WO2010055830A1 - 金属類含有粒子の処理方法 - Google Patents

金属類含有粒子の処理方法 Download PDF

Info

Publication number
WO2010055830A1
WO2010055830A1 PCT/JP2009/069128 JP2009069128W WO2010055830A1 WO 2010055830 A1 WO2010055830 A1 WO 2010055830A1 JP 2009069128 W JP2009069128 W JP 2009069128W WO 2010055830 A1 WO2010055830 A1 WO 2010055830A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
water
borax
particle
treatment liquid
Prior art date
Application number
PCT/JP2009/069128
Other languages
English (en)
French (fr)
Inventor
修 杉山
Original Assignee
株式会社Hi-Van
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Hi-Van filed Critical 株式会社Hi-Van
Priority to JP2010537776A priority Critical patent/JPWO2010055830A1/ja
Publication of WO2010055830A1 publication Critical patent/WO2010055830A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/40Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by heating to effect chemical change, e.g. pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • B09B3/29Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix involving a melting or softening step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/24Organic substances containing heavy metals
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/43Inorganic substances containing heavy metals, in the bonded or free state

Definitions

  • the present invention relates to a method for treating particles containing metals, and more particularly to a method for treating particles containing metals, characterized by heating after impregnating a specific treatment solution. It is.
  • waste generated from cities and factories has increased, and the importance of detoxifying the waste has increased.
  • waste containing heavy metals is a special management waste, and strict regulations are provided for its treatment and disposal, and detoxification treatment is indispensable.
  • Patent Documents 1 to 3 As a method for treating waste containing these heavy metals, a method using borax in the presence of water is known, but sufficient elution cannot be controlled over time, and further improvement is necessary.
  • acetic minerals inorganic fibers
  • devil minerals such as devil minerals, asbestos (various asbestos such as chrysotile and crocidolite), synthetic zonotlite, and glass fibers, which are feared to be called quiet time bombs, are discarded. Further progress has been desired with regard to the disposal process because it is easily scattered during processing and it is difficult to transform a needle-like shape that exhibits toxicity into a shape that does not exhibit toxicity.
  • asbestos waste is a global problem, and if it is not solved quickly, it will leave a root in future generations.
  • plasma melting slag technology at a high temperature of 1500 ° C. or higher
  • detoxification technology at 700 ° C. using a halogen compound, etc.
  • Synthetic zonotlite which is an alternative to asbestos, also has poor binding properties, and the surface layer fibers are easily detached, and the detached fibers float, and there is a high risk of sucking them, causing health damage in the near future. There is a high possibility that it will be detected. Therefore, an improved technique is now desired for the disposal problem. Further, the glass fiber has a bad influence on the work of waste disposal such as tingling. That is, for example, “GFRP, which is a composite material in which glass fibers are dispersed in unsaturated polyester” frequently used in materials for ships, septic tanks, bathtubs, etc., has no excellent waste disposal method. It was.
  • JP-A-5-087985 Japanese Patent Application Laid-Open No. 11-099370 JP 2002-106815 A JP-A-6-090616 JP 2003-019500 A JP 2005-254195 A
  • the present invention has been made in view of the above-mentioned background art, and the problem is that particles containing harmful heavy metals, needle-shaped particles, etc., particularly waste particles, are completely, safely, easily and inexpensively detoxified. It is to provide a way to do. It is another object of the present invention to provide a treatment method capable of maintaining the effect of the detoxification treatment over time and preventing secondary pollution.
  • the present inventor used at least a treatment liquid containing borax, silicone and water, and the treatment liquid was made into “particles containing metals” under certain conditions. It was found that particles containing metals can be completely detoxified by impregnation and heat melting under the present circumstances, and the present invention has been completed. In addition, the composite particles obtained using the particle treatment method of the present invention are found to be excellent in flame retardancy, conductivity, water repellency, weather resistance, chemical resistance, antistatic properties, cost performance, etc. The present invention has been completed.
  • the present invention is a particle treatment characterized by impregnating at least a treatment liquid containing borax, silicone and water into particles containing metals and then heating and melting at a furnace temperature of 600 ° C. or higher. A method is provided.
  • the particles containing the metal before impregnating the particles containing the metal with the treatment liquid, the particles containing the metal are impregnated with the pretreatment liquid containing borax and water at 60 ° C. or higher.
  • the particle processing method is provided.
  • the present invention provides a composite particle obtained by using the above-described particle processing method and containing metals, boron, carbon and silicon.
  • particles containing metals for example, particles containing waste particles, heavy metal particles and needle-like particles can be completely detoxified until they become stable over time, Safe, simple and inexpensive.
  • a treatment liquid containing at least borax, silicone and water may be abbreviated as particles containing metals (hereinafter simply abbreviated as “particles”). ) And then melted by heating. Further, preferably, before the treatment, particles containing the metals are impregnated with a pretreatment solution containing borax and water (hereinafter simply referred to as “pretreatment solution”). To do.
  • pretreatment solution a pretreatment solution containing borax and water
  • the treatment liquid and the pretreatment liquid may be prepared separately, but after treatment with the pretreatment liquid, a treatment liquid may be prepared by additionally blending silicone into the pretreatment liquid.
  • a particle with a pretreatment liquid or a treatment liquid means that the pretreatment liquid or the treatment liquid is substantially added to secondary particles (also referred to as “particles”) that are particles or an aggregate of particles. It means to be in a state where it has soaked until it reaches a certain invariable state.
  • the adhesion of the pretreatment liquid or the treatment liquid to the surface of the particles and the intrusion into the inside of the particles are both included in “impregnating the particles”. It is also included in “impregnating particles” to penetrate into the interior of secondary particles or particle clusters and adhere to the surface of substantial primary particles.
  • Borax is an essential component in both the treatment liquid and the pretreatment liquid.
  • the “borax” in the present invention is a hydrous borate mineral of sodium, specifically [Na 2 B 4 O 7 ⁇ 10H 2 O] or [Na 2 B 4 O 5 (OH) 4 ⁇ 8H. 2 O], or a substance represented by [Na 2 B 4 O 7 ⁇ 5H 2 O] or [Na 2 B 4 O 5 (OH) 4 ⁇ 3H 2 O], and hydrated sodium tetraborate It is.
  • Borax becomes anhydrous when heated to 350-400 ° C., and when heated further, melts at around 878 ° C. to form a colorless and transparent glass.
  • the borax melt has the property of dissolving many metal oxides and forms a borate with the metal to stabilize the metals. In particular, harmful heavy metals and borates can be generated to stabilize and detoxify heavy metals.
  • the borax melt surrounds heavy metal-containing particles, acicular particle-containing particles, waste particles, waste particles containing heavy metals or acicular particles, etc., and stable and harmless composite particles over time. Can be generated.
  • the obtained composite particles are flame retardant; antistatic property due to conductivity; chemical resistance against acid, alkali, organic solvent, etc .; fluidity due to spherical shape; weather resistance; water repellency; Excellent cost performance.
  • the content of the borax in the treatment liquid and the pretreatment liquid can be appropriately adjusted depending on the kind and particle diameter of the particles to be treated and the treatment temperature, but preferably 5 parts by mass with respect to 100 parts by mass of water. Above, more preferably 15 parts by mass or more, particularly preferably 20 parts by mass or more. Further, it is preferably 100 parts by mass or less, more preferably 60 parts by mass or less, and particularly preferably 40 parts by mass or less.
  • the borax used may differ in the degree of hydration, but in the present invention, the “mass part of borax” in the case of defining the concentration of the borax aqueous solution, etc. means “Na 2 B 4 O 7. 10H 2 O] or a mass part when the degree of hydration is converted to [Na 2 B 4 O 7 ⁇ 10H 2 O].
  • borax will precipitate during treatment with the treatment liquid or pretreatment with the pretreatment liquid
  • a treatment liquid containing silicone is preferably treated at a relatively low temperature.
  • the particles containing the metals may not be sufficiently harmless, and the weather resistance, flame retardancy, and the like may be lacking.
  • the treatment liquid and the pretreatment liquid in the present invention contain borax in a dissolved state in water in that the borax can penetrate or coat the particles containing metals more efficiently.
  • the present invention is characterized by impregnating borax into particles containing metals in a state of being dissolved in water, rather than mixing borax with particles containing metals in a solid state and heating and melting.
  • the borax is preferably dissolved in water at a high concentration at the treatment temperature, and may be contained in a saturated or supersaturated state. Particularly preferred.
  • the treatment liquid and / or the pretreatment liquid is prepared by heating at least borax and water to the boiling point of the finally obtained aqueous solution or close to the boiling point to completely dissolve the borax in water. It is preferable to prepare.
  • the treatment liquid and the pretreatment liquid are preferably used by appropriately cooling from near the boiling point to an appropriate temperature. In that case, it is preferable to use borax to such an extent that borax does not precipitate.
  • the treatment liquid in the present invention must contain silicone.
  • the “silicone” in the present invention is a polyorganosiloxane having a siloxane bond as a skeleton.
  • silicone is contained in the treatment liquid of the present invention, elution of (heavy) metals from (heavy) metals particles is suitably prevented, and more stable and harmless composite particles can be generated for a long time.
  • silicone by containing silicone, composite particles excellent in chemical resistance, weather resistance, water repellency, and low toxicity can be produced.
  • Organic groups such as carbon-containing organic groups in the silicone remain at least partially after the borax and the particles are heated and melted, and give the above performance to the composite particles obtained after the heating and melting.
  • silicone examples include those in which an alkyl group such as a methyl group and an aryl group such as a phenyl group are substituted on the silicon atom, and modified silicone oils and the like are also included.
  • silicone those having various properties such as oil, rubber, resin and the like can be used, but silicone oil (oil-like one) is preferable from the viewpoint of being easily dispersed as an emulsion in water.
  • straight silicone oils such as methyl hydrogen silicone oil, dimethyl silicone oil, and methylphenyl silicone oil
  • modified silicone oils such as alkyl-modified silicone oil, amino-modified silicone oil, fatty acid-modified silicone oil, and epoxy-modified silicone oil Silicone rubber
  • varnish molding compound
  • silicone resin such as junction coating resin, and the like.
  • straight silicone oils such as dimethyl silicone oil and methylphenyl silicone oil are versatile, have many types, and easily give long-term stability and chemical resistance to the resulting composite particles. Is particularly preferable.
  • the silicone may be added to the treatment liquid by adding a “silicone emulsion” in which silicone is dispersed in water as an o / w emulsion in advance, and the silicone alone may be prepared in water or borax.
  • a treatment liquid may be prepared by adding to a borax aqueous solution in which is dissolved.
  • the silicone emulsion is preferably added at 10 to 80 ° C., more preferably at 12 to 50 ° C., and particularly preferably at 15 to 30 ° C. If the temperature is too low, borax once dissolved may precipitate, and if the temperature is too high, the emulsion state of the silicone emulsion may not be maintained or the dispersibility of the silicone may deteriorate. It is particularly preferable to prepare a treatment liquid by adding a silicone emulsion to the pretreatment liquid after the pretreatment. At that time, it is preferable to add the silicone emulsion after cooling the pretreatment liquid to an appropriate temperature.
  • silicone is dispersed in water.
  • PAC polyaluminum chloride
  • PAC polyaluminum chloride
  • the silicone content is preferably 2 to 50 parts by weight, more preferably 5 to 40 parts by weight, based on 100 parts by weight of the treatment liquid in the present invention. And particularly preferably 10 to 30 parts by mass. If the amount of silicone is too small, the water resistance and chemical resistance may be inferior, and the silicone-containing effect may not be obtained. On the other hand, if the amount is too large, the silicone is sufficiently dispersed in the treatment liquid of the present invention. Or may be disadvantageous in terms of cost.
  • the treatment liquid and the pretreatment liquid contain water as an essential component.
  • Water is used to dissolve the above-described borax, is contained in a silicone emulsion, or is added separately. If there is too much water, the metal-containing particles are not sufficiently impregnated with components such as borax in the treatment liquid and the pretreatment liquid, it takes time and energy to evaporate water, and it takes time to heat and melt. Workability may be reduced.
  • it is necessary to impregnate particles (with an aqueous borax solution) of dissolved borax, but if the amount of water is too small, the borax may not be completely dissolved even when heated.
  • the treatment liquid and / or the pretreatment liquid further contains a water-soluble organic substance.
  • a water-soluble organic substance By containing a water-soluble organic substance, the melting point of borax can be lowered during the heat melting in the particle processing method of the present invention.
  • the carbonaceous material remains in the product obtained by heating and melting, composite particles excellent in antistatic property and heat resistance due to conductivity can be provided, but it becomes a carbon source of the carbonaceous material. .
  • composite particles having a small specific gravity can be provided.
  • Carbonaceous material refers to a substance consisting essentially of carbon atoms, crystalline materials such as graphite, and amorphous materials in which no peak is observed by powder X-ray diffraction, and intermediate materials between them. Is also included.
  • the “water-soluble organic substance” in the present invention does not need to be readily soluble in water, and may be substantially dissolved in water even at a slight temperature at the time of treatment or pretreatment. Accordingly, the treatment liquid and pretreatment liquid in the present invention are not particularly limited as long as the water-soluble organic substance is partially dispersed together with the solution, and a solid or liquid organic substance can be used at room temperature. However, in order to increase the amount of the water-soluble organic substance impregnated in the particles, it is preferable that the solubility in water is large, and it is preferable that the particles are completely dissolved in the treatment liquid and the pretreatment liquid. Moreover, even if the substance is hardly soluble in pure water, such a water-soluble organic substance is also preferable because it may be easily soluble in the treatment liquid and the pretreatment liquid in the present invention.
  • organic substances that are liquid at room temperature are not particularly limited, but monohydric alcohols such as methanol, ethanol, and propanol; ethylene glycol, propylene glycol, glycerin, polyethylene glycol, polypropylene glycol Polyhydric alcohols such as acetone, tetrahydrofuran, methyl isobutyl ketone, dibutyl ketone, cyclohexanone, etc .; esters such as ethyl acetate, butyl acetate, and ethyl butyrate; long-chain fatty acid esters such as lauric acid ester and linoleic acid ester Vegetable oils; animal oils; chlorine-containing hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethylene; bromine
  • the furnace is heated and melted at a furnace temperature of 600 ° C. or higher by the particle processing method of the present invention, even if the furnace temperature or the furnace set temperature is 800 ° C. or lower, the temperature of the melting object itself is 1000 ° C. or higher. Since it often reaches 1050 ° C. or higher, harmful chlorine-containing organic substances such as dioxins are hardly formed as by-products even if they contain chlorine.
  • solid organic substances at room temperature are not particularly limited, but monosaccharides such as glucose (fructose) and fructose (fructose); disaccharides such as sucrose (sugar); Examples thereof include polysaccharides such as starch; glycosides; sugar alcohols such as sorbitol and mannitol; water-soluble polymers such as polyvinyl alcohol and polyvinylpyrrolidone. These are used alone or in combination of two or more.
  • glucose, fructose, sucrose (sugar), starch and other sugars or sugar derivatives have a high boiling point, are easy to handle, have high solubility in water, are highly safe, are inexpensive, and are melted by heating. It is preferable in terms of providing better light composite particles.
  • the form of the saccharide or its derivative is not particularly limited, but sugars such as sucrose, tri-warm sugar; starch derived from plants such as potato and corn or starch paste; rice flour, glutinous rice flour, wheat flour, corn flour, etc. Flour; potato starch and the like are particularly preferred from the above points.
  • the water-soluble organic substance is preferably 1 part by mass to 100 parts by mass, more preferably 2 parts by mass to 80 parts by mass, and particularly preferably 5 parts by mass with respect to 100 parts by mass of the treatment liquid or pretreatment liquid in the present invention. -60 parts by mass, more preferably 20-35 parts by mass.
  • the amount of the water-soluble organic substance is small, the temperature of the object to be melted containing particles and borax is less likely to be higher than the set temperature in the furnace when heated and melted, resulting in an increase in cost or a harmful chlorine-containing organic substance such as dioxin. May be generated. Further, only a small amount of carbonaceous matter remains in the composite particles obtained after the treatment, and the antistatic property, heat resistance, etc.
  • the method for blending the water-soluble organic substance is not particularly limited. After the borax is dissolved in water by heating, the water-soluble organic substance may be added and dissolved, or the borax and the water-soluble organic substance are dissolved in water by heating at the same time. May be. Moreover, it is particularly preferable from the viewpoint of workability and the like to prepare a treatment liquid by treating particles with a pretreatment liquid containing borax and water and then adding a water-soluble organic substance and silicone to the pretreatment liquid.
  • the treatment liquid in the present invention preferably further contains polyaluminum chloride.
  • Polyaluminum chloride is a substance represented by [Al 2 (OH) n Cl 6-n ] m (1 ⁇ n ⁇ 5), which is mainly composed of a polynuclear complex of aluminum bridged by OH, Or the aqueous solution. It is preferable to dissolve aluminum hydroxide in hydrochloric acid, add a solubilizing agent under pressure or if necessary, and add a sulfuric acid group as a polymerization accelerator to react.
  • the dissolution aid and the polymerization accelerator are not particularly limited as long as they do not impair the effects of the present invention.
  • m is preferably 10 or less.
  • solid polyaluminum chloride or “aqueous solution of polyaluminum chloride” is usually referred to as “PAC”, in the present invention, they are collectively referred to as “PAC” hereinafter.
  • PAC polyaluminum chloride
  • the aluminum content in the PAC used is not particularly limited, but is preferably 3 to 30% by mass, more preferably 5 to 20% by mass, and particularly 8 to 15% by mass in terms of aluminum oxide. Among them, those having 10.0 to 11.0% by mass (for example, those described in “JIS K 1475”) and the like are preferably used.
  • the content of PAC in the treatment liquid is not particularly limited, but the PAC (aqueous solution) in which aluminum is 10 mass% in terms of aluminum oxide is preferably 15 mass% or less in the treatment liquid, preferably 5 mass% to 10 mass%. More preferably, 7% by mass to 8% by mass is particularly preferable.
  • the treatment liquid in the present invention may further contain other substances other than those described above.
  • other substances include phosphoric acid (hydrogen) salts such as diammonium hydrogen phosphate and sodium hydrogen phosphate; (bi) carbonates such as ammonium bicarbonate, sodium bicarbonate and sodium carbonate. These can be heated together with borax to further improve the flame retardancy of the composite particles, and are also effective as a pH value adjusting agent.
  • surfactants are mainly used to facilitate the dispersion of silicone in water. Specific examples include nonionic surfactants such as food-added sorbitan fatty acid and coconut oil fatty acid alkanolamide, and amphoteric surfactants such as coconut oil fatty acid.
  • the particle treatment method of the present invention is a method in which the above-described treatment liquid is impregnated with “particles containing metals” and then heated and melted at a furnace temperature of 600 ° C. or higher.
  • the “particles containing metal” means a particle containing a metal as an element, and may contain other components as long as the particle contains a metal.
  • metal includes heavy metals, light metals, and semimetals.
  • Constaining metal means not only containing as a metal, that is, as a metal element alone, but also containing all organic and inorganic metal compounds having a metal element as a constituent element.
  • the metal is not particularly limited, but specifically, for example, iron, lead, copper, chromium, cadmium, mercury, zinc, arsenic, manganese, cobalt, nickel, molybdenum, tungsten, tin, bismuth, uranium, Heavy metals such as strontium; light metals such as aluminum, magnesium, beryllium, titanium, alkali metals, and alkaline earth metals; and semimetals such as germanium, arsenic, and silicon. Gold; platinum group metals such as platinum and palladium; silver and the like are also included in the above-mentioned metals, but it is preferable that a separate treatment such as recovery is performed as a noble metal regardless of the present invention.
  • the volume average particle size of the “particles containing metals” of the present invention is the workability, the point that metals can be efficiently fixed, and the volume average particle size desired as composite particles which are valuable materials obtained after heating and melting. Is preferably 1 ⁇ m to 3 mm, more preferably 10 ⁇ m to 1 mm, and particularly preferably 30 ⁇ m to 100 ⁇ m.
  • mechanical pulverization may be performed according to a conventional method, if necessary.
  • the “particles containing metals” are not particularly limited as long as they are described above.
  • the waste particles can be detoxified for wastes containing metals, and can be recycled. Is preferable.
  • the waste particles are obtained by pulverizing waste particles discharged from a home, factory, incinerator, or the like, or discharged waste.
  • wastes such as crushed slag, steel slag, zinc slag, glaze sludge, dyed sludge, foundry sand, pigments and printing ink contain a large amount of metals, so the particle treatment method of the present invention is particularly preferably applied. it can.
  • the waste is pulverized and used as the waste particles in the particle treatment method of the present invention because the detoxification treatment can be efficiently performed and the obtained composite particles can be easily reused as valuable materials.
  • the waste particles are preferably heavy metal-containing particles or acicular particle-containing particles. In many cases, they are chemically or formally harmful, and since it is strongly desired to treat them to be stable over time, it is particularly preferable because the effects of the present invention described above are easily obtained.
  • Examples of the heavy metal-containing particles among the waste particles include, for example, iron slag, refining slag, ore slag, mineral slag, dye sludge, glaze sludge, foundry sand, pigment sludge, various printing ink wastes, medical waste, Particles such as contaminated soil, or those obtained by pulverizing them to form particles.
  • Examples of the acicular particles in the “acicular particles-containing particles” among the particles containing metals include serpentine stones such as chrysotile (warm asbestos, white asbestos), crocidolite (aoishi cotton), amosite (tea asbestos) , Anthophyllite, tremolite, actinolite and other asbestos-based asbestos; wollastonite, zonotolite and other calcium silicates; glass wool; rock wool; carbon fiber; alumina fiber; synthetic zonotlite; Among these, asbestos is particularly preferable because it is particularly toxic and can exhibit the effect of the particle processing method of the present invention. Since asbestos contains magnesium and silicon as metals, waste particles containing asbestos are conceptually included in particles containing metals.
  • the acicular particle-containing particles among the waste particles include the acicular particles, the composite particles containing the acicular particles and a binder resin or mortar, or particles obtained by pulverizing them.
  • a curable resin including what is called “GFRP”
  • examples include “composites in which asbestos is dispersed in mortar and the like” used for materials such as asbestos slate and high-temperature pipes; demolished building materials such as gypsum board and sound absorption tex.
  • binder resin that constitutes the waste together with the needle-shaped particles examples include thermosetting resins such as unsaturated polyester resins, phenol resins, and epoxy resins; thermoplastic resins such as acrylic resins, polyester resins, and polyvinyl resins. Since these organic resins serve as a carbon source, carbonaceous materials remain in those obtained by heating and melting, and therefore it may be preferable that they are contained in waste.
  • thermosetting resins such as unsaturated polyester resins, phenol resins, and epoxy resins
  • thermoplastic resins such as acrylic resins, polyester resins, and polyvinyl resins. Since these organic resins serve as a carbon source, carbonaceous materials remain in those obtained by heating and melting, and therefore it may be preferable that they are contained in waste.
  • the volume average particle size of the waste particles is the same as the volume average particle size of the above-mentioned “particles containing metals”.
  • the reason for the preferred range is also the same.
  • mechanical pulverization may be performed according to a conventional method, if necessary.
  • the melt of borax surrounds heavy metals and needle-shaped particles, and can be safely rendered harmless over time.
  • the “particles containing metals” in the present invention may further contain an organic chlorine compound.
  • the organic chlorine compound is not particularly limited as long as it is an organic compound containing a chlorine atom.
  • dioxins dioxins and dioxin-like compounds (hereinafter abbreviated as “dioxins”) are produced as by-products.
  • the dioxin-like compound is a substance showing toxicity similar to that of dioxin, such as polychlorinated dibenzopararadixin, polychlorinated dibenzofuran, coplanar polychlorinated biphenyl.
  • Dioxins are generated when organochlorine compounds are incompletely burned, and the amount generated is almost independent of the concentration when the chlorine concentration in the burned organochlorine compound is about 0.1 to 50% by mass. Generally, it is determined by combustion conditions.
  • the particle treatment method using borax and silicone according to the present invention almost no harmful substances such as dioxins are produced, and even if produced, the borax melt surrounds it and can be safely rendered harmless over time. .
  • the “metal-containing particles” are preferably 1 to 100 parts by weight, more preferably 5 to 50 parts by weight, particularly 100 parts by weight of the treatment liquid in the present invention.
  • the amount is preferably 10 to 30 parts by mass. If there are too few “metal-containing particles”, the cost performance may be poor. If too much, the “metal-containing particles” may not be detoxified or composite particles may be obtained. Even if it is not obtained, flame retardancy may be inferior.
  • Pretreatment liquid and treatment liquid> In the particle treatment method of the present invention, after impregnating the above-mentioned treatment liquid containing at least borax, silicone, and water into “particles containing metals”, the mixture is heated and melted at a furnace temperature of 600 ° C. or higher. It is characterized by. Since the treatment liquid in the present invention has low water solubility of borax, it is preferable to dissolve borax in hot water in advance. More preferably, the borax is heated to the boiling point of the obtained borax aqueous solution to completely dissolve the borax in water. Thereafter, it is preferable to add silicone after cooling to an appropriate temperature. At that time, a water-soluble organic substance may be dissolved therein.
  • the particles It is preferable to impregnate the particles with a pretreatment liquid containing borax and water before impregnating the particles with the treatment liquid. After impregnating the pretreatment liquid containing borax and water into the “metal-containing particles”, it is cooled to an appropriate temperature as it is, and silicone is further added to the particles so that the particles remain contained. It is preferable from the viewpoint of workability to prepare the treatment liquid.
  • silicone is preferably added to the above-described pretreatment liquid at 10 to 80 ° C., more preferably at 12 to 50 ° C., and particularly preferably at 15 to 30 ° C. . If the temperature at this time is too high, the dispersion of silicone in the treatment liquid may deteriorate.
  • the treatment liquid in the present invention contains a water-soluble organic substance
  • the particle treatment method of the present invention is characterized in that the above-described treatment liquid of the present invention is impregnated in “particles containing metals” and then heated and melted.
  • the temperature at which the treatment liquid is impregnated is not particularly limited as long as the particles can be sufficiently impregnated with the components, but is preferably 30 to 80 ° C, more preferably 40 to 70 ° C, and more preferably 50 to 60 ° C. Is particularly preferred. If the temperature is too low, dissolved borax may precipitate or impregnation of the treatment liquid into “particles containing metals” may be insufficient. If the temperature is too high, silicone dispersion may occur. The state may not be maintained or the effects of the present invention may not be sufficiently obtained. Therefore, the temperature of the treatment with the treatment liquid containing silicone is preferably lower than the temperature of the pretreatment with the pretreatment liquid not containing silicone.
  • the time for impregnating the particles is not particularly limited as long as it is sufficiently impregnated, but is preferably 10 minutes or more, more preferably 30 minutes to 24 hours, and particularly preferably 1 hour to 3 hours. While the particles are impregnated, it is preferable to maintain the treatment liquid at the above temperature so that the components are sufficiently impregnated with the particles.
  • the “particles containing metals” are impregnated in advance with the pretreatment liquid before impregnation with the treatment liquid.
  • the pretreatment liquid contains at least borax and water. If silicone is contained in the pretreatment liquid, when the pretreatment liquid is raised to the preferred pretreatment temperature described below, the silicone emulsification is destroyed or the dispersibility of the silicone is deteriorated. As a result, the pretreatment liquid May be separated into layers.
  • the temperature of the pretreatment is preferably 60 ° C. or higher, more preferably 70 ° C. to the boiling point of the pretreatment liquid, particularly preferably 80 ° C. to 100 ° C. in terms of sufficiently impregnating borax. If the temperature is too high, the pretreatment liquid may be excessively boiled and unstable, while if the temperature of the pretreatment liquid is too low, the borax does not sufficiently impregnate the particles and is dissolved in water. In some cases, borax deposits and the permeability, that is, insufficient loading in the particles is insufficient.
  • the time for impregnating the particles is not particularly limited as long as it is sufficiently impregnated, but is preferably 2 minutes or more, more preferably 5 minutes to 3 hours, and particularly preferably 10 minutes to 2 hours. While the particles are impregnated, it is preferable to maintain the treatment liquid at the above temperature so that the components are sufficiently impregnated with the particles.
  • silicone is added after the temperature of the pretreatment liquid is lowered, and the treatment is performed with the treatment liquid described above.
  • ⁇ Particle processing method heat melting
  • the particles impregnated with the treatment liquid are heated and melted.
  • the water contained in the treatment liquid may be distilled off by heating and melting, but it is also preferable to evaporate and distill water according to a conventional method prior to heating and melting.
  • melting by heating it is preferable to heat and melt the particles and the treatment liquid as they are without filtering off the treatment liquid impregnated in the “metal-containing particles”.
  • Examples of the heating and melting method include a method of standing in a heating furnace and heating and melting, a method of directly contacting a flame, a method of supplying to a continuous firing furnace, a method using a slider dropping method, and the like.
  • the method of continuously dropping into the furnace using a tower type production furnace is preferable in that composite particles having a uniform particle diameter can be obtained continuously in a short time.
  • a method in which a flame is directly contacted with a cup burner or the like is also preferable in terms of good thermal efficiency.
  • the combustion gas in the method of directly contacting the flame but hydrogen, methane, ethane, propane, butane, carbon monoxide, city gas and the like are preferable.
  • the temperature in the furnace or the set temperature in the furnace for heat melting must be 600 ° C or higher.
  • the temperature is preferably 630 ° C to 1300 ° C, more preferably 660 ° C to 1000 ° C, particularly preferably 700 ° C to 800 ° C. If the furnace temperature or the furnace set temperature is too low, the borax does not melt sufficiently, and particles such as heavy metal-containing particles and acicular particle-containing particles may not be sufficiently contained by the borax or carbonaceous material. On the other hand, if it is too high, the cost may increase.
  • the temperature of the target object (borax, particles, preferably water-soluble organic substance, PAC is integrated) in heating and melting is the above furnace temperature or set temperature in the furnace, it is usually 750 ° C. or higher in a steady state. However, it is particularly preferable to set the temperature in the range of 800 ° C to 1100 ° C.
  • the temperature of the object tends to be higher than the furnace temperature or the set temperature in the furnace, and the cost during heating can be reduced. Since the object becomes high temperature, the generation of harmful chlorine-containing organic substances such as dioxins and dioxin-like compounds can be suppressed, and the complete combustion effect of the gas generated during heating and melting can be obtained.
  • the heating and melting atmosphere is not particularly limited, and may be any of a vacuum; an inert gas such as nitrogen or argon; an active gas such as air or oxygen.
  • an inert gas such as nitrogen or argon
  • an active gas such as air or oxygen.
  • the heating and melting time is not particularly limited, but is preferably 3 minutes to 40 minutes, more preferably 5 minutes to 20 minutes in the method of standing in a heating furnace and heating and melting. Further, in the method of directly contacting the flame in the furnace, it is preferably 3 minutes to 20 minutes, more preferably 4 minutes to 15 minutes, and particularly preferably 5 minutes to 10 minutes.
  • the product obtained by heating and melting is preferably 100 ⁇ m to 2 mm, particularly preferably 300 ⁇ m to 1 mm, but is pulverized or pulverized as necessary to form “composite particles” in the form of particles or powders. It is preferable in terms of easy handling and easy reuse as a valuable resource. Crushing or crushing is performed according to a conventional method.
  • the volume average particle size of the composite particles obtained by pulverization or pulverization is not particularly limited, but is preferably 10 ⁇ m to 1 mm, more preferably 15 ⁇ m to 300 ⁇ m, and particularly preferably 20 ⁇ m to 100 ⁇ m.
  • the “composite particle” of the present invention is obtained by using the above-described particle processing method, and is characterized by containing at least metals, boron, carbon and silicon.
  • the metals, boron, carbon and silicon are derived from the above-mentioned “treatment liquid in the present invention”, and the specific composition and specific structure thereof are not particularly limited. That is, when water-soluble organic substances are contained in the treatment liquid or organic substances are contained in the waste, even if the carbon in the composite particles has a graphite (graphite) structure by carbonization, It may be an intermediate carbon precursor or amorphous carbon, and it is preferable that a carbonaceous material remains.
  • the composite particles of the present invention are particles excellent in flame retardancy; conductivity; chemical resistance to acids, alkalis, organic solvents, etc .; antistatic properties; fluidity; weather resistance; water repellency;
  • metals, silicon, and carbon contained in the composite particles improve heat resistance, and boron improves flame retardancy.
  • the particles are heavy metal-containing particles, it is preferable because the heavy metals can be stably immobilized harmlessly and the heat resistance and the like are improved.
  • the metals coated in this glass state do not elute under normal circumstances, and the effect of the detoxification treatment can be maintained over time to prevent secondary pollution. it can. After heating and melting, the chemical structure of silicone may change, but the above effect is exhibited. Further, due to the coexistence of borax and silicone, the organic matter becomes a carbonaceous matter and remains in the composite particles.
  • Example 1 ⁇ Processing liquid A> 50 masses of sucrose, which is a water-soluble organic substance, in 100 parts by mass of “borax and water” which becomes an 18 mass% borax (Na 2 B 4 O 7 ⁇ 10H 2 O) aqueous solution when completely dissolved 6 parts by mass of a% aqueous solution was added and stirred while heating at 100 ° C. until borax was dissolved.
  • This aqueous solution (this aqueous solution is referred to as “pretreatment liquid a”) was cooled to 100 ° C. to 30 ° C., and 10 parts by mass of a dimethyl silicone silicone emulsion (manufactured by Toray Industries, Inc., 1980) was added to prepare a treatment liquid A.
  • Example 1 iron slag was added to the treatment liquid A and allowed to stand at 20 ° C. for 1 hour without heating. However, borax was recrystallized and precipitated on the way, and contained “borax, silicone and water. The “treatment liquid” was not impregnated in the “particles containing metals”. Thereafter, the water was evaporated as it was, and heating and melting were carried out under the same conditions as in Example 1. However, since borax did not spread throughout the slag, vitreous particulate composite particles were not obtained, and metals It was not possible to detoxify the particles containing.
  • Example 2 In Example 1, instead of heating and melting at a furnace temperature of 750 ° C. for 10 minutes, heating was performed at a furnace temperature of 400 ° C. for 10 minutes, but borax was not vitrified and composite particles were not obtained. It did not lead to detoxification of particles containing sucrose. Moreover, although heating temperature was raised and it heated for 10 minutes with the furnace internal temperature of 450 degreeC, the composite particle was not obtained, and it did not lead to the harmless process of the particle
  • Example 3 Comparative Example 3
  • the pretreatment liquid a before adding the silicone emulsion was used in place of the treatment liquid A of Example 1, and the steelmaking slag was impregnated under the same conditions as in Example 1 to perform heat melting.
  • composite particles referred to as “composite particles P”
  • the composite particles P were inferior in stability, detoxification, and low toxicity because they could not control elution of sufficient heavy metals.
  • water repellency, chemical resistance, etc. were bad, and it could not be completely encapsulated, and the particles containing metals were not detoxified.
  • Example 2 ⁇ Pretreatment liquid a, treatment liquid A> To 90 parts by mass of the pretreatment liquid a prepared in Example 1, 10 parts by mass of the same crushed iron slag as used in Example 1 was added, and the pretreatment liquid a was “pulverized at 90 ° C. for 10 minutes. Impregnated steelmaking slag particles ”(pretreatment was performed).
  • this liquid (pretreatment liquid a in which iron slag is dispersed) is cooled to 90 ° C. to 30 ° C. or less, and the same silicone emulsion as in Example 1 is added to this liquid.
  • the same treatment as in Example 1 was performed, and heating and melting were performed in the same manner.
  • the furnace temperature was 750 ° C.
  • the temperature of the sample surface had reached 1100 ° C.
  • the obtained composite particles A2 were almost spherical and had a particle size of 0.3 mm to 0.4 mm, and contained heavy metals, boron, carbon and silicon.
  • Comparative Example 4 In Example 2, only the pretreatment with the pretreatment liquid a was performed, and the treatment with the treatment liquid A containing silicone was not performed, but the heat melting was performed in the same manner as in Example 2. That is, in Comparative Example 3, instead of impregnation at 60 ° C. for 1 hour, after impregnation at 90 ° C. for 10 minutes, heating and melting were similarly performed.
  • the furnace temperature was 750 ° C., but the temperature of the sample surface had reached 1100 ° C.
  • the obtained composite particles Q had a particle size of 0.5 mm to 1.5 mm and contained heavy metals, boron and carbon. Although this composite particle Q was able to control elution of heavy metals to some extent, it was poor in water repellency, chemical resistance, etc., and did not lead to complete detoxification of particles containing metals.
  • Example 3 ⁇ Processing liquid B>
  • a treatment liquid was prepared in the same manner as in Example 1 except that a 50% by mass aqueous solution of sucrose (sucrose), which is a water-soluble organic substance, was not added (referred to as Treatment liquid B). Then, the mixture was heated and melted. Two minutes after the start of heating, the surface of the sample had reached 1050 ° C. (temperature difference from the furnace temperature 300 ° C.). Uniform black glass particulate composite particles B1 were obtained. The obtained composite particle B1 was almost spherical, its particle size was 0.5 mm to 0.8 mm, and contained heavy metals, boron and silicon.
  • Example 4 ⁇ Pretreatment liquid b, treatment liquid B>
  • a pretreatment liquid was prepared in the same manner as in Example 1 except that a 50% by mass aqueous solution of sucrose (sucrose), which is a water-soluble organic substance, was not added (referred to as pretreatment liquid b).
  • pretreatment, treatment, and heat melting were performed in the same manner as in Example 2 except that the pretreatment liquid b was used instead of the pretreatment liquid a and the treatment liquid B was used instead of the treatment liquid A.
  • the furnace temperature was 750 ° C.
  • the temperature of the sample surface had reached 1050 ° C.
  • the obtained composite particle B2 was almost spherical and had a particle size of 500 ⁇ m, and contained heavy metals, boron and silicon.
  • Example 5 ⁇ Processing liquid C>
  • a silicone emulsion 18 parts by mass of an oily silicone (manufactured by Toray, SH200), PAC (manufactured by Oji Paper Co., Ltd., “PAC” (containing 10 to 11% of aluminum in terms of aluminum oxide) 8 parts by weight of an aqueous solution), 40 parts by weight of a neutral detergent (made by Orient Shoji Co., Ltd., trade name: Almighty Clean) as a surfactant was added, and the silicone was dispersed by sufficiently stirring.
  • An emulsion was obtained by emulsifying and dispersing well in an aqueous borax solution, and the emulsion thus obtained is referred to as Treatment Liquid C.
  • Example 2 Using the treatment liquid C, the same treatment as in Example 1 was performed, followed by heat melting. Two minutes after the start of heating, the sample surface reached 1100 ° C. (temperature difference from the furnace temperature: 350 ° C.). Uniform black glass particulate composite particles C1 were obtained. The obtained composite particles C1 were almost spherical, had a volume average particle size of 400 ⁇ m, and contained heavy metals, boron, carbon, and silicon.
  • Example 6 ⁇ Pretreatment liquid a, treatment liquid C>
  • pretreatment was performed with the pretreatment liquid a and treatment was performed with the treatment liquid C in the same manner as in Example 2.
  • Heat melting was performed. Although the furnace temperature was 750 ° C., the temperature of the sample surface had reached 1100 ° C.
  • the obtained composite particle C2 was substantially spherical, had a volume average particle diameter of 400 ⁇ m, and contained heavy metals, boron, carbon, and silicon.
  • Example 7 ⁇ Pretreatment liquid d, treatment liquid D>
  • a pretreatment liquid d and a treatment liquid D were prepared using a 15 mass% borax aqueous solution in place of the 18 mass% borax aqueous solution, and further, unground pulverized dyeing sludge instead of pulverized iron slag. Except that was used, pretreatment, treatment, and heat melting were performed in the same manner as in Example 2.
  • the volume average particle diameter of the unground crushed sludge was 700 ⁇ m.
  • the furnace temperature was 750 ° C., but the temperature of the sample surface had reached 1100 ° C.
  • the obtained composite particles D2 were almost spherical, had a volume average particle size of 500 ⁇ m, and contained heavy metals, boron, carbon, and silicon.
  • Example 8 ⁇ Pretreatment liquid e, treatment liquid E>
  • the pretreatment liquid e and the treatment liquid E were prepared using a 28 mass% borax aqueous solution instead of the 18 mass% borax aqueous solution, and further, the crushed slag was used instead of the iron slag.
  • pretreatment, treatment, and heat melting were performed.
  • the particle size of the crushed slag after pulverization was 1 mm to 3 mm.
  • the furnace temperature was 750 ° C., but the temperature of the sample surface had reached 1100 ° C. At this time, the whole sample was red hot after 2 minutes of heating and melting, and the surface frame was generated for 3 minutes and terminated.
  • the obtained composite particle E2 was almost spherical, its particle size was 0.3 mm to 0.5 mm, and contained heavy metals, boron, carbon, and silicon.
  • Example 9 Pretreatment liquid f, treatment liquid F> In Example 2, it replaced with 18 mass% borax aqueous solution, and prepared the pretreatment liquid f using 30 mass% borax aqueous solution.
  • this liquid (pretreatment liquid f in which diffusible asbestos is dispersed) is cooled from 95 ° C. to 20 ° C., and the same silicone emulsion as in Example 1 is used in this liquid as in the case of Treatment liquid A in Example 1.
  • treatment liquid F was prepared and impregnated with diffusible asbestos.
  • Example 10 ⁇ Pretreatment liquid f, treatment liquid F>
  • the treatment liquid F in which diffusible asbestos was dispersed was retained at 70 ° C. for 60 minutes and impregnated, and then charged and dropped into a tower kiln type production furnace (gravity type fall production furnace) instead of a hand burner.
  • a spherical glass ball (referred to as “composite particle F2”) having a volume average particle diameter of 0.7 mm was obtained continuously in a short time.
  • the composite particle F2 contained magnesium, boron, and silicon.
  • Example 11 ⁇ Pretreatment liquid g, treatment liquid G> 120 parts by mass of borax and 280 parts by mass of water were heated at 97 ° C. until all of the borax was dissolved, thereby preparing a pretreatment liquid g.
  • this heated pretreatment liquid g 50 parts by mass of finely pulverized iron slag having a particle size of 1 mm to 2 mm is added and kept at 97 ° C. for 10 minutes with stirring to impregnate the pretreatment liquid g in the iron slag. It was.
  • gray glassy composite particles G2 were obtained instead of black.
  • the composite particle G2 contained metals (including aluminum), boron, and silicon.
  • Example 12 ⁇ Pretreatment liquid h, treatment liquid H> 120 parts by mass of borax was added to 280 parts by mass of water and heated at about the boiling point (100 ° C.) until all the borax was dissolved. 50 parts by mass of mineral slag pulverized to a volume average particle diameter of 1 mm was added to the obtained pretreatment liquid h, and the mineral slag was impregnated with the pretreatment liquid h while heating at 100 ° C. for 10 minutes. Then, 100 mass parts of 50 mass% sugar water was added, and also it heated for 3 minutes.
  • Silicone Dispersion S 100 parts by mass of naphthenic mineral oil, polyaluminum chloride (manufactured by Oji Paper Co., Ltd., “PAC” (aqueous solution containing 10 to 11% of aluminum in terms of aluminum oxide), 50 parts by mass of silicone, SE792 (manufactured by Dow Corning Toray) 170 parts by mass of the main component of the two-component silicone sealant) was stirred while heating, and further 100 parts by mass of the above polyaluminum chloride aqueous solution (PAC) was added thereto. Liquid S "was prepared.
  • the treatment liquid H containing the mineral slag was allowed to stand at 20 ° C. for 12 hours, and then heated at a furnace temperature of 500 to 750 ° C. to be melted by heating. At this time, a large pyroframe was generated to obtain black glassy composite particles H2.
  • the composite particle H2 is a composite particle containing a metal (including aluminum), boron, carbon, and silicon having a volume average particle size of 300 ⁇ m.
  • this composite particle H2 floated on water and was extremely excellent in water repellency.
  • the mineral slag is surrounded by vitreous, and the compound containing Si (silicon) and B (boron) penetrates into the mineral slag and stabilizes over time for a long time. I found out that it was done.
  • Example 13 ⁇ Pretreatment liquid h, treatment liquid H>
  • composite particles H2 ′ were obtained in the same manner as in Example 12 except that crushed slag was used instead of the slag. As will be described later, this composite particle H2 ′ floated on water and was extremely excellent in water repellency. In addition, when observed with a microscope, it can be seen that the slag is surrounded by vitreous, and the compound containing Si (silicon) and B (boron) penetrates into the slag and stabilizes over time for a long time. I found out that it was done.
  • Fluoride 0.5mg / L Cadmium or a compound thereof: less than 0.005 mg / L alkylmercury compound: 0 Lead or its compound: Less than 0.02 mg / L Hexavalent chromium compound: Less than 0.04 mg / L Arsenic or its compound: Less than 0.01 mg / L Mercury or its compound: Less than 0.0005 mg / L Selenium or its compound: 0 Less than 0.01 mg / L Boron: 780 mg / L Ammonia, ammonium compound, nitrite compound and nitrate compound: Less than 1 mg / L Chloride ion: 960 mg / L
  • the metal content was very low, and in examples 1, 3 and 5, the metal content was low. That is, according to the particle processing method of the present invention, it was found that harmful metals were stabilized and the obtained composite particles were low in toxicity and harmless.
  • Evaluation example 2 ⁇ Evaluation of flame retardancy> 20 g of each of the composite particles obtained in all of the above examples was pressure-molded according to a conventional method, and a flame using butane as a combustion gas was indirectly flamed at the tip of the molded body for 60 seconds, but did not ignite. Moreover, it did not melt and was smokeless.
  • Evaluation Example 3 ⁇ Evaluation of chemical resistance> Take 10 g of the composite particles obtained in all the above examples in a flask, add 100 g each of 1N (normal) dilute sulfuric acid, 5% by mass sodium hydroxide and acetone, and leave it at 20 ° C. for chemical reaction. The presence or absence of was observed visually. ⁇ : No visual change ⁇ : Visual change. For pigments containing pigments, some elution phenomena such as pigments are visually observed.
  • Evaluation Example 4 ⁇ Evaluation of water repellency> 10 g of the composite particles obtained in all the above examples were pulverized so as to have a volume average particle diameter of about 500 to 700 ⁇ m, dropped on 100 g of water, stirred in water, and the following determination was made.
  • Float in water
  • Sink in water
  • Evaluation Example 6 ⁇ Evaluation of heat resistance> 100 g of each composite particle obtained in all the above examples was heated in an electric furnace set to 500 ° C. The case where no change was found in both appearance and mass was judged as “ ⁇ ”, and the case where almost no change was found was judged as “ ⁇ ”.
  • Example 7 Evaluation of harmless acicular particles>
  • the composite particles obtained in Example 9 and Example 10 were observed with an optical microscope, the needle-like portions peculiar to needle-like particles disappeared.
  • the same result was obtained even when chrysotile and crocidolite (FIG. 1) were used as the scattering asbestos which is an acicular particle.
  • the “metal-containing particles”, for example, waste particles, heavy metal-containing particles, and needle-like particle-containing particles are detoxified safely, simply, and inexpensively. be able to. Moreover, it is possible to obtain composite particles as valuable materials with excellent heat resistance; flame retardancy; chemical resistance to acids, alkalis, organic solvents, etc .; weather resistance; water repellency; Recyclable.
  • the particle treatment method of the present invention can be applied to the treatment of waste, etc., to detoxify harmful metals and to obtain composite particles having excellent heat resistance, etc. can do.
  • the composite particles of the present invention are excellent in heat resistance; flame retardancy; conductivity; chemical resistance to acids, alkalis, organic solvents, etc .; antistatic properties; weather resistance; water repellency; Carbon, incombustible carbon black, incombustible fireproof building materials, activated carbon, toxic substance adsorbents, molecular sieves, antifriction materials, UV inhibitors, pigments, C / C composite super heat resistant fillers, rubber reinforcements, asphalt heat improvers, soil improvers Etc. are widely used.
  • the particle processing method of the present invention is free from the scattering of toxic particles during processing, and the obtained one can be used effectively, so that the total cost of waste processing is reduced and widely used in the above fields. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Soil Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 有害な重金属や針状粒子等を含有する金属類を含有する粒子、特に廃棄物粒子を、無害化処理する方法を、極めて安全、簡便、安価に提供することを課題とし、また、該無害化処理の効果を経時的に持続させ二次公害を防ぐことができる処理方法や資源リサイクルにも貢献する処理方法を提供することを課題とし、更に、耐熱性;難燃性;酸、アルカリ、有機溶媒等に対する耐薬品性;帯電防止性;耐候性;撥水性等に優れた複合粒子を比較的安価に得ることを課題とし、少なくとも、ホウ砂、シリコーン及び水を含有する処理液を、金属類を含有する粒子に含浸させた後に、炉内温度600℃以上で加熱溶融することを特徴とする粒子処理方法により、上記課題を解決した。

Description

金属類含有粒子の処理方法
 本発明は、金属類を含有する粒子の処理方法に関するものであり、更に詳細には、特定の処理液を含浸させた後に加熱することを特徴とする金属類を含有する粒子の処理方法に関するものである。
 近年、都市及び工場等から発生する廃棄物が増大しており、廃棄物を無害化する処理の重要性が高まっている。中でも、重金属を含有する廃棄物は、特別管理廃棄物として、その処理や処分に際して厳しい規制が設けられており、無害化処理が必要不可欠である。
 従来、重金属を含有する廃棄物を処分する場合には、セメントと混合し必要により水を添加して混練し、重金属の溶出を防ぎ安定化する方法が採られていた。しかしながら、セメントによる方法では、重金属の安定化は充分ではなく、その保持の持続性、耐久性等に問題があり、経時的に二次公害が懸念されている。また、有機化合物等の薬剤処理によって、重金属イオンを捕捉し安定化する方法も知られている。しかし、このような薬剤は高価であるばかりか、安定化処理後の重金属イオンの保持の持続性が充分ではなく、処理直後は重金属安定化の効果を発現しても、経時的に重金属イオンの溶出量が増大するといった問題点を有していた。
 更に、これら重金属を含有する廃棄物の処理方法として、ホウ砂を水の存在下で用いる方法も知られているが、経年において充分な溶出を制御することができず、更なる改良が必要であった(特許文献1~3)。
 一方、悪魔の鉱物、静かな時限爆弾と呼ばれて恐れられているアスベスト(クリソタイル、クロシドライト等の各種石綿類)、合成ゾノトライト、ガラス繊維等の針状無機化合物(無機ファイバー)の処理は、廃棄処理中に飛散し易いこと、毒性を発揮する針状形状を、毒性を発揮しないような形状に変形することが難しいこと等から、その廃棄処理に関して更なる進展が望まれていた。
 特に、アスベスト廃棄物は地球規模の問題であり、早急に解決しなければ後世に禍根を残すことになる。しかしながら、飛散性のアスベスト廃棄物の処理に関し現在知られているものとして、1500℃以上の高温でプラズマ溶融スラグ化技術、ハロゲン化合物を使用した700℃での無害化技術等があるが、膨大なエネルギーを必要とするか、従前の有害物反応を単に転用しているに過ぎず、コストパフォーマンスや安全性に優れたものはなかった。
 また、アスベストの代替品である合成ゾノトライトも、結合性に劣り、表面層繊維が容易に離脱し、離脱したものが浮遊し、それを吸引する恐れが高く、近い将来に健康被害が発生していることが発覚する可能性が高い。そのため、廃棄処理の問題に関しても改良技術が今から望まれている。また、ガラス繊維は、チクチクとした痒み等、廃棄物処理の作業に悪影響を及ぼすものである。すなわち、例えば、船舶、浄化槽、浴槽等の材料に頻繁に用いられている「不飽和ポリエステルにガラス繊維を分散させた複合材料であるGFRP」についても、その廃棄物処理方法に優れたものがなかった。
 そこで、重金属を含有する粒子等の化学的に毒性のある廃棄物であっても、針状粒子を含有する粒子等の形状的に毒性のある廃棄物であっても、そのような廃棄物の処理に関しては、更なる優れた技術が望まれていた。
 更に、資源リサイクルの観点からも、処理のコストダウンの観点からも、かかる処理によって生じた物質を有効に利用できる技術も望まれていた。
特開平5-087985号公報 特開平11-099370号公報 特開2002-106815号公報 特開平6-090616号公報 特開2003-019500号公報 特開2005-254195号公報
 本発明は上記背景技術に鑑みてなされたものであり、その課題は、有害な重金属類や針状粒子等を含有する粒子、特に廃棄物粒子を、完全、安全、簡便、安価に無害化処理する方法を提供することにある。また、該無害化処理の効果を経時的に持続させ、二次公害を防ぐことができる処理方法を提供することにある。また、難燃性;酸、アルカリ、有機溶媒等に対する耐薬品性;導電性を有することによる帯電防止性;球状であることによる流動性;耐候性;撥水性;耐熱性等に優れた複合粒子を比較的安価に得ることができ、資源リサイクルにも貢献する処理方法を提供することにある。
 本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、少なくとも、ホウ砂、シリコーン及び水を含有する処理液を用い、該処理液を「金属類を含有する粒子」に一定条件下で含浸及び加熱溶融することによって、金属類を含有する粒子を完璧に無害化処理できることを見出して本発明を完成するに至った。また、本発明の粒子処理方法を使用して得られた複合粒子が、難燃性、導電性、撥水性、耐候性、耐薬品性、帯電防止性、コストパフォーマンス等に優れていることを見出して本発明を完成するに至った。
 すなわち、本発明は、少なくとも、ホウ砂、シリコーン及び水を含有する処理液を、金属類を含有する粒子に含浸させた後に、炉内温度600℃以上で加熱溶融することを特徴とする粒子処理方法を提供するものである。
 また、本発明は、上記処理液を、上記金属類を含有する粒子に含浸させる前に、ホウ砂と水を含有する前処理液を、上記金属類を含有する粒子に60℃以上で含浸させる上記の粒子処理方法を提供するものである。
 また、本発明は、上記の粒子処理方法を使用して得られたものであり、金属類、ホウ素、炭素及びケイ素を含有することを特徴とする複合粒子を提供するものである。
 本発明によれば、「金属類を含有する粒子」、例えば、廃棄物粒子、重金属粒子や針状粒子を含有する粒子を、経時的に安定になるまで完全に無害化することができ、また、安全、簡便、安価に無害化することができる。また、難燃性;導電性;酸、アルカリ、有機溶媒等に対する耐薬品性;帯電防止性;流動性;耐候性;撥水性;耐熱性;コストパフォーマンス等に優れた複合粒子を得ることができ、該粒子が廃棄物粒子である場合には、資源リサイクルにも貢献することができる。
実施例10において、針状粒子である飛散性アスベストの代わりにクロシドライトを用いて得られた複合粒子を、(a)屈折率n 25℃=1.550、(b)屈折率n 25℃=1.680、(c)屈折率n 25℃=1.700とした位相差顕微鏡で、500倍で測定した写真である。
 以下、本発明について説明するが、本発明は以下の実施の形態に限定されるものではなく、任意に変形して実施することができる。
 本発明は、少なくとも、ホウ砂、シリコーン及び水を含有する処理液(以下、単に「処理液」と略記する)を、金属類を含有する粒子(以下、単に「粒子」と略記する場合がある)に含浸させた後に加熱溶融することを特徴とする。更に、好ましくは、上記処理の前に、ホウ砂と水を含有する前処理液(以下、単に「前処理液」と略記する)を、上記金属類を含有する粒子に含浸させることを特徴とする。以下、該処理液を粒子に含浸させる処理を単に「処理」と、該前処理液を粒子に含浸させる処理を単に「前処理」と略記することがある。
 処理液と前処理液は、別々に調製してもよいが、前処理液で処理した後、該前処理液にシリコーンを追加配合して処理液を調製してもよい。本発明において、前処理液や処理液を「粒子に含浸させる」とは、粒子又は粒子の集合体である二次粒子(これも「粒子」という)に、前処理液や処理液が、実質的に一定の不変状態になるまで染み込み終わった状態にすることをいう。前処理液や処理液を粒子の表面に付着させることと、粒子の内部に侵入させることとは、何れも「粒子に含浸させる」に含まれる。二次粒子又は粒子の塊の内部に侵入させて、実質的な一次粒子の表面に付着させることも、「粒子に含浸させる」に含まれる。
<ホウ砂>
 ホウ砂は処理液及び前処理液の何れにおいても必須成分である。本発明における「ホウ砂」とは、ナトリウムの含水ホウ酸塩鉱物であり、具体的には[Na・10HO]若しくは[Na(OH)・8HO]、又は、[Na・5HO]若しくは[Na(OH)・3HO]で表される物質で、4ホウ酸ナトリウムの水和物である。ホウ砂は、350~400℃に熱すると無水物になり、更に熱すると878℃付近で融解して無色透明のガラス状となる。ホウ砂の融解物は、多くの金属酸化物を溶かし込む性質を有しており、金属とのホウ酸塩を生成し金属類を安定化する。特に、有害な重金属類とホウ酸塩を生成し重金属類を安定化して無害化できる。
 また、ホウ砂の融解物が、重金属含有粒子、針状粒子含有粒子、廃棄物粒子、重金属類若しくは針状粒子を含有する廃棄物粒子等を取り囲み、経時的に安定で、無害な複合粒子を生成させることができる。また、得られた複合粒子は、難燃性;導電性に起因する帯電防止性;酸、アルカリ、有機溶媒等に対する耐薬品性;球状であることに起因する流動性;耐候性;撥水性;コストパフォーマンス等に優れている。
 更に、ホウ砂を用いると、加熱溶融を酸素含有気体雰囲気下で行っても、低温領域で融合してガラス化した成分が酸素を遮断し、有機物が共存するときは、その炭素化が容易となり、耐熱性も上がり、上記性能に極めて優れた複合粒子を本発明の粒子処理方法の結果物として与えることができる。
 処理液及び前処理液における上記ホウ砂の含有量は、処理される粒子の種類や粒径によって、また処理温度によって適宜調節可能であるが、水100質量部に対して、好ましくは5質量部以上、より好ましくは15質量部以上、特に好ましくは20質量部以上である。また、好ましくは100質量部以下、より好ましくは60質量部以下、特に好ましくは40質量部以下である。用いられるホウ砂は水和の程度が異なる場合があるが、本発明においては、ホウ砂水溶液の濃度を規定する場合等の「ホウ砂の質量部」とは、[Na・10HO]の質量部、又は、水和の程度を[Na・10HO]に換算したときの質量部のことをいう。
 ホウ砂が多過ぎると、作業性が良くない、加熱溶解させようとしても飽和濃度との関係で完全に溶解しない、処理液で処理中に又は前処理液で前処理中にホウ砂が析出してしまう、特にシリコーンを含有する処理液は比較的低温で処理することが好ましいが、その際析出し易い、そして水に溶解していない分が無駄になりコスト的に不利になる等の場合がある。一方、少な過ぎると、金属類を含有する粒子の無害処理化が不十分になる、耐候性、難燃性等に欠ける等の場合がある。
 金属類を含有する粒子に、より効率的にホウ砂を侵入又はコートさせることができる点で、本発明における処理液及び前処理液は、ホウ砂が水に溶解状態で含有されているものが好ましい。本発明は、ホウ砂を固体状態で金属類を含有する粒子と混合して加熱溶融するのではなく、ホウ砂を水に溶解した状態で金属類を含有する粒子に含浸させることを特徴としている。更に、処理液で処理中又は前処理液で前処理中は、その処理温度において、ホウ砂が水に高濃度で溶解されていることが好ましく、飽和状態又は過飽和状態で含有されていることが特に好ましい。従って、上記処理液及び/又は上記前処理液は、少なくともホウ砂と水を、最終的に得られる水溶液の沸点まで又は沸点近くにまで一旦加熱して、ホウ砂を水に完全に溶解させて調製することが好ましい。粒子を処理中又は前処理中は、処理液や前処理液は、適宜、沸点近くから適温まで冷却して使用することが好ましい。その際、ホウ砂が析出しない程度にホウ砂を使用することが好ましい。
<シリコーン>
 本発明における処理液には、シリコーンを含有することが必須である。本発明における「シリコーン」とは、シロキサン結合を骨格としたポリオルガノシロキサンである。本発明の処理液にシリコーンを含有させると、(重)金属類粒子から(重)金属類の溶出を好適に防止し、長期的に安定で、より無害な複合粒子を生成させることができる。また、シリコーンを含有させることによって、耐薬品性、耐候性、撥水性、低毒性に優れた複合粒子を生成させることができる。シリコーン中の炭素含有有機基等の有機基は、ホウ砂と粒子を加熱溶融後も少なくとも一部は残存し、加熱溶融後に得られた複合粒子に対し上記性能を付与する。
 シリコーンとしては、そのケイ素原子に、メチル基等のアルキル基、フェニル基等のアリール基等が置換しているものが挙げられ、また変性シリコーンオイル等も挙げられる。シリコーンとしては、オイル、ゴム、樹脂等の種々の性状を有するものが使用できるが、水中でエマルジョンとして分散させ易い等の点から、シリコーンオイル(オイル状のもの)が好ましい。
 具体的には、例えば、メチル水素シリコーンオイル、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のストレートシリコーンオイル;アルキル変性シリコーンオイル、アミノ変性シリコーンオイル、脂肪酸変性シリコーンオイル、エポキシ変性シリコーンオイル等の変性シリコーンオイル;シリコーンゴム;ワニス、モールディングコンパウンド、ジャンクションコーティングレジン等のシリコーンレジン等が挙げられる。これらは1種又は2種以上を混合して用いてもよい。これらの中でも、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のストレートシリコーンオイルが、汎用性がある点、種類が豊富な点、得られる複合粒子に、長期安定性、耐薬品性等を付与し易い点で特に好ましい。
 シリコーンの処理液への配合は、予めシリコーンが水中にo/w型エマルジョンとして分散されている「シリコーンエマルジョン」を添加して処理液を調製してもよく、また、シリコーン単体を水中又はホウ砂が溶解しているホウ砂水溶液中に添加して処理液を調製してもよい。
 シリコーンエマルジョンを添加して処理液を調製する場合は、ホウ砂を水に加熱溶解させた後に添加することが好ましい。その際、シリコーンエマルジョンは、10~80℃で添加することが好ましく、12~50℃で添加することがより好ましく、15~30℃で添加することが特に好ましい。温度が低過ぎると、一旦溶解したホウ砂が析出してくる場合があり、温度が高過ぎると、シリコーンエマルジョンのエマルジョン状態が維持できなくなったり、シリコーンの分散性が悪化したりする場合がある。前処理が終わった前処理液中にシリコーンエマルジョンを添加して処理液を調製することが特に好ましい。その際、前処理液を適温まで冷却してからシリコーンエマルジョンを添加することが好ましい。
 シリコーン単体を水中又はホウ砂水溶液中に添加して処理液を調製する場合は、シリコーン単体をホウ砂水溶液中に添加して処理液を調製することが好ましく、シリコーン単体を、前処理が終わった前処理液中に添加して処理液を調製することが特に好ましい。その際、前処理液を適温まで冷却してからシリコーン単体を添加することが好ましい。通常、シリコーンは水中で分散状態にする。シリコーン単体の水中への分散の際には、界面活性剤、後述するポリ塩化アルミニウム(PAC)等を、分散性向上、エマルジョン化のために使用することが好ましい。後述するように、ポリ塩化アルミニウム(PAC)は、本発明の前記効果をより顕著に奏させるのみならず、シリコーンの水中への分散性向上剤としても機能する。
 シリコーンの含有量は、シリコーンエマルジョンを使用する場合はシリコーン単体として、本発明における処理液100質量部に対して、2質量部~50質量部が好ましく、より好ましくは5質量部~40質量部であり、特に好ましくは10質量部~30質量部である。該シリコーンが少な過ぎる場合は、耐水性や耐薬品性に劣り、前記シリコーン含有の効果が得られない場合があり、一方、多過ぎる場合には、本発明における処理液におけるシリコーンの分散が十分でなかったり、コスト的に不利になったりする場合がある。
<水>
 本発明において、処理液及び前処理液は水を必須成分として含有する。水は、上記したホウ砂を溶解させるために用いたり、シリコーンエマルジョン中に含まれていたり、それとは別に添加されたりする。水が多過ぎると、金属類を含有する粒子に該処理液や該前処理液中のホウ砂等の成分が充分に含浸されない、水の蒸発に時間とエネルギーが余計にかかる、加熱溶融に時間を要し作業性が落ちる場合がある。本発明においては、溶解状態のホウ砂を(ホウ砂水溶液を)粒子に含浸させる必要があるが、水が少な過ぎると、加熱してもホウ砂が完全に溶解しない場合がある。
<水溶性有機物>
 本発明の粒子処理方法において、上記処理液及び/又は上記前処理液は、更に、水溶性有機物を含有することが好ましい。水溶性有機物を含有させることによって、本発明の粒子処理方法における加熱溶融の際にホウ砂の融点を下げることができる。また、加熱溶融して得られたものに炭素質物が残存すれば、導電性に起因する帯電防止性;耐熱性等に優れた複合粒子を与えることができるが、その炭素質物の炭素源となる。また、比重の小さい複合粒子を与えることが可能となる。「炭素質物」とは実質的に炭素原子のみからなる物質をいい、グラファイト(黒鉛)等の結晶性のものも、粉末X線回折でピークが観測されない無定形のものも、その中間的なものも含まれる。
 本発明における「水溶性有機物」とは、水に易溶性である必要はなく、処理や前処理の時の温度で僅かでも水に実質的に溶解すればよい。従って、本発明における処理液や前処理液には、水溶性有機物が溶解と共に一部分散されていれば特に限定はなく、常温で固体又は液体の有機物を用いることができる。ただ、粒子に含浸される水溶性有機物の量を多くするためにも、水に対する溶解度は大きい方が好ましく、処理液や前処理液に完全に溶解していることが好ましい。また、純水には難溶の物質であっても、本発明における処理液や前処理液には、易溶になる場合があるので、そのような水溶性有機物も好ましい。
 本発明における「水溶性有機物」のうち「常温で液体の有機物」としては、特に限定はないが、メタノール、エタノール、プロパノール等の1価アルコール;エチレングリコール、プロピレングリコール、グリセリン、ポリエチレングリコール、ポリプロピレングリコール等の多価アルコール;アセトン、テトラヒドロフラン、メチルイソブチルケトン、ジブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酪酸エチル等のエステル類;ラウリン酸エステル、リノール酸エステル等の長鎖脂肪酸エステル類;植物油;動物油;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエチレン等の塩素含有炭化水素類;臭素又はヨウ素含有炭化水素類;トルエン、キシレン等の芳香族炭化水素類;石油、コールタール等の埋蔵物又はその留分等が挙げられる。これらは1種又は2種以上を混合して用いられる。本発明の粒子処理方法によって、炉内温度600℃以上で加熱溶融すれば、たとえ炉内温度又は炉内設定温度が800℃以下であっても、溶融対象物自体の温度は、1000℃以上~1050℃以上になる場合が多いので、塩素を含有していてもダイオキシン等の有害塩素含有有機物が副生成物としてでき難い。
 本発明における「水溶性有機物」のうち「常温で固体の有機物」としては、特に限定はないが、グルコース(ブドウ糖)、フルクトース(果糖)等の単糖類;シュクロース(砂糖)等の二糖類;でんぷん等の多糖類;配糖体;ソルビット、マンニット等の糖アルコール;ポリビニルアルコール、ポリビニルピロリドン等の水溶性ポリマー等が挙げられる。これらは1種又は2種以上を混合して用いられる。
 中でも、グルコース、フルクトース、シュクロース(砂糖)、でんぷん等の糖類又は糖類の誘導体等が、沸点が高く扱い易いこと、水に対する溶解性が高いこと、安全性が高いこと、安価なこと、加熱溶融により良好な軽質複合粒子を与えること等の点で好ましい。糖類又はその誘導体の形態としては特に限定はないが、上白糖、三温糖等の砂糖;イモ、トウモロコシ等の植物由来のでんぷん若しくはでんぷん系の糊;米粉、餅米粉、小麦粉、トウモロコシ粉等の粉;片栗粉等が上記点から特に好ましい。
 水溶性有機物は、本発明における処理液又は前処理液100質量部に対して、1質量部~100質量部が好ましく、より好ましくは2質量部~80質量部であり、特に好ましくは5質量部~60質量部であり、更に好ましくは20質量部~35質量部である。該水溶性有機物が少ない場合は、加熱溶融する際、粒子とホウ砂を含有する溶融対象物の温度が炉内設定温度以上になり難く、コストアップになったり、ダイオキシン等の有害塩素含有有機物が生成したりする場合がある。また、処理後に得られる複合粒子中に炭素質物が少量しか残存せず、本発明の効果である複合粒子の帯電防止性、耐熱性等が充分でなく、上記した水溶性有機物の含有効果が得られない場合があり、多過ぎる場合には、物性がそれ以上向上しないので無駄になる場合がある。
 水溶性有機物の配合方法は特に限定はなく、ホウ砂を水に加熱溶解させた後に、水溶性有機物を添加して溶解させてもよいし、ホウ砂と水溶性有機物を同時に水に加熱溶解してもよい。また、ホウ砂と水を含有する前処理液で粒子を処理した後、その前処理液に、水溶性有機物とシリコーンを添加して処理液を調製することが作業性等の点から特に好ましい。
<ポリ塩化アルミニウム>
 本発明における処理液は、更にポリ塩化アルミニウムを含有していることも好ましい。「ポリ塩化アルミニウム」とは、[Al(OH)Cl6-n (1<n<5)で表わされる物質で、OHが橋かけしたアルミニウムの多核錯体を主成分とするもの、又はその水溶液をいう。水酸化アルミニウムを塩酸に溶解させ、加圧下又は要すれば溶解助剤を加え、これに重合促進剤として硫酸基を添加して反応させたものが好ましい。溶解助剤や重合促進剤は、本発明の効果を損なわないものであれば特に限定はされない。また、上記式中、mは10以下が好ましい。なお、「固形のポリ塩化アルミニウム」又は「ポリ塩化アルミニウムの水溶液」は、通常「PAC」と称されるので、以下、本発明でも、それらを総称して、「PAC」と略記する。本発明には、「ポリ塩化アルミニウム」又は「PAC」と称して、水の浄化用又は廃水処理用に一般に市販されているものも好適に使用できる。また、PACとしては、水溶液として液体状のもの、固体状のものの何れも使用することができる。本発明においては、使用されるPAC中のアルミニウム含有量は特に限定はないが、酸化アルミニウム換算で、3~30質量%が好ましく、5~20質量%がより好ましく、8~15質量%が特に好ましく、中でも10.0~11.0質量%のもの(例えば、「JIS K 1475」に記載のもの)等が好適に用いられる。
 PACが含有されていると、処理液中のシリコーンの水への分散性が向上し、また、加熱溶融後に得られた複合粒子の安定性等の物性が向上して前記本発明の効果がより得られるようになる。処理液中におけるPACの含有量は特に限定はないが、アルミニウムが酸化アルミニウム換算で10質量%のPAC(水溶液)として、処理液中に15質量%以下が好ましく、5質量%~10質量%がより好ましく、7質量%~8質量%が特に好ましい。
<その他の物質>
 本発明における処理液には、更に、上記以外のその他の物質を配合させることもできる。かかる「その他の物質」としては、リン酸水素2アンモニウム、リン酸水素ナトリウム等のリン酸(水素)塩;重炭酸アンモニウム、重炭酸ナトリウム、炭酸ナトリウム等の(重)炭酸塩等が挙げられる。これらは、ホウ砂と共に加熱されて、複合粒子の難燃性を更に向上させることができ、またpH値の調整剤としても有効である。
 また、「その他の物質」としては、界面活性剤も挙げられる。界面活性剤は、シリコーンを水中に分散させ易くするために主に用いられる。具体的には、例えば、食添ソルビタン脂肪酸、ヤシ油脂肪酸アルカノールアミド等の非イオン界面活性剤、ヤシ油脂肪酸等の両性界面活性剤等が挙げられる。
<金属類を含有する粒子>
 本発明の粒子処理方法は、上記した処理液に「金属類を含有する粒子」を含浸させた後に、炉内温度600℃以上で加熱溶融させる方法である。ここで、「金属類を含有する粒子」とは、金属類を元素として含有する粒子の意味であり、金属類を含有する粒子であれば他の成分を含有していてもよく、その種類、粒子の大きさ、粒子形状等は特に限定はない。ここで「金属類」とは、重金属類、軽金属類及び半金属類を含む。「金属類を含有する」とは、金属として、すなわち金属元素単体として含有するだけではなく、金属元素を構成元素として有する有機及び無機金属化合物の全てを含有することを意味するものである。
 金属類としては、特に限定はないが、具体的には、例えば、鉄、鉛、銅、クロム、カドミウム、水銀、亜鉛、ヒ素、マンガン、コバルト、ニッケル、モリブデン、タングステン、スズ、ビスマス、ウラン、ストロンチウム等の重金属類;アルミニウム、マグネシウム、ベリリウム、チタン、アルカリ金属、アルカリ土類金属等の軽金属類;ゲルマニウム、ヒ素、ケイ素等の半金属類等が挙げられる。金;白金、パラジウム等の白金族の金属類;銀等も、上記金属類に含まれるが、本発明に依らず、貴金属として、別途、回収等の処理がなされることが好ましい。
 本発明の「金属類を含有する粒子」の体積平均粒径は、作業性、金属類を効率良く固定化できる点、加熱溶融した後に得られる有価物である複合粒子として望まれる体積平均粒径と一致させる等点で、好ましくは1μm~3mm、より好ましくは10μm~1mm、特に好ましくは30μm~100μmである。上記の好ましい粒度にするためには、本発明における処理液又は前処理液を含浸させる前に、要すれば、常法に従って機械的に粉砕を行えばよい。
 「金属類を含有する粒子」は、上記したものであれば特に限定はないが、廃棄物粒子であることが、金属類を含有する廃棄物の無害化処理ができる点、資源リサイクルができる点で好ましい。ここで廃棄物粒子とは、家庭、工場、焼却炉等から排出された廃棄物粒子、又は排出された廃棄物を粉砕して得られるものである。特に、鉱砕スラグ、鉄鋼スラグ、亜鉛スラグ、釉薬スラッジ、染色スラッジ、鋳物砂、顔料、印刷インキ等の廃棄物は、金属類を多く含有するため、特に好適に本発明の粒子処理方法が適用できる。
 廃棄物は粉砕して廃棄物粒子として本発明の粒子処理方法に供することが、効率的に無害化処理ができ、得られた複合粒子も有価物として再利用し易いために好ましい。
 上記廃棄物粒子は、重金属含有粒子又は針状粒子含有粒子であることが好ましい。それらは、化学的に又は形状的に有害である場合が多く、特に経時的に安定なものに処理することが強く望まれているので、前記した本発明の効果を奏し易いため特に好ましい。
 廃棄物粒子のうちの重金属含有粒子としては、例えば、製鉄スラグ、精錬スラグ、鉱砕スラグ、鉱渣スラグ、染色スラッジ、釉薬スラッジ、鋳物砂、顔料スラッジ、各種印刷インキ廃棄物、医療廃棄物、汚染土壌等の粒子、又は、それらを粉砕して粒子状にした物が挙げられる。
 金属類を含有する粒子のうちの「針状粒子含有粒子」における針状粒子としては、例えば、クリソタイル(温石綿、白石綿)等の蛇紋石系、クロシドライト(青石綿)、アモサイト(茶石綿)、アンソフィライト、トレモライト、アクチノライト等の角閃石系等のアスベスト;ウオラストナイト、ゾノトライト等のケイ酸カルシウム;ガラスウール;ロックウール;炭素繊維;アルミナ繊維;合成ゾノトライト;ガラス繊維等が挙げられる。これらのうち、アスベストは、特に毒性が強いため、本発明の粒子処理方法の効果を発揮できるので特に好ましい。アスベストは、金属類としてマグネシウム及びケイ素を含むので、アスベストを含む廃棄物粒子は、金属類を含有する粒子に概念的に含まれる。
 廃棄物粒子のうちの針状粒子含有粒子としては、例えば、上記針状粒子、又は、上記針状粒子及びバインダー樹脂若しくはモルタルを含有する複合物粒子又はそれらを粉砕してなる粒子等が挙げられる。具体的には、例えば、船舶、浄化槽、浴槽等の材料に汎用されている「硬化性樹脂にガラス繊維を分散させた複合物」(「GFRP」と称されるものが含まれる);建材、石綿スレート、高温配管等の材料に用いられている「モルタル等にアスベストを分散させた複合物」;石膏ボード、吸音テックス等の解体建材等が挙げられる。
 上記針状粒子と共に廃棄物を構成するバインダー樹脂としては、不飽和ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等の熱硬化性樹脂;アクリル樹脂、ポリエステル樹脂、ポリビニル樹脂等の熱可塑性樹脂等が挙げられる。これらの有機樹脂は炭素源となるため、加熱溶融して得られたものに炭素質物が残存するので、廃棄物中に含有されることがむしろ好ましい場合がある。
 廃棄物粒子の体積平均粒径は、前記した「金属類を含有する粒子」の体積平均粒径と同様である。好ましい範囲の理由も同様である。上記の好ましい粒度にするためには、本発明における処理液又は前処理液を含浸させる前に、要すれば、常法に従って機械的に粉砕を行えばよい。
 本発明のホウ砂及びシリコーンを用いる粒子処理方法を用いれば、重金属類や針状粒子を、ホウ砂の融解物が取り囲み、経時的に安全に無害化処理できる。
<有機塩素化合物>
 本発明における「金属類を含有する粒子」は、更に有機塩素化合物を含有するものであってもよい。該有機塩素化合物は、塩素原子を含む有機化合物であれば特に限定されない。有機塩素化合物を含有する廃棄物を低温で燃焼させた場合に、副生成物としてダイオキシンやダイオキシン類似化合物(以下、「ダイオキシン類」と略記する)が生成する。ダイオキシン類似化合物とは、ポリ塩化ジベンゾパラジオキシン、ポリ塩化ジベンゾフラン、コプラナーポリ塩化ビフェニル等、ダイオキシンと同様の毒性を示す物質のことである。
 ダイオキシン類は、有機塩素化合物が不完全燃焼したときに発生し、その発生量は、燃やした有機塩素化合物に含まれる塩素濃度が0.1~50質量%程度の場合は濃度にほとんど関係なく、一般には燃焼条件で決定される。本発明のホウ砂及びシリコーンを用いる粒子処理方法を用いれば、ダイオキシン類等の有害物質がほとんど生成せず、生成してもホウ砂融解物がそれを取り囲み、経時的に安全に無害化処理できる。
 本発明において、「金属類を含有する粒子」は、本発明における処理液100質量部に対して、1質量部~100質量部が好ましく、より好ましくは5質量部~50質量部であり、特に好ましくは10質量部~30質量部である。「金属類を含有する粒子」が少な過ぎる場合は、コストパフォーマンスが悪い場合があり、多過ぎる場合には、「金属類を含有する粒子」の無害化が不十分になったり、複合粒子が得られなかったり、得られても難燃性等が劣る場合がある。
<前処理液及び処理液>
 本発明の粒子処理方法は、上記した少なくとも、ホウ砂、シリコーン及び水を含有する処理液を、「金属類を含有する粒子」に含浸させた後に、炉内温度600℃以上で加熱溶融することを特徴とする。本発明における処理液は、ホウ砂の水溶解性が低いため、ホウ砂を予め熱水に溶解させることが好ましい。更に好ましくは、得られるホウ砂水溶液の沸点まで加熱して、ホウ砂を水に完全に溶解させることが好ましい。その後、適温まで冷却してシリコーンを添加することが好ましい。その際、そこに水溶性有機物を溶解させてもよい。
 上記処理液を粒子に含浸させる前に、ホウ砂と水を含有する前処理液を、粒子に含浸させることが好ましい。ホウ砂及び水を含有する前処理液を「金属類を含有する粒子」に含浸させた後に、そのまま適温まで冷却し、そこにシリコーンを更に添加して、粒子が含まれたままの状態で、処理液を調製することが作業性の点から好ましい。
 本発明における処理液は、上記した前処理液に、シリコーンを10~80℃で添加することが好ましく、12~50℃で添加することがより好ましく、15~30℃で添加することが特に好ましい。このときの温度が高過ぎる場合は、処理液中のシリコーンの分散が悪くなる場合がある。
 本発明における処理液が水溶性有機物を含有する場合、水溶性有機物を加える段階、順序、温度等には特に制限はなく、水溶性有機物を既に含有する前処理液に、シリコーンを添加して処理液を調製しても、水溶性有機物を含有しない前処理液に、シリコーンと要すれば水溶性有機物を添加して処理液を調製してもよい。
<粒子処理方法(含浸)>
 本発明の粒子処理方法は、上記した本発明における処理液を「金属類を含有する粒子」に含浸させた後に、加熱溶融することを特徴とする。処理液を含浸させる際の温度(処理の温度)は、粒子に成分を充分に含浸させられれば特に限定はないが、30~80℃が好ましく、40~70℃がより好ましく、50~60℃が特に好ましい。温度が低過ぎると、溶解しているホウ砂が析出してきたり、該処理液の「金属類を含有する粒子」への含浸が不足したりする場合があり、温度が高過ぎると、シリコーンの分散状態が維持できなくなったり、本発明の効果が充分に得られない場合がある。従って、シリコーンを含有する処理液による処理の温度は、シリコーンを含有しない前処理液による前処理の温度より低いことが好ましい。
 また、粒子に含浸させる時間は、充分に含浸されれば特に制限はないが、好ましくは10分以上、より好ましくは30分~24時間、特に好ましくは1時間~3時間である。粒子に含浸させている間は、粒子に成分が充分に含浸されるように、処理液を上記した温度に保つことが好ましい。
 また、「金属類を含有する粒子」に充分にホウ砂を侵入又はコートさせるために、上記処理液を含浸させる前に、予め上記前処理液を「金属類を含有する粒子」に含浸させることが好ましい。前処理液は、少なくともホウ砂及び水を含有する。前処理液にシリコーンを含有させてしまうと、前処理液を下記する好ましい前処理温度まで上げた際、シリコーンの乳化が破壊されたり、シリコーンの分散性が悪くなったり、その結果、前処理液が層分離してしまう場合がある。
 前処理の温度は、ホウ砂を十分に含浸させる点で、60℃以上が好ましく、より好ましくは70℃~前処理液の沸点、特に好ましくは80℃~100℃である。温度が高過ぎる場合、前処理液が過度に沸騰し不安定である場合があり、一方、前処理液の温度が低過ぎる場合は、ホウ砂が十分に粒子に含浸しない、水に溶解していたホウ砂が析出して、浸透性すなわち粒子中への充分な担持が不足する等の場合がある。
 また、粒子に含浸させる時間は、充分に含浸されれば特に制限はないが、好ましくは2分以上、より好ましくは5分~3時間、特に好ましくは10分~2時間である。粒子に含浸させている間は、粒子に成分が充分に含浸されるように、処理液を上記した温度に保つことが好ましい。
 上記前処理後、上記前処理液の温度低下後にシリコーンを添加して、前記した処理液で処理を行うことが好ましい。
<粒子処理方法(加熱溶融)>
 次いで、処理液を含浸させた粒子を加熱溶融する。処理液に含有する水の留去は、加熱溶融で行ってもよいが、加熱溶融に先立って、常法に従って水を蒸発留去することも好ましい。また、加熱溶融する際は、「金属類を含有する粒子」に含浸させた処理液を濾別せずに、粒子と処理液をそのまま加熱溶融することが好ましい。
 加熱溶融の方法としては、加熱炉中に静置して加熱溶融する方法、火炎を直接接炎する方法、連続焼成炉に供給する方法、スライダー落下方式による方法等が挙げられる。タワー型生成炉を用いて炉内に連続的に落下する方式の場合、連続的に短時間で粒径の揃った複合粒子が得られる点で好ましい。また、カップバーナ等によって、火炎を直接接炎する方法も熱効率が良い等の点で好ましい。火炎を直接接炎する方法における燃焼ガスは特に限定はないが、水素、メタン、エタン、プロパン、ブタン、一酸化炭素、都市ガス等が好ましい。
 加熱溶融における炉内温度又は炉内設定温度は600℃以上が必須である。好ましくは630℃~1300℃であり、より好ましくは660℃~1000℃、特に好ましくは700℃~800℃である。炉内温度又は炉内設定温度が低過ぎると、ホウ砂が十分に溶融せず、重金属含有粒子、針状粒子含有粒子等の粒子が十分にホウ砂や炭素質物によって包含されない場合がある。一方、高過ぎる場合はコストアップになる場合がある。
 加熱溶融における対象物(ホウ砂、粒子、好ましくは水溶性有機物、PACが一体となったもの)の温度は、上記炉内温度又は炉内設定温度にすると、通常、定常状態で750℃以上となるが、800℃~1100℃の範囲になるようにすることが特に好ましい。上記水溶性有機物、廃棄物中に含まれる樹脂等の有機物が共存すると、対象物の温度は炉内温度又は炉内設定温度より高くなり易く、加熱の際のコストダウンが可能であり、また、対象物が高温になるので、ダイオキシンやダイオキシン類似化合物等の有害塩素含有有機物の発生が抑えられ、加熱溶融の際に発生するガスの完全燃焼効果が得られる。本発明では、炉内温度より加熱溶融対象物の温度が高くなるように処理液や前処理液の組成を調整することが好ましい。
 加熱溶融雰囲気は特に限定はなく、真空中;窒素、アルゴン等の不活性気体中;空気、酸素等の活性気体中等の何れでもよい。本発明においては、加熱溶融を空気中で行っても、処理液や前処理液中に水溶性有機化合物が含有されている場合、有機化合物が全て燃えて、有機化合物中の炭素が全て二酸化炭素として消失してしまうことがなく、炭素質物として複合粒子中に残存する。加熱溶融して得られたものに炭素質物が残存するので、酸素含有気体雰囲気下で加熱溶融を行うことが、高温にできるため好ましい。また、酸素含有気体を空気とすることで簡便に加熱溶融ができ、コストダウンにもなり特に好ましい。
 加熱溶融の時間としては、特に限定はないが、加熱炉中に静置して加熱溶融する方法においては、3分~40分が好ましく、5分~20分が特に好ましい。また、炉内で火炎を直接接炎する方法においては、3分~20分が好ましく、4分~15分がより好ましく、5分~10分が特に好ましい。
<複合粒子>
 上記加熱溶融して得られたものは、好ましくは100μm~2mm、特に好ましくは300μm~1mmとなるが、必要に応じて解砕又は粉砕して、粒子状又は粉末状の「複合粒子」にすることが、取り扱いが容易になり、有価物として再利用し易くなる点で好ましい。解砕又は粉砕は常法に従って行われる。解砕又は粉砕を行って得られた複合粒子の体積平均粒径は特に限定はないが、好ましくは10μm~1mmであり、より好ましくは15μm~300μmであり、特に好ましくは20μm~100μmである。
 本発明の「複合粒子」は、上記した粒子処理方法を使用して得られたものであり、少なくとも、金属類、ホウ素、炭素及びケイ素を含有することを特徴とする。金属類、ホウ素、炭素及びケイ素は、上記した「本発明における処理液」由来であり、その具体的組成及び具体的構造は特に限定されない。つまり、処理液中に水溶性有機物が含有されていたり、廃棄物中に有機物が含有されていたりする場合、複合粒子中の炭素は、炭素化により黒鉛(グラファイト)構造ができていても、その中間段階である炭素前駆体でもよく、無定形炭素であってもよく、炭素質物が残存していることが好ましい。
 本発明の複合粒子は、難燃性;導電性;酸、アルカリ、有機溶媒等に対する耐薬品性;帯電防止性;流動性;耐候性;撥水性;コストパフォーマンス等に優れた粒子である。特に、複合粒子中に含有される金属類、ケイ素、炭素は耐熱性を向上させ、ホウ素は難燃性を向上させる。また、粒子が重金属含有粒子の場合には、重金属を安定して無害固定化でき、耐熱性等も向上するため好ましい。
<作用・原理>
 本発明において、前記処理液を用いた場合に、「金属類を含有する粒子」、例えば廃棄物粒子、重金属含有粒子や針状粒子含有粒子を、完全に無害化処理することができる作用・原理は明らかではないが、以下のことが考えられる。ただし本発明は、以下の作用・原理の範囲に限定されるわけではない。金属類を含有する粒子に、ホウ砂が熱水に溶解された液を含浸させることにより、すなわち熱水に溶解したホウ砂を侵入又はコートさせることにより、該粒子は加熱溶融時に赤熱溶融し容易にガラス化される。液を含浸させることにより、単に固体状態で混ぜて加熱溶融させるより、完全に無害化できると考えられる。更に、シリコーンを含有することにより、通常の環境下では、このガラス状態で被覆された金属類は溶出することがなく、無害化処理の効果を経時的に持続させ、二次公害を防ぐことができる。加熱溶融後、シリコーンは化学構造が変化する可能性があるが、上記効果は発揮される。また、ホウ砂、シリコーンの共存によって、有機物は炭素質物となって複合粒子中に残存する。
 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。
実施例1
<処理液A>
 完全に溶解したとき18質量%ホウ砂(Na・10HO)水溶液となる「ホウ砂と水」100質量部に、水溶性有機物であるショ糖(シュクロース)の50質量%水溶液6質量部を加えて、ホウ砂が溶解するまで100℃で加熱しつつ攪拌を行った。この水溶液(この水溶液を「前処理液a」とする)を、100℃から30℃に冷却し、ジメチルシリコーンのシリコーンエマルジョン(東レ社製、1980)10質量部を加えて処理液Aとした。
 上記で調製した処理液Aの90質量部に、体積平均粒径1mmに粉砕した製鉄スラグ10質量部を加えた。この重金属含有粒子内に上記処理液Aが含浸するように、60℃で1時間加熱した。次いで、酸素含有気体雰囲気下(空気中)で、炉内設定温度750℃、炉内温度750℃で10分間加熱溶融した。加熱開始から2分後、試料表面は1050℃(炉内温度との温度差300℃)に達していた。均一な黒色ガラス粒子状の複合粒子Aを得た。得られた複合粒子A1は、ほぼ球形で、その粒径は300μm~500μmであり、重金属、ホウ素、炭素及びケイ素が含有されていた。
比較例1
 実施例1において、処理液Aに製鉄スラグを加え、加熱しないで20℃で1時間静置させたところ、途中でホウ砂が再結晶化して析出し、「ホウ砂、シリコーン及び水を含有する処理液」が「金属類を含有する粒子」に含浸されなかった。その後、そのまま水を蒸発させて、実施例1と同様の条件で加熱溶融を行ったが、スラグ中にホウ砂が全体に行き渡らなかったため、ガラス質粒子状の複合粒子は得られず、金属類を含有する粒子の無害化処理はできなかった。
比較例2
 実施例1において、炉内温度750℃で10分間加熱溶融することに代えて、炉内温度400℃で10分間加熱したが、ホウ砂がガラス化することがなく複合粒子は得られず、金属類を含有する粒子の無害処理化には至らなかった。また、加熱温度を上げ、炉内温度450℃で10分間加熱したが、やはり複合粒子は得られず、金属類を含有する粒子の無害処理化には至らなかった。
比較例3
 実施例1において、シリコーンエマルジョンを加える前の前処理液aを実施例1の処理液Aに代えて用いて、実施例1と同じ条件で、製鉄スラグに含浸させて加熱溶融を行った。複合粒子(「複合粒子P」とする)は得られたが、この複合粒子Pは、充分な重金属の溶出を制御することができず、安定性・無害化・低毒性に劣っていた。また、撥水性、耐薬品性等が悪く、完全に内包させることができず、金属類を含有する粒子の無害化処理には至らなかった。
実施例2
<前処理液a、処理液A>
 実施例1で調製した前処理液aの90質量部に、実施例1で用いたものと同一の粉砕された製鉄スラグ10質量部を加え、90℃で10分間、前処理液aを「粉砕された製鉄スラグ粒子」に含浸させた(前処理を行った)。
 次いで、この液(製鉄スラグが分散されている前処理液a)を90℃から30℃以下になるように冷却し、この液に実施例1と同様のシリコーンエマルジョンを、実施例1の処理液Aと同じ組成になるように加え、実施例1と同様に処理を行い、同様に加熱溶融を行った。炉内温度は750℃であったが、試料表面の温度は1100℃に達していた。得られた複合粒子A2は、ほぼ球形で、その粒径は0.3mm~0.4mmであり、重金属、ホウ素、炭素及びケイ素が含有されていた。
比較例4
 実施例2において、前処理液aで前処理をしただけで、シリコーンが含有された処理液Aで処理を行わず、実施例2と同様に加熱溶融を行った。すなわち、比較例3において、60℃で1時間の含浸に代えて、90℃で10分間の含浸を行った後、同様に加熱溶融を行った。
 炉内温度は750℃であったが、試料表面の温度は1100℃に達していた。得られた複合粒子Qは、その粒径は0.5mm~1.5mmであり、重金属、ホウ素及び炭素が含有されていた。この複合粒子Qは、重金属の溶出をある程度制御することができるものであったが、撥水性、耐薬品性等が悪く、金属類を含有する粒子の完全無害化には至らなかった。
実施例3
<処理液B>
 実施例1において、水溶性有機物であるショ糖(シュクロース)の50質量%水溶液を加えない以外は実施例1と同様に処理液を調製し(処理液Bとする)、実施例1と同様に処理をし、加熱溶融を行った。加熱開始から2分後、試料表面は1050℃(炉内温度との温度差300℃)に達していた。均一な黒色ガラス粒子状の複合粒子B1を得た。得られた複合粒子B1は、ほぼ球形で、その粒径は0.5mm~0.8mmであり、重金属、ホウ素及びケイ素が含有されていた。
実施例4
<前処理液b、処理液B>
 実施例1で、水溶性有機物であるショ糖(シュクロース)の50質量%水溶液を加えない以外は実施例1と同様に前処理液を調製し(前処理液bとする)、実施例2において、前処理液aに代えて前処理液bを用い、処理液Aに代えて処理液Bを用いた以外は実施例2と同様に前処理、処理、加熱溶融を行った。炉内温度は750℃であったが、試料表面の温度は1050℃に達していた。得られた複合粒子B2は、ほぼ球形で、その粒径は500μmであり、重金属、ホウ素及びケイ素が含有されていた。
実施例5
<処理液C>
 実施例1において、シリコーンエマルジョンを用いる代わりに、オイル状のシリコーン(東レ社製、SH200)18質量部、PAC(王子製紙社製、「PAC」(酸化アルミニウム換算でアルミニウムを10~11%含有する水溶液)8質量部、界面活性剤として中性洗剤(オリエント商事社製、商品名:オールマイティー浄)40質量部を加え、十分に攪拌してシリコーンを分散させた。PACを加えることによって、シリコーンがホウ砂水溶液に良好に乳化分散し、エマルジョンが得られた。こうして得られた乳化液を処理液Cとする。
 処理液Cを用いて、実施例1と同様に処理をし、加熱溶融を行った。加熱開始から2分後、試料表面は1100℃(炉内温度との温度差350℃)に達していた。均一な黒色ガラス粒子状の複合粒子C1を得た。得られた複合粒子C1は、ほぼ球形で、その体積平均粒径は400μmであり、重金属、ホウ素、炭素及びケイ素が含有されていた。
実施例6
<前処理液a、処理液C>
 実施例2において、処理液Aに代えて処理液Cを用いた以外は実施例2と同様に、前処理液aで前処理を行い、処理液Cで処理を行い、実施例2と同様に加熱溶融を行った。炉内温度は750℃であったが、試料表面の温度は1100℃に達していた。得られた複合粒子C2は、ほぼ球形で、その体積平均粒径は400μmであり、重金属、ホウ素、炭素及びケイ素が含有されていた。
Figure JPOXMLDOC01-appb-T000001
実施例7
<前処理液d、処理液D>
 実施例2において、18質量%ホウ砂水溶液に代えて、15質量%ホウ砂水溶液を用いて前処理液dと処理液Dを調製し、更に、粉砕した製鉄スラグに代えて未粉砕の染色スラッジを用いた以外は、実施例2と同様に、前処理、処理、加熱溶融を行った。未粉砕の染色スラッジの体積平均粒径は700μmであった。
 炉内温度は750℃であったが、試料表面の温度は1100℃に達していた。得られた複合粒子D2は、ほぼ球形で、その体積平均粒径は500μmであり、重金属、ホウ素、炭素及びケイ素が含有されていた。
実施例8
<前処理液e、処理液E>
 実施例2において、18質量%ホウ砂水溶液に代えて、28質量%ホウ砂水溶液を用いて前処理液eと処理液Eを調製し、更に、製鉄スラグに代えて鉱砕スラグを用いた以外は、実施例2と同様に、前処理、処理、加熱溶融を行った。粉砕後の鉱砕スラグの粒径は1mm~3mmであった。
 炉内温度は750℃であったが、試料表面の温度は1100℃に達していた。このとき、加熱溶融2分後に試料全体が赤熱し、表面フレームが3分間発生して終息した。得られた複合粒子E2は、ほぼ球形で、その粒径は0.3mm~0.5mmであり、重金属、ホウ素、炭素及びケイ素が含有されていた。
実施例9
<前処理液f、処理液F>
 実施例2において、18質量%ホウ砂水溶液に代えて、30質量%ホウ砂水溶液を用いて前処理液fを調製した。
 上記で調製した前処理液fの100質量部に、飛散性アスベスト20質量部を加え、20分間、95℃に保った。
 次いで、この液(飛散性アスベストが分散されている前処理液f)を95℃から20℃に冷却し、この液に実施例1と同様のシリコーンエマルジョンを、実施例1の処理液Aと同じシリコーン濃度になるように加えて処理液Fを調製し、飛散性アスベストに含浸させた。
 次いで、余剰水分を除去するために加熱を続け、余剰水分がなくなったところで、炉内温度600℃以上に該当するように、約1000℃という温度の低いハンドバーナーを5秒間接炎すると、真球に近いガラス玉が形成した(複合粒子J1が形成した)。飛散性アスベストが溶融したホウ砂で取り囲まれて無害化が達成できた。また、アスベストに代えて、クリソタイル及びクロシドライトでも同様に処理したところ、飛散性アスベストと同様の結果が得られた(クリソタイルからは複合粒子J2が、クロシドライトからは複合粒子J3が形成した)。
実施例10
<前処理液f、処理液F>
 実施例9において、飛散性アスベストが分散した処理液Fを70℃で60分保持して含浸させた後、ハンドバーナーに代えて、タワーキルン型生成炉(重力式落下生成炉)に投入落下させた。短時間に連続的に、体積平均粒径0.7mmの真球状態のガラス玉(「複合粒子F2」とする)が得られた。複合粒子F2には、マグネシウム、ホウ素及びケイ素が含有されていた。
実施例11
<前処理液g、処理液G>
 ホウ砂120質量部と水280質量部を、ホウ砂が全て溶解するまで97℃で加熱し、前処理液gとした。この加熱した前処理液g中に、粒径は1mm~2mmの細粉砕した製鉄スラグ50質量部を加え、攪拌しながら10分間、97℃に保ち、製鉄スラグ内に前処理液gを含浸させた。
 上記前処理液gの加熱を止め、30℃になったところで、ポリ塩化アルミニウム(王子製紙社製、「PAC」(酸化アルミニウム換算でアルミニウムを10~11%含有する水溶液)50質量部を加えて攪拌し、更にオキシム型シリコーン(東レ社製、SH5070)50質量部を加えて、均一になるまで5分間攪拌し、既に製鉄スラグが浸漬された処理液Gを調製した。その後、30℃で20分処理して、製鉄スラグ内に処理液Gを含浸させた。
 次に、これらを加熱炉に移して、15分間加熱溶融した。水が蒸発した後の加熱炉中の温度は、750~760℃であり、加熱溶融された対象物の表面温度は、1100℃であった。
 PAC量が多いため、黒色ではなく灰色のガラス状の複合粒子G2を得た。複合粒子G2には、金属類(アルミニウムを含む)、ホウ素及びケイ素が含有されていた。
実施例12
<前処理液h、処理液H>
 水280質量部にホウ砂120質量部を加えて、ホウ砂が全て溶解するまで、ほぼ沸点(100℃)で加熱した。得られた前処理液h中に、体積平均粒径1mmに粉砕した鉱渣スラグ50質量部を加え、100℃で10分間加熱しながら、前処理液hを鉱渣スラグに含浸させた。その後、50質量%の砂糖水100質量部を加え、更に3分間加熱した。
 水が蒸発して粘度が高くなってきたところで加熱を止め、炭素源ともなる木屑35質量部を加えて余剰水分を吸着させた。このホウ砂含浸鉱渣スラグ分散液(鉱渣スラグが含有された前処理液)50質量部に、下記で調製された「シリコーン分散液S」100質量部を、30℃で混合した。得られた液を処理液Hとする。
[シリコーン分散液Sの調製]
 ナフテン系鉱物油100質量部、ポリ塩化アルミニウム(王子製紙社製、「PAC」(酸化アルミニウム換算でアルミニウムを10~11%含有する水溶液)50質量部、シリコーンとして、SE792(東レ・ダウコーニング社製 2成分型シリコーンシーラントの主剤)170質量部を加熱しながら攪拌し、そこに更に、上記ポリ塩化アルミニウム水溶液(PAC)100質量部を加えた。それをエマルジョン化するまで攪拌して、「シリコーン分散液S」を調製した。
 この鉱渣スラグが含有された処理液Hを、20℃で12時間放置後、炉内温度500~750℃で加熱し、加熱溶融させた。このとき、大きなパイロフレームが発生し、黒色ガラス状の複合粒子H2を得た。複合粒子H2は、体積平均粒径300μmの、金属類(アルミニウムを含む)、ホウ素、炭素とケイ素が含有された複合粒子である。
 後述するように、この複合粒子H2は水に浮き、撥水性に極めて優れていた。また、顕微鏡で観察したところ、鉱渣スラグがガラス質で取り囲まれていることが分かり、Si(シリコン)とB(ホウ素)を有する化合物が鉱渣スラグに浸透し、経時的に長期安定化がなされていることが分かった。
実施例13
<前処理液h、処理液H>
 実施例12において、鉱渣スラグに代えて、鉱砕スラグを用いた以外は、実施例12と同様にして複合粒子H2’を得た。後述するように、この複合粒子H2’は水に浮き、撥水性に極めて優れていた。また、顕微鏡で観察したところ、鉱砕スラグがガラス質で取り囲まれていることが分かり、Si(シリコン)とB(ホウ素)を有する化合物が鉱砕スラグに浸透し、経時的に長期安定化がなされていることが分かった。
評価例1
<安定性・無害化・低毒性の評価>
 上記全ての実施例で得られた複合粒子を環境庁告示第13号による溶出試験方法に従い行った。具体的には、各実施例で得られた複合粒子それぞれ100gを、10倍量の水に6時間浸透(自然放置)後、1μmのフィルターで濾過し、このとき得られた濾液に含まれる成分を分析し、複合粒子の安定性・無害化・低毒性を以下の基準で判定した。
◎:金属類の含有量が非常に低い
○:金属類の含有量が低い
×:金属類の含有量が高い
 実施例13で得られた複合粒子を上記の溶出試験方法の際に得られた濾液の分析結果は以下の通りであり、製鉄スラグ中に含まれていた金属類の含有量は非常に低かった。更に、環境庁告示第14号(イ)に従い亜鉛の含有量を分析したところ、0.01g/L未満であった。
弗化物               :0.5mg/L
カドミウム又はその化合物      :0.005mg/L未満
アルキル水銀化合物         :0
鉛又はその化合物          :0.02mg/L未満
六価クロム化合物          :0.04mg/L未満
砒素またはその化合物        :0.01mg/L未満
水銀又はその化合物         :0.0005mg/L未満
セレン又はその化合物        :0.01mg/L未満
ほう素               :780mg/L
アンモニア、アンモニウム化合物、亜硝酸化合物及び硝酸化合物
                  :1mg/L未満
塩化物イオン            :960mg/L
 また他の実施例2、実施例4、実施例6~13においても金属類の含有量は非常に低く、実施例1、実施例3、実施例5においては金属類の含有量が低かった。すなわち、本発明の粒子処理方法によれば、有害な金属類を安定化し、得られた複合粒子は低毒性、無害性であることが分かった。
評価例2
<難燃性の評価>
 上記全ての実施例で得られた複合粒子それぞれ20gを、常法に従って加圧成形し、燃焼ガスとしてブタンを用いた炎を成型体の先端に60秒間接炎したが着火しなかった。また、溶融もせず、無煙性であった。
評価例3
<耐薬品性の評価>
 上記全ての実施例で得られた複合粒子10gをフラスコにとり、それぞれ、1N(規定)希硫酸、5質量%水酸化ナトリウム、アセトンを、それぞれ100g添加して、20℃に静置して化学反応の有無を目視で観察した。
○:目視で変化なし
×:目視で変化あり。色素を含有するものは、目視で色素等の溶出現象が若干観察される
評価例4
<撥水性の評価>
 上記全ての実施例で得られた、複合粒子10gを、体積平均粒径が約500~700μmになるように粉砕し、水100gの上に落とし、水中で攪拌して以下の判定をした。
○:水に浮く
×:水に沈む
評価例5
<帯電防止性の評価>
 上記全ての実施例で得られた複合粒子を、φ7mm、長さ200mmのアクリル樹脂製パイプの中に詰め、2cmの高さから5回タッピングした。その後、直流電圧をパイプに詰めた試料の上と下から印加して、20℃での電流値を測定する。電流値から、この形状に詰められた粉末のこの形状での比抵抗を算出した。比抵抗が10Ω・cm以下のとき、帯電防止性「○」、比抵抗が10Ω・cmより大きいとき、帯電防止性「×」と判定した。
評価例6
<耐熱性の評価>
 上記全ての実施例で得られた複合粒子各100gを、500℃に設定した電気炉内で加熱した。外観、質量ともに全く変化が見られなかったものを「◎」、殆ど変化が見られなかったものを「○」と判定した。
評価例7
<針状粒子無害化の評価>
 上記実施例9及び実施例10で得られた複合粒子を、光学顕微鏡にて観察したところ、針状粒子特有の針状部分がなくなっていた。また実施例10において、針状粒子である飛散性アスベストとして、クリソタイル及びクロシドライト(図1)を用いても同様の結果が得られた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上の結果より、本発明の粒子処理方法を用いれば、「金属類を含有する粒子」、例えば廃棄物粒子、重金属含有粒子や針状粒子含有粒子を、安全、簡便、安価に無害化処理することができる。また、耐熱性;難燃性;酸、アルカリ、有機溶媒等に対する耐薬品性;耐候性;撥水性;帯電防止性;コストパフォーマンス等に優れた有価物としての複合粒子を得ることができ、資源リサイクルが可能である。
 本発明の粒子処理方法は、廃棄物等の処理に適用することによって、有害な金属類を無害化処理することができ、更に耐熱性等に優れた複合粒子が得られるので、資源リサイクルとして活用することができる。また本発明の複合粒子は、耐熱性;難燃性;導電性;酸、アルカリ、有機溶媒等に対する耐薬品性;帯電防止性;耐候性;撥水性;コストパフォーマンス等に優れているため、不燃カーボン、不燃カーボンブラック、不燃耐火建材、活性炭、有害物質吸着材、分子ふるい、耐摩擦材、紫外線防止剤、顔料、C/Cコンポジット超耐熱フィラー、ゴム補強材、アスファルト耐熱向上剤、土壌改良材等に広く利用されるものである。また、本発明の粒子処理方法は、処理中に有毒粒子の飛散がなく、得られたものも有効に活用できるので、廃棄物処理のトータルのコストも削減され、上記分野に広く利用されるものである。
 本願は、2008年11月11日に出願した日本の特許出願である特願2008-288555に基づくものであり、それらの出願の全ての内容はここに引用し、本発明の明細書の開示として取り込まれるものである。

Claims (14)

  1.  少なくとも、ホウ砂、シリコーン及び水を含有する処理液を、金属類を含有する粒子に含浸させた後に、炉内温度600℃以上で加熱溶融することを特徴とする粒子処理方法。
  2.  上記処理液を上記金属類を含有する粒子に含浸させる前に、ホウ砂と水を含有する前処理液を、上記金属類を含有する粒子に60℃以上で含浸させる請求項1記載の粒子処理方法。
  3.  上記処理液及び/又は上記前処理液が、水100質量部に対してホウ砂15質量部以上が溶解状態で含有されているものである請求項1又は請求項2に記載の粒子処理方法。
  4.  上記処理液及び/又は上記前処理液が、少なくともホウ砂と水を、得られるホウ砂水溶液の沸点まで加熱して、ホウ砂を水に完全に溶解させたものである請求項1ないし請求項3の何れかの請求項に記載の粒子処理方法。
  5.  上記処理液及び/又は上記前処理液が、更に、水溶性有機物を含有するものである請求項1ないし請求項4の何れかの請求項に記載の粒子処理方法。
  6.  該水溶性有機物が糖類である請求項5記載の粒子処理方法。
  7.  上記金属類を含有する粒子が廃棄物粒子である請求項1ないし請求項6の何れかの請求項に記載の粒子処理方法。
  8.  上記廃棄物粒子が重金属含有粒子である請求項7に記載の粒子処理方法。
  9.  該廃棄物粒子が針状粒子含有粒子である請求項7に記載の粒子処理方法。
  10.  上記金属類を含有する粒子が、更に有機塩素化合物を含有するものである請求項1ないし請求項9の何れかの請求項に記載の粒子処理方法。
  11.  上記処理液が、更に、ポリ塩化アルミニウムを含有するものである請求項1ないし請求項10の何れかの請求項に記載の粒子処理方法。
  12.  上記加熱溶融を酸素含有気体雰囲気下で行う請求項1ないし請求項11の何れかの請求項に記載の粒子処理方法。
  13.  加熱溶融して得られたものに炭素質物が残存する請求項1ないし請求項12の何れかの請求項に記載の粒子処理方法。
  14.  請求項1ないし請求項13の何れかの請求項に記載の粒子処理方法を使用して得られたものであり、金属類、ホウ素、炭素及びケイ素を含有することを特徴とする複合粒子。
PCT/JP2009/069128 2008-11-11 2009-11-10 金属類含有粒子の処理方法 WO2010055830A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010537776A JPWO2010055830A1 (ja) 2008-11-11 2009-11-10 金属類含有粒子の処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008288555 2008-11-11
JP2008-288555 2008-11-11

Publications (1)

Publication Number Publication Date
WO2010055830A1 true WO2010055830A1 (ja) 2010-05-20

Family

ID=42169965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069128 WO2010055830A1 (ja) 2008-11-11 2009-11-10 金属類含有粒子の処理方法

Country Status (2)

Country Link
JP (1) JPWO2010055830A1 (ja)
WO (1) WO2010055830A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153917A (ja) * 2011-01-24 2012-08-16 Kobe Steel Ltd 製鋼スラグからの鉄、マンガン酸化物の回収方法
JP6348679B1 (ja) * 2018-03-28 2018-06-27 株式会社光貴組 アスベストの無害化処理方法ならびに該方法に用いる処理剤
JP6351087B1 (ja) * 2018-03-28 2018-07-04 株式会社光貴組 アスベストの無害化処理方法と該方法に用いる処理剤

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379743A (ja) * 1986-09-24 1988-04-09 日本化学工業株式会社 製鋼スラグの粉化防止剤、その製造方法及びその粉化防止剤を用いた製鋼スラグの処理方法
JPH03232578A (ja) * 1989-11-28 1991-10-16 Leonardus M M Nevels 灰残渣を処理する方法と、該方法に有用なグレーズキルン
JP2005279589A (ja) * 2004-03-30 2005-10-13 Japan Science & Technology Agency アスベストを含むスレート廃材の処理方法
WO2007037403A1 (ja) * 2005-09-30 2007-04-05 Yoshinobu Hayashi シリコーン樹脂を用いたアスベスト処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199370A (ja) * 1997-09-29 1999-04-13 Nippon Kayaku Co Ltd 重金属含有廃棄物用処理剤及び重金属含有廃棄物の安定化処理法
JP4363768B2 (ja) * 2000-10-02 2009-11-11 熊沢 登 無水ホウ酸を添加するゴミ焼却・溶融の処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379743A (ja) * 1986-09-24 1988-04-09 日本化学工業株式会社 製鋼スラグの粉化防止剤、その製造方法及びその粉化防止剤を用いた製鋼スラグの処理方法
JPH03232578A (ja) * 1989-11-28 1991-10-16 Leonardus M M Nevels 灰残渣を処理する方法と、該方法に有用なグレーズキルン
JP2005279589A (ja) * 2004-03-30 2005-10-13 Japan Science & Technology Agency アスベストを含むスレート廃材の処理方法
WO2007037403A1 (ja) * 2005-09-30 2007-04-05 Yoshinobu Hayashi シリコーン樹脂を用いたアスベスト処理方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153917A (ja) * 2011-01-24 2012-08-16 Kobe Steel Ltd 製鋼スラグからの鉄、マンガン酸化物の回収方法
JP6348679B1 (ja) * 2018-03-28 2018-06-27 株式会社光貴組 アスベストの無害化処理方法ならびに該方法に用いる処理剤
JP6351087B1 (ja) * 2018-03-28 2018-07-04 株式会社光貴組 アスベストの無害化処理方法と該方法に用いる処理剤
WO2019187181A1 (ja) * 2018-03-28 2019-10-03 株式会社光貴組 アスベストの無害化処理方法ならびに該方法に用いる処理剤
WO2019187180A1 (ja) * 2018-03-28 2019-10-03 株式会社光貴組 アスベストの無害化処理方法と該方法に用いる処理剤
KR20190113522A (ko) * 2018-03-28 2019-10-08 가부시키가이샤 고키구미 아스베스토의 무해화 처리 방법 및 상기 방법에 이용하는 처리제
KR20190113521A (ko) * 2018-03-28 2019-10-08 가부시키가이샤 고키구미 아스베스토의 무해화 처리 방법과 상기 방법에 이용하는 처리제
KR102051245B1 (ko) 2018-03-28 2019-12-02 가부시키가이샤 고키구미 아스베스토의 무해화 처리 방법과 상기 방법에 이용하는 처리제
KR102051246B1 (ko) 2018-03-28 2019-12-02 가부시키가이샤 고키구미 아스베스토의 무해화 처리 방법 및 상기 방법에 이용하는 처리제
US10722742B2 (en) 2018-03-28 2020-07-28 Kokigumi Co., Ltd Method for detoxifying asbestos
US10729926B2 (en) 2018-03-28 2020-08-04 Kokigumi Co., Ltd. Method for detoxifying asbestos

Also Published As

Publication number Publication date
JPWO2010055830A1 (ja) 2012-04-12

Similar Documents

Publication Publication Date Title
Lindberg et al. Thermal treatment of solid residues from WtE units: A review
Gomez et al. Thermal plasma technology for the treatment of wastes: A critical review
Geng et al. Recovery of metals from municipal solid waste incineration fly ash and red mud via a co-reduction process
JPWO2008139747A1 (ja) 炭素アルミニウム複合化合物及び炭素アルミニウム複合化合物被覆無機化合物
Kim et al. Valorization of fly ash as a harmless flame retardant via carbonation treatment for enhanced fire-proofing performance and mechanical properties of silicone composites
JP2001506964A (ja) 汚染堆積物および土壌の除染による環境的に安定な物質
GB2490175A (en) Treatment of waste
Cagnetta et al. Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling
Yu et al. HCB dechlorination combined with heavy metals immobilization in MSWI fly ash by using n-Al/CaO dispersion mixture
Ajorloo et al. Heavy metals removal/stabilization from municipal solid waste incineration fly ash: a review and recent trends
WO2010055830A1 (ja) 金属類含有粒子の処理方法
JP2013503729A (ja) 硫化水銀を介する、硫黄ポリマセメントを用いた液体水銀を安定化するための方法
Zou et al. Study on preparation of glass-ceramics from multiple solid waste and coupling mechanism of heavy metals
KR20210016132A (ko) 물리화학적 처리법에 의한 석면 무해화 방법
JP3769569B2 (ja) アスベスト無害化処理方法
Lázár et al. Upgrading the glassy slag from waste disposal by thermal plasma treatment
Gao et al. Efficient utilization of multi-source solid waste to prepare the novel core-shell structured lightweight aggregates and its immobilization for volatile heavy metals
Lee et al. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent
Xi et al. Na2O induced stable heavy metal silicates phase transformation and glass network depolymerization
Gong et al. Stabilization of lead in incineration fly ash by moderate thermal treatment with sodium hydroxide addition
He et al. Effects and mechanism of the conditions of sintering on heavy metal leaching characteristic in municipal solid waste incineration fly ash
Erzat et al. Detoxification effect of chlorination procedure on waste lead glass
Kuo et al. Pollution characteristics of thermal treatments for elutriated ashes. Part 2: comparison with incineration system and plasma melting system
WO2009119223A1 (ja) 廃棄物処理方法及びそれを使用して得られる耐熱性化合物
JP2007308310A (ja) 鉛ガラスの無害化を伴う無機質固化体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010537776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826078

Country of ref document: EP

Kind code of ref document: A1