WO2010058991A2 - Method for fabricating a vertically structured, nitride-based light-emitting device - Google Patents

Method for fabricating a vertically structured, nitride-based light-emitting device Download PDF

Info

Publication number
WO2010058991A2
WO2010058991A2 PCT/KR2009/006847 KR2009006847W WO2010058991A2 WO 2010058991 A2 WO2010058991 A2 WO 2010058991A2 KR 2009006847 W KR2009006847 W KR 2009006847W WO 2010058991 A2 WO2010058991 A2 WO 2010058991A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitride
semiconductor layer
substrate
based semiconductor
emitting device
Prior art date
Application number
PCT/KR2009/006847
Other languages
French (fr)
Korean (ko)
Other versions
WO2010058991A3 (en
Inventor
김극
최유항
조수연
박치권
Original Assignee
우리엘에스티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080116385A external-priority patent/KR101012638B1/en
Priority claimed from KR1020080116387A external-priority patent/KR20100057372A/en
Application filed by 우리엘에스티 주식회사 filed Critical 우리엘에스티 주식회사
Publication of WO2010058991A2 publication Critical patent/WO2010058991A2/en
Publication of WO2010058991A3 publication Critical patent/WO2010058991A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the present disclosure relates to a method of manufacturing a vertical nitride based light emitting device as a whole, and more particularly, to a vertical nitride based light emitting device capable of minimizing structural defects of a nitride based semiconductor layer when a substrate and a nitride based semiconductor layer are separated. It relates to a manufacturing method.
  • the nitride-based light emitting device includes a compound semiconductor layer made of Al (x) Ga (y) In (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). It means a light emitting device such as a light emitting diode including.
  • FIG. 1 is a view showing an example of a method of manufacturing a conventional vertical nitride-based semiconductor layer, (a) is a stack of a nitride-based semiconductor layer on the substrate 101, a photolithography process and dry inductively coupled plasma (Dry The trench 103 is formed in the nitride semiconductor layer 102 through an Inductive Coupled Plasma process, and (b) irradiates a laser at an interface between the substrate 101 and the nitride semiconductor layer 102. It shows the process of separation.
  • FIG. 2 is a view showing another example of a conventional method for manufacturing a vertical nitride semiconductor layer, (a) after forming the nitride semiconductor layer 202 and the p-electrode 203 on the substrate 201, A trench 205 in which the photomask 204 is formed through a photolithography process and is used as an etch mask to penetrate through the nitride semiconductor layer 202 and the p-electrode 203 and partially slice the thickness of the substrate 201.
  • (B) is a process of irradiating and separating laser interface at the interface between the nitride-based semiconductor layer 202 and the substrate 201 while filling the trench 205 with the photoresist 206. It is showing.
  • the nitride-based semiconductor layer may be deteriorated by a photolithography process and an etching process for forming a trench, which is a problem that causes cracks in the separation process of the nitride-based semiconductor layer and the substrate. have.
  • a method of preparing a substrate comprising: preparing a substrate; Forming trench lines in the substrate by a laser or diamond cutter; Growing a nitride based semiconductor layer on the substrate; And separating the nitride-based semiconductor layer and the substrate; a method of manufacturing a vertical nitride-based light emitting device is provided.
  • the nitride semiconductor layer is grown to be partitioned by trench lines.
  • preparing a substrate comprising: Growing a nitride based semiconductor layer on the substrate; Forming trench lines in the substrate by a laser or diamond cutter; And separating the nitride-based semiconductor layer and the substrate; a method of manufacturing a vertical nitride-based light emitting device is provided.
  • the trench line is formed through the nitride semiconductor layer.
  • FIG. 1 is a view showing an example of a method of manufacturing a conventional vertical nitride-based semiconductor layer
  • FIG. 2 is a view showing another example of a method of manufacturing a conventional vertical nitride-based semiconductor layer
  • 3 to 8 are views showing an example of the manufacturing process of the vertical nitride-based light emitting device according to the present disclosure
  • FIG. 9 is a photograph showing the experimental results of FIG.
  • FIGS. 10 to 12 are views showing another example of the manufacturing process of the vertical nitride-based light emitting device according to the present disclosure.
  • FIG. 13 is a photograph showing the experimental results of FIG.
  • 3 to 8 illustrate an example of a vertical nitride-based light emitting device manufacturing process according to the present disclosure, preparing a substrate 301, and cutting a laser or diamond on the substrate 301.
  • Forming a trench line 302 by forming a trench line 302, growing a nitride semiconductor layer 310 on the substrate 301, and applying a laser to an interface between the nitride semiconductor layer 310 and the substrate 301. Irradiating to remove the substrate 301 (laser lift off; hereinafter referred to as an 'LLO process').
  • the method may further include forming electrodes 303 and 304 on the nitride based semiconductor layer 310 and attaching the conductive substrate 305 to the electrodes 303 and 304.
  • the substrate 301 serves to provide a growth space for the nitride based semiconductor layer 310, and a sapphire (Al 2 O 3 ) substrate will be mainly used, but the electrical insulating property is not doped with impurities for electrical conductivity. Silicon (Si) substrates, GaAs substrates, MgO substrates and the like may also be used.
  • a substrate in which any one of GaN, InGaN, AlGaN, and AlInGaN are stacked on any one of a sapphire (Al 2 O 3 ) substrate, a silicon (Si) substrate, a GaAs substrate, and an MgO substrate may be used.
  • the substrate 301 is provided to the growth space of the nitride based semiconductor layer 310 and then removed by the LLO process, it is also referred to as a sacrified substrate.
  • the trench line 302 is formed in the substrate 301 in a predetermined width and depth, and is formed by laser irradiation or a diamond cutter.
  • the nitride-based semiconductor layer 310 grown on the substrate 301 is grown only in the region defined by the trench line 302, and one vertical nitride is formed in the region defined by the trench line 302.
  • the light emitting device (hereinafter referred to as a "unit light emitting device”) corresponds.
  • the trench line 302 may be maintained between the neighboring nitride based semiconductor layers 310.
  • the photolithography process and the etching process for forming the trench line 302 between the neighboring nitride-based semiconductor layer 310 can be eliminated, deterioration of the nitride-based semiconductor layer generated during the photolithography process and etching process Can be prevented, and the problem of cracking during the LLO process can be prevented due to deterioration of the nitride based semiconductor layer.
  • FIG. 9 is a photograph showing the results of the experiment of FIG. 4, in which a trench line 302 is formed on a substrate 301, and a nitride-based semiconductor layer 310 is grown on the substrate 301 except for the trench line 302. It can be seen that the trench line 302 is maintained between neighboring nitride-based semiconductor layers 310.
  • the trench lines 302 are formed to have a depth of 5 to 30 ⁇ m and a width of 2 to 7 ⁇ m to maintain the trench lines 302 between neighboring nitride based semiconductor layers 310. It is preferable.
  • the nitride based semiconductor layer 310 grown on the substrate 301 on which the trench lines 302 are formed has a lateral direction along with growth of maintaining the trench lines 302 between the unit light emitting devices and the unit light emitting devices.
  • the width and depth of the trench line 302 may be determined in consideration of the lateral growth thickness.
  • the role of the gas flow passage of the trench line 302 may be considered together.
  • the nitride-based semiconductor layer 310 is composed of GaN
  • some GaN is decomposed into gallium (Ga) and nitrogen gas (N 2 ) during the LLO process
  • the generated nitrogen gas (N 2 ) is a high pressure Since it may act as a factor inducing cracking of the nitride based semiconductor layer 310, the width and depth of the trench line 302 may be determined in consideration of effective emission of nitrogen gas.
  • a cleaning process may be performed on the substrate 301 to remove by-products generated by laser irradiation or diamond cutting.
  • the nitride semiconductor layer 310 is grown on the substrate 301 on which the trench lines 302 are formed, and the n-type semiconductor layer 311, the active layer 312, and the p-type semiconductor layer 313 may be sequentially grown. have.
  • the nitride based semiconductor layer 310 may be formed through a metal organic chemical vapor deposition (MOCVD) or a molecular beam epitaxy (MBE).
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • a buffer layer may be further provided before the n-type semiconductor layer 311 is grown, and an electron blocking layer may be further provided on the p-type semiconductor layer 313.
  • the transparent electrode 303 and the p-electrode 304 may be sequentially provided on the p-type semiconductor layer 313.
  • the reflective electrode may be provided instead of the transparent electrode 303.
  • a conductive substrate 305 is attached on the p-electrode 304.
  • the conductive substrate 305 may be any one of a silicon (Si) substrate, a germanium (Ge) substrate, and a GaAs substrate doped with impurities for electrical conductivity.
  • the LLO process proceeds.
  • the substrate 301 is separated from the nitride based semiconductor layer 310 by irradiating a laser on the interface between the nitride based semiconductor layer 310 and the substrate 301.
  • the n-electrode 306 is formed on the n-type semiconductor layer 311, and the conductive substrate 305 is cut along the trench line 302 to manufacture a plurality of unit light emitting devices. Is completed.
  • FIGS. 10 to 12 are views showing another example of a vertical nitride-based light emitting device manufacturing process according to the present disclosure, preparing a substrate 401, growing a nitride-based semiconductor layer 410 on the substrate 401
  • the method includes forming a trench line 402 in the substrate 401 by a laser or diamond cutter, and separating the nitride based semiconductor layer 410 and the substrate 401 by an LLO process.
  • the method may further include forming electrodes 403 and 404 on the nitride based semiconductor layer 410 and attaching the conductive substrate 401 to the electrodes 403 and 404.
  • the trench line 402 is formed on the substrate 401 by a laser or diamond cutter after the nitride-based semiconductor layer 410 is grown. Since the excluded configuration is substantially the same as the example described above, a detailed description of the configuration except for the formation of the trench line 402 will be replaced with the foregoing description.
  • the trench line 402 is formed by vertically penetrating the grown nitride-based semiconductor layer 410 by laser irradiation or a diamond cutter, and the substrate 401 is excavated by a predetermined width and depth. Is formed.
  • the nitride based semiconductor layer may be generated by the photolithography process and the etching process. Deterioration of the 410 may be prevented and cracks that may occur during the LLO process may be prevented due to the deterioration of the nitride based semiconductor layer 410.
  • the trench line 402 when the trench line 402 is formed by laser irradiation, deterioration may occur in the nitride based semiconductor layer 410, but in the deteriorated range, the trench line 402 may be considerably smaller than the photolithography process and the etching process. The deteriorated portion can be simply removed by wet etching. Furthermore, in the case of the diamond cutter, the possibility of the nitride-based semiconductor layer 410 deteriorating is very low.
  • the trench line 402 when the trench line 402 is formed by a photolithography process and an etching process, a process time of several hours is required. However, when the trench line 402 is formed by a laser irradiation or a diamond cutter as in this example, several minutes are required. Since the trench line 402 can be formed within a range, the yield can be improved.
  • the trench line 402 may effectively discharge nitrogen gas that may be generated during the LLO process.
  • FIG. 13 is a photograph showing the results of the experiment of FIG. 11 and illustrates trench lines 402 formed on the substrate 401 and the nitride based semiconductor layer 410 by laser irradiation or a diamond cutter.
  • a method of manufacturing a vertical nitride light emitting device characterized in that the nitride semiconductor layer is grown so that trench lines are maintained.
  • a trench line defines a region of a unit light emitting device, wherein the vertical nitride light emitting device is manufactured.
  • a trench line is formed in a depth of 5 to 30 mu m and a width of 2 to 7 mu m.
  • a trench line can be formed through laser irradiation or a diamond cutting machine without applying a photo process and an etching process, separation of the substrate and the nitride semiconductor layer The structural defects of the nitride nitride semiconductor layer can be minimized.

Abstract

The present disclosure relates to a method for fabricating a vertically structured, nitride-based light emitting device comprising the following steps: preparation of a substrate; formation of a trench on the substrate by either a laser- or a diamond-cutting process; cultivation of a nitride-based semiconductor layer on the substrate; and separation of said nitride-based semiconductor layer from the substrate.

Description

수직형 질화물계 발광소자의 제조방법Manufacturing method of vertical nitride light emitting device
본 개시(Disclosure)는, 전체적으로 수직형 질화물계 발광소자의 제조방법에 관한 것으로, 특히 기판과 질화물계 반도체층의 분리시 질화물계 반도체층의 구조적 결함을 최소화할 수 있는 수직형 질화물계 발광소자의 제조방법에 관한 것이다.The present disclosure relates to a method of manufacturing a vertical nitride based light emitting device as a whole, and more particularly, to a vertical nitride based light emitting device capable of minimizing structural defects of a nitride based semiconductor layer when a substrate and a nitride based semiconductor layer are separated. It relates to a manufacturing method.
여기서, 질화물계 발광소자는, Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물 반도체층을 포함하는 발광다이오드와 같은 발광소자를 의미한다.The nitride-based light emitting device includes a compound semiconductor layer made of Al (x) Ga (y) In (1-xy) N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1). It means a light emitting device such as a light emitting diode including.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).This section provides background information related to the present disclosure which is not necessarily prior art.
도 1은 종래 수직형 질화물계 반도체층의 제조방법의 일 예를 보인 도면으로서, (a)는 기판(101) 상에 질화물계 반도체층을 적층한 다음, 포토리소그래피 공정 및 건식 유도결합플라즈마(Dry-Inductive Coupled Plasma) 공정을 통해 질화물계 반도체층(102)에 트렌치(103)를 형성하는 과정을 보이고 있으며, (b)는 기판(101)과 질화물계 반도체층(102)의 계면에 레이저를 조사하여 분리하는 과정을 보이고 있다.1 is a view showing an example of a method of manufacturing a conventional vertical nitride-based semiconductor layer, (a) is a stack of a nitride-based semiconductor layer on the substrate 101, a photolithography process and dry inductively coupled plasma (Dry The trench 103 is formed in the nitride semiconductor layer 102 through an Inductive Coupled Plasma process, and (b) irradiates a laser at an interface between the substrate 101 and the nitride semiconductor layer 102. It shows the process of separation.
도 2는 종래 수직형 질화물계 반도체층의 제조방법의 다른 예를 보인 도면으로서, (a)는 기판(201) 상에 질화물계 반도체층(202) 및 p-전극(203)을 형성한 다음, 포토리소그래피 공정을 통해 포토 마스크(204)를 형성하고 이를 식각 마스크로 이용하여 질화물계 반도체층(202)과 p-전극(203)을 전부 관통하고 기판(201)의 일부 두께가 파여진 트렌치(205)를 형성하는 과정을 보이고 있으며, (b)는 트렌치(205)에 포토레지스트(206)를 채운 상태에서 질화물계 반도체층(202)과 기판(201)의 계면에 레이저를 조사하여 분리하는 과정을 보이고 있다.2 is a view showing another example of a conventional method for manufacturing a vertical nitride semiconductor layer, (a) after forming the nitride semiconductor layer 202 and the p-electrode 203 on the substrate 201, A trench 205 in which the photomask 204 is formed through a photolithography process and is used as an etch mask to penetrate through the nitride semiconductor layer 202 and the p-electrode 203 and partially slice the thickness of the substrate 201. (B) is a process of irradiating and separating laser interface at the interface between the nitride-based semiconductor layer 202 and the substrate 201 while filling the trench 205 with the photoresist 206. It is showing.
그러나, 도 1 및 도 2의 경우, 트렌치 형성을 위한 포토리소그래피 공정 및 식각 공정에 의해 질화물계 반도체층이 열화될 수 있으며, 이는 질화물계 반도체층과 기판의 분리 공정시 균열의 원인이 되는 문제점이 있다.However, in the case of FIGS. 1 and 2, the nitride-based semiconductor layer may be deteriorated by a photolithography process and an etching process for forming a trench, which is a problem that causes cracks in the separation process of the nitride-based semiconductor layer and the substrate. have.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This is described later in the section titled 'Details of the Invention.'
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all, provided that this is a summary of the disclosure. of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 기판을 준비하는 단계; 기판에 레이저 또는 다이아몬드 커팅기에 의해 트렌치 라인을 형성하는 단계; 기판에 질화물계 반도체층을 성장시키는 단계; 및 질화물계 반도체층과 기판을 분리하는 단계;를 포함하는 수직형 질화물계 발광소자의 제조방법이 제공된다.According to one aspect of the present disclosure, there is provided a method of preparing a substrate, comprising: preparing a substrate; Forming trench lines in the substrate by a laser or diamond cutter; Growing a nitride based semiconductor layer on the substrate; And separating the nitride-based semiconductor layer and the substrate; a method of manufacturing a vertical nitride-based light emitting device is provided.
여기서, 질화물계 반도체층은, 트렌치 라인에 의해 구획되도록 성장된다.Here, the nitride semiconductor layer is grown to be partitioned by trench lines.
본 개시에 따른 다른 태양에 의하면(According to another aspect of the present disclosure), 기판을 준비하는 단계; 기판에 질화물계 반도체층을 성장시키는 단계; 기판에 레이저 또는 다이아몬드 커팅기에 의해 트렌치 라인을 형성하는 단계; 및 질화물계 반도체층과 기판을 분리하는 단계;를 포함하는 수직형 질화물계 발광소자의 제조방법이 제공된다.According to another aspect of the present disclosure, preparing a substrate; Growing a nitride based semiconductor layer on the substrate; Forming trench lines in the substrate by a laser or diamond cutter; And separating the nitride-based semiconductor layer and the substrate; a method of manufacturing a vertical nitride-based light emitting device is provided.
여기서, 트렌치 라인은, 질화물계 반도체층을 관통하여 형성된다.The trench line is formed through the nitride semiconductor layer.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This is described later in the section titled 'Details of the Invention.'
도 1은 종래 수직형 질화물계 반도체층의 제조방법의 일 예를 보인 도면,1 is a view showing an example of a method of manufacturing a conventional vertical nitride-based semiconductor layer,
도 2는 종래 수직형 질화물계 반도체층의 제조방법의 다른 예를 보인 도면,2 is a view showing another example of a method of manufacturing a conventional vertical nitride-based semiconductor layer,
도 3 내지 도 8은 본 개시에 따른 수직형 질화물계 발광소자 제조 공정의 일 예를 보인 도면,3 to 8 are views showing an example of the manufacturing process of the vertical nitride-based light emitting device according to the present disclosure,
도 9는 도 4의 실험 결과를 보인 사진,9 is a photograph showing the experimental results of FIG.
도 10 내지 도 12는 본 개시에 따른 수직형 질화물계 발광소자 제조 공정의 다른 예를 보인 도면,10 to 12 are views showing another example of the manufacturing process of the vertical nitride-based light emitting device according to the present disclosure;
도 13는 도 11의 실험 결과를 보인 사진.13 is a photograph showing the experimental results of FIG.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)). The present disclosure will now be described in detail with reference to the accompanying drawing (s).
도 3 내지 도 8은 본 개시에 따른 수직형 질화물계 발광소자 제조 공정의 일 예를 보인 도면으로서, 기판(301)을 준비하는 단계, 기판(301)에 레이저(laser) 또는 다이아몬드 커팅(diamond cutting)에 의해 트렌치(trench) 라인(302)을 형성하는 단계, 기판(301)에 질화물계 반도체층(310)을 성장시키는 단계, 질화물계 반도체층(310)과 기판(301)의 계면에 레이저를 조사하여 기판(301)을 분리(laser lift off; 이하, 'LLO 공정'이라 함.)하는 단계를 포함한다.3 to 8 illustrate an example of a vertical nitride-based light emitting device manufacturing process according to the present disclosure, preparing a substrate 301, and cutting a laser or diamond on the substrate 301. Forming a trench line 302 by forming a trench line 302, growing a nitride semiconductor layer 310 on the substrate 301, and applying a laser to an interface between the nitride semiconductor layer 310 and the substrate 301. Irradiating to remove the substrate 301 (laser lift off; hereinafter referred to as an 'LLO process').
더 나아가, 질화물계 반도체층(310)에 전극(303,304)을 형성하는 단계 및 전극(303,304)에 도전성 기판(305)을 부착하는 단계를 더 포함할 수 있다.Furthermore, the method may further include forming electrodes 303 and 304 on the nitride based semiconductor layer 310 and attaching the conductive substrate 305 to the electrodes 303 and 304.
기판(301)은 질화물계 반도체층(310)의 성장 공간을 제공하는 역할을 하는 것으로서, 사파이어(Al2O3) 기판이 주로 사용될 것이나, 전기 전도성을 위해 불순물이 도핑되지 않은 상태에서 전기 절연성을 갖는 실리콘(Si) 기판, GaAs 기판, MgO 기판 등도 사용될 수 있을 것이다.The substrate 301 serves to provide a growth space for the nitride based semiconductor layer 310, and a sapphire (Al 2 O 3 ) substrate will be mainly used, but the electrical insulating property is not doped with impurities for electrical conductivity. Silicon (Si) substrates, GaAs substrates, MgO substrates and the like may also be used.
또한, 사파이어(Al2O3) 기판, 실리콘(Si) 기판, GaAs 기판, MgO 기판 중 어느 하나 상에 GaN, InGaN, AlGaN, AlInGaN 중 어느 하나가 적층된 기판도 사용될 수 있을 것이다.In addition, a substrate in which any one of GaN, InGaN, AlGaN, and AlInGaN are stacked on any one of a sapphire (Al 2 O 3 ) substrate, a silicon (Si) substrate, a GaAs substrate, and an MgO substrate may be used.
여기서, 기판(301)은 질화물계 반도체층(310)의 성장 공간으로 제공된 후 LLO 공정에 의해 제거되므로, 희생기판(sacrified substrate)으로 불리기도 한다.Here, since the substrate 301 is provided to the growth space of the nitride based semiconductor layer 310 and then removed by the LLO process, it is also referred to as a sacrified substrate.
트렌치 라인(302)은, 기판(301)에 소정의 폭과 깊이로 형성되며, 레이저 조사 또는 다이아몬드 커팅기(diamond cutter)에 의해 형성된다.The trench line 302 is formed in the substrate 301 in a predetermined width and depth, and is formed by laser irradiation or a diamond cutter.
이에 의해, 기판(301) 상에 성장되는 질화물계 반도체층(310)은 트렌치 라인(302)에 의해 정의된 영역 내에서만 성장되며, 트렌치 라인(302)에 의해 정의된 영역에는 하나의 수직형 질화물계 발광소자(이하, '단위 발광소자'라 함.)가 대응된다.As a result, the nitride-based semiconductor layer 310 grown on the substrate 301 is grown only in the region defined by the trench line 302, and one vertical nitride is formed in the region defined by the trench line 302. The light emitting device (hereinafter referred to as a "unit light emitting device") corresponds.
즉, 이웃하는 질화물계 반도체층(310)들 사이에 트렌치 라인(302)은 그대로 유지될 수 있다.That is, the trench line 302 may be maintained between the neighboring nitride based semiconductor layers 310.
따라서, 이웃하는 질화물계 반도체층(310)들 사이에 트렌치 라인(302)을 형성하기 위한 포토리소그래피 공정 및 식각 공정이 제거될 수 있으므로, 포토리소그래피 공정 및 식각 공정 중 발생되는 질화물계 반도체층의 열화가 방지될 수 있으며, 질화물계 반도체층의 열화로 인해 LLO 공정시 균열이 발생되는 문제를 방지할 수 있다.Therefore, since the photolithography process and the etching process for forming the trench line 302 between the neighboring nitride-based semiconductor layer 310 can be eliminated, deterioration of the nitride-based semiconductor layer generated during the photolithography process and etching process Can be prevented, and the problem of cracking during the LLO process can be prevented due to deterioration of the nitride based semiconductor layer.
도 9는 도 4의 실험 결과를 보인 사진으로서, 기판(301)에 트렌치 라인(302)이 형성되어 있으며, 트렌치 라인(302)을 제외한 기판(301)에 질화물계 반도체층(310)이 성장되고 이웃하는 질화물계 반도체층(310)들 사이에는 트렌치 라인(302)이 그대로 유지됨을 확인할 수 있다.FIG. 9 is a photograph showing the results of the experiment of FIG. 4, in which a trench line 302 is formed on a substrate 301, and a nitride-based semiconductor layer 310 is grown on the substrate 301 except for the trench line 302. It can be seen that the trench line 302 is maintained between neighboring nitride-based semiconductor layers 310.
한편, 본 예에서, 이웃하는 질화물계 반도체층(310)들 사이의 트렌치 라인(302) 유지를 위해, 트렌치 라인(302)은 5∼30㎛의 깊이와, 2∼7㎛의 폭으로 형성되는 것이 바람직하다. Meanwhile, in the present example, the trench lines 302 are formed to have a depth of 5 to 30 μm and a width of 2 to 7 μm to maintain the trench lines 302 between neighboring nitride based semiconductor layers 310. It is preferable.
구체적으로, 트렌치 라인(302)이 형성된 기판(301)에 성장되는 질화물계 반도체층(310)은 단위 발광소자와 단위 발광소자 사이의 트렌치 라인(302)을 유지시키는 성장과 함께 측면(lateral) 방향으로 성장하므로 측면 성장 두께를 고려하여 트렌치 라인(302)의 폭과 깊이가 결정될 수 있다.Specifically, the nitride based semiconductor layer 310 grown on the substrate 301 on which the trench lines 302 are formed has a lateral direction along with growth of maintaining the trench lines 302 between the unit light emitting devices and the unit light emitting devices. As a result, the width and depth of the trench line 302 may be determined in consideration of the lateral growth thickness.
한편, 트렌치 라인(302)의 소정의 폭과 깊이의 결정에는 트렌치 라인(302)의 가스 이동 통로 역할이 함께 고려될 수 있다.Meanwhile, in determining the predetermined width and depth of the trench line 302, the role of the gas flow passage of the trench line 302 may be considered together.
구체적으로, 질화물계 반도체층(310)이 GaN으로 구성되는 경우, LLO 공정 시 일부 GaN이 갈륨(Ga)과 질소 가스(N2)로 분해되는데, 발생된 질소 가스(N2)는 높은 압력을 갖고 있어 질화물계 반도체층(310)의 균열을 유발하는 인자로 작용할 수 있으므로 질소 가스의 효과적인 방출을 고려하여 트렌치 라인(302)의 폭과 깊이가 결정될 수 있다.Specifically, when the nitride-based semiconductor layer 310 is composed of GaN, some GaN is decomposed into gallium (Ga) and nitrogen gas (N 2 ) during the LLO process, the generated nitrogen gas (N 2 ) is a high pressure Since it may act as a factor inducing cracking of the nitride based semiconductor layer 310, the width and depth of the trench line 302 may be determined in consideration of effective emission of nitrogen gas.
한편, 트렌치 라인(302)의 형성 후, 레이저 조사 또는 다이아몬드 커팅에 의해 발생된 부산물을 제거하기 위해 기판(301)에 대한 세정 공정이 행해질 수 있다.Meanwhile, after the formation of the trench line 302, a cleaning process may be performed on the substrate 301 to remove by-products generated by laser irradiation or diamond cutting.
질화물계 반도체층(310)은, 트렌치 라인(302)이 형성된 기판(301) 위에 성장되며, n형 반도체층(311), 활성층(312), p형 반도체층(313)이 순차적으로 성장될 수 있다.The nitride semiconductor layer 310 is grown on the substrate 301 on which the trench lines 302 are formed, and the n-type semiconductor layer 311, the active layer 312, and the p-type semiconductor layer 313 may be sequentially grown. have.
이때, 질화물계 반도체층(310)은 금속유기화학증착법(MOCVD : Metal Organic Chemical Vapor Deposition) 또는 분자빔에피택셜법(MBE : Molecular Beam Epitaxy) 등을 통해 형성될 수 있다. In this case, the nitride based semiconductor layer 310 may be formed through a metal organic chemical vapor deposition (MOCVD) or a molecular beam epitaxy (MBE).
여기서, n형 반도체층(311)의 성장 전에 버퍼층이 더 구비될 수 있으며, p형 반도체층(313) 위에 전자차단층(electron blocking layer) 등이 더 구비될 수 있다.Here, a buffer layer may be further provided before the n-type semiconductor layer 311 is grown, and an electron blocking layer may be further provided on the p-type semiconductor layer 313.
또한, p형 반도체층(313) 위에는 투명전극(303) 및 p-전극(304)이 순차적으로 구비될 수 있다. 여기서, 투명전극(303) 대신에 반사전극이 구비될 수도 있다.In addition, the transparent electrode 303 and the p-electrode 304 may be sequentially provided on the p-type semiconductor layer 313. Here, the reflective electrode may be provided instead of the transparent electrode 303.
한편, p-전극(304) 상에 도전성 기판(305)이 부착된다. Meanwhile, a conductive substrate 305 is attached on the p-electrode 304.
도전성 기판(305)으로는 전기 전도성을 위해 불순물이 도핑된 실리콘(Si) 기판, 게르마늄(Ge)기판, GaAs 기판 중 어느 하나가 사용될 수 있다. The conductive substrate 305 may be any one of a silicon (Si) substrate, a germanium (Ge) substrate, and a GaAs substrate doped with impurities for electrical conductivity.
도전성 기판(305)이 p-전극(304)에 부착된 후, LLO 공정이 진행된다. After the conductive substrate 305 is attached to the p-electrode 304, the LLO process proceeds.
구체적으로, 질화물계 반도체층(310)과 기판(301)의 계면 상에 레이저를 조사하여 질화물계 반도체층(310)으로부터 기판(301)을 분리시킨다. Specifically, the substrate 301 is separated from the nitride based semiconductor layer 310 by irradiating a laser on the interface between the nitride based semiconductor layer 310 and the substrate 301.
기판(301)을 분리한 후에는, n형 반도체층(311) 상에 n-전극(306)을 형성하고, 트렌치 라인(302)을 따라 도전성 기판(305)을 자르면 복수의 단위 발광소자의 제조가 완료된다.After the substrate 301 is separated, the n-electrode 306 is formed on the n-type semiconductor layer 311, and the conductive substrate 305 is cut along the trench line 302 to manufacture a plurality of unit light emitting devices. Is completed.
도 10 내지 도 12는 본 개시에 따른 수직형 질화물계 발광소자 제조 공정의 다른 예를 보인 도면으로서, 기판(401)을 준비하는 단계, 기판(401)에 질화물계 반도체층(410)을 성장시키는 단계, 기판(401)에 레이저 또는 다이아몬드 커팅기에 의해 트렌치 라인(402)을 형성하는 단계 및 LLO 공정에 의해 질화물계 반도체층(410)과 기판(401)을 분리하는 단계를 포함한다.10 to 12 are views showing another example of a vertical nitride-based light emitting device manufacturing process according to the present disclosure, preparing a substrate 401, growing a nitride-based semiconductor layer 410 on the substrate 401 The method includes forming a trench line 402 in the substrate 401 by a laser or diamond cutter, and separating the nitride based semiconductor layer 410 and the substrate 401 by an LLO process.
또한, 질화물계 반도체층(410)에 전극(403,404)을 형성하는 단계 및 전극(403,404)에 도전성 기판(401)을 부착하는 단계를 더 포함할 수 있다.In addition, the method may further include forming electrodes 403 and 404 on the nitride based semiconductor layer 410 and attaching the conductive substrate 401 to the electrodes 403 and 404.
본 예에 따른 수직형 질화물계 발광소자 제조 공정은 기판(401)에 질화물계 반도체층(410)을 성장시킨 후 기판(401)에 레이저 또는 다이아몬드 커팅기에 의해 트렌치 라인(402)을 형성하는 점을 제외한 구성은 앞서 설명한 예와 대동소이하므로 트렌치 라인(402)의 형성을 제외한 구성에 대한 자세한 설명은 앞선 설명으로 갈음한다.According to the manufacturing method of the vertical nitride-based light emitting device according to the present example, the trench line 402 is formed on the substrate 401 by a laser or diamond cutter after the nitride-based semiconductor layer 410 is grown. Since the excluded configuration is substantially the same as the example described above, a detailed description of the configuration except for the formation of the trench line 402 will be replaced with the foregoing description.
본 예에서 트렌치 라인(402)은, 레이저 조사 또는 다이아몬드 커팅기(diamond cutter)에 의해, 성장된 질화물계 반도체층(410)이 수직 관통되어 형성되며, 기판(401)이 소정의 폭과 깊이 만큼 파여져 형성된다.In this example, the trench line 402 is formed by vertically penetrating the grown nitride-based semiconductor layer 410 by laser irradiation or a diamond cutter, and the substrate 401 is excavated by a predetermined width and depth. Is formed.
즉, 본 예에서 트렌치 라인(402)은, 포토리소그래피 공정 및 식각 공정이 아닌 레이저 조사 또는 다이아몬드 커팅기(diamond cutter)에 의해 형성되므로, 포토리소그래피 공정 및 식각 공정에 의해 발생될 수 있는 질화물계 반도체층(410)의 열화를 방지할 수 있으며, 질화물계 반도체층(410)의 열화로 인해 LLO 공정시 발생될 수 있는 균열을 방지할 수 있게 된다.That is, in this example, since the trench lines 402 are formed by laser irradiation or a diamond cutter rather than a photolithography process and an etching process, the nitride based semiconductor layer may be generated by the photolithography process and the etching process. Deterioration of the 410 may be prevented and cracks that may occur during the LLO process may be prevented due to the deterioration of the nitride based semiconductor layer 410.
구체적으로, 레이저 조사에 의해 트렌치 라인(402)을 형성하는 경우, 질화물계 반도체층(410)에 열화가 발생될 수 있으나, 열화되는 범위에 있어서 포토리소그래피 공정 및 식각 공정에 의하는 것에 비해 상당히 작으며, 열화된 부분은 습식 식각을 통해 간단하게 제거될 수 있다. 나아가, 다이아몬드 커팅기(diamond cutter)에 의하는 경우는 질화물계 반도체층(410)이 열화될 가능성이 매우 낮다. Specifically, when the trench line 402 is formed by laser irradiation, deterioration may occur in the nitride based semiconductor layer 410, but in the deteriorated range, the trench line 402 may be considerably smaller than the photolithography process and the etching process. The deteriorated portion can be simply removed by wet etching. Furthermore, in the case of the diamond cutter, the possibility of the nitride-based semiconductor layer 410 deteriorating is very low.
한편, 본 예에서 트렌치 라인(402)을 포토리소그래피 공정 및 식각 공정에 의해 형성하는 경우 수 시간의 공정 시간이 요구되나, 본 예와 같이 레이저 조사 또는 다이아몬드 커팅기(diamond cutter)에 의하는 경우 수 분 이내에 트렌치 라인(402)의 형성이 가능하므로, 수율이 향상되는 이점을 가질 수 있다.Meanwhile, in the present example, when the trench line 402 is formed by a photolithography process and an etching process, a process time of several hours is required. However, when the trench line 402 is formed by a laser irradiation or a diamond cutter as in this example, several minutes are required. Since the trench line 402 can be formed within a range, the yield can be improved.
또한, 본 예에서 트렌치 라인(402)은 기판(401)이 소정의 폭과 깊이 만큼 파여져 형성되므로, LLO 공정시 발생될 수 있는 질소 가스를 효과적으로 배출시킬 수 있게 된다.In addition, since the trench line 402 is formed by digging the substrate 401 by a predetermined width and depth, the trench line 402 may effectively discharge nitrogen gas that may be generated during the LLO process.
도 13은 도 11의 실험 결과를 보인 사진으로서, 레이저 조사 또는 다이아몬드 커팅기(diamond cutter)에 의해 기판(401) 및 질화물계 반도체층(410)에 형성된 트렌치 라인(402)을 보이고 있다.FIG. 13 is a photograph showing the results of the experiment of FIG. 11 and illustrates trench lines 402 formed on the substrate 401 and the nitride based semiconductor layer 410 by laser irradiation or a diamond cutter.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.Hereinafter, various embodiments of the present disclosure will be described.
(1) 질화물계 반도체층은, 트렌치 라인이 유지되도록 성장되는 것을 특징으로 하는 수직형 질화물계 발광소자의 제조방법.(1) A method of manufacturing a vertical nitride light emitting device, characterized in that the nitride semiconductor layer is grown so that trench lines are maintained.
이는, 질화물계 반도체층을 트렌치 라인에 의해 정의된 영역 마다 구분되게 성장시킴으로서, 포토 공정 및 식각 공정에 의한 트렌치 라인 형성시 발생될 수 있는 질화물계 반도체층의 구조적 결함을 방지하기 위함이다.This is to prevent structural defects in the nitride-based semiconductor layer that may be generated when forming the nitride line by growing the nitride-based semiconductor layer for each region defined by the trench line.
(2) 트렌치 라인은, 단위 발광소자의 영역을 정의하는 것을 특징으로 하는 수직형 질화물계 발광소자의 제조방법.(2) A trench line defines a region of a unit light emitting device, wherein the vertical nitride light emitting device is manufactured.
(3) 트렌치 라인은, 5∼30㎛의 깊이와, 2∼7㎛의 폭으로 형성하는 것을 특징으로 하는 수직형 질화물계 발광소자의 제조방법.(3) A trench line is formed in a depth of 5 to 30 mu m and a width of 2 to 7 mu m.
이는, 트렌치 라인의 폭과 깊이 조절을 통해, 질화물계 반도체층의 측면 성장으로 인해 트렌치 라인이 유지되지 못하는 문제를 방지하며, LLO 공정시 발생될 수 있는 질소 가스를 효과적으로 배출시켜 질소 가스에 의한 질화물계 반도체층의 구조적 결함을 최소화하기 위함이다.This prevents the problem of maintaining the trench lines due to the side growth of the nitride-based semiconductor layer through controlling the width and depth of the trench lines, and effectively discharging nitrogen gas that can be generated during the LLO process, thereby allowing the nitride gas to be nitrided. This is to minimize structural defects of the semiconductor layer.
본 개시에 따른 하나의 수직형 질화물계 발광소자의 제조방법에 의하면, 포토 공정 및 식각 공정을 적용하지 않고 레이저 조사 또는 다이아몬드 커팅기를 통해 트렌치 라인을 형성할 수 있으므로, 기판과 질화물계 반도체층의 분리시 질화물계 반도체층의 구조적 결함을 최소화할 수 있게 된다.According to the method of manufacturing one vertical nitride-based light emitting device according to the present disclosure, since a trench line can be formed through laser irradiation or a diamond cutting machine without applying a photo process and an etching process, separation of the substrate and the nitride semiconductor layer The structural defects of the nitride nitride semiconductor layer can be minimized.
또한 본 개시에 따른 다른 수직형 질화물계 발광소자의 제조방법에 의하면, 트렌치 라인의 폭과 깊이 조절을 통해 LLO 공정시 발생될 수 있는 질소 가스를 효과적으로 배출시킬 수 있으므로, 질소 가스에 의한 질화물계 반도체층의 구조적 결함을 최소화할 수 있게 된다.In addition, according to the manufacturing method of another vertical nitride-based light emitting device according to the present disclosure, it is possible to effectively discharge the nitrogen gas generated during the LLO process through the width and depth of the trench line, the nitride-based semiconductor by nitrogen gas Structural defects in the layer can be minimized.

Claims (11)

  1. 기판을 준비하는 단계;Preparing a substrate;
    기판에 레이저(laser) 또는 다이아몬드 커팅(diamond cutting)에 의해 트렌치(trench) 라인을 형성하는 단계;Forming trench lines in the substrate by laser or diamond cutting;
    기판에 질화물계 반도체층을 성장시키는 단계; 및Growing a nitride based semiconductor layer on the substrate; And
    질화물계 반도체층과 기판을 분리하는 단계;를 포함하는 수직형 질화물계 발광소자의 제조방법.Separating the substrate and the nitride-based semiconductor layer; Method of manufacturing a vertical nitride-based light emitting device comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    질화물계 반도체층은, 트렌치 라인이 유지되도록 성장되는 것을 특징으로 하는 수직형 질화물계 발광소자의 제조방법.The nitride-based semiconductor layer is a method of manufacturing a vertical nitride-based light emitting device, characterized in that the trench line is grown to be maintained.
  3. 청구항 2에 있어서, The method according to claim 2,
    트렌치 라인은, 단위 발광소자의 영역을 정의하는 것을 특징으로 하는 수직형 질화물계 발광소자의 제조방법.The trench line defines a region of a unit light emitting device.
  4. 청구항 2에 있어서,The method according to claim 2,
    트렌치 라인은, 5∼30㎛의 깊이와, 2∼7㎛의 폭으로 형성하는 것을 특징으로 하는 수직형 질화물계 발광소자의 제조방법.The trench line is formed with a depth of 5 to 30 µm and a width of 2 to 7 µm.
  5. 청구항 2에 있어서, 질화물계 반도체층을 성장시킨 후,The method of claim 2, after the nitride-based semiconductor layer is grown,
    질화물계 반도체층에 전극을 형성하는 단계;및Forming an electrode on the nitride based semiconductor layer; and
    전극에 도전성 기판을 부착하는 단계;를 더 포함하는 것을 것을 특징으로 하는 수직형 질화물계 발광소자의 제조방법.Attaching a conductive substrate to the electrode; the method of manufacturing a vertical nitride light-emitting device further comprises.
  6. 기판을 준비하는 단계;Preparing a substrate;
    기판에 질화물계 반도체층을 성장시키는 단계;Growing a nitride based semiconductor layer on the substrate;
    기판에 레이저 또는 다이아몬드 커팅기에 의해 트렌치 라인을 형성하는 단계; 및Forming trench lines in the substrate by a laser or diamond cutter; And
    질화물계 반도체층과 기판을 분리하는 단계;를 포함하는 수직형 질화물계 발광소자의 제조방법.Separating the substrate and the nitride-based semiconductor layer; Method of manufacturing a vertical nitride-based light emitting device comprising a.
  7. 청구항 6에 있어서,The method according to claim 6,
    트렌치 라인은, 질화물계 반도체층을 관통하여 형성되는 것을 특징으로 하는 수직형 질화물계 발광소자의 제조방법.The trench line is formed through the nitride-based semiconductor layer, the method of manufacturing a vertical nitride-based light emitting device.
  8. 청구항 6에 있어서, The method according to claim 6,
    트렌치 라인은, 단위 발광소자의 영역을 정의하는 것을 특징으로 하는 수직형 질화물계 발광소자의 제조방법.The trench line defines a region of a unit light emitting device.
  9. 청구항 6에 있어서, 트렌치 라인을 형성한 후,The method of claim 6, wherein after forming the trench lines,
    질화물계 반도체층에 전극을 형성하는 단계; 및Forming an electrode on the nitride based semiconductor layer; And
    전극에 도전성 기판을 부착하는 단계;를 더 포함하는 것을 특징으로 하는 수직형 질화물계 발광소자의 제조방법.Attaching a conductive substrate to the electrode; the method of manufacturing a vertical nitride light-emitting device further comprises.
  10. 청구항 2에 있어서, 트렌치 라인을 형성한 후,The method of claim 2, wherein after forming the trench lines,
    질화물계 반도체층에 전극을 형성하는 단계; 및Forming an electrode on the nitride based semiconductor layer; And
    전극에 도전성 기판을 부착하는 단계;를 더 포함하고,Attaching a conductive substrate to the electrode;
    질화물계 반도체층은, GaN계 반도체층으로 구비되며, 트렌치 라인에 의해 정의되는 영역에 분리되어 성장되고,The nitride semiconductor layer is provided with a GaN semiconductor layer, is grown separately in a region defined by a trench line,
    기판은, 사파이어(Al2O3) 기판으로 구비되며,The substrate is provided with a sapphire (Al 2 O 3 ) substrate,
    트렌치 라인은, 5∼30㎛의 깊이와, 2∼7㎛의 폭으로 형성되는 것을 특징으로하는 수직형 질화물계 발광소자의 제조방법.The trench line is formed with a depth of 5 to 30㎛ and a width of 2 to 7㎛, the manufacturing method of the vertical nitride light emitting device.
  11. 청구항 7에 있어서, 트렌치 라인을 형성한 후,The method of claim 7, after forming the trench line,
    질화물계 반도체층에 전극을 형성하는 단계; 및Forming an electrode on the nitride based semiconductor layer; And
    전극에 도전성 기판을 부착하는 단계;를 더 포함하고,Attaching a conductive substrate to the electrode;
    질화물계 반도체층은, GaN계 반도체층으로 구비되며,The nitride semiconductor layer is provided with a GaN semiconductor layer,
    기판은, 사파이어(Al2O3) 기판으로 구비되는 것을 특징으로 하는 수직형 질화물계 발광소자의 제조방법.The substrate is a sapphire (Al 2 O 3 ) substrate manufacturing method of the vertical nitride-based light emitting device, characterized in that provided.
PCT/KR2009/006847 2008-11-21 2009-11-20 Method for fabricating a vertically structured, nitride-based light-emitting device WO2010058991A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020080116385A KR101012638B1 (en) 2008-11-21 2008-11-21 Method for fabricating vertical GaN-based light emitting diode
KR1020080116387A KR20100057372A (en) 2008-11-21 2008-11-21 Method for fabricating vertical gan-based light emitting diode
KR10-2008-0116387 2008-11-21
KR10-2008-0116385 2008-11-21

Publications (2)

Publication Number Publication Date
WO2010058991A2 true WO2010058991A2 (en) 2010-05-27
WO2010058991A3 WO2010058991A3 (en) 2010-08-19

Family

ID=42198684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006847 WO2010058991A2 (en) 2008-11-21 2009-11-20 Method for fabricating a vertically structured, nitride-based light-emitting device

Country Status (1)

Country Link
WO (1) WO2010058991A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040245543A1 (en) * 2003-06-04 2004-12-09 Yoo Myung Cheol Method of fabricating vertical structure compound semiconductor devices
KR20060080827A (en) * 2005-01-06 2006-07-11 엘지전자 주식회사 Method for lifting off sapphire substrate from epi-layer in light emitting device
JP2008103698A (en) * 2006-09-20 2008-05-01 Tohoku Univ Method for manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040245543A1 (en) * 2003-06-04 2004-12-09 Yoo Myung Cheol Method of fabricating vertical structure compound semiconductor devices
KR20060080827A (en) * 2005-01-06 2006-07-11 엘지전자 주식회사 Method for lifting off sapphire substrate from epi-layer in light emitting device
JP2008103698A (en) * 2006-09-20 2008-05-01 Tohoku Univ Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
WO2010058991A3 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
KR100867541B1 (en) Method of manufacturing vertical light emitting device
US6197609B1 (en) Method for manufacturing semiconductor light emitting device
US7361521B2 (en) Method of manufacturing vertical GaN-based light emitting diode
WO2014168339A1 (en) Ultraviolet light-emitting device
JP2003152220A (en) Manufacturing method for semiconductor light emitting element and the semiconductor light emitting element
WO2013022228A2 (en) Nitride semiconductor light-emitting element having superior leakage current blocking effect and method for manufacturing same
KR20120110867A (en) Light emitting device and method of manufacturing the same
KR20060125079A (en) Vertically structured gan type light emitting diode device and method of manufacturing the same
WO2010036002A2 (en) Method of preparing single crystal substrate, single crystal substrate prepared thereby, light-emitting device including said single crystal substrate and method of preparing same
KR20210036199A (en) Semiconductor device, method of fabricating the same, and display device including the same
EP2896077B1 (en) Light emitting device including shaped substrate
WO2016159614A1 (en) Uv light emitting device
WO2015016507A1 (en) Template for manufacturing light emitting device and method for manufacturing ultraviolet light emitting device
WO2010058991A2 (en) Method for fabricating a vertically structured, nitride-based light-emitting device
JP2005012206A (en) Nitride semiconductor element and its manufacturing method
US20230378237A1 (en) Led device and method of manufacture
KR20100083879A (en) Light emitting diode and method for fabricating the same
WO2010076929A1 (en) Light-emitting device having air gap layer and manufacturing method thereof
WO2014007419A1 (en) Nitride group semiconductor light-emitting element and method for manufacturing same
WO2018221752A1 (en) Three-dimensional long-wavelength light-emitting diode and manufacturing method therefor
WO2013147453A1 (en) Gallium nitride-based light-emitting diode
KR100781660B1 (en) Light emitting device having light emitting band and the method therefor
WO2011010881A2 (en) Group iii nitride semiconductor light-emitting device
WO2010104249A1 (en) Light emitting device with substrate separation by ion implantation
JP7338045B2 (en) Light Emitting Diode and Method of Forming Light Emitting Diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827756

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827756

Country of ref document: EP

Kind code of ref document: A2