WO2010052439A2 - Machine electrique tournante a double excitation de type homopolaire - Google Patents

Machine electrique tournante a double excitation de type homopolaire Download PDF

Info

Publication number
WO2010052439A2
WO2010052439A2 PCT/FR2009/052152 FR2009052152W WO2010052439A2 WO 2010052439 A2 WO2010052439 A2 WO 2010052439A2 FR 2009052152 W FR2009052152 W FR 2009052152W WO 2010052439 A2 WO2010052439 A2 WO 2010052439A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnets
magnetic
machine according
electrical machine
Prior art date
Application number
PCT/FR2009/052152
Other languages
English (en)
Other versions
WO2010052439A3 (fr
Inventor
Victor Moynot
Franck Chabot
Michel Lecrivain
Mohamed Gabsi
Sami Hlioui
Original Assignee
Peugeot Citroën Automobiles SA
Cnrs (Centre National De La Recherche Scientifique)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA, Cnrs (Centre National De La Recherche Scientifique) filed Critical Peugeot Citroën Automobiles SA
Priority to CN200980144926.5A priority Critical patent/CN102210087B/zh
Priority to US13/125,038 priority patent/US8441163B2/en
Priority to EP09768162A priority patent/EP2345137A2/fr
Publication of WO2010052439A2 publication Critical patent/WO2010052439A2/fr
Publication of WO2010052439A3 publication Critical patent/WO2010052439A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/20Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines

Definitions

  • the present invention relates to a rotary machine with double homopolar type excitation.
  • the invention is particularly intended to facilitate the passage of double excitation flow inside the electric machine.
  • the invention finds a particularly advantageous, but not exclusive, application with synchronous electrical machines intended to be used with electric or hybrid type vehicles combining the use of a heat engine and an electric machine.
  • Rotating electric machines with double excitation are known, such as those described in the French patent application published under the number FR-2846483.
  • these machines 1 comprise a stator 3 and a rotor 5 spaced from one another by a functional air gap 6.
  • the stator 3 comprises an annular laminated magnetic core 7 equipped with a stator winding 8 and annular windings 9, 10 generating an excitation double flux.
  • the core 7 and the stator windings 8 and excitation 9, 10 are arranged in a solid magnetic ring 11 in contact with the outer surface of the core 7.
  • This ring 11 comprises a flange 13, 14 at each end facing the rotor 5.
  • the rotor 5 comprises a body 15 comprising permanent magnets 18 whose magnetic magnetization is oriented tangentially (perpendicularly to the radius of the rotor) and separated from each other by teeth 19 made of laminated sheets which channel the flux generated by the magnets 18 and route it to the gap 6.
  • the rotor 5 further comprises two annular flanges 21, 22 positioned on either side of the body 15 each having portions peripherals defining, with the rims 13 and 14 radial end of the ring 11 of the stator return air gaps magnetic flux.
  • the flanges 21 and 22 are connected to the teeth 19 alternately, each of the teeth 19 having one end facing the flange 21 and one end facing the flange 22.
  • Such an arrangement thus allows the excitation windings 9, 10 to modulate the flux of the magnets 18 by the creation of a flux, said double excitation flux, which flows along the paths 24 and 25 along which it passes through the ring 11 of the stator, a rim 13, 14 of radial end, a flange 21, 22, the lamination 19 of the rotor first in an axial direction along the active length D of the machine then in a radial direction, then the magnetic core 7 of the stator to loop back with the crown 11.
  • the invention proposes an electric machine structure making it possible at the same time to facilitate the circulation of the flow along the length D of the machine and to minimize the iron losses generated at the periphery of the rotor.
  • the rotor is formed in particular by a central portion of solid magnetic material and an annular portion of laminated material located at the periphery of the solid portion.
  • the rotor further comprises permanent magnets whose magnetization is oriented radially with respect to the axis of the rotor and spaced apart from one another so that the double excitation flux generated by the excitation windings can enter the rotor. by the flanges of the rotor and out through the spaces between the magnets, or vice versa.
  • the invention thus relates to a rotary electric machine with double excitation of homopolar type, characterized in that it comprises:
  • stator comprising a central core and two excitation coils positioned on either side of said core generating a double excitation flux
  • a rotor comprising a solid central part having an isotropic magnetic behavior to facilitate the circulation of the double excitation flux along the axis of the rotor
  • each permanent magnet occupies substantially half of a polar pitch. [016]. In one embodiment, the permanent magnets are installed at the periphery of the rotor to maximize the passage section of the double excitation flux in the massive central portion.
  • the permanent magnets are recessed within the annular portion.
  • the permanent magnets are attached to the periphery of the annular portion.
  • the magnets are oriented geometrically longitudinally with respect to the axis of the rotor.
  • the permanent magnets are each formed by a set of magnets having a U-shape.
  • the stator further comprises a stator winding wound on the annular magnetic core, and at least one magnetic ring in contact with the outer surface of the annular magnetic core, said magnetic ring comprising at each end a radial end flange.
  • the rotor further comprises two annular flanges of magnetic material disposed on either side of the central portion and coaxially along the axis of the rotor, these flanges each comprising an axial peripheral portion defining with the end flanges. radial rings of the magnetic flux return air gaps.
  • Figure 1 (already described): a truncated perspective view of a electric double excitation machine according to the state of the art
  • Figure 2 (already described): a perspective view of the machine of Figure 1, a flange of the rotor has been removed to show the direction of lamination of the rotor core;
  • Figure 5 a graphical representation of the variation of the flow of the machine according to Figures 3 and 4 as a function of the electric angle for different power supply values of the excitation windings;
  • Figures 6 schematic representations of the positioning variants of the permanent magnets of the rotor.
  • FIGS. 3 and 4 show a homopolar-type double-excitation rotary electric machine 1.1 according to the invention comprising a stator 29 and a rotor 31 having an axis 33, this stator 29 and this rotor 31 being spaced apart from each other by a functional air gap 34.
  • the stator 29 comprises an annular core 35 made of laminated magnetic sheet on either side of which annular coils 38, 39 of excitation are arranged.
  • the currents flowing in these excitation windings 38, 39 are in the opposite direction.
  • a stator winding 41 surrounded by the excitation windings 38, 39, is wound in a conventional manner on the core 35 which presents for this purpose an inner surface formed of teeth 42.
  • the entire core 35 and coils 38, 39, 41 are housed in an outer magnetic ring 44 which is in contact with an outer surface of the magnetic core.
  • This massive ring 44 includes end flanges 45, 46 facing towards the end of the rotor 31.
  • the rotor 31 comprises two annular flanges 48, 49 made of solid magnetic material arranged coaxially along the axis 33. These flanges 48, 49 each comprise an axial peripheral portion defining, with the radial end flanges 45 and 46 of the ring 44 of FIGS. magnetic flux return air gaps.
  • a central portion 51 of massive magnetic material is disposed between said flanges 48, 49 and coaxially along the axis 33 of the rotor 31. Due to its massive nature, the central portion 51 has an isotropic magnetic behavior, which allows to facilitate the circulation of the flow along the axis 33 of the rotor generated by the double excitation.
  • the portion 51 has at its center an opening for receiving a shaft (not shown) on which the rotor 31 will be mounted.
  • the rotor 31 also comprises an annular portion 53 of laminated magnetic material for limiting the losses iron.
  • This annular portion 53 is installed around the portion 51, the laminated sheets 53.1 of the portion 53 preferably being oriented radially relative to the axis 33 of the rotor.
  • the rotor 31 has a radius Re of approximately 125 mm; the annular portion 53 having a thickness of about 16mm, the overall length L of the machine 1 being about 100mm.
  • Permanent magnets 54 having the same polarization generating a radial magnetic field with respect to the axis 33 of the rotor are installed inside the rotor 31.
  • the magnets 54 extend geometrically according to the elongation of the machine 1.1 and generates a magnetic field indicated by the arrows 55 going from outside the rotor 31 Towards the center of the rotor 31.
  • the direction of the magnetic field of these magnets 54 is reversed and goes from the center of the rotor 31 towards the outside of the rotor 31, as shown in FIG. 6a.
  • the magnets 54 are installed at the periphery of the rotor 31 to maximize the passage section of the double excitation flux in the portion
  • the magnets 54 are embedded within the annular portion 53 provided with housing for this purpose. These magnets 54 are spaced from each other by a magnetic space allowing the circulation of the double excitation flux inside the rotor 31 between the magnets 54.
  • Magnetic space means a good conductor magnetic flux space constituted for example by a solid magnetic material and / or as here by a laminated magnetic material.
  • each magnet 54 occupies substantially half of a polar pitch, a polar pitch being equal to the perimeter of the rotor 31 divided by the number p of pairs of poles.
  • a polar pitch being equal to the perimeter of the rotor 31 divided by the number p of pairs of poles.
  • the free angular space ⁇ 1 between two successive magnets 54 is substantially equal to the angular space ⁇ 2 occupied by a magnet 54, these angles ⁇ 1 and ⁇ 2 being equal to the product of the radius Re of the rotor 31 and the number ⁇ divided by the number p of pairs of poles of the machine 1.1.
  • the magnets 54 are fixed, for example by gluing to the periphery of the annular portion 53.
  • the magnets 54 are installed in the slot recess formed at the periphery of the annular portion 53.
  • the magnets 54 are replaced by sets of permanent magnets 54.1 -54.3 each having a U shape.
  • the resulting field of each of these sets of magnets is radial with respect to axis 33, the direction of this field going either from the center of the rotor 31 towards the outside of the rotor 31, or from the outside to the center of the rotor 31.
  • the U-shaped configuration has the advantage of increasing the flux generated by the magnets 54; however, this increase in flow is obtained to the detriment of the space reserved for the massive part 51 (thus to the detriment of the circulation of the flow generated by the coils 38, 39 of double excitation).
  • the flux generated by the double excitation coil 38 flows in a first magnetic circuit 56 in which the flow passes through the ring 44, the core 35, the functional air gap 34, the 53 annular portion between the magnets 54, the central portion 51, the flange 48, the flange 45 to loop on the ring 44, the direction of flow inside the circuit 56 being indicated by the arrow 56.1.
  • the flux generated by the excitation winding 39 flows along a second magnetic circuit 58 in which the flow passes through the ring 44, the core 35, the functional air gap 34, the annular portion 53 between the magnets 54, the central portion 51, the flange 49, the rim 46 to loop back on the ring 44, the direction of flow inside the circuit 58 being indicated by the arrow 58.1.
  • Figure 5 shows the evolution of the total observable flux for the machine 1.1 expressed in milliWebers (mWb) as a function of the electric angle ⁇ expressed in degrees.
  • Curve 60 shows that, without double excitation flux, the permanent magnets 54 generate an alternating flux.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

La présente invention concerne essentiellement une machine (1.1 ) électrique à double excitation de type homopolaire comportant un rotor formé notamment par une partie (51 ) centrale en matériau magnétique massif et une partie (53) annulaire feuilletée située en périphérie de la partie massive. Le rotor comporte en outre des aimants (54) permanents dont l'aimantation est orientée radialement par rapport à l'axe (33) du rotor (31 ), et espacés les uns des autres de telle manière que le flux de double excitation généré par les bobinages (38, 39) d'excitation peut entrer dans le rotor (31, 67) par les flasques (48, 49) du rotor et ressortir par les espaces entre les aimants (54), ou inversement.

Description

Machine électrique tournante à double excitation de type homopolaire
[001]. La présente invention concerne une machine électrique tournante à double excitation de type homopolaire. L'invention a notamment pour but de faciliter le passage du flux de double excitation à l'intérieur de la machine électrique.
[002]. L'invention trouve une application particulièrement avantageuse, mais non exclusive, avec les machines électriques synchrones destinées à être utilisées avec les véhicules de type électrique ou hybride combinant l'utilisation d'un moteur thermique et d'une machine électrique.
[003]. On connaît des machines électriques tournantes à double excitation telles que celles décrites dans la demande de brevet français publiée sous le numéro FR-2846483.
[004]. Comme représenté sur la Figure 1 , ces machines 1 comportent un stator 3 et un rotor 5 espacés l'un de l'autre par un entrefer fonctionnel 6.
[005]. Plus précisément, le stator 3 comporte un noyau 7 magnétique feuilleté annulaire équipé d'un bobinage 8 statorique et de bobinages annulaires 9, 10 générant un flux de double d'excitation. Le noyau 7 ainsi que les bobinages statorique 8 et d'excitation 9, 10 sont disposés dans une couronne 11 magnétique massive en contact avec la surface extérieure du noyau 7. Cette couronne 11 comporte un rebord 13, 14 à chaque extrémité tourné vers le rotor 5.
[006]. Le rotor 5 comporte un corps 15 comprenant des aimants 18 permanents dont l'aimantation magnétique est orientée de façon tangentielle (perpendiculairement au rayon du rotor) et séparés entre eux par des dents 19 composées de tôles feuilletées qui permettent de canaliser le flux généré par les aimants 18 et de l'acheminer jusqu'à l'entrefer 6.
[007]. Le rotor 5 comporte en outre deux flasques 21 , 22 annulaires positionnés de part et d'autre du corps 15 ayant chacun des portions périphériques définissant, avec les rebords 13 et 14 d'extrémité radiaux de la couronne 11 du stator des entrefers de retour de flux magnétique. Les flasques 21 et 22 sont connectés aux dents 19 de façon alternée, chacune des dents 19 comportant une extrémité tournée vers le flasque 21 et une extrémité tournée vers le flasque 22.
[008]. Un tel agencement permet ainsi aux bobinages 9, 10 d'excitation de moduler le flux des aimants 18 par la création d'un flux, dit flux de double excitation, qui circule suivant les chemins 24 et 25 suivant lesquels il traverse la couronne 11 du stator, un rebord 13, 14 d'extrémité radial, un flasque 21 ,22, le feuilletage 19 du rotor d'abord suivant une direction axiale suivant la longueur D active de la machine puis suivant une direction radiale, puis le noyau 7 magnétique du stator pour reboucler avec la couronne 11.
[009]. Etant donné que les bobinages 9, 10 d'excitation présentent une forme annulaire et que le rotor 5 est réalisé en matériau feuilleté, la réluctance vu par le flux de double excitation est élevée, ce qui pénalise le rendement de la machine 1. Afin de minimiser cette réluctance, il a d'abord été envisagé de remplacer ce rotor 5 feuilleté par un rotor massif, mais les pertes fer deviennent alors trop importantes. Il est alors apparu profitable de combiner dans le rotor selon l'invention un circuit feuilleté en périphérie (pour minimiser les pertes) et un autre massif (pour faciliter le passage de flux).
[010]. Toutefois, dans le cas d'un rotor à aimantation tangentielle, la mise en œuvre de l'invention est difficile, notamment pour des raisons de tenue mécanique, de complexité de réalisation, ou de gain obtenu trop faible sur l'amélioration de la circulation de flux.
[011]. On connaît également des machines électriques à double excitation à aimants radiaux, comme celles décrites dans le brevet MIZUNO US-5682073, utilisant une seule bobine d'excitation positionnée au milieu du stator. Dans ce cas, il est possible de réaliser un rotor feuilleté et massif comme dans l'invention. Toutefois, si le rotor selon le brevet MIZUNO était combiné avec le stator selon la demande FR-2846483, la machine électrique obtenue ne pourrait pas fonctionner correctement, car il y aurait un court- circuit magnétique qui pénaliserait la circulation correcte du flux dans la machine.
[012]. L'invention propose une structure de machine électrique permettant, à la fois, de faciliter la circulation du flux suivant la longueur D de la machine et de minimiser les pertes fer générées à la périphérie du rotor.
[013]. A cet effet, dans l'invention, le rotor est formé notamment par une partie centrale en matériau magnétique massif et une partie annulaire en matériau feuilleté située en périphérie de la partie massive. Le rotor comporte en outre des aimants permanents dont l'aimantation est orientée radialement par rapport à l'axe du rotor et espacés les uns des autres de telle manière que le flux de double excitation généré par les bobinages d'excitation peut entrer dans le rotor par les flasques du rotor et ressortir par les espaces entre les aimants, ou inversement.
[014]. L'invention concerne donc une machine électrique tournante à double excitation de type homopolaire, caractérisée en ce qu'elle comporte :
- un stator comprenant un noyau central et deux bobinages d'excitation positionnés de part et d'autre dudit noyau générant un flux de double excitation,
- un rotor comprenant - une partie centrale massive ayant un comportement magnétique isotrope pour faciliter la circulation du flux de double excitation suivant l'axe du rotor,
- une partie annulaire en matériau feuilleté installée autour de la partie centrale massive, et
- des aimants permanents dont l'aimantation est orientée radialement par rapport à l'axe du rotor, ces aimants présentant une même polarisation, deux aimants consécutifs étant séparés entre eux par un espace magnétique pour permettre la circulation du flux de double excitation dans le rotor entre les aimants.
[015]. Selon une réalisation, chaque aimant permanent occupe sensiblement la moitié d'un pas polaire. [016]. Selon une réalisation, les aimants permanents sont installés à la périphérie du rotor pour maximiser la section de passage du flux de double excitation dans la partie centrale massive.
[017]. Selon une réalisation, les aimants permanents sont encastrés à l'intérieur de la partie annulaire.
[018]. Selon une réalisation, les aimants permanents sont fixés à la périphérie de la partie annulaire.
[019]. Selon une réalisation, les aimants sont orientés géométriquement longitudinalement par rapport à l'axe du rotor.
[020]. Selon une réalisation, les aimants permanents sont formés chacun par un ensemble d'aimants présentant une conformation en U.
[021]. Selon une réalisation, le stator comporte en outre un bobinage statorique bobiné sur le noyau magnétique annulaire, et au moins une couronne magnétique en contact avec la surface extérieure du noyau magnétique annulaire, ladite couronne magnétique comprenant à chaque extrémité un rebord d'extrémité radial.
[022]. Selon une réalisation, le rotor comporte en outre deux flasques annulaires en matériau magnétique disposés de part et d'autre de la partie centrale et coaxialement suivant l'axe du rotor, ces flasques comportant chacun une portion périphérique axiale définissant avec les rebords d'extrémité radiaux de la couronne des entrefers de retour de flux magnétique.
[023]. L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention. Elles montrent :
[024]. Figure 1 (déjà décrite) : une vue en perspective tronquée d'une machine électrique à double excitation selon l'état de la technique ;
[025]. Figure 2 (déjà décrite) : une vue en perspective de la machine de la Figure 1 dont un flasque du rotor a été retiré pour faire apparaître le sens du feuilletage du noyau du rotor ;
[026]. Figure 3 : une vue en perspective tronquée d'une machine électrique à double excitation de type homopolaire selon l'invention ;
[027]. Figure 4 : une vue en perspective tronquée de la machine de la Figure 3 faisant apparaître le flux de double excitation généré par les bobinages d'excitation du stator ;
[028]. Figure 5 : une représentation graphique de la variation du flux de la machine selon les Figures 3 et 4 en fonction de l'angle électrique pour différentes valeurs d'alimentation en courant des bobinages d'excitation ;
[029]. Figures 6 : des représentations schématiques des variantes de positionnement des aimants permanents du rotor.
[030]. Les éléments identiques conservent la même référence d'une figure à l'autre.
[031]. Les Figures 3 et 4 représentent une machine 1.1 électrique tournante à double excitation de type homopolaire selon l'invention comportant un stator 29 et un rotor 31 présentant un axe 33, ce stator 29 et ce rotor 31 étant espacés l'un de l'autre par un entrefer fonctionnel 34.
[032]. Le stator 29 comporte un noyau 35 annulaire en tôle magnétique feuilletée de part et d'autre duquel sont disposés des bobinages annulaires 38, 39 d'excitation. Les courants circulant dans ces bobinages 38, 39 d'excitation sont de sens opposé.
[033]. Un bobinage statorique 41 , entourés par les bobinages 38, 39 d'excitation, est bobiné de manière conventionnelle sur le noyau 35 qui présente à cet effet une surface intérieure formée de dents 42.
[034]. L'ensemble du noyau 35 et des bobinages 38, 39, 41 est logé dans une couronne 44 magnétique extérieure qui est en contact avec une surface extérieure du noyau 35 magnétique. Cette couronne 44 massive comprend des rebords 45, 46 latéraux d'extrémité tournés vers le rotor 31.
[035]. Le rotor 31 comporte deux flasques 48, 49 annulaires en matériau magnétique massif disposés coaxialement suivant l'axe 33. Ces flasques 48, 49 comportent chacun une portion périphérique axiale définissant, avec les rebords 45 et 46 d'extrémité radiaux de la couronne 44 des entrefers de retour de flux magnétique.
[036]. Une partie 51 centrale en matériau magnétique massif (non feuilleté) est disposée entre lesdits flasques 48, 49 et coaxialement suivant l'axe 33 du rotor 31. Du fait de son caractère massif, la partie 51 centrale a un comportement magnétique isotrope, ce qui permet de faciliter la circulation du flux suivant l'axe 33 du rotor généré par la double excitation. La partie 51 présente en son centre une ouverture destinée à recevoir un arbre (non représenté) sur lequel le rotor 31 sera monté.
[037]. Le rotor 31 comporte également une partie 53 annulaire en matériau magnétique feuilleté permettant de limiter les pertes fers. Cette partie annulaire 53 est installée autour de la partie 51 , les tôles 53.1 feuilletées de la partie 53 étant de préférence orientées radialement par rapport à l'axe 33 du rotor. Dans un exemple de réalisation, le rotor 31 présente un rayon Re d'environ 125mm ; la partie 53 annulaire présentant une épaisseur a d'environ 16mm, la longueur L globale de la machine 1 étant d'environ 100mm.
[038]. Des aimants 54 permanents ayant une même polarisation générant un champ magnétique radial par rapport à l'axe 33 du rotor sont installés à l'intérieur du rotor 31. Ici, les aimants 54 s'étendent géométriquement suivant l'allongement de la machine 1.1 et génère un champ magnétique indiqué par les flèches 55 allant de l'extérieur du rotor 31 vers le centre du rotor 31. En variante, le sens du champ magnétique de ces aimants 54 est inversé et va du centre du rotor 31 vers l'extérieur du rotor 31 , comme montré sur la Figure 6a.
[039]. Les aimants 54 sont installés à la périphérie du rotor 31 pour maximiser la section de passage du flux de double excitation dans la partie
51 centrale massive. Ici, les aimants 54 sont encastrés à l'intérieur de la partie 53 annulaire munie de logements à cet effet. Ces aimants 54 sont espacés l'un de l'autre par un espace magnétique permettant la circulation du flux de double excitation à l'intérieur du rotor 31 entre les aimants 54. Par espace magnétique, on entend un espace bon conducteur de flux magnétique constitué par exemple par un matériau magnétique plein et/ou comme ici par un matériau magnétique feuilleté.
[040]. De préférence, chaque aimant 54 occupe sensiblement la moitié d'un pas polaire, un pas polaire étant égal au périmètre du rotor 31 divisé par le nombre p de paires de pôles. Ainsi, comme montré sur la Figure 6a, l'espace angulaire α1 libre entre deux aimants 54 successifs est sensiblement égal à l'espace angulaire α2 occupé par un aimant 54, ces angles α1 et α2 étant égaux au produit du rayon Re du rotor 31 et du nombre π divisé par le nombre p de paires de pôles de la machine 1.1.
[041]. En variante, les aimants 54 sont fixés, par collage par exemple à la périphérie de la partie 53 annulaire. En variante, les aimants 54 sont installés dans le creux de créneaux ménagés à la périphérie de la partie 53 annulaire.
[042]. En variante, comme représenté sur la Figure 6b, les aimants 54 sont remplacés par des ensembles d'aimants permanents 54.1 -54.3 présentant chacun une forme en U. Le champ résultant de chacun de ces ensembles d'aimants est radial par rapport à l'axe 33, la direction de ce champ allant soit du centre du rotor 31 vers l'extérieur du rotor 31 , soit de l'extérieur vers le centre du rotor 31. La conformation en U présente l'avantage d'augmenter le flux généré par les aimants 54 ; toutefois cette augmentation de flux est obtenue au détriment de l'espace réservé à la partie 51 massive (donc au détriment de la circulation du flux généré par les bobines 38, 39 de double excitation).
[043]. Comme indiqué sur la Figure 4, lorsque la machine 1.1 fonctionne, le flux généré par le bobinage 38 de double excitation circule suivant un premier circuit 56 magnétique suivant lequel le flux traverse la couronne 44, le noyau 35, l'entrefer fonctionnel 34, la partie 53 annulaire entre les aimants 54, la partie centrale 51 , le flasque 48, le rebord 45 pour reboucler sur la couronne 44, le sens du flux à l'intérieur du circuit 56 étant indiqué par la flèche 56.1.
[044]. Le flux généré par le bobinage 39 d'excitation circule suivant un deuxième circuit 58 magnétique suivant lequel le flux traverse la couronne 44, le noyau 35, l'entrefer fonctionnel 34, la partie 53 annulaire entre les aimants 54, la partie centrale 51 , le flasque 49, le rebord 46 pour reboucler sur la couronne 44, le sens du flux à l'intérieur du circuit 58 étant indiqué par la flèche 58.1.
[045]. La présence des aimants 54 permanents dont la perméabilité magnétique est proche de 1 (ce qui en fait un élément équivalent à un entrefer) empêche le flux de double excitation d'agir sur les pôles où les aimants 54 sont logés.
[046]. La Figure 5 montre l'évolution du flux total observable pour la machine 1.1 exprimé en milliWebers (mWb) en fonction de l'angle θ électrique exprimé en degrés. La courbe 60 montre que, sans flux de double excitation, les aimants 54 permanents génèrent un flux alternatif.
[047]. En alimentant les bobinages 38, 39 d'excitation dans un sens ou dans un autre, on arrive à faire varier la valeur du flux sous un seul pôle de la machine 1.1. Ainsi, lorsque les bobinages 38, 39 génèrent un flux qui s'ajoute au flux des aimants 54 permanents (surfluxage) on obtient la courbe 62, tandis que lorsque les bobinages génèrent un flux qui se retranche au flux des aimants 54 permanents (defluxage) on obtient la courbe 64.

Claims

REVENDICATIONS
1. Machine électrique (1.1 ) tournante à double excitation de type homopolaire, caractérisée en ce qu'elle comporte : - un stator (29) comprenant un noyau (35) central et deux bobinages
(38, 39) d'excitation positionnés de part et d'autre dudit noyau (35) générant un flux de double excitation,
- un rotor (31 ) comprenant
- une partie (51 ) centrale massive ayant un comportement magnétique isotrope pour faciliter la circulation du flux de double excitation suivant l'axe
(33) du rotor (31 ),
- une partie annulaire (53) en matériau feuilleté installée autour de la partie (51 ) centrale massive, et
- des aimants (54) permanents dont l'aimantation est orientée radialement par rapport à l'axe (33) du rotor (31 ), ces aimants (54) présentant une même polarisation, deux aimants (54) consécutifs étant séparés entre eux par un espace magnétique pour permettre la circulation du flux de double excitation dans le rotor (31 ) entre les aimants (54).
2. Machine électrique selon la revendication 1 , caractérisée en ce que chaque aimant (54) permanent occupe sensiblement la moitié d'un pas polaire.
3. Machine électrique selon la revendication 1 ou 2, caractérisée en ce que les aimants (54) permanents sont installés à la périphérie du rotor (31 ) pour maximiser la section de passage du flux de double excitation dans la partie (51 ) centrale massive.
4. Machine électrique selon l'une des revendications 1 à 3, caractérisée en ce que les aimants (54) permanents sont encastrés à l'intérieur de la partie (53) annulaire.
5. Machine électrique selon l'une des revendications 1 à 3, caractérisée en ce que les aimants (54) permanents sont fixés à la périphérie de la partie (53) annulaire.
6. Machine électrique selon l'une des revendications 1 à 5, caractérisée en ce que les aimants (54) sont orientés géométriquement longitudinalement par rapport à l'axe (33) du rotor (31 ).
7. Machine électrique selon l'une des revendications 1 à 5, caractérisée en ce que les aimants (54) permanents sont formés chacun par un ensemble d'aimants (54.1 -54.3) présentant une conformation en U.
8. Machine électrique selon l'une des revendications 1 à 7, caractérisée en ce que le stator (29) comporte en outre un bobinage (41 ) statorique bobiné sur le noyau (35) magnétique annulaire, et au moins une couronne (44) magnétique en contact avec la surface extérieure du noyau (35) magnétique annulaire, ladite couronne (44) magnétique comprenant à chaque extrémité un rebord (45, 46) d'extrémité radial.
9. Machine électrique selon la revendication 8, caractérisée en ce que le rotor (31 ) comporte en outre deux flasques (48, 49) annulaires en matériau magnétique disposés de part et d'autre de la partie (51 ) centrale et coaxialement suivant l'axe (33) du rotor (31 ), ces flasques (48, 49) comportant chacun une portion périphérique axiale définissant avec les rebords (45, 46) d'extrémité radiaux de la couronne (44) des entrefers de retour de flux magnétique.
PCT/FR2009/052152 2008-11-10 2009-11-09 Machine electrique tournante a double excitation de type homopolaire WO2010052439A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980144926.5A CN102210087B (zh) 2008-11-10 2009-11-09 双激励单极型旋转电机
US13/125,038 US8441163B2 (en) 2008-11-10 2009-11-09 Rotating electric machine with homopolar double excitation
EP09768162A EP2345137A2 (fr) 2008-11-10 2009-11-09 Machine electrique tournante a double excitation de type homopolaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0857636 2008-11-10
FR0857636A FR2938385B1 (fr) 2008-11-10 2008-11-10 Machine electrique tournante a double excitation de type homopolaire

Publications (2)

Publication Number Publication Date
WO2010052439A2 true WO2010052439A2 (fr) 2010-05-14
WO2010052439A3 WO2010052439A3 (fr) 2010-12-29

Family

ID=40934000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052152 WO2010052439A2 (fr) 2008-11-10 2009-11-09 Machine electrique tournante a double excitation de type homopolaire

Country Status (5)

Country Link
US (1) US8441163B2 (fr)
EP (1) EP2345137A2 (fr)
CN (1) CN102210087B (fr)
FR (1) FR2938385B1 (fr)
WO (1) WO2010052439A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605721B2 (ja) 2012-06-29 2014-10-15 株式会社デンソー 回転電機
JP2020014338A (ja) * 2018-07-19 2020-01-23 トヨタ自動車株式会社 電動機
RU2709024C1 (ru) * 2019-04-04 2019-12-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Электромеханический преобразователь энергии с зубцовой концентрической обмоткой
CN118104105A (zh) * 2021-10-25 2024-05-28 三菱电机株式会社 转子、电动机、送风机以及空调装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682073A (en) 1993-04-14 1997-10-28 Kabushiki Kaisha Meidensha Hybrid excitation type permanent magnet synchronous motor
FR2846483A1 (fr) 2002-10-29 2004-04-30 Peugeot Citroen Automobiles Sa Rotor pour machine electrique tournante a double excitation equipe de dents radiales, et machine electrique tournante a double excitation equipee de ce rotor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2109569A1 (de) * 1971-03-01 1972-09-14 Siemens Ag Permanentmagneterregte elektrische Maschine
FR2786956B1 (fr) * 1998-12-07 2001-02-16 Centre Nat Rech Scient Machine electrique tournante a double excitation perfectionnee
US6541887B2 (en) * 1999-03-12 2003-04-01 Hideo Kawamura Permanent-magnet motor-generator with voltage stabilizer
JP2003516708A (ja) * 1999-12-03 2003-05-13 エコエアー コーポレーション ハイブリッド式ブラシレス電気機械
FR2846482B1 (fr) * 2002-10-29 2006-11-03 Peugeot Citroen Automobiles Sa Rotor pour machine electrique tournante a double excitation equipe de plots magnetiques formes chacun d'un element independant et machine electrique tournante a double excitation equipee de ce rotor
US6972504B1 (en) * 2004-05-18 2005-12-06 Ut-Battelle Llc Permanent magnet machine and method with reluctance poles for high strength undiffused brushless operation
JP4623471B2 (ja) * 2006-08-08 2011-02-02 トヨタ自動車株式会社 回転電動機
JP4793793B2 (ja) * 2007-03-15 2011-10-12 トヨタ自動車株式会社 電動機駆動装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682073A (en) 1993-04-14 1997-10-28 Kabushiki Kaisha Meidensha Hybrid excitation type permanent magnet synchronous motor
FR2846483A1 (fr) 2002-10-29 2004-04-30 Peugeot Citroen Automobiles Sa Rotor pour machine electrique tournante a double excitation equipe de dents radiales, et machine electrique tournante a double excitation equipee de ce rotor

Also Published As

Publication number Publication date
US8441163B2 (en) 2013-05-14
EP2345137A2 (fr) 2011-07-20
CN102210087A (zh) 2011-10-05
FR2938385B1 (fr) 2013-02-15
CN102210087B (zh) 2014-12-17
FR2938385A1 (fr) 2010-05-14
US20110193441A1 (en) 2011-08-11
WO2010052439A3 (fr) 2010-12-29

Similar Documents

Publication Publication Date Title
EP2814147B1 (fr) Machine électrique à plusieurs entrefers et flux magnétique 3D
EP1599930A2 (fr) Machine electrique tournante comportant un stator et deux rotors
EP1497906B1 (fr) Machine electrique a flux transverse a rotor dentele
EP2308151A2 (fr) Rotor a aimants permanents et machine tournante comportante un tel rotor
FR2865867A1 (fr) Coupleur electromagnetique
FR2994353A1 (fr) Moteur electrique optimise a dents etroites
EP3130059A2 (fr) Rotor de machine électrique tournante
EP2999102A2 (fr) Machine electrique tournante comportant au moins un stator et au moins deux rotors
FR3015794A1 (fr) Element de machine electromagnetique a circuits electromagnetiques optimises integres a des pistes sous forme de lignes crenelees annulaires
EP2209193A1 (fr) Machine électrique tournante à pôles saillants
EP1276213A1 (fr) Machine discoide
EP2763296A1 (fr) Machine électrique avec pièces intermédiaires à plusieurs entrefers et flux magnétique 3D
EP1251620A1 (fr) Machine tournante électrique comportant un stator formé de secteurs assemblés
FR2895844A1 (fr) Machine electrique tournante comportant des pieces polaires et des aimants permanents
WO2010052439A2 (fr) Machine electrique tournante a double excitation de type homopolaire
FR2987184A1 (fr) Rotor de machine electrique tournante a concentration de flux.
FR3022706A1 (fr) Moteur synchrone electromagnetique a flux magnetiques combines axial et radial.
EP3120445B1 (fr) Machine electrique hybride
EP3685492B1 (fr) Isthmes de ponts magnetiques d'un rotor de machine electrique
EP3387742A1 (fr) Rotor d'un moteur électromagnétique à flux axial à aimant monobloc de forme ondulée
FR3008539A1 (fr) Actionneur electromagnetique polyentrefers a aimants permanents et elements de bobinage sans fer
EP1416618A1 (fr) Rotor pour machine électrique tournante à double excitation et machine électrique correspondante
EP1416617A1 (fr) Rotor pour machine électrique tournante à double excitation et machine électrique correspondante
FR2915033A1 (fr) Machine electrique tournante a fort couple et double stator
CH371507A (fr) Machine électrique rotative pouvant fonctionner soit comme alternateur, soit comme moteur synchrone

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144926.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768162

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009768162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13125038

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE