポリエチレンイミン(数平均分子量約10,000)(和光純薬工業株式会社製)水溶液6.1gをイオン交換水6.1gに替えた以外は実施例IV-1と同様に操作を行った。平均粒径83nmの顔料含有ポリマー粒子を含むインクジェット記録用水分散体を得た。
実施例IV-5〔インクの製造〕
 1,2-ヘキサンジオール(東京化成工業株式会社製)2.0部、2-ピロリドン(和光純薬株式会社製)2.0部、サーフィノール465(日信化学工業株式会社製)0.5部、オルフィンE1010(日信化学工業株式会社製)0.5部、グリセリン(花王株式会社製)2.0部、トリエチレングリコールモノブチルエーテル(商品名:ブチルトリグリコール、日本乳化剤株式会社製)10.0部、プロキセルXL2(アビシア株式会社製)0.3部、及びイオン交換水をマグネチックスターラーで撹拌しながら、混合し、更に室温で15分間撹拌して、混合溶液を得た。ここでイオン交換水の配合量は、混合溶液と実施例IV-1で得られたインクジェット記録用水分散体を加えた全量が100部となるように調整した量である。
 次に実施例IV-1で得られたインクジェット記録用水分散体41.7部(顔料分換算10.0部)をマグネチック・スターラーで撹拌しながら、前記混合溶液を添加し、前記孔径5μmのフィルターで濾過し、水系インクを得た。印字濃度の評価結果を表4に示す。
実施例IV-6~IV-8、及び比較例IV-8~IV-14〔インクの製造〕
 実施例IV-5の実施例IV-1で得られたインクジェット記録用水分散体に替えて、表4に示すように実施例IV-2~4及び比較例1~7で得られたインクジェット記録用水分散体を用いた以外は、実施例IV-5と同様にして水系インクを得た。
Figure JPOXMLDOC01-appb-T000004
 表4から、実施例IV-1~IV-4の水分散体は、比較例IV-1、IV-2、IV-4、IV-6の水分散体に比べて濾過性が優れており、また、実施例IV-5~IV-8のインクは、比較例IV-9、IV-10、IV-12、IV-14のインクに比べて、印字濃度が優れており、実施例の水分散体及び水系インクは印字濃度及び濾過性に優れていることが分かる。
実施例V-1(インクジェット記録用水分散体(3)の調製)
 工程(a):調製例2で得られた固溶体顔料含有アニオン性ポリマー粒子の水分散体50部を容量100mlのガラス製ビーカーに入れ、20℃で攪拌しながら1N水酸化ナトリウム水溶液を加え、系中のpHをpHメーター(商品名:F-23型、株式会社堀場製作所製)で確認しながら水分散体のpHを11に調整した。
 工程(b):次に、カチオン性ポリマーとしてポリエチレンイミン(商品名:エポミンSP-200、数平均分子量(Mn)1万、株式会社日本触媒製)の固形分濃度1%水溶液を2.8部添加した。10分間攪拌した後、陽イオン交換樹脂(商品名:アンバーライトIR120BNA、ローム・アンド・ハース社製)を3.5部添加した。系中のpHを前記pHメーター(商品名:F-23型)で確認しながら水分散体のpHが8になるまでさらに攪拌し、pHが8に達したら直ちに、目開き200メッシュの金属製の網を用いて陽イオン交換樹脂を分離し、顔料を含有するアニオン性ポリマー粒子とポリエチレンイミンを含有するインクジェット記録用水分散体(2)を得た。
 工程(c):工程(b)で得られた水分散体(2)40gに、エポキシ系架橋剤(商品名:デナコールEX321、エポキシ当量140、ナガセケムテックス株式会社製)0.47gとイオン交換水1.07gを加えて、90℃温浴で、撹拌しながら1時間保持した。冷却後、前記フィルター(Sartorius Stedim Biotech社製、孔径:5μm)でろ過して粗大粒子を除き、平均粒径147nmの顔料を含有するアニオン性架橋ポリマー粒子(前記式(3)による架橋ポリマーの架橋率:56.8モル%)とポリエチレンイミンを含有するインクジェット記録用水分散体(3)を得た。
実施例V-2(インクジェット記録用水分散体(4)の調製)
 実施例V-1の工程(b)におけるポリエチレンイミンに代えて、ポリアリルアミン(商品名:PAA-15、分子量1.5万、日東紡社製)の固形分濃度1%水溶液を2.5部添加した以外は実施例V-1と同様にして、顔料を含有するアニオン性ポリマー粒子とポリアリルアミンを含有するインクジェット記録用水分散体(4)を得た。
実施例V-3(インクジェット記録用水分散体(5)の調製)
 実施例V-1の工程(b)における陽イオン交換樹脂に代えて、1N塩酸水溶液を系中のpHが8になるまで添加した以外は実施例V-1と同様にして、顔料を含有するアニオン性ポリマー粒子とポリエチレンイミンを含有するインクジェット記録用水分散体(5)を得た。
実施例V-4(インクジェット記録用水分散体(6)の調製)
 実施例V-1の工程(a)における1N水酸化ナトリウム水溶液を系中のpHが9に達するまで添加した以外は実施例V-1と同様にして、顔料を含有するアニオン性ポリマー粒子とポリエチレンイミンを含有するインクジェット記録用水分散体(6)を得た。
比較例V-1(インクジェット記録用水分散体(7)の調製)
 実施例V-1の工程(a)及び工程(b)において、1N水酸化ナトリウム水溶液を用いず、系中のpHの調整を行わなかった以外は、実施例V-1と同様にして、顔料を含有するアニオン性ポリマー粒子とポリエチレンイミンを含有するインクジェット記録用水分散体(7)を得た。
比較例V-2(インクジェット記録用水分散体(8)の調製)
 実施例V-1の工程(a)において、ポリエチレンイミンを添加しなかった以外は、実施例V-1と同様にして、顔料を含有するアニオン性ポリマー粒子を含有するインクジェット記録用水分散体(8)を得た。
比較例V-3(インクジェット記録用水分散体(9)の調製)
 実施例V-1の工程(b)において、陽イオン交換樹脂を用いず、系中のpHの調整を行わなかった以外は、実施例V-1と同様にして、顔料を含有するアニオン性ポリマー粒子とポリエチレンイミンを含有するインクジェット記録用水分散体(9)を得た。
比較例V-4(インクジェット記録用水分散体(10)の調製)
 実施例V-1の工程(a)及び工程(b)において、陽イオン交換樹脂を添加した後、系中のpHが5になるまで攪拌し、pHが5に達したら直ちに、目開き200メッシュの金属製の網を用いて陽イオン交換樹脂を分離した以外は、実施例V-1と同様にして、顔料を含有するアニオン性ポリマー粒子とポリエチレンイミンを含有するインクジェット記録用水分散体(10)を得た。
比較例V-5(インクジェット記録用水分散体(11)の調製)
 実施例V-1の工程(a)における1N水酸化ナトリウム水溶液を系中のpHが8に達するまで添加し、実施例V-1の工程(b)において、陽イオン交換樹脂を用いず、系中のpHの調整を行わなかった以外は、実施例V-1と同様にして、顔料を含有するアニオン性ポリマー粒子とポリエチレンイミンを含有するインクジェット記録用水分散体(11)を得た。
配合例(水系インクの製造)
 実施例V-1~4及び比較例1及び3~5で得られた、顔料を含有するアニオン性ポリマー粒子とカチオン性ポリマーを含有するインクジェット記録用水分散体(3)~(7)、(9)及び(10)、及び比較例2で得られた、顔料を含有するアニオン性ポリマー粒子を含有するインクジェット記録用水分散体(8)を固形分換算で12.5部、顔料分換算で10.0部となるように用意した。
 1,2-ヘキサンジオール(東京化成工業株式会社製)2.0部、2-ピロリドン(和光純薬株式会社製)2.0部、サーフィノール465(日信化学工業株式会社製)0.5部、オルフィンE1010(日信化学工業株式会社製)0.5部、グリセリン(花王株式会社製)2.0部、トリエチレングリコールモノブチルエーテル(商品名:ブチルトリグリコール、日本乳化剤株式会社製)10.0部、プロキセルXL2(アビシア株式会社製)0.3部、及びイオン交換水をマグネチックスターラーで撹拌しながら、混合し、更に室温で15分間攪拌して、混合溶液を得た。ここでイオン交換水の配合量は、混合溶液と前記のインクジェット記録用水分散体(3)~(11)を加えた全量が100部となるように調整した量である。
 次に予め用意したインクジェット記録用水分散体(3)~(11)をマグネチックスターラーで撹拌しながら、前記混合溶液を添加し、1.2μmのフィルター(酢酸セルロース膜、Sartorius Stedim Biotech社製)で濾過し、水系インクを得た。
Figure JPOXMLDOC01-appb-T000005
 表5から、実施例V-1~V-4の水分散体及びインクは、比較例V-1~V-5の水分散体及びインクに比べて、濾過性、保存安定性、及び印字濃度に優れていることが分かる。
 本発明のインクジェット記録用水分散体及びそれを含有する水系インクは、印字濃度に優れ、濾過性、保存安定性等も優れている。そのため、インクジェット記録用として、広範囲で好適に使用することができる。

Claims (20)

  1.  アニオン性有機顔料粒子とカチオン性ポリマーとを含む連鎖状粒子を含有し、該連鎖状粒子を構成する有機顔料一次粒子の全顔料一次粒子に占める割合が10個数%以上である、インクジェット記録用水分散体。
  2.  アニオン性有機顔料粒子が有機顔料を含有する水不溶性アニオン性ポリマー粒子である、請求項1に記載のインクジェット記録用水分散体。
  3.  動的光散乱法による、アニオン性有機顔料粒子の平均粒径に対する前記連鎖状粒子を含有する水分散体中の粒子の平均粒径の比(連鎖状粒子を含有する水分散体中の粒子の平均粒径/アニオン性有機顔料粒子の平均粒径)が1.5~5.0である、請求項1又は2に記載のインクジェット記録用水分散体。
  4.  水不溶性アニオン性ポリマー粒子を構成するポリマーが架橋剤によって架橋されたものである、請求項2又は3に記載のインクジェット記録用水分散体。
  5.  水不溶性アニオン性ポリマー粒子を構成するポリマーが、ベンジルメタクリレート及び/又はベンジルアクリレートを由来とする構成単位を30~80重量%含むポリマーである、請求項2~4のいずれかに記載のインクジェット記録用水分散体。
  6.  水不溶性アニオン性ポリマー粒子を構成するポリマーが、全て同一の重合性基を有するモノマーを由来とする構成単位からなるポリマーである、請求項2~5のいずれかに記載のインクジェット記録用水分散体。
  7.  重合性基を有するモノマーの重合性基がメタクリロイル基である、請求項6に記載のインクジェット記録用水分散体。
  8.  カチオン性ポリマーが水溶性カチオン性ポリマーである、請求項1~7のいずれかに記載のインクジェット記録用水分散体。
  9.  水溶性カチオン性ポリマーがポリエチレンイミンである、請求項8に記載のインクジェット記録用水分散体。
  10.  有機顔料がジクロロキナクリドンを含有する固溶体顔料である、請求項1~9のいずれかに記載のインクジェット記録用水分散体。
  11.  固溶体顔料がジクロロキナクリドン及び無置換キナクリドンからなる、請求項10に記載のインクジェット記録用水分散体。
  12.  請求項1~11のいずれかに記載の水分散体を含有する、インクジェット記録用水系インク。
  13.  下記工程(I)及び(II)を含む、請求項1に記載のインクジェット記録用水分散体の製造方法。
     工程(I):アニオン性有機顔料粒子、カチオン性ポリマー及び水を含有する混合液を調製した後、水を除去して粘稠物又は固形物を得る工程
     工程(II):工程(I)で得られた粘稠物又は固形物と水を混合して水分散体(A)を得る工程
  14.  アニオン性有機顔料粒子を含有する水分散体(A)とカチオン性ポリマーを含有する水溶液(B)を、流路断面積が0.001~0.5mm2で流路長が0.1~10mmである流路内で混合する工程を有する方法であって、該水分散体(A)と該水溶液(B)が合流する位置における孔内の線速度が1m/秒以上であり、該カチオン性ポリマーのカチオン性基の量が、該アニオン性有機顔料粒子のアニオン性基の量に対して5~50モル%である、請求項1に記載のインクジェット記録用水分散体の製造方法。
  15.  有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散液に、ロータ・ステータ構造を有する回転剪断型撹拌装置を用いて、剪断速度1m/秒以上の剪断条件下でカチオン性ポリマーを添加する工程を有する、請求項2に記載のインクジェット記録用水分散体の製造方法であって、
     撹拌装置のロータ回転軸の中心から、ロータ半径の2倍の半径の円を底面とする円柱内の領域で、有機顔料を含有する水不溶性アニオン性ポリマー粒子を含有する水分散液に、カチオン性ポリマーを添加して接触させる、インクジェット記録用水分散体の製造方法。
  16.  カチオン性ポリマーを添加する工程において、カチオン性ポリマーに対する有機顔料を含有する水不溶性アニオン性ポリマー粒子の重量比〔有機顔料を含有する水不溶性アニオン性ポリマー粒子/カチオン性ポリマー〕が100~1000である、請求項15に記載のインクジェット記録用水分散体の製造方法。
  17.  ステータの内周面とロータの外周面との隙間が50μm以下である、請求項15又は16に記載のインクジェット記録用水分散体の製造方法。
  18.  下記工程(a)及び(b)を含む請求項2に記載のインクジェット記録用水分散体の製造方法。
     工程(a):有機顔料を含有する水不溶性アニオン性ポリマー粒子を含む水分散体のpHを8~12に調整した後、カチオン性ポリマーを添加する工程
     工程(b):工程(a)で得られた水分散体のpHを下げて、pHを7~9に調整する工程
  19.  工程(b)におけるpHの調整を、陽イオン交換樹脂との接触処理により行う、請求項18に記載のインクジェット記録用水分散体の製造方法。
  20.  請求項13~19のいずれかに記載の製造方法で得られるインクジェット記録用水分散体を含有する、インクジェット記録用水系インク。
PCT/JP2009/069730 2008-11-25 2009-11-20 インクジェット記録用水系インク WO2010061798A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09829046A EP2351800A1 (en) 2008-11-25 2009-11-20 Aqueous ink for inkjet recording
US13/131,221 US8394871B2 (en) 2008-11-25 2009-11-20 Aqueous ink for inkjet recording
CN2009801471413A CN102224206B (zh) 2008-11-25 2009-11-20 喷墨记录用水性油墨

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008-299491 2008-11-25
JP2008299491A JP5342856B2 (ja) 2008-11-25 2008-11-25 インクジェット記録用水分散体の製造方法
JP2009-118468 2009-05-15
JP2009118468A JP2010265398A (ja) 2009-05-15 2009-05-15 インクジェット記録用水系インク
JP2009134413A JP2010280792A (ja) 2009-06-03 2009-06-03 インクジェット記録用水系インク
JP2009-134413 2009-06-03
JP2009-164736 2009-07-13
JP2009164736A JP5438406B2 (ja) 2009-07-13 2009-07-13 インクジェット記録用水分散体の製造方法
JP2009254289A JP5438467B2 (ja) 2009-11-05 2009-11-05 インクジェット記録用水分散体の製造方法
JP2009-254289 2009-11-05

Publications (1)

Publication Number Publication Date
WO2010061798A1 true WO2010061798A1 (ja) 2010-06-03

Family

ID=42225674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069730 WO2010061798A1 (ja) 2008-11-25 2009-11-20 インクジェット記録用水系インク

Country Status (4)

Country Link
US (1) US8394871B2 (ja)
EP (1) EP2351800A1 (ja)
CN (1) CN102224206B (ja)
WO (1) WO2010061798A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067580A3 (en) * 2009-12-01 2011-11-03 Fujifilm Imaging Colorants Limited Process for preparing a dispersion of a particulate solid
JP2012001675A (ja) * 2010-06-18 2012-01-05 Kao Corp インクジェット記録用水系分散体
US8258231B2 (en) 2008-07-23 2012-09-04 Fujifilm Imaging Colorants Limited Process for preparing a dispersion of a particulate solid

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160023704A (ko) 2013-06-25 2016-03-03 카오카부시키가이샤 잉크젯 기록용 수계 잉크의 제조 방법
US9376591B2 (en) * 2014-02-19 2016-06-28 Golden Artist Colors, Inc. Water color paint system
AR100280A1 (es) * 2014-05-22 2016-09-21 Rohm & Haas Aglutinantes poliméricos para impresoras de chorro de tinta
KR101629329B1 (ko) * 2014-12-05 2016-06-10 엘지전자 주식회사 미네랄수 공급모듈
JP6695041B2 (ja) * 2015-09-15 2020-05-20 パナソニックIpマネジメント株式会社 インクジェット印刷用インク
JP7252707B2 (ja) * 2017-12-27 2023-04-05 花王株式会社 水系インク

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060352A (ja) 1996-08-19 1998-03-03 Kao Corp 水系顔料インク
JP2002347338A (ja) * 2000-09-14 2002-12-04 Seiko Epson Corp インクジェット記録方法、並びに、それに用いるインクジェト記録用インクセット
JP2004123865A (ja) 2002-10-01 2004-04-22 Dainichiseika Color & Chem Mfg Co Ltd 水性顔料インク
JP2004149633A (ja) 2002-10-29 2004-05-27 Ricoh Co Ltd 顔料系インクジェット用インク及び該インクの製造方法
JP2005162899A (ja) * 2003-12-03 2005-06-23 Canon Inc インクジェット記録用インク及び記録方法
JP2006082073A (ja) 2004-08-20 2006-03-30 Tosoh Corp 複合粒子の製造方法および複合粒子
JP2006169325A (ja) 2004-12-14 2006-06-29 Sony Corp インクジェット用記録液、インクカートリッジ、およびインクジェット記録方法
JP2006301307A (ja) * 2005-04-20 2006-11-02 Seiko Epson Corp インクジェット方式カラーフィルタ用樹脂組成物、カラーフィルタおよびカラーフィルタの製造方法
WO2007013599A1 (ja) * 2005-07-29 2007-02-01 Fujifilm Corporation 有機粒子の製造方法、有機粒子分散組成物の製造方法、およびそれにより得られる有機粒子分散組成物を含有するインクジェット記録用インク
JP2007253360A (ja) * 2006-03-20 2007-10-04 Kao Corp インクジェット印刷方法
JP2008502790A (ja) * 2004-06-09 2008-01-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高光学濃度インクジェットインク用添加剤
JP2008038090A (ja) 2006-08-09 2008-02-21 Kao Corp インクジェット記録用水系インク
JP2008081545A (ja) * 2006-09-26 2008-04-10 Dainippon Ink & Chem Inc 水性着色材料及び粉末状着色材料
JP2008150535A (ja) * 2006-12-19 2008-07-03 Kao Corp インクジェット記録用水系インク
JP2009197097A (ja) 2008-02-20 2009-09-03 Fujifilm Corp 微粒子の形成方法および形成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455167A (en) * 1983-07-05 1984-06-19 Mpd Technology Corporation Nickel-zinc dust-iron-nickel powder pigment system
US6864302B2 (en) * 2000-09-14 2005-03-08 Seiko Epson Corporation Ink jet recording method and ink set therefor
US6641656B2 (en) * 2001-10-17 2003-11-04 Cabot Corporation Dispersions comprising modified pigments
WO2003074609A1 (fr) * 2002-03-06 2003-09-12 Canon Kabushiki Kaisha Compositions de dispersion contenant des substances fonctionnelles, procede de formation d'images a l'aide de ces compositions et materiel de formation d'images
JP2003301141A (ja) * 2002-04-11 2003-10-21 Sumitomo Metal Mining Co Ltd 低透過率透明導電層形成用塗液及び表示装置前面板
JP2004331946A (ja) * 2002-12-27 2004-11-25 Canon Inc 分散性色材とその製造方法、それを用いた水性インクジェット記録用インク、インクジェット記録装置、インクジェット記録方法、及びインクジェット記録画像
EP1871846A1 (en) * 2005-02-11 2008-01-02 Cabot Corporation Inkjet inks comprising modified pigments having attached polymeric groups

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060352A (ja) 1996-08-19 1998-03-03 Kao Corp 水系顔料インク
JP2002347338A (ja) * 2000-09-14 2002-12-04 Seiko Epson Corp インクジェット記録方法、並びに、それに用いるインクジェト記録用インクセット
JP2004123865A (ja) 2002-10-01 2004-04-22 Dainichiseika Color & Chem Mfg Co Ltd 水性顔料インク
JP2004149633A (ja) 2002-10-29 2004-05-27 Ricoh Co Ltd 顔料系インクジェット用インク及び該インクの製造方法
JP2005162899A (ja) * 2003-12-03 2005-06-23 Canon Inc インクジェット記録用インク及び記録方法
JP2008502790A (ja) * 2004-06-09 2008-01-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高光学濃度インクジェットインク用添加剤
JP2006082073A (ja) 2004-08-20 2006-03-30 Tosoh Corp 複合粒子の製造方法および複合粒子
JP2006169325A (ja) 2004-12-14 2006-06-29 Sony Corp インクジェット用記録液、インクカートリッジ、およびインクジェット記録方法
JP2006301307A (ja) * 2005-04-20 2006-11-02 Seiko Epson Corp インクジェット方式カラーフィルタ用樹脂組成物、カラーフィルタおよびカラーフィルタの製造方法
WO2007013599A1 (ja) * 2005-07-29 2007-02-01 Fujifilm Corporation 有機粒子の製造方法、有機粒子分散組成物の製造方法、およびそれにより得られる有機粒子分散組成物を含有するインクジェット記録用インク
JP2007253360A (ja) * 2006-03-20 2007-10-04 Kao Corp インクジェット印刷方法
JP2008038090A (ja) 2006-08-09 2008-02-21 Kao Corp インクジェット記録用水系インク
JP2008081545A (ja) * 2006-09-26 2008-04-10 Dainippon Ink & Chem Inc 水性着色材料及び粉末状着色材料
JP2008150535A (ja) * 2006-12-19 2008-07-03 Kao Corp インクジェット記録用水系インク
JP2009197097A (ja) 2008-02-20 2009-09-03 Fujifilm Corp 微粒子の形成方法および形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258231B2 (en) 2008-07-23 2012-09-04 Fujifilm Imaging Colorants Limited Process for preparing a dispersion of a particulate solid
WO2011067580A3 (en) * 2009-12-01 2011-11-03 Fujifilm Imaging Colorants Limited Process for preparing a dispersion of a particulate solid
JP2012001675A (ja) * 2010-06-18 2012-01-05 Kao Corp インクジェット記録用水系分散体

Also Published As

Publication number Publication date
US8394871B2 (en) 2013-03-12
CN102224206B (zh) 2013-11-13
CN102224206A (zh) 2011-10-19
US20110263752A1 (en) 2011-10-27
EP2351800A1 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
WO2010061798A1 (ja) インクジェット記録用水系インク
KR102194356B1 (ko) 잉크젯 기록용 수계 잉크
JP5426351B2 (ja) インクジェット記録用インクセット
JP5108422B2 (ja) 架橋コアシェルポリマー粒子
JP5872873B2 (ja) インクジェット記録用水系インク及びインクジェット記録方法
JP5763914B2 (ja) インクジェット記録方法
JP5722617B2 (ja) インクジェット記録用着色剤分散体の製造方法
JP2016121237A (ja) インクジェット記録用水系顔料分散体の製造方法
JP5342856B2 (ja) インクジェット記録用水分散体の製造方法
WO2010071177A1 (ja) インクジェット記録用水系インク
JP5764304B2 (ja) インクジェット記録用水系インク
JP5599998B2 (ja) インクジェット記録用水分散体の製造方法
JP5324165B2 (ja) インクジェット記録用水系インク
JP5006027B2 (ja) インクジェット記録用水系インクの製造方法
JP5451057B2 (ja) インクジェット記録用水分散体の製造方法
EP2468523B1 (en) Inkjet recording method
JP5438406B2 (ja) インクジェット記録用水分散体の製造方法
JP5438467B2 (ja) インクジェット記録用水分散体の製造方法
JP5544081B2 (ja) インクジェット記録用水系インク
JP2011127064A (ja) インクジェット記録用水系インク
JP2010280792A (ja) インクジェット記録用水系インク
JP5368874B2 (ja) インクジェット記録用水分散体の製造方法
JP5552294B2 (ja) インクジェット記録用顔料水分散体の製造方法
JP5544094B2 (ja) インクジェット記録用水系インク
JP5718566B2 (ja) インクジェット記録用水系インク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147141.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009829046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13131221

Country of ref document: US