WO2010051767A1 - 主从式直流载波通信系统 - Google Patents

主从式直流载波通信系统 Download PDF

Info

Publication number
WO2010051767A1
WO2010051767A1 PCT/CN2009/074837 CN2009074837W WO2010051767A1 WO 2010051767 A1 WO2010051767 A1 WO 2010051767A1 CN 2009074837 W CN2009074837 W CN 2009074837W WO 2010051767 A1 WO2010051767 A1 WO 2010051767A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
host
slave
communication interface
unipolar
Prior art date
Application number
PCT/CN2009/074837
Other languages
English (en)
French (fr)
Inventor
颜景龙
刘星
李风国
赖华平
张宪玉
Original Assignee
北京铱钵隆芯科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2008101724109A external-priority patent/CN101404521B/zh
Priority claimed from CNU2009200005090U external-priority patent/CN201369720Y/zh
Application filed by 北京铱钵隆芯科技有限责任公司 filed Critical 北京铱钵隆芯科技有限责任公司
Priority to AU2009311067A priority Critical patent/AU2009311067B2/en
Priority to EA201100721A priority patent/EA021702B1/ru
Publication of WO2010051767A1 publication Critical patent/WO2010051767A1/zh
Priority to ZA2011/04191A priority patent/ZA201104191B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/548Systems for transmission via power distribution lines the power on the line being DC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines

Definitions

  • the present invention relates to the field of communications, and more particularly to improvements in host and slave designs in a master-slave DC carrier communication system.
  • PROFIBUS In the field of industrial control - distributed control system, PROFIBUS, LONWOK are often used.
  • Industrial field control bus such as S, CAN, FF.
  • S Industrial field control bus
  • CAN CAN
  • FF Industrial field control bus
  • the power line carrier communication system is often used at present, that is, the host loads the data information to be transmitted on the fundamental frequency power line in a high-frequency wave manner, thereby realizing the supply of power to the slaves of each node.
  • the peer completes the transmission of the data.
  • the characteristic of this kind of system is that the slaves of each node need to have dedicated and relatively complicated data modulation and data demodulation modules, and in order to receive power and data simultaneously, the slaves use transformer isolation to extract the power required for their work. Then, through the rectification, filtering, etc., the externally supplied AC signal is converted into a DC signal required for the slave to operate.
  • the data receiving circuit is formed by the method of resistor divider or voltage regulator rectification, resulting in a large power consumption of the slave.
  • Patented ZL200420084237.4 provides a slave communication interface that uses dedicated modules to receive and transmit data, but can be less integrated and cannot meet the application requirements of small slaves.
  • the object of the present invention is to solve the above drawbacks of the prior art, and provide a master-slave DC carrier communication system capable of performing simplex bidirectional data transmission on a dual-line non-polarity-differentiated peer capable of providing DC working power to a slave.
  • the master and slave in the machine greatly simplifies the design and connection of the master and slave, making it suitable for small slave systems such as electronic detonator networks, smart sensor networks and the like.
  • the master-slave DC carrier communication system of the present invention comprises a host, one or more slaves, and a signal bus connecting the master and the slave, and the slaves are connected in parallel between the signal buses led by the host.
  • the technical purpose of the present invention is achieved by the use of a host and a slave.
  • a host may include a host clock circuit, a host power system, a host communication interface, and a host control module.
  • the specific connection relationship has the following two technical solutions:
  • the host clock circuit, the host power system, the host communication interface, and the host control module each have one end grounded.
  • the working voltage output end of the host power system is connected to the host communication interface, the host clock circuit, and the host control module; the remaining end of the host power system is a communication voltage output end, and a communication voltage input end to the host communication interface; the host communication interface is also The two ends are respectively connected to the outside of the host to form a signal bus; the other end of the host communication interface is connected to the host control module; the other end of the host clock circuit is connected to the host control module.
  • the host power supply system supplies working power to each module in the host through its working voltage output terminal, and supplies power to the slave through the communication voltage output terminal, which makes the power supply to the slave machine and itself
  • the working power required for the work works independently, thereby avoiding the influence that the noise generated by the host work may have on the communication between the master and the slave.
  • the host provides DC power to the slave, thus avoiding the complicated AC/DC conversion required for AC power supply. Therefore, only the slave A simple linear power system is required to improve the reliability and integration of the slave.
  • FIG. 18 Another technical solution of the host in the present invention is further improved on the basis of the host technical solution shown in FIG. 2, as shown in FIG. 18, which is specifically embodied as: outputting the communication voltage of the host power system
  • the terminal is refined into a transmitting voltage output terminal and a receiving voltage output terminal;
  • the communication voltage input terminal of the host communication interface is refined into a transmitting voltage input terminal and a receiving voltage input terminal.
  • the transmit voltage output end of the host power system is connected to the transmit voltage input end of the host communication interface;
  • the receive voltage output end of the host power system is connected to the receive voltage input end of the host communication interface.
  • the technical scheme of refining the communication voltage into a transmission voltage and a reception voltage can improve the signal-to-noise ratio of the host receiving data and the communication accuracy of the system.
  • the host communication interface can be taken as a host communication interface circuit.
  • the port of the host communication interface circuit is connected to the communication voltage output end of the host power system to form a communication voltage input terminal of the host communication interface, as shown in FIG.
  • the host communication interface can be composed of a host communication interface circuit and an electronic switch, as shown in Fig. 19.
  • the two input ends of the electronic switch one lead to the outside of the host communication interface, respectively forming a transmitting voltage input end and a receiving voltage input end; the output end of the electronic switch one is connected to the port one of the host communication interface circuit; the control of the electronic switch one The end is connected to the host control module.
  • the host communication interface circuit has one end connected to the working voltage output end of the host power system; one end is grounded one; and the two ends are respectively connected to the outside of the host communication interface to form a signal bus; the other end of the host communication interface circuit is connected to the host control module .
  • the electronic switch 1 described above performs switching of the transmission voltage and the reception voltage under the control of the host control module.
  • the host control module sends a control signal expressing the transmit voltage output to the control end of the electronic switch 1, so that the branch of the electronic switch connected to the transmit voltage output is turned on, that is, the host communication interface circuit
  • the branch is turned on, and the signal bus appears as the transmit voltage. vice versa.
  • the host communication interface circuit in Fig. 3 and Fig. 19 above may be adopted as a unipolar communication interface circuit or a bipolar communication interface circuit.
  • the unipolar communication interface circuit includes a unipolar data modulation module and a unipolar data demodulation module, and the specific connection relationship has the following three technical solutions:
  • the unipolar data modulation module and the unipolar data demodulation module are connected to the working voltage output terminal of the host power system; the unipolar data modulation module is also associated with the unipolar data solution.
  • Tuning module Grounding one that is, connected to the ground line; the unipolar data modulation module and the unipolar data demodulation module each have one end connected to the host control module respectively.
  • the modulating signal input end of the unipolar data modulation module leads to the outside of the unipolar communication interface circuit to form port one; the modulating signal output end of the unipolar data modulation module leads to the unipolar communication via the unipolar data demodulation module Outside the interface circuit, one of the signal buses is formed; the ground line leads to the outside of the unipolar communication interface circuit, forming another of the signal buses.
  • the unipolar data modulation module and the unipolar data demodulation module are connected to the working voltage output terminal of the host power system; the unipolar data modulation module is also associated with the unipolar data solution.
  • the modulation module is grounded one by one, that is, connected to the ground line; the unipolar data modulation module and the unipolar data demodulation module each have one end connected to the host control module respectively.
  • the modulating signal input end of the unipolar data modulation module leads to the outside of the unipolar communication interface circuit via the unipolar data demodulation module to form port one; the modulated signal output end of the ground line and the unipolar data modulation module respectively leads to Outside the unipolar communication interface circuit, it constitutes a signal bus.
  • the unipolar data modulation module and the unipolar data demodulation module are connected to the working voltage output terminal of the host power system; the unipolar data modulation module is also associated with the unipolar data solution.
  • the modulation module is grounded one by one, that is, connected to the ground line; the unipolar data modulation module and the unipolar data demodulation module each have one end connected to the host control module respectively.
  • the modulating signal input end of the unipolar data modulation module leads to the outside of the unipolar communication interface circuit to form port one; the modulating signal output end of the unipolar data modulation module leads to the outside of the unipolar communication interface circuit to form a signal bus.
  • One; the other end of the unipolar data demodulation module leads to the outside of the unipolar communication interface circuit, forming another of the signal buses.
  • the unipolar communication interface circuit shown in Figure 4, Figure 5 and Figure 6 above achieves the simplex and two-way data exchange between the master and the slave on the DC power supply line with a relatively simple scheme.
  • the unipolar data modulation module, the unipolar data demodulation module, and the output load of the host composed of the parallel network of slaves the three are equivalent to the communication voltage output terminal connected in series to the host power system. Between the ground and the ground, the different connection sequences of the three constitute the above three different schemes.
  • the unipolar data modulation module is used to load the data sent by the host in the form of voltage change on the signal bus output to the slave, and the unipolar data demodulation module is used to extract the slave to load the signal bus in the form of current change. Data information
  • the unipolar data The modulation module may include a driving module 1 and an electronic switch 2.
  • the specific connection relationship is as follows: One end of the driving module is connected to the working voltage output end of the host power system, and one end is grounded together with one input end of the electronic switch 2; The signal input end of the driving module 1 is connected to the host control module; the signal output end of the driving module 1 is connected to the control end of the electronic switch 2; the other end of the driving module 1 and the other input end of the electronic switch 2 are connected to the unipolar Outside the data modulation module, the modulation signal input terminal of the unipolar data modulation module is formed; the output end of the electronic switch 2 leads to the outside of the unipolar data modulation module, and constitutes a modulation signal output end of the unipolar data modulation module.
  • the above-mentioned unipolar data modulation module has the advantages that: the host expresses the data sent by the host to the slave in the manner of the power supply to the slave, and realizes the data transmitted by the host to the slave. Power supply and data transmission are synchronized.
  • the host communication interface circuit in the above FIG. 3 and FIG. 19 can also be taken as a bipolar communication interface circuit, which includes a bipolar data modulation module and a bipolar data demodulation module.
  • the specific connection relationship has the following three technical solutions:
  • the bipolar data modulation module is connected to the bipolar data demodulation module to the working voltage output of the host power system; the bipolar data modulation module is also associated with the bipolar data solution.
  • the modulation module is grounded one by one, that is, connected to the ground line; the bipolar data modulation module and the bipolar data demodulation module each have one end connected to the host control module respectively.
  • the modulation signal input end of the bipolar data modulation module leads to the outside of the bipolar communication interface circuit to form port one; the two modulated signal output ends of the bipolar data modulation module, one via the bipolar data demodulation module Outside the bipolar communication interface circuit, one of the signal buses is formed, and the other directly leads to the outside of the bipolar communication interface circuit, forming another of the signal buses.
  • the bipolar data modulation module and the bipolar data demodulation module are connected together to the working voltage output of the host power system; the bipolar data modulation module is also associated with the bipolar data solution.
  • the modulation module is grounded one by one, that is, connected to the ground line; the bipolar data modulation module and the bipolar data demodulation module each have one end connected to the host control module respectively.
  • the modulation signal input end of the bipolar data modulation module leads to the outside of the bipolar communication interface circuit via the bipolar data demodulation module to form port one; the two modulated signal output ends of the bipolar data modulation module respectively lead to Outside the bipolar communication interface circuit, it constitutes a signal bus.
  • the bipolar data modulation module and the bipolar data demodulation module are connected together to the working voltage output of the host power system; the bipolar data modulation module is also associated with the bipolar data solution.
  • the modulation module is grounded one by one, that is, connected to the ground line; the bipolar data modulation module and the bipolar data demodulation module each have one end connected to the host control module respectively.
  • the modulation signal input end of the bipolar data modulation module leads to the outside of the bipolar communication interface circuit to form port one; the two modulated signal output ends of the bipolar data modulation module respectively lead to the outside of the bipolar communication interface circuit,
  • the signal bus is formed; the other end of the bipolar data modulation module is connected to the bipolar data demodulation module.
  • the bipolar communication interface circuit shown in FIG. 8, FIG. 9, and FIG. 11 is further optimized for the unipolar communication interface circuit scheme shown in FIG. 4, FIG. 5, and FIG.
  • the polarity data modulation module realizes the output of the power supply to the slave by the host to output the power supply to the slave to provide the data sent by the host to the slave in a manner that provides positive and negative communication voltages with respect to the ground.
  • the advantages are: switching between different transmission data, for example, switching from transmission data 0 to transmission data 1, because the polarity of the output voltage of the host is opposite, therefore, the energy remaining in the equivalent inductance or equivalent capacitance on the signal bus The venting path in the opposite direction is established, so that the data transmission rate of the bipolar communication interface circuit is faster, the signal amplitude changes more, and the anti-interference performance is higher.
  • the bipolar data modulation module includes two driving modules, two electronic switches, and an inverter one, respectively, a driving module III.
  • Module 4 Electronic Switch 6, and Electronic Switch 7, see Figure 10.
  • the specific connection relationship is as follows: Two drive modules and an inverter are connected in common to the working voltage output end of the host power system, and the two drive modules and the inverter are also commonly grounded one; the signal input end and the drive of the inverter one are The signal input end of the module 4 is connected to the host control module, and the signal output end of the inverter one is connected to the signal input end of the drive module 3; the signal output end of the drive module 3 is connected to the control end of the electronic switch 6, the drive module 4 The signal output is connected to the control terminal of the electronic switch 7.
  • the bipolar data modulation module includes two driving modules, two electronic switches, and an inverter two, respectively, a driving module 5 and a driving module.
  • the specific connection relationship is as follows: The two driving modules and the inverter 2 are connected in common to the working voltage output end of the host power system, and the two driving modules and the inverter 2 are also commonly grounded one; the signal input end and the driving of the inverter two
  • the signal input end of the module 6 is commonly connected to the host control module, and the signal output end of the inverter 2 is connected to the signal input end of the drive module 5; the signal output end of the drive module 5 is connected to the control end of the electronic switch 8, the drive module 6
  • the signal output is connected to the control terminal of the electronic switch 9.
  • An input of the electronic switch 8, an input of the electronic switch 9, the remaining end of the drive module 5, and the remaining end of the drive module 6 are connected to the outside of the bipolar data modulation module to form a bipolar data modulation
  • the modulation signal input end of the module; the other input end of the electronic switch 8 is connected to the other input end of the electronic switch 9, and is grounded via the bipolar data demodulation module external to the bipolar data modulation module; two electronic switches
  • the outputs are respectively connected to the outside of the bipolar data modulation module to form two modulated signal outputs of the bipolar data modulation module.
  • the host communication interface shown in Fig. 18 is taken as a unipolar communication interface, including a unipolar data modulation module, a unipolar data demodulation module, and an electronic switch 3, as shown in Fig. 20.
  • the specific connection relationship is as follows: The unipolar data modulation module and the unipolar data demodulation module are connected to the working voltage output end of the host power system; the unipolar data modulation module is also grounded together with the unipolar data demodulation module. That is, connected to the ground line; the unipolar data modulation module and the unipolar data demodulation module each have one end connected to the host control module respectively.
  • the modulation signal input end of the unipolar data modulation module leads to the outside of the unipolar communication interface, and is connected to the transmission voltage output end of the host power system to form a transmission voltage input terminal of the unipolar communication interface; the unipolar data modulation module
  • the modulated signal output is connected to one input of the electronic switch three; the other end of the unipolar data modulation module leads to the outside of the unipolar communication interface to form one of the signal buses.
  • the unipolar data demodulation module has one end connected to the receiving voltage output end of the host power system, forming a receiving voltage input end of the unipolar communication interface; the other end of the unipolar data demodulating module is connected to the electronic switch three An input.
  • the control end of the electronic switch 3 is connected to the host control module; the output end of the electronic switch 3 leads to the outside of the unipolar communication interface to form another one of the signal buses.
  • the technical solution shown in FIG. 20 described above uses a relatively simple unipolar communication interface to implement data interaction between a simplex and a bidirectional host and a slave on a DC power supply line.
  • the unipolar data modulation module is directly connected to the transmission voltage output end of the host power system
  • the unipolar data demodulation module is directly connected to the receiving voltage output end of the host power system
  • the electronic switch three is under the control of the host control module. , completes the switching of the voltage output to the signal bus.
  • the host control module When the host sends data to the slave, the host control module sends a control signal indicating the output of the transmission voltage to the control terminal of the electronic switch 3, so that the branch of the electronic switch three connected to the unipolar data modulation module is turned on, and the signal bus is connected. It behaves as a transmission voltage. vice versa.
  • the technical solution also realizes the separation of the transmission voltage and the reception voltage, and lays a technical foundation for improving the communication accuracy.
  • the unipolar data modulation module includes a drive module 2 and an electronic switch 4, as shown in FIG.
  • the specific connection relationship is as follows: The second end of the driving module is connected to the working voltage output end of the host power system; the signal input end of the driving module 2 is connected to the host control module; the signal output end of the driving module 2 is connected to the control end of the electronic switch 4; The driving module 2 has one end and an input end of the electronic switch 4 to the outside of the unipolar data modulation module, and constitutes a modulation signal input end of the unipolar data modulation module.
  • the other end of the driving module 2 is grounded together with the other input terminal of the electronic switch 4, and leads to the outside of the unipolar data modulation module to constitute one of the signal buses.
  • the output of the electronic switch 4 leads to the outside of the unipolar data modulation module and forms the modulated signal output of the unipolar data modulation module.
  • the host communication interface shown in Fig. 18 can also be taken as a bipolar communication interface, as shown in Fig. 22, including a bipolar data modulation module, a bipolar data demodulation module, and an electronic switch 5.
  • the specific connection relationship is as follows: The bipolar data modulation module and the bipolar data demodulation module are connected to the working voltage output end of the host power system; the bipolar data modulation module is also grounded together with the bipolar data demodulation module. That is, connected to the ground line; the bipolar data modulation module and the bipolar data demodulation module each have one end connected to the host control module respectively.
  • the modulation signal input end of the bipolar data modulation module leads to the outside of the bipolar communication interface, and is connected to the transmission voltage output end of the host power system to form a transmission voltage input end of the bipolar communication interface; the bipolar data modulation module Two modulated signal outputs, one connected to one input of the electronic switch five and the other to the outside of the bipolar communication interface, forming one of the signal buses.
  • the bipolar data demodulation module also has a receiving voltage output connected to the host power system at one end to form a bipolar The receiving voltage input terminal of the communication interface; the other end of the bipolar data demodulating module is connected to the other input terminal of the electronic switch 5.
  • the control end of the electronic switch 5 is connected to the host control module; the output end of the electronic switch 5 leads to the outside of the bipolar communication interface to form another one of the signal buses.
  • the technical solution of the bipolar communication interface shown in FIG. 22 above realizes that the host outputs the power supply to the slave to provide a positive and negative communication voltage with respect to the ground, and the host sends the slave to the slave.
  • the data wherein, the bipolar data modulation module is directly connected to the transmission voltage output end of the host power system, the bipolar data demodulation module is directly connected to the receiving voltage output end of the host power system, and the electronic switch 5 is under the control of the host control module. , completes the switching of the voltage output to the signal bus.
  • the host control module When the host sends data to the slave, the host control module sends a control signal indicating the output of the transmission voltage to the control terminal of the electronic switch 5, so that the branch of the electronic switch five connected to the bipolar data modulation module is turned on, and the signal bus is connected. It behaves as a transmission voltage. vice versa.
  • the technical solution also realizes the separation of the transmission voltage and the reception voltage, and lays a technical foundation for improving the communication accuracy.
  • the communication voltage output end of the host power supply system of the present invention can be further refined into a transmit voltage output end and a receive voltage output end, and preferably the output voltage of the transmit voltage output end is higher than the output of the receive voltage output end. Voltage.
  • the advantages are: When the host is in the non-communication state and the data transmission state, the host outputs a higher transmission voltage to the signal bus to provide charging energy for the energy storage module inside the slave. When the host wants to receive the data sent by the slave, if the host still outputs a higher transmit voltage to the signal bus, the internal energy storage module will continue to obtain the charging energy from the signal bus, which will be on the bus. Current noise is formed, thereby reducing the signal-to-noise ratio of the host receiving data.
  • the host receives the data sent by the slave, reducing the voltage output by the host to the signal bus, so that the voltage on the bus is lower than the voltage of the internal energy storage module of the slave, all the slaves in the network will be their own.
  • the energy storage module is powered to maintain its own work. This avoids the current noise generated by the slaves receiving the charging energy from the bus after receiving the data from the host, thereby improving the signal-to-noise ratio of the data transmitted by the slave and improving the reliability of the data received by the master.
  • the master-slave DC carrier communication system of the present invention further includes one or more slaves.
  • the slave includes a slave communication interface, a rectifier bridge circuit, an energy storage module, a slave power system, a slave clock circuit, and a slave control module, as shown in FIG.
  • the slave communication interface, the rectifier bridge circuit, the energy storage module, the slave power system, the slave clock circuit, and the slave control module each have one end grounded.
  • the power input terminal of the slave power system is connected to the energy storage module, and the power output terminal of the slave power system is respectively connected to the slave control module, the slave clock circuit, and the slave communication interface; the slave communication interface and the rectifier bridge
  • Each of the circuits has two ends connected to the slave, respectively connected to the signal bus; the other end of the slave communication interface is connected to the slave control module; the other end of the rectifier bridge circuit is connected to the energy storage module; the slave clock circuit The other end is connected to the slave control module.
  • the introduction of the rectifier bridge circuit realizes the polarity conversion of the slave to the input power, thereby eliminating the requirement of the polarity connection of the traditional network communication system, and realizing the two-wire type between the master and the slave.
  • the non-polar connection method simplifies the connection process of the master-slave network system and avoids the possibility of damage to the slave due to network connection errors.
  • the slave communication interface and the rectifier bridge circuit are connected in parallel between the two signal buses, thereby avoiding the influence of the rectifier bridge circuit on the data transmission speed between the master and the slave, and on the other hand
  • the machine can receive both unipolar modulated data and bipolar modulated data.
  • the energy storage module in the slave is used to store the energy provided by the host, which makes the slave in the passive working mode, and the energy supply to the entire communication system can be replenished to the host, thereby reducing the system.
  • the power supply complexity increases the maintainability of the system.
  • the introduction of the energy storage module also enables the slave to exchange data with the host, which maximizes the stability of the slave power system and improves the stability of the entire communication system.
  • the slave communication interface includes a slave data modulation module and a slave data demodulation module, and the slave data demodulation module is composed of two slave data demodulation circuits. Composition, as shown in Figure 14. Two slave data demodulation circuits are respectively connected to two signal buses, and two slave data demodulation circuits are also respectively connected to the slave control module, and the two slave data demodulation circuits are commonly connected to the power supply of the slave power system. At the output, the two slave data demodulation circuits are also commonly grounded. One end of the slave data modulation module is connected to the slave control module, one end is grounded two, and the other two ends are respectively connected to two of the signal bus.
  • the slave data modulation module of the present invention may comprise three resistors, two NMOS transistors, namely a resistor one, a resistor two, a resistor three, an NMOS transistor one, and an NMOS transistor two, as shown in FIG.
  • the drain of the NMOS transistor and the substrate, the drain and the substrate of the NMOS transistor 2, and the end of the resistor one are commonly grounded; the gate of the NMOS transistor, the gate of the NMOS transistor 2, and the other end of the resistor one are connected.
  • the slave control module in common; the source of the NMOS transistor 1 is connected to one of the signal buses via the resistor 2, and the source of the NMOS transistor 2 is connected to the other of the signal bus via the resistor 3.
  • the slave data modulation module realizes loading the data to be sent onto the signal bus in the form of a change in current consumption.
  • the advantages are: since the source and the drain of the NMOS transistor 1 and the NMOS transistor 2 are respectively connected to the ground line and The signal bus, therefore, reduces the effect of individual differences in voltage drop due to the rectifying bridge circuit on the consistency of current consumption variations, so that the change in current consumption sent back by the slave to the host depends only on the voltage on the bus.
  • the slave data demodulation circuit in the present invention may include an inverter three and a resistor four as shown in FIG.
  • One end of the inverter three is connected to the power output end of the slave power system; the signal input end of the inverter three is connected to one of the signal buses, the terminal is also grounded via the resistor four; the signal output end of the inverter three Connect to the slave control module; the other end of inverter three is directly grounded.
  • the above-described slave data demodulation circuit is extremely simple in structure and easy to integrate.
  • resistor four By using the pull-down action of the resistor four, it is ensured that the output of the slave data demodulation circuit is in a certain state when the signal bus is in any state of a forward communication voltage, a negative communication voltage or a zero voltage, thereby improving the communication system.
  • the reliability because the pull-down effect of the resistor four reduces the input of the inverter 3 in an indeterminate state, the energy stored in the energy storage module of the slave, and improves the effective utilization of the energy storage of the slave.
  • resistor 4 when the data on the bus changes, resistor 4 also provides a bleed path for the residual charge on the bus, which in turn increases the communication rate.
  • the slave data demodulation circuit in the present invention may also include an inverter four and an NMOS transistor three, as shown in FIG.
  • One end of the inverter 4 is connected to the power output end of the slave power supply system, one end is grounded two; the source of the NMOS transistor and the substrate ground are two; the drain thereof is connected with the signal input end of the inverter four, and is connected to the signal together One of the buses; the gate of the NMOS transistor three is connected to the signal output terminal of the inverter four, and is commonly connected to the slave control module.
  • the above slave data demodulation circuit uses a negative feedback connected NMOS transistor three to replace the pull-down resistor four, The advantage is that the energy consumption provided by the four pairs of the resistors is avoided, and the utilization efficiency of the host energy is improved.
  • the NMOS transistor 3 can accelerate the discharge of the residual charge on the bus, thereby increasing the communication rate of the communication system.
  • the inverter III and the inverter 4 are preferably taken as Schmitt inverters.
  • the advantage is that regardless of whether the state of the signal input to the inverter is slow, that is, whether the level transition transition period is long, the output edge of the inverter is steep, and the level transition of the output is extremely short. This shortens the state transition of the subsequent processing circuit of the slave data demodulation circuit and reduces the power consumption of the slave.
  • Schmitt inverters have good noise immunity and can improve the stability of data received from the slave.
  • FIG. 1 is a schematic diagram of network connection of a master-slave DC carrier communication system according to the present invention
  • FIG. 2 is a block diagram showing the structure of a host that transmits and receives data with the same voltage in the present invention
  • FIG. 3 is a block diagram showing an implementation of a host communication interface formed by a host communication interface circuit in the present invention
  • FIG. 4 is a schematic structural view of a first embodiment of a unipolar communication interface circuit according to the present invention.
  • FIG. 5 is a schematic structural diagram of a second embodiment of a unipolar communication interface circuit according to the present invention.
  • FIG. 6 is a schematic structural diagram of a third embodiment of a unipolar communication interface circuit according to the present invention.
  • FIG. 7 is a schematic structural diagram of a first embodiment of a unipolar data modulation module according to the present invention.
  • FIG. 8 is a schematic structural diagram of a first embodiment of a bipolar communication interface circuit according to the present invention.
  • FIG. 9 is a schematic structural diagram of a second embodiment of a bipolar communication interface circuit according to the present invention.
  • FIG. 10 is a schematic structural diagram of a first embodiment of a bipolar data modulation module according to the present invention.
  • FIG. 11 is a schematic structural diagram of a third embodiment of a bipolar communication interface circuit according to the present invention.
  • FIG. 12 is a schematic structural diagram of a second embodiment of a bipolar data modulation module according to the present invention.
  • FIG. 13 is a block diagram showing the configuration of a slave in the present invention.
  • Figure 14 is a block diagram showing the structure of a slave communication interface in the present invention.
  • Figure 15 is a block diagram showing the structure of a slave data modulation module in the present invention.
  • 16 is a schematic structural diagram of a first embodiment of a slave data demodulation circuit according to the present invention
  • 17 is a schematic structural diagram of a second embodiment of a slave data demodulation circuit according to the present invention.
  • FIG. 18 is a block diagram showing the configuration of a host for transmitting and receiving data by using different voltages in the present invention.
  • 19 is a block diagram of an implementation of a host communication interface composed of an electronic switch and a host communication interface circuit in the present invention.
  • FIG. 20 is a block diagram showing a configuration of a host communication interface embodied as a unipolar communication interface according to the present invention.
  • 21 is a schematic structural diagram of a second embodiment of a unipolar data modulation module according to the present invention.
  • FIG. 22 is a block diagram showing a configuration of a host communication interface as a bipolar communication interface according to the present invention.
  • FIG. 23-1 is a schematic diagram of a waveform of a unipolar data modulation module transmitting unipolar data to a slave in a host that transmits and receives data with the same voltage in the present invention
  • FIG. 23-2 is a schematic diagram of a waveform of receiving unipolar data demodulated by a slave in the present invention
  • FIG. 23-3 is a schematic diagram of another path of receiving unipolar data demodulated by a slave in the present invention.
  • Figure 24-1 is a schematic diagram of a waveform of a bipolar data modulation module transmitting bipolar data to a slave in a host that transmits and receives data with the same voltage in the present invention
  • FIG. 24-2 is a schematic diagram of a waveform of receiving bidirectional data demodulated by a slave in the present invention
  • FIG. 24-3 is a schematic diagram of another way of receiving the demodulated bipolar data from the slave in the present invention.
  • FIG. 25-1 is a schematic diagram showing voltage waveforms of a slave device for transmitting data in the present invention.
  • FIG. 25-2 is a schematic diagram of a current waveform of a slave device transmitting data according to the present invention.
  • FIG. 26 is a schematic diagram showing waveforms of a unipolar data modulation module transmitting a unipolar global command to a slave in a host that transmits and receives data with different voltages according to the present invention
  • FIG. 27 is a waveform diagram of a bipolar data modulation module transmitting a bipolar single instruction to a slave in a host that transmits and receives data with different voltages in the present invention.
  • the master-slave DC carrier communication system of the present invention is composed of a host 100, one or more slaves 200, and a signal bus 300 connecting the host 100 and the slave 200, one or more slaves. 200 are independently connected in parallel between the signal buses 300 led by the host 100, as shown in FIG.
  • the host 100 and the slave 200 are used together to realize simplex bidirectional data transmission between the host and the slave to provide DC working power, and the two-wire non-polar connection between the master and the slave, simplifying the host 100 and the slave.
  • Machine 200 design and Connected.
  • the host 100 may include a host clock circuit 140, a host power system 130, a host communication interface 150, and a host control module 120, as shown in FIG.
  • the specific connection relationship is described as follows:
  • the operating voltage output 31 of the host power system 130 is connected to the host clock circuit 140, the host control module 120, and the host communication interface 150 to provide the energy required for their operation.
  • the communication voltage output 32 of the host power system 130 is coupled to the communication voltage input 51 of the host communication interface 150, and the energy required to operate the slave 200 is output to the signal bus 300 via the host communication interface 150.
  • the remaining end of the host power system 130 is grounded 40.
  • the host clock circuit 140 is connected to the host control module 120 to provide a clock signal required for the operation of the host control module 120; one end is connected to the working voltage output terminal 31 of the host power system 130, and is received by the host power system 130. Working power; the other end is grounded 40.
  • the host communication interface 150 is connected to the host control module 120, and is configured to receive a control signal of the host control module 120 on the one hand, thereby transmitting the working power of the slave 200 to the slave 200 through the signal bus 300.
  • the data is sent to the slave, and on the other hand, the data information sent back from the slave 200 extracted from the signal bus 300 is sent to the host control module 120 for processing.
  • the other end of the host communication interface 150 is coupled to the operating voltage output 31 of the host power system 130 for accepting the operating voltage provided by the host power system 130.
  • the communication voltage input 51 of the host communication interface 150 is coupled to the communication voltage output 32 of the host power system 130 and receives the communication voltage provided by the host power system 130.
  • the host communication interface 150 also has one end grounded 40, and the other two ends lead to the outside of the host 100 to form a signal bus 300 for connecting one or more slaves 200.
  • the host 100 provides power to the slave 200 via its signal bus 300 for its operation and data exchange with the slave 200.
  • the host power system 130 provides working power to each module in the host through its working voltage output terminal 31, and supplies power to the slave 200 through the communication voltage output terminal 32, which enables the power supply to the slave 200. It works independently with the working power required by the host 100 itself, thereby avoiding the influence that the noise generated by the host work may have on the communication between the master and the slave.
  • the host 100 provides DC power to the slave 200, thereby avoiding the need for the AC power supply.
  • the complicated AC/DC conversion link it is only necessary to design a simple linear power supply system in the slave 200, which improves the reliability and integration of the slave 200.
  • the host communication interface 150 is a host communication interface circuit 153, as shown in FIG.
  • the port 20 of the host communication interface circuit 153 is connected to the communication voltage output terminal 32 of the host power system 130, constitutes the communication voltage input terminal 51 of the host communication interface 150, and receives the communication voltage supplied from the host power supply system 130.
  • a technical solution of the host communication interface circuit 153 shown in FIG. 3 is that the host communication interface circuit can be adopted as a unipolar communication interface circuit, including a unipolar data modulation module 1011 and a unipolar data demodulation module 102.
  • the specific connection relationship has the following three implementation methods:
  • the unipolar data modulation module 1011 is coupled to the unipolar data demodulation module 102 to the operating voltage output terminal 31 of the host power system 130, and is powered by the host power system 130.
  • the unipolar data modulation module 1011 is also commonly coupled 40 to the unipolar data demodulation module 102, i.e., to ground.
  • the unipolar data modulation module 1011 and the unipolar data demodulation module 102 also have one end each connected to the host control module 120 for data interaction with the host control module 120.
  • the modulation signal input terminal 12 of the unipolar data modulation module 1011 leads to the outside of the unipolar communication interface circuit 1531, and constitutes the port 20 of the unipolar communication interface circuit 153 1 .
  • the modulated signal output terminal 11 of the unipolar data modulation module 1011 leads to the outside of the unipolar communication interface circuit 1531 via the unipolar data demodulation module 102, and constitutes one of the signal buses 300, and the ground line leads to the unipolar communication interface. Outside the circuit 1531, another one of the signal buses 300 is formed.
  • the unipolar data modulation module 1011 is coupled to the unipolar data demodulation module 102 to the operating voltage output terminal 31 of the host power system 130, and is powered by the host power system 130.
  • the unipolar data modulation module 1011 is also commonly coupled 40 to the unipolar data demodulation module 102, i.e., to ground.
  • the unipolar data modulation module 1011 and the unipolar data demodulation module 102 also have one end each connected to the host control module 120 for data interaction with the host control module 120.
  • the modulation signal input terminal 12 of the unipolar data modulation module 1011 leads to the outside of the unipolar communication interface circuit 1532 via the unipolar data demodulation module 102, and constitutes the port 20 of the unipolar communication interface circuit 1532.
  • the modulation signal output terminal 11 of the ground and unipolar data modulation module 1011 leads to the outside of the unipolar communication interface circuit 1532, respectively, to constitute the signal bus 300.
  • the unipolar data modulation module 1011 and the unipolar data demodulation module 102 are connected in common to the working voltage output terminal 31 of the host power system 130, and are powered by the host power system 130.
  • Unipolar number According to the modulation module 1011, the unipolar data demodulation module 102 is also grounded 40, that is, connected to the ground.
  • the unipolar data modulation module 1011 and the unipolar data demodulation module 102 also have one end connected to the host control module 120 respectively for data interaction with the host control module 120.
  • the modulation signal input terminal 12 of the unipolar data modulation module 1011 leads to the outside of the unipolar communication interface circuit 1533, and constitutes the port 20 of the unipolar communication interface circuit 153 3 .
  • the modulated signal output terminal 11 of the unipolar data modulation module 1011 leads to the outside of the unipolar communication interface circuit 1533, constituting one of the signal buses 300.
  • the other end of the unipolar data demodulation module 102 leads to the outside of the unipolar communication interface circuit 1533, constituting the other of the signal bus 300.
  • the unipolar communication interface circuit shown in FIG. 4, FIG. 5, and FIG. 6 described above implements a simplex and two-way host and slave on a DC power supply line (ie, signal bus 300) by a relatively simple implementation.
  • a DC power supply line ie, signal bus 300
  • the unipolar data modulation module 1011, the unipolar data demodulation module 102, and the output load of the host 100 composed of the parallel network of the slaves 200 are equivalent to being connected in series to the host power system.
  • the different connection sequences of the three constitute the above three different embodiments.
  • the unipolar data modulation module 1011 is configured to provide the slave 200 with DC power required for operation through the signal bus 300 without transmitting data to the slave 200; and to transmit data to the slave 200 for transmitting the host 100
  • the data is loaded on the signal bus 300 output to the slave 200 in the form of a voltage change.
  • the unipolar data demodulation module 102 is operative to extract current change information that the slave 200 loads onto the signal bus 300 in the form of a change in the host output load current.
  • the unipolar data modulation module 1011 may include an electronic switch 122 and a drive module 111, see FIG.
  • One end of the driving module 111 is connected to the working voltage output terminal 31 of the host power system 130, receives the operating voltage output by the host power system 130, and provides the driving module 111 with a low-side driving voltage.
  • the drive module 111 also has one end that is commonly grounded 40 with an input of the electronic switch 142.
  • the signal input end of the driving module 111 is connected to the host control module 120, and receives the low level pressure control signal output by the host control module 120.
  • the signal output end of the driving module 111 is connected to the control end of the electronic switch 122, and converts the received low level control signal into a high level control signal output to control the closing direction of the electronic switch 122.
  • the remaining end of the driving module 111 and the other input of the electronic switch 1 22 are connected to the outside of the unipolar data modulation module 1011 to form a modulation signal input terminal 12.
  • the modulation signal input terminal 12 is configured to receive a higher communication voltage directly or indirectly provided by the host power system 130 outside the unipolar data modulation module 1011, and provide high-side driving for the driving module 111. Voltage.
  • the output of the electronic switch 122 leads to the outside of the unipolar data modulation module 1011 to form a modulated signal output terminal 11.
  • the branch of the electronic switch 122 connected to the modulation signal input terminal 12 is turned on, see FIG. 7, the modulation signal output terminal 11 outputs DC power to the slave 200; in the data transmission state, the electronic switch 122 switches between the branch connected to the modulation signal input terminal 12 and the branch connected to the ground line, and outputs the modulated signal to the slave 200, see the waveform shown in Figure 23-1.
  • the connection between the unipolar data modulation module 1011 and its external unipolar data demodulation module in FIG. 7 can be embodied as any one of the unipolar data demodulation modules 1021, 1022 or 1023 in the figure. That is, the modulation signal input terminal 12 of the unipolar data modulation module 1011 is connected to the host power system 130 via the unipolar data demodulation module 1021, corresponding to the embodiment shown in FIG. 5; or, the unipolar data modulation module 101 1
  • the modulation signal output terminal 11 constitutes one of the signal buses 300 via the unipolar data demodulation module 1022, corresponding to the embodiment shown in FIG. 4; or, the unipolar data demodulation module 1023 is terminated from the unipolar data modulation module.
  • the host 100 outputs the power supply to the slave 200, and the presence or absence of the power supply expresses the data 1 or 0 sent by the host 100 to the slave 200. Its working principle is described as:
  • the host control module 120 Without transmitting data to the slaves 200 or receiving data returned by the slaves 200, the host control module 120 outputs a low level control to the driver module 111 under the driving action of the driver module 11 The signal is converted to a high level control signal and output to the control terminal of electronic switch 122 such that the branch of electronic switch 122 connected to modulation signal input terminal 12 is closed, as shown in FIG. Thereafter, the host 100 outputs DC power to the slaves 200 via the signal bus 300.
  • the host control module 120 transmits a control signal of the low level expression data 1 to the drive module 111; after being driven by the driving module 111, it is converted to high.
  • the control signal of the level expression data 1 is sent to the control terminal of the electronic switch 122; the branch of the electronic switch 122 connected to the modulation signal input terminal 12 is closed, as shown in FIG. Thereafter, the modulation signal output terminal 11 of the unipolar data modulation module 1011 outputs a communication voltage.
  • the host control module 120 sends a control signal of the low level expression data 0 to the drive module 111; after being driven by the driving module 111, it is converted to high.
  • the control signal of the level expressing data 0 is sent to the control terminal of the electronic switch 122; the branch of the electronic switch 122 connected to the ground is closed. Thereafter, the modulated signal output terminal 11 of the unipolar data modulation module 1011 outputs zero voltage.
  • the modulated signal output by the unipolar data modulation module 1011 can be represented as the waveform shown in FIG. 23-1.
  • V IN is the communication voltage value that the host 100 outputs to the slave 200.
  • the voltage on signal bus 300 varies between communication voltage VIN and zero.
  • the host communication interface circuit 153 shown in FIG. 3 can also be taken as a bipolar communication interface circuit, including a bipolar data modulation module and a bipolar data demodulation module.
  • the specific connection relationship has the following three implementation methods:
  • the bipolar data modulation module 1051 and the bipolar data demodulation module 106 are connected in common to the working voltage output terminal 31 of the host power system 130, and are powered by the host power system 130.
  • the bipolar data modulation module 1051 is also coupled to the dual polarity data demodulation module 106 to ground 40, that is, to ground.
  • the bipolar data modulation module 1051 and the bipolar data demodulation module 106 also have one end connected to the host control module 120 respectively for data interaction with the host control module 120.
  • the modulation signal input terminal 19 of the bipolar data modulation module 1051 leads to the outside of the bipolar communication interface circuit 1534 to constitute the port 20.
  • the bipolar data demodulation module 106 is configured to extract current change information caused by the host output load of the slave 200 on the signal bus 300 .
  • the bipolar data modulation module 1051 and the bipolar data demodulation module 106 are commonly connected to the operating voltage output terminal 31 of the host power system 130, and are powered by the host power system 130.
  • the bipolar data modulation module 1051 is also coupled to the dual polarity data demodulation module 106 to ground 40, that is, to ground.
  • the bipolar data modulation module 1051 and the bipolar data demodulation module 106 also have one end connected to the host control module 120 respectively for data interaction with the host control module 120.
  • the modulation signal input terminal 19 of the bipolar data modulation module 1051 leads to the outside of the bipolar communication interface circuit 1535 via the bipolar data demodulation module 106. , constitutes port 20.
  • the two modulated signal outputs 16 and 17 of the bipolar data modulation module 1051 lead to the outside of the bipolar communication interface circuit 1535, respectively, to form the signal bus 300.
  • the bipolar data demodulation module 106 is configured to extract current change information caused by the host output load formed by the slaves 200 on the signal bus 30, This information is expressed by the host power system 130 to the output of the bipolar data demodulation module 106.
  • the bipolar data modulation module 1052 and the bipolar data demodulation module 106 are connected in common to the working voltage output terminal 31 of the host power system 130, and are powered by the host power system 130.
  • the bipolar data modulation module 1052 is also coupled to the dual polarity data demodulation module 106 to ground 40, that is, to ground.
  • the bipolar data modulation module 1052 and the bipolar data demodulation module 106 each have one end connected to the host control module 120 respectively for data interaction with the host control module 120.
  • the modulation signal input terminal 19 of the bipolar data modulation module 1052 leads to the outside of the bipolar communication interface circuit 1536 to form the port 20.
  • the two modulated signal outputs 16 and 17 of the bipolar data modulation module 1052 lead to the outside of the bipolar communication interface circuit 1536, respectively, to form the signal bus 300.
  • the remaining ends of the bipolar data modulation module 1052 are coupled to the bipolar data demodulation module 106 .
  • the bipolar data demodulation module 106 is configured to extract current change information caused by the host output load of the slave 200 on the signal bus 300 .
  • Information is returned to the power reference ground 40 of the host power system 130 via the bipolar data modulation module 1052 and is communicated by the host power system 130 to the output of the bipolar data demodulation module 106.
  • the bipolar communication interface circuit shown in FIG. 8, FIG. 9, and FIG. 11 is further optimized on the basis of the unipolar communication interface circuit scheme shown in FIG. 4, FIG. 5, and FIG.
  • the polarity data modulation module realizes the output of the power supply to the slave by the host to provide the data sent by the host to the slave in a manner to provide positive and negative communication voltages with respect to the power reference ground 40.
  • the advantages are: switching between different transmission data, for example, switching from transmission data 0 to transmission data 1, because the polarity of the output voltage of the host is opposite, therefore, the energy remaining in the equivalent inductance or equivalent capacitance on the signal bus The venting path in the opposite direction is established, so that the data transmission rate of the bipolar communication interface circuit is faster, the signal amplitude changes more, and the anti-interference performance is higher.
  • the bipolar data modulation module 1051 includes two driving modules 113 and 114, two electronic switches 126 and 127, and an inverter 301. See Figure 10.
  • the two driving modules 113 and 114 are connected to the operating voltage of the host power system 130 in common with the inverter 301.
  • the two drive modules 113 and 114 are also commonly grounded 40 with the inverter 301.
  • the signal input terminal of the inverter 301 is connected to the signal input terminal of the driving module 114 to the host control module 120, and the signal output terminal of the inverter 301 is connected to the signal input terminal of the driving module 113.
  • the signal output of the drive module 113 is connected to the control terminal of the electronic switch 126, and the signal output of the drive module 114 is connected to the control terminal of the electronic switch 127.
  • An input of the electronic switch 126, an input of the electronic switch 127, the remaining end of the driving module 113, and the remaining end of the driving module 114 are connected to the outside of the bipolar data modulation module 1051 to form a bipolar data modulation.
  • the other input of the electronic switch 126 is coupled to the other input of the electronic switch 127 to ground 40.
  • the outputs of the two electronic switches 126 and 127 lead to the outside of the bipolar data modulation module 1051, respectively, forming the two modulated signal outputs 16 and 17 of the bipolar data modulation module 1051.
  • connection between the bipolar data modulation module 1051 and its external bipolar data demodulation module in FIG. 10 can be embodied as any one of the bipolar data demodulation modules 1061, 1062 or 1063 in the figure. That is, the modulation signal input terminal 19 of the bipolar data modulation module 1051 is connected to the host power system 130 via the bipolar data demodulation module 1061, corresponding to the embodiment shown in FIG. 9; or, the bipolar data modulation module 1 051
  • the modulated signal output 16 or 17 leads to the outside of the bipolar communication interface circuit via the bipolar data demodulation module, constituting one of the signal buses 300, corresponding to the embodiment shown in FIG.
  • the remaining connection relationship of the bipolar data demodulation module in FIG. 10 is the same as that in FIG. 8 or FIG. 9 , and will not be described here.
  • the bipolar data modulation module 1052 includes two drive modules 115 and 116, two electronic switches 128 and 129, and an inverter 302, see FIG. 12.
  • the two drive modules 115 and 116 are coupled in common with the inverter 302 to the operating voltage output 31 of the host power system 130.
  • the two drive modules 115 and 116 are also coupled to the inverter 302 in common ground 40.
  • the signal input terminal of the inverter 302 is connected to the signal input terminal of the driving module 116 to the host control module 120, and the signal output terminal of the inverter 302 is connected to the signal input terminal of the driving module 115.
  • the signal output of the drive module 115 is coupled to the control terminal of the electronic switch 128, and the signal output of the drive module 116 is coupled to the control terminal of the electronic switch 129.
  • An input of the electronic switch 128, an input of the electronic switch 129, the remaining end of the driving module 115, and the remaining end of the driving module 116 are connected to the outside of the bipolar data modulation module 1052 to form bipolar data.
  • the other input of the electronic switch 128 is connected to the other input of the electronic switch 129 and is external to the bipolar data modulation module 1052.
  • the bipolar data demodulation module 106 of the portion is grounded 40.
  • the outputs of the two electronic switches 128 and 129 lead to the outside of the bipolar data modulation module 1052, respectively, forming the two modulated signal outputs 16 and 17 of the bipolar data modulation module 1052.
  • the host 100 outputs the power supply to the slave 200 to provide positive with respect to the power reference ground 40.
  • the way of negative communication voltage expresses its data 1 or 0 transmitted to the slave 200.
  • Figure 10 Take Figure 10 as an example to illustrate the working principle of the bipolar data modulation module:
  • the host control module 120 After not transmitting data to the slaves 200 or receiving data returned by the slaves 200, under the driving action of the driving modules 1 13 and 114, the host control module 120 outputs to the driving module 114 and via the opposite The low level control signal outputted from the phaser 301 to the driving module 113 is converted into a high level control signal, and output to the control end of the electronic switch 127 and the control end of the electronic switch 126, respectively, so that the electronic switch 127 is connected to the modulated signal. The branch of input 19 is closed and the branch of electronic switch 126 connected to ground 40 is closed, see Figure 10. Thereafter, the host 100 outputs DC power to the slaves 200 via the signal bus 300.
  • the host control module 120 sends a low level control signal expressing the data 1 to the driver module 114 and the inverter 301. After the signal is driven by the driving module 114, the control signal of the expression data 1 converted to the high level is sent to the control terminal of the electronic switch 127.
  • the control signal converted to the low level expression data 0 is input to the driving module 113; the driving module 113 The control signal of the low level expression data 0 is converted into a high level control signal expressing the data 0, and is output to the control terminal of the electronic switch 126.
  • the branch of the electronic switch 127 connected to the modulation signal input terminal 19 is closed, and the branch of the electronic switch 126 connected to the ground line 40 is closed, as shown in FIG. Thereafter, the modulation signal output terminal 17 of the bipolar data modulation module 1051 outputs a communication voltage, and the modulation signal output terminal 16 outputs a zero voltage, that is, outputs the forward communication voltage.
  • the host control module 120 sends a low level control signal expressing the data 0 to the driver module 114 and the inverter 301. After the signal is driven by the driving module 114, the control signal converted to the high level of the expression data 0 is sent to the control terminal of the electronic switch 127. In the same manner, after the control signal of the low level expression data 0 output by the host control module 120 is passed through the inverter 301, the control signal of the expression data 1 converted to the low level is input to the driving module 113; the driving module 113 Low level The control signal expressing data 1 is converted to a high level control signal expressing data 1 and output to the control terminal of electronic switch 126.
  • the branch of the electronic switch 127 connected to the ground 40 is closed, and the branch of the electronic switch 126 connected to the modulation signal input 19 is closed.
  • the modulation signal output terminal 17 of the bipolar data modulation module 1051 outputs a zero voltage
  • the modulation signal output terminal 16 outputs the communication voltage
  • the host 100 outputs a voltage on the signal bus 300 that is opposite in polarity to the transmission data.
  • the signal, that is, the negative communication voltage is output.
  • the modulated signal output by the bipolar data modulation module can be represented as the waveform shown in Figure 24-1.
  • V IN is the communication voltage value that the host 100 outputs to the slave 200.
  • the voltage on signal bus 300 varies between forward communication voltage V IN and negative communication voltage V IN .
  • the above-mentioned driving module in FIG. 7, FIG. 10 or FIG. 12 can use a circuit such as 74LS4245 and IR53HD420 which uses a low voltage and a high voltage dual working power supply to convert a low voltage input signal into a high voltage output signal.
  • the above unipolar data demodulation module and the bipolar data demodulation module can use a device such as a resistor or an inductor to convert the input current change information into a voltage change information output.
  • the slave 200 includes a slave communication interface 210, a rectifier bridge circuit 260, an energy storage module 240, a slave power supply system 230, a slave clock circuit 250, and a slave control module 220, such as Figure 13 shows.
  • the specific connection relationship is described as follows:
  • the slave communication interface 210 is connected to the slave control module 220, and the data for loading the extracted host 100 onto the signal bus 300 is sent to the slave control module 220 for processing, and the other is The data information that the slave control module 220 needs to send to the host 100 is loaded onto the signal bus 300.
  • the slave communication interface 210 is coupled to the power output 35 of the slave power system 230 for accepting the operating voltage and reset signals provided by the slave power system 230.
  • the slave communication interface 210 also has an end grounded 50, and the remaining two ends are respectively connected to the signal bus 300 for extracting signals from the bus 300 or loading data onto the bus 300.
  • the rectifier bridge circuit 260 is connected to the energy storage module 240, one end is grounded 50, and the other two ends are respectively connected to the signal bus 300.
  • the rectifier bridge circuit 260 is used to provide the host 100 to the slave via the signal bus 300.
  • the power supply of the machine 200 is polarity-adjusted to achieve a polarity-free connection between the host 100 and the slave 200, and the electrical energy is stored in the energy storage module 240 for use by the slave 200.
  • the energy storage module 240-terminal is connected to the rectifying bridge circuit 260, and receives the energy output from the rectifying bridge circuit 260.
  • the energy storage module 240 is connected to the power input terminal 36 of the slave power system 230, and is configured to provide the energy stored in the energy storage module 240 to the slave power system 230 during the process of receiving data, and the external power supply is interrupted. It is converted by the slave power supply system 230 into the voltage required for operation of the slave 200.
  • the other end of the energy storage module 240 is grounded 50.
  • the power input terminal 36 of the slave power system 230 is connected to the energy storage module 240, and the power output terminal 35 is connected to the slave communication interface 210, the slave clock circuit 250, and the slave control module 220, and the rest. One end is grounded to 50.
  • the slave power system 230 is configured to convert the energy stored in the energy storage module 240 into a voltage required for operation of the slave 200, and provide it to the slave communication interface 210, the slave clock circuit 250, and the slave control module 220.
  • the slave clock circuit 250 is connected to the power output 35 of the slave power system 230, and receives the operating voltage output from the slave power system 230; one end is connected to the slave control module 220, and the slave control module is connected to the slave control module 220. 220 provides the cuckoo clock signal for its operation; the other end of the slave chopper circuit 250 is grounded 50.
  • the introduction of the rectifier bridge circuit 260 realizes the polarity conversion of the slave to the input power, thereby eliminating the requirement for the polarity connection of the conventional network communication system, and realizing the between the host 100 and the slave 200.
  • the two-wire non-polar connection simplifies the connection process of this master-slave network system and avoids the possibility of slave power failure caused by network connection errors.
  • the slave communication interface 210 and the rectifier bridge circuit 260 are connected in parallel between the two signal buses 300, thereby avoiding the influence of the rectifier bridge circuit 260 on the data transmission speed between the master and the slave, and On the one hand, the slave can receive both unipolar modulated data and bipolar modulated data.
  • the energy storage module 240 in the slave 200 is used to store the energy provided by the host 100, so that the slave 200 is in a passive working mode, and the energy supply to the entire communication system is only supplied to the host 100. Therefore, the power supply complexity of the system is reduced, and the maintainability of the system is improved.
  • the introduction of the energy storage module 240 also causes the slave 200 to exchange data with the host 100, possibly maintaining the slave power system 2 as much as possible.
  • the slave communication interface 210 includes a slave data modulation module 201 and a slave data demodulation module 202, and the slave data demodulation module 202 has two slaves.
  • the machine data demodulation circuit 212 is constructed as shown in FIG. The specific connection relationship is described as follows:
  • Two slave data demodulation circuits 212 are respectively connected to the two signal buses 300, and respectively sample voltage change information on the two signal buses 300.
  • the two slave data demodulation circuits 212 are respectively coupled to the slave control module 220, and the voltage change information sampled from the signal bus 300 is sent to the slave control module 220 for processing.
  • the two slave data demodulation circuits 212 are commonly connected to the power output 35 of the slave power system 230, and receive the operating power supplied from the slave power system 230 so that the level of the signal output to the slave control module 220 is The operating voltage of the machine control module 220 is substantially the same.
  • the two slave data demodulation circuits 212 are also commonly grounded 50.
  • the slave data modulation module 201 is connected to the slave control module 220, one end is grounded 50, and the other two ends are respectively connected to the signal bus 300.
  • the slave data modulation module 201 is configured to convert the data information expressed by the slave control module 220 and expressed at the high and low levels into a change of the current consumption of the slave, and load it onto the signal bus 300 and send it to the host 100.
  • the above-described slave communication interface 210 technical solution has the advantages of: using two identical, independently operating slave data demodulation circuits 212, and connecting the two slave data demodulation circuits 212 to the signals, respectively On the bus 300, the slave 200 can receive both the unipolar modulated data output by the host 100 and the bipolar modulated data output by the host 100. This makes the slave 200 more adaptable and portable for different system communication requirements.
  • the slave data modulation module 201 of the present invention may include three resistors 215, 216 and 217, two NMOS transistors 218 and 219, as shown in FIG.
  • the drain of the NMOS transistor 218 and the substrate, the drain and pad of the NMOS transistor 219, and one end of the resistor 215 are commonly grounded 50.
  • the gate of the NMOS transistor 218, the gate of the NMOS transistor 219, and the other end of the resistor 215 are connected and commonly connected to the slave control module 220.
  • the source of the NMOS transistor 218 is coupled to one of the signal buses 300 via a resistor 216
  • the source of the NMOS transistor 219 is coupled to the other of the signal bus 300 via a resistor 217.
  • the resistor 215 provides a pull-down drive for the gates of the NMOS transistors 218 and 219, and the resistors 216 and 217 are used to convert the voltage change information to the consumption current change information.
  • the above-described slave data modulation module 201 realizes loading data to be transmitted in the form of consumption current change.
  • On the signal bus 300 its working principle is described as:
  • the slave control module 220 When transmitting data 1 ⁇ , the slave control module 220 outputs a high level control signal, then the gate voltages of the NMOS transistors 218 and 219 are high, and the NMOS transistors 218 and 219 are turned on. Thereafter, the current on the bus 300 caused by the slave 200 is: the bus voltage divided by the sum of the resistances of the resistors 216 and 217, which is much larger than the normal operating current of the slave 20.
  • the slave 200 when the slave 200 is embodied as an electronic detonator, the current is in the order of milliamps, and the normal operating current of the electronic detonator is on the order of microamps. This facilitates the data demodulation module in the host to extract and identify the data information sent by the slave to it.
  • Figure 25-1 shows the voltage control signal output by the slave control module 220, which is the data information to be sent to the host communication interface. After being acted upon by the slave data modulation module 201, the voltage control signal is converted to current consumption information and sent to the signal bus 300, see Figure 25-2.
  • V cc is the operating voltage of slave 200.
  • the current I H is the current consumption of the slave 200 transmitting data to the host 100
  • the current t is the current consumption of the slave 200 transmitting the data to the host 100, that is, the normal operating current of the slave 200. .
  • the slave data demodulation circuit 212 in the present invention may include an inverter 303 and a resistor 206 as shown in FIG.
  • the inverter 303 is used to extract the data information on the signal bus 300, and one end thereof is connected to the power output terminal 35 of the slave power supply system 230, and one end is grounded 50.
  • the signal input of inverter 303 is coupled to one of signal buses 300, which is also coupled to ground 50 via resistor 206.
  • the signal output of inverter 303 is coupled to slave control module 2 20.
  • the resistor 206 is used to provide a pull-down drive for the signal input end of the inverter 303, which avoids the signal input end of the inverter 303 being in an indeterminate state when the bus 300 is accidentally disconnected, which improves the communication system.
  • the resistor 206 also provides a bleed path for the charge remaining on the bus 300, increasing the communication rate.
  • the slave data demodulation circuit 212 in the present invention may also include an inverter 304 and an NMOS transistor 207, as shown in FIG.
  • the inverter 304 is connected to the power output 35 of the slave power supply system 230, and is grounded at one end 50.
  • NM The OS tube 207 provides negative feedback to the signal input of the inverter 304.
  • the source of the NMOS transistor 207 and the substrate ground 50; the drain thereof is connected to the signal input terminal of the inverter 304 and is commonly connected to one of the signal bus 300; the gate of the NMOS transistor 207 and the signal of the inverter 304
  • the outputs are connected and connected in common to the slave control module 220.
  • the above-mentioned slave data demodulation circuit 212 uses the NMOS transistor 207 connected with a negative feedback instead of the pull-down resistor 206.
  • the advantage is that the energy consumed by the resistor 206 to the host 100 is avoided, and the utilization efficiency of the host energy is improved.
  • the characteristics of the NMOS transistor dynamic resistance are such that when the input of the bus 300 is low, the output of the inverter 304 is at a high level, and the NMOS transistor 207 is in an on state. When the input of the bus 300 is high, the inverter 304 outputs a low level, and the NMOS transistor 207 is turned off.
  • the output voltage of the inverter 304 changes from low to high, and the gate voltage of the NMOS transistor 207 also changes from low to high. Thereafter, the NMOS transistor 207 enters the saturation conduction region from the cut-off region via the variable resistance region, and gradually drains the bus residual charge.
  • the signal input terminal of the inverter 304 can be in a certain low state due to the presence of the NMOS transistor 207.
  • the outputs of the two slave data demodulation circuits 212 are respectively shown in FIG. 23-2.
  • the waveform diagram shown in Figure 23-3 In the figure, V ⁇ is the operating voltage of the slave 200.
  • the slave data demodulation module 202 demodulates the unipolar modulation data shown in FIG. 23-1 into two signals, and one signal shown in FIG. 23-2 corresponds to the input modulation signal change trend at the operating voltage V.
  • the pulse signal that changes between cc and zero level, the other signal shown in Figure 23-3 is a zero-level signal.
  • the outputs of the two slave data demodulation circuits 212 are respectively shown in Fig. 24-2.
  • V ⁇ is the operating voltage of the slave 200.
  • the slave data demodulation module 202 demodulates the bipolar data shown in Figure 24-1 into two signals.
  • the one signal shown in Figure 24-2 is opposite to the input modulation signal, at the operating voltage V cc .
  • the pulse signal that changes between zero and zero, the other signal shown in Figure 24-3 is a pulse signal that changes between the operating voltage V cc and the zero level corresponding to the change trend of the input modulated signal.
  • the inverter 303 and the inverter 304 of the two technical solutions of the above-described slave data demodulation circuit 212 are preferably taken as Schmitt inverters, so that whether the state of the signal of the input inverter is switched or not Slow, that is, whether the level transition transition period is long, the output edge of the inverter is steep, and the output level is turned The transition period is extremely short. This shortens the state transition of the subsequent processing circuit of the slave data demodulation circuit 212, and reduces the power consumption of the slave 200.
  • the Schmitt inverter has good noise immunity and can improve the stability of the data received by the slave 200.
  • the host 100 in the master-slave DC carrier communication system described above is used in conjunction with the technical solution of the slave 200 to implement a two-wire non-polarity-differentiated peer that can provide DC power to the slave.
  • Master-slave DC carrier communication system for simplex bidirectional data transmission.
  • the host power system 130 provides only one communication voltage V IN to the host communication interface 150. Therefore, the host 100 transmits data to the slave 200 or receives data sent from the slave 200.
  • the bus 300 The voltage on the voltage is always maintained at the communication voltage V IN .
  • the present invention can be further improved on the basis of the host technical solution shown in FIG. 2, the communication voltage output terminal 32 of the host power system 130 is refined into a transmission voltage output terminal 34 and a receiving voltage output terminal 33;
  • the communication voltage input terminal 51 of the host communication interface 151 is refined into a transmission voltage input terminal 52 and a reception voltage input terminal 53, as shown in FIG.
  • the transmit voltage output terminal 34 of the host power system 130 is coupled to the transmit voltage input terminal 52 of the host communication interface 151;
  • the receive voltage output terminal 33 of the host power system 130 is coupled to the receive voltage input terminal 53 of the host communication interface 151.
  • the host 100 performs data transmission and reception at different voltages, and aims to improve the signal-to-noise ratio of the host 100 receiving the data of the slave 200, thereby improving the master-slave DC carrier communication system composed of the host technical solution. Communication accuracy.
  • the host 100 includes a host clock circuit 140, a host power system 130, a host communication interface 1511, and a host control module 120.
  • the host communication interface 1511 is further constituted by an electronic switch 121 and a host communication interface circuit 153, as shown in FIG.
  • the two input ends of the electronic switch 121 lead to the outside of the host communication interface 1511, respectively forming a transmitting voltage input terminal 52 and a receiving voltage input terminal 53; the output terminal of the electronic switch 121 is connected to the port 20 of the host communication interface circuit 153;
  • the control terminal is connected to the host control module 120, and the host control module 120 controls the electronic switch 121 to select the voltage output to the host communication interface circuit 153.
  • the host communication interface circuit 153 also has an end ground 40, one end of which is connected to the working voltage output terminal 31 of the host power system 130, and receives the operating voltage provided by the host power system 130.
  • the host communication interface circuit 153 also has two ends that lead to the outside of the host communication interface 1511 to form a signal bus 300. The remaining ends of the host communication interface circuit 153 are connected to the host control module 120.
  • the electronic switch 121 in the above technical solution completes switching between the transmitting voltage and the receiving voltage under the control of the host control module 120: when the host 100 transmits data to the slave 200, or the host 100 provides work to the slave 200
  • the power supply port the host control module 120 sends a control signal indicating the output of the transmission voltage to the control terminal of the electronic switch 121, so that the branch of the electronic switch 121 connected to the transmission voltage output terminal 34 is turned on, and the port 20 of the host communication interface circuit 153 is Connected to the transmit voltage output 34 of the host power system 130, the signal bus 300 is represented as a transmit voltage.
  • the host control module 120 sends a control signal indicating the output of the received voltage to the control terminal of the electronic switch 121, so that the branch of the electronic switch 121 connected to the receiving voltage output terminal 33 is turned on.
  • the port 20 of the host communication interface circuit 153 is connected to the receiving voltage output terminal 33 of the host power system 130, and the signal bus 300 is represented as a receiving voltage.
  • the host communication interface circuit 153 in the above embodiment shown in FIG. 19 can be taken as the unipolar communication interface circuit shown in FIG. 4, FIG. 5 or FIG. 6, and can also be taken as FIG. 8, FIG. 9, or FIG. Bipolar communication interface circuit
  • the host 100 includes a host clock circuit 140, a host power system 130, a host communication interface 1512, and a host control module 120.
  • the host communication interface 1512 can be taken as a unipolar communication interface composed of a unipolar data modulation module 1012, a unipolar data demodulation module 102, and an electronic switch 123 as shown in FIG. 20, and can also be taken as shown in FIG.
  • a bipolar communication interface consisting of a bipolar data modulation module 1051, a bipolar data demodulation module 106, and an electronic switch 125 is shown.
  • the specific connection relationship can be described as follows:
  • the unipolar/bipolar data modulation module is grounded at one end 40; the terminal is connected to the unipolar/bipolar data demodulation module and is commonly connected to the operating voltage output terminal 31 of the host power system 130. Receiving a stable operating voltage output by the host power system 130.
  • the unipolar/bipolar data modulation module is further connected to the host control module 120 at one end, and receives data information output by the host control module 120.
  • the modulation signal input terminal of the unipolar/bipolar data modulation module is connected to the transmission voltage output terminal 34 of the host power system 130, constitutes the transmission voltage input terminal 52 of the host communication interface 1512, and receives the transmission voltage output by the host power system 130.
  • the other two ends of the unipolar/bipolar data modulation module one end leads to the outside of the host communication interface 1512, constitutes one of the signal buss 300; the other end is connected to one input end of the electronic switch, and provides the transmitting voltage branch to the electronic switch After the data needs to be sent to the slave 200, the electronic switch is selected under the control of the host control module 120. The transmission voltage of this branch is selected and output to the signal bus 300.
  • the unipolar/bipolar data demodulation module is grounded at one end 40; the end is connected to the host control module 120, and the received data information is sent to the host control module 120 for processing; one end is connected to the host power system.
  • the working voltage output terminal 31 of 130 receives the operating voltage outputted by the host power system 130; one end is connected to the receiving voltage output terminal 33 of the host power system 130, and constitutes the receiving voltage input terminal 53 of the host communication interface 1512; unipolar/bipolar
  • the other end of the data demodulation module is connected to the other input end of the electronic switch, and the receiving switch voltage branch is provided to the electronic switch. After receiving the data from the slave, the electronic switch selects the branch under the control of the host control module 120. The received voltage is output to the signal bus 300.
  • the unipolar/bipolar data modulation module is directly connected to the transmit voltage output terminal 34 of the host power system 130, unipolar/bipolar
  • the data demodulation module is directly connected to the receiving voltage output terminal 33 of the host power system 130, and the electronic switch performs switching of the voltage outputted to the signal bus 300 under the control of the host control module 120.
  • the host control module 120 sends a control signal expressing the transmit voltage output to the control terminal of the electronic switch, so that the electronic switch is connected to the branch of the unipolar/bipolar data modulation module.
  • the signal bus 300 appears as a transmission voltage.
  • the host control module 120 sends a control signal expressing the received voltage output to the control terminal of the electronic switch to connect the electronic switch to the unipolar/bipolar data demodulation module.
  • the circuit is turned on, and the signal bus 300 is represented as a receiving voltage.
  • the unipolar data modulation module 1012 includes a drive module 112 and an electronic switch 124, as shown in FIG.
  • the specific connection relationship is described as follows:
  • One end of the driving module 112 is connected to the working voltage output terminal 31 of the host power system 130, receives the operating voltage output by the host power system 130, and supplies the driving module 112 with a low-side driving voltage.
  • the signal input end of the driving module 112 is connected to the host control module 120, and receives the low level control signal output by the host control module 120.
  • the signal output end of the driving module 112 is connected to the control end of the electronic switch 124, and will receive The low level control signal that is received is converted to a high level control signal output to control the closing direction of the electronic switch 124.
  • the drive module 112 also has an end that communicates with an input of the electronic switch 124 to the outside of the unipolar data modulation module 1012 to form a modulation signal input terminal 12.
  • the remaining end of the driving module 112 is commonly grounded 40 with the other input of the electronic switch 124 and leads to the outside of the unipolar data modulation module 1012 to form one of the signal buses 300.
  • the control terminal of the electronic switch 124 is connected to the signal output terminal of the drive module 112, and receives a high level control signal of its output.
  • the output of the electronic switch 124 leads to the outside of the unipolar data modulation module 1012, and the modulation signal output terminal 11 is connected to an input terminal of the electronic switch 123.
  • Two inputs of the electronic switch 124 one is grounded 40 with the driving module 112, and leads to the outside of the unipolar data modulation module 1012 to form one of the signal buses 300; the other is connected to the driving module 112 to the unipolar Outside of the data modulation module 1012, a modulation signal input terminal 12 is formed for accepting a higher communication voltage supplied by the host power supply system 130 to the unipolar data modulation module 1012 and providing a high side for the drive module 112. Drive voltage.
  • the host 100 in the present invention can transmit unipolar modulated data or bipolar modulated data to the slave 200 via the signal bus 300, and the command sent by the host 100 to the slave 200 can be a global command or a single command.
  • the global command is issued for all slaves in the entire communication system.
  • each slave performs the corresponding operation and does not return any information to the host.
  • a single instruction is issued for a slave in the communication system.
  • the slave receives the instruction and performs the corresponding operation, it returns the result of the execution of the instruction to the host.
  • FIG. 26 shows a voltage waveform diagram of the unipolar global command signal bus 300 transmitted by the host 100 shown in FIG. 18 to the slave 200.
  • the host 100 transmits a complete local command to the slave 200 under the transmission voltage V TXD
  • the host 100 returns to the state of charging the slave 200.
  • the host 100 sends a single command to the slave 200 under the transmit voltage V TXD
  • the host 100 enters a state of replenishing energy to the slave 200 after the command is sent, and continues to preset.
  • the inter-turn length T in order to supplement the slave receiver with the data consumed by the energy storage module 240 inside the slave.
  • V TXD in the figure is the voltage output from the transmission voltage output terminal 34 of the host power supply system 130
  • V RXD is the voltage output from the reception voltage output terminal 33 of the host power supply system 130.
  • FIG. 27 shows a voltage waveform diagram of the host 100 shown in FIG. 18 transmitting a bipolar single command signal bus 300 to the slave 200.
  • the host 100 transmits a single instruction to the slave 200 under V TXD and switches the voltage on the signal bus 300 to the receiving voltage V after charging the preset inter-length T.
  • the RXD waits to receive the information returned from the slave 200, and returns to the state of charging the slave after receiving. If the host 100 sends a global command to the slave 200, the host directly returns to the state of charging the slave after transmitting the command, and does not receive data.
  • the communication voltage output terminal 32 of the host power supply system of the present invention can be further refined into a transmit voltage output terminal 34 and a receive voltage output terminal 33, and preferably the output voltage of the transmit voltage output terminal 34 is higher than the receive voltage.
  • the voltage output from the voltage output terminal 33 is:
  • the host 100 When the host 100 is in the non-communication state and the transmit data state, the host 100 outputs a higher transmit voltage to the signal bus 300 to provide charging energy for the energy storage module 240 inside the slave 200.
  • the host 100 When the host 100 is to receive the data transmitted by the slave 200, if the host 100 still outputs a higher transmission voltage to the signal bus 300, the energy storage module 240 inside the slave 200 will continue to obtain the charging energy from the signal bus 300. This may cause current noise on the bus 300, which may reduce the signal-to-noise ratio of the host receiving data.
  • the host 100 receives the data transmitted from the slave 200, reducing the voltage output by the host 100 to the signal bus 300, so that the voltage on the bus 300 is lower than the voltage of the internal energy storage module 240 of the slave 200, then the network All slaves 200 will be powered by their own energy storage modules 240 to maintain their own operation. This avoids the current noise generated by the slaves 200 acquiring the charging energy from the bus 300 after receiving data from the host, thereby improving the signal-to-noise ratio of the data transmitted by the slave and improving the reliability of the data received by the master.
  • the host shown in FIG. 18 and its refinement scheme can be used in conjunction with the slave in the present invention to achieve the technical object of the present invention.
  • the slave After receiving the data sent by the host of the solution, the slave is demodulated by its internal slave data demodulation module 202 and output to the slave control module 220 for processing.
  • Demodulated output for unipolar data The same waveforms as in Figs. 23-2 and 23-3, the bipolar data is demodulated and output the same waveform as in Figs. 24-2 and 24-3.
  • the master-slave DC carrier communication system of the present invention can be used in an electronic detonator detonating network.
  • the host 100 of the present invention is embodied as an electronic detonator detonating device
  • the slave 200 is embodied as an electronic detonator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明提供了一种主从式直流载波通信系统中的主机与从机。主机包含主机时钟电路、主机电源系统、主机通信接口和主机控制模块;从机包含从机通信接口、整流电桥电路、储能模块、从机电源系统、从机时钟电路和从机控制模块。主机通信接口可为单极性通信接口或者双极性通信接口,从机通信接口包含从机数据调制模块和从机数据解调模块。主机在一路通信电压或者两路不同通信电压下实现数据的收发。如此技术方案,既实现了在主机向从机供电的同时,主机与从机间的双向数据交互,又实现了主机与从机的双线无极性连接,提高了系统的可维护性及通信的准确性,简化了主机和从机的设计与连接,使之适用于诸如电子雷管网路、智能传感网路等类似小型从机系统。

Description

说明书
Title of Invention:主从式直流载波通信系统 技术领域
[1] 本发明涉及通信领域, 尤其涉及对主从式直流载波通信系统中主机和从机设计 方案的改进。
背景技术
[2] 在工业控制领域的集中——分布式控制系统中, 常釆用 PROFIBUS、 LONWOK
S、 CAN、 FF等工业现场控制总线。 其特点在于, 各分布式节点需要具备独立于 总线的电源系统, 而且总线极性必须连接准确, 才能正常进行数据交互。
[3] 在载波通信系统中, 目前常釆用的是电力线载波通信系统, 即主机把需传送的 数据信息以高频波的方式加载在基频电力线上, 从而实现向各节点的从机供给 电源的同吋完成数据的传输。 这种系统的特点是各节点的从机需要有专用的、 比较复杂的数据调制和数据解调模块, 而且为了同吋接收电源和数据, 从机釆 用变压器隔离的方式提取自身工作需要的电源, 再通过整流、 滤波等方式把外 部提供的交流信号转换为从机工作需要的直流信号。
[4] 在诸如电子雷管网路、 智能传感网路等系统中, 维持各节点从机工作需要的能 量较小, 便于向从机直接提供工作电源, 有利于对网路的维护, 而且需要从机 的体积越小越好。 因此, 釆用上述电力线载波通信系统构建诸如电子雷管网路 、 智能传感网路等系统存在以下缺陷:
[5] 1 . 各节点从机需要有专门的模块来收发数据, 成本较高。
[6] 2. 发送交流载波极大增加了从机电源系统的复杂性。
[7] 3. 节点从机釆用的各模块之间性能差异极大, 如隔离变压器等模块难以集成
[8] 基于上述考虑, 在诸如电子雷管网路、 智能传感网路等系统中, 需釆用直流载 波通信的方式实现主从机之间的通信。 专利文件 ZL200420115361.2、 ZL2004201 15363.1和 ZL200420115362.7中给出了电子雷管通信接口的构成方式, 简化了电 路结构, 减小了数据接收吋对从机所储能量的消耗, 提高了从机工作的可靠性 并能同吋保持较高的通信速率。 但其技术方案仍存在以下问题:
1 . 釆用电阻分压或稳压管整流的方式构成数据接收电路, 导致从机功耗较大
, 增加了主机的负荷。
2. 通信接口置于整流电桥之后, 对于釆用双极性数据高速传输的系统, 不再 适用。
专利 ZL200420084237.4提供的从机通信接口中, 釆用专用模块实现数据的接收 和发送, 但可集成性较差, 同样无法满足小型从机的应用要求。
发明内容
本发明的目的在于解决上述现有技术的缺陷, 提供一种双线无极性区分的、 能 在主机向从机提供直流工作电源的同吋进行单工双向数据传输的主从式直流载 波通信系统中的主机与从机, 最大程度地简化了主机和从机的设计与连接, 使 之适用于诸如电子雷管网路、 智能传感网路等类似小型从机系统。
本发明所述的主从式直流载波通信系统, 由一台主机、 一台或者多台从机、 以 及连接主机和从机的信号总线组成, 从机并联在由主机引出的信号总线之间。 主机与从机的配套使用即实现了本发明的技术目的。
作为本发明的一方面, 主机可包含主机吋钟电路、 主机电源系统、 主机通信接 口、 和主机控制模块。 其具体连接关系有如下两种技术方案:
1 . 本发明中主机构成的第一种技术方案, 如图 2所示, 主机吋钟电路、 主机电 源系统、 主机通信接口、 和主机控制模块各有一端接地一。 主机电源系统的工 作电压输出端与主机通信接口、 主机吋钟电路、 主机控制模块相连; 主机电源 系统的其余端为通信电压输出端, 通向主机通信接口的通信电压输入端; 主机 通信接口还有两端分别通向主机外部, 构成信号总线; 主机通信接口的其余端 连接到主机控制模块; 主机吋钟电路的其余一端与主机控制模块相连。 该方案 的优点在于: 其一, 主机电源系统通过其工作电压输出端向主机内部各模块提 供工作电源, 通过通信电压输出端向从机提供供电电源, 这就使得对从机的供 电电源与其自身工作所需工作电源独立工作, 从而避免了主机工作产生的噪声 对主机、 从机之间的通信可能产生的影响。 其二, 主机向从机提供直流电, 从 而避免了釆用交流供电吋所需的较为复杂的交 /直流转换环节, 因此, 从机中只 需设计简单的线性电源系统即可, 提高了从机的可靠性和可集成性。
[16] 2. 本发明中主机构成的另一种技术方案, 在上述图 2所示主机技术方案的基础 上进一步改进, 如图 18所示, 具体体现为: 将主机电源系统的通信电压输出端 细化为发送电压输出端和接收电压输出端; 主机通信接口的通信电压输入端细 化为发送电压输入端和接收电压输入端。 其中, 主机电源系统的发送电压输出 端连接到主机通信接口的发送电压输入端; 主机电源系统的接收电压输出端连 接到主机通信接口的接收电压输入端。 将通信电压细化为发送电压与接收电压 的技术方案, 可提高主机接收数据的信噪比以及系统的通信准确性。
[17] 上述图 2所示的主机中, 主机通信接口可取为一主机通信接口电路。 该主机通 信接口电路的端口一连接到主机电源系统的通信电压输出端, 构成主机通信接 口的通信电压输入端, 如图 3所示。
[18] 上述图 18所示的主机中, 主机通信接口可由一主机通信接口电路和电子开关一 构成, 如图 19所示。 其中, 电子开关一的两个输入端通向主机通信接口外部, 分别构成发送电压输入端和接收电压输入端; 电子开关一的输出端连接到主机 通信接口电路的端口一; 电子开关一的控制端连接到主机控制模块。 主机通信 接口电路还有一端连接到主机电源系统的工作电压输出端; 一端接地一; 还有 两端分别通向主机通信接口外部, 构成信号总线; 主机通信接口电路的其余端 连接到主机控制模块。 上述电子开关一, 在主机控制模块的控制下, 完成对发 送电压和接收电压的切换。 当主机向从机发送数据吋, 主机控制模块向电子开 关一的控制端发送表达发送电压输出的控制信号, 使电子开关一连接到发送电 压输出端的支路导通, 即, 主机通信接口电路的端口一连接到主机电源系统的 发送电压输出端的支路导通, 信号总线上即表现为发送电压。 反之亦然。 这就 实现了发送电压与接收电压的分离, 为通信准确性的提高奠定了技术基础。
[19] 上述图 3和图 19中的主机通信接口电路, 可取为单极性通信接口电路或者双极 性通信接口电路。 其中, 单极性通信接口电路包括单极性数据调制模块和单极 性数据解调模块, 其具体连接关系有如下三种技术方案:
[20] 1 . 如图 4所示, 单极性数据调制模块与单极性数据解调模块共同连接到主机电 源系统的工作电压输出端; 单极性数据调制模块还与单极性数据解调模块共同 接地一, 即连接到地线; 单极性数据调制模块与单极性数据解调模块还各有一 端分别连接到主机控制模块。 单极性数据调制模块的调制信号输入端通向单极 性通信接口电路外部, 构成端口一; 单极性数据调制模块的调制信号输出端经 由单极性数据解调模块通向单极性通信接口电路外部, 构成信号总线的一根; 地线通向单极性通信接口电路外部, 构成信号总线的另一根。
[21] 2. 如图 5所示, 单极性数据调制模块与单极性数据解调模块共同连接到主机电 源系统的工作电压输出端; 单极性数据调制模块还与单极性数据解调模块共同 接地一, 即连接到地线; 单极性数据调制模块与单极性数据解调模块还各有一 端分别连接到主机控制模块。 单极性数据调制模块的调制信号输入端经由单极 性数据解调模块通向单极性通信接口电路外部, 构成端口一; 地线与单极性数 据调制模块的调制信号输出端分别通向单极性通信接口电路外部, 构成信号总 线。
[22] 3 . 如图 6所示, 单极性数据调制模块与单极性数据解调模块共同连接到主机电 源系统的工作电压输出端; 单极性数据调制模块还与单极性数据解调模块共同 接地一, 即连接到地线; 单极性数据调制模块与单极性数据解调模块还各有一 端分别连接到主机控制模块。 单极性数据调制模块的调制信号输入端通向单极 性通信接口电路外部, 构成端口一; 单极性数据调制模块的调制信号输出端通 向单极性通信接口电路外部, 构成信号总线的一根; 单极性数据解调模块的其 余一端通向单极性通信接口电路外部, 构成信号总线的另一根。
[23] 上述图 4、 图 5和图 6所示的单极性通信接口电路, 用较为简单的方案, 实现了 在直流供电线上进行单工双向的主机、 从机间的数据交互。 在以上三种方案中 , 单极性数据调制模块、 单极性数据解调模块、 以及由从机并联网络构成的主 机的输出负载, 三者相当于串联连接在主机电源系统的通信电压输出端和地线 之间, 三者的不同连接顺序构成了以上三种不同方案。 单极性数据调制模块用 于把主机发出的数据以电压变化的形式加载在输出到从机的信号总线上, 单极 性数据解调模块用于提取从机以电流变化的形式加载到信号总线上的数据信息
[24] 如图 4、 图 5、 或者图 6所示的单极性通信接口电路的技术方案中, 单极性数据 调制模块可包括驱动模块一和电子开关二, 参见图 7, 具体连接关系如下: 驱动 模块一一端连接到主机电源系统的工作电压输出端, 一端与电子开关二的一个 输入端共同接地一; 驱动模块一的信号输入端与主机控制模块相连; 驱动模块 一的信号输出端与电子开关二的控制端相连; 驱动模块一的其余一端与电子开 关二的另一个输入端共同通向单极性数据调制模块外部, 构成单极性数据调制 模块的调制信号输入端; 电子开关二的输出端通向单极性数据调制模块外部, 构成单极性数据调制模块的调制信号输出端。 上述单极性数据调制模块的优点 在于: 主机在向从机输出供电电源的同吋, 以供电电源有无的方式表达主机向 从机发送的数据, 以这种简单易行的技术方案实现了供电与数据传输的同步进 行。
[25] 上述图 3和图 19中的主机通信接口电路, 也可取为双极性通信接口电路, 该电 路包括双极性数据调制模块和双极性数据解调模块。 具体连接关系有如下三种 技术方案:
[26] 1 . 如图 8所示, 双极性数据调制模块与双极性数据解调模块共同连接到主机电 源系统的工作电压输出端; 双极性数据调制模块还与双极性数据解调模块共同 接地一, 即连接到地线; 双极性数据调制模块与双极性数据解调模块还各有一 端分别连接到主机控制模块。 双极性数据调制模块的调制信号输入端通向双极 性通信接口电路外部, 构成端口一; 双极性数据调制模块的两个调制信号输出 端, 一个经由双极性数据解调模块通向双极性通信接口电路外部, 构成信号总 线的一根, 另一个直接通向双极性通信接口电路外部, 构成信号总线的另一根
[27] 2. 如图 9所示, 双极性数据调制模块与双极性数据解调模块共同连接到主机电 源系统的工作电压输出端; 双极性数据调制模块还与双极性数据解调模块共同 接地一, 即连接到地线; 双极性数据调制模块与双极性数据解调模块还各有一 端分别连接到主机控制模块。 双极性数据调制模块的调制信号输入端经由双极 性数据解调模块通向双极性通信接口电路外部, 构成端口一; 双极性数据调制 模块的两个调制信号输出端, 分别通向双极性通信接口电路外部, 构成信号总 线。 [28] 3. 如图 11所示, 双极性数据调制模块与双极性数据解调模块共同连接到主机 电源系统的工作电压输出端; 双极性数据调制模块还与双极性数据解调模块共 同接地一, 即连接到地线; 双极性数据调制模块与双极性数据解调模块还各有 一端分别连接到主机控制模块。 双极性数据调制模块的调制信号输入端通向双 极性通信接口电路外部, 构成端口一; 双极性数据调制模块的两个调制信号输 出端, 分别通向双极性通信接口电路外部, 构成信号总线; 双极性数据调制模 块的其余一端连接到双极性数据解调模块。
[29] 以上图 8、 图 9、 图 11所示的双极性通信接口电路, 是对图 4、 图 5、 图 6所示的 单极性通信接口电路方案的进一步优化, 通过釆用双极性数据调制模块, 实现 了在主机向从机输出供电电源的同吋, 以提供相对于地线的正负通信电压的方 式表达主机向从机发送的数据。 其优点在于: 在不同发送数据中进行切换吋, 例如由发送数据 0切换到发送数据 1, 由于主机输出电压的极性相反, 因此, 为 信号总线上等效电感或等效电容中残留的能量建立了相反方向的泄放通路, 从 而这种双极性通信接口电路的数据传输速率更快, 信号幅度变化更大, 抗干扰 性能更高。
[30] 上述图 8和图 9所示的双极性通信接口电路中, 双极性数据调制模块包含两个驱 动模块、 两个电子开关、 和反相器一, 分别为驱动模块三、 驱动模块四、 电子 开关六、 和电子开关七, 参见图 10。 具体连接关系如下: 两个驱动模块和反相 器一共同连接到主机电源系统的工作电压输出端, 两个驱动模块和反相器一还 共同接地一; 反相器一的信号输入端与驱动模块四的信号输入端共同连接到主 机控制模块, 反相器一的信号输出端连接到驱动模块三的信号输入端; 驱动模 块三的信号输出端连接到电子开关六的控制端, 驱动模块四的信号输出端连接 到电子开关七的控制端。 电子开关六的一个输入端、 电子开关七的一个输入端 、 驱动模块三的其余一端、 和驱动模块四的其余一端相连, 共同通向双极性数 据调制模块外部, 构成双极性数据调制模块的调制信号输入端; 电子开关六的 另一个输入端与电子开关七的另一个输入端共同接地一; 两个电子开关的输出 端分别通向双极性数据调制模块外部, 构成双极性数据调制模块的两个调制信 号输出端。 [31] 上述图 11所示的双极性通信接口电路中, 双极性数据调制模块包含两个驱动模 块、 两个电子开关、 和反相器二, 分别为驱动模块五、 驱动模块六、 电子开关 八、 和电子开关九, 参见图 12。 具体连接关系如下: 两个驱动模块和反相器二 共同连接到主机电源系统的工作电压输出端, 两个驱动模块和反相器二还共同 接地一; 反相器二的信号输入端与驱动模块六的信号输入端共同连接到主机控 制模块, 反相器二的信号输出端连接到驱动模块五的信号输入端; 驱动模块五 的信号输出端连接到电子开关八的控制端, 驱动模块六的信号输出端连接到电 子开关九的控制端。 电子开关八的一个输入端、 电子开关九的一个输入端、 驱 动模块五的其余一端、 和驱动模块六的其余一端相连, 并共同通向双极性数据 调制模块外部, 构成双极性数据调制模块的调制信号输入端; 电子开关八的另 一个输入端与电子开关九的另一个输入端相连, 并经由双极性数据调制模块外 部的双极性数据解调模块接地一; 两个电子开关的输出端分别通向双极性数据 调制模块外部, 构成双极性数据调制模块的两个调制信号输出端。
[32] 图 18所示主机构成方案中的主机通信接口, 除上述图 19给出的方案外, 还有以 下技术方案, 分别为:
[33] 1 . 图 18中所示主机通信接口取为单极性通信接口, 包括单极性数据调制模块 、 单极性数据解调模块、 和电子开关三, 如图 20所示。 具体连接关系如下: 单 极性数据调制模块与单极性数据解调模块共同连接到主机电源系统的工作电压 输出端; 单极性数据调制模块还与单极性数据解调模块共同接地一, 即连接到 地线; 单极性数据调制模块与单极性数据解调模块还各有一端分别连接到主机 控制模块。 单极性数据调制模块的调制信号输入端通向单极性通信接口外部, 连接到主机电源系统的发送电压输出端, 构成单极性通信接口的发送电压输入 端; 单极性数据调制模块的调制信号输出端连接到电子开关三的一个输入端; 单极性数据调制模块的其余一端通向单极性通信接口外部, 构成信号总线的一 根。 单极性数据解调模块还有一端连接到主机电源系统的接收电压输出端, 构 成单极性通信接口的接收电压输入端; 单极性数据解调模块的其余一端连接到 电子开关三的另一个输入端。 电子开关三的控制端与主机控制模块相连; 电子 开关三的输出端通向单极性通信接口外部, 构成信号总线的另一根。 [34] 上述图 20所示技术方案釆用较为简单的单极性通信接口实现在直流供电线上进 行单工双向的主机、 从机间的数据交互。 其中, 单极性数据调制模块直接连接 到主机电源系统的发送电压输出端, 单极性数据解调模块直接连接到主机电源 系统的接收电压输出端, 而电子开关三在主机控制模块的控制下, 完成对输出 到信号总线上的电压的切换。 当主机向从机发送数据吋, 主机控制模块向电子 开关三的控制端发送表达发送电压输出的控制信号, 使电子开关三连接到单极 性数据调制模块的支路导通, 信号总线上即表现为发送电压。 反之亦然。 该技 术方案同样也实现了发送电压与接收电压的分离, 为通信准确性的提高奠定了 技术基础。
[35] 图 20所示的单极性通信接口中, 单极性数据调制模块包括驱动模块二和电子开 关四, 如图 21所示。 具体连接关系如下: 驱动模块二一端连接到主机电源系统 的工作电压输出端; 驱动模块二的信号输入端与主机控制模块相连; 驱动模块 二的信号输出端与电子开关四的控制端相连; 驱动模块二还有一端与电子开关 四的一个输入端共同通向单极性数据调制模块外部, 构成单极性数据调制模块 的调制信号输入端。 驱动模块二的其余一端与电子开关四的另一个输入端共同 接地一, 并通向单极性数据调制模块外部, 构成信号总线的一根。 电子开关四 的输出端通向单极性数据调制模块外部, 构成单极性数据调制模块的调制信号 输出端。
[36] 2. 图 18中所示主机通信接口还可取为双极性通信接口, 如图 22所示, 包括双 极性数据调制模块、 双极性数据解调模块、 和电子开关五。 具体连接关系如下 : 双极性数据调制模块与双极性数据解调模块共同连接到主机电源系统的工作 电压输出端; 双极性数据调制模块还与双极性数据解调模块共同接地一, 即连 接到地线; 双极性数据调制模块与双极性数据解调模块还各有一端分别连接到 主机控制模块。 双极性数据调制模块的调制信号输入端通向双极性通信接口外 部, 连接到主机电源系统的发送电压输出端, 构成双极性通信接口的发送电压 输入端; 双极性数据调制模块的两个调制信号输出端, 一个连接到电子开关五 的一个输入端, 另一个通向双极性通信接口外部, 构成信号总线的一根。 双极 性数据解调模块还有一端连接到主机电源系统的接收电压输出端, 构成双极性 通信接口的接收电压输入端; 双极性数据解调模块的其余一端连接到电子开关 五的另一个输入端。 电子开关五的控制端与主机控制模块相连; 电子开关五的 输出端通向双极性通信接口外部, 构成信号总线的另一根。
[37] 上述图 22所示双极性通信接口的技术方案, 实现了在主机向从机输出供电电源 的同吋, 以提供相对于地线的正负通信电压的方式表达主机向从机发送的数据 。 其中, 双极性数据调制模块直接连接到主机电源系统的发送电压输出端, 双 极性数据解调模块直接连接到主机电源系统的接收电压输出端, 而电子开关五 在主机控制模块的控制下, 完成对输出到信号总线上的电压的切换。 当主机向 从机发送数据吋, 主机控制模块向电子开关五的控制端发送表达发送电压输出 的控制信号, 使电子开关五连接到双极性数据调制模块的支路导通, 信号总线 上即表现为发送电压。 反之亦然。 本技术方案同样实现了发送电压与接收电压 的分离, 为通信准确性的提高奠定了技术基础。
[38] 上述图 22所示的双极性通信接口的技术方案中, 双极性数据调制模块的构成方 式、 连接关系、 以及工作原理等均可参见图 10所示的双极性数据调制模块的技 术方案, 此处不再赞述。
[39] 本发明所述的主机电源系统的通信电压输出端, 可进一步细化为发送电压输出 端和接收电压输出端, 并且优选将发送电压输出端输出的电压取得高于接收电 压输出端输出的电压。 好处在于: 当主机在非通信状态和发送数据状态吋, 主 机向信号总线上输出较高的发送电压, 为从机内部的储能模块提供充电用能量 。 而当主机要接收从机发送的数据吋, 若主机仍然向信号总线上输出较高的发 送电压, 从机内部的储能模块将继续从信号总线上获取充电用能量, 这就会在 总线上形成电流噪声, 从而降低主机接收数据吋的信噪比。 反之, 当主机接收 从机发送的数据吋, 降低主机向信号总线上输出的电压, 使得总线上的电压低 于从机内部储能模块的电压, 则网路中的所有从机将由其自身的储能模块供电 以维持自身的工作。 这就避免了在主机接收数据吋, 诸从机从总线上获取充电 能量而形成的电流噪声, 从而提高了从机发送数据的信噪比, 提高了主机接收 数据的可靠性。
[40] 本发明所述的主从式直流载波通信系统中, 还包括一个或多个从机。 作为本发 明的另一方面, 从机包含从机通信接口、 整流电桥电路、 储能模块、 从机电源 系统、 从机吋钟电路、 和从机控制模块, 如图 13所示。 其中, 从机通信接口、 整流电桥电路、 储能模块、 从机电源系统、 从机吋钟电路、 和从机控制模块各 有一端接地二。 从机电源系统的电源输入端与储能模块相连, 从机电源系统的 电源输出端分别连接到从机控制模块、 从机吋钟电路、 和从机通信接口; 从机 通信接口和整流电桥电路各有两端通向从机外部, 分别连接到信号总线; 从机 通信接口的其余端连接到从机控制模块; 整流电桥电路的其余一端连接到储能 模块; 从机吋钟电路的其余一端连接到从机控制模块。
[41] 上述从机设计方案的优点在于:
[42] 其一, 整流电桥电路的引入实现了从机对输入电源的极性转换, 从而消除了传 统网路通信系统对于极性连接的要求, 实现了主机和从机之间双线式无极性的 连接方式, 简化了这种主从式网路系统的连接过程, 避免了由网路连接错误导 致的从机加电损坏的可能性。
[43] 其二, 从机通信接口与整流电桥电路并联到两根信号总线之间, 一方面避免了 整流电桥电路对于主机、 从机之间数据传输速度的影响, 另一方面使得从机既 可接收单极性调制数据又可接收双极性调制数据。
[44] 其三, 从机中的储能模块用于储存主机提供的能量, 这就使得从机处于无源工 作模式, 对于整个通信系统的能量补给只要向主机补给即可, 从而降低了系统 的供电复杂度, 提高了系统的可维护性。 同吋, 储能模块的引入还使得从机在 与主机交互数据吋, 最大可能地保持了从机电源系统的稳定性, 进而提高了整 个通信系统的稳定性。
[45] 本发明中从机通信接口的一种技术方案在于, 从机通信接口包含从机数据调制 模块和从机数据解调模块, 从机数据解调模块由两个从机数据解调电路构成, 如图 14所示。 两个从机数据解调电路分别与两根信号总线连接, 两个从机数据 解调电路还分别连接到从机控制模块, 两个从机数据解调电路共同连接到从机 电源系统的电源输出端, 两个从机数据解调电路还共同接地二。 从机数据调制 模块一端连接从机控制模块, 一端接地二, 其余两端分别连接到信号总线的两 根。 该技术方案的优点在于: 釆用两个完全相同的、 独立工作的从机数据解调 电路, 并将这两个从机数据解调电路分别连接到信号总线上, 因此, 从机既可 接收主机输出的单极性调制数据又可接收主机输出的双极性调制数据。 这就使 得从机针对不同的系统通信要求, 具有较好的适应性和可移植性。
[46] 本发明中的从机数据调制模块可包含三个电阻, 两个 NMOS管, 分别为电阻一 、 电阻二、 电阻三、 NMOS管一、 和 NMOS管二, 如图 15所示。 NMOS管一的漏 极和衬底、 NMOS管二的漏极和衬底、 以及电阻一的一端共同接地二; NMOS管 一的栅极、 NMOS管二的栅极、 以及电阻一的另一端相连, 并共同连接到从机控 制模块; NMOS管一的源极经由电阻二连接到信号总线的一根, NMOS管二的源 极经由电阻三连接到信号总线的另一根。 上述从机数据调制模块实现了以电流 消耗的变化的形式将需发送的数据加载到信号总线上, 其优点在于: 由于 NMOS 管一、 NMOS管二的源极和漏极分别连接到地线和信号总线, 因此降低了由于整 流电桥电路的压降的个体差异对电流消耗变化的一致性的影响, 使从机向主机 发回的电流消耗的变化仅取决于总线上的电压。
[47] 本发明中的从机数据解调电路可包含反相器三和电阻四, 如图 16所示。 反相器 三的一端连接到从机电源系统的电源输出端; 反相器三的信号输入端连接到信 号总线的一根, 该端还经由电阻四接地二; 反相器三的信号输出端连接到从机 控制模块; 反相器三的其余一端直接接地二。 上述从机数据解调电路结构极为 简单, 而且易于集成。 利用电阻四的下拉作用, 保证了在信号总线处于正向通 信电压、 负向通信电压或零电压任一状态吋, 该从机数据解调电路的输出均处 于确定的状态, 进而提高了通信系统的可靠性; 同吋, 因为电阻四的下拉作用 , 降低了反相器三的输入处于不确定状态吋对从机中储能模块所储能量的消耗 , 提高了从机储能的有效利用率。 除此之外, 当总线上数据变化吋, 电阻四还 为总线上残留的电荷提供了泄放通路, 进而提高了通信速率。
[48] 本发明中的从机数据解调电路也可包含反相器四和 NMOS管三, 如图 17所示。
反相器四的一端连接从机电源系统的电源输出端, 一端接地二; NMOS管的源极 和衬底接地二; 其漏极与反相器四的信号输入端连接, 并共同连接到信号总线 的一根; NMOS管三的栅极与反相器四的信号输出端连接, 并共同连接到从机控 制模块。 上述从机数据解调电路釆用负反馈连接的 NMOS管三取代下拉电阻四, 其优点在于, 避免了电阻四对主机提供的能量的消耗, 提高了主机能量的利用 效率。 此外, 利用 NMOS管动态电阻的特点, 在总线的输入为低电平吋, 反相器 四的输出为高电平, NMOS管三则处于导通状态。 因此, 当发送的通信数据使得 总线上的电压由高电平切换到低电平吋, NMOS管三可以加速总线上残留电荷的 泄放, 从而提高通信系统的通信速率。
[49] 上述从机数据解调电路的两种技术方案中的反相器三、 反相器四优选取为施密 特反相器。 其好处在于, 不论输入反相器的信号的状态切换是否缓慢, 即电平 转换过渡吋间是否较长, 反相器的输出边沿都比较陡峭, 其输出的电平转换过 渡吋间极短。 这就缩短了从机数据解调电路后续处理电路的状态过渡吋间, 降 低了从机的功耗。 此外, 施密特反相器具有良好的抗噪声性能, 可以提高从机 接收数据的稳定性。
附图说明
[50] 图 1为本发明主从式直流载波通信系统的网路连接示意图;
[51] 图 2为本发明中釆用相同电压收发数据的主机的构成框图;
[52] 图 3为本发明中主机通信接口由主机通信接口电路构成的实施框图;
[53] 图 4为本发明中单极性通信接口电路的第一种实施方式的构成示意图;
[54] 图 5为本发明中单极性通信接口电路的第二种实施方式的构成示意图;
[55] 图 6为本发明中单极性通信接口电路的第三种实施方式的构成示意图;
[56] 图 7为本发明中单极性数据调制模块的第一种实施方式的构成示意图;
[57] 图 8为本发明中双极性通信接口电路的第一种实施方式的构成示意图;
[58] 图 9为本发明中双极性通信接口电路的第二种实施方式的构成示意图;
[59] 图 10为本发明中双极性数据调制模块的第一种实施方式的构成示意图;
[60] 图 11为本发明中双极性通信接口电路的第三种实施方式的构成示意图;
[61] 图 12为本发明中双极性数据调制模块的第二种实施方式的构成示意图;
[62] 图 13为本发明中从机的构成框图;
[63] 图 14为本发明中从机通信接口的构成框图;
[64] 图 15为本发明中从机数据调制模块的构成框图;
[65] 图 16为本发明中从机数据解调电路的第一种实施方式的构成示意图; [66] 图 17为本发明中从机数据解调电路的第二种实施方式的构成示意图;
[67] 图 18为本发明中釆用不同电压收发数据的主机的构成框图;
[68] 图 19为本发明中主机通信接口由电子开关和主机通信接口电路构成的实施框图
[69] 图 20为本发明中主机通信接口体现为单极性通信接口的构成框图;
[70] 图 21为本发明中单极性数据调制模块的第二种实施方式的构成示意图;
[71] 图 22为本发明中主机通信接口体现为双极性通信接口的构成框图;
[72] 图 23-1为本发明中釆用相同电压收发数据的主机中单极性数据调制模块向从机 发送单极性数据的波形示意图;
[73] 图 23-2为本发明中从机接收解调出的单极性数据的一路波形示意图;
[74] 图 23-3为本发明中从机接收解调出的单极性数据的另一路波形示意图;
[75] 图 24-1为本发明中釆用相同电压收发数据的主机中双极性数据调制模块向从机 发送双极性数据的波形示意图;
[76] 图 24-2为本发明中从机接收解调出的双极性数据的一路波形示意图;
[77] 图 24-3为本发明中从机接收解调出的双极性数据的另一路波形示意图;
[78] 图 25-1为本发明中从机调制发送数据的电压波形示意图;
[79] 图 25-2为本发明中从机调制发送数据的电流波形示意图;
[80] 图 26为本发明中釆用不同电压收发数据的主机中单极性数据调制模块向从机发 送单极性全局指令的波形示意图;
[81] 图 27为本发明中釆用不同电压收发数据的主机中双极性数据调制模块向从机发 送双极性单个指令的波形示意图。
具体实施方式
[82] 下面结合附图和具体实施方式对本发明的技术方案做进一步详细说明。
[83] 本发明的主从式直流载波通信系统, 由一台主机 100、 一台或者多台从机 200、 以及连接主机 100和从机 200的信号总线 300组成, 一台或多台从机 200彼此独立 地并联在由主机 100引出的信号总线 300之间, 如图 1所示。 主机 100与从机 200的 配套使用, 实现了在主机向从机提供直流工作电源的同吋进行单工双向数据传 输, 以及主机与从机间的双线无极性连接, 简化了主机 100和从机 200的设计和 连接。
[84] 作为本发明的一方面, 主机 100可包含主机吋钟电路 140、 主机电源系统 130、 主机通信接口 150、 和主机控制模块 120, 如图 2所示。 具体连接关系描述如下:
[85] (1) 主机电源系统 130的工作电压输出端 31同吋连接到主机吋钟电路 140、 主 机控制模块 120、 和主机通信接口 150, 提供它们工作所需的能量。 主机电源系 统 130的通信电压输出端 32连接到主机通信接口 150的通信电压输入端 51, 通过 主机通信接口 150把从机 200工作需要的能量输出到信号总线 300上。 主机电源系 统130其余的一端接地 40。
[86] (2) 主机吋钟电路 140—端连接主机控制模块 120, 提供主机控制模块 120工作 需要的吋钟信号; 一端连接主机电源系统 130的工作电压输出端 31, 接受主机电 源系统 130提供的工作电源; 其余一端接地 40。
[87] (3) 主机通信接口 150与主机控制模块 120相连, 一方面用于接收主机控制模 块 120的控制信号, 从而通过信号总线 300把从机 200的工作电源或者需发送给从 机 200的数据发送至从机, 另一方面用于将从信号总线 300上提取到的从机 200回 送的数据信息发送给主机控制模块 120进行处理。 主机通信接口 150的另一端连 接到主机电源系统 130的工作电压输出端 31, 用于接受主机电源系统 130提供的 工作电压。 主机通信接口 150的通信电压输入端 51连接到主机电源系统 130的通 信电压输出端 32, 接受主机电源系统 130提供的通信电压。 主机通信接口 150还 有一端接地 40, 其余两端通向主机 100外部, 构成信号总线 300, 用于连接一个 或多个从机 200。 主机 100经由信号总线 300向从机 200提供其工作需要的电源, 并与从机 200进行数据交换。
[88] (4) 主机控制模块 120其余一端接地 40。
[89] 上述图 2所示主机设计方案的优点在于:
[90] 其一, 主机电源系统 130通过其工作电压输出端 31向主机内部各模块提供工作 电源, 通过通信电压输出端 32向从机 200提供供电电源, 这就使得对从机 200的 供电电源与主机 100自身工作所需工作电源独立工作, 从而避免了主机工作产生 的噪声对主机、 从机之间的通信可能产生的影响。
[91] 其二, 主机 100向从机 200提供直流电, 从而避免了釆用交流供电吋所需的较为 复杂的交 /直流转换环节, 因此从机 200中只需设计简单的线性电源系统即可, 这 就提高了从机 200的可靠性和可集成性。
[92] 作为本发明主机通信接口的第一种实施方式, 主机通信接口 150为一主机通信 接口电路 153, 如图 3所示。 主机通信接口电路 153的端口 20连接到主机电源系统 130的通信电压输出端 32, 构成主机通信接口 150的通信电压输入端 51, 接受主 机电源系统 130提供的通信电压。
[93] 图 3所示主机通信接口电路 153的一种技术方案在于, 主机通信接口电路可取为 单极性通信接口电路, 包括单极性数据调制模块 1011和单极性数据解调模块 102 。 具体连接关系有以下三种实施方式:
[94] 1 . 如图 4所示, 单极性数据调制模块 1011与单极性数据解调模块 102共同连接 到主机电源系统 130的工作电压输出端 31, 由主机电源系统 130供电。 单极性数 据调制模块 1011还与单极性数据解调模块 102共同接地 40, 即连接到地线。 单极 性数据调制模块 1011与单极性数据解调模块 102还各有一端分别连接到主机控制 模块 120, 与主机控制模块 120进行数据交互。 单极性数据调制模块 1011的调制 信号输入端 12通向单极性通信接口电路 1531外部, 构成单极性通信接口电路 153 1的端口 20。 单极性数据调制模块 1011的调制信号输出端 11经由单极性数据解调 模块 102通向单极性通信接口电路 1531外部, 构成信号总线 300的一根, 地线通 向单极性通信接口电路 1531外部, 构成信号总线 300的另一根。
[95] 2. 如图 5所示, 单极性数据调制模块 1011与单极性数据解调模块 102共同连接 到主机电源系统 130的工作电压输出端 31, 由主机电源系统 130供电。 单极性数 据调制模块 1011还与单极性数据解调模块 102共同接地 40, 即连接到地线。 单极 性数据调制模块 1011与单极性数据解调模块 102还各有一端分别连接到主机控制 模块 120, 与主机控制模块 120进行数据交互。 单极性数据调制模块 1011的调制 信号输入端 12经由单极性数据解调模块 102通向单极性通信接口电路 1532外部, 构成单极性通信接口电路 1532的端口 20。 地线与单极性数据调制模块 1011的调 制信号输出端 11分别通向单极性通信接口电路 1532外部, 构成信号总线 300。
[96] 3. 如图 6所示, 单极性数据调制模块 1011与单极性数据解调模块 102共同连接 到主机电源系统 130的工作电压输出端 31, 由主机电源系统 130供电。 单极性数 据调制模块 1011还与单极性数据解调模块 102共同接地 40, 即连接到地线。 单极 性数据调制模块 1011与单极性数据解调模块 102还各有一端分别连接到主机控制 模块 120, 与主机控制模块 120进行数据交互。 单极性数据调制模块 1011的调制 信号输入端 12通向单极性通信接口电路 1533外部, 构成单极性通信接口电路 153 3的端口 20。 单极性数据调制模块 1011的调制信号输出端 11通向单极性通信接口 电路 1533外部, 构成信号总线 300的一根。 单极性数据解调模块 102的其余一端 通向单极性通信接口电路 1533外部, 构成信号总线 300的另一根。
[97] 上述图 4、 图 5、 图 6所示的单极性通信接口电路用较为简单的实施方式, 实现 了在直流供电线 (即信号总线 300) 上进行单工双向的主机、 从机间的数据交互 。 在以上三种实施方式中, 单极性数据调制模块 1011、 单极性数据解调模块 102 、 以及由从机 200并联网络构成的主机 100的输出负载, 三者相当于串联连接在 主机电源系统 130的通信电压输出端 32和地线之间, 参见图 1, 三者的不同连接 顺序构成了以上三种不同实施方式。 单极性数据调制模块 1011在不向从机 200发 送数据吋, 用于通过信号总线 300给从机 200提供工作需要的直流电源; 在向从 机 200发送数据吋, 用于把主机 100发出的数据以电压变化的形式加载在输出到 从机 200的信号总线 300上。 单极性数据解调模块 102用于提取从机 200以主机输 出负载电流变化的形式加载到信号总线 300上的电流变化信息。
[98] 如图 4、 图 5或者图 6所示的单极性通信接口电路的实施方式中, 单极性数据调 制模块 1011可包含电子开关 122和驱动模块 111, 参见图 7。 驱动模块 111的一端 连接到主机电源系统 130的工作电压输出端 31, 接受主机电源系统 130输出的工 作电压, 为驱动模块 111提供低边驱动电压。 驱动模块 111还有一端与电子开关 1 22的一个输入端共同接地 40。 驱动模块 111的信号输入端连接到主机控制模块 12 0, 接收主机控制模块 120输出的低电平压控制信号。 驱动模块 111的信号输出端 与电子开关 122的控制端相连, 将接收到的低电平控制信号转换为高电平控制信 号输出, 以控制电子开关 122的闭合方向。 驱动模块 111的其余一端与电子开关 1 22的另一个输入端共同通向单极性数据调制模块 1011外部, 构成调制信号输入 端 12。 该调制信号输入端 12用于接受单极性数据调制模块 1011的外部、 由主机 电源系统 130直接或间接提供的较高通信电压, 并为驱动模块 111提供高边驱动 电压。 电子开关 122的输出端通向单极性数据调制模块 1011外部, 构成调制信号 输出端 11。
[99] 在不发送数据状态, 电子开关 122的连接到调制信号输入端 12的支路导通, 参 见图 7, 调制信号输出端 11输出直流电源至从机 200; 在发送数据状态, 电子开 关 122在连接到调制信号输入端 12的支路与连接到地线的支路之间进行切换, 输 出调制后的信号至从机 200, 参见图 23-1所示波形。
[100] 图 7中单极性数据调制模块 1011与其外部单极性数据解调模块的连接, 可体现 为图中单极性数据解调模块 1021、 1022或者 1023中的任意一种连接方式, 即: 单极性数据调制模块 1011的调制信号输入端 12经由单极性数据解调模块 1021连 接到主机电源系统 130, 对应图 5所示实施方式; 或者, 单极性数据调制模块 101 1的调制信号输出端 11经由单极性数据解调模块 1022构成信号总线 300的一根, 对应图 4所示的实施方式; 或者, 单极性数据解调模块 1023—端从单极性数据调 制模块 1011外部接地 40, 另一端通向单极性通信接口电路外部构成信号总线 300 的一根, 对应图 6所示实施方式。 图 7中单极性数据解调模块的其余连接关系与 图 4、 图 5或图 6中所示的一致, 此处不再赞述。
[101] 在单极性通信接口电路的技术方案中, 主机 100在向从机 200输出供电电源的同 吋, 以供电电源的有无表达主机 100向从机 200发送的数据 1或 0。 其工作原理描 述为:
[102] 1 . 在不向诸从机 200发送数据或不接收诸从机 200返回的数据吋, 在驱动模块 1 11的驱动作用下, 主机控制模块 120输出到驱动模块 111的低电平控制信号被转 换为高电平控制信号, 并输出到电子开关 122的控制端, 从而使得电子开关 122 的连接到调制信号输入端 12的支路闭合, 如图 7所示。 此吋, 主机 100通过信号 总线 300对诸从机 200输出直流电源。
[103] 2. 当需向诸从机 200发送数据 1吋, 主机控制模块 120向驱动模块 111发送低电 平的表达数据 1的控制信号; 经驱动模块 111的驱动作用后, 被转换为高电平的 表达数据 1的控制信号发送到电子开关 122的控制端; 电子开关 122的连接到调制 信号输入端 12的支路闭合, 如图 7所示。 此吋, 单极性数据调制模块 1011的调制 信号输出端 11输出通信电压。 [104] 3. 当需向诸从机 200发送数据 0吋, 主机控制模块 120向驱动模块 111发送低电 平的表达数据 0的控制信号; 经驱动模块 111的驱动作用后, 被转换为高电平的 表达数据 0的控制信号发送到电子开关 122的控制端; 电子开关 122的连接到地线 的支路闭合。 此吋, 单极性数据调制模块 1011的调制信号输出端 11输出零电压
[105] 依据上述单极性通信接口电路的工作原理, 单极性数据调制模块 1011输出的调 制信号可表现为图 23-1所示波形。 图中, VIN为主机 100输出到从机 200的通信电 压值。 信号总线 300上的电压在通信电压 VIN和零之间变化。
[106] 如图 3所示的主机通信接口电路 153还可取为双极性通信接口电路, 包括双极性 数据调制模块和双极性数据解调模块。 具体连接关系有以下三种实施方式:
[107] 1 . 如图 8所示, 双极性数据调制模块 1051与双极性数据解调模块 106共同连接 到主机电源系统 130的工作电压输出端 31, 由主机电源系统 130供电。 双极性数 据调制模块 1051还与双极性数据解调模块 106共同接地 40, 即连接到地线。 双极 性数据调制模块 1051与双极性数据解调模块 106还各有一端分别连接到主机控制 模块 120, 与主机控制模块 120进行数据交互。 双极性数据调制模块 1051的调制 信号输入端 19通向双极性通信接口电路 1534外部, 构成端口 20。 双极性数据调 制模块 1051的两个调制信号输出端 16和 17, 其中: 调制信号输出端 16经由双极 性数据解调模块 106通向双极性通信接口电路 1534外部, 构成信号总线 300的一 根; 调制信号输出端 17直接通向双极性通信接口电路 1534外部, 构成信号总线 3 00的另一根。 以此种实施方式连接而成的双极性通信接口电路 1534中, 双极性 数据解调模块 106用于提取信号总线 300上、 由诸从机 200构成的主机输出负载引 起的电流变化信息。
[108] 2. 如图 9所示, 双极性数据调制模块 1051与双极性数据解调模块 106共同连接 到主机电源系统 130的工作电压输出端 31, 由主机电源系统 130供电。 双极性数 据调制模块 1051还与双极性数据解调模块 106共同接地 40, 即连接到地线。 双极 性数据调制模块 1051与双极性数据解调模块 106还各有一端分别连接到主机控制 模块 120, 与主机控制模块 120进行数据交互。 双极性数据调制模块 1051的调制 信号输入端 19, 经由双极性数据解调模块 106通向双极性通信接口电路 1535外部 , 构成端口 20。 双极性数据调制模块 1051的两个调制信号输出端 16和 17, 分别 通向双极性通信接口电路 1535外部, 构成信号总线 300。 以此种实施方式连接而 成的双极性通信接口电路 1535中, 双极性数据解调模块 106用于提取信号总线 30 0上由诸从机 200构成的主机输出负载引起的电流变化信息, 该信息由主机电源 系统 130向双极性数据解调模块 106的输出表达。
[109] 3. 如图 11所示, 双极性数据调制模块 1052与双极性数据解调模块 106共同连接 到主机电源系统 130的工作电压输出端 31, 由主机电源系统 130供电。 双极性数 据调制模块 1052还与双极性数据解调模块 106共同接地 40, 即连接到地线。 双极 性数据调制模块 1052与双极性数据解调模块 106还各有一端分别连接到主机控制 模块 120, 与主机控制模块 120进行数据交互。 双极性数据调制模块 1052的调制 信号输入端 19通向双极性通信接口电路 1536外部, 构成端口 20。 双极性数据调 制模块 1052的两个调制信号输出端 16和 17, 分别通向双极性通信接口电路 1536 外部, 构成信号总线 300。 双极性数据调制模块 1052其余的端连接到双极性数据 解调模块 106。 以此种实施方式连接而成的双极性通信接口电路 1536中, 双极性 数据解调模块 106用于提取信号总线 300上由诸从机 200构成的主机输出负载引起 的电流变化信息, 该信息经由双极性数据调制模块 1052回到主机电源系统 130的 电源参考地 40, 并由主机电源系统 130向双极性数据解调模块 106的输出表达。
[110] 以上图 8、 图 9、 图 11所示的双极性通信接口电路, 在图 4、 图 5、 图 6所示单极 性通信接口电路方案的基础上进一步优化, 通过釆用双极性数据调制模块, 实 现了在主机向从机输出供电电源的同吋, 以提供相对于电源参考地 40的正负通 信电压的方式表达主机向从机发送的数据。 其优点在于: 在不同发送数据中进 行切换吋, 例如由发送数据 0切换到发送数据 1, 由于主机输出电压的极性相反 , 因此, 为信号总线上等效电感或等效电容中残留的能量建立了相反方向的泄 放通路, 从而这种双极性通信接口电路的数据传输速率更快, 信号幅度变化更 大, 抗干扰性能更高。
[111] 如图 8或者图 9所示的双极性通信接口电路中, 双极性数据调制模块 1051包含两 个驱动模块 113和 114、 两个电子开关 126和 127、 以及反相器 301, 参见图 10。 两 个驱动模块 113和 114、 与反相器 301共同连接到主机电源系统 130的工作电压输 出端 31, 两个驱动模块 113和 114还与反相器 301共同接地 40。 反相器 301的信号 输入端与驱动模块 114的信号输入端共同连接到主机控制模块 120, 反相器 301的 信号输出端连接到驱动模块 113的信号输入端。 驱动模块 113的信号输出端连接 到电子开关 126的控制端, 驱动模块 114的信号输出端连接到电子开关 127的控制 端。 电子开关 126的一个输入端、 电子开关 127的一个输入端、 驱动模块 113的其 余一端、 和驱动模块 114的其余一端相连, 共同通向双极性数据调制模块 1051外 部, 构成双极性数据调制模块 1051的调制信号输入端 19。 电子开关 126的另一个 输入端与电子开关 127的另一个输入端共同接地 40。 两个电子开关 126和 127的输 出端分别通向双极性数据调制模块 1051外部, 构成双极性数据调制模块 1051的 两个调制信号输出端 16和 17。
[112] 图 10中双极性数据调制模块 1051与其外部的双极性数据解调模块的连接, 可体 现为图中双极性数据解调模块 1061、 1062或者 1063中的任意一种连接方式, 即 : 双极性数据调制模块 1051的调制信号输入端 19经由双极性数据解调模块 1061 连接到主机电源系统 130, 对应图 9所示实施方式; 或者, 双极性数据调制模块 1 051的调制信号输出端 16或者 17经由双极性数据解调模块通向双极性通信接口电 路外部, 构成信号总线 300的一根, 对应图 8所示实施方式。 图 10中双极性数据 解调模块的其余连接关系与图 8或图 9中的一致, 此处不再赞述。
[113] 如图 11所示的双极性通信接口电路 1536中, 双极性数据调制模块 1052包含两个 驱动模块 115和 116、 两个电子开关 128和 129、 以及反相器 302, 参见图 12。 两个 驱动模块 115和 116、 与反相器 302共同连接到主机电源系统 130的工作电压输出 端 31, 两个驱动模块 115和 116还与反相器 302共同接地 40。 反相器 302的信号输 入端与驱动模块 116的信号输入端共同连接到主机控制模块 120, 反相器 302的信 号输出端连接到驱动模块 115的信号输入端。 驱动模块 115的信号输出端连接到 电子开关 128的控制端, 驱动模块 116的信号输出端连接到电子开关 129的控制端 。 电子开关 128的一个输入端、 电子开关 129的一个输入端、 驱动模块 115的其余 一端、 和驱动模块 116的其余一端相连, 并共同通向双极性数据调制模块 1052外 部, 构成双极性数据调制模块 1052的调制信号输入端 19。 电子开关 128的另一个 输入端与电子开关 129的另一个输入端相连, 并经由双极性数据调制模块 1052外 部的双极性数据解调模块 106接地 40。 两个电子开关 128和 129的输出端分别通向 双极性数据调制模块 1052外部, 构成双极性数据调制模块 1052的两个调制信号 输出端 16和 17。
[114] 在图 8、 图 9、 图 11所示双极性通信接口电路的技术方案中, 主机 100在向从机 2 00输出供电电源的同吋, 以提供相对于电源参考地 40的正负通信电压的方式表 达其向从机 200发送的数据 1或 0。 以图 10为例说明双极性数据调制模块的工作原 理:
[115] 1 . 在不向诸从机 200发送数据或不接收诸从机 200返回的数据吋, 在驱动模块 1 13和 114的驱动作用下, 主机控制模块 120输出到驱动模块 114和经由反相器 301 输出到驱动模块 113的低电平控制信号被转换为高电平控制信号, 并分别输出到 电子开关 127的控制端和电子开关 126的控制端, 使得电子开关 127的连接到调制 信号输入端 19的支路闭合、 电子开关 126的连接到地线 40的支路闭合, 参见图 10 所示。 此吋, 主机 100通过信号总线 300对诸从机 200输出直流电源。
[116] 2. 当需向诸从机 200发送数据 1吋, 主机控制模块 120向驱动模块 114、 反相器 3 01发出低电平的表达数据 1的控制信号。 该信号经驱动模块 114的驱动作用后, 被转换为高电平的表达数据 1的控制信号发送到电子开关 127的控制端。 同吋, 主机控制模块 120输出的低电平的表达数据 1的控制信号经反相器 301后, 被转换 为低电平的表达数据 0的控制信号输入到驱动模块 113; 驱动模块 113将该低电平 的表达数据 0的控制信号转换为高电平的表达数据 0的控制信号, 并输出至电子 开关 126的控制端。 使得电子开关 127的连接到调制信号输入端 19的支路闭合、 电子开关 126的连接到地线 40的支路闭合, 参见图 10所示。 此吋, 双极性数据调 制模块 1051的调制信号输出端 17输出通信电压, 调制信号输出端 16输出零电压 , 即输出所述正向通信电压。
[117] 3. 当需向诸从机 200发送数据 0吋, 主机控制模块 120向驱动模块 114、 反相器 3 01发出低电平的表达数据 0的控制信号。 该信号经驱动模块 114的驱动作用后, 被转化为高电平的表达数据 0的控制信号发送到电子开关 127的控制端。 同吋, 主机控制模块 120输出的低电平的表达数据 0的控制信号经反相器 301后, 被转换 为低电平的表达数据 1的控制信号输入到驱动模块 113; 驱动模块 113将该低电平 的表达数据 1的控制信号转换为高电平的表达数据 1的控制信号, 并输出至电子 开关 126的控制端。 使得电子开关 127的连接到地线 40的支路闭合、 电子开关 126 的连接到调制信号输入端 19的支路闭合。 此吋, 双极性数据调制模块 1051的调 制信号输出端 17输出零电压, 调制信号输出端 16输出通信电压, 则主机 100在信 号总线 300上输出了同发送数据 1吋电压极性相反的电压信号, 即输出所述负向 通信电压。
[118] 图 12所示的双极性通信接口电路 1536的工作原理与上述原理一致, 此处不再赞 述。
[119] 依据上述双极性通信接口电路的工作原理, 双极性数据调制模块输出的调制信 号可表现为图 24-1所示波形。 图中, VIN为主机 100输出到从机 200的通信电压值 。 信号总线 300上的电压在正向通信电压 VIN和负向通信电压 VIN之间变化。
[120] 上述图 7、 图 10或者图 12中的驱动模块可釆用诸如 74LS4245和 IR53HD420等釆 用一个低电压和一个高电压双工作电源的、 可把低压输入信号转换为高压输出 信号的电路模块。 上述单极性数据解调模块和双极性数据解调模块可釆用诸如 电阻、 电感等可把输入的电流变化信息转换为电压变化信息输出的器件。
[121] 以上所述为对本发明中主机构成方案的实施方式说明。 作为本发明的另一方面 , 从机 200包含从机通信接口 210、 整流电桥电路 260、 储能模块 240、 从机电源 系统 230、 从机吋钟电路 250、 和从机控制模块 220, 如图 13所示。 具体连接关系 描述如下:
[122] (1) 从机通信接口 210与从机控制模块 220相连, 一方面用于将提取到的主机 1 00加载到信号总线 300上的数据发送到从机控制模块 220进行处理, 另一方面把 从机控制模块 220需要发送至主机 100的数据信息加载到信号总线 300上。 从机通 信接口 210—端连接到从机电源系统 230的电源输出端 35, 用于接受从机电源系 统 230提供的工作电压和复位信号。 从机通信接口 210还有一端接地 50, 其余两 端分别连接到信号总线 300, 用于从总线 300上提取信号或加载数据到总线 300上
[123] (2) 整流电桥电路 260—端连接储能模块 240, 一端接地 50, 其余两端分别连 接到信号总线 300。 整流电桥电路 260用于把主机 100通过信号总线 300提供给从 机 200的电源进行极性调整, 以实现主机 100与从机 200的无极性连接, 并将电能 储存到储能模块 240中, 供从机 200工作使用。
[124] (3) 储能模块 240—端连接整流电桥电路 260, 接受整流电桥电路 260输出的能 量。 储能模块 240—端连接从机电源系统 230的电源输入端 36, 用于在接收数据 过程中、 外部供电中断吋, 将储能模块 240中储存的能量提供给从机电源系统 23 0, 并由该从机电源系统 230将其转换为从机 200工作所需电压。 储能模块 240其 余一端接地 50。
[125] (4) 从机电源系统 230的电源输入端 36连接储能模块 240, 电源输出端 35同吋 连接从机通信接口 210、 从机吋钟电路 250、 和从机控制模块 220, 其余一端接地 50。 从机电源系统 230用于把储能模块 240中储存的能量转换为从机 200工作所需 电压, 并将其提供给从机通信接口 210、 从机吋钟电路 250、 和从机控制模块 220
[126] (5) 从机吋钟电路 250—端连接从机电源系统 230的电源输出端 35, 接受从机 电源系统 230输出的工作电压; 一端连接从机控制模块 220, 向从机控制模块 220 提供其工作的吋钟信号; 从机吋钟电路 250其余一端接地 50。
[127] (6) 从机控制模块 220其余一端接地 50。
[128] 上述图 13所示从机设计方案的优点在于:
[129] 其一, 整流电桥电路 260的引入实现了从机对输入电源的极性转换, 从而消除 了传统网路通信系统对于极性连接的要求, 实现了主机 100和从机 200之间双线 式无极性的连接方式, 简化了这种主从式网路系统的连接过程, 避免了由网路 连接错误导致的从机加电损坏的可能性。
[130] 其二, 从机通信接口 210与整流电桥电路 260并联到两根信号总线 300之间, 一 方面避免了整流电桥电路 260对于主机、 从机之间数据传输速度的影响, 另一方 面使得从机既可接收单极性调制数据又可接收双极性调制数据。
[131] 其三, 从机 200中的储能模块 240用于储存主机 100提供的能量, 这就使得从机 2 00处于无源工作模式, 对于整个通信系统的能量补给只要向主机 100补给即可, 从而降低了系统的供电复杂度, 提高了系统的可维护性。 同吋, 储能模块 240的 引入还使得从机 200在与主机 100交互数据吋, 最大可能地保持了从机电源系统 2 30的稳定性, 进而提高了整个通信系统的稳定性。
[132] 本发明中从机通信接口 210的一种技术方案在于, 从机通信接口 210包含从机数 据调制模块 201和从机数据解调模块 202, 从机数据解调模块 202由两个从机数据 解调电路 212构成, 如图 14所示。 具体连接关系描述如下:
[133] (1) 两个从机数据解调电路 212分别与两根信号总线 300连接, 分别取样两根 信号总线 300上的电压变化信息。 两个从机数据解调电路 212分别连接到从机控 制模块 220, 将从信号总线 300上取样到的电压变化信息发送给从机控制模块 220 处理。 两个从机数据解调电路 212共同连接到从机电源系统 230的电源输出端 35 , 接受从机电源系统 230提供的工作电源, 以使得输出给从机控制模块 220的信 号的电平与从机控制模块 220的工作电压基本相同。 两个从机数据解调电路 212 还共同接地 50。
[134] (2) 从机数据调制模块 201—端连接从机控制模块 220, 一端接地 50, 其余的 两端分别连接到信号总线 300。 从机数据调制模块 201用于把从机控制模块 220发 出的、 以高低电平表达的数据信息, 转换为该从机的消耗电流的变化, 并加载 到信号总线 300上发送给主机 100。
[135] 上述从机通信接口 210技术方案的优点在于: 釆用两个完全相同的、 独立工作 的从机数据解调电路 212, 并将这两个从机数据解调电路 212分别连接到信号总 线 300上, 因此, 从机 200既可接收主机 100输出的单极性调制数据又可接收主机 100输出的双极性调制数据。 这就使得从机 200针对不同的系统通信要求, 具有 较好的适应性和可移植性。
[136] 本发明中的从机数据调制模块 201可包含三个电阻 215、 216和 217, 两个 NMOS 管 218和 219, 如图 15所示。 NMOS管 218的漏极和衬底、 NMOS管 219的漏极和衬 底、 以及电阻 215的一端共同接地 50。 NMOS管 218的栅极、 NMOS管 219的栅极 、 以及电阻 215的另一端相连, 并共同连接到从机控制模块 220。 NMOS管 218的 源极经由电阻 216连接到信号总线 300的一根, NMOS管 219的源极经由电阻 217连 接到信号总线 300的另一根。 其中, 电阻 215为 NMOS管 218和 219的栅极提供下拉 驱动, 电阻 216和 217用于实现电压变化信息向消耗电流变化信息的转换。
[137] 上述从机数据调制模块 201实现了以消耗电流变化的形式将需发送的数据加载 到信号总线 300上, 其工作原理描述为:
[138] (1) 当发送数据 1吋, 从机控制模块 220输出高电平控制信号, 则 NMOS管 218 和 219的栅极电压为高, NMOS管 218和 219导通。 此吋, 由该从机 200引起的总线 300上的电流为: 总线电压除以电阻 216和 217的阻值之和, 该电流远大于从机 20 0的正常工作电流。 例如, 当从机 200体现为电子雷管吋, 该电流为毫安量级, 而电子雷管的正常工作电流为微安量级。 这就便于主机中的数据解调模块提取 并识别从机向其发送的数据信息。
[139] (2) 当发送数据 0吋, 从机控制模块 220输出低电平控制信号, 则 NMOS管 218 和 219的栅极电压为低, NMOS管 218和 219截止, 此吋, 由该从机 200引起的总线 300上的电流为从机 200的正常工作电流。
[140] 基于以上工作原理, 图 25-1给出了从机控制模块 220输出的电压控制信号, 此 即为需发送给主机通信接口的数据信息。 经从机数据调制模块 201作用后, 该电 压控制信号被转换为电流消耗信息发送到信号总线 300上, 参见图 25-2。 图 25-1 中, Vcc即为从机 200的工作电压。 图 25-2中, 电流 IH为从机 200向主机 100发送数 据 1吋的消耗电流, 电流 t为从机 200向主机 100发送数据 0吋的消耗电流, 亦即从 机 200的正常工作电流。
[141] 本发明中的从机数据解调电路 212可包含反相器 303和电阻 206, 如图 16所示。
反相器 303用于提取信号总线 300上的数据信息, 其一端连接从机电源系统 230的 电源输出端 35, 一端接地 50。 反相器 303的信号输入端连接到信号总线 300的一 根, 该端还经由电阻 206接地 50。 反相器 303的信号输出端连接到从机控制模块 2 20。 其中, 电阻 206用于为反相器 303的信号输入端提供下拉驱动, 避免了在总 线 300由于意外断开吋, 反相器 303的信号输入端处于不确定状态, 这就提高了 通信系统的可靠性; 同吋, 由于电阻 206的下拉作用, 还降低了反相器 303的输 入处于不确定状态吋对储能模块 240所储能量的消耗, 提高了从机储能的有效利 用率; 此外, 当总线 300上数据变化吋, 电阻 206还为总线 300上残留的电荷提供 泄放通路, 提高了通信速率。
[142] 本发明中的从机数据解调电路 212也可包含反相器 304和 NMOS管 207, 如图 17 所示。 反相器 304—端连接从机电源系统 230的电源输出端 35, 一端接地 50。 NM OS管 207为反相器 304的信号输入端提供负反馈。 NMOS管 207的源极和衬底接地 50; 其漏极与反相器 304的信号输入端连接, 并共同连接到信号总线 300的一根 ; NMOS管 207的栅极与反相器 304的信号输出端连接, 并共同连接到从机控制模 块 220。 上述从机数据解调电路 212釆用负反馈连接的 NMOS管 207取代下拉电阻 2 06, 其优点在于, 避免了电阻 206对主机 100提供的能量的消耗, 提高了主机能 量的利用效率。 此外, 禾 lj用 NMOS管动态电阻的特点, 在总线 300的输入为低电 平吋, 反相器 304的输出为高电平, NMOS管 207则处于导通状态。 在总线 300的 输入为高电平吋, 反相器 304输出为低电平, NMOS管 207处于截止状态。 当总线 电压由高到低变化吋, 反相器 304的输出电压随之由低到高变化, NMOS管 207的 栅极电压也随之由低到高变化。 此吋, NMOS管 207由截止区经由可变电阻区进 入饱和导通区, 逐步泄放总线残留电荷。 而当总线 300由于意外而断开吋, 由于 NMOS管 207的存在, 可以使反相器 304的信号输入端处于确定的低电平状态。
[143] 对于单极性通信接口电路输出的单极性调制数据, 以图 23-1的波形图所示的数 据为例, 两个从机数据解调电路 212的输出分别为图 23-2和图 23-3所示的波形图 。 图中, V为从机 200的工作电压。 从机数据解调模块 202将图 23-1所示的单极 性调制数据解调为两路信号, 图 23-2所示的一路信号为与输入的调制信号变化趋 势对应、 在工作电压 Vcc和零电平之间变化的脉冲信号, 图 23-3所示的另一路信 号为零电平信号。
[144] 对于双极性通信接口电路输出的双极性调制数据, 以图 24-1的波形图所示的数 据为例, 两个从机数据解调电路 212的输出分别为图 24-2和图 24-3所示的波形图 。 图中, V为从机 200的工作电压。 从机数据解调模块 202将图 24-1所示的双极 性数据解调为两路信号, 图 24-2所示的一路信号为与输入的调制信号变化趋势相 反、 在工作电压 Vcc和零电平之间变化的脉冲信号, 图 24-3所示的另一路信号为 与输入的调制信号变化趋势对应、 在工作电压 Vcc和零电平之间变化的脉冲信号
[145] 上述从机数据解调电路 212的两种技术方案中的反相器 303以及反相器 304优选 取为施密特反相器, 从而使得不论输入反相器的信号的状态切换是否缓慢, 即 电平转换过渡吋间是否较长, 反相器的输出边沿都比较陡峭, 其输出的电平转 换过渡吋间极短。 这就缩短了从机数据解调电路 212后续处理电路的状态过渡吋 间, 降低了从机 200的功耗。 此外, 施密特反相器具有良好的抗噪声性能, 可以 提高从机 200接收数据的稳定性。
[146] 上述主从式直流载波通信系统中的主机 100与从机 200的技术方案配合使用, 实 现了一种双线无极性区分的、 能在主机向从机提供直流工作电源的同吋进行单 工双向数据传输的主从式直流载波通信系统。 在主机 100的构成方案中, 主机电 源系统 130向主机通信接口 150只提供一路通信电压 VIN, 因此, 主机 100在向从机 200发送数据或是接收从机 200发来的数据吋, 总线 300上的电压始终维持在通信 电压 VIN
[147] 事实上, 本发明还可在图 2所示主机技术方案的基础上进一步改进, 将主机电 源系统 130的通信电压输出端 32细化为发送电压输出端 34和接收电压输出端 33; 将主机通信接口 151的通信电压输入端 51细化为发送电压输入端 52和接收电压输 入端 53, 如图 18所示。 其中, 主机电源系统 130的发送电压输出端 34连接到主机 通信接口 151的发送电压输入端 52; 主机电源系统 130的接收电压输出端 33连接 到主机通信接口 151的接收电压输入端 53。 釆用该技术方案, 主机 100在不同电 压下进行数据的收发, 旨在提高主机 100接收从机 200数据吋的信噪比, 从而提 高了由该主机技术方案构成的主从式直流载波通信系统的通信准确性。
[148] 作为图 18所示技术方案的一种实施方式, 主机 100包括主机吋钟电路 140、 主机 电源系统 130、 主机通信接口 1511、 和主机控制模块 120。 主机通信接口 1511进 一步由电子开关 121和主机通信接口电路 153构成, 如图 19所示。 电子开关 121的 两个输入端通向主机通信接口 1511外部, 分别构成发送电压输入端 52和接收电 压输入端 53; 电子开关 121的输出端连接到主机通信接口电路 153的端口 20; 电 子开关 121的控制端连接到主机控制模块 120, 由主机控制模块 120控制电子开关 121对输出到主机通信接口电路 153的电压进行选择。 主机通信接口电路 153还有 一端接地 40, 一端连接到主机电源系统 130的工作电压输出端 31, 接受主机电源 系统 130提供的工作电压。 主机通信接口电路 153还有两端分别通向主机通信接 口 1511外部, 构成信号总线 300。 主机通信接口电路 153的其余端连接到主机控 制模块 120。 [149] 上述技术方案中的电子开关 121, 在主机控制模块 120的控制下, 完成对发送电 压和接收电压的切换: 当主机 100向从机 200发送数据, 或主机 100向从机 200提 供工作电源吋, 主机控制模块 120向电子开关 121的控制端发送表达发送电压输 出的控制信号, 使电子开关 121的连接到发送电压输出端 34的支路导通, 主机通 信接口电路 153的端口 20即连接到主机电源系统 130的发送电压输出端 34, 信号 总线 300上即表现为发送电压。 反之, 当主机 100从从机 200接收数据吋, 主机控 制模块 120向电子开关 121的控制端发送表达接收电压输出的控制信号, 使电子 开关 121的连接到接收电压输出端 33的支路导通, 主机通信接口电路 153的端口 2 0即连接到主机电源系统 130的接收电压输出端 33, 信号总线 300上即表现为接收 电压。
[150] 上述图 19所示实施方式中的主机通信接口电路 153可取为图 4、 图 5或图 6所示的 单极性通信接口电路, 也可取为图 8、 图 9、 或图 11所示的双极性通信接口电路
[151] 作为图 18所示技术方案的另一种实施方式, 主机 100包含主机吋钟电路 140、 主 机电源系统 130、 主机通信接口 1512、 和主机控制模块 120。 其中, 主机通信接 口 1512既可取为如图 20所示的由单极性数据调制模块 1012、 单极性数据解调模 块 102和电子开关 123构成的单极性通信接口, 又可取为如图 22所示的由双极性 数据调制模块 1051、 双极性数据解调模块 106和电子开关 125构成的双极性通信 接口。 具体连接关系可描述如下:
[152] (1) 单极性 /双极性数据调制模块一端接地 40; —端与单极性 /双极性数据解调 模块相连, 并共同连接到主机电源系统 130的工作电压输出端 31, 接受主机电源 系统 130输出的稳定工作电压。 单极性 /双极性数据调制模块还有一端连接主机控 制模块 120, 接收主机控制模块 120输出的数据信息。 单极性 /双极性数据调制模 块的调制信号输入端连接主机电源系统 130的发送电压输出端 34, 构成主机通信 接口 1512的发送电压输入端 52, 接受主机电源系统 130输出的发送电压。 单极性 / 双极性数据调制模块的其余两端: 一端通向主机通信接口 1512外部, 构成信号 总线 300的一根; 另一端连接到电子开关的一个输入端, 向电子开关提供发送电 压支路, 在需向从机 200发送数据吋, 电子开关在主机控制模块 120的控制下选 择这条支路的发送电压输出到信号总线 300上。
[153] (2) 单极性 /双极性数据解调模块一端接地 40; —端与主机控制模块 120相连 , 将接收到的数据信息发送给主机控制模块 120供处理; 一端连接主机电源系统 130的工作电压输出端 31, 接受主机电源系统 130输出的工作电压; 一端连接主 机电源系统 130的接收电压输出端 33, 构成主机通信接口 1512的接收电压输入端 53; 单极性 /双极性数据解调模块的其余一端连接电子开关的另一个输入端, 向 电子开关提供接收电压支路, 在需从机接收数据吋, 电子开关在主机控制模块 1 20的控制下选择这条支路的接收电压输出到信号总线 300上。
[154] (3) 电子开关的两个输入端: 一个与单极性 /双极性数据调制模块相连, 另一 个与单极性 /双极性数据解调模块相连, 由主机控制模块 120控制选择输出至信号 总线 300的电压。 电子开关的输出端通向主机通信接口 1512外部, 构成信号总线 300的另一根; 电子开关的控制端与主机控制模块 120相连。
[155] 如图 20、 图 22所示主机通信接口 1512的实施方式中, 单极性 /双极性数据调制 模块直接连接到主机电源系统 130的发送电压输出端 34, 单极性 /双极性数据解调 模块直接连接到主机电源系统 130的接收电压输出端 33, 而电子开关在主机控制 模块 120的控制下, 完成对输出到信号总线 300上的电压的切换。 当主机 100向从 机 200发送数据吋, 主机控制模块 120向电子开关的控制端发送表达发送电压输 出的控制信号, 使电子开关连接到单极性 /双极性数据调制模块的支路导通, 信 号总线 300上即表现为发送电压。 反之, 当主机 100从从机 200接收数据吋, 主机 控制模块 120向电子开关的控制端发送表达接收电压输出的控制信号, 使电子开 关连接到单极性 /双极性数据解调模块的支路导通, 信号总线 300上即表现为接收 电压。
[156] 在图 20所示单极性通信接口的实施方式中, 单极性数据调制模块 1012包括驱动 模块 112和电子开关 124, 如图 21所示。 具体连接关系描述如下:
[157] (1) 驱动模块 112的一端连接到主机电源系统 130的工作电压输出端 31, 接受 主机电源系统 130输出的工作电压, 为驱动模块 112提供低边驱动电压。 驱动模 块 112的信号输入端连接到主机控制模块 120, 接收主机控制模块 120输出的低电 平控制信号。 驱动模块 112的信号输出端连接到电子开关 124的控制端, 将接收 到的低电平控制信号转换为高电平控制信号输出, 以控制电子开关 124的闭合方 向。 驱动模块 112还有一端与电子开关 124的一个输入端共同通向单极性数据调 制模块 1012外部, 构成调制信号输入端 12。 驱动模块 112的其余一端与电子开关 124的另一个输入端共同接地 40, 并通向单极性数据调制模块 1012外部, 构成信 号总线 300的一根。
[158] (2) 电子开关 124的控制端连接到驱动模块 112的信号输出端, 接收其输出的 高电平控制信号。 电子开关 124的输出端通向单极性数据调制模块 1012外部, 构 成调制信号输出端 11, 与电子开关 123的一个输入端相连。 电子开关 124的两个 输入端: 一个与驱动模块 112共同接地 40, 并通向单极性数据调制模块 1012外部 , 构成信号总线 300的一根; 另一个与驱动模块 112共同通向单极性数据调制模 块 1012外部, 构成调制信号输入端 12, 该调制信号输入端 12用于接受由主机电 源系统 130提供给单极性数据调制模块 1012的较高通信电压, 并为驱动模块 112 提供高边驱动电压。
[159] 上述单极性数据调制模块 1012的工作原理与图 7所示单极性数据调制模块 1011 的工作原理一致, 此处不再赞述。
[160] 此外, 在图 22所示双极性通信接口的实施方式中, 双极性数据调制模块 1051的 构成方式、 连接关系、 以及工作原理均与图 10所示的实施方式一致, 此处亦不 再赞述。
[161] 本发明中的主机 100可通过信号总线 300向从机 200发送单极性调制数据或者双 极性调制数据, 主机 100向从机 200发送的指令可为全局指令或单个指令。 其中 , 全局指令针对整个通信系统中的所有从机发出。 一般地, 接收到全局指令后 , 各从机执行相应操作, 不向主机返回任何信息。 而单个指令针对通信系统中 某一从机发出。 一般地, 从机接收到指令并执行完相应操作后, 向主机返回该 指令执行的结果。
[162] 图 26给出了图 18所示的主机 100向从机 200发送单极性全局指令吋信号总线 300 上的电压波形图。 主机 100在发送电压 VTXD下向从机 200发送完全局指令后, 则回 到向从机 200充电的状态。 若主机 100在发送电压 VTXD下向从机 200发送单个指令 , 则主机 100在该指令发送完成后进入向从机 200补充能量的状态, 并持续预设 的吋间长度 T, 以便为从机补充接收数据低电平吋从机内部的储能模块 240消耗 的能量。 因主机发送的是针对某一从机的单个指令, 故对从机内部的储能模块 2 40完成能量的补充后, 主机 100就将信号总线 300上的电压切换到接收电压 VRXD等 待接收从机 200返回的信息, 接收完毕后方回到向从机充电的状态。 图中的 VTXD 为主机电源系统 130的发送电压输出端 34输出的电压, VRXD为主机电源系统 130的 接收电压输出端 33输出的电压。
[163] 图 27给出了图 18所示的主机 100向从机 200发送双极性单个指令吋信号总线 300 上的电压波形图。 与上述主机发送单极性单个指令的原理相同, 主机 100在 VTXD 下向从机 200发送单个指令, 并在充电预设吋间长度 T后, 将信号总线 300上的电 压切换到接收电压 VRXD等待接收从机 200向其返回的信息, 接收完毕后方回到向 从机充电的状态。 若主机 100向从机 200发送全局指令, 则主机在发送完指令后 , 直接回到向从机充电的状态, 不进行数据的接收。
[164] 本发明所述的主机电源系统的通信电压输出端 32, 可进一步细化为发送电压输 出端 34和接收电压输出端 33, 并且优选将发送电压输出端 34输出的电压取得高 于接收电压输出端 33输出的电压。 好处在于:
[165] 当主机 100在非通信状态和发送数据状态吋, 主机 100向信号总线 300上输出较 高的发送电压, 为从机 200内部的储能模块 240提供充电用能量。 而当主机 100要 接收从机 200发送的数据吋, 若主机 100仍然向信号总线 300上输出较高的发送电 压, 从机 200内部的储能模块 240将继续从信号总线 300上获取充电用能量, 这就 可能会在总线 300上形成电流噪声, 从而可能降低主机接收数据吋的信噪比。 反 之, 当主机 100接收从机 200发送的数据吋, 降低主机 100向信号总线 300上输出 的电压, 使得总线 300上的电压低于从机 200内部储能模块 240的电压, 则网路中 的所有从机 200将由其自身的储能模块 240供电以维持自身的工作。 这就避免了 在主机接收数据吋, 诸从机 200从总线 300上获取充电能量而形成的电流噪声, 从而提高了从机发送数据的信噪比, 提高了主机接收数据的可靠性。
[166] 图 18所示的主机及其细化方案, 均可与本发明中的从机配合使用, 实现本发明 的技术目的。 从机接收到本方案主机发出的数据后, 由其内部的从机数据解调 模块 202解调并输出至从机控制模块 220进行处理。 对于单极性数据则解调输出 与图 23-2、 图 23-3相同的波形, 对于双极性数据则解调输出与图 24-2、 图 24-3相 同的波形。
[167] 本发明的主从式直流载波通信系统可用于电子雷管起爆网路, 具体地说, 本发 明的主机 100体现为电子雷管起爆装置, 从机 200体现为电子雷管。
[168] 当将本发明应用于诸如电子雷管起爆网路的危险性较高的通信系统吋, 优选将 通信电压取得低于主机电源系统 130输出的工作电压, 从而有利于提高本发明所 述系统通信过程的安全性。

Claims

权利要求书
[Claim 1] 1 . 一种主从式直流载波通信系统中的主机, 该系统由一台主机、 一台或者多台从机、 以及连接所述主机和所述从机的信号总线组 成, 所述从机并联在由所述主机引出的所述信号总线之间, 其特 征在于:
所述主机包含主机吋钟电路、 主机电源系统、 主机通信接口、 和 主机控制模块,
所述主机吋钟电路、 所述主机电源系统、 所述主机通信接口、 和 所述主机控制模块各有一端接地一;
所述主机电源系统的工作电压输出端与所述主机通信接口、 所述 主机吋钟电路、 所述主机控制模块相连; 所述主机电源系统的其 余端为通信电压输出端, 通向所述主机通信接口的通信电压输入 端;
所述主机通信接口还有两端分别通向所述主机外部, 构成所述信 号总线; 所述主机通信接口的其余端连接到所述主机控制模块; 所述主机吋钟电路的其余一端与所述主机控制模块相连。
2. 按照权利要求 1所述的主机, 其特征在于:
所述主机通信接口为一主机通信接口电路, 所述主机通信接口电路的端口一连接到所述通信电压输出端, 构 成所述主机通信接口的所述通信电压输入端。
3 . 按照权利要求 1所述的主机, 其特征在于:
所述通信电压输出端细化为发送电压输出端和接收电压输出端; 所述通信电压输入端细化为发送电压输入端和接收电压输入端; 所述主机电源系统的所述发送电压输出端连接到所述主机通信接 口的所述发送电压输入端; 所述主机电源系统的所述接收电压输 出端连接到所述主机通信接口的所述接收电压输入端。
4. 按照权利要求 3所述的主机, 其特征在于:
所述主机通信接口由电子开关一和所述主机通信接口电路构成; 所述电子开关一的两个输入端通向本主机通信接口外部, 分别构 成所述发送电压输入端和所述接收电压输入端; 所述电子开关一 的输出端连接到所述主机通信接口电路的端口一; 所述电子开关 一的控制端连接到所述主机控制模块;
所述主机通信接口电路还有一端连接到所述主机电源系统的所述 工作电压输出端; 一端接所述地一; 还有两端分别通向所述主机 通信接口外部, 构成所述信号总线; 所述主机通信接口电路的其 余端连接到所述主机控制模块。
5 . 按照权利要求 2或 4所述的主机, 其特征在于:
所述主机通信接口电路为单极性通信接口电路, 包括单极性数据 调制模块和单极性数据解调模块,
所述单极性数据调制模块与所述单极性数据解调模块共同连接到 所述主机电源系统的所述工作电压输出端; 所述单极性数据调制 模块还与所述单极性数据解调模块共同接所述地一, 即连接到地 线; 所述单极性数据调制模块与所述单极性数据解调模块还各有 一端分别连接到所述主机控制模块;
所述单极性数据调制模块的调制信号输入端通向所述单极性通信 接口电路外部, 构成所述端口一; 所述单极性数据调制模块的调 制信号输出端经由所述单极性数据解调模块通向所述单极性通信 接口电路外部, 构成所述信号总线的一根; 所述地线通向所述单 极性通信接口电路外部, 构成所述信号总线的另一根。
6. 按照权利要求 2或 4所述的主机, 其特征在于:
所述主机通信接口电路为单极性通信接口电路, 包括单极性数据 调制模块和单极性数据解调模块,
所述单极性数据调制模块与所述单极性数据解调模块共同连接到 所述主机电源系统的所述工作电压输出端; 所述单极性数据调制 模块还与所述单极性数据解调模块共同接所述地一, 即连接到地 线; 所述单极性数据调制模块与所述单极性数据解调模块还各有 一端分别连接到所述主机控制模块;
所述单极性数据调制模块的调制信号输入端经由所述单极性数据 解调模块通向所述单极性通信接口电路外部, 构成所述端口一; 所述地线与所述单极性数据调制模块的调制信号输出端分别通向 所述单极性通信接口电路外部, 构成所述信号总线。
7 . 按照权利要求 2或 4所述的主机, 其特征在于:
所述主机通信接口电路为单极性通信接口电路, 包括单极性数据 调制模块和单极性数据解调模块,
所述单极性数据调制模块与所述单极性数据解调模块共同连接到 所述主机电源系统的所述工作电压输出端; 所述单极性数据调制 模块还与所述单极性数据解调模块共同接所述地一, 即连接到地 线; 所述单极性数据调制模块与所述单极性数据解调模块还各有 一端分别连接到所述主机控制模块;
所述单极性数据调制模块的调制信号输入端通向所述单极性通信 接口电路外部, 构成所述端口一; 所述单极性数据调制模块的调 制信号输出端通向所述单极性通信接口电路外部, 构成所述信号 总线的一根; 所述单极性数据解调模块的其余一端通向所述单极 性通信接口电路外部, 构成所述信号总线的另一根。
8 . 按照权利要求 5、 6或 7所述的主机, 其特征在于:
所述单极性数据调制模块包括驱动模块一和电子开关二, 所述驱动模块一一端连接到所述主机电源系统的所述工作电压输 出端, 一端与所述电子开关二的一个输入端共同接所述地一; 所 述驱动模块一的信号输入端与所述主机控制模块相连; 所述驱动 模块一的信号输出端与所述电子开关二的控制端相连; 所述驱动 模块一的其余一端与所述电子开关二的另一个输入端共同通向所 述单极性数据调制模块外部, 构成所述单极性数据调制模块的所 述调制信号输入端;
所述电子开关二的输出端通向所述单极性数据调制模块外部, 构 成所述单极性数据调制模块的所述调制信号输出端。
9. 按照权利要求 3所述的主机, 其特征在于:
所述主机通信接口为单极性通信接口, 包括单极性数据调制模块 、 单极性数据解调模块、 和电子开关三,
所述单极性数据调制模块与所述单极性数据解调模块共同连接到 所述主机电源系统的所述工作电压输出端; 所述单极性数据调制 模块还与所述单极性数据解调模块共同接所述地一; 所述单极性 数据调制模块与所述单极性数据解调模块还各有一端分别连接到 所述主机控制模块;
所述单极性数据调制模块的调制信号输入端通向所述单极性通信 接口外部, 连接到所述主机电源系统的所述发送电压输出端, 构 成所述单极性通信接口的所述发送电压输入端; 所述单极性数据 调制模块的调制信号输出端连接到所述电子开关三的一个输入端 ; 所述单极性数据调制模块的其余一端通向所述单极性通信接口 外部, 构成所述信号总线的一根;
所述单极性数据解调模块还有一端连接到所述主机电源系统的所 述接收电压输出端, 构成所述单极性通信接口的所述接收电压输 入端; 所述单极性数据解调模块的其余一端连接到所述电子开关 三的另一个输入端;
所述电子开关三的控制端与所述主机控制模块相连; 所述电子开 关三的输出端通向所述单极性通信接口外部, 构成所述信号总线 的另一根。
10. 按照权利要求 9所述的主机, 其特征在于:
所述单极性数据调制模块包括驱动模块二和电子开关四, 所述驱动模块二一端连接到所述主机电源系统的所述工作电压输 出端; 所述驱动模块二的信号输入端与所述主机控制模块相连; 所述驱动模块二的信号输出端与所述电子开关四的控制端相连; 所述驱动模块二还有一端与所述电子开关四的一个输入端共同通 向所述单极性数据调制模块外部, 构成所述单极性数据调制模块 的所述调制信号输入端;
所述驱动模块二其余一端与所述电子开关四的另一个输入端共同 接所述地一, 并通向所述单极性数据调制模块外部, 构成所述信 号总线的一根;
所述电子开关四的输出端通向所述单极性数据调制模块外部, 构 成所述单极性数据调制模块的所述调制信号输出端。
11 . 按照权利要求 2或 4所述的主机, 其特征在于:
所述主机通信接口电路为双极性通信接口电路, 包括双极性数据 调制模块和双极性数据解调模块,
所述双极性数据调制模块与所述双极性数据解调模块共同连接到 所述主机电源系统的所述工作电压输出端; 所述双极性数据调制 模块还与所述双极性数据解调模块共同接所述地一; 所述双极性 数据调制模块与所述双极性数据解调模块还各有一端分别连接到 所述主机控制模块;
所述双极性数据调制模块的调制信号输入端通向所述双极性通信 接口电路外部, 构成所述端口一; 所述双极性数据调制模块的两 个调制信号输出端, 一个经由所述双极性数据解调模块通向所述 双极性通信接口电路外部, 构成所述信号总线的一根, 另一个直 接通向所述双极性通信接口电路外部, 构成所述信号总线的另一 根。
12. 按照权利要求 2或 4所述的主机, 其特征在于:
所述主机通信接口电路为双极性通信接口电路, 包括双极性数据 调制模块和双极性数据解调模块,
所述双极性数据调制模块与所述双极性数据解调模块共同连接到 所述主机电源系统的所述工作电压输出端; 所述双极性数据调制 模块还与所述双极性数据解调模块共同接所述地一; 所述双极性 数据调制模块与所述双极性数据解调模块还各有一端分别连接到 所述主机控制模块;
所述双极性数据调制模块的调制信号输入端经由所述双极性数据 解调模块通向所述双极性通信接口电路外部, 构成所述端口一; 所述双极性数据调制模块的两个调制信号输出端, 分别通向所述 双极性通信接口电路外部, 构成所述信号总线。
13. 按照权利要求 3所述的主机, 其特征在于:
所述主机通信接口为双极性通信接口, 包括双极性数据调制模块 、 双极性数据解调模块、 和电子开关五,
所述双极性数据调制模块与所述双极性数据解调模块共同连接到 所述主机电源系统的所述工作电压输出端; 所述双极性数据调制 模块还与所述双极性数据解调模块共同接所述地一; 所述双极性 数据调制模块与所述双极性数据解调模块还各有一端分别连接到 所述主机控制模块;
所述双极性数据调制模块的调制信号输入端通向所述双极性通信 接口外部, 连接到所述主机电源系统的所述发送电压输出端, 构 成所述双极性通信接口的所述发送电压输入端; 所述双极性数据 调制模块的两个调制信号输出端, 一个连接到所述电子开关五的 一个输入端, 另一个通向所述双极性通信接口外部, 构成所述信 号总线的一根;
所述双极性数据解调模块还有一端连接到所述主机电源系统的所 述接收电压输出端, 构成所述双极性通信接口的所述接收电压输 入端; 所述双极性数据解调模块的其余一端连接到所述电子开关 五的另一个输入端;
所述电子开关五的控制端与所述主机控制模块相连; 所述电子开 关五的输出端通向所述双极性通信接口外部, 构成所述信号总线 的另一根。
14. 按照权利要求 11、 12或 13所述的主机, 其特征在于: 所述双极性数据调制模块包含两个驱动模块、 两个电子开关、 和 反相器一, 分别为驱动模块三、 驱动模块四、 电子开关六、 和电 子开关七,
两个所述驱动模块和所述反相器一共同连接到所述主机电源系统 的所述工作电压输出端, 两个所述驱动模块和所述反相器一还共 同接所述地一; 所述反相器一的信号输入端与所述驱动模块四的 信号输入端共同连接到所述主机控制模块, 所述反相器一的信号 输出端连接到所述驱动模块三的信号输入端; 所述驱动模块三的 信号输出端连接到所述电子开关六的控制端, 所述驱动模块四的 信号输出端连接到所述电子开关七的控制端;
所述电子开关六的一个输入端、 所述电子开关七的一个输入端、 所述驱动模块三的其余一端、 和所述驱动模块四的其余一端相连 , 共同通向所述双极性数据调制模块外部, 构成所述双极性数据 调制模块的所述调制信号输入端; 所述电子开关六的另一个输入 端与所述电子开关七的另一个输入端共同接所述地一; 两个所述 电子开关的输出端分别通向所述双极性数据调制模块外部, 构成 所述双极性数据调制模块的两个所述调制信号输出端。
15. 按照权利要求 2或 4所述的主机, 其特征在于:
所述主机通信接口电路为双极性通信接口电路, 包括双极性数据 调制模块和双极性数据解调模块,
所述双极性数据调制模块与所述双极性数据解调模块共同连接到 所述主机电源系统的所述工作电压输出端; 所述双极性数据调制 模块还与所述双极性数据解调模块共同接所述地一; 所述双极性 数据调制模块与所述双极性数据解调模块还各有一端分别连接到 所述主机控制模块;
所述双极性数据调制模块的调制信号输入端通向所述双极性通信 接口电路外部, 构成所述端口一; 所述双极性数据调制模块的两 个调制信号输出端, 分别通向所述双极性通信接口电路外部, 构 成所述信号总线; 所述双极性数据调制模块的其余一端连接到所 述双极性数据解调模块。
16. 按照权利要求 15所述的主机, 其特征在于:
所述双极性数据调制模块包含两个驱动模块、 两个电子开关、 和 反相器二, 分别为驱动模块五、 驱动模块六、 电子开关八、 和电 子开关九,
两个所述驱动模块和所述反相器二共同连接到所述主机电源系统 的所述工作电压输出端, 两个所述驱动模块和所述反相器二还共 同接所述地一; 所述反相器二的信号输入端与所述驱动模块六的 信号输入端共同连接到所述主机控制模块, 所述反相器二的信号 输出端连接到所述驱动模块五的信号输入端; 所述驱动模块五的 信号输出端连接到所述电子开关八的控制端, 所述驱动模块六的 信号输出端连接到所述电子开关九的控制端;
所述电子开关八的一个输入端、 所述电子开关九的一个输入端、 所述驱动模块五的其余一端、 和所述驱动模块六的其余一端相连 , 并共同通向所述双极性数据调制模块外部, 构成所述双极性数 据调制模块的所述调制信号输入端; 所述电子开关八的另一个输 入端与所述电子开关九的另一个输入端相连, 并经由所述双极性 数据调制模块外部的所述双极性数据解调模块接所述地一; 两个 所述电子开关的输出端分别通向所述双极性数据调制模块外部, 构成所述双极性数据调制模块的两个所述调制信号输出端。
17. 按照权利要求 3〜16所述的主机, 其特征在于:
所述发送电压输出端输出的电压高于所述接收电压输出端输出的 电压。
18. 一种主从式直流载波通信系统中的从机, 该系统由一台主机 、 一台或者多台从机、 以及连接所述主机和所述从机的信号总线 组成, 所述从机并联在由所述主机引出的所述信号总线之间, 其 特征在于:
所述从机包含从机通信接口、 整流电桥电路、 储能模块、 从机电 源系统、 从机吋钟电路、 和从机控制模块,
所述从机通信接口、 所述整流电桥电路、 所述储能模块、 所述从 机电源系统、 所述从机吋钟电路、 和所述从机控制模块各有一端 接地二;
所述从机电源系统的电源输入端与所述储能模块相连, 所述从机 电源系统的电源输出端分别连接到所述从机控制模块、 所述从机 吋钟电路、 和所述从机通信接口;
所述从机通信接口和所述整流电桥电路各有两端通向所述从机外 部, 分别连接到所述信号总线; 所述从机通信接口的其余端连接 到所述从机控制模块;
所述整流电桥电路的其余一端连接到所述储能模块;
所述从机吋钟电路的其余一端连接到所述从机控制模块。
19. 按照权利要求 18所述的从机, 其特征在于:
所述从机通信接口包含从机数据调制模块和从机数据解调模块, 所述从机数据解调模块由两个从机数据解调电路构成, 两个所述从机数据解调电路分别与两根所述信号总线连接, 两个 所述从机数据解调电路分别连接到所述从机控制模块, 两个所述 从机数据解调电路共同连接所述从机电源系统的所述电源输出端
, 两个所述从机数据解调电路还共同接所述地二;
所述从机数据调制模块一端连接所述从机控制模块, 一端接所述 地二, 其余两端分别连接到所述信号总线的两根。
20. 按照权利要求 19所述的从机, 其特征在于:
所述从机数据调制模块包含三个电阻, 两个 NMOS管, 分别为电 阻一、 电阻二、 电阻三、 NMOS管一、 和 NMOS管二,
所述 NMOS管一的漏极和衬底、 所述 NMOS管二的漏极和衬底、 以 及所述电阻一的一端共同接所述地二; 所述 NMOS管一的栅极、 所述 NMOS管二的栅极、 以及所述电阻一的另一端相连, 并共同 连接到所述从机控制模块; 所述 NMOS管一的源极经由所述电阻 二连接到所述信号总线的一根, 所述 NM0S管二的源极经由所述 电阻三连接到所述信号总线的另一根。
21 . 按照权利要求 19所述的从机, 其特征在于:
所述从机数据解调电路包含反相器三和电阻四,
所述反相器三的一端连接到所述从机电源系统的所述电源输出端 ; 所述反相器三的信号输入端连接到所述信号总线的一根, 该端 还经由所述电阻四接所述地二; 所述反相器三的信号输出端连接 到所述从机控制模块; 所述反相器三的其余一端直接接所述地二
22. 按照权利要求 19所述的从机, 其特征在于:
所述从机数据解调电路包含反相器四和 NMOS管三,
所述反相器四的一端连接所述从机电源系统的所述电源输出端, 一端接所述地二;
所述 NMOS管的源极和衬底接所述地二; 其漏极与所述反相器四 的信号输入端相连, 并共同连接到所述信号总线的一根; 所述 NM OS管三的栅极与所述反相器四的信号输出端相连, 并共同连接到 所述从机控制模块。
PCT/CN2009/074837 2008-11-07 2009-11-06 主从式直流载波通信系统 WO2010051767A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2009311067A AU2009311067B2 (en) 2008-11-07 2009-11-06 Master-slave mode direct current carrier communication system
EA201100721A EA021702B1 (ru) 2008-11-07 2009-11-06 Система связи в режиме ведущий-ведомый
ZA2011/04191A ZA201104191B (en) 2008-11-07 2011-06-06 Master-slave mode direct current carrier communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2008101724109A CN101404521B (zh) 2008-11-07 2008-11-07 主从式直流载波通信系统及其控制方法
CN200810172410.9 2008-11-07
CN200920000509.0 2009-01-06
CNU2009200005090U CN201369720Y (zh) 2009-01-06 2009-01-06 主从式直流载波通信系统

Publications (1)

Publication Number Publication Date
WO2010051767A1 true WO2010051767A1 (zh) 2010-05-14

Family

ID=42152507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074837 WO2010051767A1 (zh) 2008-11-07 2009-11-06 主从式直流载波通信系统

Country Status (4)

Country Link
AU (1) AU2009311067B2 (zh)
EA (1) EA021702B1 (zh)
WO (1) WO2010051767A1 (zh)
ZA (1) ZA201104191B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953667A (zh) * 2016-05-11 2016-09-21 北京煋邦数码科技有限公司 一种采用高效精准通信方法的智能芯片雷管
CN109660282A (zh) * 2018-12-24 2019-04-19 深圳先进技术研究院 一种电源接口的通信装置及通信方法
WO2024007646A1 (zh) * 2022-07-07 2024-01-11 深圳市帝拓电子有限公司 一种直流电力载波式通讯电路及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCS20110019A1 (it) * 2011-07-14 2013-01-15 E D P Srl Sistema e dispositivo di trasmissione/ricezione dati su linea di alimentazione in corrente continua

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2588710Y (zh) * 2002-11-28 2003-11-26 珠海市海港电器企业有限公司 一种楼宇内部通讯对讲系统
US20060224278A1 (en) * 2005-03-31 2006-10-05 Yazaki Corporation Power line communication system
CN101216992A (zh) * 2008-01-04 2008-07-09 西安电力机械制造公司 一种电力系统数据传输装置
CN101404521A (zh) * 2008-11-07 2009-04-08 北京铱钵隆芯科技有限责任公司 主从式直流载波通信系统及其控制流程

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2588710Y (zh) * 2002-11-28 2003-11-26 珠海市海港电器企业有限公司 一种楼宇内部通讯对讲系统
US20060224278A1 (en) * 2005-03-31 2006-10-05 Yazaki Corporation Power line communication system
CN101216992A (zh) * 2008-01-04 2008-07-09 西安电力机械制造公司 一种电力系统数据传输装置
CN101404521A (zh) * 2008-11-07 2009-04-08 北京铱钵隆芯科技有限责任公司 主从式直流载波通信系统及其控制流程

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953667A (zh) * 2016-05-11 2016-09-21 北京煋邦数码科技有限公司 一种采用高效精准通信方法的智能芯片雷管
CN109660282A (zh) * 2018-12-24 2019-04-19 深圳先进技术研究院 一种电源接口的通信装置及通信方法
CN109660282B (zh) * 2018-12-24 2023-10-03 深圳先进技术研究院 一种电源接口的通信装置及通信方法
WO2024007646A1 (zh) * 2022-07-07 2024-01-11 深圳市帝拓电子有限公司 一种直流电力载波式通讯电路及方法

Also Published As

Publication number Publication date
EA021702B1 (ru) 2015-08-31
ZA201104191B (en) 2012-09-26
EA201100721A1 (ru) 2011-12-30
AU2009311067B2 (en) 2014-02-13
AU2009311067A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
CN101404521B (zh) 主从式直流载波通信系统及其控制方法
US5438678A (en) Self-powered computer accessory device for power extraction from attached data signals and method of operating thereof
CN105785958B (zh) 基于智慧工厂的多功能数据采集器、采集系统及方法
CN104868731B (zh) 双向隔离dc‑dc变换器
CN102447692A (zh) 用于slpi协议的模拟前端协议转换器/适配器
CN203632689U (zh) 一种多网口受电端设备及其受电装置
WO2010051767A1 (zh) 主从式直流载波通信系统
CN103944420B (zh) 电源供应系统及其控制方法
CN104091722B (zh) 继电器驱动电路
CN104283587B (zh) 一种具有共模电流抑制能力的能量与信息时分复合传输系统
CN201369720Y (zh) 主从式直流载波通信系统
CN107370651B (zh) 一种spi从机之间的通信方法
CN101383084B (zh) 一种隔离型总线供电通信系统
CN209184614U (zh) 一种仪表总线主机通信电路
CN102832924B (zh) 大功率lvds方波信号驱动电路
CN109617565A (zh) 具有通讯功能的电路模块、多模块的电路装置与光伏系统
CN209088857U (zh) 高功率密度低速大扭矩电机控制器
CN209218080U (zh) 具有通讯功能的电路模块、多模块的电路装置与光伏系统
CN205105090U (zh) 一种直流输电串并联转换器用控制系统中的驱动电路
CN202257561U (zh) 协议转换器
CN110209236A (zh) 一种双电压自动切换的转换电路及其转换方法
CN218998097U (zh) 双协议转换电路
CN110932540B (zh) 一种应用于ups的带隔离的母线软启电路
CN201499128U (zh) 吸油烟机马达pwm脉冲调节电路
CN217721208U (zh) 一种传输spi信号的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201100721

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2009311067

Country of ref document: AU

Date of ref document: 20091106

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09824422

Country of ref document: EP

Kind code of ref document: A1