WO2010055842A1 - Braking device - Google Patents

Braking device Download PDF

Info

Publication number
WO2010055842A1
WO2010055842A1 PCT/JP2009/069168 JP2009069168W WO2010055842A1 WO 2010055842 A1 WO2010055842 A1 WO 2010055842A1 JP 2009069168 W JP2009069168 W JP 2009069168W WO 2010055842 A1 WO2010055842 A1 WO 2010055842A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedal
master cylinder
brake
brake pedal
spring
Prior art date
Application number
PCT/JP2009/069168
Other languages
French (fr)
Japanese (ja)
Inventor
和由 阿久津
孝明 大西
亜良太 井上
邦道 波多野
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2010537784A priority Critical patent/JPWO2010055842A1/en
Publication of WO2010055842A1 publication Critical patent/WO2010055842A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/588Combined or convertible systems both fluid and mechanical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • B60T8/4086Systems with stroke simulating devices for driver input the stroke simulating device being connected to, or integrated in the driver input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot
    • G05G1/46Means, e.g. links, for connecting the pedal to the controlled unit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce

Definitions

  • This invention relates to the brake device which improved the pedal feeling of the brake pedal.
  • a small piston connected to the brake pedal via an input rod is slidably fitted inside the large piston facing the hydraulic chamber of the master cylinder, and between the wall and the large piston that defines the hydraulic chamber.
  • a stroke simulator that generates a pseudo pedal reaction force is provided in the brake pedal, and when the stroke simulator is activated in accordance with the activation of the master cylinder, The stroke simulator does not start until the brake fluid pressure generated by the master cylinder exceeds the set load of the simulator spring.
  • the stroke simulator starts, and when the master cylinder starts and when the stroke simulator starts.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to improve the pedal feeling by reducing the step feeling when the brake pedal is depressed.
  • a pedaling force transmission member and a resilient member are disposed between a brake pedal operated by a driver and a master cylinder that generates brake fluid pressure, and the pedaling force transmission member A gap is set between the master cylinder and the master cylinder so that the brake pedal can idle with respect to the master cylinder when the brake pedal is operated, and the pedal force applied to the brake pedal in the initial stage of operation is the elastic member. And the gap is reduced against the biasing force of the resilient member.
  • the pedaling force applied to the brake pedal is directly transmitted to the master cylinder via the pedaling force transmission member, the pedaling force is applied to the master cylinder.
  • a brake device having a second feature of exceeding the starting load is proposed.
  • a return spring that is compressed after the master cylinder is started is provided, and the pedal force applied to the brake pedal after the master cylinder is started is transmitted to the pedal force.
  • a brake device according to a third feature is proposed in which the resilient member gradually increases the pedal reaction force together with the return spring while being directly transmitted through the member.
  • the pedaling force applied to the brake pedal is directly transmitted to the master cylinder via the pedaling force transmission member, the pedaling force is applied to the master cylinder.
  • a brake device having a fourth feature of exceeding the starting load is proposed.
  • a simulator spring that is compressed after the stroke simulator is started is provided, and a pedal force applied to the brake pedal after the master cylinder is started is transmitted to the pedal force.
  • a brake device according to a fifth feature is proposed in which the elastic member increases a pedal reaction force together with the simulator spring while being directly transmitted through the member.
  • a brake device characterized by including a return spring that biases the brake pedal to an initial position where the gap is effective.
  • a brake device having the seventh feature is that the brake pedal, the treading force transmission member, and the resilient member are arranged on a common support shaft. Is done.
  • the simulator spring 28 of the embodiment corresponds to the return spring of the present invention
  • the push rod 63 and the arm 78 of the embodiment correspond to the treading force transmission member of the present invention
  • the reaction force spring 66 of the embodiment corresponds to the main spring.
  • the rear and front return springs 68A, 68B of the embodiment correspond to the return spring of the present invention.
  • the pedal force transmission member and the resilient member are disposed between the brake pedal operated by the driver and the master cylinder that generates the brake fluid pressure, and the pedal force transmission member and the master cylinder are Since there is a gap in which the brake pedal can run idle with respect to the master cylinder, the pedaling force applied to the brake pedal is a resilient member until the brake pedal strokes and the members that form the gap contact each other. After the brake pedal strokes and the members forming the gap contact each other, the pedal force applied to the brake pedal is directly transmitted to the master cylinder via the pedal force transmission member. Is done.
  • the pedal reaction force that is initially generated when the brake pedal is operated can be generated not by the master cylinder but by the resilient member, and by setting the spring constant and set load of the resilient member, the pedal reaction force of the brake pedal can be reduced.
  • the pedal feeling can be improved by arbitrarily adjusting the force.
  • the pedal force when the brake pedal strokes and the members forming the gap contact each other exceeds the starting load of the master cylinder.
  • the master cylinder has already been activated. Therefore, a sudden increase in the pedal reaction force accompanying the activation of the master cylinder can be prevented, and deterioration of the pedal feeling can be prevented.
  • the pedal force applied to the brake pedal after the master cylinder is started is directly transmitted via the pedal force transmission member.
  • the elastic member can gradually increase the pedal reaction force together with the return spring, and the brake reaction force can be applied in cooperation with the return spring and the elastic member.
  • the pedaling force when the brake pedal strokes and the members forming the gap contact each other exceeds the starting load of the stroke simulator, the member forming the gap When the two come into contact with each other, the stroke simulator has already been activated. Therefore, a sudden increase in the pedal reaction force accompanying the activation of the stroke simulator is prevented, and deterioration of the pedal feeling can be prevented.
  • the pedal force applied to the brake pedal after the master cylinder is activated is directly transmitted via the pedal force transmitting member.
  • the elastic member can increase the pedal reaction force together with the simulator spring, and the brake reaction force can be applied in cooperation with the simulator spring and the elastic member.
  • a return spring that biases the brake pedal to an initial position where the gap is effective is provided, so that the pedal reaction force can be adjusted over the entire stroke of the brake pedal by the return spring. Can do.
  • the space is larger than when the resilient member is expanded and contracted in the stroke direction of the brake pedal. Efficiency can be improved.
  • FIG. 1 is a hydraulic circuit diagram of the vehicle brake device when it is normal.
  • FIG. 2 is a hydraulic circuit diagram at the time of abnormality corresponding to FIG.
  • FIG. 3 is an enlarged view of part 3 of FIG.
  • FIG. 4 is a graph showing the relationship between the brake pedal stroke and the pedal reaction force.
  • FIG. 5 is a front view of the brake device.
  • (Second Embodiment) 6 is a view taken along line 6-6 in FIG.
  • FIG. 7 is an enlarged sectional view of part 7 of FIG.
  • FIG. 8 is an exploded perspective view of the brake pedal, arm, and reaction force spring.
  • (Second Embodiment) 9 is a cross-sectional view taken along line 9-9 of FIG. (Second Embodiment)
  • 1 to 4 show a first embodiment of the present invention.
  • the tandem master cylinder 11 includes a rear hydraulic chamber 13A and a front hydraulic chamber 13B that output a brake hydraulic pressure corresponding to a pedaling force applied by the driver to the brake pedal 12.
  • the rear hydraulic chamber 13A is connected to, for example, the wheel cylinders 16 and 17 of the disc brake devices 14 and 15 of the left front wheel and the right rear wheel via the fluid paths Pa, Pc, Pd, and Pe.
  • the right front wheel and the left rear wheel are connected to the wheel cylinders 20 and 21 of the disc brake devices 18 and 19 via the roads Qa, Qc, Qd, and Qe.
  • the brake pedal 12 is biased toward the initial position by the return spring 79.
  • the slave cylinder 23 is disposed between the liquid paths Pa and Qa and the liquid paths Pc and Qc.
  • a stroke simulator 26 is connected to the liquid paths Ra and Rb branched from the liquid path Qa via a reaction force permission valve 25 that is a normally closed electromagnetic valve.
  • the stroke simulator 26 has a piston 29 urged by a simulator spring 28 slidably fitted to a cylinder 27, and a liquid chamber 30 formed on the anti-simulator spring 28 side of the piston 29 is connected to a liquid path Rb. Communicate.
  • the actuator 51 of the slave cylinder 23 includes a drive bevel gear 53 provided on the rotating shaft of the electric motor 52, a driven bevel gear 54 that meshes with the drive bevel gear 53, and a ball screw mechanism 55 that is operated by the driven bevel gear 54.
  • a sleeve 58 is rotatably supported on the actuator housing 56 via a pair of ball bearings 57, 57.
  • An output shaft 59 is coaxially disposed on the inner periphery of the sleeve 58, and a driven bevel gear 54 is provided on the outer periphery thereof. Fixed.
  • a pair of pistons 38A and 38B urged in a backward direction by a pair of return springs 37A and 37B are slidably disposed in the cylinder main body 36 of the slave cylinder 23, and a pair of pistons 38A and 38B are disposed on the front surfaces of the pistons 38A and 38B.
  • the hydraulic chambers 39A and 39B are partitioned. The front end of the output shaft 59 contacts the rear end of the rear piston 38A.
  • One hydraulic chamber 39A communicates with fluid paths Pa and Pc via ports 40A and 41A, and the other hydraulic chamber 39B communicates with fluid paths Qa and Qc via ports 40B and 41B.
  • the fluid passage Qa is provided with a fluid pressure sensor Sa for detecting the brake fluid pressure generated by the master cylinder 11, and the fluid passage Qc is provided with a fluid pressure sensor Sb for detecting the brake fluid pressure generated by the slave cylinder 23.
  • An electronic control unit (not shown) to which signals from the hydraulic pressure sensors Sa and Sb are input controls the operation of the reaction force permission valve 25 and the slave cylinder 23.
  • the rear end of the push rod 63 is pivotally supported via the fulcrum pin 62 on the intermediate portion of the brake pedal 12 whose upper end is pivotally supported by the fulcrum pin 61.
  • a reaction force spring 66 formed of a coil spring is contracted between a spring seat 64 provided at the end of the push rod 63 on the brake pedal 12 side and the rear end of the rear piston 67A of the master cylinder 11.
  • the rear piston 67A arranged behind the rear hydraulic chamber 13A of the master cylinder 11 is urged rearward by a rear return spring 68A, and the front piston 67B arranged behind the front hydraulic chamber 13B of the master cylinder 11 is moved forward.
  • Part return spring 68B is urged rearward.
  • the reaction force permission valve 25 comprising a normally closed solenoid valve is excited and opened.
  • the master cylinder 11 is activated, and when the hydraulic pressure sensor provided in the fluid passage Qa detects an increase in the brake hydraulic pressure, the actuator 51 of the slave cylinder 23 is activated. That is, when the electric motor 52 is driven in one direction, the output shaft 59 advances through the drive bevel gear 53, the driven bevel gear 54, and the ball screw mechanism 55, so that the pair of pistons 38A and 38B pressed against the output shaft 59 Advance.
  • the brake fluid pressure generated in the front fluid pressure chamber 13B of the master cylinder 11 is transmitted to the fluid chamber 30 of the stroke simulator 26 via the opened reaction force permission valve 25, and the piston 29 is transferred to the simulator spring 28.
  • the stroke of the brake pedal 12 can be allowed and a pseudo pedal reaction force can be generated to eliminate the driver's uncomfortable feeling.
  • the brake fluid pressure detected by the slave cylinder 23 detected by the fluid pressure sensor Sb provided in the fluid passage Qc becomes a magnitude corresponding to the brake fluid pressure detected by the master cylinder 11 detected by the fluid pressure sensor Sa provided in the fluid passage Qa.
  • the actuator 51 of the slave cylinder 23 it is possible to cause the disc brake devices 14, 15, 18, and 19 to generate a braking force corresponding to the pedaling force input to the brake pedal 12 by the driver.
  • the reaction force permission valve 25 composed of a normally closed solenoid valve is automatically closed.
  • the brake hydraulic pressure generated in the front and rear hydraulic chambers 13A and 13B of the master cylinder 11 passes through the hydraulic chambers 39A and 39B of the slave cylinder 23 without being absorbed by the stroke simulator 26.
  • the wheel cylinders 16, 17; 20, 21 of the disc brake devices 14, 15, 18, 19 of each wheel can be operated to generate a braking force without any trouble.
  • FIG. 4 shows the relationship of the pedal reaction force F (that is, the depression force of the brake pedal 12) with respect to the pedal stroke L.
  • the broken line indicates the pedal reaction force F by the master cylinder 11 when it is assumed that the reaction force spring 66 does not exist. Even if the brake pedal 12 starts a stroke, it reaches the start stroke L1 of the master cylinder 11, that is, push. The pedal reaction force F is not generated until the rod 63 comes into contact with the rear piston 67A and the gap ⁇ disappears.
  • the pedal reaction force F increases rapidly to the start load F1 determined by the set load of the rear and front return springs 68A and 68B of the master cylinder 11, and from there to the rear and front It gradually increases with a slope corresponding to the combined spring constant k1 of the return springs 68A and 68B.
  • the alternate long and short dash line indicates the relationship between the pedal reaction force F by the stroke simulator 27 and the pedal stroke L when the reaction force spring 66 is not present.
  • the pedal reaction force F obtained by superimposing the pedal reaction force F of the master cylinder 11 and the pedal reaction force F of the stroke simulator 27 is 0 from the stroke 0 to the start stroke L1 of the master cylinder 11 as shown by a solid line in FIG.
  • the start stroke L1 suddenly increases from 0 to F1, gradually increases from the start stroke L1 to the start stroke L2 of the stroke simulator 26 with a slope k1, rapidly increases to F1 + F2 with the start stroke L2, and exceeds the start stroke L2 with a slope (k1 ⁇ k2) / (k1 + k2).
  • the chain double-dashed line in FIG. 4 corresponds to the present embodiment.
  • the reaction force spring 66 is immediately compressed at the point a, corresponding to the set load of the reaction force spring 66.
  • a pedal reaction force F of F0 is generated.
  • the pedal reaction force F increases with an inclination corresponding to the spring constant k0 of the reaction force spring 66, but at the point d, the push rod 63 contacts the rear piston 67A and the gap ⁇ disappears.
  • the pedal reaction force F reaches the starting reaction force F1 of the master cylinder 11 at the point b, so that the master cylinder 11 is started and brake fluid pressure is generated.
  • the pedal reaction force F becomes the start reaction force F1 + F2 of the stroke simulator 26 at the point c (the start load F1 and the stroke of the master cylinder 11 alone). Therefore, the stroke simulator 26 is activated and the simulator spring 28 is compressed.
  • the simulator spring 28 is compressed in addition to the reaction force spring 66 and the rear and front return springs 68A and 68B of the master cylinder 11, so that the pedal reaction force F is inclined (k3 ⁇ k2) / (k3 + k2). ) Gradually increase.
  • k2 is a spring constant of the simulator spring 28.
  • the pedal reaction force F of the brake pedal 12 continuously increases without increasing discontinuously, the pedal feeling felt by the driver can be improved. Moreover, by setting the spring constant and set load of the reaction force spring 66, the pedal reaction force of the brake pedal 12 can be arbitrarily adjusted to further improve the pedal feeling.
  • the pedal reaction force F can be applied by the cooperation of the return spring 79, the reaction force spring 66, the rear and front return springs 68A and 68B of the master cylinder 11, and the simulator spring 28 of the stroke simulator 26.
  • the degree of freedom in adjusting the pedal reaction force F is greatly increased.
  • the pedal reaction force F can be adjusted over the entire stroke of the brake pedal 12 by the return spring 79.
  • a support shaft 74 is fixed to a bracket 73 fixed to the dash panel 71 with a plurality of bolts 72 with bolts 75 and nuts 76, and an upper portion of the brake pedal 12 is pivotally supported on the left half portion of the support shaft 74. At the same time, the upper portion of the arm 78 is pivoted on the right half.
  • the brake pedal 12 is urged rearward by a return spring 79 stretched between the brake pedal 12 and the bracket 73.
  • a reaction force spring 66 made of a torsion spring surrounding the support shaft 74 is disposed between the brake pedal 12 and the arm 78, and both ends of the reaction spring 66 are a locking hole 12 a of the brake pedal 12 and a locking hole of the arm 78. 78a, respectively.
  • Arc-shaped protrusions 12b and 78b are respectively provided on surfaces of the brake pedal 12 and the arm 78 facing each other, and first and second stoppers 12c and 12d are formed at both circumferential ends of the protrusion 12b of the brake pedal 12.
  • first and second stoppers 78c and 78d are formed at both ends of the projection 78b of the arm 78 in the circumferential direction.
  • the brake pedal 12 and the arm 78 are urged in the directions of arrows a and b in FIG. 9A by the reaction force spring 66, respectively.
  • the brake pedal 12 and the arm 78 are applied with the urging forces a and b.
  • the first stoppers 12c and 78c of the arm 78 come into contact with each other, and a gap ⁇ (see FIG. 9A) is formed between the second stoppers 12d and 78d.
  • a large pedaling force is input to the brake pedal 12, the brake pedal 12 and the arm 78 rotate relative to each other while compressing the reaction force spring 66, the gap ⁇ disappears, and the second stoppers 12d and 78d of the brake pedal 12 and the arm 78 are lost. They come into contact with each other (see FIG. 9B).
  • the clearance ⁇ (see FIG. 3) is not set between the tip of the push rod 63 and the rear piston 67A of the master cylinder 11, and the tip of the push rod 63 and the master cylinder 11
  • the rear piston 67A is always in contact.
  • the brake pedal 12 When the brake pedal 12 is stepped on from the non-operation position, the brake pedal 12 starts a stroke when the pedaling force exceeds the set load of the reaction force spring 66, and the brake pedal 12 and the first stoppers 12c and 78c of the arm 78 are started.
  • the stroke of the brake pedal 12 is transmitted to the master cylinder 11 through the reaction force spring 66, the arm 78 and the push rod 63 while releasing the contact between them and compressing the reaction force spring 66.
  • the pedaling force exceeds the starting load F1 of the master cylinder 11, whereby the rear piston 67A of the master cylinder 11 starts moving forward.
  • the function of the gap ⁇ (see FIG. 3) formed between the push rod 63 and the rear piston 67A of the first embodiment is used for the brake pedal 12 and the arm 78.
  • the clearance ⁇ between the second stoppers 12d and 78d (see FIG. 9A) is achieved, and the function of the reaction force spring 66 made of the coil spring of the first embodiment is the reaction force spring made of a torsion spring.
  • the brake pedal 12, the arm 78, and the reaction force spring 66 are disposed on the common support shaft 74, space efficiency can be improved as compared with the case where the reaction force spring 66 is expanded and contracted in the stroke direction of the brake pedal 12. .
  • the BBW type brake device is exemplified, but the present invention can also be applied to a conventional brake device other than the BBW type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Regulating Braking Force (AREA)
  • Braking Elements And Transmission Devices (AREA)

Abstract

A push rod (63) and a counterforce spring (66) are arranged between a brake pedal (12) and a master cylinder (11), and a void (α), wherein the master cylinder (12) is not activated even when the brake pedal (12) is operated, is set for the push rod (63); thus, until the stroke of the brake pedal (12) eliminates the void (α), the pedal force applied to the brake pedal (12) is transmitted to the master cylinder (11) while elastically deforming the counterforce spring (66), and after the void (α) is eliminated the pedal force applied to the brake pedal (12) is transmitted directly to the master cylinder (11) via the push rod (63). Accordingly, when the brake pedal (12) is operated, the pedal counterforce which is generated initially can be generated by the counterforce spring (66) instead of the master cylinder (11), and the pedal counterforce of the brake pedal (12) can be adjusted freely by setting the spring constant and the set load of the counterforce spring (66), enabling an improvement in the feeling of the pedal.

Description

ブレーキ装置Brake device
 本発明は、ブレーキペダルのペダルフィーリングを改善したブレーキ装置に関する。 This invention relates to the brake device which improved the pedal feeling of the brake pedal.
 マスタシリンダの液圧室に臨む大ピストンの内部に、ブレーキペダルに入力ロッドを介して接続された小ピストンを摺動自在に嵌合させ、液圧室を区画する壁部と大ピストンとの間に小荷重ばねを配置し、大ピストンと小ピストンとの間に大荷重ばねを配置することにより、ブレーキペダルの小操作ストローク域では出力液量の変化を小さくし、ブレーキペダルの大操作ストローク域では出力液量の変化を大きくしたものが、下記特許文献1により公知である。
日本特開2007-176413号公報
A small piston connected to the brake pedal via an input rod is slidably fitted inside the large piston facing the hydraulic chamber of the master cylinder, and between the wall and the large piston that defines the hydraulic chamber. By placing a small load spring on the large piston and a small load spring between the large piston and small piston, the change in the output fluid volume is reduced in the small operation stroke area of the brake pedal, and the large operation stroke area of the brake pedal Then, the thing which enlarged the change of the amount of output liquids is well-known by the following patent document 1. FIG.
Japanese Unexamined Patent Publication No. 2007-176413
 ところで、マスタシリンダのピストンは所定のセット荷重を有するリターンスプリングで後退方向に付勢されているため、運転者がブレーキペダルを踏み込んでプッシュロッドでピストンを前進させるとき、ブレーキペダルに入力する踏力が前記セット荷重(つまりマスタシリンダの起動荷重)を超えるまでピストンは前進せず、前記セット荷重を超えるとピストンが前進を開始することになり、ブレーキペダルの操作に段付感が伴ってペダルフィーリングを悪化させる問題があった。 By the way, since the piston of the master cylinder is urged in the reverse direction by a return spring having a predetermined set load, when the driver depresses the brake pedal and moves the piston forward by the push rod, the pedaling force input to the brake pedal is not The piston does not advance until the set load (that is, the starting load of the master cylinder) is exceeded, and when the set load is exceeded, the piston starts moving forward, and the pedal feeling is accompanied by a step feeling in the operation of the brake pedal. There was a problem that made it worse.
 特に、BBW(ブレーキ・バイ・ワイヤ)式のブレーキ装置では、ブレーキペダルに擬似的なペダル反力を発生させるストロークシミュレータが設けられており、マスタシリンダの起動に伴ってストロークシミュレータが起動するとき、マスタシリンダが発生するブレーキ液圧がシミュレータスプリングのセット荷重を超えるまでストロークシミュレータは起動せず、前記セット荷重を超えるとストロークシミュレータが起動することになり、マスタシリンダの起動時とストロークシミュレータの起動時とに2段の段付感が伴ってペダルフィーリングを更に悪化させる問題があった。 In particular, in the BBW (brake-by-wire) type brake device, a stroke simulator that generates a pseudo pedal reaction force is provided in the brake pedal, and when the stroke simulator is activated in accordance with the activation of the master cylinder, The stroke simulator does not start until the brake fluid pressure generated by the master cylinder exceeds the set load of the simulator spring. When the brake load exceeds the set load, the stroke simulator starts, and when the master cylinder starts and when the stroke simulator starts In addition, there is a problem of further deteriorating the pedal feeling with a two-step feeling.
 本発明は前述の事情に鑑みてなされたもので、ブレーキペダルの踏み込み時の段付感を低減してペダルフィーリングを改善することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to improve the pedal feeling by reducing the step feeling when the brake pedal is depressed.
 上記目的を達成するために、本発明によれば、運転者により操作されるブレーキペダルとブレーキ液圧を発生するマスタシリンダとの間に踏力伝達部材および弾発部材が配置され、前記踏力伝達部材と前記マスタシリンダとの間には前記ブレーキペダルの操作時に前記ブレーキペダルが前記マスタシリンダに対して空走可能な隙間が設定され、操作初期において前記ブレーキペダルに加えられた踏力が前記弾発部材を介して前記マスタシリンダに伝達されるとともに、前記隙間が前記弾発部材の付勢力に抗して減少するように構成され、前記隙間を形成する部材同士が当接した後は、前記ブレーキペダルに加えられた踏力が前記踏力伝達部材を介して前記マスタシリンダに直接伝達されることを第1の特徴とするブレーキ装置が提案される。 In order to achieve the above object, according to the present invention, a pedaling force transmission member and a resilient member are disposed between a brake pedal operated by a driver and a master cylinder that generates brake fluid pressure, and the pedaling force transmission member A gap is set between the master cylinder and the master cylinder so that the brake pedal can idle with respect to the master cylinder when the brake pedal is operated, and the pedal force applied to the brake pedal in the initial stage of operation is the elastic member. And the gap is reduced against the biasing force of the resilient member. After the members forming the gap contact each other, the brake pedal A brake device having a first feature is proposed in which the pedal force applied to the pedal is directly transmitted to the master cylinder via the pedal force transmission member.
 また本発明によれば、前記第1の特徴に加えて、前記ブレーキペダルに加えられた踏力が前記踏力伝達部材を介して前記マスタシリンダに直接伝達される前に、前記踏力は前記マスタシリンダの起動荷重を超えることを第2の特徴とするブレーキ装置が提案される。 According to the present invention, in addition to the first feature, before the pedaling force applied to the brake pedal is directly transmitted to the master cylinder via the pedaling force transmission member, the pedaling force is applied to the master cylinder. A brake device having a second feature of exceeding the starting load is proposed.
 また本発明によれば、前記第2の特徴に加えて、前記マスタシリンダの起動後に圧縮されるリターンスプリングを備え、前記マスタシリンダが起動してから前記ブレーキペダルに加えられた踏力が前記踏力伝達部材を介して直接伝達される間、前記弾発部材は前記リターンスプリングと共にペダル反力を漸増させることを第3の特徴とするブレーキ装置が提案される。 According to the present invention, in addition to the second feature, a return spring that is compressed after the master cylinder is started is provided, and the pedal force applied to the brake pedal after the master cylinder is started is transmitted to the pedal force. A brake device according to a third feature is proposed in which the resilient member gradually increases the pedal reaction force together with the return spring while being directly transmitted through the member.
 また本発明によれば、前記第1の特徴に加えて、前記ブレーキペダルに加えられた踏力が前記踏力伝達部材を介して前記マスタシリンダに直接伝達される前に、前記踏力は前記マスタシリンダの起動荷重を超えることを第4の特徴とするブレーキ装置が提案される。 According to the present invention, in addition to the first feature, before the pedaling force applied to the brake pedal is directly transmitted to the master cylinder via the pedaling force transmission member, the pedaling force is applied to the master cylinder. A brake device having a fourth feature of exceeding the starting load is proposed.
 また本発明によれば、前記第4の特徴に加えて、前記ストロークシミュレータの起動後に圧縮されるシミュレータスプリングを備え、前記マスタシリンダが起動してから前記ブレーキペダルに加えられた踏力が前記踏力伝達部材を介して直接伝達される間、前記弾発部材は前記シミュレータスプリングと共にペダル反力を増加させることを第5の特徴とするブレーキ装置が提案される。 According to the invention, in addition to the fourth feature, a simulator spring that is compressed after the stroke simulator is started is provided, and a pedal force applied to the brake pedal after the master cylinder is started is transmitted to the pedal force. A brake device according to a fifth feature is proposed in which the elastic member increases a pedal reaction force together with the simulator spring while being directly transmitted through the member.
 また本発明によれば、前記第1の特徴に加えて、前記隙間が有効となる初期位置へ前記ブレーキペダルを付勢するリターンスプリングを備えることを第6の特徴とするブレーキ装置が提案される。 According to the present invention, in addition to the first feature, there is proposed a brake device characterized by including a return spring that biases the brake pedal to an initial position where the gap is effective. .
 また本発明によれば、前記第1の特徴に加えて、前記ブレーキペダル、前記踏力伝達部材および前記弾発部材を共通の支軸上に配置したことを第7の特徴とするブレーキ装置が提案される。 According to the present invention, in addition to the first feature, a brake device having the seventh feature is that the brake pedal, the treading force transmission member, and the resilient member are arranged on a common support shaft. Is done.
 尚、実施の形態のシミュレータスプリング28は本発明のリターンスプリングに対応し、実施の形態のプッシュロッド63およびアーム78は本発明の踏力伝達部材に対応し、実施の形態の反力スプリング66は本発明の弾発部材に対応し、実施の形態の後部および前部リターンスプリング68A,68Bは本発明のリターンスプリングに対応する。 The simulator spring 28 of the embodiment corresponds to the return spring of the present invention, the push rod 63 and the arm 78 of the embodiment correspond to the treading force transmission member of the present invention, and the reaction force spring 66 of the embodiment corresponds to the main spring. Corresponding to the elastic member of the invention, the rear and front return springs 68A, 68B of the embodiment correspond to the return spring of the present invention.
 本発明の第1の特徴によれば、運転者により操作されるブレーキペダルとブレーキ液圧を発生するマスタシリンダとの間に踏力伝達部材および弾発部材を配置し、踏力伝達部材およびマスタシリンダの間にブレーキペダルがマスタシリンダに対して空走可能な隙間を設定したので、ブレーキペダルがストロークして前記隙間を形成する部材同士が当接するまでは、ブレーキペダルに加えられた踏力が弾発部材を弾性変形させながらマスタシリンダに伝達され、ブレーキペダルがストロークして前記隙間を形成する部材同士が当接した後は、ブレーキペダルに加えられた踏力が踏力伝達部材を介してマスタシリンダに直接伝達される。従って、ブレーキペダルを操作したときに最初に発生するペダル反力をマスタシリンダではなく弾発部材により発生させることができ、弾発部材のばね定数やセット荷重を設定することでブレーキペダルのペダル反力を任意に調整してペダルフィーリングを向上させることができる。 According to the first aspect of the present invention, the pedal force transmission member and the resilient member are disposed between the brake pedal operated by the driver and the master cylinder that generates the brake fluid pressure, and the pedal force transmission member and the master cylinder are Since there is a gap in which the brake pedal can run idle with respect to the master cylinder, the pedaling force applied to the brake pedal is a resilient member until the brake pedal strokes and the members that form the gap contact each other. After the brake pedal strokes and the members forming the gap contact each other, the pedal force applied to the brake pedal is directly transmitted to the master cylinder via the pedal force transmission member. Is done. Therefore, the pedal reaction force that is initially generated when the brake pedal is operated can be generated not by the master cylinder but by the resilient member, and by setting the spring constant and set load of the resilient member, the pedal reaction force of the brake pedal can be reduced. The pedal feeling can be improved by arbitrarily adjusting the force.
 また本発明の第2の特徴によれば、ブレーキペダルがストロークして前記隙間を形成する部材同士が当接したときの踏力がマスタシリンダの起動荷重を超えているので、前記隙間を形成する部材同士が当接したときには既にマスタシリンダが起動しており、よってマスタシリンダの起動に伴うペダル反力の急増が防止されてペダルフィーリングの悪化を防止することができる。 Further, according to the second feature of the present invention, the pedal force when the brake pedal strokes and the members forming the gap contact each other exceeds the starting load of the master cylinder. When the two come into contact with each other, the master cylinder has already been activated. Therefore, a sudden increase in the pedal reaction force accompanying the activation of the master cylinder can be prevented, and deterioration of the pedal feeling can be prevented.
 また本発明の第3の特徴によれば、マスタシリンダの起動後に圧縮されるリターンスプリングを備えるので、マスタシリンダが起動してからブレーキペダルに加えられた踏力が踏力伝達部材を介して直接伝達される間、弾発部材はリターンスプリングと共にペダル反力を漸増させることができ、ブレーキ反力をリターンスプリングおよび弾発部材の協調で付与することが可能となる。 According to the third aspect of the present invention, since the return spring is compressed after the master cylinder is started, the pedal force applied to the brake pedal after the master cylinder is started is directly transmitted via the pedal force transmission member. During this time, the elastic member can gradually increase the pedal reaction force together with the return spring, and the brake reaction force can be applied in cooperation with the return spring and the elastic member.
 また本発明の第4の特徴によれば、ブレーキペダルがストロークして前記隙間を形成する部材同士が当接したときの踏力がストロークシミュレータの起動荷重を超えているので、前記隙間を形成する部材同士が当接したときには既にストロークシミュレータが起動しており、よってストロークシミュレータの起動に伴うペダル反力の急増が防止されてペダルフィーリングの悪化を防止することができる。 Further, according to the fourth feature of the present invention, since the pedaling force when the brake pedal strokes and the members forming the gap contact each other exceeds the starting load of the stroke simulator, the member forming the gap When the two come into contact with each other, the stroke simulator has already been activated. Therefore, a sudden increase in the pedal reaction force accompanying the activation of the stroke simulator is prevented, and deterioration of the pedal feeling can be prevented.
 また本発明の第5の特徴によれば、ストロークシミュレータの起動後に圧縮されるシミュレータスプリングを備えるので、マスタシリンダが起動してからブレーキペダルに加えられた踏力が前記踏力伝達部材を介して直接伝達される間、弾発部材は前記シミュレータスプリングと共にペダル反力を増加させることができ、ブレーキ反力をシミュレータスプリングおよび弾発部材の協調で付与することが可能となる。 According to the fifth aspect of the present invention, since the simulator spring is compressed after the stroke simulator is activated, the pedal force applied to the brake pedal after the master cylinder is activated is directly transmitted via the pedal force transmitting member. During this time, the elastic member can increase the pedal reaction force together with the simulator spring, and the brake reaction force can be applied in cooperation with the simulator spring and the elastic member.
 また本発明の第6の特徴によれば、隙間が有効となる初期位置へブレーキペダルを付勢するリターンスプリングを備えるので、このリターンスプリングによりブレーキペダルのストロークの全域でペダル反力を調整することができる。 According to the sixth aspect of the present invention, a return spring that biases the brake pedal to an initial position where the gap is effective is provided, so that the pedal reaction force can be adjusted over the entire stroke of the brake pedal by the return spring. Can do.
 また本発明の第7の特徴によれば、ブレーキペダル、踏力伝達部材および弾発部材を共通の支軸上に配置したので、弾発部材をブレーキペダルのストローク方向に伸縮させる場合に比べてスペース効率を向上させることができる。 According to the seventh feature of the present invention, since the brake pedal, the treading force transmitting member, and the resilient member are arranged on a common support shaft, the space is larger than when the resilient member is expanded and contracted in the stroke direction of the brake pedal. Efficiency can be improved.
図1は車両用ブレーキ装置の正常時の液圧回路図である。(第1の実施の形態)FIG. 1 is a hydraulic circuit diagram of the vehicle brake device when it is normal. (First embodiment) 図2は図1に対応する異常時の液圧回路図である。(第1の実施の形態)FIG. 2 is a hydraulic circuit diagram at the time of abnormality corresponding to FIG. (First embodiment) 図3は図3の3部拡大図である。(第1の実施の形態)FIG. 3 is an enlarged view of part 3 of FIG. (First embodiment) 図4はブレーキペダルのストロークとペダル反力との関係を示すグラフである。(第1の実施の形態)FIG. 4 is a graph showing the relationship between the brake pedal stroke and the pedal reaction force. (First embodiment) 図5はブレーキ装置の正面図である。(第2の実施の形態)FIG. 5 is a front view of the brake device. (Second Embodiment) 図6は図5の6-6線矢視図である。(第2の実施の形態)6 is a view taken along line 6-6 in FIG. (Second Embodiment) 図7は図5の7部拡大断面図である。(第2の実施の形態)FIG. 7 is an enlarged sectional view of part 7 of FIG. (Second Embodiment) 図8はブレーキペダル、アームおよび反力スプリングの分解斜視図である。(第2の実施の形態)FIG. 8 is an exploded perspective view of the brake pedal, arm, and reaction force spring. (Second Embodiment) 図9は図5の9-9線断面図である。(第2の実施の形態)9 is a cross-sectional view taken along line 9-9 of FIG. (Second Embodiment)
11    マスタシリンダ
12    ブレーキペダル
28    シミュレータスプリング(リターンスプリング)
63    プッシュロッド(踏力伝達部材)
66    反力スプリング(弾発部材)
68A   後部リターンスプリング(リターンスプリング)
68B   前部リターンスプリング(リターンスプリング)
75    支軸
78    アーム(踏力伝達部材)
79    リターンスプリング
α     隙間
F     ペダル反力
F1    マスタシリンダの起動荷重
F1+F2 ストロークシミュレータの起動荷重
11 Master cylinder 12 Brake pedal 28 Simulator spring (return spring)
63 Push rod (treading force transmission member)
66 Reaction spring (elastic member)
68A Rear return spring (return spring)
68B Front return spring (return spring)
75 Support shaft 78 Arm (pedal force transmission member)
79 Return spring α Clearance F Pedal reaction force F1 Master cylinder starting load F1 + F2 Stroke simulator starting load
  以下、本発明の実施の形態を添付の図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第1の実施の形態First embodiment
 図1~図4は本発明の第1の実施の形態を示すものである。 1 to 4 show a first embodiment of the present invention.
 図1に示すように、タンデム型のマスタシリンダ11は、運転者がブレーキペダル12を踏む踏力に応じたブレーキ液圧を出力する後部液圧室13Aおよび前部液圧室13Bを備えており、後部液圧室13Aは液路Pa,Pc,Pd,Peを介して例えば左前輪および右後輪のディスクブレーキ装置14,15のホイールシリンダ16,17に接続され、前部液圧室13Bは液路Qa,Qc,Qd,Qeを介して例えば右前輪および左後輪のディスクブレーキ装置18,19のホイールシリンダ20,21に接続される。ブレーキペダル12はリターンスプリング79によって初期位置に向けて付勢される。 As shown in FIG. 1, the tandem master cylinder 11 includes a rear hydraulic chamber 13A and a front hydraulic chamber 13B that output a brake hydraulic pressure corresponding to a pedaling force applied by the driver to the brake pedal 12. The rear hydraulic chamber 13A is connected to, for example, the wheel cylinders 16 and 17 of the disc brake devices 14 and 15 of the left front wheel and the right rear wheel via the fluid paths Pa, Pc, Pd, and Pe. For example, the right front wheel and the left rear wheel are connected to the wheel cylinders 20 and 21 of the disc brake devices 18 and 19 via the roads Qa, Qc, Qd, and Qe. The brake pedal 12 is biased toward the initial position by the return spring 79.
 液路Pa,Qaと液路Pc,Qcとの間にスレーブシリンダ23が配置される。また液路Qaから分岐する液路Ra,Rbには、常閉型電磁弁である反力許可弁25を介してストロークシミュレータ26が接続される。ストロークシミュレータ26は、シリンダ27にシミュレータスプリング28で付勢されたピストン29を摺動自在に嵌合させたもので、ピストン29の反シミュレータスプリング28側に形成された液室30が液路Rbに連通する。 The slave cylinder 23 is disposed between the liquid paths Pa and Qa and the liquid paths Pc and Qc. A stroke simulator 26 is connected to the liquid paths Ra and Rb branched from the liquid path Qa via a reaction force permission valve 25 that is a normally closed electromagnetic valve. The stroke simulator 26 has a piston 29 urged by a simulator spring 28 slidably fitted to a cylinder 27, and a liquid chamber 30 formed on the anti-simulator spring 28 side of the piston 29 is connected to a liquid path Rb. Communicate.
 スレーブシリンダ23のアクチュエータ51は、電動モータ52の回転軸に設けた駆動ベベルギヤ53と、駆動ベベルギヤ53に噛合する従動ベベルギヤ54と、従動ベベルギヤ54により作動するボールねじ機構55とを備える。アクチュエータハウジング56に一対のボールベアリング57,57を介してスリーブ58が回転自在に支持されており、このスリーブ58の内周に出力軸59が同軸に配置されるとともに、その外周に従動ベベルギヤ54が固定される。 The actuator 51 of the slave cylinder 23 includes a drive bevel gear 53 provided on the rotating shaft of the electric motor 52, a driven bevel gear 54 that meshes with the drive bevel gear 53, and a ball screw mechanism 55 that is operated by the driven bevel gear 54. A sleeve 58 is rotatably supported on the actuator housing 56 via a pair of ball bearings 57, 57. An output shaft 59 is coaxially disposed on the inner periphery of the sleeve 58, and a driven bevel gear 54 is provided on the outer periphery thereof. Fixed.
 スレーブシリンダ23のシリンダ本体36の内部に一対のリターンスプリング37A,37Bで後退方向に付勢された一対のピストン38A,38Bが摺動自在に配置されており、ピストン38A,38Bの前面に一対の液圧室39A,39Bが区画される。後側のピストン38Aの後端に前記出力軸59の前端が当接する。一方の液圧室39Aはポート40A,41Aを介して液路Pa,Pcに連通し、他方の液圧室39Bはポート40B,41Bを介して液路Qa,Qcに連通する。 A pair of pistons 38A and 38B urged in a backward direction by a pair of return springs 37A and 37B are slidably disposed in the cylinder main body 36 of the slave cylinder 23, and a pair of pistons 38A and 38B are disposed on the front surfaces of the pistons 38A and 38B. The hydraulic chambers 39A and 39B are partitioned. The front end of the output shaft 59 contacts the rear end of the rear piston 38A. One hydraulic chamber 39A communicates with fluid paths Pa and Pc via ports 40A and 41A, and the other hydraulic chamber 39B communicates with fluid paths Qa and Qc via ports 40B and 41B.
 液路Qaにはマスタシリンダ11が発生するブレーキ液圧を検出する液圧センサSaが設けられ、液路Qcにはスレーブシリンダ23が発生するブレーキ液圧を検出する液圧センサSbが設けられる。液圧センサSa,Sbからの信号が入力される図示せぬ電子制御ユニットは、反力許可弁25およびスレーブシリンダ23の作動を制御する。 The fluid passage Qa is provided with a fluid pressure sensor Sa for detecting the brake fluid pressure generated by the master cylinder 11, and the fluid passage Qc is provided with a fluid pressure sensor Sb for detecting the brake fluid pressure generated by the slave cylinder 23. An electronic control unit (not shown) to which signals from the hydraulic pressure sensors Sa and Sb are input controls the operation of the reaction force permission valve 25 and the slave cylinder 23.
 図3から明らかなように、支点ピン61で上端を枢支されたブレーキペダル12の中間部に支点ピン62を介してプッシュロッド63の後端が枢支される。プッシュロッド63のブレーキペダル12側の端部に設けたスプリングシート64と、マスタシリンダ11の後部ピストン67Aの後端との間に、コイルスプリングよりなる反力スプリング66が縮設される。マスタシリンダ11の後部液圧室13Aの後方に配置した後部ピストン67Aは後部リターンスプリング68Aで後方に付勢され、マスタシリンダ11の前部液圧室13Bの後方に配置した前部ピストン67Bは前部リターンスプリング68Bで後方に付勢される。ブレーキペダル12の非操作時において、ブレーキペダル12から前方に延びるプッシュロッド63の前端と後部ピストン67Aの後端との間には、無効ストロークを発生させるための隙間αが形成される。 As is clear from FIG. 3, the rear end of the push rod 63 is pivotally supported via the fulcrum pin 62 on the intermediate portion of the brake pedal 12 whose upper end is pivotally supported by the fulcrum pin 61. A reaction force spring 66 formed of a coil spring is contracted between a spring seat 64 provided at the end of the push rod 63 on the brake pedal 12 side and the rear end of the rear piston 67A of the master cylinder 11. The rear piston 67A arranged behind the rear hydraulic chamber 13A of the master cylinder 11 is urged rearward by a rear return spring 68A, and the front piston 67B arranged behind the front hydraulic chamber 13B of the master cylinder 11 is moved forward. Part return spring 68B is urged rearward. When the brake pedal 12 is not operated, a gap α for generating an invalid stroke is formed between the front end of the push rod 63 extending forward from the brake pedal 12 and the rear end of the rear piston 67A.
 次に、上記構成を備えた本発明の第1の実施の形態の作用について説明する。 Next, the operation of the first embodiment of the present invention having the above configuration will be described.
 システムが正常に機能する正常時には、常閉型電磁弁よりなる反力許可弁25が励磁されて開弁する。この状態で運転者がブレーキペダル12を踏んでマスタシリンダ11が作動し、液路Qaに設けた液圧センサがブレーキ液圧の増加を検出すると、スレーブシリンダ23のアクチュエータ51が作動する。即ち、電動モータ52を一方向に駆動すると、駆動ベベルギヤ53、従動ベベルギヤ54およびボールねじ機構55を介して出力軸59が前進することで、出力軸59に押圧された一対のピストン38A,38Bが前進する。ピストン38A,38Bが前進を開始した直後に液路Pa,Qaに連なるポート40A,40Bが閉塞されるため、液圧室39A,39Bにブレーキ液圧が発生し、このブレーキ液圧はディスクブレーキ装置14,15,18,19のホイールシリンダ16,17;20,21に伝達され、各車輪を制動する。 When the system is functioning normally, the reaction force permission valve 25 comprising a normally closed solenoid valve is excited and opened. In this state, when the driver depresses the brake pedal 12, the master cylinder 11 is activated, and when the hydraulic pressure sensor provided in the fluid passage Qa detects an increase in the brake hydraulic pressure, the actuator 51 of the slave cylinder 23 is activated. That is, when the electric motor 52 is driven in one direction, the output shaft 59 advances through the drive bevel gear 53, the driven bevel gear 54, and the ball screw mechanism 55, so that the pair of pistons 38A and 38B pressed against the output shaft 59 Advance. Immediately after the pistons 38A and 38B start moving forward, the ports 40A and 40B connected to the fluid paths Pa and Qa are closed, so that brake fluid pressure is generated in the fluid pressure chambers 39A and 39B. 14, 15, 18, 19 wheel cylinders 16, 17; 20, 21 to brake each wheel.
 このとき、マスタシリンダ11の前部液圧室13Bが発生したブレーキ液圧は開弁した反力許可弁25を介してストロークシミュレータ26の液室30に伝達され、そのピストン29をシミュレータスプリング28に抗して移動させることで、ブレーキペダル12のストロークを許容するとともに擬似的なペダル反力を発生させて運転者の違和感を解消することができる。 At this time, the brake fluid pressure generated in the front fluid pressure chamber 13B of the master cylinder 11 is transmitted to the fluid chamber 30 of the stroke simulator 26 via the opened reaction force permission valve 25, and the piston 29 is transferred to the simulator spring 28. By moving it against, the stroke of the brake pedal 12 can be allowed and a pseudo pedal reaction force can be generated to eliminate the driver's uncomfortable feeling.
 そして液路Qcに設けた液圧センサSbで検出したスレーブシリンダ23によるブレーキ液圧が、液路Qaに設けた液圧センサSaで検出したマスタシリンダ11によるブレーキ液圧に応じた大きさになるように、スレーブシリンダ23のアクチュエータ51の作動を制御することで、運転者がブレーキペダル12に入力する踏力に応じた制動力をディスクブレーキ装置14,15,18,19に発生させることができる。 The brake fluid pressure detected by the slave cylinder 23 detected by the fluid pressure sensor Sb provided in the fluid passage Qc becomes a magnitude corresponding to the brake fluid pressure detected by the master cylinder 11 detected by the fluid pressure sensor Sa provided in the fluid passage Qa. As described above, by controlling the operation of the actuator 51 of the slave cylinder 23, it is possible to cause the disc brake devices 14, 15, 18, and 19 to generate a braking force corresponding to the pedaling force input to the brake pedal 12 by the driver.
 電源の失陥等によりスレーブシリンダ23が作動不能になると、スレーブシリンダ23が発生するブレーキ液圧に代えて、マスタシリンダ11が発生するブレーキ液圧による制動が行われる。 When the slave cylinder 23 becomes inoperable due to a power failure or the like, braking is performed by the brake fluid pressure generated by the master cylinder 11 instead of the brake fluid pressure generated by the slave cylinder 23.
 即ち、電源が失陥すると、図2に示すように、常閉型電磁弁よりなる反力許可弁25は自動的に閉弁する。この状態では、マスタシリンダ11の前部および後部液圧室13A,13Bにおいて発生したブレーキ液圧は、ストロークシミュレータ26に吸収されることなく、スレーブシリンダ23の液圧室39A,39Bを通過して各車輪のディスクブレーキ装置14,15,18,19のホイールシリンダ16,17;20,21を作動させ、支障なく制動力を発生させることができる。 That is, when the power supply fails, as shown in FIG. 2, the reaction force permission valve 25 composed of a normally closed solenoid valve is automatically closed. In this state, the brake hydraulic pressure generated in the front and rear hydraulic chambers 13A and 13B of the master cylinder 11 passes through the hydraulic chambers 39A and 39B of the slave cylinder 23 without being absorbed by the stroke simulator 26. The wheel cylinders 16, 17; 20, 21 of the disc brake devices 14, 15, 18, 19 of each wheel can be operated to generate a braking force without any trouble.
 さて、運転者がブレーキペダル12を踏むと、図3に示すように、反力スプリング66を圧縮しながらプッシュロッド63が前進するが、プッシュロッド63と後部ピストン67Aとの間に隙間αが存在するため、運転者がブレーキペダル12に加えた踏力はプッシュロッド63を介することなく、ブレーキペダル12から反力スプリング66を介して後部ピストン67Aに伝達される。 When the driver steps on the brake pedal 12, as shown in FIG. 3, the push rod 63 advances while compressing the reaction force spring 66, but there is a gap α between the push rod 63 and the rear piston 67A. Therefore, the pedaling force applied by the driver to the brake pedal 12 is transmitted from the brake pedal 12 to the rear piston 67A via the reaction force spring 66 without passing through the push rod 63.
 図4は、ペダルストロークLに対するペダル反力F(つまりブレーキペダル12の踏力)の関係を示すものである。破線は反力スプリング66が存在しないと仮定した場合のマスタシリンダ11によるペダル反力Fを示すもので、ブレーキペダル12がストロークを開始してもマスタシリンダ11の起動ストロークL1に達するまで、つまりプッシュロッド63が後部ピストン67Aに当接して隙間αが消滅するまで、ペダル反力Fは発生しない。そしてペダルストロークLが起動ストロークL1に達した瞬間にペダル反力Fはマスタシリンダ11の後部および前部リターンスプリング68A,68Bのセット荷重により決まる起動荷重F1まで急激に増加し、そこから後部および前部リターンスプリング68A,68Bの合成したばね定数k1に相当する傾きで漸増する。 FIG. 4 shows the relationship of the pedal reaction force F (that is, the depression force of the brake pedal 12) with respect to the pedal stroke L. The broken line indicates the pedal reaction force F by the master cylinder 11 when it is assumed that the reaction force spring 66 does not exist. Even if the brake pedal 12 starts a stroke, it reaches the start stroke L1 of the master cylinder 11, that is, push. The pedal reaction force F is not generated until the rod 63 comes into contact with the rear piston 67A and the gap α disappears. At the moment when the pedal stroke L reaches the start stroke L1, the pedal reaction force F increases rapidly to the start load F1 determined by the set load of the rear and front return springs 68A and 68B of the master cylinder 11, and from there to the rear and front It gradually increases with a slope corresponding to the combined spring constant k1 of the return springs 68A and 68B.
 また一点鎖線は反力スプリング66が存在しないと仮定した場合のペダルストロークLに対するストロークシミュレータ27によるペダル反力Fの関係を示すもので、ストロークシミュレータ27によるペダル反力Fは、ペダルストロークLがマスタシリンダ11の起動ストロークL1を超えてマスタシリンダ11がブレーキ液圧を発生し、そのブレーキ液圧がストロークシミュレータ27に伝達されたとき(ペダルストローク=L2)、ペダル反力Fが0からシミュレータスプリング28のセット荷重により決まる起動荷重F2まで急激に増加し、そこからシミュレータスプリング28のばね定数k2に相当する傾きで漸増する。 The alternate long and short dash line indicates the relationship between the pedal reaction force F by the stroke simulator 27 and the pedal stroke L when the reaction force spring 66 is not present. When the master cylinder 11 generates a brake fluid pressure exceeding the start stroke L1 of the cylinder 11 and the brake fluid pressure is transmitted to the stroke simulator 27 (pedal stroke = L2), the pedal reaction force F changes from 0 to the simulator spring 28. The starting load F2 determined by the set load increases rapidly, and then gradually increases at an inclination corresponding to the spring constant k2 of the simulator spring 28.
 従って、マスタシリンダ11のペダル反力Fおよびストロークシミュレータ27のペダル反力Fを重ね合わせたペダル反力Fは、図4に実線で示すようにストローク0からマスタシリンダ11の起動ストロークL1までは0、前記起動ストロークL1で0からF1に急増、前記起動ストロークL1からストロークシミュレータ26の起動ストロークL2まで傾きk1で漸増、前記起動ストロークL2でF1+F2に急増、前記起動ストロークL2を超えると傾き(k1×k2)/(k1+k2)で漸増する。 Therefore, the pedal reaction force F obtained by superimposing the pedal reaction force F of the master cylinder 11 and the pedal reaction force F of the stroke simulator 27 is 0 from the stroke 0 to the start stroke L1 of the master cylinder 11 as shown by a solid line in FIG. The start stroke L1 suddenly increases from 0 to F1, gradually increases from the start stroke L1 to the start stroke L2 of the stroke simulator 26 with a slope k1, rapidly increases to F1 + F2 with the start stroke L2, and exceeds the start stroke L2 with a slope (k1 × k2) / (k1 + k2).
 このように、反力スプリング66が存在しない場合には、ペダルストロークL=L1でペダル反力FがF1だけ不連続に急増し、かつペダルストロークL=L2でペダル反力FがF2だけ不連続に急増するため、運転者が感じるペダルフィーリングが低下する問題がある。 Thus, when the reaction force spring 66 does not exist, the pedal reaction force F rapidly increases discontinuously by F1 when the pedal stroke L = L1, and the pedal reaction force F discontinuously increases by F2 when the pedal stroke L = L2. Therefore, there is a problem that the pedal feeling felt by the driver is lowered.
 一方、図4の二点鎖線は本実施の形態に対応するもので、運転者がブレーキペダル12を踏むと、点aにおいて直ちに反力スプリング66が圧縮され、反力スプリング66のセット荷重に対応するF0のペダル反力Fが発生する。このときのペダル反力F=F0はマスタシリンダ11によるペダル反力F=F1よりも大幅に小さく設定されており、かつブレーキペダル12の踏み込みと同時に発生するため、運転者の違和感が解消されてペダルフィーリングが向上する。 On the other hand, the chain double-dashed line in FIG. 4 corresponds to the present embodiment. When the driver steps on the brake pedal 12, the reaction force spring 66 is immediately compressed at the point a, corresponding to the set load of the reaction force spring 66. A pedal reaction force F of F0 is generated. The pedal reaction force F = F0 at this time is set to be significantly smaller than the pedal reaction force F = F1 by the master cylinder 11 and is generated simultaneously with the depression of the brake pedal 12, so that the driver's uncomfortable feeling is eliminated. Pedal feeling is improved.
 ブレーキペダル12がストロークを開始すると、ペダル反力Fは反力スプリング66のばね定数k0に対応する傾きで増加するが、d点においてプッシュロッド63が後部ピストン67Aに当接して隙間αが消滅する前に、b点においてペダル反力Fがマスタシリンダ11の起動反力F1に達するため、マスタシリンダ11が起動してブレーキ液圧を発生する。マスタシリンダ11が起動すると反力スプリング66に加えてマスタシリンダ11の後部および前部リターンスプリング68A,68Bが圧縮されるため、ペダル反力Fは傾き(k0×k1)/(k0+k1)=k3で漸増する。 When the brake pedal 12 starts a stroke, the pedal reaction force F increases with an inclination corresponding to the spring constant k0 of the reaction force spring 66, but at the point d, the push rod 63 contacts the rear piston 67A and the gap α disappears. Before, the pedal reaction force F reaches the starting reaction force F1 of the master cylinder 11 at the point b, so that the master cylinder 11 is started and brake fluid pressure is generated. When the master cylinder 11 is activated, in addition to the reaction force spring 66, the rear and front return springs 68A and 68B of the master cylinder 11 are compressed, so that the pedal reaction force F is inclined (k0 × k1) / (k0 + k1) = k3. Increase gradually.
 そしてd点においてプッシュロッド63が後部ピストン67Aに当接して隙間αが消滅する前に、c点においてペダル反力Fはストロークシミュレータ26の起動反力F1+F2(マスタシリンダ11単独の起動荷重F1とストロークシミュレータ26単独の起動荷重F2との和)に達するため、ストロークシミュレータ26が起動してシミュレータスプリング28が圧縮される。ストロークシミュレータ26が起動すると反力スプリング66およびマスタシリンダ11の後部および前部リターンスプリング68A,68Bに加えてシミュレータスプリング28が圧縮されるため、ペダル反力Fは傾き(k3×k2)/(k3+k2)で漸増する。ここで、k2はシミュレータスプリング28のばね定数である。 Then, before the push rod 63 contacts the rear piston 67A at the point d and the clearance α disappears, the pedal reaction force F becomes the start reaction force F1 + F2 of the stroke simulator 26 at the point c (the start load F1 and the stroke of the master cylinder 11 alone). Therefore, the stroke simulator 26 is activated and the simulator spring 28 is compressed. When the stroke simulator 26 is activated, the simulator spring 28 is compressed in addition to the reaction force spring 66 and the rear and front return springs 68A and 68B of the master cylinder 11, so that the pedal reaction force F is inclined (k3 × k2) / (k3 + k2). ) Gradually increase. Here, k2 is a spring constant of the simulator spring 28.
 そしてd点においてプッシュロッド63が後部ピストン67Aに当接して隙間αが消滅すると、それ以後は反力スプリング66は圧縮されないため、マスタシリンダ11の後部および前部リターンスプリング68A,68Bと、ストロークシミュレータ26のシミュレータスプリング28だけが圧縮され、ペダル反力Fは傾き(k1×k2)/(k1+k2)で漸増する。 When the push rod 63 comes into contact with the rear piston 67A at the point d and the clearance α disappears, the reaction force spring 66 is not compressed thereafter. Therefore, the rear and front return springs 68A and 68B of the master cylinder 11 and the stroke simulator are used. Only the 26 simulator springs 28 are compressed, and the pedal reaction force F gradually increases with an inclination (k1 × k2) / (k1 + k2).
 以上のように、本実施の形態によれば、ブレーキペダル12のペダル反力Fが不連続に急増することなく連続的に増加するため、運転者が感じるペダルフィーリングを改善することができる。しかも反力スプリング66のばね定数やセット荷重を設定することで、ブレーキペダル12のペダル反力を任意に調整してペダルフィーリングを更に向上させることができる。 As described above, according to the present embodiment, since the pedal reaction force F of the brake pedal 12 continuously increases without increasing discontinuously, the pedal feeling felt by the driver can be improved. Moreover, by setting the spring constant and set load of the reaction force spring 66, the pedal reaction force of the brake pedal 12 can be arbitrarily adjusted to further improve the pedal feeling.
 しかもペダル反力Fをリターンスプリング79と、反力スプリング66と、マスタシリンダ11の後部および前部リターンスプリング68A,68Bと、ストロークシミュレータ26のシミュレータスプリング28との協調により付与することができるので、ペダル反力Fの調整の自由度が大幅に高められる。特に、リターンスプリング79によりブレーキペダル12のストロークの全域でペダル反力Fを調整することができる。 Moreover, the pedal reaction force F can be applied by the cooperation of the return spring 79, the reaction force spring 66, the rear and front return springs 68A and 68B of the master cylinder 11, and the simulator spring 28 of the stroke simulator 26. The degree of freedom in adjusting the pedal reaction force F is greatly increased. In particular, the pedal reaction force F can be adjusted over the entire stroke of the brake pedal 12 by the return spring 79.
 また、例えば衝突回避のためにブレーキペダル12に極めて強い踏力が入力されたような場合には、d点においてプッシュロッド63が後部ピストン67Aに当接して隙間αが消滅するため、踏力がマスタシリンダ11に直接入力されてブレーキ液圧発生の応答性が向上する。 For example, when a very strong pedal force is input to the brake pedal 12 to avoid a collision, the push rod 63 abuts against the rear piston 67A at the point d and the gap α disappears. 11 is directly input to improve the response of the brake fluid pressure generation.
第2の実施の形態Second embodiment
 図5~図9は本発明の第2の実施の形態を示すものである。 5 to 9 show a second embodiment of the present invention.
 ダッシュパネル71に複数のボルト72…で固定されたブラケット73に支軸74がボルト75およびナット76で固定されており、この支軸74の左半部にブレーキペダル12の上部が枢支されるとともに、右半部にアーム78の上部が枢支される。ブレーキペダル12は、ブラケット73との間に張設したリターンスプリング79で後方に付勢される。 A support shaft 74 is fixed to a bracket 73 fixed to the dash panel 71 with a plurality of bolts 72 with bolts 75 and nuts 76, and an upper portion of the brake pedal 12 is pivotally supported on the left half portion of the support shaft 74. At the same time, the upper portion of the arm 78 is pivoted on the right half. The brake pedal 12 is urged rearward by a return spring 79 stretched between the brake pedal 12 and the bracket 73.
 ブレーキペダル12およびアーム78の間に支軸74の周囲を囲む捩じりばねよりなる反力スプリング66が配置されており、その両端がブレーキペダル12の係止孔12aおよびアーム78の係止孔78aにそれぞれ係止される。ブレーキペダル12およびアーム78が相互に対向する面にそれぞれ円弧状の突起12b,78bが設けられており、ブレーキペダル12の突起12bの周方向両端には第1、第2ストッパ12c,12dが形成されるとともに、アーム78の突起78bの周方向両端には第1、第2ストッパ78c,78dが形成される。ブレーキペダル12およびアーム78は反力スプリング66によってそれぞれ図9(A)の矢印a,b方向に付勢されており、ブレーキペダル12の非操作時には、前記付勢力a,bでブレーキペダル12およびアーム78の第1ストッパ12c,78c同士が当接し、第2ストッパ12d,78d間に隙間α(図9(A)参照)が形成される。またブレーキペダル12に大きな踏力が入力すると、反力スプリング66を圧縮しながらブレーキペダル12およびアーム78が相対回転し、前記隙間αが消滅してブレーキペダル12およびアーム78の第2ストッパ12d,78d同士が当接する(図9(B)参照)。 A reaction force spring 66 made of a torsion spring surrounding the support shaft 74 is disposed between the brake pedal 12 and the arm 78, and both ends of the reaction spring 66 are a locking hole 12 a of the brake pedal 12 and a locking hole of the arm 78. 78a, respectively. Arc-shaped protrusions 12b and 78b are respectively provided on surfaces of the brake pedal 12 and the arm 78 facing each other, and first and second stoppers 12c and 12d are formed at both circumferential ends of the protrusion 12b of the brake pedal 12. At the same time, first and second stoppers 78c and 78d are formed at both ends of the projection 78b of the arm 78 in the circumferential direction. The brake pedal 12 and the arm 78 are urged in the directions of arrows a and b in FIG. 9A by the reaction force spring 66, respectively. When the brake pedal 12 is not operated, the brake pedal 12 and the arm 78 are applied with the urging forces a and b. The first stoppers 12c and 78c of the arm 78 come into contact with each other, and a gap α (see FIG. 9A) is formed between the second stoppers 12d and 78d. When a large pedaling force is input to the brake pedal 12, the brake pedal 12 and the arm 78 rotate relative to each other while compressing the reaction force spring 66, the gap α disappears, and the second stoppers 12d and 78d of the brake pedal 12 and the arm 78 are lost. They come into contact with each other (see FIG. 9B).
 そして第2の実施の形態では、プッシュロッド63の先端とマスタシリンダ11の後部ピストン67Aとの間に隙間α(図3参照)は設定されておらず、プッシュロッド63の先端とマスタシリンダ11の後部ピストン67Aとが常時当接している。 In the second embodiment, the clearance α (see FIG. 3) is not set between the tip of the push rod 63 and the rear piston 67A of the master cylinder 11, and the tip of the push rod 63 and the master cylinder 11 The rear piston 67A is always in contact.
 しかして、ブレーキペダル12を非操作位置から踏み込むと、踏力が反力スプリング66のセット荷重を超えた時点でブレーキペダル12がストロークを開始し、ブレーキペダル12およびアーム78の第1ストッパ12c,78c同士の接触を解除して反力スプリング66を圧縮しながら、ブレーキペダル12のストロークは反力スプリング66、アーム78およびプッシュロッド63を介してマスタシリンダ11に伝達される。そしてブレーキペダル12およびアーム78の第2ストッパ12d,78d同士が当接する前に、踏力がマスタシリンダ11の起動荷重F1を超えることで、マスタシリンダ11の後部ピストン67Aが前進を開始する。 When the brake pedal 12 is stepped on from the non-operation position, the brake pedal 12 starts a stroke when the pedaling force exceeds the set load of the reaction force spring 66, and the brake pedal 12 and the first stoppers 12c and 78c of the arm 78 are started. The stroke of the brake pedal 12 is transmitted to the master cylinder 11 through the reaction force spring 66, the arm 78 and the push rod 63 while releasing the contact between them and compressing the reaction force spring 66. Then, before the brake pedal 12 and the second stoppers 12d, 78d of the arm 78 come into contact with each other, the pedaling force exceeds the starting load F1 of the master cylinder 11, whereby the rear piston 67A of the master cylinder 11 starts moving forward.
 この第2の実施の形態によれば、第1の実施の形態のプッシュロッド63と後部ピストン67Aとの間に形成された隙間α(図3参照)の機能を、ブレーキペダル12およびアーム78の第2ストッパ12d,78d間の隙間α(図9(A)参照)が果たし、かつ第1の実施の形態のコイルスプリングよりなる反力スプリング66の機能を、捩じりばねよりなる反力スプリング66が果たすことで、第1の実施の形態と同様の作用効果を達成することができる。しかもブレーキペダル12、アーム78および反力スプリング66を共通の支軸74上に配置したので、反力スプリング66をブレーキペダル12のストローク方向に伸縮させる場合に比べてスペース効率を向上させることができる。 According to the second embodiment, the function of the gap α (see FIG. 3) formed between the push rod 63 and the rear piston 67A of the first embodiment is used for the brake pedal 12 and the arm 78. The clearance α between the second stoppers 12d and 78d (see FIG. 9A) is achieved, and the function of the reaction force spring 66 made of the coil spring of the first embodiment is the reaction force spring made of a torsion spring. As 66 performs, the same operational effects as those of the first embodiment can be achieved. Moreover, since the brake pedal 12, the arm 78, and the reaction force spring 66 are disposed on the common support shaft 74, space efficiency can be improved as compared with the case where the reaction force spring 66 is expanded and contracted in the stroke direction of the brake pedal 12. .
  以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。 Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.
 例えば、実施の形態ではBBW式ブレーキ装置を例示したが、本発明はBBW式以外のコンベンショナルなブレーキ装置に対しても適用することができる。 For example, in the embodiment, the BBW type brake device is exemplified, but the present invention can also be applied to a conventional brake device other than the BBW type.

Claims (7)

  1.  運転者により操作されるブレーキペダル(12)とブレーキ液圧を発生するマスタシリンダ(11)との間に踏力伝達部材(63,78)および弾発部材(66)が配置され、前記踏力伝達部材(63,78)と前記マスタシリンダ(11)との間には前記ブレーキペダル(12)の操作時に前記ブレーキペダル(12)が前記マスタシリンダ(11)に対して空走可能な隙間(α)が設定され、
     操作初期において前記ブレーキペダル(12)に加えられた踏力が前記弾発部材(66)を介して前記マスタシリンダ(11)に伝達されるとともに、前記隙間(α)が前記弾発部材(66)の付勢力に抗して減少するように構成され、
     前記隙間(α)を形成する部材同士が当接した後は、前記ブレーキペダル(12)に加えられた踏力が前記踏力伝達部材(63,78)を介して前記マスタシリンダ(11)に直接伝達されることを特徴とするブレーキ装置。
    A pedaling force transmission member (63, 78) and a resilient member (66) are arranged between the brake pedal (12) operated by the driver and the master cylinder (11) generating the brake fluid pressure, and the pedaling force transmission member (63, 78) and the master cylinder (11), a gap (α) between which the brake pedal (12) can run idle with respect to the master cylinder (11) when the brake pedal (12) is operated. Is set,
    The pedal force applied to the brake pedal (12) in the initial stage of operation is transmitted to the master cylinder (11) via the elastic member (66), and the gap (α) is transmitted to the elastic member (66). Configured to decrease against the biasing force of
    After the members forming the gap (α) come into contact with each other, the pedaling force applied to the brake pedal (12) is directly transmitted to the master cylinder (11) via the pedaling force transmission member (63, 78). Brake device characterized by being made.
  2.  前記ブレーキペダル(12)に加えられた踏力が前記踏力伝達部材(63,78)を介して前記マスタシリンダ(11)に直接伝達される前に、前記踏力は前記マスタシリンダ(11)の起動荷重(F1)を超えることを特徴とする、請求項1に記載のブレーキ装置。 Before the pedaling force applied to the brake pedal (12) is directly transmitted to the master cylinder (11) via the pedaling force transmission member (63, 78), the pedaling force is applied to the starting load of the master cylinder (11). The brake device according to claim 1, wherein the brake device exceeds (F1).
  3.  前記マスタシリンダ(11)の起動後に圧縮されるリターンスプリング(68A,68B)を備え、前記マスタシリンダ(11)が起動してから前記ブレーキペダル(12)に加えられた踏力が前記踏力伝達部材(63,78)を介して直接伝達される間、前記弾発部材(66)は前記リターンスプリング(68A,68B)と共にペダル反力(F)を漸増させることを特徴とする、請求項2に記載のブレーキ装置。 Return springs (68A, 68B) that are compressed after the master cylinder (11) is started, and the pedal force applied to the brake pedal (12) after the master cylinder (11) is started are transmitted to the pedal force transmission member ( 63. The elastic member (66) gradually increases the pedal reaction force (F) together with the return spring (68A, 68B) during direct transmission via 63, 78). Brake equipment.
  4.  前記マスタシリンダ(11)が送出するブレーキ液を吸収して模擬的なブレーキ反力を発生させるストロークシミュレータ(26)を備え、
     前記ブレーキペダル(12)に加えられた踏力が前記踏力伝達部材(63,78)を介して前記マスタシリンダ(11)に直接伝達される前に、前記踏力はストロークシミュレータ(26)の起動荷重(F1+F2)を超えることを特徴とする、請求項1に記載のブレーキ装置。
    A stroke simulator (26) for absorbing a brake fluid delivered by the master cylinder (11) and generating a simulated brake reaction force;
    Before the pedaling force applied to the brake pedal (12) is directly transmitted to the master cylinder (11) via the pedaling force transmission member (63, 78), the pedaling force is applied to the start load ( The braking device according to claim 1, wherein F1 + F2) is exceeded.
  5.  前記ストロークシミュレータ(26)の起動後に圧縮されるシミュレータスプリング(28)を備え、前記マスタシリンダ(11)が起動してから前記ブレーキペダル(12)に加えられた踏力が前記踏力伝達部材(63,78)を介して直接伝達される間、前記弾発部材(66)は前記シミュレータスプリング(28)と共にペダル反力(F)を増加させることを特徴とする、請求項4に記載のブレーキ装置。 A simulator spring (28) compressed after activation of the stroke simulator (26) is provided, and the pedal force applied to the brake pedal (12) after the master cylinder (11) is activated is transmitted to the pedal force transmission member (63, The brake device according to claim 4, characterized in that the resilient member (66) increases the pedal reaction force (F) together with the simulator spring (28) during direct transmission via 78).
  6.  前記隙間(α)が有効となる初期位置へ前記ブレーキペダル(12)を付勢するリターンスプリング(79)を備えることを特徴とする、請求項1に記載のブレーキ装置。 The brake device according to claim 1, further comprising a return spring (79) for urging the brake pedal (12) to an initial position where the gap (α) is effective.
  7.  前記ブレーキペダル(12)、前記踏力伝達部材(78)および前記弾発部材(66)を共通の支軸(74)上に配置したことを特徴とする、請求項1に記載のブレーキ装置。 The brake device according to claim 1, wherein the brake pedal (12), the treading force transmission member (78) and the elastic member (66) are arranged on a common support shaft (74).
PCT/JP2009/069168 2008-11-12 2009-11-11 Braking device WO2010055842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010537784A JPWO2010055842A1 (en) 2008-11-12 2009-11-11 Brake device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-289744 2008-11-12
JP2008289744 2008-11-12

Publications (1)

Publication Number Publication Date
WO2010055842A1 true WO2010055842A1 (en) 2010-05-20

Family

ID=42169976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069168 WO2010055842A1 (en) 2008-11-12 2009-11-11 Braking device

Country Status (2)

Country Link
JP (1) JPWO2010055842A1 (en)
WO (1) WO2010055842A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016104836A1 (en) 2015-03-17 2016-09-22 Toyota Jidosha Kabushiki Kaisha Brake actuator
JP2016172547A (en) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 Brake operation device
FR3042288A1 (en) * 2015-10-09 2017-04-14 Peugeot Citroen Automobiles Sa BRAKE PEDAL DEVICE FOR A RECUPERATIVE BRAKE SYSTEM OF A MOTOR VEHICLE
CN107458358A (en) * 2017-07-03 2017-12-12 清华大学苏州汽车研究院(相城) A kind of built-in braking PTS device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165031A (en) * 1993-12-13 1995-06-27 Nissan Motor Co Ltd Brake control device
JPH11321623A (en) * 1998-03-10 1999-11-24 Aisin Seiki Co Ltd Master cylinder device and vehicle brake device
JP2008222031A (en) * 2007-03-13 2008-09-25 Honda Motor Co Ltd Brake control system
JP2008265728A (en) * 2007-03-27 2008-11-06 Advics:Kk Vehicle brake system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165031A (en) * 1993-12-13 1995-06-27 Nissan Motor Co Ltd Brake control device
JPH11321623A (en) * 1998-03-10 1999-11-24 Aisin Seiki Co Ltd Master cylinder device and vehicle brake device
JP2008222031A (en) * 2007-03-13 2008-09-25 Honda Motor Co Ltd Brake control system
JP2008265728A (en) * 2007-03-27 2008-11-06 Advics:Kk Vehicle brake system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016104836A1 (en) 2015-03-17 2016-09-22 Toyota Jidosha Kabushiki Kaisha Brake actuator
JP2016172547A (en) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 Brake operation device
CN105984445A (en) * 2015-03-17 2016-10-05 丰田自动车株式会社 Brake operating device
FR3042288A1 (en) * 2015-10-09 2017-04-14 Peugeot Citroen Automobiles Sa BRAKE PEDAL DEVICE FOR A RECUPERATIVE BRAKE SYSTEM OF A MOTOR VEHICLE
CN107458358A (en) * 2017-07-03 2017-12-12 清华大学苏州汽车研究院(相城) A kind of built-in braking PTS device
CN107458358B (en) * 2017-07-03 2024-04-09 清华大学苏州汽车研究院(相城) Built-in brake pedal stroke sensor device

Also Published As

Publication number Publication date
JPWO2010055842A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP4503007B2 (en) Brake device
US8096122B2 (en) Electrically driven brake booster and master cylinder
JP4792416B2 (en) Brake device
US8827378B2 (en) Brake apparatus
JP6060057B2 (en) Brake device
JP5048348B2 (en) Brake device
JP5123543B2 (en) Brake device
JP2009090932A (en) Braking device
US8070239B2 (en) Regenerative braking coordination device
WO2011145673A1 (en) Brake device
JP2010531768A (en) Hydraulic brake device control system
JP2008030599A (en) Electric booster
US10946849B2 (en) Brake system for vehicle
WO2010055842A1 (en) Braking device
JP2013540642A5 (en)
JP4702584B2 (en) Brake hydraulic pressure generator for vehicle, and hydraulic brake device provided with the hydraulic pressure generator
JP6257028B2 (en) Brake fluid pressure control system for vehicles
JP2010241314A (en) Bbw-type braking device
JP2011131886A (en) Electric booster
JP2006056449A (en) Brake system
JP2012522676A (en) Brake actuator unit for operating brake-by-wire automotive brake systems
JP4491827B2 (en) Brake device for vehicle
JP2009143302A (en) Stroke simulator
JP2010215069A (en) Bbw type brake device
JP6256910B2 (en) Operating force input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010537784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826089

Country of ref document: EP

Kind code of ref document: A1