Produits en alliage aluminium-cuivre-lithium
Domaine de l'invention
L'invention concerne en général les produits corroyés en alliages aluminium-cuivre- lithium, et plus particulièrement de tels produits sous la forme de profilés destinés à réaliser des raidisseurs en construction aéronautique.
Etat de Ia technique
Un effort de recherche continu est réalisé afin de développer des matériaux qui puissent simultanément réduire le poids et augmenter l'efficacité des structures d'avions à hautes performances. Les alliages d'aluminium contenant du lithium sont très intéressants à cet égard, car le lithium peut réduire la densité de l'aluminium de 3 % et augmenter le module d'élasticité de 6 % pour chaque pourcent en poids de lithium ajouté. Pour que ces alliages soient sélectionnés dans les avions, leur performance doit atteindre celle des alliages couramment utilisés, en particulier en terme de compromis entre les propriétés de résistance mécanique statique (limite élastique, résistance à la rupture) et les propriétés de tolérance aux dommages (ténacité, résistance à la propagation des fissures en fatigue), ces propriétés étant en général antinomiques. Ces alliages doivent de plus présenter une résistance à la corrosion suffisante, pouvoir être mis en forme selon les procédés habituels et présenter de faibles contraintes résiduelles de façon à pouvoir être usinés de façon intégrale.
Le brevet US 5,032,359 décrit une vaste famille d'alliages aluminium-cuivre-lithium dans lesquels l'addition de magnésium et d'argent, en particulier entre 0,3 et 0,5 pourcent en poids, permet d'augmenter la résistance mécanique. Ces alliages sont souvent connus sous le nom commercial « Weldalite ™ ».
Le brevet US 5,198,045 décrit une famille d'alliages Weldalite ™ comprenant (en % en poids) (2,4-3,5)Cu, (1,35-1,S)Li, (0,25-0,65)Mg, (0,25-0,65)Ag, (0,08-0,25) Zr. Les produits corroyés fabriqués avec ces alliages combinent une densité inférieure à 2,64 g/cm3 et un compromis entre la résistance mécanique et la ténacité intéressant.
Le brevet US 7,229,509 décrit une famille d'alliages Weldalite ™ comprenant (en % en poids) (2,5-5,5)Cu, (0,1-2,5) Li, (0,2-1,0) Mg, (0,2-0,8) Ag, (0,2-0,8) Mn, (jusque 0,4) Zr ou d'autres affinants tels que Cr, Ti, Hf, Sc et V. Les exemples présentés ont un compromis entre la résistance mécanique et la ténacité amélioré mais leur densité est supérieure à 2,7 g/cm3.
La demande de brevet WO2007/080267 décrit un alliage Weldalite ™ ne contenant pas de zirconium destiné à des tôles de fuselage comprenant (en % en poids) (2,l-2,8)Cu, (1 ,1-1 ,7) Li, (0,2-0,6) Mg, (0,1-0,8) Ag, (0,2-0,6) Mn.
Le brevet EP1891247 décrit un alliage Weldalite ™ peu chargé en éléments d'alliage et destiné également à la fabrication de tôles de fuselage comprenant (en % en poids) (2,7- 3,4)Cu, (0,8-1,4) Li, (0,2-0,6) Mg, (0, 1-0,8) Ag et au moins un élément choisi parmi Zr, Mn, Cr, Sc, Hf, Ti .
La demande de brevet WO2006/131627 décrit un alliage destiné à des tôles de fuselage comprenant (en % en poids) (2,7-3,4)Cu, (0,8-1,4) Li, (0,2-0,6) Mg, (0,1-0,8) Ag et au moins un élément parmi Zr, Mn, Cr, Sc, Hf et Ti, dans lequel les teneurs en Cu et en Li répondent à la condition Cu + 5/3 Li < 5,2.
Le brevet US 5,455,003 décrit procédé de production d'alliages aluminium-cuivre-lithium présentant des propriétés améliorées de résistance mécanique et ténacité à température cryogénique. Ce procédé s'applique notamment à un alliage comprenant (en % en poids) (2,0-6,5)Cu, (0,2-2,7) Li, (0-4,0) Mg, (0-4,0) Ag, (0-3,0) Zn.
On connait par ailleurs l'alliage AA2196 comprenant (en % en poids) (2,5-3, 3)Cu, (1,4-2,1) Li, (0,25-0,8) Mg, (0,25-0,6) Ag, (0,04-0,18) Zr et au plus 0,35 Mn.
II a été généralement admis dans ces brevets ou demandes de brevet qu'une homogénéisation poussée, c'est-à-dire à une température d'au moins 527 0C et pour une durée d'au moins 24 h permettait d'atteindre les propriétés optimales de l'alliage. Dans certains cas d'alliages peu chargés (EPl 891247) ou exempts de zirconium (WO2007/080267), des conditions d'homogénéisation beaucoup moins poussées, c'est-à- dire à une température inférieure à 510 0C, ont été utilisées.
Il existe cependant toujours un besoin concernant des produits en alliage en Al-Cu-Li de faible densité et de propriétés encore améliorées, particulièrement en terme de compromis entre la résistance mécanique d'une part, et la tolérance aux dommages, et en particulier de la ténacité et de la résistance à la propagation des fissures en fatigue, d'autre part, tout en ayant d'autres propriétés d'usage satisfaisantes, notamment la résistance à la corrosion.
Objet de l'invention
L'invention a pour objet un procédé de fabrication d'un produit filé, laminé et/ou forgé à base d'alliage d'aluminium dans lequel : a) on élabore un bain de métal liquide comprenant 2,0 à 3,5 % en poids de Cu, 1 ,4 à 1,8 % en poids de Li, 0,1 à 0,5 % en poids d'Ag, 0,1 à 1,0 % en poids de Mg, 0,05 à 0,18 % en poids de Zr, 0,2 à 0,6 % en poids de Mn et au moins un élément choisi parmi Cr, Sc, Hf et Ti, la quantité dudit élément, s'il est choisi, étant de 0,05 à 0,3 % en poids pour Cr et pour Sc, 0,05 à 0,5 % en poids pour Hf et de 0,01 à 0,15 % en poids pour Ti, le reste étant de l'aluminium et des impuretés inévitables ; b) on coule une forme brute à partir dudit bain de métal liquide ; c) on homogénéise ladite forme brute à une température comprise entre 515 °C et
525
0C de façon à ce que le temps équivalent pour l'homogénéisation
soit compris entre 5 et 20 heures, où T (en Kelvin) est la température instantanée de traitement, qui évolue avec le temps t (en heures), et T
ref est une température de référence fixée à 793 K ; d) on déforme à chaud et optionnellement à froid ladite forme brute en un produit filé, laminé et/ou forgé ; e) on met en solution et on trempe ledit produit ; f) on tractionne de façon contrôlée ledit produit avec une déformation permanente de 1 à 5 % et préférentiellement d'au moins 2% ; g) on réalise un revenu dudit produit par chauffage à 140 à 170
0C pendant 5 à 70 heures de façon à ce que ledit produit ait une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement d'au moins 440 MPa et de préférence d'au moins 460 MPa.
L'invention a également pour objet un produit filé, laminé et/ou forgé en alliage d'aluminium de densité inférieure à 2,67 g/cm3 susceptible d'être obtenu par le procédé selon l'invention.
Encore un autre objet de l'invention est un élément de structure incorporant au moins un produit selon l'invention.
Description des figures
Figure 1. Forme du profilé W de l'exemple 1. Les cotes sont indiquées en mm. Les échantillons utilisés pour les caractérisations mécaniques ont été prélevés dans la zone indiquée par les pointillés. L'épaisseur de la semelle est 16 mm.
Figure 2. Forme du profilé X de l'exemple 2. Les cotes sont indiquées en mm. L'épaisseur de la semelle est 26,3 mm.
Figure 3. Forme du profilé Y de l'exemple 2. Les cotes sont indiquées en mm. L'épaisseur de la semelle est 18 mm.
Figure 4. Compromis entre ténacité et résistance mécanique obtenu pour les profilés X de l'exemple 2.
Figure 5. Compromis entre ténacité et résistance mécanique obtenu pour les profilés Y de l'exemple 2 ; 5a : semelle et sens long ; 5b : semelle et sens travers long. Figure 6. Courbe de Wohler d'initiation de fissures en fatigue pour les profilés Y de l'exemple 2.
Figure 7. Forme du profilé Z de l'exemple 3. Les cotes sont indiquées en mm. Les échantillons utilisés pour les caractérisations mécaniques ont été prélevés dans la zone indiquée par les pointillés. L'épaisseur de la semelle est 20 mm. Figure 8. Forme du profilé P de l'exemple 4. Les cotes sont indiquées en mm. Figure 9. Forme du profilé Q de l'exemple 5. Les cotes sont indiquées en mm.
Description de l'invention
Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. La densité dépend de la composition et est déterminée par calcul plutôt que par une méthode de mesure de poids. Les valeurs sont calculées en conformité avec la procédure de The Aluminium Association, qui est décrite pages 2-12 et 2.13 de « Aluminum Standards and Data ». Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515.
Sauf mention contraire, les caractéristiques mécaniques statiques, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0i2 (« limite d'élasticité ») et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1.
Le facteur d'intensité de contrainte (KQ) est déterminé selon la norme ASTM E 399. Ainsi, la proportion des éprouvettes définie au paragraphe 7.2.1 de cette norme est toujours
vérifiée de même que la procédure générale définie au paragraphe 8. La norme ASTM E 399 donne aux paragraphes 9.1.3 et 9.1.4 des critères qui permettent de déterminer si KQ est une valeur valide de Kic- Ainsi, une valeur Kic est toujours une valeur KQ la réciproque n'étant pas vraie. Dans le cadre de l'invention, les critères des paragraphes 9.1.3 et 9.1.4 de la norme ASTM E399 ne sont pas toujours vérifiés, cependant pour une géométrie d'éprouvette donnée, les valeurs de KQ présentées sont toujours comparables entre elles, la géométrie d'éprouvette permettant d'obtenir une valeur valide de Kic n'étant pas toujours accessible compte tenu des contraintes liées aux dimensions des tôles ou profilés.
Le test MASTMAASIS (Modified ASTM Acetic Acid Sait Intermittent Spray) est effectué selon la norme ASTM G85.
Sauf mention contraire, les définitions de la norme EN 12258 s'appliquent. L'épaisseur des profilés est définie selon la norme EN 2066 :2001 : la section transversale est divisée en rectangles élémentaires de dimensions A et B ; A étant toujours la plus grande dimension du rectangle élémentaire et B pouvant être considéré comme l'épaisseur du rectangle élémentaire. La semelle est le rectangle élémentaire présentant la plus grande dimension A.
On appelle ici « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique pour laquelle les propriétés mécaniques statiques et/ou dynamiques sont particulièrement importantes pour la performance de la structure, et pour laquelle un calcul de structure est habituellement prescrit ou réalisé. Il s'agit typiquement d'éléments dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, des ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.
Les présents inventeurs ont constaté que de manière surprenante, pour certains alliages Al- Cu-Li de faible densité contenant à la fois une addition d'argent, de magnésium, de zirconium et de manganèse, le choix de conditions d'homogénéisation spécifiques permet d'améliorer de façon très significative le compromis entre la résistance mécanique et la tolérance aux dommages.
Le procédé selon l'invention permet la fabrication d'un produit filé, laminé et/ou forgé. Dans une première étape, on élabore un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition définie. La teneur en cuivre de l'alliage pour lequel l'effet surprenant lié au choix des conditions d'homogénéisation est observé est comprise entre 2,0 et 3,5 % en poids, de manière préférée entre 2,45 ou 2,5 et 3,3% en poids. Dans un mode de réalisation avantageux, la teneur en cuivre est comprise entre 2,7 et 3,1 % en poids.
La teneur en lithium est comprise entre 1,4 et 1,8%. Dans un mode de réalisation avantageux la teneur en lithium est comprise entre 1,42 et 1,77 % en poids. La teneur en argent est comprise entre 0,1 et 0,5% en poids. Les présents inventeurs ont constaté qu'une quantité importante d'argent n'est pas nécessaire pour obtenir l'amélioration souhaitée dans le compromis entre la résistance mécanique et la tolérance aux dommages. Dans une réalisation avantageuse de l'invention, la teneur en argent est comprise entre 0,15 et 0,35 % en poids. Dans un mode de réalisation de l'invention, qui présente l'avantage de minimiser la densité, la teneur en argent est au plus de 0,25 % en poids.
La teneur en magnésium est comprise entre 0,1 et 1,0% en poids et de manière préférée elle est inférieure à 0,4 % en poids. La combinaison des conditions d'homogénéisation spécifiques et de l'addition simultanée de zirconium et de manganèse est une caractéristique essentielle de l'invention. La teneur en zirconium doit être comprise entre 0,05 et 0,18 % en poids et la teneur en manganèse doit être comprise entre 0,2 et 0,6 % en poids. De manière préférée, la teneur en manganèse est au plus de 0,35% en poids. L'alliage contient également au moins un élément pouvant contribuer au contrôle de la taille de grain choisi parmi Cr, Sc, Hf et Ti, la quantité de l'élément, s'il est choisi, étant de
0,05 à 0,3 % en poids pour Cr et pour Sc, 0,05 à 0,5 % en poids pour Hf et de 0,01 à 0,15 % en poids pour Ti.
Il est préférable de limiter la teneur des impuretés inévitables de l'alliage de façon à atteindre les propriétés de tolérance aux dommages les plus favorables. Les impuretés inévitables comprennent le fer et le silicium, ces impuretés ont de préférence une teneur inférieure à 0,08 % en poids et 0,06 % en poids pour le fer et le silicium, respectivement, les autres impuretés ont de préférence une teneur inférieure à 0,05 % en poids chacune et 0,15 % en poids au total. Par ailleurs la teneur en zinc est de préférence inférieure à 0,04 % en poids. De préférence, la composition est ajustée de façon à obtenir une densité à température ambiante inférieure à 2,67 g/cm3, de manière encore plus préférée inférieure à 2,66 g/cm3 voire dans certains cas inférieure à 2,65 g/cm3 ou même 2,64 g/cm3. La diminution de la densité est en général associée à une dégradation des propriétés. Dans le cadre de l'invention, il est possible de manière surprenante de combiner une faible densité avec un compromis de propriétés mécaniques très avantageux.
Le bain de métal liquide est ensuite coulé sous une forme brute, telle qu'une billette, une plaque de laminage ou une ébauche de forge.
La forme brute est ensuite homogénéisée à une température comprise entre 515
0C et 525°C de façon à ce que le temps équivalent t(eq) à 520
0C pour l'homogénéisation soit compris entre 5 et 20 heures et de préférence entre 6 et 15 heures. Le temps équivalent t(eq) à 520
0C est défini par la formule :
où T (en Kelvin) est la température instantanée de traitement, qui évolue avec le temps t (en heures), et T
ref est une température de référence fixée à 793 K. t(eq) est exprimé en heures. La constante Q/R = 26100 K est dérivée de l'énergie d'activation pour la diffusion du Mn, Q = 217000 J/mol. La formule donnant t(eq) tient compte des phases de chauffage et de refroidissement. Dans le mode de réalisation préféré de l'invention, la température d'homogénéisation est d'environ 520
0C et la durée de traitement est comprise entre 8 et 20 heures. Pour l'homogénéisation, les temps indiqués correspondent à des durées pour lesquelles le métal est effectivement à la température souhaitée.
Dans les exemples il est montré que les conditions d'homogénéisation selon l'invention permettent d'améliorer de façon surprenante le compromis entre ténacité et résistance mécanique par rapport à des conditions dans lesquelles la combinaison de durée et température est plus faible ou plus élevée. II est généralement admis par l'homme du métier que, en vue de minimiser la durée d'homogénéisation, il est avantageux de réaliser l'homogénéisation à la température la plus élevée possible permettant d'éviter la fusion locale de façon accélérer les processus de diffusion des éléments et de précipitation des dispersoïdes. Les présents inventeurs ont constaté au contraire pour la composition d'alliage selon l'invention, un effet favorable surprenant d'une combinaison de durée et température d'homogénéisation plus faible que celle selon l'art antérieur.
Après homogénéisation, la forme brute est en général refroidie jusqu'à température ambiante avant d'être préchauffée en vue d'être déformée à chaud. Le préchauffage a pour objectif d'atteindre une température de préférence comprise entre 400 et 500 °C et de manière préférée de l'ordre de 450 0C permettant la déformation de la forme brute. Le préchauffage est typiquement de 20 heures à 520 0C pour des plaques. Il est à noter que contrairement à l'homogénéisation, les durées et températures mentionnées pour le préchauffage correspondent à la durée passée dans le four et à la température du four et non à la température effectivement atteinte par le métal et à la durée passée à cette température. Pour les billettes destinées à être filées, le préchauffage par induction est avantageux. La déformation à chaud et optionnellement à froid est typiquement effectuée par filage, laminage et/ou forgeage de façon à obtenir un produit filé, laminé et/ou forgé. Le produit ainsi obtenu est ensuite mis en solution de préférence par traitement thermique entre 490 et 530 °C pendant 15 min à 8 h, puis trempé typiquement avec de l'eau à température ambiante ou préférentiellement de l'eau froide. Le produit subit ensuite une traction contrôlée de 1 à 5 % et préférentiellement d'au moins 2%. Dans un mode de réalisation de l'invention, on réalise un laminage à froid avec une réduction comprise entre 5% et 15% avant l'étape de traction contrôlée. Des étapes connues telles que le planage, le redressage, la mise en forme peuvent être optionnellement réalisées avant ou après la traction contrôlée. Un revenu est réalisé à une température comprise entre 140 et 1700C pendant 5 à 70 h de façon à ce que le produit ait une limite d'élasticité conventionnelle mesurée à 0,2%
d'allongement d'au moins 440 MPa et de préférence d'au moins 460 MPa. Les présents inventeurs ont constaté que de manière surprenante, la combinaison des conditions d'homogénéisation selon l'invention avec un revenu préféré réalisé par chauffage à 148 à 155 0C pendant 10 à 40 heures permet d'atteindre dans certains cas un niveau de ténacité Kic(L-T) particulièrement élevé .
Les présents inventeurs pensent que les produits obtenus par le procédé selon l'invention présentent une microstructure très particulière, bien qu'ils n'aient pas encore pu la décrire de façon précise. En particulier, la taille, la répartition et la morphologie des dispersoïdes contenant du manganèse semblent être remarquables pour les produits obtenus par le procédé selon l'invention, cependant la caractérisation complète de ses dispersoïdes, dont la taille est de l'ordre de 50 à 100 nm, nécessite des observations en microscopie électronique à un grossissement de x 30 000, quantifiées et nombreuses ce qui explique la difficulté d'en obtenir une description fiable. Les produits selon l'invention ont de préférence une structure granulaire essentiellement non-recristallisée. Par essentiellement non-recristallisée il est entendu que au moins 80% et de préférence au moins 90% des grains ne sont pas recristallisés à quart et à mi-épaisseur de produit.
Les produits filés et en particulier les profilés filés obtenus par le procédé selon l'invention sont particulièrement avantageux. Les avantages du procédé selon l'invention ont été observés pour de profilés minces dont l'épaisseur d'au moins un rectangle élémentaire est comprise entre 1 mm et 8 mm et des profilés épais, cependant les profilés épais, c'est-à-dire dont l'épaisseur d'au moins un rectangle élémentaire est supérieure à 8 mm, et de préférence supérieure à 12 mm, voire 15 mm sont les plus avantageux. Le compromis entre la résistance mécanique statique et la ténacité ou la tenue en fatigue est particulièrement avantageux pour les produits filés selon l'invention.
Un produit filé en alliage d'aluminium selon l'invention a une densité inférieure à 2,67 g/cm3, est susceptible d'être obtenu par le procédé selon l'invention, et est avantageusement caractérisé en ce que : (a) sa limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L Rpoj2(L) exprimée en MPa et sa ténacité Kic(L-T), dans le sens L-T exprimée en
MPa Vin sont telles que KQ(L-T) > 129 - 0,17 Rpo,2(L), préférentiel Iement KQ(L-T) > 132 - 0,17 Rp0,2(L) et encore plus préférentiel Iement KQ(L-T) > 135 - 0,17 Rpo,2(L) ; et/ou
(b) sa résistance à la rupture dans le sens L Rm(L) exprimée en MPa et sa ténacité KQ(L-T), dans le sens L-T exprimée en MPaVm sont telles que KQ(L-T) > 179 - 0,25 Rm(L), préférentiellement KQ(L-T) > 182 - 0,25 R171(L) et encore plus préférentiel Iement KQ(L-T) > 185 - 0,25 R171(L) ; et/ou
(c) sa résistance à la rupture dans le sens TL Rm(TL) exprimée en MPa et sa ténacité KQ(L-
T), dans le sens L-T exprimée en MPaVm sont telles que KQ(L-T) > 88 - 0,09 Rm(TL), préférentiellement KQ(L-T) > 90 - 0,09 R171(TL) et encore plus préférentiellement KQ(L-T) > 92 - 0,09 R171(TL) et/ou
(d) sa limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L R
po,
2(L) d'au moins 490 MPa et de préférence d'au moins 500 MPa et sa contrainte maximale pour l'initiation des fissures de fatigues pour un nombre de cycles à rupture de 10
5 est supérieure à 210 MPa, préférentiellement supérieure à 220 MPa et encore plus préférentiellement supérieure à 230 MPa pour des éprouvettes de Kt = 2,3, avec R = 0, 1. De manière préférée, la ténacité K
Q(L-T) des produits filés selon l'invention est d'au moins
Dans un mode de réalisation avantageux de l'invention, permettant d'atteindre pour des produits filés une ténacité KQ(L-T) d'au moins 52 MPaVm avec une limite d'élasticité Rpoj2(L) d'au moins 490 MPa, ou préférentiellement une ténacité KQ(L-T) d'au moins 56
MPa Vm" avec une résistance à rupture R117(L) d'au moins 515 MPa, une teneur en cuivre comprise entre 2,45 et 2,65 % en poids est associée à une teneur en lithium comprise entre 1,4 et 1,5 % en poids. Dans un autre mode de réalisation avantageux de l'invention, permettant d'atteindre pour des produits filés une ténacité KQ(L-T) d'au moins 45 MPa Vm avec une limite d'élasticité Rpθ,2(L) d'au moins 520 MPa, une teneur en cuivre comprise entre 2,65 et 2,85 % en poids est associée à une teneur en lithium comprise entre 1,5 et 1,7 % en poids. De manière préférée, la densité des produits filés selon l'invention est inférieure à 2,66 g/cm3, de manière encore plus préférée inférieure à 2,65 g/cm3 voire dans certains cas inférieure à 2,64 g/cm3.
Dans un mode de réalisation avantageux de l'invention, on réalise un revenu permettant d'obtenir une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement supérieure à 520 MPa, par exemple de 3Oh à 152 0C, la résistance à la rupture dans le sens L Rm(L), exprimées en MPa et la ténacité KQ(L-T), dans le sens L-T exprimée en MPa Vm sont alors telles Rm(L) > 550 et KQ(L-T) > 50.
Le procédé selon l'invention permet également d'obtenir des produits laminés avantageux. Parmi les produits laminés, les tôles dont l'épaisseur est au moins de 10 mm et de préférences d'au moins 15 mm et/ou au plus 100 mm et de préférence au plus 50 mm sont avantageuses. Un produit laminé en alliage d'aluminium selon l'invention a une densité inférieure à 2,67 g/cm3 , est susceptible d'être obtenu par le procédé selon l'invention, et est avantageusement caractérisé en ce que sa ténacité KQ(L-T), dans le sens L-T est au moins de 23 MPa Vin et de préférence d'au moins 25 MPa Vin , sa limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L Rpo;2(L) est au moins égale à 560 MPa et de préférence au moins égale à 570 MPa et/ou sa résistance à la rupture dans le sens L Rm(L) est au moins égale à 585 MPa et de préférence au moins égale à 595 MPa. De manière préférée, la densité des produits laminés selon l'invention est inférieure à 2,66 g/cm3, de manière encore plus préférée inférieure à 2,65 g/cm3 voire dans certains cas inférieure à 2,64 g/cm3. Les produits selon l'invention peuvent de manière avantageuse être utilisés dans des éléments de structure, en particulier d'avion. Un élément de structure incorporant au moins un produit selon l'invention ou fabriqué à partir d'un tel produit est avantageux, en particulier pour la construction aéronautique. Un élément de structure, formé d'au moins un produit selon l'invention, en particulier d'un produit filé selon l'invention utilisé en tant que raidisseur ou de cadre, peut être utilisé avantageusement pour la fabrication de panneaux de fuselage ou de voilure d'avions de même que toute autre utilisation où les présentes propriétés pourraient être avantageuses.
Dans l'assemblage de pièces structurales, toutes les techniques connues et possibles de rivetage et de soudage appropriées pour des alliages en aluminium peuvent être utilisées, si souhaité. Les inventeurs ont trouvé que si le soudage est choisi, il peut être préférable d'utiliser des techniques de soudage au laser ou de soudage par friction-malaxage.
Les produits de l'invention n'induisent généralement aucun problème particulier pendant des opérations ultérieures de traitement de surface classiquement utilisées en construction aéronautique.
La résistance à la corrosion des produits de l'invention est généralement élevée ; à titre d'exemple, le résultat au test MASTMAASIS est au moins EA et de préférence P pour les produits selon l'invention.
Ces aspects, ainsi que d'autres de l'invention sont expliqués plus en détail à l'aide des exemples illustratifs et non limitant suivants.
Exemples
Exemple 1.
Dans cet exemple, plusieurs plaques en alliage Al-Cu-Li dont la composition est donnée dans le tableau 1 ont été coulées.
Tableau 1. Composition en % en poids et densité des alliages Al-Cu-Li utilisés
Les plaques ont été homogénéisées selon l'art antérieur 8h à 500 °C puis 24h à 527 0C. Des billettes ont été prélevées dans les plaques. Les billettes ont été réchauffées à 450 °C +/- 40 °C puis filées à chaud pour obtenir des profilés W selon la Figure 1. Les profilés ainsi obtenus ont été mis en solution à 524 0C, trempés avec de l'eau de température inférieure à 40 °C, et tractionnés avec un allongement permanent compris entre 2 et 5%. Le revenu a été effectué pendant 48h à 152 0C. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rp0,2, la résistance à la rupture R111, et l'allongement à la rupture (A), diamètre des échantillons : 10 mm) de même que leur ténacité (KQ). La localisation des prélèvements est indiquée en pointillés sur la Figure 1. Les éprouvettes utilisées pour les mesures de ténacité avaient pour caractéristiques B=I 5 mm et W = 30 mm.
Une vitesse de montée en température de 15 °C/h et de 50 °C/h ont été utilisées pour l'homogénéisation et la mise en solution, respectivement. Le temps équivalent pour l'homogénéisation était de 37,5 heures. Les résultats obtenus sont donnés dans le tableau 2 ci-dessous.
Tableau 2. Propriétés mécaniques des rofilés obtenus à artir des alliages 1 et 2.
Exemple 2
Dans cet exemple, on a comparé trois conditions d'homogénéisation pour deux types de profilés, obtenus à partir de billettes prélevées dans une plaque dont la composition est donnée dans le tableau 3 ci-dessous.
Tableau 3 Composition en % en poids et densité de l'alliage Al-Cu-Li utilisé.
Les billettes ont été homogénéisées soit 8h à 500 0C puis 24h à 527 0C (référence A) soit 8h à 520 °C (référence B) soit 8h à 500 0C (référence C). La vitesse de montée en température était de 15 °C/h pour l'homogénéisation et le temps équivalent était de 37,5 heures pour l'homogénéisation de référence A, 9,5 heures pour l'homogénéisation de référence B, et de 4 heures l'homogénéisation de référence C. Après homogénéisation, les billettes ont été réchauffées à 450 0C +/- 40 0C puis filées à chaud pour obtenir des profilés X selon la Figure 2 ou Y selon la Figure 3. Les profilés ainsi obtenus ont été mis en solution à 524 +/- 2 °C, trempés avec de l'eau de température inférieure à 40 °C, et tractionnés avec un allongement permanent compris entre 2 et 5%.
Différentes conditions de revenu ont été mises en œuvre. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rpo,2, la résistance à la rupture Rm, et l'allongement à la rupture (A) de même que leur ténacité (KQ). Les zones de prélèvement pour le profilé Y sont indiquées sur la Figure 3 : renfort (1), Renfort/semelle (2) semelle (3), les éprouvettes utilisées pour les mesures de ténacité avaient pour caractéristiques B=I 5 mm et W = 60 mm. Pour le profilé X, les prélèvements sont effectués sur la semelle, les éprouvettes utilisées pour les mesures de ténacité avaient pour caractéristiques B=20 mm et W = 76 mm. Les échantillons prélevés avaient un diamètre de 10 mm sauf pour le sens T-L pour lequel les échantillons avaient un diamètre de 6 mm. Les résultats obtenus sur les profilés X sont donnés dans le tableau 4 ci-dessous.
Tableau 4. Propriétés mécaniques des profilés X en alliage 3.
Ces résultats sont illustrés par les Figures 4a (sens L) et 4b (sens TL). Pour les profilés provenant de billettes ayant été homogénéisées à 520 °C, le compromis entre résistance mécanique et ténacité est très nettement amélioré. Dans le sens long, l'amélioration est particulièrement nette pour un revenu de 30 heures à 152 0C.
Les résultats obtenus avec le profilé Y sont donnés dans le tableau 5 ci-dessous.
* κlc
Ces résultats sont illustrés par les Figures 5a (sens L) et 5b (sens TL). Pour les profilés provenant de billettes ayant été homogénéisées à 520 °C, le compromis entre résistance mécanique et ténacité est à nouveau très nettement amélioré et ce pour les deux conditions de revenu testées.
Des essais de fatigue ont été réalisés dans le cas du revenu de 30 h à 152 0C, sur des éprouvettes à trou (Kt = 2,3) avec un rapport (charge minimale / charge maximale) R = 0,1 à une fréquence de 80 Hz. Les essais ont été réalisés à l'air ambiant du laboratoire. Ces essais sont présentés sur le Figure 6. Pour un nombre de cycles donné, l'augmentation de la contrainte maximale est comprise entre 10 et 25%. La contrainte maximale pour l'initiation des fissures de fatigues pour un nombre de cycles à rupture de 105 est de l'ordre de 230 MPa pour des éprouvettes de Kt = 2,3, avec R = 0, 1.
Exemple 3
Dans cet exemple, on a comparé deux des conditions d'homogénéisation de l'exemple 2 pour un autre type de profilés, obtenus à partir de billettes prélevées dans une plaque dont la composition est donnée dans le tableau 6 ci-dessous :
Tableau 6. Composition en % en poids des alliages Al-Cu-Li utilisés
Les billettes en alliage 4 ont été homogénéisées 8h à 500 °C puis 24h à 527 0C (soit l'homogénéisation de référence A) tandis que les billettes en alliage 5 ont été homogénéisées 8h à 520 0C (référence B). Après homogénéisation, les billettes ont été réchauffées à 450 0C +/- 40 0C puis filées à chaud pour obtenir des profilés Z selon la Figure 7. Les profilés ainsi obtenus ont été mis en solution à 524 +/- 2 0C, trempés avec de l'eau de température inférieure à 40 0C, et tractionnés avec un allongement permanent compris entre 2 et 5%. Les profilés ont enfin subi un revenu de 48h à 152 0C. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rp0;2, la résistance à la rupture Rm, et l'allongement à la rupture (A), diamètre des échantillons : 10 mm) de même que leur ténacité (KQ), les éprouvettes utilisées pour les mesures de ténacité avaient pour caractéristiques B= 15 mm et W = 60 mm. Les mesures effectuées en fin de profilé permettent manière générale d'obtenir les caractéristiques mécaniques les plus défavorables du profilé. La localisation des prélèvements est indiquée en pointillés sur la Figure 7.
Les résultats obtenus sont donnés dans le tableau 7 ci-dessous. Les produits selon l'invention présentent des caractéristiques mécaniques légèrement supérieures et une ténacité améliorée de plus de 20%.
Tableau 7. Propriétés mécaniques des profilés Z en alliage 4 et 5.
Dans cet exemple, une billette dont la composition est donnée dans le tableau 8 a été coulée.
Tableau 8 Composition en % en poids et densité de l'alliage Al-Cu-Li utilisé.
Les billettes en alliage 6 ont été homogénéisées 8h à 520 0C (soit l'homogénéisation de référence B). Après homogénéisation, les billettes ont été réchauffées à 450 °C +/- 40 0C puis filées à chaud pour obtenir des profilés P selon la Figure 8. Les profilés ainsi obtenus ont été mis en solution, trempés avec de l'eau de température inférieure à 40 °C, et tractionnés avec un allongement permanent compris entre 2 et 5%. Les profilés ont enfin subi un revenu de 48h à 152 0C. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rpo,2, la résistance à la rupture Rm, et l'allongement à la rupture A).
Les résultats obtenus sont donnés dans le tableau 9 ci-dessous.
Tableau 9. Pro riétés mécani ues des profilés P en alliage 6.
Des essais de fatigue ont été réalisés dans, sur des éprouvettes à trou (Kt = 2,3) avec un rapport (charge minimale / charge maximale) R = 0,1 à une fréquence de 80 Hz. Les essais ont été réalisés à l'air ambiant du laboratoire. Les résultats de ces essais sont donnés dans le Tableau 10.
Tableau 10. Résultats des essais de fatigue S/N pour les profilés en alliage 6
Exemple 5
Dans cet exemple, une billette dont la composition est donnée dans le tableau 1 1 a été coulée.
Tableau 11 Composition en % en poids et densité de l'alliage Al-Cu-Li utilisé.
Les billettes en alliage 7 ont été homogénéisées 8h à 520 0C (soit l'homogénéisation de référence B). Après homogénéisation, les billettes ont été réchauffées à 450 0C +/- 40 °C puis filées à chaud pour obtenir des profilés Q selon la Figure 9. Les profilés ainsi obtenus ont été mis en solution, trempés avec de l'eau de température inférieure à 40 °C, et tractionnés avec un allongement permanent compris entre 2 et 5%. Les profilés ont enfin subi un revenu de 48h à 152 °C. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rp0;2, la résistance à la rupture Rm, et l'allongement à la rupture A).
Les résultats obtenus sont donnés dans le tableau 12 ci-dessous.
ableau 12. Pro riétés mécaniques des profilés Q en alliage 7.
Des essais de fatigue ont été réalisés dans, sur des éprouvettes à trou (Kt = 2,3) avec un rapport (charge minimale / charge maximale) R = 0, 1 à une fréquence de 80 Hz. Les essais ont été réalisés à l'air ambiant du laboratoire. Les résultats de ces essais sont donnés dans le Tableau 13.
Tableau 13. Résultats des essais de fatigue S/N pour les profilés en alliage 7.
Exemple 6
Dans cet exemple, une plaque dont la composition est donnée dans le tableau 14 a été coulée.
Tableau 14 Composition en % en poids et densité de l'alliage Al-Cu-Li utilisé.
La plaque a été scalpée puis homogénéisée à 520 +/- 5 0C pendant 8 h (soit l'homogénéisation de référence B). Après homogénéisation, la plaque a été laminée à chaud pour obtenir des tôles ayant une épaisseur de 25 mm. Les tôles ont été mises en solution à
524 +/- 2 °C, trempées à l'eau froide et tractionnées avec un allongement permanent
compris entre 2 et 5%. Des échantillons de diamètre 10 mm prélevés dans certaines de ces tôles ont ensuite subi un revenu d'une durée comprise entre 2Oh et 5Oh à 155 0C. Ces échantillons ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rpo,2, la résistance à la rupture Rm, et l'allongement à la rupture (A)) de même que leur ténacité (KQ), avec des éprouvettes de géométrie B = 15 mm, W = 30 mm. Les résultats obtenus sont donnés dans le tableau 15 ci-dessous.
Tableau 15 Propriétés mécaniques des tôles en alliage 8 ayant subi un revenu en laboratoire.
Les tôles ont subi un revenu industriel de 48 h à 152 0C. Les résultats des essais mécaniques (prélèvement à mi-épaisseur) effectués sur les tôles ainsi obtenues sont donnés dans le Tableau 16.
Tableau 16 Pro riétés mécani ues des tôles en allia e 8 ayant subi un revenu industriel
Exemple 7
Dans cet exemple, on a utilisé les conditions d'homogénéisation selon l'invention pour deux types de profilés, obtenus à partir de billettes en deux alliages différents dont la composition est donnée dans le tableau 17 ci-dessous.
Tableau 17 Composition en % en poids et densité de l'alliage Al-Cu-Li utilisé.
Les billettes ont été homogénéisées 8h à 520 0C (référence B) La vitesse de montée en température était de 15 °C/h pour l'homogénéisation et le temps équivalent était 9,5 heures Après homogénéisation, les billettes ont été réchauffées à 450 0C +/- 40 0C puis filées à chaud pour obtenir des profilés X selon la Figure 2 ou Y selon la Figure 3. Les profilés ainsi obtenus ont été mis en solution à 524 +/- 2 0C, trempés avec de l'eau de température inférieure à 40 °C, et tractionnés avec un allongement permanent compris entre 2 et 5%. Différentes conditions de revenu ont été mises en œuvre. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rpo,2, la résistance à la rupture Rm, et l'allongement à la rupture (A) de même que leur ténacité (KQ). Les prélèvements ont effectués sur la semelle pour les profilés X et Y. Les échantillons prélevés avaient un diamètre de 10 mm sauf pour le sens T-L pour lequel les échantillons avaient un diamètre de 6 mm. Les éprouvettes utilisées pour les mesures de ténacité avaient pour caractéristiques B= 15 mm et W = 60 mm (profilés Y) et B=20 mm et W = 76 mm (profilés X). Les résultats obtenus sur les profilés X et Y sont donnés dans les tableaux 18 et 19 ci- dessous.
Tableau 18. Propriétés mécaniques des profilés X en alliage 8 et 9.
Kic
Tableau 19. Propriétés mécaniques des profilés Y en alliage 8 et 9.
Le compromis entre ténacité et résistance mécanique obtenu avec les alliages 9 et 10 est particulièrement avantageux, notamment pour obtenir des valeurs de ténacité très élevées, avec KQ(L-T) supérieur à 50 MPaVm , et même supérieur à 55 MPaVm .