WO2010053318A2 - 스테핑 모터 - Google Patents

스테핑 모터 Download PDF

Info

Publication number
WO2010053318A2
WO2010053318A2 PCT/KR2009/006531 KR2009006531W WO2010053318A2 WO 2010053318 A2 WO2010053318 A2 WO 2010053318A2 KR 2009006531 W KR2009006531 W KR 2009006531W WO 2010053318 A2 WO2010053318 A2 WO 2010053318A2
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
stator
shaft
tooth
housing
Prior art date
Application number
PCT/KR2009/006531
Other languages
English (en)
French (fr)
Other versions
WO2010053318A3 (ko
Inventor
유현수
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080109813A external-priority patent/KR20100050755A/ko
Priority claimed from KR1020080109815A external-priority patent/KR101551628B1/ko
Priority claimed from KR1020080121900A external-priority patent/KR101020796B1/ko
Priority claimed from KR1020080121901A external-priority patent/KR101602321B1/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2010053318A2 publication Critical patent/WO2010053318A2/ko
Publication of WO2010053318A3 publication Critical patent/WO2010053318A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/065Electromechanical oscillators; Vibrating magnetic drives
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/12Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets
    • H02K37/14Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to a stepping motor.
  • the stepping motor generally includes a rotor and a stator.
  • the rotor has a ring-shaped magnet is fixed to the outer peripheral surface of the rotating shaft, the stator includes a cylindrical bobbin surrounding the magnet, a coil wound on the outer peripheral surface of the bobbin and a yoke coupled to the inner peripheral surface of the bobbin.
  • the stepping motor is an electromotive force generated between the magnet and the coil according to a current supplied to or cut off from the coil.
  • the rotating shaft When the magnet rotates forward and reverse, the rotating shaft also forwards and reverses.
  • the area formed by the outer circumferential surface of the magnet magnetized facing the stator must be at least a certain level, and in order to increase the area, the thickness along the direction of the rotation axis of the magnet must be thickened. Since there is a problem, there arises a problem against the overall pursuit of slimming.
  • the stator faces the outer circumferential surface of the magnetized magnet, the stator is formed in a cylindrical shape so that the entire portion is disposed outside the outer circumferential surface of the magnet while surrounding the outer circumferential surface of the magnet, thereby increasing the length perpendicular to the rotation axis.
  • a problem arises against the overall miniaturization.
  • the recent portable communication device has a limitation in miniaturization and slimming of the whole device because a structure for coupling the weight for generating vibration to the installation structure or the rotating shaft of the rotor and the stator while providing a predetermined free space.
  • a step actuator mounted on a stepping motor is used for a device requiring precise control.
  • a typical step actuator uses a lead screw type stepping motor to control the movement of the driven body.
  • the control accuracy of the movement is determined by the pitch between the thread of the thread formed on the outer circumferential surface of the lead screw. .
  • the conventional step actuator has a limitation in narrowing the pitch between the thread of the screw and the peak of the screw, and there is a limit in the precise control of the driven body.
  • the present invention has been made to improve the above problems, to provide a stepping motor that can be miniaturized and slim overall.
  • the present invention is to provide a stepping motor that can obtain a constant amount of vibration in a wide range.
  • the present invention is to provide a stepping motor capable of precise control of the driven body.
  • the present invention is a shaft that is forward and reverse rotation, the housing supporting both ends of the shaft and the shaft is built, the radially coupled around the shaft and the stator embedded in the housing and the longitudinal direction of the shaft And magnets coupled to the shaft to face the stator and rotating the shaft while rotating with electromotive force generated in interaction with the stator.
  • the stator may include a first stator installed at one end of the magnet to rotate the shaft in a forward direction, and a second stator installed at the other end of the magnet to rotate the shaft in a reverse direction.
  • the second stators are symmetrical with respect to the magnet.
  • the shaft for forward and reverse rotation the housing for supporting both ends of the shaft and the shaft is built-in, the rotor coupled to the shaft and interlocking integrally to generate a vibration, the center of the shaft And a stator configured to be built in the housing and accommodate the rotor to forward and reverse rotation of the rotor.
  • the rotor includes a magnet and a weight
  • the magnet is formed in a ring shape and both end surfaces facing the axial direction of the axis is magnetized
  • the weight is formed in a semi-cylindrical shape is fixed to one side of the outer peripheral surface of the shaft
  • the outer circumferential surface of the weight is coupled to the inner circumferential surface of the magnet.
  • both ends of the shaft are supported by bearings mounted on both end surfaces of the housing, and the engaging frame is provided on the outer peripheral surface of the end of the bearing.
  • both ends of the shaft protrude from both inner end surfaces of the housing and are supported by mutually opposing support tubes.
  • the housing further includes a power transmission unit coupled to one end of the shaft and cooperating with the shaft to operate a driven body, wherein the power transmission unit is coupled to the housing and built into the gear box. And at least one gear that engages the shaft.
  • the present invention adopts a structure in which the magnet is radially coupled about the axis to be embedded in the housing and magnetized along the longitudinal direction of the axis, and coupled to the axis to face the stator to the magnet in the axial direction. It can be made thin without being limited by the thickness, so that it can be miniaturized and slimmed.
  • the present invention adopts a structure for varying the number of revolutions of the rotor including the weight in frequency, so that the number of revolutions can be varied over a wide range, thereby obtaining a constant amount of vibration.
  • the present invention adopts a structure in which a driven body connected to the gear is operated as the shaft and the gear are connected by connecting the gear to the shaft, various gear ratios can be obtained by properly adjusting the number and size of the gears. Precise control of the driven body is possible.
  • FIG. 1 is a perspective view showing the overall configuration of a stepping motor according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view showing the overall configuration of the stepping motor according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view taken along the line A-A 'of FIG.
  • 5, 8, 11, 14 and 16 are exploded perspective views showing the overall configuration of a stepping motor according to various embodiments of the present invention
  • 6, 9, 12, and 15 are cross-sectional views of stepping motors in accordance with various embodiments of the invention.
  • FIG. 1 is a perspective view showing the overall configuration of a stepping motor according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view of Figure 1
  • Figure 3 is a cross-sectional view taken along line AA 'of FIG.
  • the present invention includes a shaft 130, a housing 110, a stator and a magnet 140.
  • Both ends of the shaft 130 are coupled to the housing 110 to be described later, and provide a space in which the magnet 140 to be described later is mounted.
  • the housing 110 is formed in a cylindrical shape having an upper housing 111 and a lower housing 115 which are relatively coupled to each other and positioned at upper and lower sides thereof.
  • the direction and the surface facing upward with respect to the vertical direction of the housing 110 "upper and upper surface”
  • the direction and the surface facing downward “lower and lower surface”.
  • the stator is radially coupled about the shaft 130 and embedded in the housing 110, and generates an electromotive force along with the shaft 130 to rotate the magnet 140, which will be described later, together with the shaft 130, together with the magnet 140.
  • the magnet 140 is magnetized along the longitudinal direction of the shaft 130, is coupled to the shaft 140 to face the stator, and rotates the shaft 140 with an electromotive force generated in interaction with the stator.
  • the upper housing 111 has a disk-shaped upper plate and a side plate extending downward from the edge of the upper plate
  • the lower housing 115 has a disk-shaped lower plate and a side plate extending upward from the edge of the lower plate.
  • the bottom surface of the side plate of the upper housing 111 and the top surface of the side plate of the lower housing 115 are in contact with each other.
  • the upper plate of the upper housing 111 and the lower plate of the lower housing 115 form an upper surface and a lower surface of the housing 110, respectively.
  • Housing holes 112 and 116 are formed in the upper and lower surfaces of the housing 110, respectively, and the bearings 121 are fixed to the housing holes 112 and 116, respectively.
  • the bearing 121 is inserted and supported by the upper end side and the other end side of the shaft 130 rotatably installed, and the ring-shaped magnet 140 is coupled to the outer circumferential surface of the shaft 130 located inside the housing 110. And rotate integrally with the shaft 130.
  • a sleeve 135 is interposed between the shaft 130 and the magnet 140.
  • the sleeve 135 is provided with a nonmagnetic material.
  • the magnet 140 is a rotor.
  • Washers 125 are respectively coupled to the top and bottom surfaces of the sleeve 135.
  • the washer 125 limits the distance of end play where the magnet 140 flows in the longitudinal direction of the shaft 130.
  • the sleeve 135 is formed thinner than the magnet 140, is located inside the magnet 140, the washer 125 is formed smaller than the inner diameter of the magnet 140, the inside of the magnet 140 Is located.
  • the stepping motor magnetizes the upper and lower surfaces of the magnet 140 facing the upper and lower surfaces of the housing 110, respectively, for miniaturization and slimming, and magnetized the magnets.
  • the stator is installed to face the upper and lower surfaces of the 140.
  • stator opposes one end face and the other end face of the magnet 140 in the longitudinal direction of the shaft 130.
  • the stator will be described in detail.
  • the stator is provided between the upper surface of the housing 110 and the upper surface of the magnet 140 and between the lower surface of the housing 110 and the lower surface of the magnet 140, respectively. It has stators 160 and 170.
  • the first stator 160 is coupled to the first yoke 161 and the first yoke 161 that face the upper surface of the magnet 140, and the upper surface and the outer circumferential surface of the magnet 140. And a second yoke 163, a first coil 165 and a first bobbin 167 provided between the first yoke 161 and the second yoke 163.
  • the second stator 170 is coupled to the third yoke 171 and the third yoke 171 which face the lower surface of the magnet 140, and the lower surface and the outer circumferential surface of the magnet 140. And a fourth yoke 173, a second coil 175 and a second bobbin 177 provided between the third yoke 171 and the fourth yoke 173.
  • the first yoke 161 is formed in a ring shape and coupled to an outer circumferential surface of the upper surface side inner circumferential surface of the housing 110, and an upper end surface of the first body 161a facing the upper surface of the housing 110.
  • a plurality of first extension pieces 161f and 161f extending vertically from the upper surface side of the housing 110 at equal intervals and from the upper end portions of the first extension pieces 161f toward the center of the first body 161a, respectively. It has a plurality of first teeth (161) (bending) formed.
  • the second yoke 163 has an outer diameter equal to the outer diameter of the first body 161a, and the inner diameter is formed in a ring shape smaller than the inner diameter of the first body 161a, so that the lower surface of the first body 161a is lower.
  • the second extension piece 163b and the second extension piece 163b vertically extending from the inner circumferential surface of the second body 163a to the upper surface side of the housing 110 to be equally spaced apart from each other. It has a plurality of second teeth 163c, each of which is bent from the end to the center side of the second body 163a.
  • the second extension piece 163b is positioned between the first tooth 161b and the first tooth 161b which are adjacent to each other, and the second tooth ( 163c is disposed to be inserted between the first tooth 161b and the first tooth 161b which are adjacent to each other.
  • the magnetic flux generated by the magnet 140 and introduced into the first tooth 161b or the second tooth 163c is transferred from the first tooth 161b to the second tooth 163c or the second tooth 163c. This is to make it flow uniformly when it flows into the 1st tooth 161b.
  • the upper side of the magnet 140 is located inside the second body 163a and the second extension piece 163b so that the outer circumferential surface thereof is the second body 163a. ) And the second extension piece 163b.
  • the upper end surface of the magnetized magnet 140 faces the first tooth 161b and the second tooth 163c.
  • the first coil 165 is wound in a space formed by an inner circumferential surface of the first body 161a, a lower surface of the first tooth 161b, an outer surface of the second extension piece 163b, and an upper surface of the second body 163a. It is installed and forms a ring shape. That is, the first coil 165 is disposed in a form surrounding the upper outer peripheral surface of the second extension piece 163c and the magnet 140.
  • first tooth 161b and the second tooth 163c are positioned on the same plane and are directed toward the center of the first stator 160.
  • An imaginary line connecting the end of the first tooth 161b and the end of the second tooth 163c is approximately circular.
  • the upper side of the shaft 130 passes through the end side spaces of the first tooth 161b and the second tooth 163c.
  • the second tooth 163c is disposed between an end side of the first tooth 161b and the first tooth 161b toward the center of the first yoke 161. Is inserted.
  • a terminal 168 protrudes from the first bobbin 167, and the first coil 165 and an external power source are connected to the terminal 168.
  • a portion of the first bobbin 167 on which the terminal 168 is formed is exposed to the outside of the housing 110, and a through hole 110a through which one side of the first bobbin 167 penetrates is formed in the housing 110.
  • the through hole 110a is formed by recessed recesses 111a and 115a formed to correspond to each other on one side of the lower end of the side plate of the upper housing 111 and one side of the upper end of the side plate of the lower housing 115.
  • first bobbin 167 and the side of the first tooth 161b are inserted into and coupled to each other to guide the first bobbin 167 to be coupled to a predetermined position (167a) and the engaging projection (161bc), respectively Is formed.
  • the third yoke 171 is formed in a ring shape and is coupled to an outer circumferential surface of the lower surface side inner circumferential surface of the housing 110, and a lower end surface of the third body 171a facing the lower surface of the housing 110.
  • a plurality of third extension pieces 171f extending vertically from the lower surface side of the housing 110 and having equal intervals from the lower ends of the third extension pieces 171f toward the center of the third body 171a, respectively. It has a plurality of third teeth 171b which are bent.
  • the fourth yoke 173 has an outer diameter that is the same as the outer diameter of the third body 171a, and the inner diameter is formed in a ring shape smaller than the inner diameter of the third body 171a, so that an upper surface of the third body 171a is provided.
  • the fourth extension piece 173b and the fourth extension piece 173b vertically extending from the inner circumferential surface of the fourth body 173a to the lower surface of the housing 110 to be equally spaced apart from each other. It has a plurality of fourth teeth 173c each bent from the end to the center side of the fourth body 173a.
  • the fourth extension piece 173b is positioned between the third tooth 171b and the third tooth 171b which are adjacent to each other, and the fourth tooth ( 173c is disposed to be inserted between the third tooth 171b and the third tooth 171b which are adjacent to each other.
  • the lower side of the magnet 140 is positioned inside the fourth body 173a and the fourth extension piece 173b so that the outer circumferential surface thereof is the fourth body 173a. ) And the fourth extension piece 173b.
  • the bottom surface of the magnetized magnet 140 faces the third tooth 171b and the fourth tooth 173c.
  • the second coil 175 is wound in a space formed by an inner circumferential surface of the third body 171a, an upper surface of the third tooth 171b, an outer surface of the fourth extension piece 173b, and a lower surface of the fourth body 173a. It is installed and forms a ring shape.
  • the second coil 175 is disposed in a form surrounding the fourth outer piece 173c and the outer peripheral surface of the lower side of the magnet 140.
  • the fourth tooth 173c is disposed between the third tooth 171b toward the center of the third yoke 171 and the end side of the third tooth 171b. ) Is inserted.
  • a terminal 178 protrudes from the second bobbin 177, and the second coil 175 and an external power source are connected to the terminal 178.
  • the portion of the second bobbin 177 having the terminal 178 is exposed to the outside through the through-hole 110a of the housing 110 described above.
  • first stator 160 and the second stator 170 are provided in the same shape with the same configuration, and are arranged in a form that is substantially symmetrical with respect to the center of the magnet 140.
  • the first stator 160 surrounds the space between the first tooth 161b and the adjacent first tooth 161b, the outer surface of the first coil 165 and the outer surface of the first body 161a, and the It further includes a first bobbin 167 for electrically connecting the first coil 165.
  • the first bobbin 167 is provided with at least one terminal 168 protruding from a portion surrounding the outer surface of the first body 161a, and spaces between the first tooth 161b and the adjacent first tooth 161b.
  • a through hole 167c is formed in the wrapping portion so that the lead wire of the first coil 165 is connected to the terminal 168.
  • the second stator 170 surrounds the space between the third tooth 171b and the adjacent second tooth 171b, the outer surface of the second coil 175, and the outer surface of the third body 171a, and the external power source and the second coil. It further includes a second bobbin 177 that electrically connects 175.
  • the second bobbin 177 is provided with at least one terminal 178 protruding from a portion surrounding the outer surface of the third body 171a, and provides a space between the third tooth 171b and the adjacent third tooth 171b.
  • a through hole 177c is formed in the wrapping portion, and the lead wire of the second coil 175 is connected to the terminal 178.
  • an upper end portion of the magnet 140 is formed at one side of the fourth body 173a constituting the fourth yoke 173 through a coupling hole 163aa penetrating through one side of the second body 163a in the second yoke 163. It is coupled with the engaging projection (173ab) protruding toward the side.
  • the recessed groove 111a is formed in the side plate of the upper housing 111, and the one side portions 167a and 177a of the first and second bobbins 167 and 177 are upper housing 111 through the recessed groove 111a. Are respectively exposed to the outside of the.
  • terminals 168 and 178 are formed at one side portions 167a and 177a of the first and second bobbins 167 and 177, respectively, to protrude.
  • Lead wires of the first and second coils 165 and 175 are connected to the terminals 168 and 178, and an external power source is connected to the terminals 168 and 178, respectively. As a result, external power is transmitted to the first and second coils 165 and 175.
  • the magnet 140 rotates in the forward direction by the action of the first stator 160 and the magnet 140, 2, the magnet 140 rotates in the reverse direction by the action of the stator 170 and the magnet 140 to rotate the shaft 130 in the forward and reverse directions.
  • Through-holes 167c and 177c are formed in the other portions 167b and 177b of the first and second bobbins 167 and 177 positioned inside the upper housing 111, respectively. Lead wires of the first and second coils 165 and 175 pass through, respectively.
  • the through holes 167c and 177c support the lead wires of the first and second coils 165 and 175 so as to be stably connected to the terminals 168 and 178, respectively.
  • One side portions 167a and 177a of the first and second bobbins 167 and 177 are formed thicker than the other side portions 167b and 177b, respectively, and one side portions 167a and 177a and the other side of the first and second bobbins 167 and 177, respectively.
  • the boundary portions of the portions 167b and 177b are inserted and placed in the settled grooves 161aa and 171aa respectively formed in the upper surface of the first body 161a and the lower surface of the second body 171a.
  • One side portions 167a and 177a of the first and second bobbins 167 and 177 are caught by the portions of the first and second bodies 161a and 171a which form the settling grooves 161aa and 171aa, respectively.
  • 2 bobbins (167, 177) are not separated inside the upper housing (111), respectively.
  • insertion grooves 167f are formed at boundary portions of one side portions 167a and 177a of the first and second bobbins and the other side portions 167b and 177b, respectively, and the insertion grooves of the first bobbin 167. Portions of the first and second bodies 161a and 171a in contact with the settling grooves 161aa and 171aa are inserted into the insertion grooves of the 167f and the second bobbin 177, respectively.
  • the first and second bobbins 167 and 177 are not separated into and out of the upper housing 111, respectively.
  • the present invention includes a shaft 130, a housing 110, a rotor 1400, and a stator.
  • the housing 110 includes a cylindrical upper housing 111 having a lower side open and a lower housing 115 having a disc shape, and the first and second bobbins 167 and 177 are mounted on the upper housing 111.
  • a caulking groove 111f is formed to be easily coupled to the lower housing 115 at the correct position together with the recessed groove 111a.
  • a caulking protrusion 115a extending from a position corresponding to the caulking groove 111f is provided at the edge of the lower housing 115 to determine an accurate coupling position, and a coupling portion of the caulking groove 111f and the caulking protrusion 115a is provided. It is fixed by welding or bonding.
  • the rotor 1400 includes a magnet 140 and a weight 1430.
  • the magnet 140 is formed in a ring shape and both end surfaces facing the axial direction of the shaft 130 are magnetized, and the weight 1430 is formed in a semi-cylindrical shape and fixed to one side of the outer circumferential surface of the shaft 130. When it rotates, it induces eccentricity of load and generates vibration.
  • the outer circumferential surface of the weight 1430 is coupled to the inner circumferential surface of the magnet 140.
  • an arc-shaped auxiliary weight 1450 may be further mounted on the outer circumferential surface of the weight 1430 to obtain a larger vibration force.
  • Both ends of the shaft 130 are supported by the bearings 121 mounted on both end surfaces of the housing 110, and a hook frame 121a is formed on the outer circumferential surface of the end of the bearing 121 to prevent separation from the housing 110. .
  • the shaft 130 is rotated while being supported by the bearing 121 is fixed to both ends of the housing 110 is mounted on both ends of the shaft 130 as shown.
  • both ends of the shaft 130 may protrude to both inner end surfaces of the housing 110 instead of the bearing 121 to be supported by the support tubes 1120 and 1160 that face each other. have.
  • the present invention may be applied to a step actuator based on the embodiment as shown in Figs.
  • the housing 110 further includes a power transmission unit 200 coupled to one end of the shaft 130 and interlocked with the shaft 130 to operate the driven body, and the power transmission unit 200 is connected to the housing 110.
  • Gear box 210 is coupled to, and at least one gear 220 built in the gearbox 210 and coupled to the shaft 130.
  • the gear box 210 is provided with a recessed groove 211 in which the side plate side of the upper housing 111 is placed and recessed, and the shafts 221a, 221 of the gears 221, 223, 225, and 227 in the lower housing 115 and the gear box 210.
  • Support holes 116 and 213 inserted and supported by the upper end side and the lower end side of 223a, 225a and 227a are respectively formed to correspond to each other.
  • any one gear 221 meshes with a tooth 131 formed on the outer circumferential surface of the lower end side of the shaft 130.
  • the gear 130 rotates in the order of the gear 221 ⁇ gear 223 ⁇ gear 225 ⁇ gear 227 by the rotation of the shaft 130, the gear 227 is connected to the driven body and the driven Operate the fuselage.
  • the number and size of the gears 220 may be appropriately adjusted according to the degree to be decelerated.
  • the gear 220 is connected to the shaft 130 installed so as to be capable of forward and reverse rotation.
  • the coupling housing 117 and the coupling channel 118 are respectively formed in the lower housing 115, and the coupling protrusion 215 and the coupling channel 217 are also formed in the gear box 210, respectively.
  • Coupling protrusion 117 of the lower housing 115 is inserted and coupled to the coupling channel 217 of the gear box 210, the coupling protrusion 215 of the gear box 210 is the coupling channel 118 of the lower housing 115. ) Is inserted and combined.
  • the coupling protrusion 117 of the housing 115 is tubular.
  • the present invention has as its basic technical idea to provide a stepping motor capable of miniaturizing and slimming as a whole, obtaining a constant vibration amount in a wide range, and precisely controlling the driven body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

본 발명은 정, 역회전하는 축과, 상기 축의 양단부를 지지하며 상기 축이 내장되는 하우징과, 상기 축을 중심으로 방사상으로 결합되어 상기 하우징에 내장되는 고정자 및 상기 축의 길이 방향을 따라 착자되고 상기 축에 결합되어 상기 고정자와 대면하고, 상기 고정자와 상호 작용으로 발생하는 기전력으로 회전하면서 상기 축을 회전시키는 마그네트를 포함한다.

Description

스테핑 모터
본 발명은 스테핑 모터에 관한 것이다.
최근의 전자기구에는 경량이고 소형이며 슬림하면서도 고성능을 만족시키는 영구자석형 스텝핑 모터(Permanent Magnet type stepping motor)가 널리 사용되고 있다.
상기 스테핑 모터는 일반적으로 회전자와 고정자를 포함한다.
상기 회전자는 회전축의 외주면에 링 형상의 마그네트가 고정되고, 상기 고정자는 상기 마그네트를 감싸는 원통형의 보빈과, 상기 보빈의 외주면에 권선된 코일 및 상기 보빈의 내주면에 결합되는 요크를 포함한다.
상기 스테핑 모터는 상기 코일에 공급 또는 차단되는 전류에 따라 상기 마그네트와 코일 사이에서 발생하는 기전력으로써 상기 마그네트가 정, 역회전하면 상기 회전축 또한 정, 역회전하는 구조이다.
상기 스테핑 모터가 적정한 토크를 발생하기 위해서는 상기 고정자와 대면하여 착자된 상기 마그네트의 외주면이 이루는 면적이 일정 정도 이상 되어야 하므로, 상기 면적을 크게 하기 위해서는 상기 마그네트의 상기 회전축 방향에 따른 두께를 두껍게 해야 하는 문제가 있으므로, 전체적인 슬림화 추구에 역행하는 문제점이 발생한다.
상기 고정자는 착자된 상기 마그네트의 외주면과 대향하므로, 상기 고정자는 원통 형상으로 형성되어 상기 마그네트의 외주면을 감싸면서 상기 마그네트의 외주면 외측에 전체 부위가 배치됨으로써, 상기 회전축에 직교를 이루는 길이가 늘어나게 되므로, 전체적인 소형화 추구에 역행하는 문제점이 발생한다.
한편, 최근의 휴대용 통신기기에는 착신 신호로 진동을 발생시키는 진동 모터를 내장하여 사용하는데, 일반적인 진동 모터는 전류의 세기로 회전수를 제어하므로, 정해진 구간에서만 회전수를 가변시킬 수 있기 때문에 일정한 진동량을 얻을 수 없는 문제가 있다.
그리고, 최근의 휴대용 통신기기는 일정한 여유 공간이 마련되면서도 상기 회전자와 상기 고정자의 설치 구조 또는 상기 회전축에 진동을 발생시키기 위한 웨이트를 결합시키는 구조이므로, 장치 전체의 소형화 및 슬림화에 한계가 있다.
한편, 정밀한 제어를 요하는 기기에는 스테핑 모터에 장착되는 스텝 액츄에이터를 사용한다.
일반적인 스텝 액츄에이터는 리드스크류 타입 스테핑 모터를 사용하여 피동체의 운동을 제어하고, 리드스크류가 사용된 스텝 액츄에이터는 리드 스크류의 외주면에 형성된 나사의 산과 산 사이의 피치에 의해 운동의 제어 정밀도가 결정된다.
그런데, 종래의 스텝 액츄에이터는 상기 나사의 산과 산 사이의 피치를 좁게 형성하는데 한계가 있어 피동체의 정밀 제어에 한계가 있다.
본 발명은 상기와 같은 문제점을 개선하기 위하여 안출된 것으로, 전체적으로 소형화와 슬림화가 가능한 스테핑 모터를 제공하기 위한 것이다.
그리고, 본 발명은 폭넓은 구간에서 일정한 진동량을 얻을 수 있는 스테핑 모터를 제공하기 위한 것이다.
또한, 본 발명은 피동체의 정밀한 제어가 가능한 스테핑 모터를 제공하기 위한 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
일 실시예로, 본 발명은 정, 역회전하는 축과, 상기 축의 양단부를 지지하며 상기 축이 내장되는 하우징과, 상기 축을 중심으로 방사상으로 결합되어 상기 하우징에 내장되는 고정자 및 상기 축의 길이 방향을 따라 착자되고 상기 축에 결합되어 상기 고정자와 대면하고, 상기 고정자와 상호 작용으로 발생하는 기전력으로 회전하면서 상기 축을 회전시키는 마그네트를 포함한다.
여기서, 상기 고정자는 상기 마그네트의 일단부에 설치되어 상기 축을 정방향으로 회전시키는 제1 고정자와, 상기 마그네트의 타단부에 설치되어 상기 축을 역방향으로 회전시키는 제2 고정자를 포함하며, 상기 제1 고정자와 상기 제2 고정자는 상기 마그네트를 기준으로 상호 대칭이다.
다른 실시예로, 본 발명은 정, 역회전하는 축과, 상기 축의 양단부를 지지하며 상기 축이 내장되는 하우징과, 상기 축에 결합되어 일체로 연동하면서 진동을 발생시키는 회전자와, 상기 축을 중심으로 하여 하우징에 내장되고 상기 회전자를 수용하여 상기 회전자를 정, 역회전시키는 고정자를 포함한다.
여기서, 상기 회전자는 마그네트와 웨이트를 포함하며, 상기 마그네트는 링 형상으로 형성되어 상기 축의 축방향을 향하는 양단면이 착자되고, 상기 웨이트는 반원통 형상으로 형성되어 상기 축의 외주면 일측에 고정되며, 상기 웨이트의 외주면은 상기 마그네트의 내주면과 결합된다.
이때, 상기 축의 양단부는 상기 하우징의 양단면에 장착되는 베어링으로 지지되고, 상기 베어링의 단부 외주면에는 걸림테가 마련된다.
또한, 상기 축의 양단부는 상기 하우징의 내측 양단면에 돌출되어 상호 대향하는 지지관으로 지지된다.
일 실시예로, 상기 하우징에는 상기 축의 일단부와 결합하고 상기 축과 연동하여 피동체를 동작시키는 동력전달부를 더 포함하고, 상기 동력전달부는 상기 하우징에 결합되는 기어박스와, 상기 기어박스에 내장되고 상기 축과 결합하는 적어도 하나 이상의 기어를 포함한다.
본 발명은 상기와 같이 마그네트가 상기 축을 중심으로 방사상으로 결합되어 상기 하우징에 내장되는 고정자 및 상기 축의 길이 방향을 따라 착자되고 상기 축에 결합되어 상기 고정자와 대면하는 구조를 채택하여 마그네트의 축방향으로의 두께에 제한을 받지 않고 얇게 제작할 수 있으므로 소형화 및 슬림화의 구현이 가능하다.
그리고, 본 발명은 주파수로 웨이트를 포함한 회전자의 회전수를 가변시키는 구조를 채택하여 폭넓은 구간에 걸쳐 회전수를 가변할 수 있으므로 일정한 진동량을 얻을 수 있다.
또한, 본 발명은 축에 기어를 연결하여 상기 축과 상기 기어가 연동함에 따라 기어와 연결된 피동체가 동작하는 구조를 채택하였으므로, 기어의 수와 크기를 적절히 조절하면 다양한 감속비를 얻을 수 있으므로, 상기 피동체의 정밀한 제어가 가능하다.
도 1은 본 발명의 일 실시예에 따른 스테핑 모터의 전체적인 구성을 나타낸 사시도
도 2는 본 발명의 일 실시예에 따른 스테핑 모터의 전체적인 구성을 나타낸 분해 사시도
도 3은 도 1의 A-A'선 단면도
도 4, 7, 10, 13은 본 발명의 다양한 실시예에 따른 스테핑 모터의 전체적인 구성을 나타낸 사시도
도 5, 8, 11, 14, 16는 본 발명의 다양한 실시예에 따른 스테핑 모터의 전체적인 구성을 나타낸 분해 사시도
도 6, 9, 12, 15 은 본 발명의 다양한 실시예에 따른 스테핑 모터의 단면도
이하, 첨부된 도면을 참고로 본 발명의 바람직한 실시예에 대하여 설명한다.
이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있으며, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있고, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다.
도 1은 본 발명의 일 실시예에 따른 스테핑 모터의 전체적인 구성을 나타낸 사시도이며, 도 2는 도1의 분해 사시도이고, 도 3은 도 1의 A-A'선 단면도이다.
본 발명은 축(130)과, 하우징(110)과, 고정자 및 마그네트(140)를 포함한다.
축(130)은 양단이 후술할 하우징(110)에 결합되어 회전하며, 후술할 마그네트(140)가 장착되는 공간을 제공한다.
하우징(110)은 상호 결합되어 상대적으로 상측 및 하측에 위치된 상부하우징(111)과 하부하우징(115)을 가지는 원통 형상으로 형성된다.
이하, 하우징을 포함한 다른 구성요소들의 방향 및 면을 지칭함에 있어서, 하우징(110)의 수직방향에 대하여 상측을 향하는 방향 및 면을 "상측 및 상면", 하측을 향하는 방향 및 면을 "하측 및 하면"이라 한다.
고정자는 축(130)을 중심으로 방사상으로 결합되어 하우징(110)에 내장되고, 후술할 마그네트(140)를 축(130)과 함께 정, 역회전시키는 기전력을 마그네트(140)와 함께 발생시킨다.
마그네트(140)는 축(130)의 길이 방향을 따라 착자되고, 축(140)과 결합하여 상기 고정자와 대면하고, 상기 고정자와 상호 작용으로 발생하는 기전력으로 축(140)을 회전시킨다.
본 발명은 상기와 같은 구성에 의하여 적용 및 실시가 가능하며, 다양한 실시예의 설명을 위하여 주요 구성요소별로 설명한다.
상부하우징(111)은 원판형의 상판과 상기 상판의 테두리부에서 하측으로 연장된 측판을 가지고, 하부하우징(115)은 원판형의 하판과 상기 하판의 테두부에서 상측으로 연장된 측판을 가진다.
상부하우징(111)의 상기 측판의 하단면(下端面)과 하부하우징(115)의 상기 측판의 상단면(上端面)이 상호 접촉 결합된다.
따라서, 상부하우징(111)의 상기 상판 및 하부하우징(115)의 상기 하판이 하우징(110)의 상면 및 하면을 각각 이룬다.
하우징(110)의 상면 및 하면 중앙부측에는 하우징홀(112,116)이 각각 형성되고, 하우징홀(112,116)에는 베어링(121)이 각각 결합 고정된다.
베어링(121)에는 회전가능하게 설치된 축(130)의 상단부측 및 타단부측이 각각 삽입 지지되고, 하우징(110) 내부에 위치된 축(130)의 외주면에는 링형상의 마그네트(140)가 결합되어 축(130)과 일체로 회전한다.
축(130)과 마그네트(140)의 견고한 결합을 위하여, 축(130)과 마그네트(140) 사이에는 슬리브(135)가 개재된다.
이때, 슬리브(135)측으로 자속이 누설되는 것을 방지하기 위하여, 슬리브(135)는 비자성체로 마련된다. 마그네트(140)가 회전자이다.
슬리브(135)의 상단면(上端面) 및 하단면(下端面)에는 와셔(125)가 각각 결합된다. 와셔(125)는 마그네트(140)가 축(130)의 길이방향으로 유동하는 엔드 플레이(End-Play)의 거리를 제한한다.
이때, 슬리브(135)는 마그네트(140) 보다 얇게 형성되어, 마그네트(140)의 내부에 위치되고, 와셔(125)는 외경이 마그네트(140)의 내경 보다 작게 형성되어 마그네트(140)의 내부에 위치된다.
이는, 모터의 축방향 길이를 더욱 줄이기 위함이다.
본 실시예에 따른 스테핑 모터는 소형화 및 슬림화를 위하여 하우징(110)의 상면 및 하면과 각각 대향하는 마그네트(140)의 상단면(上端面) 및 하단면(下端面)을 착자하고, 착자된 마그네트(140)의 상단면(上端面) 및 하단면(下端面)과 대향되게 고정자를 설치한다.
즉, 상기 고정자는 축(130)의 길이방향을 향하는 마그네트(140)의 일단면 및 타단면과 대향한다.
상기 고정자에 대하여 상세히 설명한다.
상기 고정자는 하우징(110)의 상면과 마그네트(140)의 상단면(上端面) 사이 및 하우징(110)의 하면과 마그네트(140)의 하단면(下端面) 사이에 각각 설치된 제 1 및 제 2 고정자(160,170)를 가진다.
제 1 고정자(160)는 마그네트(140)의 상단면(上端面)과 대향하는 제 1 요크(161), 제 1 요크(161)에 결합되며 마그네트(140)의 상단면(上端面) 및 외주면과 대향하는 제 2 요크(163), 제 1 요크(161)와 제 2 요크(163) 사이에 설치된 제 1 코일(165) 및 제 1 보빈(167)을 가진다.
제 2 고정자(170)는 마그네트(140)의 하단면(下端面)과 대향하는 제 3 요크(171), 제 3 요크(171)에 결합되며 마그네트(140)의 하단면(下端面) 및 외주면과 대향하는 제 4 요크(173), 제 3 요크(171)와 제 4 요크(173) 사이에 설치된 제 2 코일(175) 및 제 2 보빈(177)을 가진다.
제 1 요크(161)는 링형상으로 형성되어 하우징(110)의 상면측 내주면에 외주면에 결합되는 제 1 몸체(161a), 하우징(110)의 상면과 대향하는 제 1 몸체(161a)의 상단면(上端面)에서 하우징(110)의 상면측으로 수직 연장되며 상호 등간격을 가지는 복수의 제 1 연장편(161f), 제 1 연장편(161f)의 상단부에서 제 1 몸체(161a)의 중심측으로 각각 벤딩 형성된 복수의 제 1 투스(Tooth)(161b)를 가진다.
제 2 요크(163)는 외경은 제 1 몸체(161a)의 외경과 동일하고 내경은 제 1 몸체(161a)의 내경 보다 작은 링형상으로 형성되어 제 1 몸체(161a)의 하단면(下端面)에 결합되는 제 2 몸체(163a), 제 2 몸체(163a)의 내주면에서 하우징(110)의 상면측으로 수직 연장되어 상호 등간격을 가지는 제 2 연장편(163b), 제 2 연장편(163b)의 단부에서 제 2 몸체(163a)의 중심측으로 각각 벤딩 형성된 복수의 제 2 투스(163c)를 가진다.
제 1 요크(161)와 제 2 요크(163)가 결합되면, 제 2 연장편(163b)은 상호 인접하는 제 1 투스(161b)와 제 1 투스(161b) 사이에 위치되고, 제 2 투스(163c)는 상호 인접하는 제 1 투스(161b)와 제 1 투스(161b) 사이에 삽입되는 형태로 배치된다.
제 1 투스(161b)와 제 2 투스(163c)가 상호 삽입된 형태로 배치되었을 때, 상호 대향하는 제 1 투스(161b)의 측면과 제 2 투스(163c)의 측면은 평행을 이룬다.
이는, 마그네트(140)에서 발생되어 제 1 투스(161b) 또는 제 2 투스(163c)로 유입된 자속이, 제 1 투스(161b)에서 제 2 투스(163c)로 또는 제 2 투스(163c)에서 제 1 투스(161b)로 흐를때, 균일하게 흐르게 하기 위함이다.
제 1 요크(161)와 제 2 요크(163)가 결합되면, 마그네트(140)의 상부측은 제 2 몸체(163a) 및 제 2 연장편(163b)의 내부에 위치되어 외주면이 제 2 몸체(163a) 및 제 2 연장편(163b)과 대향한다. 그리고, 착자된 마그네트(140)의 상단면은 제 1 투스(161b) 및 제 2 투스(163c)와 대향한다.
제 1 코일(165)은 제 1 몸체(161a)의 내주면, 제 1 투스(161b)의 하면, 제 2 연장편(163b)의 외면과 제 2 몸체(163a)의 상면에 의하여 형성되는 공간에 권선 설치되며, 링형상을 이룬다. 즉, 제 1 코일(165)은 제 2 연장편(163c) 및 마그네트(140)의 상부측 외주면을 감싸는 형태로 배치된다.
제 1 요크(161)와 제 2 요크(163)가 결합되면, 제 1 투스(161b)와 제 2 투스(163c)는 동일 평면상에 위치되고, 제 1 고정자(160)의 중심측을 향하는 제 1 투스(161b)의 단부와 제 2 투스(163c)의 단부를 연결한 가상의 선은 대략 원형을 이룬다. 제 1 투스(161b)와 제 2 투스(163c)의 단부측 공간을 축(130)의 상부측이 통과한다.
제 1 요크(161)와 제 2 요크(163)가 결합되면, 제 1 요크(161)의 중심을 향하는 제 1 투스(161b)와 제 1 투스(161b) 단부측 사이에 제 2 투스(163c)가 삽입된다.
따라서, 제 2 투스(163c) 외측의 제 1 투스(161b)와 제 2 연장편(163b) 사이에는 공간이 존재하고, 상기 공간에 제 1 보빈(167)이 결합된다.
제 1 보빈(167)에는 단자(168)가 돌출 형성되는데, 단자(168)에는 제 1 코일(165)과 외부의 전원이 접속된다.
이로인해, 외부의 전원이 제 1 코일(165)로 전달된다.
단자(168)가 형성된 제 1 보빈(167)의 부위는 하우징(110)의 외측으로 노출되는데, 하우징(110)에는 제 1 보빈(167)의 일측이 관통하는 관통공(110a)이 형성된다.
관통공(110a)은 상부하우징(111)의 측판 하단부 일측 및 하부하우징(115)의 측판 상단부 일측에 상호 대응되게 각각 형성된 함몰홈(111a,115a)에 의하여 형성된다.
제 1 보빈(167)의 측면 및 제 1 투스(161b)의 측면에는 상호 삽입 결합되어 제 1 보빈(167)이 정해진 위치에 결합되도록 안내하는 결합홈((167a) 및 결합돌기(161bc)가 각각 형성된다.
제 3 요크(171)는 링형상으로 형성되어 하우징(110)의 하면측 내주면에 외주면에 결합되는 제 3 몸체(171a), 하우징(110)의 하면과 대향하는 제 3 몸체(171a)의 하단면(下端面)에서 하우징(110)의 하면측으로 수직 연장되며 상호 등간격을 가지는 복수의 제 3 연장편(171f), 제 3 연장편(171f)의 하단부에서 제 3 몸체(171a)의 중심측으로 각각 벤딩 형성된 복수의 제 3 투스(171b)를 가진다.
제 4 요크(173)는 외경은 제 3 몸체(171a)의 외경과 동일하고 내경은 제 3 몸체(171a)의 내경 보다 작은 링형상으로 형성되어 제 3 몸체(171a)의 상단면(上端面)에 결합되는 제 4 몸체(173a), 제 4 몸체(173a)의 내주면에서 하우징(110)의 하면측으로 수직 연장되어 상호 등간격을 가지는 제 4 연장편(173b), 제 4 연장편(173b)의 단부에서 제 4 몸체(173a)의 중심측으로 각각 벤딩 형성된 복수의 제 4 투스(173c)를 가진다.
제 3 요크(171)와 제 4 요크(173)가 결합되면, 제 4 연장편(173b)은 상호 인접하는 제 3 투스(171b)와 제 3 투스(171b) 사이에 위치되고, 제 4 투스(173c)는 상호 인접하는 제 3 투스(171b)와 제 3 투스(171b) 사이에 삽입되는 형태로 배치된다.
제 3 투스(171b)와 제 4 투스(173c)가 상호 삽입된 형태로 배치되었을 때, 상호 대향하는 제 3 투스(171b)의 측면과 제 4 투스(173c)의 측면은 평행을 이룬다.
이는, 자속이 마그네트(140)에서 발생되어 제 3 투스(171b) 또는 제 4 투스(173c)로 유입되면, 제 3 투스(171b)에서 제 4 투스(173c)로 또는 제 4 투스(173c)에서 제 3 투스(171b)로 흐를때, 균일하게 흐르게 하기 위함이다.
제 3 요크(171)와 제 4 요크(173)가 결합되면, 마그네트(140)의 하부측은 제 4 몸체(173a) 및 제 4 연장편(173b)의 내부에 위치되어 외주면이 제 4 몸체(173a) 및 제 4 연장편(173b)과 대향한다.
착자된 마그네트(140)의 하단면은 제 3 투스(171b) 및 제 4 투스(173c)와 대향한다.
제 2 코일(175)은 제 3 몸체(171a)의 내주면, 제 3 투스(171b)의 상면, 제 4 연장편(173b)의 외면과 제 4 몸체(173a)의 하면에 의하여 형성되는 공간에 권선 설치되며, 링 형상을 이룬다.
즉, 제 2 코일(175)은 제 4 연장편(173c) 및 마그네트(140)의 하부측 외주면을 감싸는 형태로 배치된다.
제 3 요크(171)와 제 4 요크(173)가 결합되면, 제 2 고정자(170)의 중심측을 향하는 제 3 투스(171b)의 단부와 제 4 투스(173c)의 단부를 연결한 가상의 선은 대략 원형을 이루고, 제 3 투스(171b)와 제 4 투스(173c)의 단부측 공간을 축(130)의 하부측이 통과한다.
제 3 요크(171)와 제 4 요크(173)가 결합되면, 제 3 요크(171)의 중심을 향하는 제 3 투스(171b)와 제 3 투스(171b)의 단부측 사이에 제 4 투스(173c)가 삽입된다.
따라서, 제 4 투스(173c) 외측의 제 3 투스(171b)와 제 4 연장편(173b) 사이에는 공간이 존재하고, 상기 공간에 제 2 보빈(177)이 결합된다.
제 2 보빈(177)에는 단자(178)가 돌출 형성되는데, 단자(178)에는 제 2 코일(175)과 외부의 전원이 접속된다.
이로인해, 외부의 전원이 제 2 코일(175)로 전달된다.
단자(178)가 형성된 제 2 보빈(177)의 부위는 전술한 하우징(110)의 관통공(110a)을 통과하여 외부로 노출된다.
제 2 보빈(177)의 측면 및 제 3 투스(171b)의 측면에는 상호 삽입 결합되어 제 2 보빈(177)이 정해진 위치에 결합되도록 안내하는 결합홈(177a) 및 결합돌기(171bc)가 각각 형성된다.
즉, 제 1 고정자(160)와 제 2 고정자(170)는 동일 구성의 동일 형상으로 마련되어, 마그네트(140)의 중심을 기준으로 대략 대칭을 이루는 형태로 배치된다.
한편, 본 발명은 도 4 내지 도 6과 같은 실시예의 적용이 가능하다.
우선, 제1 고정자(160)는 제1 투스(161b)와 인접한 제1 투스(161b) 사이의 공간과 제1 코일(165)의 외면과 제1 몸체(161a)의 외면을 감싸며 외부 전원과 제1 코일(165)을 전기적으로 연결하는 제1 보빈(167)을 더 포함한다.
제1 보빈(167)에는 제1 몸체(161a)의 외면을 감싸는 부분에서 돌출된 적어도 하나의 단자(168)가 마련되고, 제1 투스(161b)와 인접한 제1 투스(161b) 사이의 공간을 감싸는 부분에는 관통공(167c)이 형성되어 제1 코일(165)의 리드선이 단자(168)와 접속된다.
제2 고정자(170)는 제3 투스(171b)와 인접한 제2 투스(171b) 사이의 공간과 제2 코일(175)의 외면과 제3 몸체(171a)의 외면을 감싸며 외부 전원과 제2 코일(175)을 전기적으로 연결하는 제2 보빈(177)을 더 포함한다.
제2 보빈(177)에는 제3 몸체(171a)의 외면을 감싸는 부분에서 돌출된 적어도 하나의 단자(178)가 마련되고, 제3 투스(171b)와 인접한 제3 투스(171b) 사이의 공간을 감싸는 부분에는 관통공(177c)이 형성되어 상기 제2 코일(175)의 리드선이 단자(178)와 접속된다.
또한, 제2 요크(163)에는 제2 몸체(163a)의 일측에 결합공(163aa)이 관통되어 제4 요크(173)를 구성하는 제4 몸체(173a)의 일측에 마그네트(140)의 상단부측을 향하여 돌출된 결합돌기(173ab)와 결합된다.
그리고, 제2 요크(163)에는 제2 몸체(163a)의 타측에 마그네트(140)의 하단부측을 향하여 돌출된 결합돌기(163ab)가 제4 몸체(173a)의 타측에 관통된 결합공(173aa)과 결합된다.
더욱 상세히는 상부하우징(111)의 측판에는 함몰홈(111a)이 형성되고, 제 1 및 제 2 보빈(167,177)의 일측 부위(167a,177a)는 함몰홈(111a)을 통하여 상부하우징(111)의 외측으로 각각 노출된다.
그리고, 제 1 및 제 2 보빈(167,177)의 일측 부위(167a,177a)에는 단자(168,178)가 각각 형성되어 돌출된다.
단자(168,178)에는 제 1 및 제 2 코일(165,175)의 리드선이 각각 접속됨과 동시에 외부의 전원이 접속된다. 이로 인해, 외부의 전원이 제 1 및 제 2 코일(165,175)로 전달된다.
그리하여, 제 1 코일(165)과 제 2 코일(175)로 선택적으로 전류가 공급됨에 따라, 제 1 고정자(160)와 마그네트(140)의 작용에 의하여 마그네트(140)가 정방향으로 회전하고, 제 2 고정자(170)와 마그네트(140)의 작용에 의하여 마그네트(140)가 역방향으로 회전하면서 축(130)을 정역방향으로 회전시킨다.
상부하우징(111)의 내측에 위치된 제 1 및 제 2 보빈(167,177)의 타측 부위(167b,177b)에는 관통공(167c,177c)이 각각 형성되고, 관통공(167c,177c)으로는 제 1 및 제 2 코일(165,175)의 리드선이 각각 통과한다.
관통공(167c,177c)은 제 1 및 제 2 코일(165,175)의 리드선이 안정되게 단자(168,178)에 각각 접속되도록 지지한다.
제 1 및 제 2 보빈(167,177)의 일측 부위(167a,177a)는 타측 부위(167b,177b) 보다 각각 두껍게 형성되고, 제 1 및 제 2 보빈(167,177)의 일측 부위(167a,177a)와 타측 부위(167b,177b)의 경계 부위는 제 1 몸체(161a)의 상단면 및 제 2 몸체(171a)의 하단면에 각각 형성된 안치홈(161aa,171aa)에 각각 삽입 안치된다.
제 1 및 제 2 보빈(167,177)의 일측 부위(167a,177a)가 안치홈(161aa,171aa)을 형성하는 제 1 및 제 2 몸체(161a,171a)의 부위에 각각 걸리므로, 제 1 및 제 2 보빈(167,177)이 상부하우징(111)의 내측으로 각각 이탈되지 않는다.
그리고, 제 1 및 제 2 보빈의 일측 부위(167a,177a)와 타측 부위(167b,177b)의 경계 부위에는 삽입홈(167f,미도시)이 각각 형성되고, 제 1 보빈(167)의 삽입홈(167f) 및 제 2 보빈(177)의 상기 삽입홈에는 안치홈(161aa,171aa)과 접하는 제 1 및 제 2 몸체(161a,171a)의 부위가 각각 삽입된다.
이로인해, 제 1 및 제 2 보빈(167,177)이 상부하우징(111)의 내외측으로 각각 이탈되지 않는다.
한편, 본 발명은 도 7 내지 도 12와 같은 실시예의 적용이 가능하다.
우선, 본 발명은 축(130)과, 하우징(110)과, 회전자(1400)와, 고정자를 포함한다.
축(130)은 앞서 기술한 실시예들과 대동소이하므로 생략하기로 한다.
하우징(110)은 하부측이 개방된 원통 형상의 상부하우징(111)과 원판 형상의 하부하우징(115)을 포함하되, 상부하우징(111)에는 제1, 2 보빈(167, 177)이 장착되는 함몰홈(111a)과 함께 하부하우징(115)과 정확한 위치에 용이하게 결합되도록 하기 위한 코킹홈(111f)이 형성된다.
하부하우징(115)의 가장자리에는 코킹홈(111f)과 대응하는 위치에서부터 연장되는 코킹돌기(115a)가 마련되어 정확한 결합 위치의 결정이 가능하며, 코킹홈(111f)과 코킹돌기(115a)의 결합부위를 용접 또는 접착함으로써 고정된다.
회전자(1400)는 마그네트(140)와 웨이트(1430)를 포함한다.
마그네트(140)는 링 형상으로 형성되어 축(130)의 축방향을 향하는 양단면이 착자되고, 웨이트(1430)는 반원통 형상으로 형성되어 축(130)의 외주면 일측에 고정되어 축(130)이 회전할 때 하중의 편심을 유도하여 진동을 발생시킨다.
여기서, 웨이트(1430)의 외주면은 마그네트(140)의 내주면과 결합된다.
이때, 웨이트(1430)의 외주면에는 더 큰 진동력을 얻기 위하여 원호 형상의 보조웨이트(1450)가 더 장착될 수 있다.
축(130)의 양단부는 하우징(110)의 양단면에 장착되는 베어링(121)으로 지지되며, 베어링(121)의 단부 외주면에는 걸림테(121a)를 형성하여 하우징(110)으로부터 이탈을 방지한다.
즉, 축(130)은 도시된 바와 같이 축(130)의 양단부에 장착되어 하우징(110)의 양단면에 고정되는 베어링(121)으로 지지되면서 회전한다.
그리고, 본 발명은 도 10 내지 12와 같이 축(130)의 양단부를 베어링(121) 대신에 하우징(110)의 내측 양단면에 돌출되어 상호 대향하는 지지관(1120, 1160)으로 지지되도록 할 수 있다.
한편, 본 발명은 도 13 내지 도 16과 같은 실시예에 의거하여 스텝 액츄에이터를 적용할 수도 있다.
하우징(110)에는 축(130)의 일단부와 결합하고 축(130)과 연동하여 피동체를 동작시키는 동력전달부(200)를 더 포함하고, 동력전달부(200)는 하우징(110)에 결합되는 기어박스(210)와, 기어박스(210)에 내장되고 축(130)과 결합하는 적어도 하나 이상의 기어(220)를 포함한다.
기어박스(210)에는 상부하우징(111)의 측판측이 삽입 안치되는 안치홈(211)이 함몰 형성되고, 하부하우징(115) 및 기어박스(210)에는 기어들(221,223,225,227)의 축(221a,223a,225a,227a)의 상단부측 및 하단부측 각각 삽입 지지되는 지지공(116,213)이 각각 대응되게 형성된다.
기어들(221,223,225,227) 중, 어느 하나의 기어(221)는 축(130)의 하단부측 외주면에 형성된 치(齒)(131)와 맞물린다.
그러면, 축(130)의 회전에 의하여 기어(221)→기어(223)→기어(225)→기어(227)의 순으로 연동하여 회전하고, 기어(227)는 상기 피동체와 연결되어 상기 피동체를 동작시킨다.
기어(220)의 수 및 크기는 감속하고자 하는 정도에 따라 적절하게 조절하면 된다.
본 실시예에 따른 스텝 액츄에이터는 정역회전가능하게 설치된 축(130)에 기어(220)가 연결되어 연동 회전한다.
따라서, 감속비를 원하는 대로 조절할 수 있으므로, 상기 피동체의 정밀한 제어가 가능하다.
하부하우징(115)에는 결합돌기(117) 및 결합채널(118)이 각각 형성되고, 기어박스(210)에도 결합돌기(215) 및 결합채널(217)이 각각 형성된다.
하부하우징(115)의 결합돌기(117)는 기어박스(210)의 결합채널(217)에 삽입 결합되고, 기어박스(210)의 결합돌기(215)는 하부하우징(115)의 결합채널(118)이 삽입 결합된다.
이때, 하우징(115)의 결합돌기(117)는 관형상이다.
이상과 같이 본 발명은 전체적으로 소형화와 슬림화가 가능하고, 폭넓은 구간에서 일정한 진동량을 얻을 수 있으며, 피동체의 정밀한 제어가 가능한 스테핑 모터를 제공하는 것을 기본적인 기술적 사상으로 하고 있음을 알 수 있다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다.
따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 특허청구범위에 의해서 정해져야 할 것이다.

Claims (19)

  1. 정, 역회전하는 축;
    상기 축의 양단부를 회전 가능하게 지지하며 상기 축이 내장되는 하우징;
    상기 축을 중심으로 방사상으로 결합되어 상기 하우징에 내장되는 고정자; 및
    상기 축의 길이 방향을 따라 착자되고 상기 축에 고정되어 상기 고정자와 대면하고, 상기 고정자와 상호 작용으로 발생하는 기전력으로 상기 축과 함께 회전하는 마그네트;를 포함하는 스테핑 모터.
  2. 제 1 항에 있어서,
    상기 마그네트는 링형상으로 형성되어 내주면이 상기 회전축의 외주면에 고정되고,
    상기 고정자는 상기 마그네트의 일단면 및 타단면과 각각 대향하는 스테핑 모터.
  3. 제 2 항에 있어서,
    상기 고정자는 상기 하우징의 일면과 상기 마그네트의 일단면 사이 및 상기 하우징의 타면과 상기 마그네트의 타단면 사이에 각각 설치된 제 1 및 제 2 고정자를 가지며,
    상기 제 1 고정자와 상기 제 2 고정자는 상기 마그네트의 중심을 기준으로 대칭으로 배치된 스테핑 모터.
  4. 제 3 항에 있어서,
    상기 제1 고정자는 상기 마그네트의 외주면과 대면되게 복수회 권취되어 상기 마그네트와 대면하여 기전력을 발생시키는 제1 코일과,
    상기 마그네트의 일단부측과 같은 방향으로 돌출되어 상기 제1 코일을 수용하고, 상기 하우징에 내장되는 제1 요크와,
    상기 제1 코일의 내주면과 접촉하여 상기 제1 코일을 안착시키고, 상기 제1 요크와 결합되며 상기 마그네트의 일단부와 대면하는 제2 요크를 포함하는 스테핑 모터.
  5. 제 3 항에 있어서,
    상기 제2 고정자는 상기 마그네트의 외주면과 대면되게 복수회 권취되어 상기 마그네트와 대면하여 기전력을 발생시키는 제2 코일과,
    상기 마그네트의 타단부측으로 돌출되어 상기 제2 코일을 수용하고, 상기 하우징에 내장되는 제3 요크와,
    상기 제2 코일의 내주면과 접촉하여 상기 제2 코일을 안착시키고, 상기 제3 요크와 결합되며 상기 마그네트의 타단부와 대면하는 제4 요크를 포함하는 스테핑 모터.
  6. 제 4 항에 있어서,
    상기 제1 요크는 링 형상의 제1 몸체와, 상기 제1 몸체의 가장자리에서 연장하여 상기 마그네트의 일단부측과 같은 방향으로 돌출된 복수의 제1 연장편과, 상기 제1 연장편의 단부에서 연장하여 상기 마그네트측으로 절곡된 제1 투스를 포함하고,
    상기 제2 요크는 상기 제1 몸체를 마감하는 링 형상의 제2 몸체와, 상기 제2 몸체의 내측 가장자리에서 연장하여 마그네트의 일단부측과 같은 방향으로 돌출되어 상기 제1 투스와 인접한 상기 제1 투스의 사이에 배치되며 상기 제1 코일의 내주면이 접촉되는 복수의 제2 연장편과, 상기 제2 연장편의 단부에서 연장하여 상기 마그네트측으로 절곡된 제2 투스를 포함하며,
    상기 제2 몸체는 상기 제2 고정자와 결합되는 스테핑 모터.
  7. 제 5 항에 있어서,
    상기 제3 요크는 링 형상의 제3 몸체와, 상기 제3 몸체의 가장자리에서 연장하여 상기 마그네트의 타단부측과 같은 방향으로 돌출된 복수의 제3 연장편과, 상기 제3 연장편의 단부에서 연장하여 상기 마그네트측으로 절곡된 제3 투스를 포함하고,
    상기 제4 요크는 상기 제3 몸체를 마감하는 링 형상의 제4 몸체와, 상기 제4몸체의 내측 가장자리에서 연장하여 마그네트의 타단부측과 같은 방향으로 돌출되어 상기 제3 투스와 인접한 상기 제3 투스의 사이에 배치되며 상기 제2 코일의 내주면이 접촉되는 복수의 제4 연장편과, 상기 제4 연장편의 단부에서 연장하여 상기 마그네트측으로 절곡된 제4 투스를 포함하며,
    상기 제4 몸체는 상기 제1 고정자와 결합되는 스테핑 모터.
  8. 제 6 항에 있어서,
    상기 제1 고정자는 상기 제1 투스와 인접한 상기 제1 투스 사이의 공간과 제1 코일의 외면과 상기 제1 몸체의 외면을 감싸며 외부 전원과 상기 제1 코일을 전기적으로 연결하는 제1 보빈을 더 포함하는 스테핑 모터.
  9. 제 7 항에 있어서,
    상기 제2 고정자는 상기 제3 투스와 인접한 상기 제2 투스 사이의 공간과 제2 코일의 외면과 상기 제3 몸체의 외면을 감싸며 외부 전원과 상기 제2 코일을 전기적으로 연결하는 제2 보빈을 더 포함하는 스테핑 모터.
  10. 제 6 항에 있어서,
    상기 제2 몸체의 일측에는 결합공이 관통되고, 상기 제2 몸체의 타측에는 결합돌기가 상기 마그네트의 타단부측을 향하여 돌출되며,
    상기 결합공과 상기 결합돌기는 상기 제2 고정자와 결합되는 스테핑 모터.
  11. 제 7 항에 있어서,
    상기 제4 몸체의 일측에는 결합돌기가 상기 마그네트의 일단부측을 향하여 돌출되고, 상기 제4 몸체의 타측에는 결합공이 관통되며,
    상기 결합돌기와 상기 결합공은 상기 제1 고정자와 결합되는 스테핑 모터.
  12. 제 1 항에 있어서,
    상기 마그네트의 일측에는 웨이트가 설치되어 진동을 발생시키는 스테핑 모터.
  13. 제 1 항에 있어서,
    상기 축의 외주면 일측에 웨이트가 더욱 고정되어 진동을 발생시키는 스테핑 모터.
  14. 제 13 항에 있어서,
    상기 웨이트는 반원통 형상으로 형성되며,
    상기 웨이트의 외면에 장착되는 원호 형상의 보조 웨이트를 더 포함하는 스테핑 모터.
  15. 제 1 항에 있어서,
    상기 축의 양단부는 상기 하우징의 양단면에 장착되는 베어링으로 지지되는 스테핑 모터.
  16. 제 15 항에 있어서,
    상기 베어링의 단부 외주면에는 걸림테가 마련되는 스테핑 모터.
  17. 제 1 항에 있어서,
    상기 축의 양단부는 상기 하우징의 내측 양단면에 돌출되어 상호 대향하는 지지관으로 지지되는 스테핑 모터.
  18. 제 1 항에 있어서,
    상기 하우징에는 상기 축의 일단부와 결합하고 상기 축과 연동하여 피동체를 동작시키는 동력전달부를 더 포함하는 스테핑 모터.
  19. 제 18 항에 있어서,
    상기 동력전달부는,
    상기 하우징에 결합되는 기어박스와,
    상기 기어박스에 내장되고 상기 축과 결합하는 적어도 하나 이상의 기어를 포함하는 스테핑 모터.
PCT/KR2009/006531 2008-11-06 2009-11-06 스테핑 모터 WO2010053318A2 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020080109813A KR20100050755A (ko) 2008-11-06 2008-11-06 스텝 진동 모터
KR1020080109815A KR101551628B1 (ko) 2008-11-06 2008-11-06 스텝 진동 모터
KR10-2008-0109813 2008-11-06
KR10-2008-0109815 2008-11-06
KR1020080121900A KR101020796B1 (ko) 2008-12-03 2008-12-03 스텝 액츄에이터
KR10-2008-0121901 2008-12-03
KR10-2008-0121900 2008-12-03
KR1020080121901A KR101602321B1 (ko) 2008-12-03 2008-12-03 스테핑 모터

Publications (2)

Publication Number Publication Date
WO2010053318A2 true WO2010053318A2 (ko) 2010-05-14
WO2010053318A3 WO2010053318A3 (ko) 2010-08-19

Family

ID=42153404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006531 WO2010053318A2 (ko) 2008-11-06 2009-11-06 스테핑 모터

Country Status (1)

Country Link
WO (1) WO2010053318A2 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215397A (ja) * 2002-12-27 2004-07-29 Nidec Copal Corp ステッピングモータ
KR20040094336A (ko) * 2003-04-30 2004-11-09 니덱 코팔 가부시키가이샤 스테핑 모터 및 스테핑 모터 제조 방법
JP2008131855A (ja) * 2006-11-24 2008-06-05 Fuzhun Precision Industry (Shenzhen) Co Ltd 振動モータ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332176A (ja) * 1998-05-12 1999-11-30 Tokyo Parts Ind Co Ltd ギヤードアクチュエータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215397A (ja) * 2002-12-27 2004-07-29 Nidec Copal Corp ステッピングモータ
KR20040094336A (ko) * 2003-04-30 2004-11-09 니덱 코팔 가부시키가이샤 스테핑 모터 및 스테핑 모터 제조 방법
JP2008131855A (ja) * 2006-11-24 2008-06-05 Fuzhun Precision Industry (Shenzhen) Co Ltd 振動モータ

Also Published As

Publication number Publication date
WO2010053318A3 (ko) 2010-08-19

Similar Documents

Publication Publication Date Title
WO2010044537A2 (ko) 스텝 액츄에이터
KR100680152B1 (ko) 감속기 일체형 액츄에이터
WO2011162500A2 (ko) 더블 스테이터/더블 로터형 모터 및 이를 이용한 세탁기의 직결형 구동 장치
JP2001086721A (ja) ブラシレスモータ及びこれを使用した医療用ハンドピース
WO2017052075A1 (ko) 영구자석 응용 전동기
WO2013085231A1 (ko) 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
KR100443737B1 (ko) 스태핑 모터
WO2019190219A1 (ko) 소형 구동 모터 및 이를 이용한 에어 벤트 시스템용 액추에이터
US6809439B2 (en) Stepping motor
WO2010053318A2 (ko) 스테핑 모터
WO2014061908A1 (ko) 이중 공극형 발전기
WO2018012885A1 (ko) 로터 및 이를 포함하는 모터
WO2016171439A1 (en) Laundry treatment apparatus and magnetic gear device
WO2011115367A2 (ko) 기전력 안정화 영구자석 발전기
WO2022086199A1 (ko) 모터
WO2021187820A1 (ko) 고정자 비대칭 슈를 이용한 전동기 및 그 제작 방법
WO2021071171A1 (ko) 전기모터용 스테이터 및 이를 포함하는 전기모터
WO2020032395A1 (ko) 로터 및 이를 구비하는 모터
WO2024151014A1 (ko) 모터 구동장치 및 이를 이용한 내부 중공형 스위블 액추에이터
WO2024154989A1 (ko) 모터 구동장치 및 이를 이용한 내부 중공형 스위블 액추에이터
WO2018117555A1 (ko) 회전축 또는 고정축을 사용할 수 있는 2개의 회전자를 이용하는 발전기
WO2024151007A1 (ko) 모터 구동장치 및 이를 이용한 내부 중공형 스위블 액추에이터
WO2021242006A1 (ko) 코깅 토크를 최소화하는 고정자 구조
WO2024151010A1 (ko) 내부 중공형 스위블 액추에이터
US4433259A (en) Electric rotating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825001

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC.

122 Ep: pct application non-entry in european phase

Ref document number: 09825001

Country of ref document: EP

Kind code of ref document: A2