WO2014007419A1 - Nitride group semiconductor light-emitting element and method for manufacturing same - Google Patents

Nitride group semiconductor light-emitting element and method for manufacturing same Download PDF

Info

Publication number
WO2014007419A1
WO2014007419A1 PCT/KR2012/006253 KR2012006253W WO2014007419A1 WO 2014007419 A1 WO2014007419 A1 WO 2014007419A1 KR 2012006253 W KR2012006253 W KR 2012006253W WO 2014007419 A1 WO2014007419 A1 WO 2014007419A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride
doping
type semiconductor
type
Prior art date
Application number
PCT/KR2012/006253
Other languages
French (fr)
Korean (ko)
Inventor
서용곤
황성민
윤형도
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2014007419A1 publication Critical patent/WO2014007419A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body

Definitions

  • the present invention relates to a nitride semiconductor light emitting device and a method of manufacturing the same, and more particularly to a nitride based semiconductor light emitting device and a method of manufacturing the same that can improve the light output by improving the resistance characteristics.
  • nitride semiconductor materials such as GaN, AlN, AlGaN, and AlGaInN, which include group V sources such as nitrogen (N) and group III sources such as gallium (Ga), aluminum (Al), and indium (In), are thermally stable. It has an excellent and direct transition type energy band structure, and has recently been widely used as a material for nitride-based semiconductor light emitting devices in the blue and ultraviolet regions.
  • Such nitride-based semiconductor light emitting devices generally have a structure of a buffer layer, an n-type semiconductor layer, an active layer, a p-type semiconductor layer, and an electrode on a substrate.
  • the active layer is a region where electrons and holes are recombined, and has a structure in which a quantum well layer is disposed between the quantum barrier layers.
  • the emission wavelength emitted from the nitride semiconductor light emitting device is determined by the kind of the material forming the active layer.
  • the active layer has a single quantum well (SQW) structure having one quantum well layer and a multi quantum well (MQW) structure having a plurality of quantum well layers.
  • SQW single quantum well
  • MQW multi quantum well
  • the active layer of the multi-quantum well structure is actively used because of its superior luminous efficiency and high luminous output compared to the single quantum well structure.
  • the luminous efficiency of the nitride-based semiconductor light emitting device is basically determined by the probability of recombination of electrons and holes participating in the emission in the active layer, that is, the internal quantum efficiency.
  • the active layer aluminum composition ratio of the AlGaN-based semiconductor light emitting device should be smaller than the aluminum (Al) composition ratio of the n-type semiconductor layer or the p-type semiconductor layer.
  • an object of the present invention is to provide a nitride-based semiconductor light emitting device and a method of manufacturing the same that can improve the light output through improved resistance characteristics.
  • the present invention provides a nitride-based semiconductor light emitting device comprising a base substrate, a buffer layer, a doping reinforcement layer, a p-type semiconductor layer, an active layer, an n-type semiconductor layer, a p-type electrode and an n-type electrode.
  • the nitride buffer layer is formed on the base substrate.
  • the doping reinforcement layer is formed on the buffer layer, and includes a plurality of nitride layers containing aluminum, the refractive index of which is periodically changed, and has an electrode forming portion to expose at least two consecutive nitride layers of the plurality of nitride layers.
  • the nitride-based p-type semiconductor layer contains at least aluminum formed on the doped reinforcement layer to expose the electrode forming portion of the doped reinforcement layer.
  • the nitride-based active layer is formed on the p-type semiconductor layer.
  • the n-type semiconductor layer of nitride is formed on the active layer.
  • the p-type electrode is formed on the electrode forming portion.
  • the n-type electrode is formed on the n-type semiconductor layer.
  • the doping reinforcement layer includes a nitride layer having a lower aluminum composition ratio than the aluminum composition ratio of the p-type semiconductor layer, the nitride layer may be exposed to the electrode forming portion.
  • the doping reinforcement layer includes a first nitride layer doped with a p-type, and a p-type doped second nitride layer formed on the p-type nitride layer.
  • the doping reinforcing layer may be formed by alternating the first and second nitride layer.
  • the first nitride layer is a material of p-type Al x Ga y In 1-xy N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1) Can be formed.
  • the second nitride layer may be formed of a material of p-type Al m Ga n In 1-mn N (0 ⁇ m, 0 ⁇ n, m + n ⁇ 1).
  • the electrode forming portion of the doping reinforcement layer may be formed as an inclined surface, grooves or stepped surface.
  • the electrode forming portion of the doping reinforcement layer protrudes to one side with respect to the n-type semiconductor layer, the active layer and the p-type semiconductor layer is formed on the doping reinforcement layer, the exposed of the doping reinforcement layer It may be formed as an inclined surface inclined left and right on the upper surface portion.
  • the electrode forming portion of the doping reinforcement layer protrudes to one side with respect to the n-type semiconductor layer, the active layer and the p-type semiconductor layer is formed on the doping reinforcement layer, the exposed of the doping reinforcement layer It may be formed as an inclined surface inclined up and down on the upper surface portion.
  • the doping reinforcement layer may include a Distributed Bragg Reflector (DBR) layer formed on the buffer layer.
  • DBR Distributed Bragg Reflector
  • the doping reinforcement layer may further include a superlattice layer formed between the buffer layer and the DBR layer.
  • the superlattice layer is a first Al x Ga y In 1-xy N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1) layer and the first Al x Ga y In is formed on the 1-xy N layer, wherein the 1 Al x Ga y In 1-xy N layer and the 2 Al x Ga y In 1-xy N layer (0 ⁇ x having a different composition ratio, 0 ⁇ y, x + y ⁇ 1).
  • the superlattice layer is formed of at least one unit superlattice layer using the first and second Al x Ga y In 1-xy N layers as a unit superlattice layer.
  • the superlattice layer may be formed by doping.
  • the present invention also provides a nitride-based semiconductor light emitting device comprising a base substrate, a buffer layer, a doping reinforcement layer, a p-type semiconductor layer, an active layer, an n-type semiconductor layer, a p-type electrode and an n-type electrode.
  • the nitride buffer layer is formed on the base substrate.
  • the doping reinforcement layer includes a plurality of nitride layers having different refractive indices stacked on the buffer layer, and has an electrode forming part exposing at least two nitride layers having different refractive indices among the plurality of nitride layers on one side thereof.
  • the p-type semiconductor layer of nitride is formed on the doping reinforcement layer to expose the electrode forming portion.
  • the nitride based active layer is formed on the p-type semiconductor layer.
  • the nitride n-type semiconductor layer is formed on the active layer.
  • the p-type electrode is formed on the electrode forming portion.
  • the n-type electrode is formed on the n-type semiconductor layer.
  • the present invention also provides a method of forming a nitride-based buffer layer on a base substrate, forming a doping reinforcement layer including a plurality of nitride layers whose refractive index is periodically changed on the buffer layer, and a nitride-based nitride-containing nitride layer on the doping reinforcement layer.
  • a p-type semiconductor layer forming a p-type semiconductor layer, forming a nitride-based active layer containing aluminum on the p-type semiconductor layer, forming a nitride-based n-type semiconductor layer containing aluminum on the active layer, and the doping reinforcement layer
  • Forming an electrode forming portion by exposing at least two consecutive nitride layers of the plurality of nitride layers forming the doping reinforcing layer and removing a portion of the n-type semiconductor layer, the active layer and the p-type semiconductor layer so that a portion of the semiconductor layer is exposed; And forming a p-type electrode on the electrode forming portion and on the n-type semiconductor layer. It provides a method of manufacturing a nitride-based semiconductor light emitting device comprising the step of forming an n-type electrode.
  • the forming of the electrode forming portion, the doping by removing a portion of the n-type semiconductor layer, the active layer and the p-type semiconductor layer using a shadow mask Exposing a portion of the reinforcement layer, the electrode forming portion may be formed such that at least two consecutive nitride layers of the plurality of nitride layers forming the doped reinforcement layer are exposed through the inclined surface.
  • the step of forming the electrode forming portion is to remove a portion of the n-type semiconductor layer, the active layer and the p-type semiconductor layer to expose a portion of the doping reinforcement layer. And forming at least two consecutive nitride layers of the plurality of nitride layers forming the doped reinforcement layer by irradiating a laser beam to form an electrode forming portion.
  • the electrode forming portion in the forming of the electrode forming portion, may be formed to include an inclined surface or at least one groove.
  • the nitride-based semiconductor light emitting device by forming an electrode in the doping reinforcement layer whose refractive index is periodically changed, it is possible to improve the light output by improving the reduction phenomenon of the doping concentration.
  • a DBR Distributed Bragg Reflector
  • the electrode has a relative refractive index among the periodically changing layers.
  • the layer with a low refractive index ie, a layer with a low aluminum composition ratio, doping of high density is possible.
  • a material of Al m Ga n In 1-mn N (0 ⁇ m, 0 ⁇ n, m + n ⁇ 1) lower than the aluminum composition ratio of the p-type semiconductor layer may be used. to be.
  • the nitride semiconductor light emitting device according to the present invention has a high doping concentration, an ohmic electrode can be easily formed.
  • FIG. 1 is a perspective view illustrating a nitride based semiconductor light emitting device according to a first exemplary embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of FIG. 1.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a nitride-based semiconductor light emitting device according to a first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view illustrating a nitride based semiconductor light emitting device according to a second exemplary embodiment of the present invention.
  • FIG. 13 is a perspective view illustrating a nitride based semiconductor light emitting device according to a third exemplary embodiment of the present invention.
  • FIG. 14 is a cross-sectional view illustrating a nitride based semiconductor light emitting device according to a fourth embodiment of the present invention.
  • FIG. 15 is a cross-sectional view illustrating a nitride based semiconductor light emitting device according to a fifth embodiment of the present invention.
  • FIG. 16 is a perspective view illustrating a nitride based semiconductor light emitting device according to a sixth embodiment of the present invention.
  • FIG. 17 is a cross-sectional view of FIG. 16.
  • FIG. 1 is a perspective view illustrating a nitride based semiconductor light emitting device according to a first exemplary embodiment of the present invention.
  • 2 is a cross-sectional view of FIG. 1.
  • a buffer layer 20, a doping reinforcement layer 30, and a p-type semiconductor layer 40 are sequentially formed on a base substrate 10.
  • the active layer 50 and the n-type semiconductor layer 60 is formed.
  • the nitride semiconductor light emitting device 100 has a structure in which a p-type electrode 70 is formed on a portion of the doping reinforcement layer 30 that is exposed to the outside, and an n-type electrode 80 is formed on the n-type semiconductor layer 60.
  • the buffer layer 20 is formed on the base substrate 10 and formed by growing a nitride material.
  • the doping reinforcement layer 30 is formed on the buffer layer 20 and includes a plurality of nitride layers 35 and 37 whose refractive indices are periodically changed, and at least two consecutive nitride layers of the plurality of nitride layers 35 and 37 ( 35 and 37 have electrode forming portions 39 exposed.
  • the p-type semiconductor layer 40 is formed on at least the doping reinforcement layer 30 and is formed of a nitride-based material containing aluminum.
  • the active layer 50 is formed on the p-type semiconductor layer 40, and is formed of a nitride-based material containing aluminum.
  • the n-type semiconductor layer 60 is formed on the active layer 50 and formed of a nitride-based material containing aluminum.
  • the p-type electrode 70 is formed on the electrode forming portion 39 of the doping reinforcement layer 30.
  • the n-type electrode 80 is formed on the n-type semiconductor layer 60.
  • the nitride based semiconductor light emitting device 100 according to the first embodiment will be described in detail as follows.
  • the base substrate 10 may be made of a material suitable for growing a nitride-based semiconductor single crystal.
  • the base substrate 10 may include sapphire, silicon (Si), zinc oxide (ZnO), gallium nitride (GaN), gallium arsenide (GaAs), silicon carbide (SiC), and aluminum knight. It may be made of an element or a compound such as lide (AlN), magnesium oxide (MgO).
  • the base substrate 10 is a sapphire substrate having a C plane ( ⁇ 0001 ⁇ plane), an R plane ( ⁇ 1-102 ⁇ ), an M plane ( ⁇ 1-100 ⁇ ), and an A plane ( ⁇ 11-20 ⁇ ). And the like can be used.
  • the buffer layer 20, the doping reinforcement layer 30, the p-type semiconductor layer 40, the active layer 50, and the n-type semiconductor layer 60 are sequentially formed on the base substrate 10.
  • the buffer layer 20 may be formed of a nitride layer that is not doped with the nucleation layer.
  • the nucleation layer is formed on the base substrate 10 to reduce the difference in lattice constant between the base substrate 10 and the p-type semiconductor layer 40.
  • a nitride growth material such as GaN, AlN, AlGaN, InGaN, AlInN, AlGaInN, AlGaInBN may be used as the nuclear growth layer.
  • the undoped nitride layer is used to improve crystallinity and to obtain a flat surface.
  • a nitride-based material such as GaN, AlN, AlGaN, InGaN, AlInN, AlGaInN, AlGaInBN may be used.
  • the buffer layer 20 is formed using metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE) or molecular beam epitaxy (MBE). can do.
  • MOCVD metal organic chemical
  • the doping reinforcement layer 30 is formed on the buffer layer 20 to include a plurality of nitride layers 35 and 37 whose refractive index is periodically changed.
  • the doping reinforcement layer 30 includes an electrode forming portion 39 through which at least two consecutive nitride layers 35 and 37 of the plurality of nitride layers 35 and 37 are exposed. In this case, the electrode forming part 39 is exposed to the p-type semiconductor layer 40, the active layer 50, and the n-type semiconductor layer 60 to the outside.
  • the p-type semiconductor layer 40 is formed on the doping reinforcement layer 30, and is formed on the doping reinforcement layer 30 so that at least the electrode forming portion 39 of the doping reinforcement layer 30 is exposed.
  • the p-type semiconductor layer 40 is a nitride-based semiconductor layer doped with p-type conductive impurities such as Mg, Zn and Be.
  • the p-type semiconductor layer 40 may be formed of a p-type AlGaN-based.
  • the active layer 50 is formed on the p-type semiconductor layer 40.
  • the active layer 50 may be formed in a quantum well structure using a method such as MOCVD, HVPE, MBE.
  • MOCVD MOCVD
  • HVPE HVPE
  • MBE Metal Organic Chemical Vapor Deposition
  • light is generated by combining holes flowing through the p-type semiconductor layer 40 and electrons flowing through the n-type semiconductor layer 60, where the excitation level or energy band gap difference of the quantum well is Light of energy is emitted.
  • the n-type semiconductor layer 60 is formed on the active layer 50.
  • the n-type semiconductor layer 60 is formed of AlGaN, and silicon is generally doped to do the n-type doping.
  • the p-type electrode 70 is formed in the electrode forming portion 39 of the doping reinforcement layer 30.
  • the n-type electrode 80 is formed on the n-type semiconductor layer 60. In this case, the p-type electrode 70 is bonded to the plurality of nitride layers 35 and 37 exposed to the electrode forming part 39.
  • the doping reinforcement layer 30 includes a nitride layer having an aluminum composition ratio lower than that of the p-type semiconductor layer 40, and the nitride layer is exposed to the electrode forming part 39.
  • the nitride layer having a low aluminum composition ratio is one of the first and second nitride layers 35 and 37.
  • the doping reinforcement layer 30 may be formed as a distributed bragg reflector (DBR) layer. That is, the doping reinforcement layer 30 has a structure in which a p-type doped first nitride layer 35 and a p-type doped second nitride layer 37 formed on the p-type nitride layer 35 are alternately stacked.
  • DBR distributed bragg reflector
  • the first nitride layer 35 may be formed of a material of p-type doped Al x Ga y In 1-xy N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1).
  • the second nitride layer 37 may be formed of a material of p-type Al m Ga n In 1-mn N (0 ⁇ m, 0 ⁇ n, m + n ⁇ 1).
  • the doping reinforcement layer 30 may be formed to a thickness of 50nm ⁇ 2 ⁇ m.
  • the thicknesses of the first and second nitride layers 35 and 37 may be formed to have a thickness of 10 nm to 200 nm, respectively.
  • the electrode forming part 39 of the doping reinforcement layer 30 may be formed as an inclined surface, and the first nitride layer 35 and the second nitride layer 37 are exposed to the inclined surface.
  • the inclined surface may be formed by a shadow mask, photo-resist reflow, or laser processing.
  • the inclined surface of the electrode forming part 39 may be formed as an inclined surface having a predetermined angle from the YZ plane with respect to the X axis.
  • the Z axis is an axis indicating a direction in which the buffer layer 20, the doping reinforcement layer 30, the p-type semiconductor layer 40, the active layer 50, and the n-type semiconductor layer 60 are stacked on the base substrate 10.
  • the X axis is an axis corresponding to the boundary between the p-type semiconductor layer and the exposed doping reinforcement layer 30.
  • the Y axis is an axis indicating a direction in which the doping reinforcement layer 30 is exposed to the p-type semiconductor layer 40, the active layer 50, and the n-type semiconductor layer 60, and is an axis perpendicular to the XZ plane.
  • the p-type electrode 70 is formed in the electrode forming part 39 where the first and second nitride layers 35 and 37 are exposed and the first and second nitride layers 35 exposed to the electrode forming part 39. And 37).
  • the p-type electrode 70 is formed in the electrode forming portion 39 of the doping reinforcement layer 30 whose refractive index is periodically changed, thereby improving the doping concentration. Through this, the light output can be improved.
  • a DBR layer whose refractive index changes periodically with the doping reinforcement layer 30 For example, by forming a DBR layer whose refractive index changes periodically with the doping reinforcement layer 30, exposing at least two nitride layers 35, 37 of the DBR layer to the outside and then forming a p-type electrode 70 therein,
  • the type electrode 70 is also connected to a nitride layer having a relatively low refractive index, that is, a nitride layer having a low aluminum composition ratio, among the nitride layers 35 and 37 whose refractive index changes periodically, so that a relatively high concentration of doping is possible.
  • the DBR is applied to the doping reinforcement layer 30, the Al m Ga n In 1-mn N (0 ⁇ m, 0 ⁇ n, m + n ⁇ 1) lower than the aluminum composition ratio of the p-type semiconductor layer 40 is applied. Material can be used.
  • the DBR layer may improve light output of the nitride-based semiconductor light emitting device 100 by basically reflecting light generated from the active layer 50.
  • the doping reinforcement layer 30 may form a p-type Al 0.7 Ga 0.3 N layer as the first nitride layer 35 and a p-type Al 0.1 Ga 0.9 N layer as the second nitride layer 37.
  • the first and second nitride layers 35 and 37 may be formed in three layers using the unit doping reinforcement layer 30a.
  • the one or more second nitride layers 37 having a low Al composition ratio are exposed through the electrode forming part 39, and the p-type electrode 70 is formed to be connected to the exposed second nitride layers 37 so as to have a relatively high concentration. To get the doping.
  • the doping reinforcement layer 30 has been described as an example in which the unit doping reinforcement layer 30a is formed of three layers, but is not limited thereto.
  • the doping reinforcement layer 30 may include one or more unit doping reinforcement layers 30a.
  • the nitride-based semiconductor light emitting device 100 according to the first embodiment has a high doping concentration, an ohmic electrode can be easily formed.
  • FIGS. 1 to 11 A method of manufacturing the nitride semiconductor light emitting device 100 according to the first embodiment will be described with reference to FIGS. 1 to 11 as follows.
  • 3 is a flowchart illustrating a method of manufacturing the nitride semiconductor light emitting device 100 according to the first embodiment of the present invention.
  • 4 to 11 illustrate each step according to the manufacturing method of FIG. 3.
  • the base substrate 10 is prepared in step S11.
  • the base substrate 10 may include sapphire, silicon (Si), zinc oxide (ZnO), gallium nitride (GaN), gallium arsenide (GaAs), silicon carbide (SiC), aluminum nitride (AlN), and magnesium oxide (Substrates made of an element or compound material such as MgO) may be used.
  • a sapphire substrate was used as the base substrate 11.
  • the buffer layer 20 is formed on the base substrate 10 in step S13. That is, a nitride nucleus growth layer to be formed as a buffer layer 20 is formed on the base substrate 10.
  • the nitride nucleus growth layer may be formed using MOCVD, HVPE, MBE, or MOCVPE.
  • the nitride nucleus growth layer formed using a group V source and a plurality of group III sources may be made of a material such as GaN, AlN, AlGaN, InGaN, AlInN, AlInGaN, AlInGaBN, or the like.
  • an undoped nitride layer is grown based on the nitride nucleus growth layer to form the buffer layer 20.
  • a doping reinforcement layer 30 is formed on the buffer layer 20. That is, the doping reinforcement layer 30 is formed by alternately stacking a plurality of nitride layers 35 and 37 on which the refractive index is periodically changed on the buffer layer 20.
  • the doping reinforcement layer 30 may be formed as a distributed bragg reflector (DBR) layer.
  • DBR distributed bragg reflector
  • the doping reinforcement layer 30 is formed to have a structure in which the p-type doped first nitride layer 35 and the p-type second nitride layer 37 formed on the first nitride layer 35 are alternately stacked.
  • the doping reinforcement layer 30 may be formed in a form in which the unit doping reinforcement layer 30a is laminated in multiple layers using the first and second nitride layers 35 and 37 as the unit doping reinforcement layer 30a.
  • the first nitride layer 35 may be formed of a material of Al x Ga y In 1-xy N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1) doped with p-type.
  • the second nitride layer 37 may be formed of a material of p-type Al m Ga n In 1-mn N (0 ⁇ m, 0 ⁇ n, m + n ⁇ 1).
  • the p-type semiconductor layer 40 is formed on the doping reinforcement layer 30 in step S17.
  • the p-type semiconductor layer 40 is a semiconductor layer of a nitride material doped with p-type conductive impurities such as Mg, Zn, Be and the like.
  • the active layer 50 is formed on the p-type semiconductor layer 40 in step S19.
  • the active layer 50 may be formed in a quantum well structure using a method such as MOCVD, HVPE, MBE, MOCVPE.
  • the n-type semiconductor layer 60 is formed on the active layer 50 in step S21.
  • the n-type semiconductor layer 60 is formed of AlGaN, and silicon may be doped to lower the driving voltage.
  • the electrode forming part 39 is formed in the doping reinforcement layer 30 in step S23.
  • a portion of the doped reinforcement layer 30 is exposed from the n-type semiconductor layer 60, the active layer 50, and the p-type semiconductor layer 40, and at least two consecutive nitride layers of the plurality of nitride layers 35 and 37.
  • the electrode forming portion 39 is formed by exposing the 35 and 37.
  • the electrode forming part 39 may be formed as an inclined surface, and the first nitride layer 35 and the second nitride layer 37 are exposed to the inclined surface.
  • the inclined surface can be formed by a method such as a shadow mask, photoresist reflow or laser processing. 10 illustrates an example of forming an inclined surface using a shadow mask.
  • the shadow mask may be used to form an inclined tip of the photoresist mask, and the electrode forming part 39 may be formed as follows.
  • metal is deposited on the n-type semiconductor layer 60 to form a metal mask 91 pattern.
  • the metal mask 91 is formed in the portion of the n-type semiconductor layer 60 left when forming the electrode forming portion 39.
  • a photoresist mask 93 having an inclined end portion is formed on the n-type semiconductor layer 60 by using the shadow mask.
  • the photoresist mask 93 is formed to have a predetermined thickness to cover the metal mask 91, and the portion where the electrode forming part 39 is to be formed is formed as an inclined surface that becomes thinner toward the end.
  • a dry etching process is performed.
  • the photoresist mask 93 is removed by a dry etching process, and the photoresist mask 93 starts to be removed from the end of the photoresist mask 93 whose thickness is gradually processed.
  • etching is performed while the portion of the n-type semiconductor layer 60 positioned at the end of the photoresist mask 93 is exposed. As shown in FIG. 10, etching is performed in the form of an inclined surface.
  • the metal mask 91 is not removed during the dry etching process, and acts as an etch mask, so that the n-type semiconductor layer 60, the active layer 50, the p-type semiconductor layer 40, and the outer side of the metal mask 91 are formed. A portion of the doping reinforcement layer 30 is continuously etched.
  • the metal mask layer is removed after the electrode forming portion 39 is formed in the doping reinforcement layer 30.
  • the electrode forming unit 39 may be formed as follows. First, a portion of the n-type semiconductor layer 60, the active layer 50, and the p-type semiconductor layer 40 is removed by a general mesa etching method to expose the doping reinforcement layer 30 to the outside.
  • the electrode forming part 39 may be formed by irradiating a portion of the exposed doping reinforcement layer 30 with a laser. At this time, the laser generating device for irradiating the laser irradiates the laser while moving in the Y-axis direction, and increases the intensity of the laser beam in proportion to the movement distance in the Y-axis direction to irradiate the doping reinforcement layer 30 to form an electrode forming part having an inclined surface ( 39).
  • the p-type electrode 70 is formed on the electrode forming unit 39, and the n-type electrode 80 is formed on the n-type semiconductor layer 60.
  • the nitride semiconductor light emitting device 100 according to the example can be obtained.
  • the doping concentration through the p-type electrode 70 may be improved.
  • the doping reinforcement layer 30 may form a p-type Al 0.7 Ga 0.3 N layer as the first nitride layer 35 and a p-type Al 0.1 Ga 0.9 N layer as the second nitride layer 37.
  • the first and second nitride layers 35 and 37 may be formed in three layers using the unit doping reinforcement layer 30a. High concentration doping is performed by exposing at least one second nitride layer 37 having a low Al composition ratio through the electrode forming portion 39 and forming a p-type electrode 70 to be connected to the exposed second nitride layer 37. You can get it.
  • the electrode forming portion 39 of the doping reinforcement layer 30 is formed as an inclined surface
  • the electrode forming unit 139 may be formed as a recess.
  • FIG. 12 is a cross-sectional view illustrating a nitride based semiconductor light emitting device 200 according to a second embodiment of the present invention.
  • a buffer layer 120, a doping reinforcement layer 130, a p-type semiconductor layer 140, and an active layer are sequentially formed on a base substrate 110.
  • 150 and the n-type semiconductor layer 160 are formed.
  • a plurality of nitride layers 135 and 137 may be formed to remove portions of the n-type semiconductor layer 160, the active layer 150, and the p-type semiconductor layer 140 so that a portion of the doping reinforcement layer 130 is exposed, and form the doping reinforcement layer 130. At least two consecutive nitride layers 135 and 137 are formed to form the groove forming electrode 139. A plurality of nitride layers 135 and 137 forming the doping reinforcement layer 130 are exposed through the inner surface of the recess forming the electrode forming unit 139.
  • the electrode forming unit 139 may be formed as follows. First, a portion of the n-type semiconductor layer 160, the active layer 150, and the p-type semiconductor layer 140 is removed by a general mesa etching method to expose the doping reinforcement layer 130 to the outside. In addition, an exposed portion of the doped reinforcement layer 130 may be irradiated with a laser to form an electrode forming part 139 having a hemispherical groove shape.
  • the p-type electrode 170 is formed to be filled in the groove of the electrode forming unit 139, and is bonded to the plurality of nitride layers 135 and 137 exposed to the groove.
  • the nitride-based semiconductor light emitting device 200 according to the second embodiment is also bonded to a plurality of nitride layers 135 and 137 having different refractive indices forming the electrode forming unit 139 as in the first embodiment, thereby providing high concentration.
  • the doping of the light output characteristics can be improved.
  • the electrode forming portion 139 of the doping reinforcement layer 130 according to the second embodiment is formed as a hemispherical groove is disclosed, but is not limited thereto.
  • the electrode forming unit 239 may be formed with a plurality of recesses.
  • FIG. 13 is a perspective view illustrating a nitride based semiconductor light emitting device 300 according to a third exemplary embodiment of the present invention.
  • the buffer layer 220, the doping reinforcement layer 230, the p-type semiconductor layer 240, and the active layer are sequentially formed on the base substrate 210.
  • the structure 250 and the n-type semiconductor layer 260 are formed.
  • a plurality of nitride layers 235 and 237 which remove a portion of the n-type semiconductor layer 260, the active layer 250, and the p-type semiconductor layer 240 so that a portion of the doping reinforcement layer 230 is exposed, and form the doping reinforcement layer 230. At least two consecutive nitride layers 235 and 237 are formed to form a plurality of groove-shaped electrode forming portions 239. A plurality of nitride layers 235 and 237 forming the doping reinforcement layer 230 are exposed along inner surfaces of the plurality of recesses forming the electrode forming unit 239.
  • the electrode forming unit 239 may be formed as follows. First, a portion of the n-type semiconductor layer 260, the active layer 250, and the p-type semiconductor layer 240 is removed by a general mesa etching method to expose the doping reinforcement layer 230 to the outside. In addition, an exposed portion of the doped reinforcement layer 230 may be irradiated with a laser discontinuously to form an electrode forming part 239 having a plurality of recesses. In this case, the depths of the grooves are formed deeper than the thicknesses of two consecutive nitride layers 235 and 237 of the doping reinforcement layer 230. The grooves are preferably formed in the doping reinforcement layer 230.
  • the p-type electrode 270 is formed to be filled in the grooves of the electrode forming unit 239, and is bonded to the plurality of nitride layers 235 and 237 exposed to the grooves.
  • the nitride-based semiconductor light emitting device 300 according to the third embodiment is also bonded to a plurality of nitride layers 235 and 237 having different refractive indices forming the electrode forming unit 239 as in the first embodiment, thereby providing high concentration.
  • the doping of the light output characteristics can be improved.
  • the electrode forming portion 39 of the doping reinforcement layer 30 is formed as an inclined surface, but is not limited thereto.
  • the electrode forming unit 339 may be formed in a stepped surface.
  • FIG. 14 is a perspective view illustrating a nitride based semiconductor light emitting device 400 according to a fourth exemplary embodiment of the present invention.
  • a buffer layer 320, a doping reinforcement layer 330, a p-type semiconductor layer 340, and an active layer are sequentially formed on a base substrate 310. 350 and the n-type semiconductor layer 360 is formed.
  • a plurality of nitride layers 335 and 337 which remove a portion of the n-type semiconductor layer 360, the active layer 350, and the p-type semiconductor layer 340 to expose a portion of the doping reinforcement layer 330, and form the doping reinforcement layer 330. At least two consecutive nitride layers 335 and 337 are formed to form a stepped electrode forming part 339.
  • the electrode forming unit 339 may be formed as follows. First, a portion of the n-type semiconductor layer 360, the active layer 350, and the p-type semiconductor layer 340 is removed by a general mesa etching method to expose the doping reinforcement layer 330 to the outside. An exposed portion of the doped reinforcement layer 330 may be etched to form an electrode forming portion 339 having a step shape. Alternatively, while continuously irradiating a laser to the exposed doped reinforcement layer 230, the electrode forming portion 339 having a step shape may be formed by irradiating while increasing or decreasing the intensity of the laser beam sequentially.
  • the plurality of nitride layers 335 and 337 forming the doping reinforcement layer 330 may be exposed to the step surface and the side surface adjacent to the step surface, respectively. At least one nitride layer 335 and 337 may be exposed on the step surface and the adjacent side surface.
  • the p-type electrode 370 is bonded to the stepped surface of the electrode forming portion 339.
  • the p-type electrode 370 may be bonded to the plurality of nitride layers 335 and 337 forming the plurality of stepped surfaces.
  • the nitride-based semiconductor light emitting device 400 according to the fourth embodiment is also bonded to a plurality of nitride layers 335 and 337 having different refractive indices forming the electrode forming unit 339 as in the first embodiment, thereby providing high concentration.
  • the doping of the light output characteristics can be improved.
  • 15 is a cross-sectional view illustrating a nitride based semiconductor light emitting device 500 according to a fifth embodiment of the present invention.
  • a buffer layer 420, a doping reinforcement layer 430, a p-type semiconductor layer 440, and an active layer are sequentially formed on a base substrate 410.
  • 450 and the n-type semiconductor layer 460 are formed.
  • the doping reinforcement layer 430 forms a superlattice layer 432 formed on the buffer layer 420, and a DBR layer 434 formed on the superlattice layer 432.
  • An inclined surface electrode forming portion 439 is formed to expose at least two consecutive nitride layers 435 and 437.
  • the superlattice layer 432 reduces the strain generated during the operation of the nitride-based semiconductor light emitting device 500.
  • the superlattice layer 432 is formed on the first Al x Ga y In 1-xy N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1) layer and the first Al x Ga y In 1-xy N layer.
  • a second Al x Ga y In 1-xy N layer having a composition ratio different from that of the first Al x Ga y In 1-xy N layer (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1).
  • the superlattice layer 432 is formed of at least one unit superlattice layer using the first and second Al x Ga y In 1-xy N layers as the unit superlattice layer.
  • the first and second Al x Ga y In 1-xy N layers may be formed without doping or doping.
  • the superlattice layer 432 is formed on the undoped first Al x Ga 1-x N layer 431 (0 ⁇ x ⁇ 1) and the first Al x Ga 1-x N layer 431.
  • No. 1 Al x Ga 1-x N layer and the un-doped claim 2 Al x Ga 1-x N layer (433) (0 ⁇ x ⁇ 1) with a different compositional ratio may have a structure of alternately laminated.
  • the superlattice layer 432 may be formed by stacking one or more unit superlattice layers using the first and second Al x Ga 1-x N layers 431 and 433 as the unit superlattice layers.
  • the first and second Al x Ga 1-x N layers 431 and 433 may have different aluminum composition ratios.
  • Superlattice layer 432 may be formed to a thickness of 100nm to 1 ⁇ m.
  • the unit layer forming the superlattice layer 432 may be formed to a thickness of 1 ⁇ 20nm.
  • the superlattice layer 432 may be formed by repeatedly forming nitride layers having different refractive indices, thereby reducing strain and improving crystallinity. (The function as the DBR can be performed together. This allows the superlattice layer 432 to reinforce the function of the DBR along with the DBR layer 434 to the light emitted from the active layer 450.)
  • the nitride-based semiconductor light emitting device 500 according to the fifth embodiment is also bonded to a plurality of nitride layers 435 and 437 having different refractive indices forming the electrode forming portion 439 as in the first embodiment, thereby providing a high concentration. Doping can improve the light output characteristics.
  • the electrode forming portion 39 of the doping reinforcement layer 30 is formed as an inclined surface, but as shown in FIG.
  • the electrode forming unit 539 may be formed as an inclined surface inclined back and forth.
  • 16 is a perspective view illustrating a nitride based semiconductor light emitting device 600 according to a sixth embodiment of the present invention. 17 is a cross-sectional view of FIG. 16.
  • the buffer layer 520, the doping reinforcement layer 530, and the p-type semiconductor layer 540 are sequentially formed on the base substrate 510. ), The active layer 550 and the n-type semiconductor layer 560 are formed.
  • a plurality of nitride layers 535 and 537 are formed to remove portions of the n-type semiconductor layer 560, the active layer 550, and the p-type semiconductor layer 540 so that a portion of the doping reinforcement layer 530 is exposed.
  • the electrode forming portion 539 is formed on the inclined surface so that at least two consecutive nitride layers 535 and 537 are exposed.
  • the inclined surface may be formed as an inclined surface having a predetermined angle in the XZ plane with respect to the Y axis. At this time, portions of the doping reinforcement layer 530 are exposed together through the inclined surface and the neighboring surface.
  • the nitride-based semiconductor light emitting device 600 is also bonded to a plurality of nitride layers 535 and 537 having different refractive indices forming the electrode forming portion 539 as in the first embodiment, thereby providing high concentration.
  • the doping of the light output characteristics can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

The present invention relates to a nitride group semiconductor light-emitting element and a method for manufacturing the same. The purpose of the present invention is to improve optical power through high-density doping in an electrode. A nitride group semiconductor light-emitting element according to the present invention comprises a base substrate, a buffer layer, a doping reinforcing layer, a p-type semiconductor layer, an active layer, an n-type semiconductor layer, a p-type electrode, and an n-type electrode. The buffer layer of a nitride group is formed on the base substrate. The doping reinforcing layer is formed on the buffer layer, comprises a plurality of nitride layers including aluminum, a refractive index of which periodically varies, and has an electrode forming portion through which at least two continuous nitride layers among the plurality of nitride layers are exposed. The p-type semiconductor layer of a nitride group includes aluminum formed on the doping reinforcing layer to expose at least the electrode forming portion of the doping reinforcing layer. The active layer of a nitride group includes aluminum formed on the p-type semiconductor layer. The n-type semiconductor layer of a nitride group includes aluminum formed on the active layer. The p-type electrode is formed on the electrode forming portion. The n-type electrode is formed on the n-type semiconductor layer.

Description

질화물계 반도체 발광 소자 및 그의 제조 방법Nitride-based semiconductor light emitting device and method of manufacturing the same
본 발명은 질화물계 반도체 발광 소자 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 저항 특성을 개선하여 광출력을 향상시킬 수 있는 질화물계 반도체 발광 소자 및 그의 제조 방법에 관한 것이다.The present invention relates to a nitride semiconductor light emitting device and a method of manufacturing the same, and more particularly to a nitride based semiconductor light emitting device and a method of manufacturing the same that can improve the light output by improving the resistance characteristics.
일반적으로 질소(N)와 같은 Ⅴ족 소스와, 갈륨(Ga), 알루미늄(Al), 인듐(In) 등과 같은 Ⅲ족 소스를 포함하는 GaN, AlN, AlGaN, AlGaInN 등의 질화물 반도체 소재는 열적 안정성이 우수하고 직접 천이형의 에너지 밴드(band) 구조를 갖고 있어, 최근 청색 및 자외선 영역의 질화물계 반도체 발광 소자용 물질로 많이 사용되고 있다.In general, nitride semiconductor materials such as GaN, AlN, AlGaN, and AlGaInN, which include group V sources such as nitrogen (N) and group III sources such as gallium (Ga), aluminum (Al), and indium (In), are thermally stable. It has an excellent and direct transition type energy band structure, and has recently been widely used as a material for nitride-based semiconductor light emitting devices in the blue and ultraviolet regions.
이러한 질화물계 반도체 발광 소자는 일반적으로 기판 위에 버퍼층, n형 반도체층, 활성층, p형 반도체층 및 전극의 구조로 이루어져 있다. 이때, 활성층은 전자 및 정공이 재결합되는 영역으로서, 양자우물층(quantum well layer)이 양자장벽층(quantum barrier layer) 사이에 배치된 구조를 갖는다. 이러한 활성층을 이루는 물질의 종류에 따라 질화물계 반도체 발광 소자에서 방출되는 발광 파장이 결정된다.Such nitride-based semiconductor light emitting devices generally have a structure of a buffer layer, an n-type semiconductor layer, an active layer, a p-type semiconductor layer, and an electrode on a substrate. In this case, the active layer is a region where electrons and holes are recombined, and has a structure in which a quantum well layer is disposed between the quantum barrier layers. The emission wavelength emitted from the nitride semiconductor light emitting device is determined by the kind of the material forming the active layer.
활성층에는 하나의 양자우물층을 갖는 단일양자우물(single quantum well; SQW) 구조, 복수개의 양자우물층을 갖는 다중양자우물(multi quantum well; MQW) 구조가 있다. 이 중에서 다중양자우물구조의 활성층은 단일양자우물구조에 비해 전류대비 발광효율이 우수하고 높은 발광출력을 가지므로 적극적으로 활용되고 있다. 이러한 질화물계 반도체 발광 소자의 발광효율은 원천적으로 활성층 내에서의 발광에 참여하는 전자와 정공의 재결합확률, 즉 내부양자효율에 의해 결정된다.The active layer has a single quantum well (SQW) structure having one quantum well layer and a multi quantum well (MQW) structure having a plurality of quantum well layers. Among them, the active layer of the multi-quantum well structure is actively used because of its superior luminous efficiency and high luminous output compared to the single quantum well structure. The luminous efficiency of the nitride-based semiconductor light emitting device is basically determined by the probability of recombination of electrons and holes participating in the emission in the active layer, that is, the internal quantum efficiency.
이러한 활성층에서 생성된 빛의 흡수를 막기 위해, 예컨대 AlGaN 기반 반도체 발광 소자의 활성층 알루미늄 조성비는 n형 반도체층 또는 p형 반도체층의 알루미늄(Al) 조성비보다는 작아야 한다.In order to prevent absorption of light generated in the active layer, for example, the active layer aluminum composition ratio of the AlGaN-based semiconductor light emitting device should be smaller than the aluminum (Al) composition ratio of the n-type semiconductor layer or the p-type semiconductor layer.
일반적으로 Al의 조성비가 높을수록 도핑이 어려워 저항이 높아지는 특성을 보인다. 따라서 종래의 질화물계 반도체 발광 소자는 n형 반도체층 또는 p형 반도체층의 알루미늄 조성비가 활성층의 알루미늄 조성비에 비해서 높기 때문에, 고농도의 도핑이 어려워 저항이 높아 고출력의 질화물계 반도체 발광 소자를 제작하기 어려운 문제점을 안고 있다.In general, the higher the Al composition ratio, the more difficult doping is, resulting in higher resistance. Therefore, in the conventional nitride semiconductor light emitting device, since the aluminum composition ratio of the n-type semiconductor layer or the p-type semiconductor layer is higher than the aluminum composition ratio of the active layer, it is difficult to fabricate a high output nitride semiconductor light emitting device due to high doping difficulty and high resistance. I have a problem.
따라서 본 발명의 목적은 저항 특성개선을 통하여 광출력을 향상시킬 수 있는 질화물계 반도체 발광 소자 및 그의 제조 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a nitride-based semiconductor light emitting device and a method of manufacturing the same that can improve the light output through improved resistance characteristics.
상기 목적을 달성하기 위하여, 본 발명은 베이스 기판, 버퍼층, 도핑 보강층, p형 반도체층, 활성층, n형 반도체층, p형 전극 및 n형 전극을 포함하는 질화물계 반도체 발광 소자를 제공한다. 질화물계의 상기 버퍼층은 상기 베이스 기판 위에 형성된다. 상기 도핑 보강층은 상기 버퍼층 위에 형성되며, 굴절율이 주기적으로 변하는 알루미늄을 함유하는 복수의 질화물층을 포함하고, 상기 복수의 질화물층 중 적어도 연속되는 두 개의 질화물층이 노출되는 전극 형성부를 갖는다. 질화물계의 상기 p형 반도체층은 적어도 상기 도핑 보강층의 전극 형성부가 노출되게 상기 도핑 보강층 위에 형성된 알루미늄을 함유한다. 질화물계의 상기 활성층은 상기 p형 반도체층 위에 형성한다. 질화물계의 상기 n형 반도체층은 상기 활성층 위에 형성한다. 상기 p형 전극은 상기 전극 형성부 위에 형성된다. 그리고 n형 전극은 상기 n형 반도체층 위에 형성된다.In order to achieve the above object, the present invention provides a nitride-based semiconductor light emitting device comprising a base substrate, a buffer layer, a doping reinforcement layer, a p-type semiconductor layer, an active layer, an n-type semiconductor layer, a p-type electrode and an n-type electrode. The nitride buffer layer is formed on the base substrate. The doping reinforcement layer is formed on the buffer layer, and includes a plurality of nitride layers containing aluminum, the refractive index of which is periodically changed, and has an electrode forming portion to expose at least two consecutive nitride layers of the plurality of nitride layers. The nitride-based p-type semiconductor layer contains at least aluminum formed on the doped reinforcement layer to expose the electrode forming portion of the doped reinforcement layer. The nitride-based active layer is formed on the p-type semiconductor layer. The n-type semiconductor layer of nitride is formed on the active layer. The p-type electrode is formed on the electrode forming portion. The n-type electrode is formed on the n-type semiconductor layer.
본 발명에 따른 질화물계 반도체 발광 소자에 있어서, 상기 도핑 보강층은 상기 p형 반도체층의 알루미늄 조성비 보다는 낮은 알루미늄 조성비를 갖는 질화물층을 포함하며, 상기 전극 형성부에 상기 질화물층이 노출될 수 있다.In the nitride-based semiconductor light emitting device according to the present invention, the doping reinforcement layer includes a nitride layer having a lower aluminum composition ratio than the aluminum composition ratio of the p-type semiconductor layer, the nitride layer may be exposed to the electrode forming portion.
본 발명에 따른 질화물계 반도체 발광 소자에 있어서, 상기 도핑 보강층은 p형으로 도핑된 제1 질화물층과, 상기 p형 질화물층 위에 형성되는 p형으로 도핑된 제2 질화물층을 포함한다. 이때 상기 도핑 보강층은 상기 제1 및 제2 질화물층이 교대로 형성될 수 있다.In the nitride semiconductor light emitting device according to the present invention, the doping reinforcement layer includes a first nitride layer doped with a p-type, and a p-type doped second nitride layer formed on the p-type nitride layer. In this case, the doping reinforcing layer may be formed by alternating the first and second nitride layer.
본 발명에 따른 질화물계 반도체 발광 소자에 있어서, 상기 제1 질화물층은 p형으로 도핑된 AlxGayIn1-x-yN(0<x, 0<y, x+y≤1)의 소재로 형성될 수 있다. 상기 제2 질화물층은 p형으로 도핑된 AlmGanIn1-m-nN(0<m, 0<n, m+n≤1)의 소재로 형성될 수 있다.In the nitride-based semiconductor light emitting device according to the present invention, the first nitride layer is a material of p-type Al x Ga y In 1-xy N (0 <x, 0 <y, x + y ≤ 1) Can be formed. The second nitride layer may be formed of a material of p-type Al m Ga n In 1-mn N (0 <m, 0 <n, m + n ≦ 1).
본 발명에 따른 질화물계 반도체 발광 소자에 있어서, 상기 도핑 보강층의 전극 형성부는 경사면, 요홈 또는 계단면으로 형성될 수 있다.In the nitride-based semiconductor light emitting device according to the present invention, the electrode forming portion of the doping reinforcement layer may be formed as an inclined surface, grooves or stepped surface.
본 발명에 따른 질화물계 반도체 발광 소자에 있어서, 상기 도핑 보강층의 전극 형성부는 상기 n형 반도체층, 활성층 및 p형 반도체층에 대해서 일측으로 돌출되어 상기 도핑 보강층에 형성되며, 노출된 상기 도핑 보강층의 상부면 부분에 좌우로 경사진 경사면으로 형성될 수 있다.In the nitride-based semiconductor light emitting device according to the present invention, the electrode forming portion of the doping reinforcement layer protrudes to one side with respect to the n-type semiconductor layer, the active layer and the p-type semiconductor layer is formed on the doping reinforcement layer, the exposed of the doping reinforcement layer It may be formed as an inclined surface inclined left and right on the upper surface portion.
본 발명에 따른 질화물계 반도체 발광 소자에 있어서, 상기 도핑 보강층의 전극 형성부는 상기 n형 반도체층, 활성층 및 p형 반도체층에 대해서 일측으로 돌출되어 상기 도핑 보강층에 형성되며, 노출된 상기 도핑 보강층의 상부면 부분에 상하로 경사진 경사면으로 형성될 수 있다.In the nitride-based semiconductor light emitting device according to the present invention, the electrode forming portion of the doping reinforcement layer protrudes to one side with respect to the n-type semiconductor layer, the active layer and the p-type semiconductor layer is formed on the doping reinforcement layer, the exposed of the doping reinforcement layer It may be formed as an inclined surface inclined up and down on the upper surface portion.
본 발명에 따른 질화물계 반도체 발광 소자에 있어서, 상기 도핑 보강층은 상기 버퍼층 위에 형성되는 DBR(Distributed Bragg Reflector)층을 포함할 수 있다.In the nitride-based semiconductor light emitting device according to the present invention, the doping reinforcement layer may include a Distributed Bragg Reflector (DBR) layer formed on the buffer layer.
본 발명에 따른 질화물계 반도체 발광 소자에 있어서, 상기 도핑 보강층은 상기 버퍼층과 상기 DBR층 사이에 형성된 초격자층을 더 포함할 수 있다.In the nitride based semiconductor light emitting device according to the present invention, the doping reinforcement layer may further include a superlattice layer formed between the buffer layer and the DBR layer.
본 발명에 따른 질화물계 반도체 발광 소자에 있어서, 상기 초격자층은 제1 AlxGayIn1-x-yN(0<x, 0<y, x+y≤1)층과, 상기 제1 AlxGayIn1-x-yN층 위에 형성되며, 상기 제1 AlxGayIn1-x-yN층과 다른 조성비를 갖는 제2 AlxGayIn1-x-yN층(0<x, 0<y, x+y≤1)을 포함한다. 이때 상기 초격자층은 상기 제1 및 제2 AlxGayIn1-x-yN층을 단위 초격자층으로 하여, 상기 단위 초격자층이 적어도 한 층 이상으로 형성된다. 또한 상기 초격자층을 형성할 때 도핑을 하여 형성할 수도 있다.In the nitride-based semiconductor light emitting device according to the present invention, the superlattice layer is a first Al x Ga y In 1-xy N (0 <x, 0 <y, x + y ≤ 1) layer and the first Al x Ga y In is formed on the 1-xy N layer, wherein the 1 Al x Ga y In 1-xy N layer and the 2 Al x Ga y In 1-xy N layer (0 <x having a different composition ratio, 0 < y, x + y ≦ 1). In this case, the superlattice layer is formed of at least one unit superlattice layer using the first and second Al x Ga y In 1-xy N layers as a unit superlattice layer. In addition, when the superlattice layer is formed, it may be formed by doping.
본 발명은 또한, 베이스 기판, 버퍼층, 도핑 보강층, p형 반도체층, 활성층, n형 반도체층, p형 전극 및 n형 전극을 포함하는 질화물계 반도체 발광 소자를 제공한다. 질화물계의 상기 버퍼층은 상기 베이스 기판 위에 형성된다. 상기 도핑 보강층은 상기 버퍼층 위에 적층된 굴절율이 다른 복수의 질화물층을 포함하고, 일측에 상기 복수의 질화물층 중 서로 다른 굴절율을 갖는 질화물층이 적어도 두 개가 노출되는 전극 형성부를 갖는다. 질화물계의 상기 p형 반도체층은 상기 전극 형성부가 노출되게 상기 도핑 보강층 위에 형성된다. 질화물계의 상기 활성층은 상기 p형 반도체층 위에 형성된다. 질화물계의 상기 n형 반도체층은 상기 활성층 위에 형성된다. 상기 p형 전극은 상기 전극 형성부 위에 형성된다. 그리고 n형 전극은 상기 n형 반도체층 위에 형성된다.The present invention also provides a nitride-based semiconductor light emitting device comprising a base substrate, a buffer layer, a doping reinforcement layer, a p-type semiconductor layer, an active layer, an n-type semiconductor layer, a p-type electrode and an n-type electrode. The nitride buffer layer is formed on the base substrate. The doping reinforcement layer includes a plurality of nitride layers having different refractive indices stacked on the buffer layer, and has an electrode forming part exposing at least two nitride layers having different refractive indices among the plurality of nitride layers on one side thereof. The p-type semiconductor layer of nitride is formed on the doping reinforcement layer to expose the electrode forming portion. The nitride based active layer is formed on the p-type semiconductor layer. The nitride n-type semiconductor layer is formed on the active layer. The p-type electrode is formed on the electrode forming portion. The n-type electrode is formed on the n-type semiconductor layer.
본 발명은 또한, 베이스 기판 위에 질화물계의 버퍼층을 형성하는 단계, 상기 버퍼층 위에 굴절율이 주기적으로 변하는 복수의 질화물층을 포함하는 도핑 보강층을 형성하는 단계, 상기 도핑 보강층 위에 알루미늄을 함유하는 질화물계의 p형 반도체층을 형성하는 단계, 상기 p형 반도체층 위에 알루미늄을 함유하는 질화물계의 활성층을 형성하는 단계, 상기 활성층 위에 알루미늄을 함유하는 질화물계의 n형 반도체층을 형성하는 단계, 상기 도핑 보강층의 일부가 노출되게 상기 n형 반도체층, 상기 활성층 및 상기 p형 반도체층의 일부를 제거하고 상기 도핑 보강층을 형성하는 상기 복수의 질화물층 중 적어도 연속되는 두 개의 질화물층을 노출시켜 전극 형성부를 형성하는 단계, 및 상기 전극 형성부 위에 p형 전극을 형성하고 상기 n형 반도체층 위에 n형 전극을 형성하는 단계를 포함하는 질화물계 반도체 발광 소자의 제조 방법을 제공한다.The present invention also provides a method of forming a nitride-based buffer layer on a base substrate, forming a doping reinforcement layer including a plurality of nitride layers whose refractive index is periodically changed on the buffer layer, and a nitride-based nitride-containing nitride layer on the doping reinforcement layer. forming a p-type semiconductor layer, forming a nitride-based active layer containing aluminum on the p-type semiconductor layer, forming a nitride-based n-type semiconductor layer containing aluminum on the active layer, and the doping reinforcement layer Forming an electrode forming portion by exposing at least two consecutive nitride layers of the plurality of nitride layers forming the doping reinforcing layer and removing a portion of the n-type semiconductor layer, the active layer and the p-type semiconductor layer so that a portion of the semiconductor layer is exposed; And forming a p-type electrode on the electrode forming portion and on the n-type semiconductor layer. It provides a method of manufacturing a nitride-based semiconductor light emitting device comprising the step of forming an n-type electrode.
본 발명에 따른 질화물계 반도체 발광 소자의 제조 방법에 있어서, 상기 전극 형성부를 형성하는 단계는, 섀도우 마스크를 이용하여 상기 n형 반도체층, 상기 활성층 및 상기 p형 반도체층의 일부를 제거하여 상기 도핑 보강층의 일부를 노출시키되, 상기 도핑 보강층을 형성하는 상기 복수의 질화물층 중 적어도 연속되는 두 개의 질화물층이 경사면을 통하여 노출되게 상기 전극 형성부를 형성할 수 있다.In the method of manufacturing a nitride-based semiconductor light emitting device according to the present invention, the forming of the electrode forming portion, the doping by removing a portion of the n-type semiconductor layer, the active layer and the p-type semiconductor layer using a shadow mask. Exposing a portion of the reinforcement layer, the electrode forming portion may be formed such that at least two consecutive nitride layers of the plurality of nitride layers forming the doped reinforcement layer are exposed through the inclined surface.
본 발명에 따른 질화물계 반도체 발광 소자의 제조 방법에 있어서, 상기 전극 형성부를 형성하는 단계는 상기 도핑 보강층의 일부가 노출되게 상기 n형 반도체층, 상기 활성층 및 상기 p형 반도체층의 일부를 제거하는 단계와, 상기 도핑 보강층을 형성하는 상기 복수의 질화물층 중 적어도 연속되는 두 개의 질화물층을 레이저를 조사하여 노출시켜 전극 형성부를 형성하는 단계를 포함할 수 있다.In the method of manufacturing a nitride-based semiconductor light emitting device according to the invention, the step of forming the electrode forming portion is to remove a portion of the n-type semiconductor layer, the active layer and the p-type semiconductor layer to expose a portion of the doping reinforcement layer. And forming at least two consecutive nitride layers of the plurality of nitride layers forming the doped reinforcement layer by irradiating a laser beam to form an electrode forming portion.
그리고 본 발명에 따른 질화물계 반도체 발광 소자의 제조 방법에 있어서, 상기 전극 형성부를 형성하는 단계에서, 상기 전극 형성부는 경사면 또는 적어도 하나의 요홈을 포함하도록 형성될 수 있다.In the method of manufacturing the nitride-based semiconductor light emitting device according to the present invention, in the forming of the electrode forming portion, the electrode forming portion may be formed to include an inclined surface or at least one groove.
본 발명에 따른 질화물계 반도체 발광 소자는 굴절율이 주기적으로 변하는 도핑 보강층에 전극을 형성함으로써, 도핑 농도의 감소 현상을 개선하여 광출력을 향상시킬 수 있다. 예컨대 도핑 보강층으로 굴절율이 주기적으로 변하는 DBR(Distributed Bragg Reflector)층을 형성하고, DBR층의 적어도 두 개의 층을 외부로 노출시킨 후 그 곳에 전극을 형성함으로써, 전극은 굴절율이 주기적으로 변하는 층 중에서 상대적으로 굴절율이 낮은 층, 즉 알루미늄 조성비가 낮은 층에도 접속되기 때문에, 고농도의 도핑이 가능하다. 즉 도핑 보강층으로 DBR을 적용하기 때문에, p형 반도체층의 알루미늄 조성비 보다 낮은 AlmGanIn1-m-nN(0<m, 0<n, m+n≤1)의 소재를 사용할 수 있기 때문이다.In the nitride-based semiconductor light emitting device according to the present invention, by forming an electrode in the doping reinforcement layer whose refractive index is periodically changed, it is possible to improve the light output by improving the reduction phenomenon of the doping concentration. For example, by forming a DBR (Distributed Bragg Reflector) layer having a periodically varying refractive index as a doping reinforcement layer, exposing at least two layers of the DBR layer to the outside, and then forming an electrode therein, the electrode has a relative refractive index among the periodically changing layers. In addition, since it is connected to the layer with a low refractive index, ie, a layer with a low aluminum composition ratio, doping of high density is possible. That is, since DBR is applied as the doping reinforcement layer, a material of Al m Ga n In 1-mn N (0 <m, 0 <n, m + n ≦ 1) lower than the aluminum composition ratio of the p-type semiconductor layer may be used. to be.
또한 본 발명에 따른 질화물계 반도체 발광 소자는 도핑 농도가 높기 때문에, 오믹(ohmic) 전극도 용이하게 형성할 수 있다.In addition, since the nitride semiconductor light emitting device according to the present invention has a high doping concentration, an ohmic electrode can be easily formed.
도 1은 본 발명의 제1 실시예에 따른 질화물계 반도체 발광 소자를 보여주는 사시도이다.1 is a perspective view illustrating a nitride based semiconductor light emitting device according to a first exemplary embodiment of the present invention.
도 2는 도 1의 단면도이다.2 is a cross-sectional view of FIG. 1.
도 3은 본 발명의 제1 실시예에 따른 질화물계 반도체 발광 소자의 제조 방법에 따른 흐름도이다.3 is a flowchart illustrating a method of manufacturing a nitride-based semiconductor light emitting device according to a first embodiment of the present invention.
도 4 내지 도 11은 도 3의 제조 방법에 따른 각 단계를 보여주는 도면이다.4 to 11 illustrate each step according to the manufacturing method of FIG. 3.
도 12는 본 발명의 제2 실시예에 따른 질화물계 반도체 발광 소자를 보여주는 단면도이다.12 is a cross-sectional view illustrating a nitride based semiconductor light emitting device according to a second exemplary embodiment of the present invention.
도 13은 본 발명의 제3 실시예에 따른 질화물계 반도체 발광 소자를 보여주는 사시도이다.13 is a perspective view illustrating a nitride based semiconductor light emitting device according to a third exemplary embodiment of the present invention.
도 14는 본 발명의 제4 실시예에 따른 질화물계 반도체 발광 소자를 보여주는 단면도이다.14 is a cross-sectional view illustrating a nitride based semiconductor light emitting device according to a fourth embodiment of the present invention.
도 15는 본 발명의 제5 실시예에 따른 질화물계 반도체 발광 소자를 보여주는 단면도이다.15 is a cross-sectional view illustrating a nitride based semiconductor light emitting device according to a fifth embodiment of the present invention.
도 16은 본 발명의 제6 실시예에 따른 질화물계 반도체 발광 소자를 보여주는 사시도이다.16 is a perspective view illustrating a nitride based semiconductor light emitting device according to a sixth embodiment of the present invention.
도 17은 도 16의 단면도이다.17 is a cross-sectional view of FIG. 16.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.In the following description, only parts necessary for understanding the embodiments of the present invention will be described, it should be noted that the description of other parts will be omitted so as not to distract from the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in the specification and claims described below should not be construed as being limited to the ordinary or dictionary meanings, and the inventors are appropriate to the concept of terms in order to explain their invention in the best way. It should be interpreted as meanings and concepts in accordance with the technical spirit of the present invention based on the principle that it can be defined. Therefore, the embodiments described in the present specification and the configuration shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations and variations.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention.
제1 실시예First embodiment
도 1은 본 발명의 제1 실시예에 따른 질화물계 반도체 발광 소자를 보여주는 사시도이다. 도 2는 도 1의 단면도이다.1 is a perspective view illustrating a nitride based semiconductor light emitting device according to a first exemplary embodiment of the present invention. 2 is a cross-sectional view of FIG. 1.
도 1 및 도 2를 참조하면, 제1 실시예에 따른 질화물계 반도체 발광 소자(100)는 베이스 기판(10) 상에 순차적으로 버퍼층(20), 도핑 보강층(30), p형 반도체층(40), 활성층(50) 및 n형 반도체층(60)이 형성된 구조를 갖는다. 질화물계 반도체 발광 소자(100)는 외부로 노출된 도핑 보강층(30) 부분에 p형 전극(70)이 형성되고, n형 반도체층(60) 위에 n형 전극(80)이 형성된 구조를 갖는다. 여기서 버퍼층(20)은 베이스 기판(10) 위에 형성되며, 질화물계의 소재를 성장하여 형성한다. 도핑 보강층(30)은 버퍼층(20) 위에 형성되며, 굴절율이 주기적으로 변하는 복수의 질화물층(35,37)을 포함하고, 복수의 질화물층(35,37) 중 적어도 연속되는 두 개의 질화물층(35,37)이 노출되는 전극 형성부(39)를 갖는다. p형 반도체층(40)은 적어도 도핑 보강층(30) 위에 형성되며, 알루미늄을 함유하는 질화물계의 소재로 형성된다. 활성층(50)은 p형 반도체층(40) 위에 형성되며, 알루미늄을 함유하는 질화물계의 소재로 형성된다. n형 반도체층(60)은 활성층(50) 위에 형성되며, 알루미늄을 함유하는 질화물계의 소재로 형성된다. p형 전극(70)은 도핑 보강층(30)의 전극 형성부(39) 위에 형성된다. 그리고 n형 전극(80)은 n형 반도체층(60) 위에 형성된다.1 and 2, in the nitride-based semiconductor light emitting device 100 according to the first embodiment, a buffer layer 20, a doping reinforcement layer 30, and a p-type semiconductor layer 40 are sequentially formed on a base substrate 10. ), The active layer 50 and the n-type semiconductor layer 60 is formed. The nitride semiconductor light emitting device 100 has a structure in which a p-type electrode 70 is formed on a portion of the doping reinforcement layer 30 that is exposed to the outside, and an n-type electrode 80 is formed on the n-type semiconductor layer 60. Here, the buffer layer 20 is formed on the base substrate 10 and formed by growing a nitride material. The doping reinforcement layer 30 is formed on the buffer layer 20 and includes a plurality of nitride layers 35 and 37 whose refractive indices are periodically changed, and at least two consecutive nitride layers of the plurality of nitride layers 35 and 37 ( 35 and 37 have electrode forming portions 39 exposed. The p-type semiconductor layer 40 is formed on at least the doping reinforcement layer 30 and is formed of a nitride-based material containing aluminum. The active layer 50 is formed on the p-type semiconductor layer 40, and is formed of a nitride-based material containing aluminum. The n-type semiconductor layer 60 is formed on the active layer 50 and formed of a nitride-based material containing aluminum. The p-type electrode 70 is formed on the electrode forming portion 39 of the doping reinforcement layer 30. The n-type electrode 80 is formed on the n-type semiconductor layer 60.
이러한 제1 실시예에 따른 질화물계 반도체 발광 소자(100)에 대해서 구체적으로 설명하면 다음과 같다.The nitride based semiconductor light emitting device 100 according to the first embodiment will be described in detail as follows.
베이스 기판(10)은 질화물계 반도체 단결정을 성장시키기에 적합한 소재로 이루어질 수 있다. 이때 베이스 기판(10)은 사파이어, 실리콘(Si), 징크 옥사이드(zinc oxide, ZnO), 갈륨 나이트라이드(gallium nitride, GaN), 갈륨 비소(GaAs), 실리콘 카바이드(silicon carbide, SiC), 알루미늄 나이트라이드(AlN), 산화 마그네슘(MgO) 등의 원소 혹은 화합물로 제조될 수 있다. 예컨대 베이스 기판(10)으로는 C면({0001}면), R면({1-102}), M면({1-100}) 및 A면({11-20})을 갖는 사파이어 기판 등이 사용될 수 있다. 베이스 기판(10) 위에 버퍼층(20), 도핑 보강층(30), p형 반도체층(40), 활성층(50), n형 반도체층(60)이 순차적으로 형성된다.The base substrate 10 may be made of a material suitable for growing a nitride-based semiconductor single crystal. In this case, the base substrate 10 may include sapphire, silicon (Si), zinc oxide (ZnO), gallium nitride (GaN), gallium arsenide (GaAs), silicon carbide (SiC), and aluminum knight. It may be made of an element or a compound such as lide (AlN), magnesium oxide (MgO). For example, the base substrate 10 is a sapphire substrate having a C plane ({0001} plane), an R plane ({1-102}), an M plane ({1-100}), and an A plane ({11-20}). And the like can be used. The buffer layer 20, the doping reinforcement layer 30, the p-type semiconductor layer 40, the active layer 50, and the n-type semiconductor layer 60 are sequentially formed on the base substrate 10.
버퍼층(20)은 핵 생성층과 도핑하지 않는 질화물층으로 구성될 수 있다. 핵생성층은 베이스 기판(10)과 p형 반도체층(40)의 격자 상수 차이를 줄여 주기 위한 것으로서, 베이스 기판(10) 위에 형성된다. 핵 성장층으로는 GaN, AlN, AlGaN, InGaN, AlInN, AlGaInN, AlGaInBN 등의 질화물계 소재가 사용될 수 있다. 도핑되지 않는 질화물층은 결정성을 향상시키고 평탄한 표면을 얻기 위해 사용되어지며 물질로는 GaN, AlN, AlGaN, InGaN, AlInN, AlGaInN, AlGaInBN 등의 질화물계 소재가 사용될 수 있다. 이때 버퍼층(20)은 금속 유기 화학 기상 증착법(metal organic chemical vapor deposition; MOCVD), 수소화물 기상 성장법(hydride vapor phase epitaxy; HVPE) 또는 분자선 성장법(molecular beam epitaxy; MBE) 등을 사용하여 형성할 수 있다.The buffer layer 20 may be formed of a nitride layer that is not doped with the nucleation layer. The nucleation layer is formed on the base substrate 10 to reduce the difference in lattice constant between the base substrate 10 and the p-type semiconductor layer 40. A nitride growth material such as GaN, AlN, AlGaN, InGaN, AlInN, AlGaInN, AlGaInBN may be used as the nuclear growth layer. The undoped nitride layer is used to improve crystallinity and to obtain a flat surface. A nitride-based material such as GaN, AlN, AlGaN, InGaN, AlInN, AlGaInN, AlGaInBN may be used. In this case, the buffer layer 20 is formed using metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE) or molecular beam epitaxy (MBE). can do.
도핑 보강층(30)은 버퍼층(20) 위에 굴절율이 주기적으로 변하는 복수의 질화물층(35,37)을 포함하도록 형성된다. 도핑 보강층(30)은 복수의 질화물층(35,37) 중 적어도 연속되는 두 개의 질화물층(35,37)이 노출되는 전극 형성부(39)를 구비한다. 이때 전극 형성부(39)는 p형 반도체층(40), 활성층(50) 및 n형 반도체층(60)에 대해서 외부로 노출된다.The doping reinforcement layer 30 is formed on the buffer layer 20 to include a plurality of nitride layers 35 and 37 whose refractive index is periodically changed. The doping reinforcement layer 30 includes an electrode forming portion 39 through which at least two consecutive nitride layers 35 and 37 of the plurality of nitride layers 35 and 37 are exposed. In this case, the electrode forming part 39 is exposed to the p-type semiconductor layer 40, the active layer 50, and the n-type semiconductor layer 60 to the outside.
p형 반도체층(40)은 도핑 보강층(30) 위에 형성되며, 적어도 도핑 보강층(30)의 전극 형성부(39)가 노출되게 도핑 보강층(30) 위에 형성된다. 이러한 p형 반도체층(40)은 Mg, Zn, Be등과 같은 p형 도전형 불순물이 도핑된 질화물계 소재의 반도체층이다. p형 반도체층(40)은 p형 AlGaN계로 형성될 수 있다.The p-type semiconductor layer 40 is formed on the doping reinforcement layer 30, and is formed on the doping reinforcement layer 30 so that at least the electrode forming portion 39 of the doping reinforcement layer 30 is exposed. The p-type semiconductor layer 40 is a nitride-based semiconductor layer doped with p-type conductive impurities such as Mg, Zn and Be. The p-type semiconductor layer 40 may be formed of a p-type AlGaN-based.
활성층(50)은 p형 반도체층(40) 위에 형성된다. 활성층(50)은 MOCVD, HVPE, MBE 등의 방법을 이용하여 양자우물구조로 형성될 수 있다. 활성층(50)에서는 p형 반도체층(40)을 통하여 흐르는 정공과 n형 반도체층(60)을 통하여 흐르는 전자가 결합됨으로써 광이 발생되는데, 이때 양자우물의 여기 준위 또는 에너지 밴드갭 차이에 해당되는 에너지의 빛이 발광된다.The active layer 50 is formed on the p-type semiconductor layer 40. The active layer 50 may be formed in a quantum well structure using a method such as MOCVD, HVPE, MBE. In the active layer 50, light is generated by combining holes flowing through the p-type semiconductor layer 40 and electrons flowing through the n-type semiconductor layer 60, where the excitation level or energy band gap difference of the quantum well is Light of energy is emitted.
n형 반도체층(60)은 활성층(50) 위에 형성된다. n형 반도체층(60)은 AlGaN계로 형성되며, n형으로 도핑을 하기 위해 일반적으로 실리콘이 도핑 된다.The n-type semiconductor layer 60 is formed on the active layer 50. The n-type semiconductor layer 60 is formed of AlGaN, and silicon is generally doped to do the n-type doping.
그리고 p형 전극(70)은 도핑 보강층(30)의 전극 형성부(39)에 형성된다. n형 전극(80)은 n형 반도체층(60) 위에 형성된다. 이때 p형 전극(70)은 전극 형성부(39)에 노출된 복수의 질화물층(35,37)에 접합된다.The p-type electrode 70 is formed in the electrode forming portion 39 of the doping reinforcement layer 30. The n-type electrode 80 is formed on the n-type semiconductor layer 60. In this case, the p-type electrode 70 is bonded to the plurality of nitride layers 35 and 37 exposed to the electrode forming part 39.
이때 도핑 보강층(30)은 p형 반도체층(40)의 알루미늄 조성비 보다는 낮은 알루미늄 조성비를 갖는 질화물층을 포함하며, 전극 형성부(39)에 해당 질화물층이 노출된다. 알루미늄 조성비가 낮은 질화물층은 제1 및 제2 질화물층(35,37) 중에 하나이다. 도핑 보강층(30)은 DBR(Distributed Bragg Reflector)층으로 형성될 수 있다. 즉 도핑 보강층(30)은 p형으로 도핑된 제1 질화물층(35)과, p형 질화물층(35) 위에 형성되는 p형으로 도핑된 제2 질화물층(37)이 교대로 적층된 구조를 가질 수 있다. 제1 질화물층(35)은 p형으로 도핑된 AlxGayIn1-x-yN(0<x, 0<y, x+y≤1)의 소재로 형성될 수 있다. 제2 질화물층(37)은 p형으로 도핑된 AlmGanIn1-m-nN(0<m, 0<n, m+n≤1)의 소재로 형성될 수 있다. 예컨대 도핑 보강층(30)은 50nm~2㎛의 두께로 형성될 수 있다. 제1 및 제2 질화물층(35,37)의 두께는 각각 10~200nm의 두께로 형성될 수 있다.In this case, the doping reinforcement layer 30 includes a nitride layer having an aluminum composition ratio lower than that of the p-type semiconductor layer 40, and the nitride layer is exposed to the electrode forming part 39. The nitride layer having a low aluminum composition ratio is one of the first and second nitride layers 35 and 37. The doping reinforcement layer 30 may be formed as a distributed bragg reflector (DBR) layer. That is, the doping reinforcement layer 30 has a structure in which a p-type doped first nitride layer 35 and a p-type doped second nitride layer 37 formed on the p-type nitride layer 35 are alternately stacked. Can have The first nitride layer 35 may be formed of a material of p-type doped Al x Ga y In 1-xy N (0 <x, 0 <y, x + y ≦ 1). The second nitride layer 37 may be formed of a material of p-type Al m Ga n In 1-mn N (0 <m, 0 <n, m + n ≦ 1). For example, the doping reinforcement layer 30 may be formed to a thickness of 50nm ~ 2㎛. The thicknesses of the first and second nitride layers 35 and 37 may be formed to have a thickness of 10 nm to 200 nm, respectively.
도핑 보강층(30)의 전극 형성부(39)는 경사면으로 형성될 수 있으며, 경사면으로 제1 질화물층(35)과 제2 질화물층(37)이 노출된다. 이때 경사면은 섀도우 마스크(shadow mask), 포토레지스트 리플로우(photo-resist reflow) 또는 레이저 가공 등의 방법으로 형성할 수 있다. 전극 형성부(39)의 경사면은 X축을 기준으로 YZ평면에서 소정의 각도를 갖는 경사면으로 형성될 수 있다.The electrode forming part 39 of the doping reinforcement layer 30 may be formed as an inclined surface, and the first nitride layer 35 and the second nitride layer 37 are exposed to the inclined surface. In this case, the inclined surface may be formed by a shadow mask, photo-resist reflow, or laser processing. The inclined surface of the electrode forming part 39 may be formed as an inclined surface having a predetermined angle from the YZ plane with respect to the X axis.
여기서 Z축은 베이스 기판(10) 위에 버퍼층(20), 도핑 보강층(30), p형 반도체층(40), 활성층(50) 및 n형 반도체층(60)이 적층된 방향을 나타내는 축이다. X축은 p형 반도체층과 노출된 도핑 보강층(30)의 경계선에 대응되는 축이다. Y축은 p형 반도체층(40), 활성층(50) 및 n형 반도체층(60)에 대해서 도핑 보강층(30)이 노출되는 방향을 나타내는 축으로, XZ평면에 수직한 축이다.Here, the Z axis is an axis indicating a direction in which the buffer layer 20, the doping reinforcement layer 30, the p-type semiconductor layer 40, the active layer 50, and the n-type semiconductor layer 60 are stacked on the base substrate 10. The X axis is an axis corresponding to the boundary between the p-type semiconductor layer and the exposed doping reinforcement layer 30. The Y axis is an axis indicating a direction in which the doping reinforcement layer 30 is exposed to the p-type semiconductor layer 40, the active layer 50, and the n-type semiconductor layer 60, and is an axis perpendicular to the XZ plane.
그리고 p형 전극(70)은 제1 및 제2 질화물층(35,37)이 노출된 전극 형성부(39)에 형성되어 전극 형성부(39)에 노출된 제1 및 제2 질화물층(35,37)에 접합된다.In addition, the p-type electrode 70 is formed in the electrode forming part 39 where the first and second nitride layers 35 and 37 are exposed and the first and second nitride layers 35 exposed to the electrode forming part 39. And 37).
이와 같이 제1 실시예에 따른 질화물계 반도체 발광 소자(100)는 굴절율이 주기적으로 변하는 도핑 보강층(30)의 전극 형성부(39)에 p형 전극(70)을 형성함으로써, 도핑 농도의 개선을 통하여 광출력을 향상시킬 수 있다. 예컨대 도핑 보강층(30)으로 굴절율이 주기적으로 변하는 DBR층을 형성하고, DBR층의 적어도 두 개의 질화물층(35,37)을 외부로 노출시킨 후 그 곳에 p형 전극(70)을 형성함으로써, p형 전극(70)은 굴절율이 주기적으로 변하는 질화물층(35,37) 중에서 상대적으로 굴절율이 낮은 질화물층, 즉 알루미늄 조성비가 낮은 질화물층에도 접속되기 때문에, 상대적으로 고농도의 도핑이 가능하다. 즉 도핑 보강층(30)으로 DBR을 적용하기 때문에, p형 반도체층(40)의 알루미늄 조성비 보다 낮은 AlmGanIn1-m-nN(0<m, 0<n, m+n≤1)의 소재를 사용할 수 있다. 또한 DBR층은 기본적으로 활성층(50)에서 발생되는 빛을 반사하여 질화물계 반도체 발광 소자(100)의 광출력을 향상시킬 수 있다.As described above, in the nitride-based semiconductor light emitting device 100 according to the first embodiment, the p-type electrode 70 is formed in the electrode forming portion 39 of the doping reinforcement layer 30 whose refractive index is periodically changed, thereby improving the doping concentration. Through this, the light output can be improved. For example, by forming a DBR layer whose refractive index changes periodically with the doping reinforcement layer 30, exposing at least two nitride layers 35, 37 of the DBR layer to the outside and then forming a p-type electrode 70 therein, The type electrode 70 is also connected to a nitride layer having a relatively low refractive index, that is, a nitride layer having a low aluminum composition ratio, among the nitride layers 35 and 37 whose refractive index changes periodically, so that a relatively high concentration of doping is possible. That is, since the DBR is applied to the doping reinforcement layer 30, the Al m Ga n In 1-mn N (0 <m, 0 <n, m + n ≦ 1) lower than the aluminum composition ratio of the p-type semiconductor layer 40 is applied. Material can be used. In addition, the DBR layer may improve light output of the nitride-based semiconductor light emitting device 100 by basically reflecting light generated from the active layer 50.
예컨대 도핑 보강층(30)은 제1 질화물층(35)으로 p형 Al0.7Ga0.3N층을 형성하고, 제2 질화물층(37)으로 p형 Al0.1Ga0.9N층을 형성할 수 있다. 이러한 제1 및 제2 질화물층(35,37)을 단위 도핑 보강층(30a)으로 하여 3층으로 형성될 수 있다. 전극 형성부(39)를 통하여 Al 조성비가 낮은 제2 질화물층(37)을 하나 이상을 노출시키고, 노출된 제2 질화물층(37)에 접속되게 p형 전극(70)을 형성함으로써 상대적으로 고농도의 도핑을 얻을 수 있는 것이다.For example, the doping reinforcement layer 30 may form a p-type Al 0.7 Ga 0.3 N layer as the first nitride layer 35 and a p-type Al 0.1 Ga 0.9 N layer as the second nitride layer 37. The first and second nitride layers 35 and 37 may be formed in three layers using the unit doping reinforcement layer 30a. The one or more second nitride layers 37 having a low Al composition ratio are exposed through the electrode forming part 39, and the p-type electrode 70 is formed to be connected to the exposed second nitride layers 37 so as to have a relatively high concentration. To get the doping.
제1 실시예에서는 도핑 보강층(30)은 단위 도핑 보강층(30a)이 3층으로 형성된 예를 개시하였지만 이것에 한정되는 것은 아니다. 도핑 보강층(30)은 단위 도핑 보강층(30a)을 1층 이상을 포함할 수 있다.In the first embodiment, the doping reinforcement layer 30 has been described as an example in which the unit doping reinforcement layer 30a is formed of three layers, but is not limited thereto. The doping reinforcement layer 30 may include one or more unit doping reinforcement layers 30a.
또한 제1 실시예에 따른 질화물계 반도체 발광 소자(100)는 도핑 농도가 높기 때문에, 오믹(ohmic) 전극도 용이하게 형성할 수 있다.In addition, since the nitride-based semiconductor light emitting device 100 according to the first embodiment has a high doping concentration, an ohmic electrode can be easily formed.
이와 같은 제1 실시예에 따른 질화물계 반도체 발광 소자(100)의 제조 방법에 대해서 도 1 내지 도 11을 참조하여 설명하면 다음과 같다. 여기서 도 3은 본 발명의 제1 실시예에 따른 질화물계 반도체 발광 소자(100)의 제조 방법에 따른 흐름도이다. 도 4 내지 도 11은 도 3의 제조 방법에 따른 각 단계를 보여주는 도면이다.A method of manufacturing the nitride semiconductor light emitting device 100 according to the first embodiment will be described with reference to FIGS. 1 to 11 as follows. 3 is a flowchart illustrating a method of manufacturing the nitride semiconductor light emitting device 100 according to the first embodiment of the present invention. 4 to 11 illustrate each step according to the manufacturing method of FIG. 3.
먼저 도 4에 도시된 바와 같이, S11단계에서 베이스 기판(10)을 준비한다. 이때 베이스 기판(10)으로는 사파이어, 실리콘(Si), 징크 옥사이드(ZnO), 갈륨 나이트라이드(GaN), 갈륨 비소(GaAs), 실리콘 카바이드(SiC), 알루미늄 나이트라이드(AlN), 산화 마그네슘(MgO) 등의 원소 혹은 화합물 소재의 기판이 사용될 수 있다. 제1 실시예에서는 베이스 기판(11)으로는 사파이어 기판을 사용하였다.First, as shown in FIG. 4, the base substrate 10 is prepared in step S11. In this case, the base substrate 10 may include sapphire, silicon (Si), zinc oxide (ZnO), gallium nitride (GaN), gallium arsenide (GaAs), silicon carbide (SiC), aluminum nitride (AlN), and magnesium oxide ( Substrates made of an element or compound material such as MgO) may be used. In the first embodiment, a sapphire substrate was used as the base substrate 11.
다음으로 도 5에 도시된 바와 같이, S13단계에서 베이스 기판(10) 위에 버퍼층(20)을 형성한다. 즉 베이스 기판(10) 위에 버퍼층(20)으로 형성될 질화물 핵 성장층을 형성한다. 이때 질화물 핵 성장층은 MOCVD, HVPE, MBE 또는 MOCVPE 등을 사용하여 형성할 수 있다. 예컨대 Ⅴ족 소스 및 복수의 Ⅲ족 소스를 이용하여 형성한 질화물 핵 성장층은 GaN, AlN, AlGaN, InGaN, AlInN, AlInGaN, AlInGaBN 등의 재질로 이루어질 수 있다. 이이서 질화물 핵 성장층을 기반으로 도핑하지 않은 질화물 층을 성장시켜 버퍼층(20)을 형성한다.Next, as shown in FIG. 5, the buffer layer 20 is formed on the base substrate 10 in step S13. That is, a nitride nucleus growth layer to be formed as a buffer layer 20 is formed on the base substrate 10. In this case, the nitride nucleus growth layer may be formed using MOCVD, HVPE, MBE, or MOCVPE. For example, the nitride nucleus growth layer formed using a group V source and a plurality of group III sources may be made of a material such as GaN, AlN, AlGaN, InGaN, AlInN, AlInGaN, AlInGaBN, or the like. Next, an undoped nitride layer is grown based on the nitride nucleus growth layer to form the buffer layer 20.
다음으로 도 6에 도시된 바와 같이, S15단계에서 버퍼층(20) 위에 도핑 보강층(30)을 형성한다. 즉 도핑 보강층(30)은 버퍼층(20) 위에 굴절율이 주기적으로 변하는 복수의 질화물층(35,37)을 교대로 적층하여 형성한다. 도핑 보강층(30)은 DBR(Distributed Bragg Reflector)층으로 형성될 수 있다. 도핑 보강층(30)은 p형으로 도핑된 제1 질화물층(35)과, 제1 질화물층(35) 위에 형성되는 p형 제2 질화물층(37)이 교대로 적층된 구조를 갖도록 형성된다. 즉 도핑 보강층(30)은 제1 및 제2 질화물층(35,37)을 단위 도핑 보강층(30a)으로 하여, 단위 도핑 보강층(30a)이 다층으로 적층된 형태로 형성될 수 있다. 예컨대 제1 질화물층(35)은 p형으로 도핑된 AlxGayIn1-x-yN(0<x, 0<y, x+y≤1)의 소재로 형성될 수 있다. 제2 질화물층(37)은 p형으로 도핑된 AlmGanIn1-m-nN(0<m, 0<n, m+n≤1)의 소재로 형성될 수 있다.Next, as shown in FIG. 6, in step S15, a doping reinforcement layer 30 is formed on the buffer layer 20. That is, the doping reinforcement layer 30 is formed by alternately stacking a plurality of nitride layers 35 and 37 on which the refractive index is periodically changed on the buffer layer 20. The doping reinforcement layer 30 may be formed as a distributed bragg reflector (DBR) layer. The doping reinforcement layer 30 is formed to have a structure in which the p-type doped first nitride layer 35 and the p-type second nitride layer 37 formed on the first nitride layer 35 are alternately stacked. That is, the doping reinforcement layer 30 may be formed in a form in which the unit doping reinforcement layer 30a is laminated in multiple layers using the first and second nitride layers 35 and 37 as the unit doping reinforcement layer 30a. For example, the first nitride layer 35 may be formed of a material of Al x Ga y In 1-xy N (0 <x, 0 <y, x + y ≦ 1) doped with p-type. The second nitride layer 37 may be formed of a material of p-type Al m Ga n In 1-mn N (0 <m, 0 <n, m + n ≦ 1).
다음으로 도 7에 도시된 바와 같이, S17단계에서 도핑 보강층(30) 위에 p형 반도체층(40)을 형성한다. 이때 p형 반도체층(40)은 Mg, Zn, Be등과 같은 p형 도전형 불순물이 도핑된 질화물 소재의 반도체층이다.Next, as shown in FIG. 7, the p-type semiconductor layer 40 is formed on the doping reinforcement layer 30 in step S17. At this time, the p-type semiconductor layer 40 is a semiconductor layer of a nitride material doped with p-type conductive impurities such as Mg, Zn, Be and the like.
다음으로 도 8에 도시된 바와 같이, S19단계에서 p형 반도체층(40) 위에 활성층(50)을 형성한다. 활성층(50)은 MOCVD, HVPE, MBE, MOCVPE 등의 방법을 이용하여 양자우물구조로 형성될 수 있다.Next, as shown in FIG. 8, the active layer 50 is formed on the p-type semiconductor layer 40 in step S19. The active layer 50 may be formed in a quantum well structure using a method such as MOCVD, HVPE, MBE, MOCVPE.
다음으로 도 9에 도시된 바와 같이, S21단계에서 활성층(50) 위에 n형 반도체층(60)을 형성한다. n형 반도체층(60)은 AlGaN계로 형성되며, 구동 전압을 낮추기 위해 실리콘이 도핑될 수 있다.Next, as shown in FIG. 9, the n-type semiconductor layer 60 is formed on the active layer 50 in step S21. The n-type semiconductor layer 60 is formed of AlGaN, and silicon may be doped to lower the driving voltage.
다음으로 도 10 및 도 11에 도시된 바와 같이, S23단계에서 도핑 보강층(30)에 전극 형성부(39)를 형성한다. 즉 n형 반도체층(60), 활성층(50) 및 p형 반도체층(40)으로부터 일부의 도핑 보강층(30)을 노출시키되, 복수의 질화물층(35,37) 중 적어도 연속되는 두 개의 질화물층(35,37)을 노출시켜 전극 형성부(39)를 형성한다. 이때 전극 형성부(39)는 경사면으로 형성될 수 있으며, 경사면으로 제1 질화물층(35)과 제2 질화물층(37)이 노출된다. 경사면은 섀도우 마스크, 포토레지스트 리플로우 또는 레이저 가공 등의 방법으로 형성할 수 있다. 도 10에서는 섀도우 마스크를 이용하여 경사면을 형성하는 예를 개시하였다.Next, as shown in FIGS. 10 and 11, the electrode forming part 39 is formed in the doping reinforcement layer 30 in step S23. In other words, a portion of the doped reinforcement layer 30 is exposed from the n-type semiconductor layer 60, the active layer 50, and the p-type semiconductor layer 40, and at least two consecutive nitride layers of the plurality of nitride layers 35 and 37. The electrode forming portion 39 is formed by exposing the 35 and 37. In this case, the electrode forming part 39 may be formed as an inclined surface, and the first nitride layer 35 and the second nitride layer 37 are exposed to the inclined surface. The inclined surface can be formed by a method such as a shadow mask, photoresist reflow or laser processing. 10 illustrates an example of forming an inclined surface using a shadow mask.
섀도우 마스크를 이용하여 포토레지스트 마스크 끝이 경사진 형태로 형성할수 있고 전극 형성부(39)는 다음과 같이 형성할 수 있다.The shadow mask may be used to form an inclined tip of the photoresist mask, and the electrode forming part 39 may be formed as follows.
먼저 n형 반도체층(60) 위에 메탈을 증착시켜 금속마스크(91) 패턴을 형성한다. 금속 마스크(91)는 전극 형성부(39)를 형성할 때 남겨지는 n형 반도체층(60) 부분에 형성된다. 그리고 섀도우 마스크를 이용하여 n형 반도체층(60) 위에 끝부분이 경사진 형태의 포토레지스트 마스크(93)를 형성한다. 포토레지스트 마스크(93)는 금속 마스크(91)을 덮도록 일정 두께로 형성되고, 전극 형성부(39)가 형성될 부분은 끝 쪽으로 갈수록 두께가 얇아지는 경사면으로 형성된다.First, metal is deposited on the n-type semiconductor layer 60 to form a metal mask 91 pattern. The metal mask 91 is formed in the portion of the n-type semiconductor layer 60 left when forming the electrode forming portion 39. A photoresist mask 93 having an inclined end portion is formed on the n-type semiconductor layer 60 by using the shadow mask. The photoresist mask 93 is formed to have a predetermined thickness to cover the metal mask 91, and the portion where the electrode forming part 39 is to be formed is formed as an inclined surface that becomes thinner toward the end.
다음으로 건식 식각 공정을 수행한다. 이때 건식 식각 공정에 의해 포토레지스트 마스크(93)가 제거되게 되는데, 두께가 점진적으로 얇게 가공된 포토레지스트 마스크(93)의 끝 쪽부터 제거되기 시작한다. 이로 인해 포토레지스트 마스크(93)의 끝 쪽에 위치하는 n형 반도체층(60) 부분이 노출되면서 식각이 이루어지기 때문에, 도 10에 도시된 바와 같이, 경사면 형태로 식각이 이루어진다.Next, a dry etching process is performed. At this time, the photoresist mask 93 is removed by a dry etching process, and the photoresist mask 93 starts to be removed from the end of the photoresist mask 93 whose thickness is gradually processed. As a result, etching is performed while the portion of the n-type semiconductor layer 60 positioned at the end of the photoresist mask 93 is exposed. As shown in FIG. 10, etching is performed in the form of an inclined surface.
이때 금속 마스크(91)는 건식 식각 공정을 진행하는 동안 제거되지 않고 식각 마스크로 작용하여 금속 마스크(91) 외측의 n형 반도체층(60), 활성층(50), p형 반도체층(40) 및 도핑 보강층(30) 부분을 연속적으로 식각한다.In this case, the metal mask 91 is not removed during the dry etching process, and acts as an etch mask, so that the n-type semiconductor layer 60, the active layer 50, the p-type semiconductor layer 40, and the outer side of the metal mask 91 are formed. A portion of the doping reinforcement layer 30 is continuously etched.
그리고 도 11에 도시된 바와 같이, 도핑 보강층(30)에 전극 형성부(39)를 형성한 이후에 금속 마스크층을 제거한다.As shown in FIG. 11, the metal mask layer is removed after the electrode forming portion 39 is formed in the doping reinforcement layer 30.
또는 전극 형성부(39)는 다음과 같이 형성할 수 있다. 먼저 일반적인 메사 식각 방법을 통하여 n형 반도체층(60), 활성층(50) 및 p형 반도체층(40)의 일부를 제거하여 도핑 보강층(30)을 외부로 노출시킨다. 그리고 노출된 도핑 보강층(30) 부분에 레이저를 조사하여 전극 형성부(39)를 형성할 수 있다. 이때 레이저를 조사하는 레이저 발생 장치는 Y축 방향으로 이동하면서 레이저를 조사하되, Y축 방향의 이동 거리에 비례하게 레이저 빔의 세기를 높여 도핑 보강층(30)에 조사하여 경사면 형태의 전극 형성부(39)를 형성할 수 있다.Alternatively, the electrode forming unit 39 may be formed as follows. First, a portion of the n-type semiconductor layer 60, the active layer 50, and the p-type semiconductor layer 40 is removed by a general mesa etching method to expose the doping reinforcement layer 30 to the outside. The electrode forming part 39 may be formed by irradiating a portion of the exposed doping reinforcement layer 30 with a laser. At this time, the laser generating device for irradiating the laser irradiates the laser while moving in the Y-axis direction, and increases the intensity of the laser beam in proportion to the movement distance in the Y-axis direction to irradiate the doping reinforcement layer 30 to form an electrode forming part having an inclined surface ( 39).
그리고 도 1에 도시된 바와 같이, S25단계에서 전극 형성부(39) 위에 p형 전극(70)을 형성하고, n형 반도체층(60) 위에 n형 전극(80)을 형성함으로써, 제1 실시예에 따른 질화물계 반도체 발광 소자(100)를 얻을 수 있다. 이때 p형 전극(70)은 전극 형성부(39)에 노출된 제1 및 제2 질화물층(35,37)에 접합되기 때문에, p형 전극(70)을 통한 도핑 농도를 개선할 수 있다. 예컨대 도핑 보강층(30)은 제1 질화물층(35)으로 p형 Al0.7Ga0.3N층을 형성하고, 제2 질화물층(37)으로 p형 Al0.1Ga0.9N층을 형성할 수 있다. 이러한 제1 및 제2 질화물층(35,37)을 단위 도핑 보강층(30a)으로 하여 3층으로 형성될 수 있다. 전극 형성부(39)를 통하여 Al 조성비가 낮은 제2 질화물층(37)을 하나 이상 노출시키고, 노출된 제2 질화물층(37)에 접속되게 p형 전극(70)을 형성함으로써 고농도의 도핑을 얻을 수 있는 것이다.As shown in FIG. 1, in operation S25, the p-type electrode 70 is formed on the electrode forming unit 39, and the n-type electrode 80 is formed on the n-type semiconductor layer 60. The nitride semiconductor light emitting device 100 according to the example can be obtained. In this case, since the p-type electrode 70 is bonded to the first and second nitride layers 35 and 37 exposed to the electrode forming part 39, the doping concentration through the p-type electrode 70 may be improved. For example, the doping reinforcement layer 30 may form a p-type Al 0.7 Ga 0.3 N layer as the first nitride layer 35 and a p-type Al 0.1 Ga 0.9 N layer as the second nitride layer 37. The first and second nitride layers 35 and 37 may be formed in three layers using the unit doping reinforcement layer 30a. High concentration doping is performed by exposing at least one second nitride layer 37 having a low Al composition ratio through the electrode forming portion 39 and forming a p-type electrode 70 to be connected to the exposed second nitride layer 37. You can get it.
제2 실시예Second embodiment
한편 제1 실시예에서는 도핑 보강층(30)의 전극 형성부(39)가 경사면으로 형성된 예를 개시하였지만 이것에 한정되는 아니다. 예컨대 도 12에 도시된 바와 같이, 전극 형성부(139)가 요홈으로 형성될 수 있다.Meanwhile, in the first embodiment, an example in which the electrode forming portion 39 of the doping reinforcement layer 30 is formed as an inclined surface is disclosed, but is not limited thereto. For example, as shown in FIG. 12, the electrode forming unit 139 may be formed as a recess.
도 12는 본 발명의 제2 실시예에 따른 질화물계 반도체 발광 소자(200)를 보여주는 단면도이다.12 is a cross-sectional view illustrating a nitride based semiconductor light emitting device 200 according to a second embodiment of the present invention.
도 12를 참조하면, 제2 실시예에 따른 질화물계 반도체 발광 소자(200)는 베이스 기판(110) 상에 순차적으로 버퍼층(120), 도핑 보강층(130), p형 반도체층(140), 활성층(150) 및 n형 반도체층(160)이 형성된 구조를 갖는다.Referring to FIG. 12, in the nitride based semiconductor light emitting device 200 according to the second exemplary embodiment, a buffer layer 120, a doping reinforcement layer 130, a p-type semiconductor layer 140, and an active layer are sequentially formed on a base substrate 110. 150 and the n-type semiconductor layer 160 are formed.
도핑 보강층(130)의 일부가 노출되게 n형 반도체층(160), 활성층(150) 및 p형 반도체층(140)의 일부를 제거하고, 도핑 보강층(130)을 형성하는 복수의 질화물층(135,137) 중 적어도 연속되는 두 개의 질화물층(135,137)이 노출되게 요홈 형태의 전극 형성부(139)를 형성한다. 전극 형성부(139)를 형성하는 요홈의 내측면을 통하여 도핑 보강층(130)을 형성하는 복수의 질화물층(135,137)이 노출된다.A plurality of nitride layers 135 and 137 may be formed to remove portions of the n-type semiconductor layer 160, the active layer 150, and the p-type semiconductor layer 140 so that a portion of the doping reinforcement layer 130 is exposed, and form the doping reinforcement layer 130. At least two consecutive nitride layers 135 and 137 are formed to form the groove forming electrode 139. A plurality of nitride layers 135 and 137 forming the doping reinforcement layer 130 are exposed through the inner surface of the recess forming the electrode forming unit 139.
전극 형성부(139)는 다음과 같이 형성할 수 있다. 먼저 일반적인 메사 식각 방법을 통하여 n형 반도체층(160), 활성층(150) 및 p형 반도체층(140)의 일부를 제거하여 도핑 보강층(130)을 외부로 노출시킨다. 그리고 노출된 도핑 보강층(130) 부분에 레이저를 조사하여 반구형의 요홈 형태를 갖는 전극 형성부(139)를 형성할 수 있다.The electrode forming unit 139 may be formed as follows. First, a portion of the n-type semiconductor layer 160, the active layer 150, and the p-type semiconductor layer 140 is removed by a general mesa etching method to expose the doping reinforcement layer 130 to the outside. In addition, an exposed portion of the doped reinforcement layer 130 may be irradiated with a laser to form an electrode forming part 139 having a hemispherical groove shape.
그리고 p형 전극(170)이 전극 형성부(139)의 요홈에 충전되게 형성되어, 요홈에 노출된 복수의 질화물층(135,137)에 접합된다.The p-type electrode 170 is formed to be filled in the groove of the electrode forming unit 139, and is bonded to the plurality of nitride layers 135 and 137 exposed to the groove.
이와 같이 제2 실시예에 따른 질화물계 반도체 발광 소자(200) 또한 제1 실시예와 같이 전극 형성부(139)를 형성하는 굴절율이 상이한 복수의 질화물층(135,137)에 일괄적으로 접합됨으로써, 고농도의 도핑을 통하여 광출력 특성을 개선할 수 있다.As such, the nitride-based semiconductor light emitting device 200 according to the second embodiment is also bonded to a plurality of nitride layers 135 and 137 having different refractive indices forming the electrode forming unit 139 as in the first embodiment, thereby providing high concentration. The doping of the light output characteristics can be improved.
제3 실시예Third embodiment
한편 제2 실시예에 따른 도핑 보강층(130)의 전극 형성부(139)가 반구형의 요홈으로 형성된 예를 개시하였지만 이것에 한정되는 것은 아니다. 예컨대 도 13에 도시된 바와 같이, 전극 형성부(239)가 복수의 요홈으로 형성될 수 있다.Meanwhile, an example in which the electrode forming portion 139 of the doping reinforcement layer 130 according to the second embodiment is formed as a hemispherical groove is disclosed, but is not limited thereto. For example, as illustrated in FIG. 13, the electrode forming unit 239 may be formed with a plurality of recesses.
도 13은 본 발명의 제3 실시예에 따른 질화물계 반도체 발광 소자(300)를 보여주는 사시도이다.13 is a perspective view illustrating a nitride based semiconductor light emitting device 300 according to a third exemplary embodiment of the present invention.
도 13을 참조하면, 제3 실시예에 따른 질화물계 반도체 발광 소자(300)는 베이스 기판(210) 상에 순차적으로 버퍼층(220), 도핑 보강층(230), p형 반도체층(240), 활성층(250) 및 n형 반도체층(260)이 형성된 구조를 갖는다.Referring to FIG. 13, in the nitride-based semiconductor light emitting device 300 according to the third embodiment, the buffer layer 220, the doping reinforcement layer 230, the p-type semiconductor layer 240, and the active layer are sequentially formed on the base substrate 210. The structure 250 and the n-type semiconductor layer 260 are formed.
도핑 보강층(230)의 일부가 노출되게 n형 반도체층(260), 활성층(250) 및 p형 반도체층(240)의 일부를 제거하고, 도핑 보강층(230)을 형성하는 복수의 질화물층(235,237) 중 적어도 연속되는 두 개의 질화물층(235,237)이 노출되게 복수의 요홈 형태의 전극 형성부(239)를 형성한다. 전극 형성부(239)를 형성하는 복수의 요홈의 내측면을 따라서 도핑 보강층(230)을 형성하는 복수의 질화물층(235,237)이 노출된다.A plurality of nitride layers 235 and 237 which remove a portion of the n-type semiconductor layer 260, the active layer 250, and the p-type semiconductor layer 240 so that a portion of the doping reinforcement layer 230 is exposed, and form the doping reinforcement layer 230. At least two consecutive nitride layers 235 and 237 are formed to form a plurality of groove-shaped electrode forming portions 239. A plurality of nitride layers 235 and 237 forming the doping reinforcement layer 230 are exposed along inner surfaces of the plurality of recesses forming the electrode forming unit 239.
전극 형성부(239)는 다음과 같이 형성할 수 있다. 먼저 일반적인 메사 식각 방법을 통하여 n형 반도체층(260), 활성층(250) 및 p형 반도체층(240)의 일부를 제거하여 도핑 보강층(230)을 외부로 노출시킨다. 그리고 노출된 도핑 보강층(230) 부분에 레이저를 불연속적으로 조사하여 복수의 요홈 형태를 갖는 전극 형성부(239)를 형성할 수 있다. 이때 요홈들의 깊이는 도핑 보강층(230)의 연속되는 두 개의 질화물층(235,237)의 두께 보다는 깊게 형성한다. 요홈들은 도핑 보강층(230) 내에 형성하는 것이 바람직하다.The electrode forming unit 239 may be formed as follows. First, a portion of the n-type semiconductor layer 260, the active layer 250, and the p-type semiconductor layer 240 is removed by a general mesa etching method to expose the doping reinforcement layer 230 to the outside. In addition, an exposed portion of the doped reinforcement layer 230 may be irradiated with a laser discontinuously to form an electrode forming part 239 having a plurality of recesses. In this case, the depths of the grooves are formed deeper than the thicknesses of two consecutive nitride layers 235 and 237 of the doping reinforcement layer 230. The grooves are preferably formed in the doping reinforcement layer 230.
그리고 p형 전극(270)이 전극 형성부(239)의 요홈들에 충전되게 형성되어, 요홈들에 노출된 복수의 질화물층(235,237)에 접합된다.The p-type electrode 270 is formed to be filled in the grooves of the electrode forming unit 239, and is bonded to the plurality of nitride layers 235 and 237 exposed to the grooves.
이와 같이 제3 실시예에 따른 질화물계 반도체 발광 소자(300) 또한 제1 실시예와 같이 전극 형성부(239)를 형성하는 굴절율이 상이한 복수의 질화물층(235,237)에 일괄적으로 접합됨으로써, 고농도의 도핑을 통하여 광출력 특성을 개선할 수 있다.As described above, the nitride-based semiconductor light emitting device 300 according to the third embodiment is also bonded to a plurality of nitride layers 235 and 237 having different refractive indices forming the electrode forming unit 239 as in the first embodiment, thereby providing high concentration. The doping of the light output characteristics can be improved.
제4 실시예Fourth embodiment
한편 제1 실시예에서는 도핑 보강층(30)의 전극 형성부(39)가 경사면으로 형성된 예를 개시하였지만 이것에 한정되는 아니다. 예컨대 도 14에 도시된 바와 같이, 전극 형성부(339)는 계단면으로 형성될 수 있다.Meanwhile, in the first embodiment, an example in which the electrode forming portion 39 of the doping reinforcement layer 30 is formed as an inclined surface is disclosed, but is not limited thereto. For example, as shown in FIG. 14, the electrode forming unit 339 may be formed in a stepped surface.
도 14는 본 발명의 제4 실시예에 따른 질화물계 반도체 발광 소자(400)를 보여주는 사시도이다.14 is a perspective view illustrating a nitride based semiconductor light emitting device 400 according to a fourth exemplary embodiment of the present invention.
도 14를 참조하면, 제4 실시예에 따른 질화물계 반도체 발광 소자(400)는 베이스 기판(310) 상에 순차적으로 버퍼층(320), 도핑 보강층(330), p형 반도체층(340), 활성층(350) 및 n형 반도체층(360)이 형성된 구조를 갖는다.Referring to FIG. 14, in the nitride based semiconductor light emitting device 400 according to the fourth exemplary embodiment, a buffer layer 320, a doping reinforcement layer 330, a p-type semiconductor layer 340, and an active layer are sequentially formed on a base substrate 310. 350 and the n-type semiconductor layer 360 is formed.
도핑 보강층(330)의 일부가 노출되게 n형 반도체층(360), 활성층(350) 및 p형 반도체층(340)의 일부를 제거하고, 도핑 보강층(330)을 형성하는 복수의 질화물층(335,337) 중 적어도 연속되는 두 개의 질화물층(335,337)이 노출되게 계단 형태의 전극 형성부(339)를 형성한다.A plurality of nitride layers 335 and 337 which remove a portion of the n-type semiconductor layer 360, the active layer 350, and the p-type semiconductor layer 340 to expose a portion of the doping reinforcement layer 330, and form the doping reinforcement layer 330. At least two consecutive nitride layers 335 and 337 are formed to form a stepped electrode forming part 339.
전극 형성부(339)는 다음과 같이 형성할 수 있다. 먼저 일반적인 메사 식각 방법을 통하여 n형 반도체층(360), 활성층(350) 및 p형 반도체층(340)의 일부를 제거하여 도핑 보강층(330)을 외부로 노출시킨다. 그리고 노출된 도핑 보강층(330) 부분을 식각하여 계단 형태를 갖는 전극 형성부(339)를 형성할 수 있다. 또는 노출된 도핑 보강층(230) 부분에 레이저를 연속적으로 조사하되, 레이저 빔의 강도를 순차적으로 증가시키거나 감소시키면서 조사하여 계단 형태를 갖는 전극 형성부(339)를 형성할 수 있다. 이때 도핑 보강층(330)을 형성하는 복수의 질화물층(335,337)이 각각 계단면과, 계단면에 이웃하는 측면에 노출될 수 있다. 계단면과 이웃하는 측면에 적어도 하나의 질화물층(335,337)이 노출될 수 있다.The electrode forming unit 339 may be formed as follows. First, a portion of the n-type semiconductor layer 360, the active layer 350, and the p-type semiconductor layer 340 is removed by a general mesa etching method to expose the doping reinforcement layer 330 to the outside. An exposed portion of the doped reinforcement layer 330 may be etched to form an electrode forming portion 339 having a step shape. Alternatively, while continuously irradiating a laser to the exposed doped reinforcement layer 230, the electrode forming portion 339 having a step shape may be formed by irradiating while increasing or decreasing the intensity of the laser beam sequentially. In this case, the plurality of nitride layers 335 and 337 forming the doping reinforcement layer 330 may be exposed to the step surface and the side surface adjacent to the step surface, respectively. At least one nitride layer 335 and 337 may be exposed on the step surface and the adjacent side surface.
그리고 p형 전극(370)이 전극 형성부(339)의 계단면에 접합된다. 이로 인해 복수의 계단면을 형성하는 복수의 질화물층(335,337)에 p형 전극(370)이 접합될 수 있다.The p-type electrode 370 is bonded to the stepped surface of the electrode forming portion 339. As a result, the p-type electrode 370 may be bonded to the plurality of nitride layers 335 and 337 forming the plurality of stepped surfaces.
이와 같이 제4 실시예에 따른 질화물계 반도체 발광 소자(400) 또한 제1 실시예와 같이 전극 형성부(339)를 형성하는 굴절율이 상이한 복수의 질화물층(335,337)에 일괄적으로 접합됨으로써, 고농도의 도핑을 통하여 광출력 특성을 개선할 수 있다.As such, the nitride-based semiconductor light emitting device 400 according to the fourth embodiment is also bonded to a plurality of nitride layers 335 and 337 having different refractive indices forming the electrode forming unit 339 as in the first embodiment, thereby providing high concentration. The doping of the light output characteristics can be improved.
제5 실시예Fifth Embodiment
도 15는 본 발명의 제5 실시예에 따른 질화물계 반도체 발광 소자(500)를 보여주는 단면도이다.15 is a cross-sectional view illustrating a nitride based semiconductor light emitting device 500 according to a fifth embodiment of the present invention.
도 15를 참조하면, 제5 실시예에 따른 질화물계 반도체 발광 소자(500)는 베이스 기판(410) 상에 순차적으로 버퍼층(420), 도핑 보강층(430), p형 반도체층(440), 활성층(450) 및 n형 반도체층(460)이 형성된 구조를 갖는다. 도핑 보강층(430)은 버퍼층(420) 위에 형성된 초격자층(432; superlattice layer)과, 초격자층(432) 위에 형성된 DBR층(434)을 형성한다.Referring to FIG. 15, in the nitride based semiconductor light emitting device 500 according to the fifth embodiment, a buffer layer 420, a doping reinforcement layer 430, a p-type semiconductor layer 440, and an active layer are sequentially formed on a base substrate 410. 450 and the n-type semiconductor layer 460 are formed. The doping reinforcement layer 430 forms a superlattice layer 432 formed on the buffer layer 420, and a DBR layer 434 formed on the superlattice layer 432.
도핑 보강층(430)의 일부가 노출되게 n형 반도체층(460), 활성층(450) 및 p형 반도체층(440)의 일부를 제거하고, 도핑 보강층(430)을 형성하는 DBR층(434) 중 적어도 연속되는 두 개의 질화물층(435,437)이 노출되게 경사면 형태의 전극 형성부(439)를 형성한다.Of the DBR layers 434 which remove a portion of the n-type semiconductor layer 460, the active layer 450, and the p-type semiconductor layer 440 so that a portion of the doping reinforcement layer 430 is exposed, and forms the doping reinforcement layer 430. An inclined surface electrode forming portion 439 is formed to expose at least two consecutive nitride layers 435 and 437.
이때 초격자층(432)은 질화물계 반도체 발광 소자(500)의 동작 중 발생되는 스트레인을 감소시키는 기능을 수행한다. 이러한 초격자층(432)은 제1 AlxGayIn1-x-yN(0<x, 0<y, x+y≤1)층과, 제1 AlxGayIn1-x-yN층 위에 형성되며 제1 AlxGayIn1-x-yN층과 다른 조성비를 갖는 제2 AlxGayIn1-x-yN층(0<x, 0<y, x+y≤1)을 포함한다. 이때 초격자층(432)은 제1 및 제2 AlxGayIn1-x-yN층을 단위 초격자층으로 하여, 단위 초격자층이 적어도 한 층 이상으로 형성된다. 또한 초격자층(432)을 형성할 때 제1 및 제2 AlxGayIn1-x-yN층을 도핑하지 않고 형성하거나 도핑하여 형성할 수 있다.In this case, the superlattice layer 432 reduces the strain generated during the operation of the nitride-based semiconductor light emitting device 500. The superlattice layer 432 is formed on the first Al x Ga y In 1-xy N (0 <x, 0 <y, x + y ≦ 1) layer and the first Al x Ga y In 1-xy N layer. And a second Al x Ga y In 1-xy N layer having a composition ratio different from that of the first Al x Ga y In 1-xy N layer (0 <x, 0 <y, x + y ≦ 1). In this case, the superlattice layer 432 is formed of at least one unit superlattice layer using the first and second Al x Ga y In 1-xy N layers as the unit superlattice layer. In addition, when the superlattice layer 432 is formed, the first and second Al x Ga y In 1-xy N layers may be formed without doping or doping.
예컨대 초격자층(432)은 언도핑된 제1 AlxGa1-xN층(431)(0<x≤1)과, 제1 AlxGa1-xN층(431) 위에 형성되며 상기 제1 AlxGa1-xN층과 다른 조성비를 갖는 언도핑된 제2 AlxGa1-xN층(433)(0<x≤1)이 교대로 적층된 구조를 가질 수 있다. 예컨대 초격자층(432)은 제1 및 제2 AlxGa1-xN층(431,433)을 단위 초격자층으로 하여, 단위 초격자층을 하나 이상 적층하여 형성할 수 있다.For example, the superlattice layer 432 is formed on the undoped first Al x Ga 1-x N layer 431 (0 <x≤1) and the first Al x Ga 1-x N layer 431. No. 1 Al x Ga 1-x N layer and the un-doped claim 2 Al x Ga 1-x N layer (433) (0 <x≤1) with a different compositional ratio may have a structure of alternately laminated. For example, the superlattice layer 432 may be formed by stacking one or more unit superlattice layers using the first and second Al x Ga 1-x N layers 431 and 433 as the unit superlattice layers.
제1 및 제2 AlxGa1-xN층(431,433)은 서로 다른 알루미늄 조성비를 가질 수 있다. 초격자층(432)은 100nm 내지 1㎛의 두께로 형성될 수 있다. 초격자층(432)을 형성하는 단위층은 1~20nm의 두께로 형성될 수 있다.The first and second Al x Ga 1-x N layers 431 and 433 may have different aluminum composition ratios. Superlattice layer 432 may be formed to a thickness of 100nm to 1㎛. The unit layer forming the superlattice layer 432 may be formed to a thickness of 1 ~ 20nm.
또한 초격자층(432)은 굴절율이 다른 질화물층을 주기적으로 반복하여 형성함으로써, 스트레인을 줄여들게 하여 결정성을 좋게 할 수 있다. (DBR로서의 기능을 함께 수행할 수 있다. 이로 인해 초격자층(432)은 활성층(450)에서 방출되는 빛을 DBR층(434)과 함께 DBR로서의 기능을 보강할 수 있다.)In addition, the superlattice layer 432 may be formed by repeatedly forming nitride layers having different refractive indices, thereby reducing strain and improving crystallinity. (The function as the DBR can be performed together. This allows the superlattice layer 432 to reinforce the function of the DBR along with the DBR layer 434 to the light emitted from the active layer 450.)
물론 제5 실시예에 따른 질화물계 반도체 발광 소자(500) 또한 제1 실시예와 같이 전극 형성부(439)를 형성하는 굴절율이 상이한 복수의 질화물층(435,437)에 일괄적으로 접합됨으로써, 고농도의 도핑을 통하여 광출력 특성을 개선할 수 있다.Of course, the nitride-based semiconductor light emitting device 500 according to the fifth embodiment is also bonded to a plurality of nitride layers 435 and 437 having different refractive indices forming the electrode forming portion 439 as in the first embodiment, thereby providing a high concentration. Doping can improve the light output characteristics.
제6 실시예Sixth embodiment
한편 제1 실시예에서는 도핑 보강층(30)의 전극 형성부(39)가 경사면으로 형성되되, 도 2에 도시된 바와 같이, 좌우로 경사진 경사면으로 형성된 예를 개시하였지만 이것에 한정되는 아니다. 예컨대 도 16 및 도 17에 도시된 바와 같이, 전극 형성부(539)는 앞뒤로 경사진 경사면으로 형성될 수 있다.Meanwhile, in the first embodiment, the electrode forming portion 39 of the doping reinforcement layer 30 is formed as an inclined surface, but as shown in FIG. For example, as shown in FIGS. 16 and 17, the electrode forming unit 539 may be formed as an inclined surface inclined back and forth.
도 16은 본 발명의 제6 실시예에 따른 질화물계 반도체 발광 소자(600)를 보여주는 사시도이다. 도 17은 도 16의 단면도이다.16 is a perspective view illustrating a nitride based semiconductor light emitting device 600 according to a sixth embodiment of the present invention. 17 is a cross-sectional view of FIG. 16.
도 16 및 도 17을 참조하면, 제6 실시예에 따른 질화물계 반도체 발광 소자(600)는 베이스 기판(510) 상에 순차적으로 버퍼층(520), 도핑 보강층(530), p형 반도체층(540), 활성층(550) 및 n형 반도체층(560)이 형성된 구조를 갖는다.16 and 17, in the nitride-based semiconductor light emitting device 600 according to the sixth embodiment, the buffer layer 520, the doping reinforcement layer 530, and the p-type semiconductor layer 540 are sequentially formed on the base substrate 510. ), The active layer 550 and the n-type semiconductor layer 560 are formed.
도핑 보강층(530)의 일부가 노출되게 n형 반도체층(560), 활성층(550) 및 p형 반도체층(540)의 일부를 제거하고, 도핑 보강층(530)을 형성하는 복수의 질화물층(535,537) 중 적어도 연속되는 두 개의 질화물층(535,537)이 노출되게 경사면으로 전극 형성부(539)를 형성한다. 이때 경사면은 Y축을 기준으로 XZ평면에서 소정의 각도를 갖는 경사면으로 형성될 수 있다. 이때 경사면과 이웃하는 면을 통하여 도핑 보강층(530) 부분이 함께 노출된다.A plurality of nitride layers 535 and 537 are formed to remove portions of the n-type semiconductor layer 560, the active layer 550, and the p-type semiconductor layer 540 so that a portion of the doping reinforcement layer 530 is exposed. The electrode forming portion 539 is formed on the inclined surface so that at least two consecutive nitride layers 535 and 537 are exposed. In this case, the inclined surface may be formed as an inclined surface having a predetermined angle in the XZ plane with respect to the Y axis. At this time, portions of the doping reinforcement layer 530 are exposed together through the inclined surface and the neighboring surface.
이와 같이 제6 실시예에 따른 질화물계 반도체 발광 소자(600) 또한 제1 실시예와 같이 전극 형성부(539)를 형성하는 굴절율이 상이한 복수의 질화물층(535,537)에 일괄적으로 접합됨으로써, 고농도의 도핑을 통하여 광출력 특성을 개선할 수 있다.As such, the nitride-based semiconductor light emitting device 600 according to the sixth embodiment is also bonded to a plurality of nitride layers 535 and 537 having different refractive indices forming the electrode forming portion 539 as in the first embodiment, thereby providing high concentration. The doping of the light output characteristics can be improved.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in the specification and drawings are merely presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.

Claims (15)

  1. 베이스 기판;A base substrate;
    상기 베이스 기판 위에 형성된 질화물계의 버퍼층;A nitride buffer layer formed on the base substrate;
    상기 버퍼층 위에 형성되며, 굴절율이 주기적으로 변하는 알루미늄을 함유하는 복수의 질화물층을 포함하고, 상기 복수의 질화물층 중 적어도 연속되는 두 개의 질화물층이 노출되는 전극 형성부를 갖는 도핑 보강층;A doping reinforcement layer formed on the buffer layer, the doping reinforcement layer including a plurality of nitride layers containing aluminum, the refractive index of which is periodically changed, and having an electrode forming portion to expose at least two consecutive nitride layers of the plurality of nitride layers;
    적어도 상기 도핑 보강층의 전극 형성부가 노출되게 상기 도핑 보강층 위에 형성된 알루미늄을 함유하는 질화물계의 p형 반도체층;A nitride-based p-type semiconductor layer containing aluminum formed on the doped reinforcement layer to expose at least the electrode forming portion of the doped reinforcement layer;
    상기 p형 반도체층 위에 형성된 알루미늄을 함유하는 질화물계의 활성층;A nitride-based active layer containing aluminum formed on the p-type semiconductor layer;
    상기 활성층 위에 형성된 알루미늄을 함유하는 질화물계의 n형 반도체층;A nitride based n-type semiconductor layer containing aluminum formed on the active layer;
    상기 전극 형성부 위에 형성된 p형 전극;A p-type electrode formed on the electrode forming portion;
    상기 n형 반도체층 위에 형성된 n형 전극;An n-type electrode formed on the n-type semiconductor layer;
    을 포함하는 것을 특징으로 하는 질화물계 반도체 발광 소자.Nitride-based semiconductor light emitting device comprising a.
  2. 제1항에 있어서, 상기 도핑 보강층은,The method of claim 1, wherein the doping reinforcement layer,
    상기 p형 반도체층의 알루미늄 조성비 보다는 낮은 알루미늄 조성비를 갖는 질화물층을 포함하며, 상기 전극 형성부에 상기 질화물층이 노출되는 것을 특징으로 하는 질화물계 반도체 발광 소자.And a nitride layer having an aluminum composition ratio lower than that of the p-type semiconductor layer, wherein the nitride layer is exposed to the electrode forming portion.
  3. 제1항에 있어서, 상기 도핑 보강층은,The method of claim 1, wherein the doping reinforcement layer,
    p형으로 도핑된 제1 질화물층;a first nitride layer doped with p-type;
    상기 p형 질화물층 위에 형성되는 p형으로 도핑된 제2 질화물층;을 포함하며,And a second nitride layer doped with p-type formed on the p-type nitride layer.
    상기 제1 및 제2 질화물층이 교대로 형성된 것을 특징으로 하는 질화물계 반도체 발광 소자.And the first and second nitride layers are alternately formed.
  4. 제3항에 있어서,The method of claim 3,
    상기 제1 질화물층은 p형으로 도핑된 AlxGayIn1-x-yN(0<x, 0<y, x+y≤1)의 소재로 형성되고, 상기 제2 질화물층은 p형으로 도핑된 AlmGanIn1-m-nN(0<m, 0<n, m+n≤1)의 소재로 형성되는 것을 특징으로 하는 질화물계 반도체 발광 소자.The first nitride layer is formed of a p-type doped Al x Ga y In 1-xy N (0 <x, 0 <y, x + y ≤ 1), the second nitride layer is p-type A nitride-based semiconductor light emitting device, characterized in that formed of a doped Al m Ga n In 1-mn N (0 <m, 0 <n, m + n ≤ 1).
  5. 제1항에 있어서, 상기 도핑 보강층의 전극 형성부는,The electrode forming portion of the doping reinforcement layer,
    경사면, 요홈 또는 계단면으로 형성되는 것을 특징으로 하는 질화물계 반도체 발광 소자.A nitride-based semiconductor light emitting device, characterized in that formed in the inclined surface, groove or step surface.
  6. 제1항에 있어서, 상기 도핑 보강층의 전극 형성부는,The electrode forming portion of the doping reinforcement layer,
    상기 n형 반도체층, 활성층 및 p형 반도체층에 대해서 일측으로 돌출되어 상기 도핑 보강층에 형성되며, 노출된 상기 도핑 보강층의 상부면 부분에 좌우로 경사진 경사면으로 형성된 것을 특징으로 하는 질화물계 반도체 발광 소자.Nitride-based semiconductor light emitting, characterized in that protruding to one side with respect to the n-type semiconductor layer, the active layer and the p-type semiconductor layer formed on the doping reinforcement layer, the inclined surface inclined left and right on the exposed upper surface portion of the doping reinforcement layer device.
  7. 제1항에 있어서, 상기 도핑 보강층의 전극 형성부는,The electrode forming portion of the doping reinforcement layer,
    상기 n형 반도체층, 활성층 및 p형 반도체층에 대해서 일측으로 돌출되어 상기 도핑 보강층에 형성되며, 노출된 상기 도핑 보강층의 상부면 부분에 상하로 경사진 경사면으로 형성된 것을 특징으로 하는 질화물계 반도체 발광 소자.Nitride-based semiconductor light emitting, characterized in that protruding toward one side with respect to the n-type semiconductor layer, the active layer and the p-type semiconductor layer is formed in the doping reinforcement layer, the inclined surface inclined up and down on the exposed upper surface portion of the doping reinforcement layer device.
  8. 제1항에 있어서, 상기 도핑 보강층은,The method of claim 1, wherein the doping reinforcement layer,
    상기 버퍼층 위에 형성되는 DBR(Distributed Bragg Reflector)층;A distributed bragg reflector (DBR) layer formed on the buffer layer;
    을 포함하는 것을 특징으로 하는 질화물계 반도체 발광 소자.Nitride-based semiconductor light emitting device comprising a.
  9. 제8항에 있어서, 상기 도핑 보강층은,The method of claim 8, wherein the doping reinforcement layer,
    상기 버퍼층과 상기 DBR층 사이에 형성된 초격자층;A superlattice layer formed between the buffer layer and the DBR layer;
    을 더 포함하는 것을 특징으로 하는 질화물계 반도체 발광 소자.A nitride-based semiconductor light emitting device further comprising.
  10. 제9항에 있어서, 상기 초격자층은,The method of claim 9, wherein the superlattice layer,
    제1 AlxGayIn1-x-yN층(0<x, 0<y, x+y≤1);A first Al x Ga y In 1-xy N layer (0 <x, 0 <y, x + y ≦ 1);
    상기 제1 AlxGayIn1-x-yN층 위에 형성되며, 상기 제1 AlxGayIn1-x-yN층과 다른 조성비를 갖는 제2 AlxGayIn1-x-yN층(0<x, 0<y, x+y≤1);을 포함하며,A second Al x Ga y In 1-xy N layer formed on the first Al x Ga y In 1-xy N layer and having a composition ratio different from that of the first Al x Ga y In 1-xy N layer (0 < x, 0 <y, x + y ≦ 1);
    상기 초격자층은 상기 제1 및 제2 AlxGayIn1-x-yN층을 단위 초격자층으로 하여, 상기 단위 초격자층이 적어도 한 층 이상으로 형성된 것을 특징으로 하는 질화물계 반도체 발광 소자.The superlattice layer is a nitride-based semiconductor light emitting device, characterized in that the unit superlattice layer is formed of at least one layer using the first and second Al x Ga y In 1-xy N layer as a unit superlattice layer. .
  11. 베이스 기판;A base substrate;
    상기 베이스 기판 위에 형성된 질화물계의 버퍼층;A nitride buffer layer formed on the base substrate;
    상기 버퍼층 위에 적층된 굴절율이 다른 복수의 질화물층을 포함하고, 일측에 상기 복수의 질화물층 중 서로 다른 굴절율을 갖는 질화물층이 적어도 두 개가 노출되는 전극 형성부를 갖는 도핑 보강층;A doping reinforcing layer including a plurality of nitride layers having different refractive indices stacked on the buffer layer and having at least two nitride layers having different refractive indices among the plurality of nitride layers exposed on one side thereof;
    상기 전극 형성부가 노출되게 상기 도핑 보강층 위에 형성된 질화물계의 p형 반도체층;A nitride-based p-type semiconductor layer formed on the doping reinforcement layer to expose the electrode forming portion;
    상기 p형 반도체층 위에 형성된 질화물계의 활성층;A nitride based active layer formed on the p-type semiconductor layer;
    상기 활성층 위에 형성된 질화물계의 n형 반도체층;A nitride n-type semiconductor layer formed on the active layer;
    상기 전극 형성부 위에 형성된 p형 전극;A p-type electrode formed on the electrode forming portion;
    상기 n형 반도체층 위에 형성된 n형 전극;An n-type electrode formed on the n-type semiconductor layer;
    을 포함하는 것을 특징으로 하는 질화물계 반도체 발광 소자.Nitride-based semiconductor light emitting device comprising a.
  12. 베이스 기판 위에 질화물계의 버퍼층을 형성하는 단계;Forming a nitride buffer layer on the base substrate;
    상기 버퍼층 위에 굴절율이 주기적으로 변하는 복수의 질화물층을 포함하는 도핑 보강층을 형성하는 단계;Forming a doping reinforcement layer on the buffer layer, the doping reinforcement layer including a plurality of nitride layers whose refractive index is changed periodically;
    상기 도핑 보강층 위에 알루미늄을 함유하는 질화물계의 p형 반도체층을 형성하는 단계;Forming a nitride-based p-type semiconductor layer containing aluminum on the doping reinforcing layer;
    상기 p형 반도체층 위에 알루미늄을 함유하는 질화물계의 활성층을 형성하는 단계;Forming a nitride-based active layer containing aluminum on the p-type semiconductor layer;
    상기 활성층 위에 알루미늄을 함유하는 질화물계의 n형 반도체층을 형성하는 단계;Forming a nitride based n-type semiconductor layer containing aluminum on the active layer;
    상기 도핑 보강층의 일부가 노출되게 상기 n형 반도체층, 상기 활성층 및 상기 p형 반도체층의 일부를 제거하고, 상기 도핑 보강층을 형성하는 상기 복수의 질화물층 중 적어도 연속되는 두 개의 질화물층을 노출시켜 전극 형성부를 형성하는 단계;A portion of the n-type semiconductor layer, the active layer and the p-type semiconductor layer is removed to expose a portion of the doping reinforcement layer, and at least two consecutive nitride layers of the plurality of nitride layers forming the doping reinforcement layer are exposed. Forming an electrode forming portion;
    상기 전극 형성부 위에 p형 전극을 형성하고, 상기 n형 반도체층 위에 n형 전극을 형성하는 단계;Forming a p-type electrode on the electrode forming part and forming an n-type electrode on the n-type semiconductor layer;
    를 포함하는 것을 특징으로 하는 질화물계 반도체 발광 소자의 제조 방법.Method of manufacturing a nitride-based semiconductor light emitting device comprising a.
  13. 제12항에 있어서, 상기 전극 형성부를 형성하는 단계는,The method of claim 12, wherein forming the electrode forming part comprises:
    섀도우 마스크를 이용하여 상기 n형 반도체층, 상기 활성층 및 상기 p형 반도체층의 일부를 제거하여 상기 도핑 보강층의 일부를 노출시키되, 상기 도핑 보강층을 형성하는 상기 복수의 질화물층 중 적어도 연속되는 두 개의 질화물층이 경사면을 통하여 노출되게 상기 전극 형성부를 형성하는 것을 특징으로 하는 질화물계 반도체 발광 소자의 제조 방법.A portion of the doped reinforcement layer is exposed by removing a portion of the n-type semiconductor layer, the active layer and the p-type semiconductor layer by using a shadow mask, and at least two consecutive nitride layers forming the doped reinforcement layer. A method of manufacturing a nitride-based semiconductor light emitting device, characterized in that the electrode forming portion is formed so that a nitride layer is exposed through the inclined surface.
  14. 제12항에 있어서, 상기 전극 형성부를 형성하는 단계는,The method of claim 12, wherein forming the electrode forming part comprises:
    상기 도핑 보강층의 일부가 노출되게 상기 n형 반도체층, 상기 활성층 및 상기 p형 반도체층의 일부를 제거하는 단계;Removing a portion of the n-type semiconductor layer, the active layer and the p-type semiconductor layer to expose a portion of the doping enhancement layer;
    상기 도핑 보강층을 형성하는 상기 복수의 질화물층 중 적어도 연속되는 두 개의 질화물층을 레이저를 조사하여 노출시켜 전극 형성부를 형성하는 단계; Irradiating at least two consecutive nitride layers of the plurality of nitride layers forming the doped reinforcement layer by irradiating a laser to form an electrode forming portion;
    를 포함하는 것을 특징으로 하는 질화물계 반도체 발광 소자의 제조 방법.Method of manufacturing a nitride-based semiconductor light emitting device comprising a.
  15. 제14항에 있어서, 상기 전극 형성부를 형성하는 단계에서,The method of claim 14, wherein in the forming of the electrode forming unit,
    상기 전극 형성부는 경사면 또는 적어도 하나의 요홈을 포함하도록 형성되는 것을 특징으로 하는 질화물계 반도체 발광 소자의 제조 방법.And the electrode forming part is formed to include an inclined surface or at least one recess.
PCT/KR2012/006253 2012-07-02 2012-08-07 Nitride group semiconductor light-emitting element and method for manufacturing same WO2014007419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0071804 2012-07-02
KR1020120071804A KR101303589B1 (en) 2012-07-02 2012-07-02 Nitride semiconductor light emitting device and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2014007419A1 true WO2014007419A1 (en) 2014-01-09

Family

ID=49454977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006253 WO2014007419A1 (en) 2012-07-02 2012-08-07 Nitride group semiconductor light-emitting element and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101303589B1 (en)
WO (1) WO2014007419A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3685183A4 (en) * 2017-09-19 2021-12-08 Vocalzoom Systems Ltd Laser-based devices utilizing improved self-mix sensing
WO2023115325A1 (en) * 2021-12-21 2023-06-29 联嘉光电股份有限公司 Small-sized vertical light-emitting diode die having high luminous efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563141B1 (en) * 1998-04-14 2003-05-13 Btg International Limited Optical devices
JP2003258297A (en) * 2002-02-27 2003-09-12 Shiro Sakai Gallium-nitride-based compound semiconductor device
JP2010068010A (en) * 2009-12-24 2010-03-25 Toyoda Gosei Co Ltd Group iii nitride compound semiconductor device
KR20110107665A (en) * 2010-03-25 2011-10-04 엘지이노텍 주식회사 Light emitting diode and light emitting device comprising the same
KR20120045542A (en) * 2010-10-29 2012-05-09 엘지이노텍 주식회사 Light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563141B1 (en) * 1998-04-14 2003-05-13 Btg International Limited Optical devices
JP2003258297A (en) * 2002-02-27 2003-09-12 Shiro Sakai Gallium-nitride-based compound semiconductor device
JP2010068010A (en) * 2009-12-24 2010-03-25 Toyoda Gosei Co Ltd Group iii nitride compound semiconductor device
KR20110107665A (en) * 2010-03-25 2011-10-04 엘지이노텍 주식회사 Light emitting diode and light emitting device comprising the same
KR20120045542A (en) * 2010-10-29 2012-05-09 엘지이노텍 주식회사 Light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3685183A4 (en) * 2017-09-19 2021-12-08 Vocalzoom Systems Ltd Laser-based devices utilizing improved self-mix sensing
WO2023115325A1 (en) * 2021-12-21 2023-06-29 联嘉光电股份有限公司 Small-sized vertical light-emitting diode die having high luminous efficiency

Also Published As

Publication number Publication date
KR101303589B1 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
KR101459752B1 (en) Semiconductor light emitting device and fabrication method thereof
WO2013018937A1 (en) Semiconductor light-emitting device
WO2014168339A1 (en) Ultraviolet light-emitting device
KR100770441B1 (en) Nitride semiconductor light emitting device
KR101393897B1 (en) Semiconductor light emitting device and fabrication method thereof
WO2011025291A2 (en) High-quality non-polar/semi-polar semiconductor element on an unevenly patterned substrate and a production method therefor
WO2013015472A1 (en) Semiconductor light-emitting device and method for manufacturing same
WO2021158016A1 (en) Single-chip multi-band light-emitting diode
WO2013147552A1 (en) Near uv light emitting device
KR102619686B1 (en) Light-emitting diode precursor comprising a passivation layer
WO2013129812A1 (en) Light emitting diode having gallium nitride substrate
WO2009093846A2 (en) Method for manufacturing light emitting device
KR101368687B1 (en) Manufacturing Method of nitride semiconductor light emitting device using superlattice structure
KR20100066209A (en) Semi-conductor light emitting device and manufacturing method thereof
KR20110084683A (en) Light emitting device having active region of quantum well structure
KR20100049451A (en) Nitride semiconductor device
KR20090076163A (en) Menufacturing method of nitride semiconductor light emitting device and nitride semiconductor light emitting device by the same
WO2014007419A1 (en) Nitride group semiconductor light-emitting element and method for manufacturing same
US8247244B2 (en) Light emitting device and method of manufacturing the same
WO2015016507A1 (en) Template for manufacturing light emitting device and method for manufacturing ultraviolet light emitting device
KR101862407B1 (en) Nitride semiconductor light emitting device and Method for fabricating the same
KR101043345B1 (en) Nitride semiconductor device
KR101876576B1 (en) Nitride semiconductor light emitting device and method for fabricating the same
WO2013022129A1 (en) Nitride semiconductor light-emitting element
KR20210132464A (en) Micro-nano-fin light-emitting diodes and method for manufacturing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880387

Country of ref document: EP

Kind code of ref document: A1