WO2010058469A1 - Flat-panel display driving circuit - Google Patents

Flat-panel display driving circuit Download PDF

Info

Publication number
WO2010058469A1
WO2010058469A1 PCT/JP2008/071127 JP2008071127W WO2010058469A1 WO 2010058469 A1 WO2010058469 A1 WO 2010058469A1 JP 2008071127 W JP2008071127 W JP 2008071127W WO 2010058469 A1 WO2010058469 A1 WO 2010058469A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
high voltage
level shift
voltage output
Prior art date
Application number
PCT/JP2008/071127
Other languages
French (fr)
Japanese (ja)
Inventor
信義 近藤
哲也 坂本
外与志 河田
Original Assignee
日立プラズマディスプレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラズマディスプレイ株式会社 filed Critical 日立プラズマディスプレイ株式会社
Priority to PCT/JP2008/071127 priority Critical patent/WO2010058469A1/en
Publication of WO2010058469A1 publication Critical patent/WO2010058469A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0275Details of drivers for data electrodes, other than drivers for liquid crystal, plasma or OLED displays, not related to handling digital grey scale data or to communication of data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge

Definitions

  • the present invention relates to a driving circuit for a flat panel display such as a plasma display panel, and more particularly to an address driver IC used for driving address electrodes of a plasma display device or a driving circuit mounted on a scan driver IC used for driving scanning electrodes.
  • a driving circuit for a flat panel display such as a plasma display panel
  • an address driver IC used for driving address electrodes of a plasma display device
  • a driving circuit mounted on a scan driver IC used for driving scanning electrodes.
  • driver modules are known in which various driver ICs (Integrated Circuits, integrated circuits) are mounted as one of circuit members constituting a flat panel display such as a plasma display module.
  • plasma display devices include an ADM (Address Driver Module) equipped with an address driver IC and an SDM (Scan Driver Module) equipped with a scan driver IC.
  • ADM Address Driver Module
  • SDM Scan Driver Module
  • the functions and number of ICs to be mounted, the plasma display panel to be connected, and the bus circuit to be connected There are various shapes depending on the shape, heat dissipation and mechanical fixing methods.
  • FIG. 1 is a diagram showing an example of the appearance of a general ADM conventionally used in an address circuit. Since the SDM with the scan driver IC mounted thereon has almost the same configuration, the ADM will be described below as an example.
  • FIG. 1 shows an ADM 90 in which one address driver IC 91 is flip-chip bonded to a tape carrier 92.
  • the front side of the tape carrier 92 is an address bus circuit connecting portion 94 that supplies an address power supply, an address data signal, a control signal, and the like, and the opposite back side is a connecting portion 95 to a plasma display panel.
  • the internal wiring 93 provided on the substrate such as the tape carrier 92 generally has a function as a mere lead line only for one-to-one connection between the internal and external electrical signals. Is.
  • FIG. 2 is an electrical connection diagram of the ADM 90 shown in FIG.
  • the address driver IC 91 includes a low voltage logic circuit 60, a high voltage output circuit 80, and a level shift circuit 70.
  • An address data signal sent from an address bus circuit (not shown) through a plurality of address data input lines DATA is sent to an address driver by a low voltage logic circuit 60 that operates according to two control signals, a clock signal CLK and a latch signal LE.
  • the data is taken into the IC 91 and rearranged in a necessary order with a predetermined number of bits.
  • the high voltage switching element is controlled, and the address electrode drive signal Add1 is sent to the panel side as a high voltage output.
  • ⁇ Addn is output.
  • the same symbol is used here for the signal name and the signal line name.
  • a short diagonal line on each signal line indicates that there are a plurality of signal lines.
  • the control signal for the address data signal DATA, the clock signal CLK, and the latch signal LE is a low voltage logic level signal.
  • the low voltage logic circuit 60 includes a shift register circuit 61 and a latch circuit 62 in the address driver IC 91. Received and processed by.
  • the processed signal is output to the plasma display panel as a high voltage output (address electrode drive signals Add1 to Addn) having an amplitude of a high voltage (between ground and + Va) by the high voltage output circuit 80 in the address driver IC 91.
  • the address driver IC 91 includes a level shift circuit 70 for mediating an electric signal level between the low voltage logic circuit 60 and the high voltage output circuit 80.
  • the power supply voltage Vcc of the low voltage logic circuit 60 of the general address driver IC 91 is +10 several V
  • the power supply voltage + Va of the high voltage output circuit 80 is +10 [V]
  • both of which are the reference potentials (LV ⁇ (GND, HV-GND) are generally connected inside the address driver IC 91 or on a substrate such as a tape carrier 92.
  • the current consumption of the general low-voltage logic circuit 60 is almost constant and about several to several tens [mA].
  • the current consumption of the high-voltage output circuit 80 flows in a pulse manner every address period, and the instantaneous peak value is reached. The current reaches several hundreds [mA], which is much larger than the current consumption of the low voltage logic circuit 61. The same applies to ADM.
  • FIG. 3 is a diagram showing an example of a general driving waveform applied to the plasma display panel. This is a waveform for one subfield, which is a basic waveform necessary for constructing one screen. A plurality of these are used in combination for actual screen display.
  • FIG. 3 shows voltage waveforms of one subfield applied to each of the address electrode, X electrode (sustain electrode), and Y electrode (scan electrode) provided in the plasma display panel. Each waveform is divided into a reset period Tr, an address period Ta, and a sustain period Ts according to each function.
  • the address driver IC 91 described above outputs a voltage of + Va to the address electrode of the plasma display panel according to the image data from the control circuit during the address period Ta as shown by the address waveform in FIG.
  • the output amplitude level of the address driver IC 91 is generally a binary value of a ground (GND) level and an address voltage (abbreviated as + Va, and the voltage is generally several tens [V]). is there.
  • a negative scan voltage ( ⁇ Vy) is applied to the Y electrode in addition to the address electrode. Therefore, the potential difference between the address electrode and the Y electrode becomes (Va ⁇ Vy), and address discharge is generated by applying the address voltage and the scan voltage so that this potential difference exceeds the address discharge start voltage.
  • an address voltage Va is applied to the address electrode.
  • a ground level potential is set. Although it is applied, if lighting / non-lighting is repeated, the potential of the address electrode repeats + Va and GND, and power is frequently discarded to GND.
  • a database pulse set lower than a voltage for starting write discharge (address discharge) is applied to the column electrode (address electrode).
  • a plasma display driving method that further applies a data pulse to a column electrode that generates an address discharge to generate an address discharge, thereby reducing potential fluctuation of the address electrode and reducing power consumption in the address period Ta Is known (see, for example, Patent Document 1). JP 7-295506 A
  • the number of bits of each driver IC is increasing.
  • the increase in the number of bits increases the size of the IC chip and the cost per chip increases, but the cost reduction due to the decrease in the number of ADMs and SDMs used, that is, the accompanying substrate members, exceeds that.
  • the number of bits of the driver IC increases, the current consumption of the IC itself, particularly the current consumption on the high voltage output circuit side, also increases proportionally.
  • the amplitude of the logic signal level has been reduced as the control circuit for supplying signals to the ADM and the SDM and the speed of each bus circuit (both not shown) are increased.
  • FIG. 4 is a diagram schematically showing only one bit of the main circuit portion of the address driver IC 91 from FIG.
  • the main part of the address driver IC 91 is a low voltage logic circuit 60a having an input terminal IN to which an input signal Vin from an address bus circuit (not shown) is input, and a high voltage that outputs a high voltage output Vout to the address bus electrode.
  • a high voltage output circuit 80a having an output terminal OUT and a level shift circuit 70a connecting the two are constituted.
  • the first switching element connected between the high voltage power source (here, + Va) of the address driver IC 91 and the high voltage output terminal OUT that is, the switching element QU on the high side and the high voltage output terminal.
  • a second switching element connected between OUT and a power supply current feedback path (here, a ground line (GND)) of the high voltage power supply Va, that is, a switching element QD on the low side is used.
  • the first switching element QU is a P-type FET and the second switching element QD is a N-type FET. Also, as shown in FIG.
  • the power supply current feedback path (ground line) 68 of the low voltage logic circuit 1 and the power supply current feedback path (ground line) 88 of the high voltage output circuit 3 are address driver IC 91 in terms of circuit design.
  • a part of each of the power supply current feedback paths 68 and 88 must be shared as a common power supply current feedback path 98 in the chip.
  • the noise ⁇ V generated by the wiring resistance (common impedance) R0 of the common power supply current feedback path 98 becomes relatively large, but this is a low voltage logic circuit whose amplitude has been reduced. For this, the probability of malfunction increases.
  • the current flowing from the high voltage output circuit 80a through the power supply current feedback path 88 and into the common feedback path 98 is relatively larger than the current 68 of the low voltage logic circuit 60a, and if the parasitic wiring resistance R0 is large, the wiring resistance A large voltage fluctuation occurs at R0, which adversely affects the low voltage logic circuit 60a operating at a low voltage. Therefore, for stable operation of the address driver IC 91, it is desirable to eliminate the common impedance of the common power supply current feedback path 98 portion.
  • an object of the present invention is to provide a driver IC that enables stable operation, including a driver IC designed to reduce power consumption.
  • a driving circuit for a flat panel display outputs an electrode driving signal higher in voltage than the input data signal from a high voltage output terminal based on the input data signal.
  • a flat panel display driving circuit for driving the electrodes of the flat panel display A low voltage logic circuit that receives the input data signal given in time series, processes the input data signal, and outputs in parallel with a predetermined number of bits; A first switching element connected between a high voltage power supply and the high voltage output terminal; and a second switching element connected between the high voltage output terminal and a power supply current feedback path of the high voltage power supply.
  • a control signal having a voltage level higher than that of the input data signal is input, and the electrode driving signal for driving the electrode of the display is output to the high voltage output terminal, corresponding to the predetermined number of bits.
  • a high voltage output circuit The number of sets corresponding to the predetermined number of bits, which is obtained by converting the result of the predetermined number of bits processed by the low voltage logic circuit into a control signal level of the high voltage output circuit and supplying it to the high voltage output circuit
  • a level shift circuit having The power supply current feedback path of the low voltage logic circuit and the power supply current feedback path of the high voltage output circuit are electrically separated.
  • the large current flowing through the power supply current feedback path of the high voltage output circuit can be prevented from flowing into the power supply current feedback path of the low voltage logic circuit operating at a low voltage. Adversely affecting the operation of the low-voltage logic circuit can be prevented.
  • a second invention is a driving circuit for a flat panel display according to the first invention.
  • the voltage potential of the power supply current feedback path of the high voltage output circuit is made lower than the voltage potential of the power supply current feedback path of the low voltage logic circuit.
  • the voltage potential of the power supply current feedback path of the high voltage output circuit can be set to negative polarity, and the tribal IC can perform stable operation while operating the high voltage output circuit with a large voltage width. It becomes.
  • a third invention is a driving circuit for a flat panel display according to the second invention,
  • the first switching element is a P-channel FET, and the second switching element is an N-channel FET.
  • the push-pull circuit is used to make the first switching element a high voltage with reference to the potential of the high voltage power supply and the second switching element to the power supply current feedback path. Since the output circuits are operated, both can be operated with a fixed potential as a reference, and the operation of the driver IC can be stabilized.
  • the 4th invention is the drive circuit of the flat panel display based on 3rd invention
  • the level shift circuit includes a first level shift circuit that supplies a control signal to the first switching element, and a second level shift circuit that supplies a control signal to the second switching element,
  • the control signal level output from the first level shift circuit is set between the potential of the high voltage power supply and the potential of the power supply current feedback path of the low voltage logic circuit
  • the control signal level output from the second level shift circuit is set between a power supply potential of the low voltage logic circuit and a power supply current feedback path of the high voltage output circuit.
  • a control signal can be supplied to a high voltage output circuit that operates at a control signal level higher than that of a low voltage logic circuit using a level shift circuit that can handle a sufficient voltage width. Can be operated stably.
  • a fifth invention is a driving circuit for a flat panel display according to the first invention,
  • the power supply current feedback path of the high voltage output circuit has a potential lower than the power supply potential of the high voltage output circuit and higher than the power supply current feedback path of the low voltage logic circuit.
  • the potential of the power supply current feedback path of the high voltage output circuit can be set higher than the ground potential, the voltage operation width of the driver IC can be reduced, and the power consumption can be reduced.
  • a sixth invention is a drive circuit for a flat panel display according to the fifth invention,
  • the first switching element is a P-channel FET, and the second switching element is an N-channel FET.
  • the reference potential of the first switching element can be the potential of the high voltage power supply
  • the reference potential of the second switching element can be the potential of the current feedback path. Since both can be operated with a fixed potential as a reference, stable operation of the high voltage output circuit can be achieved.
  • a seventh invention is a driving circuit for a flat panel display according to the fifth invention, A diode is inserted between the power supply current feedback path of the high voltage output circuit and the power supply current feedback path of the low voltage logic circuit.
  • a protection diode can be provided to prevent a decrease due to potential pull-in of the power supply current feedback path.
  • An eighth invention is a drive circuit for a flat panel display according to the fifth invention,
  • the level shift circuit includes a first level shift circuit that supplies a control signal to the first switching element, and a second level shift circuit that supplies a control signal to the second switching element,
  • the control signal level output from the first level shift circuit and the control signal level output from the second level shift circuit are respectively the power supply potential of the high voltage output circuit and the power supply current feedback of the low voltage logic circuit. It is set between the potentials of the path.
  • a ninth invention is a driving circuit for a flat panel display according to the fifth invention,
  • the control signal level output by the first level shift circuit is set between the power supply potential of the high voltage output circuit and the power supply current feedback path of the low voltage logic circuit,
  • the control signal level output from the second level shift circuit is set between a potential lower than the power supply potential of the high voltage output circuit and higher than the potential of the power supply for the low voltage logic circuit.
  • a control signal having a control signal level appropriate for driving the second switching element can be supplied from the second level shift circuit, and the second switching element can be operated appropriately. it can.
  • the level shift circuit includes a first level shift circuit that supplies a control signal to the first switching element, and a second level shift circuit that supplies a control signal to the second switching element,
  • a buffer circuit is connected between the first level shift circuit and the first switching element and / or between the second level shift circuit and the second switching element.
  • the control signal level by the level shift circuit when the control signal level by the level shift circuit is insufficient, the shortage can be compensated by the buffer circuit, and the high voltage output circuit can be stably operated.
  • An eleventh invention is a driving circuit for a flat panel display according to the tenth invention,
  • the output impedance of the buffer circuit is set to be higher than the output impedance of the level shift circuit.
  • the output waveform from the high voltage output circuit can be blunted, and it can be applied to a flat display panel that requires such output waveform characteristics.
  • a twelfth aspect of the invention is a flat panel display drive circuit according to the first aspect of the invention,
  • the flat panel display device is a plasma display panel;
  • the driving circuit of the flat panel display is mounted on an address driver IC for driving address electrodes.
  • the flat panel display can be driven stably.
  • FIG. 2 is an electrical connection diagram of a conventional ADM 90 shown in FIG. It is the figure which showed an example of the general drive waveform applied to a plasma display panel.
  • FIG. 10 is a diagram schematically showing only a main circuit portion of a conventional address driver IC 91 for one bit.
  • 1 is an overall configuration diagram of a plasma display device using a driver IC according to an embodiment.
  • FIG. 3 is a diagram illustrating an example of a circuit configuration of an address driver IC 21 according to the first embodiment. It is the figure which showed an example of the voltage waveform of an input data signal and a high voltage output terminal.
  • FIG. 6 is a circuit configuration diagram of an address driver IC 21a according to a second embodiment. It is the figure which showed an example of the voltage waveform of an input data signal and a high voltage output terminal. It is the figure which showed an example of the voltage waveform of each electrode of 1 subfield.
  • FIG. 10 is a circuit configuration diagram of an address driver IC 21b according to a third embodiment. It is the figure which showed an example of the voltage waveform of the input signal of Example 3, and the output signal of a high voltage output terminal.
  • FIG. 10 is a circuit configuration diagram of an address driver IC 21c according to a fourth embodiment. It is the figure which showed the example of the voltage waveform of the input signal of Example 4, and a high voltage output terminal.
  • Plasma display panel 20 Address drive circuit 21, 21a, 21b, 21c, 91 Address driver IC 30 sustain drive circuit 40 scan drive circuit 41 scan driver IC 42 Sustain driver IC 43 reset circuit 50 drive control circuit 51 subfield conversion circuit 52 address data generation circuit 53 scan data generation circuit 54 maintenance data generation circuit LV, LVb, LVc low voltage logic circuit LS, LSa, LS1, LS2, LS2a level shift circuit HV, HVa, HVc High voltage output circuit LVS, HVS Power supply LVF, HVF, HVFa Power supply current feedback path OUT High voltage output terminal
  • FIG. 5 is an overall configuration diagram of a plasma display device using a flat panel display driving circuit according to an embodiment to which the present invention is applied.
  • the plasma display device includes a plasma display panel 10, an address drive circuit 20, a sustain drive circuit 30, a scan drive circuit 40, and a drive control circuit 50.
  • FIG. 5 shows an example in which the drive circuit of the flat panel display according to the present embodiment is applied as the address driver IC 21.
  • the plasma display panel 10 is a display panel for displaying an image.
  • the plasma display panel 10 includes a plurality of sustain electrodes X1, X2, X3,... And a plurality of scan electrodes Y1, Y2, Y3,.
  • each of the sustain electrodes X1, X2, X3,... Or their generic name is referred to as a sustain electrode Xi, and each of the scan electrodes Y1, Y2, Y3,. It is called Yi. i means a subscript.
  • the plasma display panel 10 includes a plurality of address electrodes A1, A2, A3,... Extending in the vertical direction.
  • discharge cells Cij are formed at positions where the sustain electrodes Xi, the scan electrodes Yi, and the address electrodes Aj intersect.
  • the discharge cells Cij correspond to pixels, and the plasma display panel 10 can display a two-dimensional image.
  • the sustain electrode Xi and the scan electrode Yi in the display cell Cij have a space between them to constitute a capacitive load.
  • the address drive circuit 20 is a circuit for driving the address electrode Aj, and supplies an address pulse having a predetermined voltage value to the address electrode Aj in the address period Ta to generate an address discharge.
  • the address drive circuit 20 has a plurality of address driver ICs 21.
  • the address driver IC 21 is an IC having a plurality of outputs, and each of the plurality of outputs is connected to the address electrode Aj. Further, a plurality of address driver ICs 21 are provided in the address driving circuit 20, so that all the address electrodes Aj in the horizontal direction can be driven as a whole.
  • Each address driver IC 21 is configured as an address driver module 90 as described with reference to FIG. 1, and has an internal configuration block as described with reference to FIG. A specific internal configuration of the address driver IC 21 according to the present embodiment will be described later.
  • the scan drive circuit 40 is a circuit for driving the scan electrode Yi, and includes a scan driver IC 41, a sustain driver IC 42, and a reset circuit 43.
  • the scan driver IC 41 is an IC equipped with a drive circuit for supplying a scan pulse having a predetermined voltage value to the scan electrode Yi and generating an address discharge in accordance with the control of the drive control circuit 50 and the sustain driver IC 42.
  • the driver IC of the present invention is described as an example applied to the address driver IC 21.
  • the driver IC of the present invention can also be applied to the scan driver IC 41.
  • the sustain driver IC 42 is an IC equipped with a drive circuit that supplies a sustain pulse having the same voltage to the scan electrodes Yi and generates a sustain discharge.
  • the reset circuit 43 is a circuit that supplies a reset pulse having a predetermined voltage value to the scan electrode Yi according to the control of the drive control circuit 50, generates a reset discharge, and initializes and arranges the wall charge of the discharge cell Cij. is there.
  • the sustain drive circuit 30 is a circuit for driving the sustain electrode Xi, and supplies a sustain pulse having the same voltage to the sustain electrode Xi to generate a sustain discharge.
  • Each sustain electrode Xi is interconnected and has the same voltage level.
  • the drive control circuit 50 is a circuit that drives and controls the address drive circuit 20, the sustain drive circuit 30, and the scan drive circuit 40.
  • the drive control circuit 50 includes a subfield conversion circuit 51, an address data generation circuit 52, a scan data generation circuit 53, and a maintenance data generation circuit 54.
  • the subfield conversion circuit 51 subdivides one frame or one field image into a plurality of subfields. Perform conversion. Based on the converted subfield, the address data generation circuit 52 and the scan data generation circuit 53 generate address data and scan data necessary for driving the address drive circuit 20 and the scan circuit 41 of the scan drive circuit 40. The sustain data generation circuit 55 generates sustain data necessary for driving the sustain drive circuit 30 and the sustain circuit 42 of the scan drive circuit 40.
  • the driving circuit of the flat panel display an example in which the driving circuit is applied to and mounted on the address driver IC 21 of the address driving circuit 20 that drives the plasma display panel 10 as shown in FIG. 5 will be described.
  • the present invention can also be applied to a scan driver IC 41 of the scan drive circuit 40 and a driver IC equipped with a drive circuit of another flat panel display.
  • FIG. 6 is a diagram showing an example of the circuit configuration of the address driver IC 21 according to the first embodiment to which the present invention is applied.
  • the address driver IC 21 according to the present embodiment includes a low voltage logic circuit LV, a level shift circuit LS, and a high voltage output circuit HV.
  • the low voltage logic circuit LV has a high potential side connected to a power supply LVS (potential is + Vcc) and a low potential side connected to a power supply current feedback path LVF (potential is GND).
  • the high voltage output circuit HV has a high potential side connected to a high voltage power supply HVS (potential is + Va1) and a low potential side connected to a power supply current feedback path HVF (potential is ⁇ Va2).
  • the low voltage logic circuit LV includes input lines IN1 and IN2 for receiving input data
  • the high voltage output circuit HV includes a high voltage output terminal OUT for outputting a high voltage.
  • the low-voltage logic circuit LV is a circuit for receiving input data signals given in time series from the input terminals INa and INb, receiving them, processing them, and outputting them as parallel signals having a predetermined number of bits. As described with reference to FIG. 2, the processing at that time is controlled by the clock signal and the latch signal which are the control signals are input to the clock signal input line and the latch signal input line which are the control signal input lines. Thus, processing in the low-voltage logic circuit LV may be executed.
  • the final stage of the low-voltage logic circuit LV includes buffers U1 and U2, and supplies the waveform-shaped output to the level shift circuit LS.
  • the level shift circuit LS is a circuit that converts a signal output from the low voltage logic circuit LV into a control signal level suitable for operating the high voltage output circuit HV.
  • the level shift circuit LS includes a first potential level shift circuit LS1 on the high potential side that connects both the output of the low voltage logic circuit LV and the control signal level between the high voltage output circuit HV and a low potential side. Second level shift circuit LS2.
  • the high voltage output circuit HV is a circuit for supplying an address pulse to the address electrode Aj.
  • the high voltage output circuit HV is connected between the high voltage power supply HVS (+ Va1) and the high voltage output terminal OUT, that is, the high side P-type FET Q31, the high voltage output terminal OUT, and the power supply for the high voltage output circuit HV.
  • An N-type FET Q32 is provided between the current feedback path HVF ( ⁇ Va2), that is, on the low side.
  • the address driver IC 21 includes a power supply current feedback path LVF (ground level) of the low voltage logic circuit LS and a power supply current feedback path HVF ( ⁇ Va2) of the high voltage output circuit HV, which have been shared in the past.
  • the voltage of the power supply current feedback path HVF ( ⁇ Va2) is made lower than the ground.
  • the low voltage logic circuit LV and the high voltage output circuit HV can be electrically separated and separated.
  • a large current flows through the power supply current feedback path HVF, and the parasitic wiring resistance increases. Even if the voltage fluctuation occurs, it is possible to eliminate the adverse effect of the voltage fluctuation on the low voltage logic circuit LV.
  • the first switching element Q31 connected between the high-voltage power supply HVS (+ Va1) and the high-voltage output terminal OUT is a P-channel FET (Field-Effect-Transistor, field effect transistor).
  • the second switching element Q32 connected between the high voltage output terminal OUT and the power supply current feedback path HVF ( ⁇ Va2) of the high voltage output circuit HV is an N-channel FET. Since the power supply Vcc of the second level shift circuit LS2 is the same as the power supply voltage Vcc of the low voltage logic circuit LV, the output level of the second level shift circuit LS2 is Vcc to -Va2.
  • the power supply voltage (+ Va1) on the high side of the high voltage output circuit HV is set to a voltage that is higher by several volts than the maximum lighting voltage (Vamax) of the panel display characteristics.
  • the power supply voltage ( ⁇ Va2) on the low side is set to a voltage lower by about several V than the minimum lighting voltage (Vamin) of the panel display characteristics.
  • the first level shift circuit LS1 is composed of input side FETs Q11 and Q12 and output side FETs Q13 and Q14.
  • the high voltage side power supply of the first level shift circuit LS1 is the same as the high voltage side power supply HVS of the high voltage circuit HV (+ Va1), and the low voltage side power supply is at the ground level.
  • the second level shift circuit LS2 includes Q21 and Q22 of the input side FET and Q23 and Q24 of the output side FET.
  • the high voltage side power supply of the second level shift circuit LS2 is the same as the power supply LVS of the low voltage logic circuit LV (+ Vcc), and the low voltage side power supply is the same as the low voltage side power supply HVF of the high voltage output circuit HV ( ⁇ Va2). It is.
  • input data signals INa and INb are input to input lines IN1 and IN2, respectively.
  • the low voltage logic circuit LV performs waveform shaping in the buffers U1 and U2, and outputs the shaped input data signal.
  • the input signals INa and INb are usually the same signal.
  • a configuration of an actual IC that performs high impedance output or operation during power recovery is cited, and in the figure, a configuration in which separate independent signals can be input.
  • the outputs of the low voltage logic circuit LS that is, the outputs of the buffers U1 and U2, are input to the first level shift circuit LS1 and the second level shift circuit LS2 of the level shift circuit LS, respectively.
  • the outputs of the first level shift circuit LS1 and the second level shift circuit LS2 are the first switching element Q31 of the high-voltage output circuit HV that switches the two power supply potentials (+ Va1) and ( ⁇ Va2) and the second level shift circuit LS2, respectively.
  • the switching element Q32 is operated.
  • FIG. 7 is a diagram showing voltage waveforms of the input data signals INa and INb and the high voltage output terminal OUT of the high voltage output circuit HV.
  • the same pulse voltage signal is input to the input data signals INa and INb, and a square wave pulse having a binary value of 0 to Vcc [V] is input to both.
  • the high voltage output terminal OUT outputs a square wave pulse whose voltage is binary between ( ⁇ Va2) to (+ Va1) [V] in synchronization with the input data signals INa and INb.
  • the input side FET Q11 and the output side FET Q14 are turned on, but the input side FET Q12 remains off.
  • the first switching element Q31 is turned off.
  • the input side FET Q22 and the output side Q23 are turned on, and the control signal supplied to the second switching element Q32 of the high voltage output circuit HV becomes the high level. Since the switching element Q32 is turned on, ( ⁇ Va2) is output to the high voltage output terminal OUT, which matches the voltage waveform of FIG.
  • the common feedback path 98 of both shown in FIG. 4 of the prior art can be eliminated.
  • FIG. 8 is a circuit diagram of the address driver IC 21a according to the second embodiment to which the present invention is applied.
  • the address driver IC 21a according to the second embodiment is the same as the address driver IC 21 according to the first embodiment in that it includes a low voltage logic circuit LS, a level shift circuit LSa, and a high voltage output circuit HVa.
  • the configurations of the LSa and the high voltage output circuit HVa are different from those of the address driver IC 21 according to the first embodiment. Since the configuration of the low voltage logic circuit LS is the same as that of the first embodiment, the same reference numerals are given and the description thereof is omitted. Also, with respect to the other components, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the address driver IC 21a separates the power supply current feedback path LVF (ground level) of the low voltage logic circuit LV that has been shared in the past from the power supply current feedback path HVFa (+ Va3) of the high voltage output circuit HV.
  • the voltage is higher than the ground.
  • the first switching element Q31 connected between the high voltage power supply HVS and the high voltage output terminal OUT is a P-channel FET, and is connected between the high voltage output terminal OUT and the power supply current feedback path HVFa of the high voltage power supply HVS.
  • the second switching element Q32 is an N-channel FET.
  • the power sources of the first level shift circuit LS1 and the second level shift circuit LS2a are both the high voltage power supply HVS (+ Va1) on the high potential side and the power supply current feedback path on the low potential side is ground (GND).
  • the output level is + Va1 to GND.
  • a protective diode D is inserted between the power supply current feedback path HVFa of the high voltage output circuit HV and the ground.
  • buffer circuits U1 and U2 are shown as a part of the low voltage logic circuit LV is the same as that of the first embodiment.
  • the high voltage output circuit HVa includes the first switching element Q31 on the high side connected between the high voltage power supply HVS (+ Va1) and the high voltage output terminal OUT, the high voltage output terminal OUT, and the power supply current feedback path HVFa. And a second switching element Q32 on the low side connected between the two.
  • the first switching element Q31 is a P-channel FET.
  • the second switching element Q32 is lower than the power supply voltage (+ Va1) of the high voltage output terminal OUT and the high voltage output circuit HVa and higher than the voltage (GND) of the power supply current feedback path LVF of the low voltage logic circuit LV.
  • This is a low-side N-type FET provided between the power supply current feedback path HVFa (+ Va3) of the high voltage output circuit HV.
  • the high voltage output circuit HVa has a diode D connected between the ground and the power supply current feedback path HVFa (+ Va3), the anode of the diode D is connected to the ground GND, and the cathode of the diode D is the power supply current feedback path. It is connected to HVFa (+ Va3).
  • a level shift circuit including a first level shift circuit LS1 and a second level shift circuit LS2a that connect both of them. It consists of LSa.
  • the power supply voltage (+ Va1) on the high side of the high voltage output circuit HV is set to a voltage several V higher than the maximum lighting voltage (Vamax) of the panel display characteristics.
  • the low-side power supply voltage (+ Va3) is set to a voltage that is lower than the minimum lighting voltage (Vmamin) of the panel display characteristics by about several volts.
  • the level shift circuit LS1 is composed of input side FETs Q11 and Q12 and output side FETs Q13 and Q14.
  • the high voltage side power supply of this circuit is the same as + Va1 as the high voltage side power supply of the high voltage circuit, and the low voltage side power supply is at the ground level.
  • the level shift circuit LS2 includes Q21 and Q22 of input side FETs and Q23 and Q24 of output side FETs.
  • the high voltage side power supply of this circuit is + Va1 which is the same as the power supply HVS of the high voltage output circuit HVa, and the low voltage side power supply is the same ground as the power supply current feedback path LVF of the low voltage logic circuit LV.
  • the input signals INa and INb are input to the input lines IN1 and IN2, and the low voltage logic circuit LV shapes and outputs the waveform of the input signal with the buffers U1 and U2.
  • INa and INb normally use the same signal.
  • the configuration of an actual IC that performs an operation at the time of output high impedance or power recovery is cited, and in the figure, a configuration in which separate independent signals can be input.
  • the respective outputs are input to the first level shift circuit LS1 and the second level shift circuit LS2.
  • the outputs of the first level shift circuit LS1 and the second level shift circuit LS2 operate the FETs Q31 and Q32 that switch the two power supply potentials + Va1 and + Va3, respectively, and the two power supply potentials correspond to the input signals. Output.
  • FIG. 9 is a diagram showing an example of voltage waveforms of the output signals output from the input data signals INa and INb and the high voltage output terminal OUT.
  • the same input signals INa and INb having a voltage amplitude of 0 to Vcc [V] are input at the same timing, and an output signal synchronized with the voltage change of the input signals INa and INb has a voltage amplitude of ( + Va3) to (+ Va1) [V] are output.
  • the amplitude of the voltage is a waveform in which both the lowest potential and the highest potential are positive and the voltage width is small. In such an address pulse, if the potential difference from the scan electrode is adjusted so that an address discharge occurs at the highest potential (+ Va1) and no address discharge occurs at the lowest potential (+ Va3), Non-lighting potential fluctuations are reduced, and power consumption can be reduced.
  • FIG. 10 is a diagram showing an example of voltage waveforms of the address electrode Aj, the sustain electrode Xi, and the scan electrode Yi in one subfield.
  • the voltage waveforms of the electrodes Aj, Xi, and Yi in the reset period Tr, the address period Ta, and the sustain period Ts are shown.
  • the reset period Tr and the sustain period Ts are the same as the voltage waveforms shown in FIG. Since it is the same, the description is abbreviate
  • the address driver IC 21a outputs an address voltage to the address electrodes of the plasma display panel according to the image data from the control circuit during the address period Ta.
  • the output amplitude level of the address driver IC is a binary level of a ground (GND) level and an address voltage (abbreviated as + Va, and the voltage is generally several tens of volts). It is common to do.
  • the high voltage side is higher than the maximum lighting voltage (Vamax) of the panel display characteristics, and the general address voltage Va is set to be several V higher than this.
  • the low voltage side need only be equal to or lower than the minimum lighting voltage (generally about 10 V lower than Vamin and Vamax) of the panel display characteristics, and it is necessary to increase the amplitude with a high voltage that is widely used at present. There is no.
  • the increase in the output amplitude of a general address driver IC is simply due to the custom on the IC side. That is, the output of the address driver IC does not require an amplitude of several tens of volts as in the prior art.
  • the upper limit is Vamax + ⁇
  • the lower limit is about Vamin ⁇ ( ⁇ is several V). At most about 20 [V] is sufficient. With such a low amplitude, the charging / discharging current with the panel can be reduced, and the power consumption of the driver IC and thus the plasma display product can be reduced.
  • the maximum value (+ Va1) of the address pulse applied to the address electrode Aj is (Vamax + ⁇ ), and the minimum value (+ Va3) of the address pulse is (Vamin).
  • the power supply current of the high voltage output circuit HVa is separated by separating the power supply current feedback path LVF of the low voltage logic circuit LS and the power supply current feedback path HVFa of the high voltage output circuit HVa while achieving low power consumption.
  • a circuit that does not affect the low-voltage logic circuit LS due to the voltage fluctuation caused by the current flowing into the feedback path HVFa can be obtained.
  • the output terminal OUT connected to the address electrode is charged / discharged between the sustain electrode Xi and the adjacent address electrode Aj, particularly by interelectrode capacitive coupling during the reset period Tr in FIG. It is a protection circuit that prevents a negative potential from being drawn due to the generated charge / discharge.
  • the diode D is an essential component for realizing the present embodiment.
  • the power supply current feedback path LVF (ground in the figure) of the low voltage logic circuit LV and the power supply current feedback path HVFa (+ Va3 in the figure) of the high voltage output circuit HVa. 4
  • the common feedback path 98 shown in FIG. 4 is eliminated, and even if the number of bits of the address driver IC increases and the power supply feedback current of the high voltage output circuit increases, the power supply on the low voltage logic circuit side
  • the low voltage logic circuit can be stably operated without affecting the current feedback path.
  • the output voltage amplitude of the high voltage output circuit can be reduced to (+ Va1) to (+ Va3) as compared with the conventional case, the power consumption of the address driver IC and thus the plasma display product can be reduced.
  • FIG. 11 is a diagram showing a circuit configuration of the address driver IC 21b according to the third embodiment to which the present invention is applied.
  • the address driver IC 21b according to the third embodiment is obtained by adding buffer circuits BF1 and BF2 to the circuit of the address driver IC 21a illustrated in the second embodiment. Accordingly, the input lines INB1 and INB2 for the buffer circuits BF1 and BF2 are added to the low voltage logic circuit LVb, respectively, so that the total number is four.
  • the driving capability of the address driver IC 21b that is, the driving currents of the FETs Q31 and Q32 of the high voltage output circuit HVa also increases.
  • the P-channel type FETs Q61 and N are arranged in the subsequent stage of the first level shift circuit LS1.
  • a buffer circuit BF1 including a channel type FET Q62 is added.
  • a buffer circuit BF2 including a P-channel FET Q71 and an N-channel FET Q72 is added to the subsequent stage of the level shift circuit LS2.
  • the input signal INa-1 is input to the first level shift circuit LS1 via the buffer U1 of the low voltage logic circuit LVb, and the input signal INa-2 is input to the input line INB1.
  • the input signal INb-1 is input to the second level shift circuit LS2a via the buffer U2 of the low voltage logic circuit LVb, and the input signal INb-2 is input to the buffer circuit BF2 from the input line INB2.
  • the output of the first level shift circuit LS1 is input to the buffer circuit BF1, and the output of the second level shift circuit LS2a is input to the buffer circuit BF2.
  • the outputs of the buffer circuits BF1 and BF2 operate the first switching element Q31 and the second switching element Q32 of FETs that switch the two power supply potentials + Va1 and + Va3, respectively.
  • FIG. 12 is a diagram illustrating an example of voltage waveforms of the input signals INa-1, INa-2, INb-1, INb-2 of the address driver IC 21b according to the third embodiment and the output signal of the high voltage output terminal OUT. .
  • signals having the same voltage waveform are input to input signals INa-1 and INb-1, and signals having the same voltage waveform are input to input signals INa-2 and INb-2.
  • the output waveform is output in the voltage range (+ Va3) to (+ Va1) [V] in synchronization with the input signals INa-1 and INb-1 in the voltage range 0 to Vcc [V]. Yes.
  • the configuration of an actual IC that performs an operation at the time of output high impedance and power recovery is cited.
  • the configuration is shown in which signals can be input.
  • INa-1 has the same phase as INb-1
  • INa-2 and INb-2 have the same phase
  • the respective sets are signals of opposite phases.
  • each buffer circuit BF1, BF2 is set by setting the output impedance of the buffer circuits BF1, BF2 to be larger than the output impedance of the level shift circuit LSa.
  • the output current characteristic having a dullness can be obtained.
  • FIG. 13 is a diagram showing a circuit configuration of the address driver IC 21c according to the fourth embodiment to which the present invention is applied.
  • the address driver IC 21c according to the fourth embodiment is changed from the first switching element Q31 of the P-channel FET of the high voltage output circuit HVa of the circuit shown in the third embodiment to the first switching element Q33 of the N-channel FET. Totem pole configuration.
  • the address driver IC 21c according to the fourth embodiment is basically changed in connection with the low-voltage logic circuit LVc due to the change in the polarity of the FET of the first switching element Q33 from the address driver IC 21b according to the third embodiment. Since there is no change in operation, detailed description thereof will be omitted.
  • FIG. 14 is a diagram illustrating an example of voltage waveforms of the input signals INa-1, INa-2, INb-1, INb-2 of the address driver IC 21c according to the fourth embodiment and the output of the high voltage output terminal OUT.
  • the same input signal having a voltage amplitude of 0 to Vcc [V] is inputted to the input signals INa-1 and INb-2, and the voltage amplitude of 0 to Vcc [V] is inputted to the input signals INa-2 and INb-1.
  • the same input signal is input.
  • the output signal is synchronized with the input signals INa-1 and INb-2, and voltage waveforms with voltage amplitudes (+ Va3) to (+ Va1) [V] are output.
  • the actual IC configuration that performs high impedance output and operation during power recovery.
  • four different signals can be input.
  • INa-1 has the same phase as INb-2
  • INa-2 and INb-1 have the same phase
  • the respective sets are signals having opposite phases.
  • the first switching element Q33 of the N-type FET on the high voltage side of the high-voltage output circuit HVc applied in the present embodiment has a smaller cell area than the first switching element Q31 of the P-type FET. Since the on-resistance is low, in addition to the effects described in the first and second embodiments, it is possible to reduce the size of the IC chip and reduce the power consumption of the address driver IC 21c.
  • the common impedances of the high voltage output circuit units HV, HVa, HVc and the low voltage circuit units LV, LVb, LVc are separated by using the level shift circuits LS, LSa. It is possible to realize malfunction prevention due to noise generated due to load fluctuation and the like and to reduce power consumption by reducing the amplitude of the power source.
  • the driver IC of the present invention has been described as an example applied to the address driver ICs 21 and 21a to 21c of the plasma display panel 10.
  • the scan driver IC 41, organic EL, liquid crystal, etc. As long as the driver IC uses the level shift circuits LS and LSa, the present invention can be applied to all driver ICs.
  • the present invention can be used for a driving circuit of a flat panel display such as a plasma display, particularly a driver IC having a low voltage logic circuit and a high voltage output circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

There is provided a flat-panel display driving circuit for outputting, from a high-voltage output terminal (OUT), an electrode driving signal having a voltage higher than an input data signal and driving a flat-panel display electrode. The flat-panel display driving circuit comprises a low voltage logic circuit (LV) for processing the input data signal and outputting the result, a first switching element (Q31) connected between a high-voltage power supply (HVS) and the high-voltage output terminal (OUT), and a second switching element (Q32) connected between the high-voltage output terminal (OUT) and the power supply current return path (HVF) of the high-voltage power supply (HVS). The flat-panel display driving circuit further comprises a high-voltage output circuit (HV) for outputting the electrode driving signal to the high-voltage output terminal (OUT) and a level shift circuit (LS) for converting the output of the low voltage logic circuit (LV) to a signal level for controlling the high-voltage output circuit (HV). In the flat-panel display driving circuit, the power supply current return path (LVF) of the low voltage logic circuit (LV) is isolated from the power supply current return path (HVF) of the high-voltage output circuit (HV).

Description

フラットパネルディスプレイの駆動回路Flat panel display drive circuit
 本発明は、プラズマディスプレイパネル等のフラットパネルディスプレイの駆動回路に関し、特にプラズマディスプレイ装置のアドレス電極の駆動に使用するアドレスドライバIC、もしくは走査電極の駆動に使用するスキャンドライバICに搭載される駆動回路に関する。 The present invention relates to a driving circuit for a flat panel display such as a plasma display panel, and more particularly to an address driver IC used for driving address electrodes of a plasma display device or a driving circuit mounted on a scan driver IC used for driving scanning electrodes. About.
 従来から、プラズマディスプレイモジュール等のフラットパネルディスプレイを構成する回路部材の一つに、各種ドライバIC(Integrated Circuit、集積回路)を搭載したドライバモジュールが知られている。特に、プラズマディスプレイ装置においては、アドレスドライバICを搭載したADM(Address Driver Module)や、スキャンドライバICを搭載したSDM(Scan Driver Module)がある。これは、プラズマディスプレイパネルの電極を駆動する回路機能を持ったドライバICを、テープキャリアなどの基板に搭載したもので、搭載するICの機能や数、接続するプラズマディスプレイパネルや接続するバス回路の形状、放熱や機械的固定の方法などによって様々な形状が存在する。 Conventionally, driver modules are known in which various driver ICs (Integrated Circuits, integrated circuits) are mounted as one of circuit members constituting a flat panel display such as a plasma display module. In particular, plasma display devices include an ADM (Address Driver Module) equipped with an address driver IC and an SDM (Scan Driver Module) equipped with a scan driver IC. This is a driver IC having a circuit function for driving the electrodes of the plasma display panel mounted on a substrate such as a tape carrier. The functions and number of ICs to be mounted, the plasma display panel to be connected, and the bus circuit to be connected There are various shapes depending on the shape, heat dissipation and mechanical fixing methods.
 図1は、従来からアドレス回路で使用されている一般的なADMの外観の一例を示した図である。なお、スキャンドライバICを搭載したSDMもほぼ同様の構成のため、以下ではADMを例に挙げて説明を行う。 FIG. 1 is a diagram showing an example of the appearance of a general ADM conventionally used in an address circuit. Since the SDM with the scan driver IC mounted thereon has almost the same configuration, the ADM will be described below as an example.
 図1において、一個のアドレスドライバIC91をテープキャリア92にフリップチップボンディングしたADM90が示されている。図1において、テープキャリア92の手前側は、アドレスの電源やアドレスデータ信号や制御信号等を供給するアドレスバス回路接続部94であり、反対の奥側は、プラズマディスプレイパネルへの接続部95である。なお、テープキャリア92などの基板に備えられた内部配線93は、電気的には、IC内部と外部との電気信号を一対一で接続するだけの単なる引き出し線としての機能しか持たないのが一般的である。 FIG. 1 shows an ADM 90 in which one address driver IC 91 is flip-chip bonded to a tape carrier 92. In FIG. 1, the front side of the tape carrier 92 is an address bus circuit connecting portion 94 that supplies an address power supply, an address data signal, a control signal, and the like, and the opposite back side is a connecting portion 95 to a plasma display panel. is there. Note that the internal wiring 93 provided on the substrate such as the tape carrier 92 generally has a function as a mere lead line only for one-to-one connection between the internal and external electrical signals. Is.
 図2は、図1に示したADM90の電気的接続図である。図2において、アドレスドライバIC91は、低電圧ロジック回路60、高電圧出力回路と80、レベルシフト回路70とから構成されている。アドレスバス回路(図示せず)から複数本のアドレスデータ入力線DATAによって送られたアドレスデータ信号は、クロック信号CLKとラッチ信号LEという二つの制御信号によって動作する低電圧ロジック回路60により、アドレスドライバIC91の内部に取り込まれて、所定のビット数で必要な順序に並び替えられる。次に、レベルシフト回路70によって高電圧出力回路80を制御するのに必要な制御信号レベルに変換されたのち、高電圧のスイッチング素子を制御し、高電圧出力としてパネル側へアドレス電極駆動信号Add1~Addnを出力する。なお簡略化のため、ここでは信号名と信号線名は同じ記号を用いた。また、各信号線上の短い斜線は、その信号線が複数本あることを示している。 FIG. 2 is an electrical connection diagram of the ADM 90 shown in FIG. In FIG. 2, the address driver IC 91 includes a low voltage logic circuit 60, a high voltage output circuit 80, and a level shift circuit 70. An address data signal sent from an address bus circuit (not shown) through a plurality of address data input lines DATA is sent to an address driver by a low voltage logic circuit 60 that operates according to two control signals, a clock signal CLK and a latch signal LE. The data is taken into the IC 91 and rearranged in a necessary order with a predetermined number of bits. Next, after being converted to a control signal level necessary for controlling the high voltage output circuit 80 by the level shift circuit 70, the high voltage switching element is controlled, and the address electrode drive signal Add1 is sent to the panel side as a high voltage output. ~ Addn is output. For simplification, the same symbol is used here for the signal name and the signal line name. A short diagonal line on each signal line indicates that there are a plurality of signal lines.
 アドレスデータ信号DATAと、クロック信号CLK及びラッチ信号LEの制御信号は、低電圧ロジックレベルの信号で、アドレスドライバIC91内部の、シフトレジスタ回路61とラッチ回路62とから構成される低電圧ロジック回路60によって受信・処理される。 The control signal for the address data signal DATA, the clock signal CLK, and the latch signal LE is a low voltage logic level signal. The low voltage logic circuit 60 includes a shift register circuit 61 and a latch circuit 62 in the address driver IC 91. Received and processed by.
 処理された信号は、アドレスドライバIC91内部の高電圧出力回路80により、高電圧(グランドと+Va間)の振幅を持つ高電圧出力(アドレス電極駆動信号Add1~Addn)としてプラズマディスプレイパネルへ出力される。また、アドレスドライバIC91内部には、低電圧ロジック回路60と高電圧出力回路80間の電気信号レベルの仲介をするためのレベルシフト回路70が備えられている。 The processed signal is output to the plasma display panel as a high voltage output (address electrode drive signals Add1 to Addn) having an amplitude of a high voltage (between ground and + Va) by the high voltage output circuit 80 in the address driver IC 91. . In addition, the address driver IC 91 includes a level shift circuit 70 for mediating an electric signal level between the low voltage logic circuit 60 and the high voltage output circuit 80.
 なお、一般的なアドレスドライバIC91の低電圧ロジック回路60の電源電圧Vccは+10数V、同じく高電圧出力回路80の電源電圧+Vaは+数10〔V〕であり、両者の基準電位(LV-GND、HV-GND)は、アドレスドライバIC91内部又はテープキャリア92などの基板上にて接続されるのが一般的である。さらに、一般的な低電圧ロジック回路60の消費電流は、ほぼ一定で数~数10〔mA〕程度、同じく高電圧出力回路80の消費電流は、アドレス周期毎にパルス的に流れて瞬時ピーク値で数100〔mA〕に達し、低電圧ロジック回路61の消費電流よりもはるかに大きい。これは、ADMにおいても同様である。 The power supply voltage Vcc of the low voltage logic circuit 60 of the general address driver IC 91 is +10 several V, and the power supply voltage + Va of the high voltage output circuit 80 is +10 [V], both of which are the reference potentials (LV− (GND, HV-GND) are generally connected inside the address driver IC 91 or on a substrate such as a tape carrier 92. Furthermore, the current consumption of the general low-voltage logic circuit 60 is almost constant and about several to several tens [mA]. Similarly, the current consumption of the high-voltage output circuit 80 flows in a pulse manner every address period, and the instantaneous peak value is reached. The current reaches several hundreds [mA], which is much larger than the current consumption of the low voltage logic circuit 61. The same applies to ADM.
 図3は、プラズマディスプレイパネルに適用される一般的な駆動波形の一例を示した図である。これは、一画面を構成するために必要な基本波形である1サブフィールド分の波形である。実際の画面表示には、これらを複数個組み合わせて使用する。図3において、プラズマディスプレイパネルに設けられたアドレス電極、X電極(維持電極)、Y電極(走査電極)それぞれに印加される1サブフィールドの電圧波形が示されている。各波形はそれぞれの機能によってリセット期間Tr、アドレス期間Ta、サステイン期間Tsに分けられる。 FIG. 3 is a diagram showing an example of a general driving waveform applied to the plasma display panel. This is a waveform for one subfield, which is a basic waveform necessary for constructing one screen. A plurality of these are used in combination for actual screen display. FIG. 3 shows voltage waveforms of one subfield applied to each of the address electrode, X electrode (sustain electrode), and Y electrode (scan electrode) provided in the plasma display panel. Each waveform is divided into a reset period Tr, an address period Ta, and a sustain period Ts according to each function.
 上述のアドレスドライバIC91は、図3中のアドレス波形で示すように、アドレス期間Ta中に、制御回路からの画像データに応じて、+Vaの電圧をプラズマディスプレイパネルのアドレス電極に出力する。図3に示すように、アドレスドライバIC91の出力振幅レベルは、グランド(GND)レベルとアドレス電圧(+Vaと略記、電圧は数10〔V〕が一般的)の二値とするのが一般的である。アドレス期間Taにおいて、アドレス電極の他、Y電極に負極性のスキャン電圧(-Vy)が印加されている。よって、アドレス電極とY電極の電位差は、(Va-Vy)となり、この電位差がアドレス放電開始電圧を超えるようにアドレス電圧及びスキャン電圧を印加することにより、アドレス放電が発生する。 The address driver IC 91 described above outputs a voltage of + Va to the address electrode of the plasma display panel according to the image data from the control circuit during the address period Ta as shown by the address waveform in FIG. As shown in FIG. 3, the output amplitude level of the address driver IC 91 is generally a binary value of a ground (GND) level and an address voltage (abbreviated as + Va, and the voltage is generally several tens [V]). is there. In the address period Ta, a negative scan voltage (−Vy) is applied to the Y electrode in addition to the address electrode. Therefore, the potential difference between the address electrode and the Y electrode becomes (Va−Vy), and address discharge is generated by applying the address voltage and the scan voltage so that this potential difference exceeds the address discharge start voltage.
 かかるアドレス期間Taにおいて、アドレス放電を発生させて画素を点灯させる場合には、アドレス電極にアドレス電圧Vaを印加し、アドレス放電を発生させずに画素を点灯させない場合には、グランドレベルの電位を印加するが、点灯・非点灯が繰り返されると、アドレス電極の電位は+VaとGNDを繰り返し、電力が頻繁にGNDに捨てられることになってしまう。 In the address period Ta, when an address discharge is generated to light a pixel, an address voltage Va is applied to the address electrode. When an address discharge is not generated and a pixel is not lighted, a ground level potential is set. Although it is applied, if lighting / non-lighting is repeated, the potential of the address electrode repeats + Va and GND, and power is frequently discarded to GND.
 このような、アドレス期間Taにおける消費電力の低減を図る観点から、列電極(アドレス電極)に書き込み放電(アドレス放電)を開始する電圧よりも低く設定したデータベースパルスを列電極に印加しておき、書き込み放電を発生させる列電極には更にデータパルスを重畳して印加して書き込み放電を発生させ、アドレス電極の電位変動を少なくし、アドレス期間Taの消費電力の低減を図ったプラズマディスプレイの駆動方法が知られている(例えば、特許文献1参照)。
特開平7-295506号公報
From such a viewpoint of reducing power consumption in the address period Ta, a database pulse set lower than a voltage for starting write discharge (address discharge) is applied to the column electrode (address electrode). A plasma display driving method that further applies a data pulse to a column electrode that generates an address discharge to generate an address discharge, thereby reducing potential fluctuation of the address electrode and reducing power consumption in the address period Ta Is known (see, for example, Patent Document 1).
JP 7-295506 A
 ところで、最近では、プラズマディスプレイ装置を筆頭とするフラットパネルディスプレイの製造コスト低減の一環として、各ドライバICの多ビット化が進んでいる。多ビット化でICチップのサイズが大きくなってチップあたりのコストは上昇するが、使用するADMやSDMの数、つまり付随する基板部材等が減ることによるコスト低減がそれを上回るためである。ドライバICのビット数が増えた場合、IC自体の消費電流、特に高電圧出力回路側の消費電流もそれに比例して増加する。さらに一方では、低電圧ロジック回路においては、ADMやSDMに信号を供給する制御回路や各バス回路(共に図示せず)の高速化に合わせて、ロジック信号レベルの小振幅化が進んでいる。 By the way, recently, as part of the manufacturing cost reduction of a flat panel display headed by a plasma display device, the number of bits of each driver IC is increasing. The increase in the number of bits increases the size of the IC chip and the cost per chip increases, but the cost reduction due to the decrease in the number of ADMs and SDMs used, that is, the accompanying substrate members, exceeds that. When the number of bits of the driver IC increases, the current consumption of the IC itself, particularly the current consumption on the high voltage output circuit side, also increases proportionally. On the other hand, in the low voltage logic circuit, the amplitude of the logic signal level has been reduced as the control circuit for supplying signals to the ADM and the SDM and the speed of each bus circuit (both not shown) are increased.
 図4は、図2よりアドレスドライバIC91の主要回路部分のみを1ビット分、模式的に抜き出した図である。図4において、アドレスドライバIC91の主要部分は、図示しないアドレスバス回路からの入力信号Vinが入力される入力端子INを有する低電圧ロジック回路60a、アドレスバス電極へ高電圧出力Voutを出力する高電圧出力端子OUTを有する高電圧出力回路80a、および両者を接続するレベルシフト回路70aから構成されている。 FIG. 4 is a diagram schematically showing only one bit of the main circuit portion of the address driver IC 91 from FIG. In FIG. 4, the main part of the address driver IC 91 is a low voltage logic circuit 60a having an input terminal IN to which an input signal Vin from an address bus circuit (not shown) is input, and a high voltage that outputs a high voltage output Vout to the address bus electrode. A high voltage output circuit 80a having an output terminal OUT and a level shift circuit 70a connecting the two are constituted.
 なお回路構成の習慣上、アドレスドライバIC91の高電圧電源(ここでは+Va)と高電圧出力端子OUT間に接続された第1のスイッチング素子、即ちハイサイド側のスイッチング素子QUと、高電圧出力端子OUTと高電圧電源Vaの電源電流帰還経路(ここではグランドライン(GND))間に接続された第2のスイッチング素子、即ちローサイド側のスイッチング素子QDを用いる。ここで、第1のスイッチング素子QUはP型FET、第2のスイッチング素子QDはN型FETのプッシュプル構成するのが通例である。
また、図4に示すように、低電圧ロジック回路1の電源電流帰還経路(グランドライン)68と、高電圧出力回路3の電源電流帰還経路(グランドライン)88は、回路設計上、アドレスドライバIC91チップ内にてそれぞれの電源電流帰還経路68、88の一部を共通電源電流帰還経路98として共有しなければならない。アドレスドライバIC91のビット数増加によって、この共通電源電流帰還経路98部分の配線抵抗(共通インピーダンス)R0によって発生するノイズΔVは相対的に大きくなるが、それは小振幅化が進んでいる低電圧ロジック回路にとっては誤動作の確率が大きくなる事に他ならない。つまり、高電圧出力回路80aから電源電流帰還経路88を流れて共通帰還経路98に流れ込む電流は、低電圧ロジック回路60aの電流68よりも相対的に大きく、寄生配線抵抗R0が大きいと、配線抵抗R0で大きな電圧変動が生じ、低電圧で動作する低電圧ロジック回路60aに悪影響を及ぼす。よって、アドレスドライバIC91の安定動作のために、共通電源電流帰還経路98部分の共通インピーダンスを排除することが望まれる。
Note that, due to the custom of the circuit configuration, the first switching element connected between the high voltage power source (here, + Va) of the address driver IC 91 and the high voltage output terminal OUT, that is, the switching element QU on the high side and the high voltage output terminal. A second switching element connected between OUT and a power supply current feedback path (here, a ground line (GND)) of the high voltage power supply Va, that is, a switching element QD on the low side is used. Here, it is usual that the first switching element QU is a P-type FET and the second switching element QD is a N-type FET.
Also, as shown in FIG. 4, the power supply current feedback path (ground line) 68 of the low voltage logic circuit 1 and the power supply current feedback path (ground line) 88 of the high voltage output circuit 3 are address driver IC 91 in terms of circuit design. A part of each of the power supply current feedback paths 68 and 88 must be shared as a common power supply current feedback path 98 in the chip. As the number of bits of the address driver IC 91 increases, the noise ΔV generated by the wiring resistance (common impedance) R0 of the common power supply current feedback path 98 becomes relatively large, but this is a low voltage logic circuit whose amplitude has been reduced. For this, the probability of malfunction increases. That is, the current flowing from the high voltage output circuit 80a through the power supply current feedback path 88 and into the common feedback path 98 is relatively larger than the current 68 of the low voltage logic circuit 60a, and if the parasitic wiring resistance R0 is large, the wiring resistance A large voltage fluctuation occurs at R0, which adversely affects the low voltage logic circuit 60a operating at a low voltage. Therefore, for stable operation of the address driver IC 91, it is desirable to eliminate the common impedance of the common power supply current feedback path 98 portion.
 また、上述の特許文献1に記載の構成においても、図4のようにアドレスドライバIC91内に共通帰還経路98を設ける限り、同様の問題が発生し、アドレスドライバIC91の安定動作が図れないという問題があった。更に、この問題はSDMにおいても同様に起こり得るとともに、有機EL(Electro-Luminescence)、液晶等の他のフラットディスプレイパネルのドライバICにも同様に起こり得る問題である。 Also in the configuration described in Patent Document 1, the same problem occurs as long as the common feedback path 98 is provided in the address driver IC 91 as shown in FIG. 4, and the stable operation of the address driver IC 91 cannot be achieved. was there. Furthermore, this problem can occur in SDM as well, and can also occur in driver ICs of other flat display panels such as organic EL (Electro-Luminescence) and liquid crystal.
 そこで、本発明は、消費電力低減化を図ったドライバICを含めて、安定動作を可能とするドライバICを提供することを目的とする。 Therefore, an object of the present invention is to provide a driver IC that enables stable operation, including a driver IC designed to reduce power consumption.
 上記目的を達成するため、本発明の第1の発明に係るフラットパネルディスプレイの駆動回路は、入力データ信号に基づいて、該入力データ信号よりも高電圧の電極駆動信号を高電圧出力端子から出力してフラットパネルディスプレイの電極を駆動するフラットパネルディスプレイの駆動回路であって、
 時系列で与えられる前記入力データ信号を受信し、前記入力データ信号を処理して所定のビット数で並列出力する低電圧ロジック回路と、
 高電圧電源と前記高電圧出力端子間に接続された第1のスイッチング素子と、前記高電圧出力端子と前記高電圧電源の電源電流帰還経路間に接続された第2のスイッチング素子とを有し、前記入力データ信号よりも高い電圧レベルの制御信号が入力され、前記高電圧出力端子にディプレイの電極を駆動する前記電極駆動信号を出力する、前記所定のビット数に対応して設けられた高電圧出力回路と、
 前記低電圧ロジック回路で処理された前記所定のビット数の結果を、前記高電圧出力回路の制御信号レベルに変換して前記高電圧出力回路に供給する、前記所定のビット数に対応した組数を有するレベルシフト回路とを有し、
 前記低電圧ロジック回路の電源電流帰還経路と、前記高電圧出力回路の電源電流帰還経路とを電気的に分離したことを特徴とする。
In order to achieve the above object, a driving circuit for a flat panel display according to the first invention of the present invention outputs an electrode driving signal higher in voltage than the input data signal from a high voltage output terminal based on the input data signal. A flat panel display driving circuit for driving the electrodes of the flat panel display,
A low voltage logic circuit that receives the input data signal given in time series, processes the input data signal, and outputs in parallel with a predetermined number of bits;
A first switching element connected between a high voltage power supply and the high voltage output terminal; and a second switching element connected between the high voltage output terminal and a power supply current feedback path of the high voltage power supply. A control signal having a voltage level higher than that of the input data signal is input, and the electrode driving signal for driving the electrode of the display is output to the high voltage output terminal, corresponding to the predetermined number of bits. A high voltage output circuit;
The number of sets corresponding to the predetermined number of bits, which is obtained by converting the result of the predetermined number of bits processed by the low voltage logic circuit into a control signal level of the high voltage output circuit and supplying it to the high voltage output circuit A level shift circuit having
The power supply current feedback path of the low voltage logic circuit and the power supply current feedback path of the high voltage output circuit are electrically separated.
 これにより、高電圧出力回路の電源電流帰還経路を流れる大電流が、低電圧で動作する低電圧ロジック回路の電源電流帰還経路に流れ込まないようにすることができ、寄生配線抵抗による低電圧ロジック回路の動作への悪影響を防止し、低電圧ロジック回路の安定動作を図ることができる。 As a result, the large current flowing through the power supply current feedback path of the high voltage output circuit can be prevented from flowing into the power supply current feedback path of the low voltage logic circuit operating at a low voltage. Adversely affecting the operation of the low-voltage logic circuit can be prevented.
 第2の発明は、第1の発明に係るフラットパネルディスプレイの駆動回路において、
 前記高電圧出力回路の電源電流帰還経路の電圧電位を、前記低電圧ロジック回路の電源電流帰還経路の電圧電位よりも低くしたことを特徴とする。
A second invention is a driving circuit for a flat panel display according to the first invention.
The voltage potential of the power supply current feedback path of the high voltage output circuit is made lower than the voltage potential of the power supply current feedback path of the low voltage logic circuit.
 これにより、高電圧出力回路の電源電流帰還経路の電圧電位を負極性に設定することが可能となり、大きな電圧幅で高電圧出力回路を動作させつつ、トライバICに安定動作を行わせることが可能となる。 As a result, the voltage potential of the power supply current feedback path of the high voltage output circuit can be set to negative polarity, and the tribal IC can perform stable operation while operating the high voltage output circuit with a large voltage width. It becomes.
 第3の発明は、第2の発明に係るフラットパネルディスプレイの駆動回路において、
 前記第1のスイッチング素子はPチャネル型FETであり、前記第2のスイッチング素子はNチャネル型FETであることを特徴とする。
A third invention is a driving circuit for a flat panel display according to the second invention,
The first switching element is a P-channel FET, and the second switching element is an N-channel FET.
 これにより、動作電圧幅が大きい場合であっても、プッシュプル回路を用いて、第1のスイッチング素子は高電圧電源の電位、第2のスイッチング素子は電源電流帰還経路の電位を基準として高電圧出力回路を動作させるので、双方とも固定電位を基準として動作を行わせることができ、ドライバICの動作を安定させることができる。 Thus, even when the operating voltage width is large, the push-pull circuit is used to make the first switching element a high voltage with reference to the potential of the high voltage power supply and the second switching element to the power supply current feedback path. Since the output circuits are operated, both can be operated with a fixed potential as a reference, and the operation of the driver IC can be stabilized.
 第4の発明は、第3の発明に係るフラットパネルディスプレイの駆動回路において、
 前記レベルシフト回路は、前記第1のスイッチング素子に制御信号を供給する第1のレベルシフト回路と、前記第2のスイッチング素子に制御信号を供給する第2のレベルシフト回路とを含み、
 前記第1のレベルシフト回路が出力する制御信号レベルは、前記高電圧電源の電位と前記低電圧ロジック回路の電源電流帰還経路の電位との間で設定され、
 前記第2のレベルシフト回路が出力する制御信号レベルは、前記低電圧ロジック回路の電源電位と前記高電圧出力回路の電源電流帰還経路の電位の間で設定されることを特徴とする。
4th invention is the drive circuit of the flat panel display based on 3rd invention,
The level shift circuit includes a first level shift circuit that supplies a control signal to the first switching element, and a second level shift circuit that supplies a control signal to the second switching element,
The control signal level output from the first level shift circuit is set between the potential of the high voltage power supply and the potential of the power supply current feedback path of the low voltage logic circuit,
The control signal level output from the second level shift circuit is set between a power supply potential of the low voltage logic circuit and a power supply current feedback path of the high voltage output circuit.
 これにより、低電圧ロジック回路よりも高電圧の制御信号レベルで動作する高電圧出力回路に、十分な電圧幅に対応できるレベルシフト回路を用いて制御信号を供給することができ、高電圧出力回路を安定動作させることができる。 As a result, a control signal can be supplied to a high voltage output circuit that operates at a control signal level higher than that of a low voltage logic circuit using a level shift circuit that can handle a sufficient voltage width. Can be operated stably.
 第5の発明は、第1の発明に係るフラットパネルディスプレイの駆動回路において、
 前記高電圧出力回路の電源電流帰還経路の電位を、前記高電圧出力回路の電源電位よりも低く、かつ前記低電圧ロジック回路の電源電流帰還経路の電位よりも高くしたことを特徴とする。
A fifth invention is a driving circuit for a flat panel display according to the first invention,
The power supply current feedback path of the high voltage output circuit has a potential lower than the power supply potential of the high voltage output circuit and higher than the power supply current feedback path of the low voltage logic circuit.
 これにより、高電圧出力回路の電源電流帰還経路の電位を接地電位よりも高く設定することができ、ドライバICの電圧動作幅を小さくし、消費電力の低減化を図ることができる。 Thus, the potential of the power supply current feedback path of the high voltage output circuit can be set higher than the ground potential, the voltage operation width of the driver IC can be reduced, and the power consumption can be reduced.
 第6の発明は、第5の発明に係るフラットパネルディスプレイの駆動回路において、
 前記第1のスイッチング素子はPチャネル型FETであり、前記第2のスイッチング素子はNチャネル型FETであることを特徴とする。
A sixth invention is a drive circuit for a flat panel display according to the fifth invention,
The first switching element is a P-channel FET, and the second switching element is an N-channel FET.
 これにより、高電圧出力回路にプッシュプル回路を用い、第1のスイッチング素子の基準電位は高電圧電源の電位、第2のスイッチング素子の基準電位は電流帰還経路の電位とすることができ、双方とも固定電位を基準として動作させることができるので、高電圧出力回路の安定動作を図ることができる。 Thus, a push-pull circuit is used for the high voltage output circuit, the reference potential of the first switching element can be the potential of the high voltage power supply, and the reference potential of the second switching element can be the potential of the current feedback path. Since both can be operated with a fixed potential as a reference, stable operation of the high voltage output circuit can be achieved.
 第7の発明は、第5の発明に係るフラットパネルディスプレイの駆動回路において、
 前記高電圧出力回路の電源電流帰還経路と、前記低電圧ロジック回路の電源電流帰還経路との間に、ダイオードを挿入したことを特徴とする。
A seventh invention is a driving circuit for a flat panel display according to the fifth invention,
A diode is inserted between the power supply current feedback path of the high voltage output circuit and the power supply current feedback path of the low voltage logic circuit.
 これにより、パネル側で急激な電位の低下があった場合でも、保護ダイオードを回路設けることにより、電源電流帰還経路の電位の引き込みによる低下を防止することができる。 Thus, even when there is an abrupt decrease in potential on the panel side, a protection diode can be provided to prevent a decrease due to potential pull-in of the power supply current feedback path.
 第8の発明は、第5の発明に係るフラットパネルディスプレイの駆動回路において、
 前記レベルシフト回路は、前記第1のスイッチング素子に制御信号を供給する第1のレベルシフト回路と、前記第2のスイッチング素子に制御信号を供給する第2のレベルシフト回路とを含み、
 前記第1のレベルシフト回路が出力する制御信号レベルと、前記第2のレベルシフト回路が出力する制御信号レベルは、それぞれ、前記高電圧出力回路の電源電位と前記低電圧ロジック回路の電源電流帰還経路の電位の間で設定されることを特徴とする。
An eighth invention is a drive circuit for a flat panel display according to the fifth invention,
The level shift circuit includes a first level shift circuit that supplies a control signal to the first switching element, and a second level shift circuit that supplies a control signal to the second switching element,
The control signal level output from the first level shift circuit and the control signal level output from the second level shift circuit are respectively the power supply potential of the high voltage output circuit and the power supply current feedback of the low voltage logic circuit. It is set between the potentials of the path.
 これにより、ドライバIC内の最大の電位幅を利用して高電圧出力回路に供給する制御信号レベルを設定することができ、種々の制御信号レベルを有する高電圧出力回路に対応させることができる。 Thereby, it is possible to set the control signal level supplied to the high voltage output circuit by utilizing the maximum potential width in the driver IC, and it is possible to correspond to the high voltage output circuit having various control signal levels.
 第9の発明は、第5の発明に係るフラットパネルディスプレイの駆動回路において、
 前記第1のレベルシフト回路が出力する制御信号レベルは、前記高電圧出力回路の電源電位と前記低電圧ロジック回路の電源電流帰還経路の電位の間で設定され、
 前記第2のレベルシフト回路が出力する制御信号レベルは、前記高電圧出力回路の電源電位よりも低く、かつ前記低電圧ロジック回路用電源の電位以上の電位の間で設定されることを特徴とする。
A ninth invention is a driving circuit for a flat panel display according to the fifth invention,
The control signal level output by the first level shift circuit is set between the power supply potential of the high voltage output circuit and the power supply current feedback path of the low voltage logic circuit,
The control signal level output from the second level shift circuit is set between a potential lower than the power supply potential of the high voltage output circuit and higher than the potential of the power supply for the low voltage logic circuit. To do.
 これにより、第2のレベルシフト回路からは、第2のスイッチング素子を駆動するのに適切な制御信号レベルを有する制御信号を供給することができ、第2のスイッチング素子を適切に動作させることができる。 Thus, a control signal having a control signal level appropriate for driving the second switching element can be supplied from the second level shift circuit, and the second switching element can be operated appropriately. it can.
 第10の発明は、第1の発明に係るフラットパネルディスプレイの駆動回路において、
 前記レベルシフト回路は、前記第1のスイッチング素子に制御信号を供給する第1のレベルシフト回路と、前記第2のスイッチング素子に制御信号を供給する第2のレベルシフト回路とを含み、
 前記第1のレベルシフト回路と前記第1のスイッチング素子の間、及び/又は前記第2のレベルシフト回路と第2のスイッチング素子の間に、バッファ回路が接続されていることを特徴とする。
According to a tenth aspect of the present invention, in the flat panel display driving circuit according to the first aspect of the present invention,
The level shift circuit includes a first level shift circuit that supplies a control signal to the first switching element, and a second level shift circuit that supplies a control signal to the second switching element,
A buffer circuit is connected between the first level shift circuit and the first switching element and / or between the second level shift circuit and the second switching element.
 これにより、レベルシフト回路による制御信号レベルが不十分な場合には、不足分をバッファ回路で補うことができ、高圧出力回路を安定動作させることができる。 Thus, when the control signal level by the level shift circuit is insufficient, the shortage can be compensated by the buffer circuit, and the high voltage output circuit can be stably operated.
 第11の発明は、第10の発明に係るフラットパネルディスプレイの駆動回路において、
 前記バッファ回路の出力インピーダンスは、前記レベルシフト回路の出力インピーダンスより高くなるように設定されていることを特徴とする。
An eleventh invention is a driving circuit for a flat panel display according to the tenth invention,
The output impedance of the buffer circuit is set to be higher than the output impedance of the level shift circuit.
 これにより、高電圧出力回路からの出力波形を鈍らせることができ、そのような出力波形の特性が要求されるフラットディスプレイパネルにも対応することができる。 Thus, the output waveform from the high voltage output circuit can be blunted, and it can be applied to a flat display panel that requires such output waveform characteristics.
 第12の発明は、第1の発明に係るフラットパネルディスプレイの駆動回路において、
 前記フラットパネルディスプレイ装置はプラズマディスプレイパネルであり、
 前記フラットパネルディスプレイの駆動回路はアドレス電極駆動用のアドレスドライバICに搭載されたことを特徴とする。
A twelfth aspect of the invention is a flat panel display drive circuit according to the first aspect of the invention,
The flat panel display device is a plasma display panel;
The driving circuit of the flat panel display is mounted on an address driver IC for driving address electrodes.
 これにより、プラズマディスプレイパネルのアドレス放電を安定して行わせることができる。 Thereby, the address discharge of the plasma display panel can be performed stably.
 本発明によれば、フラットパネルディスプレイを安定して駆動することができる。 According to the present invention, the flat panel display can be driven stably.
従来からアドレス回路で使用されている一般的なADMの外観の一例を示した図である。It is the figure which showed an example of the external appearance of the common ADM conventionally used with the address circuit. 図1に示した従来から使用されているADM90の電気的接続図である。FIG. 2 is an electrical connection diagram of a conventional ADM 90 shown in FIG. プラズマディスプレイパネルに適用される一般的な駆動波形の一例を示した図である。It is the figure which showed an example of the general drive waveform applied to a plasma display panel. 従来のアドレスドライバIC91の主要回路部分のみを一ビット分模式的に抜き出した図である。FIG. 10 is a diagram schematically showing only a main circuit portion of a conventional address driver IC 91 for one bit. 本実施形態に係るドライバICを用いたプラズマディスプレイ装置の全体構成図である。1 is an overall configuration diagram of a plasma display device using a driver IC according to an embodiment. 実施例1に係るアドレスドライバIC21の回路構成の一例を示した図である。FIG. 3 is a diagram illustrating an example of a circuit configuration of an address driver IC 21 according to the first embodiment. 入力データ信号と高電圧出力端子の電圧波形の一例を示した図である。It is the figure which showed an example of the voltage waveform of an input data signal and a high voltage output terminal. 実施例2に係るアドレスドライバIC21aの回路構成図である。FIG. 6 is a circuit configuration diagram of an address driver IC 21a according to a second embodiment. 入力データ信号と高電圧出力端子の電圧波形の一例を示した図である。It is the figure which showed an example of the voltage waveform of an input data signal and a high voltage output terminal. 1サブフィールドの各電極の電圧波形の一例を示した図である。It is the figure which showed an example of the voltage waveform of each electrode of 1 subfield. 実施例3に係るアドレスドライバIC21bの回路構成図である。FIG. 10 is a circuit configuration diagram of an address driver IC 21b according to a third embodiment. 実施例3の入力信号と高電圧出力端子の出力信号の電圧波形の一例を示した図である。It is the figure which showed an example of the voltage waveform of the input signal of Example 3, and the output signal of a high voltage output terminal. 実施例4に係るアドレスドライバIC21cの回路構成図である。FIG. 10 is a circuit configuration diagram of an address driver IC 21c according to a fourth embodiment. 実施例4の入力信号と高電圧出力端子の電圧波形の例を示した図である。It is the figure which showed the example of the voltage waveform of the input signal of Example 4, and a high voltage output terminal.
符号の説明Explanation of symbols
10  プラズマディスプレイパネル
20  アドレス駆動回路
21、21a、21b、21c、91  アドレスドライバIC
30  維持駆動回路
40  走査駆動回路
41  スキャントライバIC
42  サステインドライバIC
43  リセット回路
50  駆動制御回路
51  サブフィールド変換回路
52  アドレスデータ発生回路
53  スキャンデータ発生回路
54  維持データ発生回路
LV、LVb、LVc  低電圧ロジック回路
LS、LSa、LS1、LS2、LS2a  レベルシフト回路
HV、HVa、HVc  高電圧出力回路
LVS、HVS  電源
LVF、HVF、HVFa  電源電流帰還経路
OUT  高電圧出力端子
10 Plasma display panel 20 Address drive circuit 21, 21a, 21b, 21c, 91 Address driver IC
30 sustain drive circuit 40 scan drive circuit 41 scan driver IC
42 Sustain driver IC
43 reset circuit 50 drive control circuit 51 subfield conversion circuit 52 address data generation circuit 53 scan data generation circuit 54 maintenance data generation circuit LV, LVb, LVc low voltage logic circuit LS, LSa, LS1, LS2, LS2a level shift circuit HV, HVa, HVc High voltage output circuit LVS, HVS Power supply LVF, HVF, HVFa Power supply current feedback path OUT High voltage output terminal
 以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。
 図5は、本発明を適用した実施形態に係るフラットパネルディスプレイの駆動回路を用いたプラズマディスプレイ装置の全体構成図である。図5において、プラズマディスプレイ装置は、プラズマディスプレイパネル10と、アドレス駆動回路20と、維持駆動回路30と、走査駆動回路40と、駆動制御回路50とを有する。図5においては、本実施形態に係るフラットパネルディスプレイの駆動回路を、アドレスドライバIC21として適用した例が示されている。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 5 is an overall configuration diagram of a plasma display device using a flat panel display driving circuit according to an embodiment to which the present invention is applied. In FIG. 5, the plasma display device includes a plasma display panel 10, an address drive circuit 20, a sustain drive circuit 30, a scan drive circuit 40, and a drive control circuit 50. FIG. 5 shows an example in which the drive circuit of the flat panel display according to the present embodiment is applied as the address driver IC 21.
 プラズマディスプレイパネル10は、画像を表示するための表示パネルである。プラズマディスプレイパネル10は、横方向に延在する複数の維持電極X1,X2,X3,・・・及び複数の走査電極Y1,Y2,Y3,・・・を備える。以下、維持電極X1,X2,X3,・・・の各々を又はそれらの総称を、維持電極Xiといい、走査電極Y1,Y2,Y3,・・・の各々を又はそれらの総称を、走査電極Yiという。iは添え字を意味する。また、プラズマディスプレイパネル10は、縦方向に延在する複数のアドレス電極A1,A2,A3,・・・を備える。以下、アドレス電極A1,A2,A3,・・・の各々を又はそれらの総称を、アドレス電極Ajといい、jは添え字を意味する。横方向に延在する維持電極Xi及び走査電極Yiは、縦方向には交互に配置される。維持電極Xiは、X電極Xiと呼んでもよく、走査電極Yiは、Y電極Yiと呼んでもよい。平面的に、維持電極Xi、走査電極Yi及びアドレス電極Ajが交わる位置には、放電セルCijが形成されている。この放電セルCijが画素に対応し、プラズマディスプレイパネル10は2次元画像を表示することができる。表示セルCij内の維持電極Xi及び走査電極Yiは、その間に空間を有し、容量性負荷を構成する。 The plasma display panel 10 is a display panel for displaying an image. The plasma display panel 10 includes a plurality of sustain electrodes X1, X2, X3,... And a plurality of scan electrodes Y1, Y2, Y3,. Hereinafter, each of the sustain electrodes X1, X2, X3,... Or their generic name is referred to as a sustain electrode Xi, and each of the scan electrodes Y1, Y2, Y3,. It is called Yi. i means a subscript. The plasma display panel 10 includes a plurality of address electrodes A1, A2, A3,... Extending in the vertical direction. Hereinafter, each of the address electrodes A1, A2, A3,... Or their generic name is referred to as an address electrode Aj, and j means a subscript. The sustain electrodes Xi and the scan electrodes Yi extending in the horizontal direction are alternately arranged in the vertical direction. The sustain electrode Xi may be called the X electrode Xi, and the scan electrode Yi may be called the Y electrode Yi. In plan view, discharge cells Cij are formed at positions where the sustain electrodes Xi, the scan electrodes Yi, and the address electrodes Aj intersect. The discharge cells Cij correspond to pixels, and the plasma display panel 10 can display a two-dimensional image. The sustain electrode Xi and the scan electrode Yi in the display cell Cij have a space between them to constitute a capacitive load.
 アドレス駆動回路20は、アドレス電極Ajを駆動するための回路であり、アドレス期間Taにおいて、アドレス電極Ajに所定の電圧値を有するアドレスパルスを供給し、アドレス放電を発生させる回路である。アドレス駆動回路20は、アドレスドライバIC21を複数有する。アドレスドライバIC21は、複数の出力を有するICであり、複数の出力の各々が、アドレス電極Ajに接続される。そして、更にアドレスドライバIC21がアドレス駆動回路20内に複数設けられることにより、全体で総ての横方向のアドレス電極Ajを駆動できるように構成される。 The address drive circuit 20 is a circuit for driving the address electrode Aj, and supplies an address pulse having a predetermined voltage value to the address electrode Aj in the address period Ta to generate an address discharge. The address drive circuit 20 has a plurality of address driver ICs 21. The address driver IC 21 is an IC having a plurality of outputs, and each of the plurality of outputs is connected to the address electrode Aj. Further, a plurality of address driver ICs 21 are provided in the address driving circuit 20, so that all the address electrodes Aj in the horizontal direction can be driven as a whole.
 各アドレスドライバIC21は、図1で説明したように、アドレスドライバモジュール90として構成され、図2で説明したような内部構成ブロックを有する。なお、本実施例に係るアドレスドライバIC21の具体的な内部構成は、後述する。 Each address driver IC 21 is configured as an address driver module 90 as described with reference to FIG. 1, and has an internal configuration block as described with reference to FIG. A specific internal configuration of the address driver IC 21 according to the present embodiment will be described later.
 走査駆動回路40は、走査電極Yiを駆動するための回路であり、スキャンドライバIC41と、サステインドライバIC42と、リセット回路43とを有する。
 スキャンドライバIC41は、駆動制御回路50及びサステインドライバIC42の制御に応じて、走査電極Yiに所定の電圧値を有するスキャンパルスを供給し、アドレス放電を発生させるための駆動回路を搭載したICである。なお、本実施例においては、本発明のドライバICを、アドレスドライバIC21に適用した例を挙げて説明するが、スキャンドライバIC41についても、本発明のドライバICを適用することができる。
The scan drive circuit 40 is a circuit for driving the scan electrode Yi, and includes a scan driver IC 41, a sustain driver IC 42, and a reset circuit 43.
The scan driver IC 41 is an IC equipped with a drive circuit for supplying a scan pulse having a predetermined voltage value to the scan electrode Yi and generating an address discharge in accordance with the control of the drive control circuit 50 and the sustain driver IC 42. . In this embodiment, the driver IC of the present invention is described as an example applied to the address driver IC 21. However, the driver IC of the present invention can also be applied to the scan driver IC 41.
 サステインドライバIC42は、走査電極Yiにそれぞれ同一の電圧を有する維持パルスを供給し、維持放電を発生させる駆動回路を搭載したICである。 The sustain driver IC 42 is an IC equipped with a drive circuit that supplies a sustain pulse having the same voltage to the scan electrodes Yi and generates a sustain discharge.
 リセット回路43は、駆動制御回路50の制御に応じて、走査電極Yiに所定の電圧値を有するリセットパルスを供給し、リセット放電を発生させ、放電セルCijの壁電荷を初期化して整える回路である。 The reset circuit 43 is a circuit that supplies a reset pulse having a predetermined voltage value to the scan electrode Yi according to the control of the drive control circuit 50, generates a reset discharge, and initializes and arranges the wall charge of the discharge cell Cij. is there.
 維持駆動回路30は、維持電極Xiを駆動するための回路であり、維持電極Xiにそれぞれ同一の電圧を有する維持パルスを供給し、維持放電を発生させる。各維持電極Xiは相互接続され、同一の電圧レベルを有する。 The sustain drive circuit 30 is a circuit for driving the sustain electrode Xi, and supplies a sustain pulse having the same voltage to the sustain electrode Xi to generate a sustain discharge. Each sustain electrode Xi is interconnected and has the same voltage level.
 駆動制御回路50は、アドレス駆動回路20、維持駆動回路30及び走査駆動回路40を駆動させ、制御する回路である。駆動制御回路50は、サブフィールド変換回路51と、アドレスデータ発生回路52と、スキャンデータ発生回路53と、維持データ発生回路54とを有する。 The drive control circuit 50 is a circuit that drives and controls the address drive circuit 20, the sustain drive circuit 30, and the scan drive circuit 40. The drive control circuit 50 includes a subfield conversion circuit 51, an address data generation circuit 52, a scan data generation circuit 53, and a maintenance data generation circuit 54.
 駆動制御回路50に一般的な画像信号である1フレーム又は1フィールドの入力信号Sが入力されたら、サブフィールド変換回路51は、1フレーム又は1フィールドの画像を複数のサブフィールドに分割するサブフィールド変換を行う。変換されたサブフィールドにより、アドレスデータ発生回路52及びスキャンデータ発生回路53は、アドレス駆動回路20及び走査駆動回路40のスキャン回路41を駆動させるのに必要なアドレスデータ及びスキャンデータを発生させる。維持データ発生回路55は、維持駆動回路30及び走査駆動回路40のサステイン回路42を駆動させるのに必要な維持データを発生させる。 When one frame or one field input signal S, which is a general image signal, is input to the drive control circuit 50, the subfield conversion circuit 51 subdivides one frame or one field image into a plurality of subfields. Perform conversion. Based on the converted subfield, the address data generation circuit 52 and the scan data generation circuit 53 generate address data and scan data necessary for driving the address drive circuit 20 and the scan circuit 41 of the scan drive circuit 40. The sustain data generation circuit 55 generates sustain data necessary for driving the sustain drive circuit 30 and the sustain circuit 42 of the scan drive circuit 40.
 本実施形態に係るフラットパネルディスプレイの駆動回路においては、図5に示すように、プラズマディスプレイパネル10を駆動するアドレス駆動回路20のアドレスドライバIC21に適用して搭載した例について説明するが、上述のように、走査駆動回路40のスキャンドライバIC41や、他のフラットパネルディスプレイの駆動回路を搭載したドライバICにも適用可能である。 In the driving circuit of the flat panel display according to the present embodiment, an example in which the driving circuit is applied to and mounted on the address driver IC 21 of the address driving circuit 20 that drives the plasma display panel 10 as shown in FIG. 5 will be described. As described above, the present invention can also be applied to a scan driver IC 41 of the scan drive circuit 40 and a driver IC equipped with a drive circuit of another flat panel display.
 次に、本実施形態に係るアドレスドライバIC21の、具体的な実施例について説明する。 Next, specific examples of the address driver IC 21 according to the present embodiment will be described.
 図6は、本発明を適用した実施例1に係るアドレスドライバIC21の回路構成の一例を示した図である。本実施例に係るアドレスドライバIC21は、低電圧ロジック回路LVと、レベルシフト回路LSと、高電圧出力回路HVとを備える。また、低電圧ロジック回路LVは、高電位側が電源LVS(電位は+Vcc)に接続され、低電位側が電源電流帰還経路LVF(電位はGND)に接続されている。高電圧出力回路HVは、高電位側は高電圧電源HVS(電位は+Va1)に接続され、低電位側は電源電流帰還経路HVF(電位は-Va2)に接続されている。更に、低電圧ロジック回路LVは、入力データを受信するための入力線IN1、IN2を備え、高電圧出力回路HVは、高電圧を出力するための高電圧出力端子OUTを備える。 FIG. 6 is a diagram showing an example of the circuit configuration of the address driver IC 21 according to the first embodiment to which the present invention is applied. The address driver IC 21 according to the present embodiment includes a low voltage logic circuit LV, a level shift circuit LS, and a high voltage output circuit HV. The low voltage logic circuit LV has a high potential side connected to a power supply LVS (potential is + Vcc) and a low potential side connected to a power supply current feedback path LVF (potential is GND). The high voltage output circuit HV has a high potential side connected to a high voltage power supply HVS (potential is + Va1) and a low potential side connected to a power supply current feedback path HVF (potential is −Va2). Further, the low voltage logic circuit LV includes input lines IN1 and IN2 for receiving input data, and the high voltage output circuit HV includes a high voltage output terminal OUT for outputting a high voltage.
 低圧ロジック回路LVは、時系列で与えられる入力データ信号が、入力端子INa、INbから入力され、これを受信して処理し、所定のビット数の並列信号として出力するための回路である。その際の処理は、図2において説明したように、制御信号入力線であるクロック信号入力線及びラッチ信号入力線に、制御信号であるクロック信号及びラッチ信号が入力され、この制御信号により制御されて低圧ロジック回路LV内での処理が実行されてよい。また、低圧ロジック回路LVの最終段には、バッファU1、U2が備えられ、これにより波形整形された出力を、レベルシフト回路LSに供給する。 The low-voltage logic circuit LV is a circuit for receiving input data signals given in time series from the input terminals INa and INb, receiving them, processing them, and outputting them as parallel signals having a predetermined number of bits. As described with reference to FIG. 2, the processing at that time is controlled by the clock signal and the latch signal which are the control signals are input to the clock signal input line and the latch signal input line which are the control signal input lines. Thus, processing in the low-voltage logic circuit LV may be executed. The final stage of the low-voltage logic circuit LV includes buffers U1 and U2, and supplies the waveform-shaped output to the level shift circuit LS.
 レベルシフト回路LSは、低電圧ロジック回路LVから出力された信号を、高電圧出力回路HVを動作させるのに適切な制御信号レベルに変換する回路である。レベルシフト回路LSは、低電圧ロジック回路LVの出力と高電圧出力回路HV間の制御信号レベルの変換のために、両者を接続する高電位側の第1のレベルシフト回路LS1と、低電位側の第2のレベルシフト回路LS2とを備える。 The level shift circuit LS is a circuit that converts a signal output from the low voltage logic circuit LV into a control signal level suitable for operating the high voltage output circuit HV. The level shift circuit LS includes a first potential level shift circuit LS1 on the high potential side that connects both the output of the low voltage logic circuit LV and the control signal level between the high voltage output circuit HV and a low potential side. Second level shift circuit LS2.
 高電圧出力回路HVは、アドレス電極Ajにアドレスパルスを供給するための回路である。高電圧出力回路HVは、高電圧電源HVS(+Va1)と高電圧出力端子OUTの間に接続された、すなわちハイサイド側のP型FETQ31と、高電圧出力端子OUTと高電圧出力回路HVの電源電流帰還経路HVF(-Va2)間、すなわちローサイド側のN型FETQ32を備える。 The high voltage output circuit HV is a circuit for supplying an address pulse to the address electrode Aj. The high voltage output circuit HV is connected between the high voltage power supply HVS (+ Va1) and the high voltage output terminal OUT, that is, the high side P-type FET Q31, the high voltage output terminal OUT, and the power supply for the high voltage output circuit HV. An N-type FET Q32 is provided between the current feedback path HVF (−Va2), that is, on the low side.
 本実施例に係るアドレスドライバIC21は、従来は共有されていた低電圧ロジック回路LSの電源電流帰還経路LVF(グランドレベル)と、高電圧出力回路HVの電源電流帰還経路HVF(-Va2)とを分離し、電源電流帰還経路HVF(-Va2)の電圧をグランドよりも低くしたものである。これにより、低電圧ロジック回路LVと、高電圧出力回路HVを電気的に分離して切り離すことができ、高電圧出力回路HVにおいて、電源電流帰還経路HVFに大きな電流が流れ、寄生配線抵抗により大きな電圧変動が生じたとしても、低電圧ロジック回路LVへの電圧変動による悪影響を排除することができる。なお、ここで、高電圧電源HVS(+Va1)と高電圧出力端子OUTとの間に接続された第1のスイッチング素子Q31は、Pチャネル型FET(Field Effect Transistor、電界効果トランジスタ)である。また、高電圧出力端子OUTと高電圧出力回路HVの電源電流帰還経路HVF(-Va2)間に接続された第2のスイッチング素子Q32は、Nチャネル型FETとなっている。なお、第2のレベルシフト回路LS2の電源Vccは、低電圧ロジック回路LVの電源電圧Vccと同じであるので、第2のレベルシフト回路LS2の出力レベルはVcc~-Va2となっている。 The address driver IC 21 according to this embodiment includes a power supply current feedback path LVF (ground level) of the low voltage logic circuit LS and a power supply current feedback path HVF (−Va2) of the high voltage output circuit HV, which have been shared in the past. The voltage of the power supply current feedback path HVF (−Va2) is made lower than the ground. As a result, the low voltage logic circuit LV and the high voltage output circuit HV can be electrically separated and separated. In the high voltage output circuit HV, a large current flows through the power supply current feedback path HVF, and the parasitic wiring resistance increases. Even if the voltage fluctuation occurs, it is possible to eliminate the adverse effect of the voltage fluctuation on the low voltage logic circuit LV. Here, the first switching element Q31 connected between the high-voltage power supply HVS (+ Va1) and the high-voltage output terminal OUT is a P-channel FET (Field-Effect-Transistor, field effect transistor). The second switching element Q32 connected between the high voltage output terminal OUT and the power supply current feedback path HVF (−Va2) of the high voltage output circuit HV is an N-channel FET. Since the power supply Vcc of the second level shift circuit LS2 is the same as the power supply voltage Vcc of the low voltage logic circuit LV, the output level of the second level shift circuit LS2 is Vcc to -Va2.
 なお、高電圧出力回路HVのハイサイド側の電源電圧(+Va1)は、パネル表示特性の最大点灯電圧(Vamax)より数V程度高い電圧に設定されている。またローサイド側の電源電圧(-Va2)は、パネル表示特性の最小点灯電圧(Vamin)より数V程度低い電圧に設定されている。 Note that the power supply voltage (+ Va1) on the high side of the high voltage output circuit HV is set to a voltage that is higher by several volts than the maximum lighting voltage (Vamax) of the panel display characteristics. The power supply voltage (−Va2) on the low side is set to a voltage lower by about several V than the minimum lighting voltage (Vamin) of the panel display characteristics.
 第1のレベルシフト回路LS1は、入力側FETのQ11、Q12と出力側FETのQ13、Q14とから構成されている。第1のレベルシフト回路LS1の高電圧側電源は高電圧回路HVの高電圧側電源HVSと同じ(+Va1)、低電圧側電源はグランドレベルである。 The first level shift circuit LS1 is composed of input side FETs Q11 and Q12 and output side FETs Q13 and Q14. The high voltage side power supply of the first level shift circuit LS1 is the same as the high voltage side power supply HVS of the high voltage circuit HV (+ Va1), and the low voltage side power supply is at the ground level.
 同様に、第2のレベルシフト回路LS2は、入力側FETのQ21、Q22と出力側FETのQ23、Q24とから構成されている。第2のレベルシフト回路LS2の高電圧側電源は、低電圧ロジック回路LVの電源LVSと同じ(+Vcc)、低電圧側電源は高電圧出力回路HVの低電圧側電源HVFと同じ(-Va2)である。 Similarly, the second level shift circuit LS2 includes Q21 and Q22 of the input side FET and Q23 and Q24 of the output side FET. The high voltage side power supply of the second level shift circuit LS2 is the same as the power supply LVS of the low voltage logic circuit LV (+ Vcc), and the low voltage side power supply is the same as the low voltage side power supply HVF of the high voltage output circuit HV (−Va2). It is.
 次に、実施例1に係るアドレスドライバIC21の、アドレス期間Ta中の動作について説明する。図6に示されるように、入力データ信号INa、INbを、入力線IN1、IN2に夫々入力する。低電圧ロジック回路LVは、バッファU1、U2で波形整形を行い、整形された入力データ信号を出力する。なお、ここで、入力信号INa、INbは、通常は同一の信号を使用する。実施例1においては、出力のハイインピーダンス化や電力回収時の動作を行う実際のICの構成を引用し、図では別々の独立した信号を入力できる構成としている。低電圧ロジック回路LSの出力、つまりバッファU1、U2の出力は、レベルシフト回路LSの第1のレベルシフト回路LS1、第2のレベルシフト回路LS2に各々入力される。第1のレベルシフト回路LS1と第2のレベルシフト回路LS2の出力は、二つの電源電位(+Va1)、(-Va2)をそれぞれスイッチングする高圧出力回路HVの第1のスイッチング素子Q31及び第2のスイッチング素子Q32を動作させる。 Next, the operation of the address driver IC 21 according to the first embodiment during the address period Ta will be described. As shown in FIG. 6, input data signals INa and INb are input to input lines IN1 and IN2, respectively. The low voltage logic circuit LV performs waveform shaping in the buffers U1 and U2, and outputs the shaped input data signal. Here, the input signals INa and INb are usually the same signal. In the first embodiment, a configuration of an actual IC that performs high impedance output or operation during power recovery is cited, and in the figure, a configuration in which separate independent signals can be input. The outputs of the low voltage logic circuit LS, that is, the outputs of the buffers U1 and U2, are input to the first level shift circuit LS1 and the second level shift circuit LS2 of the level shift circuit LS, respectively. The outputs of the first level shift circuit LS1 and the second level shift circuit LS2 are the first switching element Q31 of the high-voltage output circuit HV that switches the two power supply potentials (+ Va1) and (−Va2) and the second level shift circuit LS2, respectively. The switching element Q32 is operated.
 図7は、入力データ信号INa、INbと、高電圧出力回路HVの高電圧出力端子OUTの電圧波形を示した図である。図7に示すように、入力データ信号INa、INbには、同じパルス電圧信号が入力され、双方とも、0~Vcc〔V〕の2値を取る方形波パルスが入力されている。一方、高電圧出力端子OUTは、電圧は(-Va2)~(+Va1)〔V〕の2値を取る方形波パルスが、入力データ信号INa、INbに同期して出力されている。図7において、出力電圧が(+Va1)から(-Va2)に変化するときには、高電圧出力回路HVの電源電流帰還経路HVFには大電流が流れ、配線抵抗による電圧降下も大きくなるが、図6で説明したように、高電圧出力回路HVの電源電流帰還経路HVFと低電圧ロジック回路LVの電源電流帰還経路LVFとは電気的に分離されているので、高電圧出力回路HV側での電圧変動の、低電圧ロジック回路LV側への影響を防ぐことができる。 FIG. 7 is a diagram showing voltage waveforms of the input data signals INa and INb and the high voltage output terminal OUT of the high voltage output circuit HV. As shown in FIG. 7, the same pulse voltage signal is input to the input data signals INa and INb, and a square wave pulse having a binary value of 0 to Vcc [V] is input to both. On the other hand, the high voltage output terminal OUT outputs a square wave pulse whose voltage is binary between (−Va2) to (+ Va1) [V] in synchronization with the input data signals INa and INb. In FIG. 7, when the output voltage changes from (+ Va1) to (−Va2), a large current flows through the power supply current feedback path HVF of the high voltage output circuit HV, and the voltage drop due to the wiring resistance also increases. As described above, the power supply current feedback path HVF of the high voltage output circuit HV and the power supply current feedback path LVF of the low voltage logic circuit LV are electrically separated, so that the voltage fluctuation on the high voltage output circuit HV side is Can be prevented from affecting the low voltage logic circuit LV.
 なお、図6に戻り、図7のような電圧パルスINa、INbを入力線IN1、IN2に供給したときの動作を説明すると、INa、INbがハイレベルのときには、入力側FETQ12、Q21がオンとなり、高電圧出力回路HVの第1のスイッチング素子Q31にローレベルの制御信号が供給されてオンになるとともに、出力側FETQ24がオンとなるが出力側FETQ22はオフであるので、第2のスイッチング素子Q32はオフのままである。よって、高電圧出力端子OUTには、Va1が出力され、図7の通りとなっている。 Returning to FIG. 6, the operation when the voltage pulses INa and INb as shown in FIG. 7 are supplied to the input lines IN1 and IN2 will be described. When INa and INb are at the high level, the input side FETs Q12 and Q21 are turned on. Since the low-level control signal is supplied to the first switching element Q31 of the high voltage output circuit HV and turned on, and the output side FET Q24 is turned on but the output side FET Q22 is turned off, the second switching element Q32 remains off. Therefore, Va1 is output to the high voltage output terminal OUT, as shown in FIG.
 同様に、入力データ信号INa、INbがローレベルであったときには、第1のレベルシフト回路LS1においては、入力側FETQ11及び出力側FETQ14はオンとなるが、入力側FETQ12はオフのままであるので、第1のスイッチング素子Q31はオフとなる。一方、第2のレベルシフト回路LS2においては、入力側FETQ22及び出力側Q23がオンになるとともに、高電圧出力回路HVの第2のスイッチング素子Q32に供給される制御信号がハイレベルとなり、第2のスイッチング素子Q32がオンとなるので、高電圧出力端子OUTには、(-Va2)が出力され、図7の電圧波形と一致する。 Similarly, when the input data signals INa and INb are at the low level, in the first level shift circuit LS1, the input side FET Q11 and the output side FET Q14 are turned on, but the input side FET Q12 remains off. The first switching element Q31 is turned off. On the other hand, in the second level shift circuit LS2, the input side FET Q22 and the output side Q23 are turned on, and the control signal supplied to the second switching element Q32 of the high voltage output circuit HV becomes the high level. Since the switching element Q32 is turned on, (−Va2) is output to the high voltage output terminal OUT, which matches the voltage waveform of FIG.
 このように、実施例1に係るアドレスドライバIC21においては、低電圧ロジック回路LVの電源電流帰還経路LVF(図中のグランド)と高電圧出力回路HVの電源電流帰還経路HVF(図中の-Va2)とを分離することで、従来技術の図4で示した両者の共通帰還経路98が無くすことができる。これにより、アドレスドライバIC21のビット数が増えて高電圧出力回路HVの電源帰還電流が増加しても、低電圧ロジック回路LV側の電源電流帰還経路LVFへの影響が無く、低電圧ロジック回路LVを安定して動作させることができる。また同時に、高電圧出力回路HVの出力電圧振幅を+Va1と-Va2の電位差を、従来のアドレスパルスよりも小さく設定することも可能であり、この場合には、アドレスドライバICひいてはプラズマディスプレイ製品としての消費電力を低減することもできる。 As described above, in the address driver IC 21 according to the first embodiment, the power supply current feedback path LVF (ground in the drawing) of the low voltage logic circuit LV and the power supply current feedback path HVF (−Va2 in the drawing) of the high voltage output circuit HV. ), The common feedback path 98 of both shown in FIG. 4 of the prior art can be eliminated. Thereby, even if the number of bits of the address driver IC21 increases and the power supply feedback current of the high voltage output circuit HV increases, the power supply current feedback path LVF on the low voltage logic circuit LV side is not affected, and the low voltage logic circuit LV Can be operated stably. At the same time, it is possible to set the output voltage amplitude of the high voltage output circuit HV so that the potential difference between + Va1 and -Va2 is smaller than that of the conventional address pulse. In this case, as the address driver IC and thus the plasma display product, Power consumption can also be reduced.
 図8は、本発明を適用した実施例2に係るアドレスドライバIC21aの回路構成図である。実施例2に係るアドレスドライバIC21aは、低電圧ロジック回路LSと、レベルシフト回路LSaと、高電圧出力回路HVaを備える点では、実施例1に係るアドレスドライバIC21と同様であるが、レベルシフト回路LSaと高電圧出力回路HVaの構成が、実施例1に係るアドレスドライバIC21と異なっている。なお、低電圧ロジック回路LSの構成は、実施例1と同様であるので、同一の参照符号を付し、その説明を省略する。また、他の構成要素についても、実施例1と同様の構成要素については、同一の参照符号を付し、その説明を省略又は簡略化する。 FIG. 8 is a circuit diagram of the address driver IC 21a according to the second embodiment to which the present invention is applied. The address driver IC 21a according to the second embodiment is the same as the address driver IC 21 according to the first embodiment in that it includes a low voltage logic circuit LS, a level shift circuit LSa, and a high voltage output circuit HVa. The configurations of the LSa and the high voltage output circuit HVa are different from those of the address driver IC 21 according to the first embodiment. Since the configuration of the low voltage logic circuit LS is the same as that of the first embodiment, the same reference numerals are given and the description thereof is omitted. Also, with respect to the other components, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 本実施例に係るアドレスドライバIC21aは、従来は共有されていた低電圧ロジック回路LVの電源電流帰還経路LVF(グランドレベル)と、高電圧出力回路HVの電源電流帰還経路HVFa(+Va3)を分離し、その電圧をグランドよりも高くしたものである。更に、高電圧電源HVSと高電圧出力端子OUT間に接続された第1のスイッチング素子Q31はPチャネル型FETで、高電圧出力端子OUTと高電圧電源HVSの電源電流帰還経路HVFa間に接続された第2のスイッチング素子Q32はNチャネル型FETとなっている。なお、ここで使用されるFETQ31、Q32の定格はVgs=±Vddである。また、第1のレベルシフト回路LS1及び第2のレベルシフト回路LS2aの電源は、ともに高電位側は高電圧電源HVS(+Va1)、低電位側の電源電流帰還経路はグランド(GND)なので、その出力レベルは+Va1~GNDとなっている。また、高電圧出力回路HVの電源電流帰還経路HVFaとグランドの間には保護用ダイオードDが挿入されている。 The address driver IC 21a according to the present embodiment separates the power supply current feedback path LVF (ground level) of the low voltage logic circuit LV that has been shared in the past from the power supply current feedback path HVFa (+ Va3) of the high voltage output circuit HV. The voltage is higher than the ground. Further, the first switching element Q31 connected between the high voltage power supply HVS and the high voltage output terminal OUT is a P-channel FET, and is connected between the high voltage output terminal OUT and the power supply current feedback path HVFa of the high voltage power supply HVS. The second switching element Q32 is an N-channel FET. The rating of the FETs Q31 and Q32 used here is Vgs = ± Vdd. The power sources of the first level shift circuit LS1 and the second level shift circuit LS2a are both the high voltage power supply HVS (+ Va1) on the high potential side and the power supply current feedback path on the low potential side is ground (GND). The output level is + Va1 to GND. A protective diode D is inserted between the power supply current feedback path HVFa of the high voltage output circuit HV and the ground.
 低電圧ロジック回路LVの一部としてバッファ回路U1、U2が示されている点は、実施例1と同様である。 The point that the buffer circuits U1 and U2 are shown as a part of the low voltage logic circuit LV is the same as that of the first embodiment.
 高電圧出力回路HVaは、高電圧電源HVS(+Va1)と高電圧出力端子OUTの間に接続された、ハイサイド側の第1のスイッチング素子Q31と、高電圧出力端子OUTと電源電流帰還経路HVFaとの間に接続された、ローサイド側の第2のスイッチング素子Q32とを有する。第1のスイッチング素子Q31は、Pチャネル型FETである。第2のスイッチング素子Q32は、高電圧出力端子OUTと高電圧出力回路HVaの電源電圧(+Va1)よりも低く、かつ低電圧ロジック回路LVの電源電流帰還経路LVFの電圧(GND)よりも高くした高電圧出力回路HVの電源電流帰還経路HVFa(+Va3)間に備えられた、ローサイド側のN型FETである。また、高電圧出力回路HVaは、グランドと電源電流帰還経路HVFa(+Va3)間に接続されたダイオードDを有し、ダイオードDのアノードはグランドGNDに接続され、ダイオードDのカソードは電源電流帰還経路HVFa(+Va3)に接続されている。 The high voltage output circuit HVa includes the first switching element Q31 on the high side connected between the high voltage power supply HVS (+ Va1) and the high voltage output terminal OUT, the high voltage output terminal OUT, and the power supply current feedback path HVFa. And a second switching element Q32 on the low side connected between the two. The first switching element Q31 is a P-channel FET. The second switching element Q32 is lower than the power supply voltage (+ Va1) of the high voltage output terminal OUT and the high voltage output circuit HVa and higher than the voltage (GND) of the power supply current feedback path LVF of the low voltage logic circuit LV. This is a low-side N-type FET provided between the power supply current feedback path HVFa (+ Va3) of the high voltage output circuit HV. The high voltage output circuit HVa has a diode D connected between the ground and the power supply current feedback path HVFa (+ Va3), the anode of the diode D is connected to the ground GND, and the cathode of the diode D is the power supply current feedback path. It is connected to HVFa (+ Va3).
 また、低電圧ロジック回路LVの出力と高電圧出力回路HVa間の制御信号レベルの変換のために、両者を接続する第1のレベルシフト回路LS1、第2のレベルシフト回路LS2aを含むレベルシフト回路LSaから構成されている。 Further, in order to convert the control signal level between the output of the low voltage logic circuit LV and the high voltage output circuit HVa, a level shift circuit including a first level shift circuit LS1 and a second level shift circuit LS2a that connect both of them. It consists of LSa.
 高電圧出力回路HVのハイサイド側の電源電圧(+Va1)は、パネル表示特性の最大点灯電圧(Vamax)より数V程度高い電圧に設定されている。またローサイド側の電源電圧(+Va3)は、パネル表示特性の最小点灯電圧(Vmamin)より数V程度低い電圧に設定されている。 The power supply voltage (+ Va1) on the high side of the high voltage output circuit HV is set to a voltage several V higher than the maximum lighting voltage (Vamax) of the panel display characteristics. In addition, the low-side power supply voltage (+ Va3) is set to a voltage that is lower than the minimum lighting voltage (Vmamin) of the panel display characteristics by about several volts.
 レベルシフト回路LS1は、入力側FETのQ11、Q12と出力側FETのQ13、Q14とから構成されている。この回路の高電圧側電源は高電圧回路の高電圧側電源と同じ+Va1、低電圧側電源はグランドレベルである。同様に、レベルシフト回路LS2は入力側FETのQ21、Q22と出力側FETのQ23、Q24とから構成されている。この回路の高電圧側電源は高電圧出力回路HVaの電源HVSと同じ+Va1、低電圧側電源は低電圧ロジック回路LVの電源電流帰還経路LVFと同じグランドである。 The level shift circuit LS1 is composed of input side FETs Q11 and Q12 and output side FETs Q13 and Q14. The high voltage side power supply of this circuit is the same as + Va1 as the high voltage side power supply of the high voltage circuit, and the low voltage side power supply is at the ground level. Similarly, the level shift circuit LS2 includes Q21 and Q22 of input side FETs and Q23 and Q24 of output side FETs. The high voltage side power supply of this circuit is + Va1 which is the same as the power supply HVS of the high voltage output circuit HVa, and the low voltage side power supply is the same ground as the power supply current feedback path LVF of the low voltage logic circuit LV.
 次に、実施例2に係るアドレスドライバIC21aのアドレス期間Ta中の動作について説明する。図8のように、入力信号INa、INbが入力線IN1、IN2に入力され、低電圧ロジック回路LVは、バッファU1、U2で入力信号の波形を整形して出力する。なお、実施例1と同様に、INa、INbは通常は同一の信号を使用する。ここでは、出力のハイインピーダンス化や電力回収時の動作を行う実際のICの構成を引用し、図では別々の独立した信号を入力できる構成とした。それぞれの出力は、第1のレベルシフト回路LS1と第2のレベルシフト回路LS2に入力される。第1のレベルシフト回路LS1と第2のレベルシフト回路LS2の出力は、2つの電源電位+Va1、+Va3それぞれをスイッチングするFETのQ31、Q32を動作させて、2つの電源電位を入力信号に対応して出力する。 Next, the operation of the address driver IC 21a according to the second embodiment during the address period Ta will be described. As shown in FIG. 8, the input signals INa and INb are input to the input lines IN1 and IN2, and the low voltage logic circuit LV shapes and outputs the waveform of the input signal with the buffers U1 and U2. As in the first embodiment, INa and INb normally use the same signal. Here, the configuration of an actual IC that performs an operation at the time of output high impedance or power recovery is cited, and in the figure, a configuration in which separate independent signals can be input. The respective outputs are input to the first level shift circuit LS1 and the second level shift circuit LS2. The outputs of the first level shift circuit LS1 and the second level shift circuit LS2 operate the FETs Q31 and Q32 that switch the two power supply potentials + Va1 and + Va3, respectively, and the two power supply potentials correspond to the input signals. Output.
 図9は、入力データ信号INa、INb及び高電圧出力端子OUTから出力される出力信号の電圧波形の一例を示した図である。図9において、ともに電圧振幅が0~Vcc〔V〕の同一の入力信号INa、INbが、同一のタイミングで入力され、入力信号INa、INbの電圧変化に同期した出力信号が、電圧振幅が(+Va3)~(+Va1)〔V〕に変換されて出力されている。図9においては、電圧の振幅が、最低電位も最高電位もともに正極性であり、電圧幅が小さい波形となっている。このようなアドレスパルスにおいて、最高電位の(+Va1)ではアドレス放電が発生し、最低電位の(+Va3)では、アドレス放電が発生しないように、走査電極との電位差を調整すると、アドレス放電における点灯と非点灯の電位変動が減少し、消費電力の低減化を図ることができる。 FIG. 9 is a diagram showing an example of voltage waveforms of the output signals output from the input data signals INa and INb and the high voltage output terminal OUT. In FIG. 9, the same input signals INa and INb having a voltage amplitude of 0 to Vcc [V] are input at the same timing, and an output signal synchronized with the voltage change of the input signals INa and INb has a voltage amplitude of ( + Va3) to (+ Va1) [V] are output. In FIG. 9, the amplitude of the voltage is a waveform in which both the lowest potential and the highest potential are positive and the voltage width is small. In such an address pulse, if the potential difference from the scan electrode is adjusted so that an address discharge occurs at the highest potential (+ Va1) and no address discharge occurs at the lowest potential (+ Va3), Non-lighting potential fluctuations are reduced, and power consumption can be reduced.
 図10は、1サブフィールドのアドレス電極Aj、維持電極Xi及び走査電極Yiの電圧波形の一例を示した図である。図10において、リセット期間Tr、アドレス期間Ta及びサステイン期間Tsの各電極Aj、Xi、Yiの電圧波形が示されているが、リセット期間Tr及びサステイン期間Tsは、図3において示した電圧波形と同様であるので、その説明を省略する。 FIG. 10 is a diagram showing an example of voltage waveforms of the address electrode Aj, the sustain electrode Xi, and the scan electrode Yi in one subfield. In FIG. 10, the voltage waveforms of the electrodes Aj, Xi, and Yi in the reset period Tr, the address period Ta, and the sustain period Ts are shown. The reset period Tr and the sustain period Ts are the same as the voltage waveforms shown in FIG. Since it is the same, the description is abbreviate | omitted.
 一方、アドレス期間Taに着目すると、アドレスドライバIC21aは、アドレス期間Ta中に制御回路からの画像データに応じてアドレス電圧をプラズマディスプレイパネルのアドレス電極に出力する。その際、従来技術では、図3で示したように、アドレスドライバICの出力振幅レベルは、グランド(GND)レベルとアドレス電圧(+Vaと略記、電圧は数十Vが一般的)の二値とするのが一般的である。 On the other hand, paying attention to the address period Ta, the address driver IC 21a outputs an address voltage to the address electrodes of the plasma display panel according to the image data from the control circuit during the address period Ta. At that time, in the prior art, as shown in FIG. 3, the output amplitude level of the address driver IC is a binary level of a ground (GND) level and an address voltage (abbreviated as + Va, and the voltage is generally several tens of volts). It is common to do.
 しかし実際には、高電圧側はパネル表示特性の最大点灯電圧(Vamax)より高ければ十分であり、一般的なアドレス電圧Vaは、これより数V程度高く設定されている。また、低電圧側は、パネル表示特性の最小点灯電圧(Vamin、Vamaxより十V程度低いのが一般的)以下であればよく、現在広く行われているような高電圧で大振幅にする必要は無い。 However, in practice, it is sufficient that the high voltage side is higher than the maximum lighting voltage (Vamax) of the panel display characteristics, and the general address voltage Va is set to be several V higher than this. Further, the low voltage side need only be equal to or lower than the minimum lighting voltage (generally about 10 V lower than Vamin and Vamax) of the panel display characteristics, and it is necessary to increase the amplitude with a high voltage that is widely used at present. There is no.
 一般的なアドレスドライバICの出力振幅が大きくなっているのは、単にIC側の習慣によるものである。つまり、アドレスドライバICの出力は、従来のような数十Vの振幅は不要で、実際には図10に示すように、上限がVamax+α、下限はVamin-α(αは数V)程度の、たかだか20〔V〕程度あれば十分である。このような低振幅であれば、パネルとの充放電電流も小さくて済み、ドライバICひいてはプラズマディスプレイ製品としての消費電力を低減することができる。 The increase in the output amplitude of a general address driver IC is simply due to the custom on the IC side. That is, the output of the address driver IC does not require an amplitude of several tens of volts as in the prior art. In practice, as shown in FIG. 10, the upper limit is Vamax + α, and the lower limit is about Vamin−α (α is several V). At most about 20 [V] is sufficient. With such a low amplitude, the charging / discharging current with the panel can be reduced, and the power consumption of the driver IC and thus the plasma display product can be reduced.
 実施例2に係るアドレスドライバIC21aによれば、図10に示すように、アドレス電極Ajに印加するアドレスパルスの最大値(+Va1)を(Vamax+α)とし、アドレスパルスの最小値(+Va3)を(Vamin-α)とすれば、低消費電力を図りつつ、低電圧ロジック回路LSの電源電流帰還経路LVFと高電圧出力回路HVaの電源電流帰還経路HVFaとの分離により、高電圧出力回路HVaの電源電流帰還経路HVFaに流れ込む電流による電圧変動の影響を低電圧ロジック回路LSに与えない回路とすることができる。また、(Vamax+α)と(Vamin-α)の電位差は小さいので、電源電流帰還経路HVFaに流れ込む電流値自体を小さくすることができ、更に低電圧ロジック回路LVに電位変動を与える要素を小さくすることができる。 According to the address driver IC 21a according to the second embodiment, as shown in FIG. 10, the maximum value (+ Va1) of the address pulse applied to the address electrode Aj is (Vamax + α), and the minimum value (+ Va3) of the address pulse is (Vamin). -Α), the power supply current of the high voltage output circuit HVa is separated by separating the power supply current feedback path LVF of the low voltage logic circuit LS and the power supply current feedback path HVFa of the high voltage output circuit HVa while achieving low power consumption. A circuit that does not affect the low-voltage logic circuit LS due to the voltage fluctuation caused by the current flowing into the feedback path HVFa can be obtained. Further, since the potential difference between (Vamax + α) and (Vamin−α) is small, the current value itself flowing into the power supply current feedback path HVFa can be reduced, and further, the factors that cause potential fluctuations in the low voltage logic circuit LV can be reduced. Can do.
 なお、図10における説明は、スキャンドライバIC41や、他のフラットパネルディスプレイのドライバICにも適用することができる。 Note that the description in FIG. 10 can be applied to the scan driver IC 41 and driver ICs of other flat panel displays.
 図8に戻る。高電圧出力回路HVaのダイオードDは、アドレス電極に接続された出力端子OUTが、サステイン電極Xiや隣接したアドレス電極Aj間との充放電、特に図10のリセット期間Tr中の電極間容量結合によって生じる充放電によって負電位に引き込まれることを防止する保護回路である。ダイオードDは、本実施例を実現するにあたっては必須の構成要素である。 Return to FIG. In the diode D of the high voltage output circuit HVa, the output terminal OUT connected to the address electrode is charged / discharged between the sustain electrode Xi and the adjacent address electrode Aj, particularly by interelectrode capacitive coupling during the reset period Tr in FIG. It is a protection circuit that prevents a negative potential from being drawn due to the generated charge / discharge. The diode D is an essential component for realizing the present embodiment.
 このように、実施例2に係るアドレスドライバIC21aによれば、低電圧ロジック回路LVの電源電流帰還経路LVF(図中のグランド)と高電圧出力回路HVaの電源電流帰還経路HVFa(図中の+Va3)を分離することで、図4で示した両者の共通帰還経路98が無くなり、アドレスドライバICのビット数が増えて高電圧出力回路の電源帰還電流が増加しても低電圧ロジック回路側の電源電流帰還経路への影響が無く、低電圧ロジック回路を安定して動作させることができる。また同時に、高電圧出力回路の出力電圧振幅を(+Va1)~(+Va3)と従来よりも小さくすることができるので、アドレスドライバICひいてはプラズマディスプレイ製品としての消費電力を低減することもできる。 Thus, according to the address driver IC 21a according to the second embodiment, the power supply current feedback path LVF (ground in the figure) of the low voltage logic circuit LV and the power supply current feedback path HVFa (+ Va3 in the figure) of the high voltage output circuit HVa. 4), the common feedback path 98 shown in FIG. 4 is eliminated, and even if the number of bits of the address driver IC increases and the power supply feedback current of the high voltage output circuit increases, the power supply on the low voltage logic circuit side The low voltage logic circuit can be stably operated without affecting the current feedback path. At the same time, since the output voltage amplitude of the high voltage output circuit can be reduced to (+ Va1) to (+ Va3) as compared with the conventional case, the power consumption of the address driver IC and thus the plasma display product can be reduced.
 図11は、本発明を適用した実施例3に係るアドレスドライバIC21bの回路構成を示した図である。実施例3に係るアドレスドライバIC21bは、実施例2で示したアドレスドライバIC21aの回路に、バッファ回路BF1、BF2を追加したものである。また、それに伴い、低電圧ロジック回路LVbに、バッファ回路BF1、BF2用の入力線INB1、INB2を各々追加し、全体で4本とした。なお、実施例2の図8で用いたのと同様な機能と動作については、説明を省略する。また、図8の実施例2に係るアドレスドライバIC21aと同様の構成要素については、同一の参照符号を付し、その説明を省略する。 FIG. 11 is a diagram showing a circuit configuration of the address driver IC 21b according to the third embodiment to which the present invention is applied. The address driver IC 21b according to the third embodiment is obtained by adding buffer circuits BF1 and BF2 to the circuit of the address driver IC 21a illustrated in the second embodiment. Accordingly, the input lines INB1 and INB2 for the buffer circuits BF1 and BF2 are added to the low voltage logic circuit LVb, respectively, so that the total number is four. The description of functions and operations similar to those used in FIG. Also, the same components as those of the address driver IC 21a according to the second embodiment illustrated in FIG. 8 are denoted by the same reference numerals, and the description thereof is omitted.
 プラズマディスプレイパネルの大型化に伴って、アドレスドライバIC21bの駆動能力、即ち高電圧出力回路HVaのFETのQ31、Q32の駆動電流も大きくなる。この場合、従来のレベルシフト回路だけではQ31、Q32のゲートドライブ能力が不足するため、実施例3に係るアドレスドライバIC21bにおいては、第1のレベルシフト回路LS1の後段に、Pチャネル型FETQ61及びNチャネル型FETQ62からなるバッファ回路BF1を追加した。同様に、レベルシフト回路LS2の後段に、Pチャネル型FETQ71とNチャネル型FETQ72からなるバッファ回路BF2を追加した。 As the plasma display panel becomes larger, the driving capability of the address driver IC 21b, that is, the driving currents of the FETs Q31 and Q32 of the high voltage output circuit HVa also increases. In this case, since the gate drive capability of Q31 and Q32 is insufficient only with the conventional level shift circuit, in the address driver IC 21b according to the third embodiment, the P-channel type FETs Q61 and N are arranged in the subsequent stage of the first level shift circuit LS1. A buffer circuit BF1 including a channel type FET Q62 is added. Similarly, a buffer circuit BF2 including a P-channel FET Q71 and an N-channel FET Q72 is added to the subsequent stage of the level shift circuit LS2.
 アドレス期間Ta中において、図11のように、入力信号INa-1は、低電圧ロジック回路LVbのバッファU1経由で第1のレベルシフト回路LS1に入力され、入力信号INa-2は、入力線INB1からバッファ回路BF1に入力される。一方、入力信号INb-1は、低電圧ロジック回路LVbのバッファU2経由で第2のレベルシフト回路LS2aに入力され、入力信号INb-2は、入力線INB2からバッファ回路BF2に入力される。第1のレベルシフト回路LS1の出力はバッファ回路BF1に入力され、第2のレベルシフト回路LS2aの出力はバッファ回路BF2に入力される。それらバッファ回路BF1、BF2の出力は、二つの電源電位+Va1、+Va3それぞれをスイッチングするFETの第1のスイッチング素子Q31及び第2のスイッチング素子Q32を動作させる。 During the address period Ta, as shown in FIG. 11, the input signal INa-1 is input to the first level shift circuit LS1 via the buffer U1 of the low voltage logic circuit LVb, and the input signal INa-2 is input to the input line INB1. To the buffer circuit BF1. On the other hand, the input signal INb-1 is input to the second level shift circuit LS2a via the buffer U2 of the low voltage logic circuit LVb, and the input signal INb-2 is input to the buffer circuit BF2 from the input line INB2. The output of the first level shift circuit LS1 is input to the buffer circuit BF1, and the output of the second level shift circuit LS2a is input to the buffer circuit BF2. The outputs of the buffer circuits BF1 and BF2 operate the first switching element Q31 and the second switching element Q32 of FETs that switch the two power supply potentials + Va1 and + Va3, respectively.
 図12は、実施例3に係るアドレスドライバIC21bの入力信号INa-1、INa-2、INb-1、INb-2と高電圧出力端子OUTの出力信号の電圧波形の一例を示した図である。図12において、入力信号INa-1、INb-1は同一の電圧波形の信号が入力され、入力信号INa-2、INb-2は同一の電圧波形の信号が入力されている。そして、出力波形は、電圧範囲0~Vcc〔V〕の入力信号INa-1、INb-1に同期して、電圧範囲(+Va3)~(+Va1)〔V〕の範囲で電圧波形が出力されている。 FIG. 12 is a diagram illustrating an example of voltage waveforms of the input signals INa-1, INa-2, INb-1, INb-2 of the address driver IC 21b according to the third embodiment and the output signal of the high voltage output terminal OUT. . In FIG. 12, signals having the same voltage waveform are input to input signals INa-1 and INb-1, and signals having the same voltage waveform are input to input signals INa-2 and INb-2. The output waveform is output in the voltage range (+ Va3) to (+ Va1) [V] in synchronization with the input signals INa-1 and INb-1 in the voltage range 0 to Vcc [V]. Yes.
 実施例3においても、実施例2と同様に、入力信号はひとつの信号だけでよいが、出力のハイインピーダンス化や電力回収時の動作を行う実際のICの構成を引用し、異なった四つの信号を入力できる構成で示した。本実施例の場合、INa-1はINb-1と同相、INa-2とINb-2は同相で、それぞれの組はお互いに逆相の信号となっている。
このようにすることで、第二の実施例で得られた低電圧ロジック回路の安定動作とアドレスドライバICの消費電力低減だけでなく、大型化するプラズマディスプレイパネルの要求に応じた高い高電圧駆動能力も得ることができる。
In the third embodiment, as in the second embodiment, only one input signal is required. However, the configuration of an actual IC that performs an operation at the time of output high impedance and power recovery is cited. The configuration is shown in which signals can be input. In the present embodiment, INa-1 has the same phase as INb-1, INa-2 and INb-2 have the same phase, and the respective sets are signals of opposite phases.
In this way, not only the stable operation of the low-voltage logic circuit obtained in the second embodiment and the reduction in power consumption of the address driver IC, but also a high-voltage drive that meets the demands of larger plasma display panels Ability can also be gained.
 また、各バッファ回路BF1、BF2の電流能力を制限すれば、その出力波形に鈍りをもたせ、高電圧出力回路のFETのQ31、Q32の出力自体も鈍らせることで負荷依存性も小さくすることができる。このように、出力波形に鈍りを持たせたい場合には、バッファ回路BF1、BF2の出力インピーダンスが、レベルシフト回路LSaの出力インピーダンスよりも大きくなるように設定することにより、各バッファ回路BF1、BF2の電流能力を制限し、鈍りを有する出力波形の特性を得ることができる。 Moreover, if the current capability of each buffer circuit BF1 and BF2 is limited, the output waveform is dulled, and the output of the FETs Q31 and Q32 of the high voltage output circuit itself is dulled, thereby reducing the load dependency. it can. Thus, when it is desired to make the output waveform dull, each buffer circuit BF1, BF2 is set by setting the output impedance of the buffer circuits BF1, BF2 to be larger than the output impedance of the level shift circuit LSa. The output current characteristic having a dullness can be obtained.
 図13は、本発明を適用した実施例4に係るアドレスドライバIC21cの回路構成を示した図である。実施例4に係るアドレスドライバIC21cは、実施例3で示した回路の高電圧出力回路HVaのPチャネル型FETの第1のスイッチング素子Q31からNチャネル型FETの第1のスイッチング素子Q33に変更してトーテムポール構成にしたものである。実施例4に係るアドレスドライバIC21cは、実施例3に係るアドレスドライバIC21bから第1のスイッチング素子Q33のFETの極性変更に伴い、低電圧ロジック回路LVcの接続に一部変更があるが基本的な動作に変化は無いため、それらの詳しい説明は省略する。 FIG. 13 is a diagram showing a circuit configuration of the address driver IC 21c according to the fourth embodiment to which the present invention is applied. The address driver IC 21c according to the fourth embodiment is changed from the first switching element Q31 of the P-channel FET of the high voltage output circuit HVa of the circuit shown in the third embodiment to the first switching element Q33 of the N-channel FET. Totem pole configuration. The address driver IC 21c according to the fourth embodiment is basically changed in connection with the low-voltage logic circuit LVc due to the change in the polarity of the FET of the first switching element Q33 from the address driver IC 21b according to the third embodiment. Since there is no change in operation, detailed description thereof will be omitted.
 図14は、実施例4に係るアドレスドライバIC21cの入力信号INa-1、INa-2、INb-1、INb-2と高電圧出力端子OUTの出力の電圧波形の一例を示した図である。図14において、入力信号INa-1、INb-2に電圧振幅0~Vcc〔V〕の同一の入力信号が入力され、入力信号INa-2、INb-1に電圧振幅0~Vcc〔V〕の同一の入力信号が入力されている。そして、出力信号は、入力信号INa-1、INb-2に同期し、電圧振幅(+Va3)~(+Va1)〔V〕の電圧波形が出力されている。 FIG. 14 is a diagram illustrating an example of voltage waveforms of the input signals INa-1, INa-2, INb-1, INb-2 of the address driver IC 21c according to the fourth embodiment and the output of the high voltage output terminal OUT. In FIG. 14, the same input signal having a voltage amplitude of 0 to Vcc [V] is inputted to the input signals INa-1 and INb-2, and the voltage amplitude of 0 to Vcc [V] is inputted to the input signals INa-2 and INb-1. The same input signal is input. The output signal is synchronized with the input signals INa-1 and INb-2, and voltage waveforms with voltage amplitudes (+ Va3) to (+ Va1) [V] are output.
 なお本実施例でも第一第二の実施例と同様に、アドレス期間Ta中の入力信号はひとつの信号だけでよいが、出力のハイインピーダンス化や電力回収時の動作を行う実際のICの構成を引用し、異なった四つの信号を入力できる構成で示した。本実施例の場合、INa-1はINb-2と同相、INa-2とINb-1は同相で、それぞれの組はお互いに逆相の信号となっている。
このように、本実施例で適用した高電圧出力回路HVcの高電圧側のN型FETの第1のスイッチング素子Q33は、P型FETの第1のスイッチング素子Q31に比べて、セル面積が小さくオン抵抗が低いため、実施例1及び実施例2で述べた効果以外に、ICチップの小型化やアドレスドライバIC21cの消費電力低減を行うことができる。
In this embodiment, as in the first and second embodiments, only one signal may be input during the address period Ta, but the actual IC configuration that performs high impedance output and operation during power recovery. In the configuration, four different signals can be input. In the present embodiment, INa-1 has the same phase as INb-2, INa-2 and INb-1 have the same phase, and the respective sets are signals having opposite phases.
As described above, the first switching element Q33 of the N-type FET on the high voltage side of the high-voltage output circuit HVc applied in the present embodiment has a smaller cell area than the first switching element Q31 of the P-type FET. Since the on-resistance is low, in addition to the effects described in the first and second embodiments, it is possible to reduce the size of the IC chip and reduce the power consumption of the address driver IC 21c.
 今まで説明したように、本発明によれば、レベルシフト回路LS、LSaを用いて高電圧出力回路部HV、HVa、HVcと低電圧回路部LV、LVb、LVcの共通インピーダンスを分離することで負荷変動などに伴って発生するノイズによる誤動作防止と、電源の小振幅化による低消費電力化を実現できる。 As described above, according to the present invention, the common impedances of the high voltage output circuit units HV, HVa, HVc and the low voltage circuit units LV, LVb, LVc are separated by using the level shift circuits LS, LSa. It is possible to realize malfunction prevention due to noise generated due to load fluctuation and the like and to reduce power consumption by reducing the amplitude of the power source.
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。
 特に、実施例1~4においては、本発明のドライバICを、プラズマディスプレイパネル10のアドレスドライバIC21、21a~21cに適用した例を挙げて説明したが、スキャンドライバIC41や、有機ELや液晶等、レベルシフト回路LS、LSaを用いるドライバICであれば、総てのドライバICに本発明を適用することができる。
The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.
In particular, in the first to fourth embodiments, the driver IC of the present invention has been described as an example applied to the address driver ICs 21 and 21a to 21c of the plasma display panel 10. However, the scan driver IC 41, organic EL, liquid crystal, etc. As long as the driver IC uses the level shift circuits LS and LSa, the present invention can be applied to all driver ICs.
 本発明は、プラズマディスプレイ等のフラットパネルディスプレイの駆動回路、特に低電圧ロジック回路と高電圧出力回路とを有するドライバICに利用できる。 The present invention can be used for a driving circuit of a flat panel display such as a plasma display, particularly a driver IC having a low voltage logic circuit and a high voltage output circuit.

Claims (12)

  1.  入力データ信号に基づいて、該入力データ信号よりも高電圧の電極駆動信号を高電圧出力端子から出力してフラットパネルディスプレイの電極を駆動するフラットパネルディスプレイの駆動回路であって、
     時系列で与えられる前記入力データ信号を受信し、前記入力データ信号を処理して所定のビット数で並列出力する低電圧ロジック回路と、
     高電圧電源と前記高電圧出力端子間に接続された第1のスイッチング素子と、前記高電圧出力端子と前記高電圧電源の電源電流帰還経路間に接続された第2のスイッチング素子とを有し、前記入力データ信号よりも高い電圧レベルの制御信号が入力され、前記高電圧出力端子にディプレイの電極を駆動する前記電極駆動信号を出力する、前記所定のビット数に対応して設けられた高電圧出力回路と、
     前記低電圧ロジック回路で処理された前記所定のビット数の結果を、前記高電圧出力回路の制御信号レベルに変換して前記高電圧出力回路に供給する、前記所定のビット数に対応した組数を有するレベルシフト回路とを有し、
     前記低電圧ロジック回路の電源電流帰還経路と、前記高電圧出力回路の電源電流帰還経路とを電気的に分離したことを特徴とするフラットパネルディスプレイの駆動回路。
    A drive circuit for a flat panel display that drives an electrode of a flat panel display by outputting an electrode drive signal having a higher voltage than the input data signal from a high voltage output terminal based on an input data signal,
    A low voltage logic circuit that receives the input data signal given in time series, processes the input data signal, and outputs in parallel with a predetermined number of bits;
    A first switching element connected between a high voltage power supply and the high voltage output terminal; and a second switching element connected between the high voltage output terminal and a power supply current feedback path of the high voltage power supply. A control signal having a voltage level higher than that of the input data signal is input, and the electrode driving signal for driving the electrode of the display is output to the high voltage output terminal, corresponding to the predetermined number of bits. A high voltage output circuit;
    The number of sets corresponding to the predetermined number of bits, which is obtained by converting the result of the predetermined number of bits processed by the low voltage logic circuit into a control signal level of the high voltage output circuit and supplying it to the high voltage output circuit A level shift circuit having
    A driving circuit for a flat panel display, wherein a power supply current feedback path of the low voltage logic circuit and a power supply current feedback path of the high voltage output circuit are electrically separated.
  2.  前記高電圧出力回路の電源電流帰還経路の電圧電位を、前記低電圧ロジック回路の電源電流帰還経路の電圧電位よりも低くしたことを特徴とする請求項1に記載のフラットパネルディスプレイの駆動回路。 2. The flat panel display driving circuit according to claim 1, wherein the voltage potential of the power supply current feedback path of the high voltage output circuit is lower than the voltage potential of the power supply current feedback path of the low voltage logic circuit.
  3.  前記第1のスイッチング素子はPチャネル型FETであり、前記第2のスイッチング素子はNチャネル型FETであることを特徴とする請求項2に記載のフラットパネルディスプレイの駆動回路。 3. The flat panel display driving circuit according to claim 2, wherein the first switching element is a P-channel FET, and the second switching element is an N-channel FET.
  4.  前記レベルシフト回路は、前記第1のスイッチング素子に制御信号を供給する第1のレベルシフト回路と、前記第2のスイッチング素子に制御信号を供給する第2のレベルシフト回路とを含み、
     前記第1のレベルシフト回路が出力する制御信号レベルは、前記高電圧電源の電位と前記低電圧ロジック回路の電源電流帰還経路の電位との間で設定され、
     前記第2のレベルシフト回路が出力する制御信号レベルは、前記低電圧ロジック回路の電源電位と前記高電圧出力回路の電源電流帰還経路の電位の間で設定されることを特徴とする請求項3に記載のフラットパネルディスプレイの駆動回路。
    The level shift circuit includes a first level shift circuit that supplies a control signal to the first switching element, and a second level shift circuit that supplies a control signal to the second switching element,
    The control signal level output from the first level shift circuit is set between the potential of the high voltage power supply and the potential of the power supply current feedback path of the low voltage logic circuit,
    4. The control signal level output from the second level shift circuit is set between a power supply potential of the low voltage logic circuit and a power supply current feedback path of the high voltage output circuit. A driving circuit for a flat panel display according to 1.
  5.  前記高電圧出力回路の電源電流帰還経路の電位を、前記高電圧出力回路の電源電位よりも低く、かつ前記低電圧ロジック回路の電源電流帰還経路の電位よりも高くしたことを特徴とする請求項1に記載のフラットパネルディスプレイの駆動回路。 The power supply current feedback path potential of the high voltage output circuit is lower than the power supply potential of the high voltage output circuit and higher than the power supply current feedback path of the low voltage logic circuit. 2. A driving circuit for a flat panel display according to 1.
  6.  前記第1のスイッチング素子はPチャネル型FETであり、前記第2のスイッチング素子はNチャネル型FETであることを特徴とする請求項5に記載のフラットパネルディスプレイの駆動回路。 6. The flat panel display driving circuit according to claim 5, wherein the first switching element is a P-channel FET and the second switching element is an N-channel FET.
  7.  前記高電圧出力回路の電源電流帰還経路と、前記低電圧ロジック回路の電源電流帰還経路との間に、ダイオードを挿入したことを特徴とする請求項5に記載のフラットパネルディスプレイの駆動回路。 6. The flat panel display driving circuit according to claim 5, wherein a diode is inserted between a power supply current feedback path of the high voltage output circuit and a power supply current feedback path of the low voltage logic circuit.
  8.  前記レベルシフト回路は、前記第1のスイッチング素子に制御信号を供給する第1のレベルシフト回路と、前記第2のスイッチング素子に制御信号を供給する第2のレベルシフト回路とを含み、
     前記第1のレベルシフト回路が出力する制御信号レベルと、前記第2のレベルシフト回路が出力する制御信号レベルは、それぞれ、前記高電圧出力回路の電源電位と前記低電圧ロジック回路の電源電流帰還経路の電位の間で設定されることを特徴とする請求項5に記載のフラットパネルディスプレイの駆動回路。
    The level shift circuit includes a first level shift circuit that supplies a control signal to the first switching element, and a second level shift circuit that supplies a control signal to the second switching element,
    The control signal level output from the first level shift circuit and the control signal level output from the second level shift circuit are respectively the power supply potential of the high voltage output circuit and the power supply current feedback of the low voltage logic circuit. 6. The driving circuit for a flat panel display according to claim 5, wherein the driving circuit is set between potentials of paths.
  9.  前記第1のレベルシフト回路が出力する制御信号レベルは、前記高電圧出力回路の電源電位と前記低電圧ロジック回路の電源電流帰還経路の電位の間で設定され、
     前記第2のレベルシフト回路が出力する制御信号レベルは、前記高電圧出力回路の電源電位よりも低く、かつ前記低電圧ロジック回路用電源の電位以上の電位の間で設定されることを特徴とする請求項5に記載のフラットパネルディスプレイの駆動回路。
    The control signal level output by the first level shift circuit is set between the power supply potential of the high voltage output circuit and the power supply current feedback path of the low voltage logic circuit,
    The control signal level output from the second level shift circuit is set between a potential lower than the power supply potential of the high voltage output circuit and higher than the potential of the power supply for the low voltage logic circuit. The flat panel display driving circuit according to claim 5.
  10.  前記レベルシフト回路は、前記第1のスイッチング素子に制御信号を供給する第1のレベルシフト回路と、前記第2のスイッチング素子に制御信号を供給する第2のレベルシフト回路とを含み、
     前記第1のレベルシフト回路と前記第1のスイッチング素子の間、及び/又は前記第2のレベルシフト回路と第2のスイッチング素子の間に、バッファ回路が接続されていることを特徴とする請求項1に記載のフラットパネルディスプレイの駆動回路。
    The level shift circuit includes a first level shift circuit that supplies a control signal to the first switching element, and a second level shift circuit that supplies a control signal to the second switching element,
    A buffer circuit is connected between the first level shift circuit and the first switching element and / or between the second level shift circuit and the second switching element. Item 2. A driving circuit for a flat panel display according to Item 1.
  11.  前記バッファ回路の出力インピーダンスは、前記レベルシフト回路の出力インピーダンスより高くなるように設定されていることを特徴とする請求項10に記載のフラットパネルディスプレイの駆動回路。 11. The flat panel display driving circuit according to claim 10, wherein an output impedance of the buffer circuit is set to be higher than an output impedance of the level shift circuit.
  12.  前記フラットパネルディスプレイ装置はプラズマディスプレイパネルであり、
     前記フラットパネルディスプレイの駆動回路はアドレス電極駆動用のアドレスドライバICに搭載されたことを特徴とする請求項1に記載のフラットパネルディスプレイの駆動回路。
    The flat panel display device is a plasma display panel;
    2. The driving circuit for a flat panel display according to claim 1, wherein the driving circuit for the flat panel display is mounted on an address driver IC for driving an address electrode.
PCT/JP2008/071127 2008-11-20 2008-11-20 Flat-panel display driving circuit WO2010058469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071127 WO2010058469A1 (en) 2008-11-20 2008-11-20 Flat-panel display driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071127 WO2010058469A1 (en) 2008-11-20 2008-11-20 Flat-panel display driving circuit

Publications (1)

Publication Number Publication Date
WO2010058469A1 true WO2010058469A1 (en) 2010-05-27

Family

ID=42197916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071127 WO2010058469A1 (en) 2008-11-20 2008-11-20 Flat-panel display driving circuit

Country Status (1)

Country Link
WO (1) WO2010058469A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075627A1 (en) * 2010-12-08 2012-06-14 上海贝岭股份有限公司 Level shift circuit
CN103761940A (en) * 2014-01-07 2014-04-30 无锡芯朋微电子股份有限公司 Low-power-consumption high-voltage driving circuit shared by output pipes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194646A (en) * 1987-10-06 1989-04-13 Fujitsu Ltd Semiconductor device
JPH0646360A (en) * 1992-03-23 1994-02-18 Nec Corp Electroluminescence display panel driving circuit
JPH07295506A (en) * 1994-04-27 1995-11-10 Nec Corp Driving method for plasma display panel
JP2004128703A (en) * 2002-09-30 2004-04-22 Toshiba Microelectronics Corp Level conversion circuit
JP2006337397A (en) * 2005-05-31 2006-12-14 Hitachi Ltd Plasma display driving circuit and display device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194646A (en) * 1987-10-06 1989-04-13 Fujitsu Ltd Semiconductor device
JPH0646360A (en) * 1992-03-23 1994-02-18 Nec Corp Electroluminescence display panel driving circuit
JPH07295506A (en) * 1994-04-27 1995-11-10 Nec Corp Driving method for plasma display panel
JP2004128703A (en) * 2002-09-30 2004-04-22 Toshiba Microelectronics Corp Level conversion circuit
JP2006337397A (en) * 2005-05-31 2006-12-14 Hitachi Ltd Plasma display driving circuit and display device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075627A1 (en) * 2010-12-08 2012-06-14 上海贝岭股份有限公司 Level shift circuit
CN102893320A (en) * 2010-12-08 2013-01-23 上海贝岭股份有限公司 Level shift circuit
US8723585B2 (en) 2010-12-08 2014-05-13 Shanghai Belling Corp., Ltd. Level shift circuit
CN103761940A (en) * 2014-01-07 2014-04-30 无锡芯朋微电子股份有限公司 Low-power-consumption high-voltage driving circuit shared by output pipes

Similar Documents

Publication Publication Date Title
KR100853928B1 (en) Plasma display apparatus
JP6656898B2 (en) Level shift circuit and display driver
JP2003228318A (en) Circuit for driving display panel and plasma display
JP4480341B2 (en) Plasma display device
EP1750243B1 (en) Drive circuit and display apparatus including the same
JP2006047953A (en) Semiconductor integrated circuit, drive circuit, and plasma display device
WO2010058469A1 (en) Flat-panel display driving circuit
WO2010073447A1 (en) Device for driving of display, display module package, display panel module, and television set
KR100828975B1 (en) Driver device of plasma display panel
KR20060133462A (en) Drive circuit and display apparatus
EP1566790A2 (en) Capacitive load drive circuit, method for driving the same, and plasma display apparatus
JP4779403B2 (en) Display panel drive device
US8760371B2 (en) Plasma display apparatus using drive circuit
JP2008211721A (en) Display device drive circuit
US7859528B2 (en) Power module for energy recovery and discharge sustain of plasma display panel
US20050088108A1 (en) Device for driving capacitive light emitting element
KR100732583B1 (en) Plasma display apparatus
US20100156861A1 (en) Display driver and display apparatus
JP2005331584A (en) Capacitive load driving circuit and plasma display apparatus
US8368682B2 (en) Address driving circuit and plasma display device having the same
US8514214B2 (en) Drive device and display device
JP2006058799A (en) Integrated circuit for driving display device
JPH11316570A (en) Device and method for driving alternating-current surface discharging plasma display panel, and a.c. surface discharging plasma display
JP4719813B2 (en) Plasma display device
US20070097033A1 (en) Driving of plasma display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP