WO2010051680A1 - 电流阻挡层的分布与上电极对应的发光二极管及其制备方法 - Google Patents

电流阻挡层的分布与上电极对应的发光二极管及其制备方法 Download PDF

Info

Publication number
WO2010051680A1
WO2010051680A1 PCT/CN2009/000537 CN2009000537W WO2010051680A1 WO 2010051680 A1 WO2010051680 A1 WO 2010051680A1 CN 2009000537 W CN2009000537 W CN 2009000537W WO 2010051680 A1 WO2010051680 A1 WO 2010051680A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
upper electrode
light
current blocking
current
Prior art date
Application number
PCT/CN2009/000537
Other languages
English (en)
French (fr)
Inventor
沈光地
陈依新
Original Assignee
Shen Guangdi
Chen Yixin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shen Guangdi, Chen Yixin filed Critical Shen Guangdi
Publication of WO2010051680A1 publication Critical patent/WO2010051680A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure

Definitions

  • the light-emitting diode with the distribution of the current blocking layer corresponding to the upper electrode and the preparation method thereof relate to a novel LED device structure, and belong to the field of semiconductor optoelectronic technology.
  • the upper electrode 10 is a circular metal layer having a diameter of 80-100 ⁇ m and a thickness of about 3000 , or more, and a current is injected from the electrode, and photons generated are emitted from the LED surface.
  • the lower electrode 20 is a metal layer having an entire surface size of the LED device and having a thickness of about 3000 A or more.
  • the main problem of the LED of this structure is that the current injected from the upper electrode 10 flows through the lateral expansion of the current spreading layer 100.
  • the active region 200 radiates recombination to generate photons.
  • the current injected from the upper electrode 10 Due to the current epitaxial growth technique, it is difficult to obtain a highly doped, thick thick current spreading layer, resulting in a weak current spreading capability of the current spreading layer, and therefore, the current injected from the upper electrode 10. Most of them are collected directly under the upper electrode 10, for example: an AlGalnP-based red LED having a chip size of 300 ⁇ m * 300 ⁇ for the front side, and a GaP current spreading layer of 8 ⁇ m by MOCVD (Metal Organic Chemical Vapor Deposition). The diameter of the electrode 10 is 100 ⁇ m, and it is calculated that the current directly under the upper electrode 10 More than 40% of the total injection current.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the photon generated by the radiation current in the active region 200 directly under the upper electrode 10 is not blocked or absorbed by the upper electrode 10, but is not absorbed into the body, but is absorbed in the body and generates a large amount of heat, which seriously affects the performance of the LED. Further, with respect to the LED having such a structure, there are problems such as low luminous efficiency, small optical power, and poor thermal characteristics.
  • the preparation method and structure of the current blocking layer are many, as shown in FIG. 2 and FIG.
  • the structure shown in FIG. 2 is realized by a method of secondary epitaxy. After the current blocking layer 120 is prepared by a photolithography process or the like, the current spreading layer 100 is epitaxially grown and the upper electrode 10 is prepared thereon. The process is complicated and costly. High and low yield.
  • the structure shown in FIG. 3 is formed by ion implantation or diffusion on the thick current spreading layer formed by the current spreading layer 100 and the contact layer 102. The thickness of the current blocking layer 120 in this method is difficult to precisely control. There is still current spreading underneath, so the current cannot be blocked under the electrode 10, and the thick current spreading layer (8-50 ⁇ m) and the ion implantation and diffusion process are complicated and costly.
  • the shape is not only the circular shape of the solder joint, but can have a complicated shape to increase the current expansion, which is called a pattern electrode.
  • Figures 4 and 5 illustrate the shape of several common LED upper electrodes 10. Some current is still collected directly under the upper electrode 10, even larger than the current collected under the bonding point (the ratio of the area of the view electrode to the area of the bonding pad), and the photons generated by the current in the active region 200 will still be The blocking or absorption of the electrode 10 becomes a large amount of heat, causing problems such as low light efficiency, low brightness, and poor thermal characteristics of the device. Summary of the invention
  • An object of the present invention is to provide a light emitting diode having a current blocking layer corresponding to an upper electrode and a method for fabricating the same, the basic structure of which is shown in FIG. 7 , which is a current blocking layer structure directly under the upper electrode of the light emitting diode. Moreover, the distribution of the current blocking layer corresponds to the upper electrode, so that the injection current radiates composite light emission in the active region 200 just below the upper electrode 10, and the generated photons prevent the blocking or absorption of the upper electrode 10, and the current blocking layer 120 passes. The post-process is realized, and the operability is strong.
  • the structure is most suitable for the preparation of high-power LEDs, improves the light-emitting efficiency, reduces the heat generation, avoids the complicated heat-dissipation measures adopted by the high-power LED, and greatly reduces the heat-dissipation cost. .
  • the device structure of the present invention is as shown in Fig. 7.
  • the components thereof include: an upper electrode 10 including a vertically stacked growth from the top to the bottom, a current spreading layer 100, an upper confinement layer 300, an active region 200, and a lower confinement layer.
  • the buffer layer 500, the substrate 600, and the lower electrode 20 further include a current blocking layer 120 under the upper electrode.
  • the present invention is characterized in that: a conductive light anti-reflecting layer 101 is disposed between the upper electrode and the current spreading layer, And the distribution of the current blocking layer corresponds to the upper electrode.
  • the shape of the current blocking layer 120 in the present invention is the same as that of the upper electrode 10, and the size may be larger than, equal to or smaller than the size of the upper electrode.
  • the current blocking layer 120 is disposed inside the conductive light anti-reflecting layer 101 or the current spreading layer 100 or the upper plating layer 300 or the active region 200, or in the adjacent two, three, and four layers.
  • the upper surface of the conductive light anti-reflection layer 101 may also be provided with a structural layer capable of enhancing the transparency of the light.
  • the structural layer may be attached with an anti-reflection film 103 or on the conductive optical anti-reflection layer 101.
  • the surface or the surface of the AR coating is treated to form a roughened structural layer.
  • the preparation method of the light-emitting diode corresponding to the distribution of the current blocking layer of the present invention and the upper electrode is as follows:
  • the buffer layer 500, the lower confinement layer 400, the active region 200, the upper confinement layer 300, and the current spreading layer are sequentially epitaxially grown by the MOVCD method. 100, obtaining an epitaxial wafer of an AlGalnP light emitting diode; Instruction manual
  • the current blocking layer 120 is prepared by a post-process method, specifically: firstly, the epitaxial wafer is cleaned, and the region to be a barrier layer is formed by ruthenium gel, and the region is integrated with the upper electrode 10, and ion implantation is performed.
  • the method comprises: implanting ions capable of functioning as a barrier layer in the limiting layer 300 and the active region 200 on the region, forming a current blocking layer 120, removing and cleaning, and then vapor-depositing an ITO conductive light-transmitting material;
  • the conductive light anti-reflecting layer 101 is made of a material which is electrically conductive, transparent, and capable of enhancing the light.
  • the material used may also be ITO (Indium Tin Oxide) or a conductive resin.
  • the structural design of the current blocking layer of the LED corresponding to the upper electrode in the present invention has the advantage that: due to the presence of the current blocking layer 120, the injection current naturally flows to the active region other than the current blocking layer 120, so that the upper electrode 10 is directly under No current does not emit light, which plays the role of all blocking;
  • the function of the conductive light anti-reflection layer is as follows: First, due to the design of the refractive index and thickness of the material, the photons generated in the body can be enhanced, and more photons can It is emitted to the outside of the body, and the current is expanded. This greatly reduces the thickness of the current spreading layer 100.
  • the structure is prepared by the post-process, which reduces the thickness and difficulty of epitaxial growth, and the process is simple and operable. Strong, compared with the current blocking layer under the general bonding point, the blocking structure can really play the role of all blocking, thereby improving the luminous intensity and thermal characteristics of the LED, and is particularly suitable for preparing high-power LEDs.
  • the distribution of the current blocking layer of the LED and the structure corresponding to the upper electrode can effectively or even completely prevent the current flowing directly under the upper electrode, and the active region directly under the other electrodeless region radiates the composite light, resulting in The photon avoids blocking or absorption of the electrode, thereby improving the light extraction efficiency and luminous intensity of the LED.
  • the current blocking layer structure is realized by the post process, and the process is simple and the operability is strong.
  • Figure 1 Schematic diagram of a common LED structure
  • Figure 2 Schematic diagram of a light-emitting diode for secondary epitaxial fabrication of a current blocking layer
  • Figure 3 Schematic diagram of a light-emitting diode for preparing a current blocking layer by ion implantation or diffusion process
  • Figure 6 Schematic diagram of LED structure with conductive light antireflection layer
  • Figure 7 Cross-sectional view of the light-emitting diode structure corresponding to the distribution of the current blocking layer and the upper electrode
  • Fig. 8 is a perspective view showing the distribution of the current blocking layer and the light emitting diode structure corresponding to the upper electrode.
  • 10 is the upper electrode
  • 100 is the current spreading layer
  • 101 is the conductive light antireflection layer
  • 102 is the contact layer
  • 300 is the upper confinement layer
  • 200 is the active region
  • 400 is the lower confinement layer
  • 500 is the buffer layer
  • 600 is the substrate
  • 120 is the current blocking layer
  • 20 is the lower electrode.
  • the AlGalnP LED is taken as an example.
  • the device is composed of the following parts: an upper electrode 10, a conductive light antireflection layer 101, a current spreading layer 100, an upper confinement layer 300, an active region 200, a lower confinement layer 400, a buffer layer 500, a substrate 600, a lower electrode 20
  • the current blocking layer 120 is located inside the upper confinement layer 300 and the active region 200; the preparation process and method are as follows:
  • the buffer layer 500, the lower confinement layer 400, the active region 200, the upper confinement layer 300, and the current spreading layer 100 are epitaxially grown by the MOVCD method. , thus obtaining an epitaxial wafer of an AlGalnP light emitting diode;
  • the epitaxial wafer is cleaned, and the adhesive layer is photolithographically etched to form a barrier layer. This region is aligned with the upper electrode 10, and the layer 300 is confined on the region by ion implantation. And implanting ions capable of functioning as a barrier layer in the active region 200, forming a current blocking layer 120, removing and cleaning, and then vapor-depositing a layer of ITO conductive light-transmitting material;
  • the upper electrode 10 is formed, and the shape of the electrode is as shown in FIG. 4 or FIG. 5.
  • the substrate 600 is thinned to about 100 ⁇ m, and then a layer of AuGeNi is evaporated on the thinned surface to form the lower electrode 20, thereby completing the fabrication of the upper and lower electrodes.
  • the device structure cross-section is shown in Figure 7, and the perspective view is shown in Figure 8.
  • the finished epitaxial wafer is cleaved into a lmmxmm die, soldered onto the stem, and the LED device is prepared.
  • Example 2
  • the current blocking layer is distributed with the light emitting diode corresponding to the upper electrode, as shown in FIG. 7, wherein:
  • the shape of the upper electrode 10 in the present invention may be other shapes such as a circle, a star shape, a strip shape, a finger shape, and the like, and the diameter of the bonding pad may be 100 ⁇ m, 80 ⁇ m or the like.
  • the material of the current blocking layer 120 may be an intrinsic semiconductor, a non-conductive resin, an undoped amorphous Si, an insulating material such as SixNy and SixOy, or a conductive material opposite to the conductive type of the conductive light anti-reflecting layer 101;
  • the active region 200 has a structure of a pn junction, or a pin junction, or a double heterostructure, or a single quantum well structure, or a multiple quantum well structure, a superlattice structure or a quantum dot light emitting structure, or a multilayer quantum dot structure;
  • the structure of the current blocking layer of the present invention and the distribution of the current blocking layer 120 in the light-emitting diode corresponding to the upper electrode corresponding to the upper electrode 10 can be incorporated into the structure of an LED such as a front-mounted, flip-chip or resonant cavity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

说明书
电流阻挡层的分布与上电极对应的发光二极管及其制备方法 技术领域
电流阻挡层的分布与上电极对应的发光二极管及其制备方法涉及一种新型 的 LED器件结构, 属于半导体光电子技术领域。
背景技术
目前, 普通发光二极管的结构如图 1所示: 上电极 10为直径为 80-100μηι、 厚度约 3000 Α以上的圆形金属层, 从该电极注入电流, 产生的光子从 LED的这 一面发射出来; 下电极 20为 LED器件的整个表面大小, 厚度约 3000 A以上的 金属层, 这种结构的 LED存在的主要问题是: 从上电极 10注入的电流通过电流 扩展层 100的横向扩展而流经有源区 200辐射复合产生光子,由于目前的外延生 长技术难以获得高掺杂、厚度较厚的电流扩展层, 导致电流扩展层的横向电流扩 展能力不强,因此,从上电极 10注入的电流绝大部分汇集在上电极 10的正下方, 例如: 对于正面出光的芯片尺寸为 300μιη *300μιη 的 AlGalnP 系红光 LED, MOCVD (Metal Organic Chemical Vapor Deposition) 外延生长 8μιη的 GaP电流 扩展层, 若上电极 10的直径为 100μηι, 经计算可知: 上电极 10正下方的电流占 总注入电流的 40%以上。 上电极 10正下方这部分电流在有源区 200辐射复合产 生的光子由于被上电极 10的阻挡或吸收, 不但不能发射到体外, 而且在体内被 吸收并产生大量的热, 严重影响 LED性能的进一步提高, 因此, 对于此种结构 的 LED, 存在发光效率低、 光功率较小、 热特性差等问题。
针对此问题,人们提出的办法是:在上电极 10的正下方制备电流阻挡层 120, 减小上电极 10正下方的电流比例, 电流阻挡层的制备方法与结构很多, 图 2、 图 3列举了几种制备电流阻挡层的结构和方法。图 2所示的结构是通过二次外延 的方法实现的,通过光刻等工艺制备好电流阻挡层 120之后, 再外延生长电流扩 展层 100并在其上方制备上电极 10, 该工艺复杂, 成本高、 成品率低。 图 3所 示的结构是在电流扩展层 100和接触层 102所构成的厚电流扩展层上进行离子注 入或扩散形成阻挡层 120, 此方法中的电流阻挡层 120的厚度很难精确控制, 其 下方仍存有电流扩展, 因而不能阻挡电流在电极 10下方的汇聚, 且厚电流扩展 层 (8-50μιη) 和离子注入及扩散工艺复杂, 成本高。
以上提到的 2种器件结构均只提到了在上电极 10的压焊点正下方制备电流 阻挡层 120, 实际上, 对于大部分器件来说, 特别是大功率的器件, 其上电极 10 说明书
的形状不仅仅是压焊点的圆形, 而是可以有很复杂的形状来增加电流的扩展, 称 之为图形电极, 图 4、 图 5列举了几种常见的 LED上电极 10的形状。 上电极 10 正下方依然会汇集部分电流,甚至大于压焊点下方汇集的电流(视图形电极的面 积与压焊点面积的比例), 这部分电流在有源区 200产生的光子仍然会被上电极 10的阻挡或吸收而变成大量的热, 造成器件光效低、 亮度低、 热特性差等问题。 发明内容
本发明的目的是提供一种电流阻挡层的分布与上电极对应的发光二极管及 其制备方法,其基本结构如图 7所示, 它是在发光二极管的上电极正下方引入电 流阻挡层结构, 而且电流阻挡层的分布与上电极相对应,使得注入电流在上电极 10正下方以外的有源区 200辐射复合发光, 产生的光子避免上电极 10的阻挡或 吸收, 而且电流阻挡层 120是通过后工艺实现的, 可操作性强, 该结构最适合 于大功率 LED的制备, 提高了出光效率, 减少了热的产生, 避免了大功率 LED 采取的复杂的散热措施, 也大大降低了散热成本。
本发明的器件结构如图 7所示,其组成部分包括: 包括有从上往下依次纵向 层叠生长的上电极 10、 电流扩展层 100、 上限制层 300、 有源区 200、 下限制层
400、 缓冲层 500、 衬底 600、 下电极 20, 还包括有位于上电极下方的电流阻挡 层 120, 本发明特征在于: 在上电极与电流扩展层之间设置有导电光增透层 101, 并且电流阻挡层的分布与上电极相对应。
本发明中电流阻挡层 120的形状与上电极 10形状相同, 尺寸也可以大于, 等于或小于上电极的尺寸。
本发明中电流阻挡层 120设置在导电光增透层 101或电流扩展层 100或上限 制层 300或有源区 200里面, 或相邻的两层、 三层、 四层的里面。
本发明中导电光增透层 101 的上面也可设置能够对光起到增透作用的结构 层, 该结构层可以是附上一层增透膜 103、 也可在导电光增透层 101上表面或增 透膜上表面处理形成粗糙化结构层。
本发明的电流阻挡层的分布与上电极对应的发光二极管的制备方法, 制备工 艺步骤如下:
( 1 )在 GaAs等能够与 AlGalnP匹配的材料形成的 n-型衬底 600上,用 MOVCD 方法依次外延生长缓冲层 500, 下限制层 400, 有源区 200, 上限制层 300, 电流扩展层 100, 得到 AlGalnP发光二极管的外延片; 说明书
(2) 再通过后工艺的办法制备电流阻挡层 120, 具体为: 首先将外延片进行 清洗, 甩胶并光刻出要做阻挡层的区域, 该区域与上电极 10—致, 利用离子 注入的办法在该区域上限制层 300和有源区 200里面注入能起阻挡层作用的离 子, 形成电流阻挡层 120, 去胶并清洗, 然后蒸镀上一层 ITO导电透光材料;
(3 ) 接下来, 用蒸发的办法在 ITO表面蒸发一层 AuZnAu金属层, 并光刻出 上电极 10,将衬底 600减薄,然后在减薄的这一面蒸发一层 AuGeNi形成下电 极 20, 完成了上、 下电极的制作, 再将做好的外延片解理成管芯, 压焊在管 座上, LED器件制备完毕。
本发明中导电光增透层 101选用能导电、能透光又能对光起到增透作用的材 料, 所用的材料也可以是 ITO (氧化铟锡), 导电树脂。
本发明中 LED的电流阻挡层的分布与上电极对应的结构设计优势在于: 由 于电流阻挡层 120的存在, 注入电流自然的流到电流阻挡层 120以外的有源区, 使得上电极 10正下方无电流不发光, 起到了全部阻挡的作用; 导电光增透层的 作用为:一是由于材料折射率与厚度的设计,使得对体内产生的光子起到增透的 作用, 更多的光子能够发射到体外, 而且增加了电流的扩展, 这样一来, 大大降 低了电流扩展层 100的厚度; 该结构的制备是通过后工艺实现的, 降低了外延生 长的厚度与难度, 工艺简单, 可操作性强, 与一般的压焊点下方的电流阻挡层相 比, 该阻挡结构能够真正起到全部阻挡的作用, 从而提高 LED的发光强度和热 特性, 尤其适合与制备大功率的 LED。
本发明的主要特点:
1 ) LED的电流阻挡层的分布与上电极对应的结构可以有效地甚至完全 地阻止上电极正下方的电流流动, 而在其他无电极区域对应的正下方的有源区 辐射复合发光, 产生的光子避免了电极的阻挡或吸收, 从而提高了 LED的光提 取效率和发光强度。
2) 避免了上电极正下方电流的汇聚, 减少了体内产生的大量光子无法 发射到体外而在器件内部变成大量的热, 因此, 提高了 LED的饱和电流和热特 性, 使得器件更有利于在大电流下工作。
3 ) 电流阻挡层结构是通过后工艺实现的, 工艺简单, 可操作性强。
4) 减少了外延生长的厚度, 降低了生长的难度。 说明书
5 ) 引入 LED的电流阻挡层的分布与电极对应的结构, 重要优点是: 电 流损耗小, 亮度高, 光效高; 制作工艺简单, 重复性好; 尤其适合于大功率器 件的制备。 附图说明:
图 1 : 普通发光二极管结构示意图
图 2: 二次外延制备电流阻挡层的发光二极管结构示意图
图 3: 离子注入或扩散工艺制备电流阻挡层的发光二极管结构示意图
图 4: 电极图形示意图 -1
图 5: 电极图形示意图 -2
图 6: 带有导电光增透层的发光二极管结构示意图
图 7: 电流阻挡层的分布与上电极对应的发光二极管结构剖面图
图 8: 电流阻挡层的分布与上电极对应的发光二极管结构立体图 以上图 1至图 8中: 10为上电极, 100为电流扩展层, 101为导电光增透层, 102为接触层, 103为增透膜, 300为上限制层, 200为有源区, 400为下限制层, 500为缓冲层, 600为衬底, 120为电流阻挡层, 20为下电极。
具体实施方式
本发明的实现通过以下实施例给予说明。
实施例 1
如图 7所示, 以 AlGalnP LED为例。 该器件由以下各部分组成: 上电极 10, 导电光增透层 101, 电流扩展层 100, 上限制层 300, 有源区 200, 下限制 层 400, 缓冲层 500, 衬底 600, 下电极 20, 电流阻挡层 120位于上限制层 300 和有源区 200的里面; 其制备过程和方法如下:
1. 在 GaAs等能够与 AlGalnP 匹配的材料形成的 n-型衬底 600 上, 用 MOVCD方法依次外延生长缓冲层 500, 下限制层 400, 有源区 200, 上限制 层 300, 电流扩展层 100, 这样就得到了 AlGalnP发光二极管的外延片;
2. 再通过后工艺的办法: 首先将外延片进行清洗, 甩胶并光刻出要做阻挡 层的区域, 该区域与上电极 10—致, 利用离子注入的办法在该区域上限制层 300和有源区 200里面注入能起阻挡层作用的离子, 形成电流阻挡层 120, 去 胶并清洗, 然后蒸镀上一层 ITO导电透光材料;
3. 接下来, 用蒸发的办法在 ITO表面蒸发一层 AuZnAu金属层, 并光刻 说明书
出上电极 10, 电极形状如图 4或图 5所示, 将衬底 600减薄至约 100μιη, 然 后在减薄的这一面蒸发一层 AuGeNi形成下电极 20,完成了上、下电极的制作, 器件结构剖面图如图 7 所示, 立体图如图 8 所示; 将做好的外延片解理成 lmmxmm的管芯, 压焊在管座上, LED器件制备完毕。 实施例 2
本发明中电流阻挡层的分布与上电极对应的发光二极管,如图 7所示,其中:
1、 本发明中上电极 10的形状可以是圆形、 星形、 条形、 插指形等其他形状, 压 焊点直径可以是 100μιη, 80μιη或其它的尺寸。
2、电流阻挡层 120的材料可以是本征半导体、不导电树脂、不掺杂非晶 Si, SixNy 和 SixOy等绝缘材料, 也可以是与导电光增透层 101导电类型相反的导电材料;
3、 有源区 200结构为 p-n结, 或 p-i-n结, 或双异质结构, 或单量子阱结构, 或 多量子阱结构, 超晶格结构或量子点发光结构, 或多层量子点结构;
4、 本发明的电流阻挡层的分布与上电极对应的发光二极管中电流阻挡层 120 的分布与上电极 10对应的这种结构, 可以引入正装、 倒装、 共振腔等 LED的 结构中。
以上所述仅为本发明的具体实施例, 并非用以限定本发明的保护范围, 凡 其它未脱离权利要求书范围内所进行的各种改型和修改,均应包含在本发明的 保护的范围内。

Claims

权 利 要 求 书
1、 电流阻挡层的分布与上电极对应的发光二极管, 包括有从上往下依次纵向层叠生长的 上电极 (10)、 电流扩展层 (100)、上限制层 (300)、有源区 (200)、下限制层 (400)、缓冲层 (500)、 衬底 (600)、 下电极 (20), 还包括有位于上电极 (10) 的下方的电流阻挡层 (120), 其 特征在于: 在上电极 (10) 与电流扩展层 (120) 之间设置有导电光增透层 (101 ), 并且 电流阻挡层的分布与上电极相对应。
2、 根据权利要求 1 所述的电流阻挡层的分布与上电极对应的发光二极管, 其特征在于: 所述的电流阻挡层 (120)设置在导电光增透层(101 )或电流扩展层(100)或上限制层(300) 或有源区 (200) 里面, 或相邻的两层、 三层、 四层的里面。
3、 根据权利要求 1或 2所述的电流阻挡层的分布与上电极对应的发光二极管, 其特征在 于: 电流阻挡层 (120) 的形状与上电极 (10) 形状相同。
4、 根据权利要求 1和 2所述的电流阻挡层的分布与上电极对应的发光二极管, 其特征在 于: 导电光增透层 101的上面也可设置对光起到增透作用的结构层, 该结构层可以是附上 一层增透膜 (103 )、 也可在导电光增透层上表面或增透膜上表面处理形成粗糙化结构层。
5、 电流阻挡层的分布与上电极对应的发光二极管的制备方法, 其特征在于, 制备工艺步 骤如下:
( 1 )在 GaAs等能够与 AlGalnP匹配的材料形成的 n-型衬底 (600) 上, 用 MOVCD方 法依次外延生长缓冲层 (500), 下限制层 (400), 有源区 (200), 上限制层 (300), 电流扩展层 (100), 得到 AlGalnP发光二极管的外延片;
(2)再通过后工艺的办法制备电流阻挡层(120), 具体为: 首先将外延片进行清洗, 甩 胶并光刻出要做阻挡层的区域, 该区域与上电极 (10) —致, 利用离子注入的办法在该 区域上限制层 (300) 和有源区 (200) 里面注入能起阻挡层作用的离子, 形成电流阻挡 层 (120), 去胶并清洗, 然后蒸镀上一层 ITO导电透光材料;
( 3 )接下来,用蒸发的办法在 ITO表面蒸发一层 AuZnAu金属层,并光刻出上电极 (10), 将衬底 (600)减薄, 然后在减薄的这一面蒸发一层 AuGeNi形成下电极 (20), 完成了上、 下电极的制作, 再将做好的外延片解理成管芯, 压焊在管座上, LED器件制备完毕。
6、 根据权利要求 5 所述的电流阻挡层的分布与上电极对应的发光二极管的制备方法, 其 特征在于: 导电光增透层 (101)选用能导电、 能透光又能对光起到增透作用的材料。
PCT/CN2009/000537 2008-11-07 2009-05-18 电流阻挡层的分布与上电极对应的发光二极管及其制备方法 WO2010051680A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810225934.X 2008-11-07
CNA200810225934XA CN101388431A (zh) 2008-11-07 2008-11-07 电流阻挡层的分布与上电极对应的发光二极管及其制备方法

Publications (1)

Publication Number Publication Date
WO2010051680A1 true WO2010051680A1 (zh) 2010-05-14

Family

ID=40477710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000537 WO2010051680A1 (zh) 2008-11-07 2009-05-18 电流阻挡层的分布与上电极对应的发光二极管及其制备方法

Country Status (2)

Country Link
CN (1) CN101388431A (zh)
WO (1) WO2010051680A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388431A (zh) * 2008-11-07 2009-03-18 沈光地 电流阻挡层的分布与上电极对应的发光二极管及其制备方法
CN102054912A (zh) * 2009-11-04 2011-05-11 大连路美芯片科技有限公司 一种发光二极管及其制造方法
CN103000779B (zh) * 2012-09-24 2015-01-07 安徽三安光电有限公司 具有电流阻挡功能的垂直发光二极管及其制作方法
CN104134728B (zh) * 2013-05-03 2018-10-09 上海蓝光科技有限公司 一种发光二极管的制造方法
CN106129210A (zh) * 2016-06-22 2016-11-16 北京工业大学 一种电极下方有源区绝缘化的高光提取效率发光二极管
CN106057998A (zh) * 2016-08-10 2016-10-26 山东浪潮华光光电子股份有限公司 一种具有电流阻挡层及电流扩展层的GaAs基发光二极管芯片及其制备方法
CN109244207A (zh) * 2018-08-30 2019-01-18 佛山市国星半导体技术有限公司 一种led芯片及其制作方法
CN110620169B (zh) * 2019-09-10 2020-08-28 北京工业大学 一种基于共振腔的横向电流限制高效率发光二极管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048035A (en) * 1989-05-31 1991-09-10 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US6121635A (en) * 1997-04-15 2000-09-19 Kabushiki Kaisha Toshiba Semiconductor light-emitting element having transparent electrode and current blocking layer, and semiconductor light-emitting including the same
CN1851947A (zh) * 2006-05-26 2006-10-25 北京工业大学 高效高亮全反射发光二极管及制作方法
CN1996629A (zh) * 2006-12-29 2007-07-11 北京工业大学 一种具有电流输运增透窗口层结构的发光二极管
CN101388431A (zh) * 2008-11-07 2009-03-18 沈光地 电流阻挡层的分布与上电极对应的发光二极管及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048035A (en) * 1989-05-31 1991-09-10 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US6121635A (en) * 1997-04-15 2000-09-19 Kabushiki Kaisha Toshiba Semiconductor light-emitting element having transparent electrode and current blocking layer, and semiconductor light-emitting including the same
CN1851947A (zh) * 2006-05-26 2006-10-25 北京工业大学 高效高亮全反射发光二极管及制作方法
CN1996629A (zh) * 2006-12-29 2007-07-11 北京工业大学 一种具有电流输运增透窗口层结构的发光二极管
CN101388431A (zh) * 2008-11-07 2009-03-18 沈光地 电流阻挡层的分布与上电极对应的发光二极管及其制备方法

Also Published As

Publication number Publication date
CN101388431A (zh) 2009-03-18

Similar Documents

Publication Publication Date Title
CN100438110C (zh) 一种具有电流输运增透窗口层结构的发光二极管
WO2010051680A1 (zh) 电流阻挡层的分布与上电极对应的发光二极管及其制备方法
US8735185B2 (en) Light emitting device and fabrication method thereof
EP1849193B1 (en) LED with current confinement structure and surface roughening
US6323063B2 (en) Forming LED having angled sides for increased side light extraction
CN101009353B (zh) 具有电流输运增透窗口层和高反射图形转移衬底结构的发光二极管
US10673003B2 (en) Light emitting diode chip and fabrication method
CN201060869Y (zh) 一种具有电流输运增透窗口层结构的发光二极管
WO2011030789A1 (ja) 発光装置
CN110620169B (zh) 一种基于共振腔的横向电流限制高效率发光二极管
JP2010135746A (ja) 半導体発光素子およびその製造方法、発光装置
JP2004247635A (ja) 半導体発光素子
CN109378378B (zh) 一种具有反射电极的垂直结构led芯片及其制备方法
TW201110417A (en) Epitaxial substrate, light-emitting element, light-emitting device, and method for producing epitaxial substrate
WO2021129214A1 (zh) 垂直结构深紫外发光二极管及其制备方法
JP2009059851A (ja) 半導体発光ダイオード
KR101812745B1 (ko) 발광 다이오드 및 그의 제조 방법
CN201349018Y (zh) 电流阻挡层的分布与上电极对应的发光二极管
KR101805301B1 (ko) 광추출효율 향상을 위한 p-형 오믹 접합 전극 패턴을 구비한 자외선 발광 다이오드 소자
KR20110115795A (ko) 반도체 발광소자 및 그 제조방법
CN104681678A (zh) 一种双反射镜结构的发光二极管及其制造方法
CN204441317U (zh) 一种双反射镜结构的发光二极管
CN117525233B (zh) 一种小尺寸红光led芯片及其制造方法
KR20140036396A (ko) 다공성 투명 전극을 포함하는 발광 다이오드 및 그 제조 방법
US20230378395A1 (en) Optoelectronic device with a contact layer and a roughened layer arranged thereon, and production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824337

Country of ref document: EP

Kind code of ref document: A1