WO2010055809A1 - 撮像装置の調整方法および撮像装置 - Google Patents
撮像装置の調整方法および撮像装置 Download PDFInfo
- Publication number
- WO2010055809A1 WO2010055809A1 PCT/JP2009/068972 JP2009068972W WO2010055809A1 WO 2010055809 A1 WO2010055809 A1 WO 2010055809A1 JP 2009068972 W JP2009068972 W JP 2009068972W WO 2010055809 A1 WO2010055809 A1 WO 2010055809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- imaging
- optical system
- image
- center
- luminance
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 207
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000009826 distribution Methods 0.000 claims abstract description 48
- 230000003287 optical effect Effects 0.000 claims description 96
- 238000012937 correction Methods 0.000 claims description 25
- 238000001514 detection method Methods 0.000 claims description 16
- 235000019557 luminance Nutrition 0.000 description 56
- 238000010586 diagram Methods 0.000 description 8
- 238000007689 inspection Methods 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- KNMAVSAGTYIFJF-UHFFFAOYSA-N 1-[2-[(2-hydroxy-3-phenoxypropyl)amino]ethylamino]-3-phenoxypropan-2-ol;dihydrochloride Chemical compound Cl.Cl.C=1C=CC=CC=1OCC(O)CNCCNCC(O)COC1=CC=CC=C1 KNMAVSAGTYIFJF-UHFFFAOYSA-N 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- FTGYKWAHGPIJIT-UHFFFAOYSA-N hydron;1-[2-[(2-hydroxy-3-phenoxypropyl)-methylamino]ethyl-methylamino]-3-phenoxypropan-2-ol;dichloride Chemical compound Cl.Cl.C=1C=CC=CC=1OCC(O)CN(C)CCN(C)CC(O)COC1=CC=CC=C1 FTGYKWAHGPIJIT-UHFFFAOYSA-N 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/61—Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2101/00—Still video cameras
Definitions
- the present invention relates to an image pickup apparatus adjustment method and an image pickup apparatus, and more particularly to an image pickup apparatus adjustment method and an image pickup apparatus in an image pickup apparatus provided with a blur correction unit.
- an image sensor such as a CCD type or CMOS type in a plane perpendicular to the optical axis of the imaging optical system, or one or more optical elements in the imaging optical system are perpendicular to the optical axis of the imaging optical system
- Digital cameras equipped with a shake correction function that corrects camera shake or subject shake by moving in a smooth plane are flourishing. In such a digital camera, it is essential to adjust the initial position of the imaging area center of the imaging element with respect to the position of the subject image by the imaging optical system.
- Patent Document 1 As a method for adjusting the initial position of the center of the imaging area, for example, in Patent Document 1, (1) the image sensor is moved to a position that protrudes from the image circle in three directions, and the center position of the image circle is determined from the protrusion amount, that is, the amount of vignetting Obtain information to match the center of the image circle with the center of the imaging area, and (2) obtain the distribution center of the shading characteristics of the image captured by the image sensor, and determine the distribution center of the shading characteristics and the center of the imaging area. A matching method is disclosed.
- Patent Document 2 discloses a method for determining an image frame on an image sensor so that the amount of light in the image frame is uniform in so-called trimming in which an image is formed using partial information of the image sensor. Yes.
- Patent Document 1 has a problem that an obtained image becomes unnatural when the shading characteristics are asymmetric with respect to the center of the image circle.
- it is necessary to move the image sensor at least three times, and it is necessary to set a large amount of movement of the image sensor so that vignetting occurs in all types of image pickup optical systems. If the amount of movement is large, the error increases depending on the type of the image sensor position sensor. Therefore, after obtaining the approximate center position of the image circle by performing three movements, the amount of movement is decreased from the center position and again. Since measurement is performed, there is a problem that adjustment time is required.
- the present invention has been made in view of the above circumstances, and provides an adjustment method of an imaging apparatus that can adjust the center position of an imaging element in a short time and obtain an image with a natural luminance distribution. Objective.
- the object of the present invention can be achieved by the following configuration.
- An imaging optical system for forming an image of a subject;
- An imaging device that is disposed at an imaging position of the imaging optical system, has an imaging surface, and that captures an image of a subject imaged on the imaging surface by the imaging optical system;
- a blur correction unit that corrects blurring of a subject image formed on the imaging surface by moving a relative position between the optical axis of the imaging optical system and the imaging element in a plane perpendicular to the optical axis;
- An imaging apparatus adjustment method for setting a position of the image sensor based on center position information acquired in advance at the time of imaging, An initial position moving step of moving the position of the image sensor to an initial position;
- a luminance distribution calculation step of calculating a luminance distribution of the imaging surface based on the image signal obtained in the imaging step;
- a center shift information calculation step of calculating center shift information from information on four corners of the imaging surface of
- the center deviation information is composed of horizontal information ⁇ x and vertical information ⁇ y,
- the positions of the pixels on the upper and lower horizontal lines of the imaging surface that exhibit a luminance that is lower than the maximum value of the luminance distribution by a predetermined ratio are clockwise x 1 and x from the upper left when viewed from the imaging optical system side.
- the blur correction unit includes an image sensor moving unit that moves the image sensor in a plane perpendicular to the optical axis, and an image sensor position sensor that detects a position of the image sensor. 3.
- the blur correction unit includes: an imaging optical system moving unit that moves part or all of the imaging optical system in a plane perpendicular to the optical axis; and one of the imaging optical system that is moved by the imaging optical system moving unit.
- An imaging optical system position sensor that detects the position of all or part, 3. The method of adjusting an imaging apparatus according to 1 or 2, wherein the initial position is a center position of a detection range of the imaging optical system position sensor.
- An imaging optical system for forming an image of a subject;
- An imaging device that is disposed at an imaging position of the imaging optical system, has an imaging surface, and that captures an image of a subject imaged on the imaging surface by the imaging optical system;
- a blur correction unit that corrects blurring of a subject image formed on the imaging surface by moving a relative position between the optical axis of the imaging optical system and the imaging element in a plane perpendicular to the optical axis;
- an imaging apparatus comprising: With a recording unit, 6. The imaging apparatus according to claim 1, wherein central position information acquired by the adjustment method for an imaging apparatus according to any one of 1 to 5 is recorded in the recording unit.
- the position of the imaging device is set to the initial position, the uniform luminance surface is imaged, the luminance distribution on the imaging surface is calculated, and it is determined whether or not the luminance distributions at the four corners of the imaging surface substantially match. Then, the position of the image sensor is moved by a predetermined value until it substantially matches, and the above operation is repeated, and the position of the image sensor at the time of approximately matching is used as the center position information, thereby adjusting the center position of the image sensor in a short time. Therefore, it is possible to provide an adjustment method for an imaging apparatus that can obtain an image with a natural luminance distribution.
- FIG. 1 It is a schematic diagram for demonstrating the digital camera carrying a blurring correction means. It is a schematic diagram which shows the optical image of the to-be-photographed object formed via an imaging optical system. It is a block diagram which shows an example of the adjustment system for acquiring center position information. It is a flowchart which shows embodiment of the adjustment method of a digital camera. 3 is a schematic diagram illustrating an example of a luminance distribution on an imaging surface 5a of the imaging element 5.
- FIG. It is a flowchart for demonstrating the inspection method of surrounding light quantity distribution, and the response
- FIG. 1 is a digital camera equipped with a shake correction unit.
- FIG. 1A is a schematic diagram for explaining, and FIG. 1A shows an example of a digital camera equipped with an image sensor moving type blur correction unit, and FIG. 1B shows an imaging optical system movement type blur correction unit. An example of a digital camera is shown.
- FIG. 2 is a schematic diagram showing an optical image of a subject formed through the imaging optical system.
- a digital camera 1 is composed of a camera body 2 and an imaging optical system 3.
- the camera body 2 includes a shake detection unit 4, an image pickup device 5, an image pickup circuit 6, a CPU 7, a recording unit 8, a shake correction unit 9, an interface (I / F) 10, and the like.
- a signal from each function of the digital camera 1 is input to the CPU 7, and each function of the digital camera 1 operates under the control of the CPU 7.
- the imaging optical system 3 includes a lens group 30 composed of a plurality of lenses. As shown in FIG. 2, the optical image of the subject formed through the imaging optical system 3 has a substantially circular shape on the xy plane (hereinafter referred to as the imaging plane) to be formed, and the image circle IC and be called. Also, the rectangular area 5a shown in FIG. 2 is the imaging surface 5a of the imaging device 5, and the center of the imaging surface 5a is 5c.
- the camera body 2 includes an image sensor moving unit 50, an image sensor position sensor 58, a shake detection sensor 40, and the like in addition to the above-described components.
- the shake detection sensor 40, the shake detection unit 4, the CPU 7, the shake correction unit 9, the image sensor moving unit 50, and the image sensor position sensor 58 function as a shake correction unit in the present invention.
- the imaging optical system 3 includes an imaging optical system moving unit 31, an imaging optical system position sensor 33, and the like.
- the image sensor 5, the blur detection unit 4, the CPU 7, the blur correction unit 9, the imaging optical system moving unit 31, and the imaging optical system position sensor 33 function as a blur correction unit in the present invention.
- the xyz three-dimensional orthogonal coordinate system shown in the figure is used as appropriate to indicate the direction and orientation.
- the z-axis direction is a direction along the optical axis L of the imaging optical system 3, and the z-axis positive direction is a direction (rightward in the drawing) that is an incident destination of incident light.
- the y-axis direction is a direction perpendicular to the ground when the digital camera 1 is held at the normal position, and the y-axis positive direction is vertically upward (upward in the figure).
- the x-axis direction is a horizontal direction with respect to the ground when the digital camera 1 is held at the normal position, and the x-axis positive direction is a vertically downward direction with respect to the drawing (paper surface).
- vibration due to camera shake of the digital camera 1 is detected by a shake detection sensor 40 such as an angular velocity sensor, for example, and the vibration detected by the shake detection sensor 40 is detected by a shake detection unit 4 as a shake signal.
- 4a is input to the CPU 7.
- the CPU 7 moves the image sensor 5 to the center position based on the center position information recorded in the recording unit 8, then generates the blur correction signal 9 a based on the blur signal 4 a, and passes through the blur correction unit 9. Then, the image pickup device moving unit 50 is driven to move the image pickup device 5 in the xy plane perpendicular to the optical axis L to correct camera shake. The amount of movement of the image sensor 5 is detected by the image sensor position sensor 58, input to the CPU 7, and fed back to the movement control of the image sensor 5.
- a shake signal 4 a is generated by the shake detection unit 4 from a temporal change of an image captured by the image sensor 5 and is input to the CPU 7. Based on the center position information recorded in the recording unit 8, the CPU 7 moves a part of the optical elements constituting the imaging optical system 30 or the entire imaging optical system 30 to the center position.
- the CPU 7 generates a shake correction signal 9 a based on the shake signal 4 a, drives the imaging optical system moving unit 31 via the shake correction unit 9, and a part of optical elements constituting the imaging optical system 30.
- the entire imaging optical system 30 is moved in the xy plane perpendicular to the optical axis L to correct blurring.
- the amount of movement of the imaging optical system 30 is detected by the imaging optical system position sensor 33, input to the CPU 7, and fed back to movement control of the imaging optical system 30.
- FIG. 3 is a block diagram illustrating an example of an adjustment system for acquiring center position information.
- the digital camera 1 uses the example shown in FIG. 1 (a), but the same applies to the one shown in FIG. 1 (b).
- the adjustment system 100 includes an adjustment device 200, a uniform luminance surface 300, and the like.
- the adjustment device 200 includes a CPU 201, a ROM 203, a RAM 205, and the like.
- a program stored in the ROM 203 is expanded on the RAM 205 and executed by the CPU 201.
- the uniform luminance surface 300 is a surface of uniform luminance having a predetermined brightness such as a luminance box or a white chart.
- the imaging optical system 3 of the digital camera 1 is disposed to face the uniform luminance surface 300 and forms an image of the uniform luminance surface 300 on the imaging surface 5 a of the imaging element 5.
- An image of the uniform luminance plane 300 on the image pickup surface 5 a of the image pickup device 5 is picked up by the image pickup device 5, converted into an image signal 6 a by the image pickup circuit 6, and input to the CPU 7.
- the image signal 6 a is transmitted from the CPU 7 to the CPU 201 of the adjustment device 200 via the I / F 10.
- processing for acquiring center position information is performed based on the image signal 6a received from the CPU 7.
- FIG. 4 is a flowchart showing an embodiment of a method for adjusting the digital camera 1
- FIG. 5 is a schematic diagram showing an example of a luminance distribution on the imaging surface 5 a of the imaging device 5.
- a uniform luminance plane is imaged, and the position of the image sensor when the luminance distributions at the four corners of the imaging plane substantially coincide is set as the center position.
- the initial position is the origin of the image sensor position sensor 58 for detecting the position of the image sensor 5, that is, the center position of the detection range.
- the center 5c of the image pickup surface 5a of the image pickup element 5 shown in FIG. 5 and the optical axis L of the image pickup optical system 3 coincide with each other.
- step S103 the counter n is reset to 0 (zero).
- step S105 imaging process
- imaging is performed by the imaging device 5, converted into an image signal 6a by the imaging circuit 6, and the image signal 6a is transmitted to the CPU 201 via the CPU 7 and the I / F 10.
- step S111 luminance distribution calculation step
- the luminance distribution on the imaging surface 5a of the imaging element 5 is calculated based on the image signal 6a.
- the luminance distribution on the imaging surface 5a is a distribution that gradually attenuates from 80% and 60% in a substantially concentric manner from the point of maximum luminance (100%). .
- step S113 the positions of the four corners of the imaging surface 5a of the imaging device 5 showing a predetermined luminance value, for example, 20% of the maximum luminance as an example, are determined.
- the positions of the horizontal pixels at the upper and lower ends of the imaging surface 5a showing the luminance of 20% of the maximum luminance are x 1 , x 2 , clockwise from the upper left when viewed from the imaging optical system 3 side.
- x 3 and x 4 the positions of the pixels in the vertical column at the left and right ends of the imaging surface 5a of the imaging device 5 that also shows the luminance of 20% of the maximum luminance are clockwise from the upper left when viewed from the imaging optical system 3 side. Determined as y 1 , y 2 , y 3 , y 4 .
- the predetermined luminance value is appropriately determined from the specifications of the digital camera 1, the characteristics of the imaging optical system 3, and the like.
- step S115 the horizontal length of the image pickup surface 5a l x, the vertical length as l y, and the center deviation information ⁇ y in the horizontal direction of the center shift information ⁇ x and the vertical direction, based on the following equation Is calculated.
- Steps S113 and S115 are a center deviation information calculation step in the present invention.
- step S121 center coincidence determination step
- step S121 center coincidence determination step
- step S121 determines whether or not both the horizontal center shift information ⁇ x and the vertical center shift information ⁇ y are equal to or less than a predetermined value. If both ⁇ x and ⁇ y are equal to or smaller than the predetermined value (step S121; Yes), the position information 58a of the image sensor position sensor 58 indicating the current position of the image sensor 5 is the center in step S131 (center position information recording step). The position information is written in the recording unit 8 and the operation is terminated.
- step S141 When one of ⁇ x and ⁇ y is larger than the predetermined value (step S121; No), it is confirmed in step S141 whether or not the counter n is equal to or larger than the maximum value n max . If they are equal or larger (step S141; Yes), it is considered that the center deviation information does not converge even if the adjustment is repeated n max times, and the failure process is performed in step S143, and the operation is terminated.
- the value of n max and the content of the failure process may be determined as appropriate according to the adjustment system.
- step S141 When the counter n is smaller than the maximum value n max (step S141; No), 1 is added to the counter n in step S151, and the image sensor 5 is moved by the center shift information ( ⁇ x, ⁇ y) in step S153. Subsequently, the process returns to step S105, and thereafter, the above-described operation is repeated.
- ⁇ x and ⁇ y are larger than a predetermined value (for example, only ⁇ x)
- only the larger one for example, ⁇ x
- the uniform luminance surface is imaged by the imaging device, and the position of the imaging device when the luminance distributions at the four corners of the imaging surface substantially coincide with each other is set as the center position, so that
- the center position of the image sensor can be adjusted, and the luminance distributions at the four corners of the imaging surface are substantially the same, so an image with a natural luminance distribution can be obtained.
- step S101 may be set not at the origin of the image sensor position sensor 58 but at the center value of the distribution of past center position information data.
- the adjustment for acquiring the center position information can be performed in consideration of the error in the actual positional relationship between the optical axis L of the digital camera 1 and the image pickup device 5, and the probability that the adjustment is completed at the initial position.
- the adjustment time can be shortened.
- the luminance distribution on the image sensor 5a is distorted so that the positions of the four corners of the image sensor 5a of the image sensor 5 showing a predetermined luminance value cannot be determined.
- the center position of the distribution of the shading characteristics of the entire imaging surface 5a of the image sensor 5 is obtained by calculation, the center 5c of the imaging surface 5a of the image sensor 5 is moved to that position, and then steps S103 and after are performed. You may make it perform.
- the positions of the four corners of the imaging surface 5a can be determined by starting the adjustment from the center position of the distribution of the shading characteristics.
- the adjustment for acquiring the center position information is performed in a state where the digital camera 1 is completed.
- the imaging element 5, the imaging element position sensor 58, and the imaging element moving unit are added to the imaging optical system 3.
- the camera unit 2 After performing adjustment for acquiring center position information in the state of the imaging unit to which 50 is attached, the camera unit 2 may be incorporated.
- the central position information in the recording unit 8 instead of writing the central position information in the recording unit 8, for example, it is printed on a barcode and pasted on the imaging unit, and when the imaging unit is incorporated into the camera body 2, the central position information is read from the barcode.
- the data may be written in the recording unit 8 in the camera body 2.
- FIG. 6 is a flowchart for explaining the peripheral light amount distribution inspection and a countermeasure method when a defect occurs in the inspection.
- the inspection apparatus used for the inspection of the peripheral light amount distribution may be the same as the adjustment system for acquiring the center position information shown in FIG.
- step S201 the center position information recorded in the recording unit 8 of the digital camera 1 is read in step S201.
- step S203 the image sensor 5 is moved to the center position according to the center position information read in step S201.
- step S205 an image is picked up by the image pickup device 5, converted into an image signal 6a by the image pickup circuit 6, and the image signal 6a is transmitted to the CPU 201 via the CPU 7 and the I / F 10.
- step S207 the luminance distribution on the imaging surface 5a of the imaging device 5 is calculated based on the image signal 6a.
- step S209 the luminances at predetermined positions at the four corners of the imaging surface 5a of the imaging device 5 are compared.
- step S211 When the difference in luminance at the predetermined positions at the four corners of the imaging surface 5a is larger than the predetermined value (step S211; No), the difference in luminance at the predetermined positions at the four corners of the imaging surface 5a becomes equal to or smaller than the predetermined value in step S221.
- the gain G for this is calculated.
- step S223 the gain G calculated in step S221 is written in the recording unit 8, and the operation is terminated.
- the gain value G written in the recording unit 8 is multiplied by the image signal at the time of signal processing performed in the digital camera 1 on the image signal actually taken by the digital camera 1.
- the position of the imaging device is set to the initial position, the uniform luminance surface is imaged, the luminance distribution on the imaging surface is calculated, and the luminance distribution at the four corners of the imaging surface is substantially reduced. It is determined whether or not they match, the position of the image sensor is moved by a predetermined value until it substantially matches, and the above operation is repeated, and the position of the image sensor when approximately matched is used as the center position information in a short time. It is possible to provide a method for adjusting an imaging apparatus that can adjust the center position of the imaging element and obtain an image having a natural luminance distribution.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Studio Devices (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
前記撮像光学系の結像位置に配置され、撮像面を有し、前記撮像光学系によって前記撮像面上に結像された被写体の像を撮像する撮像素子と、
前記撮像光学系の光軸と前記撮像素子との相対位置を前記光軸に垂直な面内で移動させることで、前記撮像面に結像された被写体の像のブレを補正するブレ補正手段とを備え、
撮像時に、予め取得された中心位置情報に基づいて前記撮像素子の位置を設定する撮像装置の調整方法であって、
前記撮像素子の位置を初期位置に移動させる初期位置移動工程と、
前記初期位置において均一輝度面を撮像し、前記均一輝度面の像を画像信号に変換する撮像工程と、
前記撮像工程で得られた画像信号に基づいて、前記撮像面の輝度分布を演算する輝度分布演算工程と、
前記輝度分布の前記撮像面の四隅の情報から中心ズレ情報を演算する中心ズレ情報演算工程と、
前記中心ズレ情報に基づいて、前記撮像面の四隅の輝度分布が略一致したか否かを判定する中心一致判定工程と、
前記中心一致判定工程の結果に基づき、前記撮像面の四隅の輝度分布が略一致した時の前記撮像素子の位置を、中心位置情報として前記撮像装置に記録する中心位置情報記録工程とを備えたことを特徴とする撮像装置の調整方法。
前記輝度分布の最大値に対して所定の割合だけ低い輝度を示す前記撮像面の上下端水平行上の画素の位置を、前記撮像光学系の側から見て左上から時計回りにx1、x2、x3、x4とし、
前記輝度分布の最大値に対して所定の割合だけ低い輝度を示す前記撮像面の左右端垂直列上の画素の位置を、前記撮像光学系の側から見て左上から時計回りにy1、y2、y3、y4とし、
前記撮像面の水平方向の長さをlx、垂直方向の長さをlyとした時に、
Δx=((x1+x3)/2+(x2+x4)/2)×1/2-lx/2
Δy=((y1+y3)/2+(y2+y4)/2)×1/2-ly/2
であることを特徴とする前記1に記載の撮像装置の調整方法。
前記初期位置は、前記撮像素子位置センサの検出範囲の中心位置であることを特徴とする前記1または2に記載の撮像装置の調整方法。
前記初期位置は、前記撮像光学系位置センサの検出範囲の中心位置であることを特徴とする前記1または2に記載の撮像装置の調整方法。
前記撮像光学系の結像位置に配置され、撮像面を有し、前記撮像光学系によって前記撮像面上に結像された被写体の像を撮像する撮像素子と、
前記撮像光学系の光軸と前記撮像素子との相対位置を前記光軸に垂直な面内で移動させることで、前記撮像面に結像された被写体の像のブレを補正するブレ補正手段とを備えた撮像装置において、
記録部を備え、
前記記録部に、前記1から5の何れか1項に記載の撮像装置の調整方法により取得された中心位置情報が記録されていることを特徴とする撮像装置。
Δy=((y1+y3)/2+(y2+y4)/2)×1/2-ly/2
ステップS113およびステップS115は、本発明における中心ズレ情報演算工程である。
2 カメラ本体
3 撮像光学系
30 レンズ群
31 撮像光学系移動部
33 撮像光学系位置センサ
4 ブレ検出部
40 ブレ検出センサ
5 撮像素子
5a (撮像素子5の)撮像面
5c (撮像素子5の撮像面5aの)中心
50 撮像素子移動部
58 撮像素子位置センサ
6 撮像回路
7 CPU
8 記録部
9 ブレ補正部
10インターフェース(I/F)
100 調整システム
200 調整装置
201 CPU
203 ROM
205 RAM
300 均一輝度面
IC イメージサークル
L (撮像光学系3の)光軸
Claims (6)
- 被写体の像を結像させる撮像光学系と、
前記撮像光学系の結像位置に配置され、撮像面を有し、前記撮像光学系によって前記撮像面上に結像された被写体の像を撮像する撮像素子と、
前記撮像光学系の光軸と前記撮像素子との相対位置を前記光軸に垂直な面内で移動させることで、前記撮像面に結像された被写体の像のブレを補正するブレ補正手段とを備え、
撮像時に、予め取得された中心位置情報に基づいて前記撮像素子の位置を設定する撮像装置の調整方法であって、
前記撮像素子の位置を初期位置に移動させる初期位置移動工程と、
前記初期位置において均一輝度面を撮像し、前記均一輝度面の像を画像信号に変換する撮像工程と、
前記撮像工程で得られた画像信号に基づいて、前記撮像面の輝度分布を演算する輝度分布演算工程と、
前記輝度分布の前記撮像面の四隅の情報から中心ズレ情報を演算する中心ズレ情報演算工程と、
前記中心ズレ情報に基づいて、前記撮像面の四隅の輝度分布が略一致したか否かを判定する中心一致判定工程と、
前記中心一致判定工程の結果に基づき、前記撮像面の四隅の輝度分布が略一致した時の前記撮像素子の位置を、中心位置情報として前記撮像装置に記録する中心位置情報記録工程とを備えたことを特徴とする撮像装置の調整方法。 - 前記中心ズレ情報は、水平方向の情報Δxと垂直方向の情報Δyとからなり、
前記輝度分布の最大値に対して所定の割合だけ低い輝度を示す前記撮像面の上下端水平行上の画素の位置を、前記撮像光学系の側から見て左上から時計回りにx1、x2、x3、x4とし、
前記輝度分布の最大値に対して所定の割合だけ低い輝度を示す前記撮像面の左右端垂直列上の画素の位置を、前記撮像光学系の側から見て左上から時計回りにy1、y2、y3、y4とし、
前記撮像面の水平方向の長さをlx、垂直方向の長さをlyとした時に、
Δx=((x1+x3)/2+(x2+x4)/2)×1/2-lx/2
Δy=((y1+y3)/2+(y2+y4)/2)×1/2-ly/2
であることを特徴とする請求項1に記載の撮像装置の調整方法。 - 前記ブレ補正手段は、前記撮像素子を前記光軸に垂直な面内で移動させる撮像素子移動部と、前記撮像素子の位置を検出する撮像素子位置センサを備え、
前記初期位置は、前記撮像素子位置センサの検出範囲の中心位置であることを特徴とする請求項1または2に記載の撮像装置の調整方法。 - 前記ブレ補正手段は、前記撮像光学系の一部または全部を前記光軸に垂直な面内で移動させる撮像光学系移動部と、前記撮像光学系移動部で移動される前記撮像光学系の一部または全部の位置を検出する撮像光学系位置センサを備え、
前記初期位置は、前記撮像光学系位置センサの検出範囲の中心位置であることを特徴とする請求項1または2に記載の撮像装置の調整方法。 - 前記初期位置は、過去の前記中心位置情報のデータの分布の中心値であることを特徴とする請求項1または2に記載の撮像装置の調整方法。
- 被写体の像を結像させる撮像光学系と、
前記撮像光学系の結像位置に配置され、撮像面を有し、前記撮像光学系によって前記撮像面上に結像された被写体の像を撮像する撮像素子と、
前記撮像光学系の光軸と前記撮像素子との相対位置を前記光軸に垂直な面内で移動させることで、前記撮像面に結像された被写体の像のブレを補正するブレ補正手段とを備えた撮像装置において、
記録部を備え、
前記記録部に、請求項1から5の何れか1項に記載の撮像装置の調整方法により取得された中心位置情報が記録されていることを特徴とする撮像装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801441846A CN102210137A (zh) | 2008-11-12 | 2009-11-06 | 摄像装置的调整方法及摄像装置 |
US13/128,312 US20110216227A1 (en) | 2008-11-12 | 2009-11-06 | Method for adjusting image pickup device and image pickup device |
JP2010537761A JPWO2010055809A1 (ja) | 2008-11-12 | 2009-11-06 | 撮像装置の調整方法および撮像装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-289626 | 2008-11-12 | ||
JP2008289626 | 2008-11-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010055809A1 true WO2010055809A1 (ja) | 2010-05-20 |
Family
ID=42169944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068972 WO2010055809A1 (ja) | 2008-11-12 | 2009-11-06 | 撮像装置の調整方法および撮像装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110216227A1 (ja) |
JP (1) | JPWO2010055809A1 (ja) |
CN (1) | CN102210137A (ja) |
WO (1) | WO2010055809A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015188199A (ja) * | 2014-03-10 | 2015-10-29 | パナソニックIpマネジメント株式会社 | 撮像装置 |
JP2019009653A (ja) * | 2017-06-26 | 2019-01-17 | アイホン株式会社 | インターホン機器におけるカメラモジュールの調整方法 |
JP2019028358A (ja) * | 2017-08-02 | 2019-02-21 | キヤノン株式会社 | 撮像装置およびその制御方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6022388B2 (ja) * | 2013-03-22 | 2016-11-09 | シャープ株式会社 | 校正装置、撮像装置、校正方法、および撮像装置の製造方法 |
US11336827B2 (en) * | 2017-11-09 | 2022-05-17 | Canon Kabushiki Kaisha | Imaging apparatus and interchangeable lens apparatus that utilize image circle information of an imaging optical system in the interchangeable lens apparatus |
JP7191599B2 (ja) * | 2018-09-07 | 2022-12-19 | キヤノン株式会社 | 光学機器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000221557A (ja) * | 1999-01-29 | 2000-08-11 | Matsushita Electric Ind Co Ltd | 像ブレ補正装置とそれを用いた撮影装置 |
JP2001094861A (ja) * | 1999-09-24 | 2001-04-06 | Casio Comput Co Ltd | 撮像素子位置決め方法および撮像素子位置決め支援装置 |
JP2001257930A (ja) * | 2000-03-13 | 2001-09-21 | Olympus Optical Co Ltd | 画枠センタリング調整方法および撮像装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI232349B (en) * | 2003-07-07 | 2005-05-11 | Benq Corp | Method for adjusting relative position of lens module by using uniform light source |
JP4346988B2 (ja) * | 2003-07-28 | 2009-10-21 | キヤノン株式会社 | 撮影装置および撮影装置の光学調整方法 |
TWI375112B (en) * | 2004-06-24 | 2012-10-21 | Pentax Ricoh Imaging Co Ltd | Digital camera |
US7961973B2 (en) * | 2004-09-02 | 2011-06-14 | Qualcomm Incorporated | Lens roll-off correction method and apparatus |
JP2007060520A (ja) * | 2005-08-26 | 2007-03-08 | Olympus Corp | 撮像装置 |
JP4804166B2 (ja) * | 2006-02-17 | 2011-11-02 | キヤノン株式会社 | 撮像装置およびその制御方法 |
JP4423678B2 (ja) * | 2006-09-06 | 2010-03-03 | カシオ計算機株式会社 | 撮像装置、撮影方法及びプログラム |
DE112006003999B4 (de) * | 2006-09-15 | 2016-12-15 | Trimble Jena Gmbh | Korrektur von Kalibrierungsfehlern in einem optischen Instrument |
JP5159240B2 (ja) * | 2007-10-18 | 2013-03-06 | キヤノン株式会社 | 撮像装置 |
JP4682181B2 (ja) * | 2007-11-19 | 2011-05-11 | シャープ株式会社 | 撮像装置および電子情報機器 |
FR2941067B1 (fr) * | 2009-01-14 | 2011-10-28 | Dxo Labs | Controle de defauts optiques dans un systeme de capture d'images |
KR101672944B1 (ko) * | 2009-12-14 | 2016-11-04 | 엘지이노텍 주식회사 | 오토 포커스 카메라 모듈에서의 렌즈 셰이딩 보상방법 |
US8659689B2 (en) * | 2011-05-17 | 2014-02-25 | Rpx Corporation | Fast measurement of alignment data of a camera system |
-
2009
- 2009-11-06 WO PCT/JP2009/068972 patent/WO2010055809A1/ja active Application Filing
- 2009-11-06 US US13/128,312 patent/US20110216227A1/en not_active Abandoned
- 2009-11-06 CN CN2009801441846A patent/CN102210137A/zh active Pending
- 2009-11-06 JP JP2010537761A patent/JPWO2010055809A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000221557A (ja) * | 1999-01-29 | 2000-08-11 | Matsushita Electric Ind Co Ltd | 像ブレ補正装置とそれを用いた撮影装置 |
JP2001094861A (ja) * | 1999-09-24 | 2001-04-06 | Casio Comput Co Ltd | 撮像素子位置決め方法および撮像素子位置決め支援装置 |
JP2001257930A (ja) * | 2000-03-13 | 2001-09-21 | Olympus Optical Co Ltd | 画枠センタリング調整方法および撮像装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015188199A (ja) * | 2014-03-10 | 2015-10-29 | パナソニックIpマネジメント株式会社 | 撮像装置 |
JP2019009653A (ja) * | 2017-06-26 | 2019-01-17 | アイホン株式会社 | インターホン機器におけるカメラモジュールの調整方法 |
JP2019028358A (ja) * | 2017-08-02 | 2019-02-21 | キヤノン株式会社 | 撮像装置およびその制御方法 |
JP7019337B2 (ja) | 2017-08-02 | 2022-02-15 | キヤノン株式会社 | 像ブレ補正装置、レンズ装置およびそれらの制御方法 |
Also Published As
Publication number | Publication date |
---|---|
US20110216227A1 (en) | 2011-09-08 |
CN102210137A (zh) | 2011-10-05 |
JPWO2010055809A1 (ja) | 2012-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10319111B2 (en) | Image projection device for 3D measurement and calibration method for calibration of camera and projector | |
JP5866493B2 (ja) | 撮像装置 | |
JP5141245B2 (ja) | 画像処理装置、補正情報生成方法、および撮像装置 | |
JP4757085B2 (ja) | 撮像装置及びその制御方法、画像処理装置、画像処理方法、及びプログラム | |
KR102545667B1 (ko) | 인공 신경망을 이용한 이미지 처리 방법 및 이를 지원하는 전자 장치 | |
WO2010055809A1 (ja) | 撮像装置の調整方法および撮像装置 | |
US9258484B2 (en) | Image pickup apparatus and control method for same | |
KR102452564B1 (ko) | 광학식 이미지 안정화 움직임을 추정하기 위한 장치 및 방법 | |
KR102412291B1 (ko) | 카메라 모듈에 포함된 렌즈부의 흔들림을 제어하는 전자 장치 및 전자 장치의 동작 방법 | |
JP6405531B2 (ja) | 撮像装置 | |
JP6098873B2 (ja) | 撮像装置および画像処理装置 | |
JP2019176356A (ja) | プロジェクター、及び、プロジェクターの制御方法 | |
JP6582683B2 (ja) | 角度算出システム、角度算出装置、プログラム、および角度算出方法 | |
JP2012019292A (ja) | 3dカメラモジュールの撮像検査装置およびその撮像検査方法、3dカメラモジュールの撮像検査制御プログラム、3dカメラモジュールの撮像補正方法、3dカメラモジュールの撮像補正制御プログラム、可読記録媒体、3dカメラモジュール、電子情報機器 | |
US11196929B2 (en) | Signal processing device, imaging device, and signal processing method | |
JP2011205284A (ja) | 画像処理方法および画像処理装置 | |
JP2013138413A (ja) | 撮像装置 | |
JP2013126135A (ja) | ステレオ画像生成装置、ステレオ画像生成方法及びステレオ画像生成用コンピュータプログラム | |
JP2020039082A (ja) | 表示装置、表示システムおよび表示装置の制御方法 | |
JP2010087859A (ja) | 画像処理パラメータ算出装置、画像処理パラメータ算出方法、製造方法、撮像装置、撮像方法、およびプログラム | |
JP2013130529A (ja) | 検査装置、検査システム、検査方法、コンピュータを検査装置として機能させるためのプログラム、コンピュータを検査システムとして機能させるためのプログラム、当該プログラムを格納したコンピュータ読み取り可能な不揮発性のデータ記録媒体 | |
JP2010272957A (ja) | 画像補正装置及びそのプログラム | |
JP5866569B2 (ja) | 撮像装置 | |
JP5919485B2 (ja) | 撮像装置、検出装置 | |
JP2019071522A (ja) | 撮像装置および制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980144184.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09826059 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010537761 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13128312 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09826059 Country of ref document: EP Kind code of ref document: A1 |