WO2010050495A1 - 光走査装置 - Google Patents

光走査装置 Download PDF

Info

Publication number
WO2010050495A1
WO2010050495A1 PCT/JP2009/068469 JP2009068469W WO2010050495A1 WO 2010050495 A1 WO2010050495 A1 WO 2010050495A1 JP 2009068469 W JP2009068469 W JP 2009068469W WO 2010050495 A1 WO2010050495 A1 WO 2010050495A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
optical scanning
mirror
scanning device
vibration
Prior art date
Application number
PCT/JP2009/068469
Other languages
English (en)
French (fr)
Inventor
幸男 篠塚
Original Assignee
シナノケンシ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シナノケンシ株式会社 filed Critical シナノケンシ株式会社
Publication of WO2010050495A1 publication Critical patent/WO2010050495A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors

Definitions

  • the present invention relates to an optical scanning apparatus that performs scanning by reflecting a light beam emitted from a light source by a mirror that swings.
  • An optical scanning device that scans a light beam such as a laser beam emitted from a light source is used as an optical device such as a barcode reader, a laser printer, or a head-mounted display, or a light intake device of an imaging device such as an infrared camera.
  • an opening 53 is formed on the free end side of a substrate 52 such as a stainless steel substrate or a silicon substrate that is cantilevered by the support member 51, and both sides are connected to each other by a beam portion 54 in the opening 53.
  • a mirror portion 55 is provided.
  • the mirror part 55 is mirror-finished, is formed with a reflective film, or has a mirror attached thereto.
  • the substrate 52 is provided with a vibration source 56 made of a thin film of a piezoelectric body, a magnetostrictive body, or a permanent magnet.
  • a vibration source 56 made of a thin film of a piezoelectric body, a magnetostrictive body, or a permanent magnet.
  • a piezoelectric body when a positive voltage is applied from a driving source (not shown), an extension occurs and a negative voltage is generated. Since the shrinkage occurs when the voltage is applied, the substrate 52 is bent. Torsional vibration is generated in the beam portion 54 with respect to the vertical deflection of the substrate 52, and the mirror portion 55 swings.
  • the driving frequency is maintained near the resonance frequency between the mirror portion 55 and the beam portion 54, and the laser beam is reflected by the vibrating mirror portion 55 to perform optical scanning.
  • the graph of FIG. 7B shows the result of the transient response characteristic analysis at the time of startup of the optical scanning device described above.
  • FIG. 7B shows the relationship between the time change and the displacement in the direction perpendicular to the surface of the substrate 52 (hereinafter referred to as “vertical direction”) at the position of the center point M of the mirror unit 55 (see FIG. 7A). From this graph, it can be seen that the center point M is irregularly displaced in the vertical direction with time.
  • the result of FIG. 7B is analyzed, it turns out that at least 2 or more frequency component is contained.
  • One is a sine wave having a high frequency component corresponding to the driving frequency, and the other is vibration having a frequency lower than that of the high frequency component.
  • the center point M is irregularly displaced by superimposing at least two of these frequency components. For this reason, the position of the laser beam reflected by the mirror unit 55 slightly changes with respect to the design value when the center point M is irregularly displaced in the vertical direction.
  • the cause of the inclusion of a plurality of frequency components is that the free end of the cantilever structure exists on the substrate 52, and therefore it is easily affected by the low-order vibration mode when driven at a high-order frequency. It is thought to be the cause. Further, it is desirable that the amplitude of displacement in the vertical direction of the center point M is small.
  • An object of the present invention is to provide an optical scanning device in which the vertical displacement of the center position of a mirror portion is small and is not easily affected by vibration components other than the driving frequency, and has high laser beam scanning accuracy.
  • a mirror part supported on both sides by a beam part is formed in an opening formed on the substrate, and the beam part is used as an oscillation axis by operating the vibration source provided on the substrate to bend the substrate.
  • An optical scanning device that scans by reflecting irradiation light while oscillating the mirror portion, wherein the substrate has an axial symmetry with respect to the beam portion supporting the mirror portion, and both longitudinal ends thereof are supported by the support portion, respectively. It is fixed.
  • the vibration sources are respectively arranged on the substrate that is axially symmetric with respect to the beam portion, and an alternating voltage is applied to each vibration source to bend the substrate in opposite directions around the beam portion on both sides.
  • the mirror portion is swung with a predetermined amplitude by repeating the operation alternately.
  • Each of the vibration sources is provided on the opposite side of the substrate and is driven by applying an in-phase alternating voltage from the same drive source. Further, each of the vibration sources is provided on the same surface side of the substrate, and is driven by applying an alternating voltage whose phase is inverted by a different driving source.
  • punched holes are formed at positions that are axially symmetric with respect to the beam. Further, the connection between the substrate and the fixed ends on both sides is connected by a single or a plurality of substrate connecting portions narrower than the substrate.
  • the substrate is symmetrical with respect to the beam portion supporting the mirror portion and both ends in the longitudinal direction are fixed to the support portion, when the vibration source provided on the substrate is operated, the beam portion is pivoted.
  • the mirror part can be swung by bending the substrates on both sides.
  • the vibration source is arranged on a substrate that is symmetric with respect to the beam portion, and the mirror portion is swung at a required amplitude at high speed by alternately repeating the operation of bending the substrate in opposite directions around the beam portion. Can be moved. At this time, the substrate bends in opposite directions on both sides of the beam portion, but the center point of the mirror portion at the symmetrical axis position is not displaced.
  • each vibration source is provided on the opposite surface side of the substrate, and is driven by applying a driving voltage having the same phase from the same driving source, so that each vibration source can be operated by the same driving source.
  • the drive source can be simplified. Further, since not only sinusoidal driving but also rectangular pulse driving is possible, the control operation can be simplified.
  • each vibration source may be provided on the same surface side of the substrate, and may be excited by applying a driving voltage whose phase is reversed by a different driving source.
  • a separate drive source is required, but the mirror portion can be swung by bending the substrates on both sides in opposite directions with the beam portion as the axis of symmetry.
  • the punched holes are formed in the vicinity of the fixed ends on both sides of the substrate at positions that are axially symmetric with respect to the beam portion, the substrate portions on both sides of the beam portion are easily bent by the operation of the vibration source. And the amplitude of the mirror portion can be increased.
  • the substrate and the fixed ends on both sides are connected by a single or a plurality of substrate connecting portions that are narrower than the substrate, the flexibility of the substrate increases. It becomes easy to bend by the operation, and a larger amplitude of the mirror part can be realized.
  • 1A and 1B are a plan view and a vertical sectional view of an optical scanning device.
  • 2A and 2B are an explanatory diagram and a perspective view showing an operation state of the optical scanning device.
  • FIGS. 3A and 3B are a plan view of the optical scanning device and a graph showing the time displacement of the mirror center point.
  • 4A to 4C are plan views showing the connection configuration between the substrate and the fixed end.
  • 5A to 5C are a plan view, a partial cross-sectional view, and a partial enlarged cross-sectional view showing an example of wiring on a substrate.
  • 6A and 6B are plan views showing examples of substrate wiring according to another example.
  • 7A and 7B are a plan view of a conventional optical scanning device and a graph showing the time displacement of the mirror center point.
  • the substrate 1 is preferably a rectangular substrate such as a metal plate (stainless steel; SUS304) or a silicon substrate (Si).
  • An opening (through hole) 2 is provided at the center in the longitudinal direction of the substrate 1.
  • a beam 3 is formed at the center of the opening 2, and a mirror 4 is integrally supported at the center.
  • the beam portion 3 is formed at a position that is the axis of symmetry of the substrate 1.
  • both end portions in the longitudinal direction are fixed to the support portions 5 with the beam portions 3 supporting the mirror portions 4 being axially symmetrical.
  • vibration sources 6 are arranged on the substrate 1 at positions that are axially symmetric with the beam portion 3.
  • the vibration source 6 is formed on the vibration abdomen of the substrate 1, but it may be a vibration node.
  • a piezoelectric element PZT; lead zirconate titanate
  • the vibration principle of the mirror unit 4 will be specifically described. For example, when a positive voltage is applied to the surface layer side electrode of the piezoelectric element, the piezoelectric layer extends, so that the substrate 1 is convex upward and downward as shown in FIG. 2A. Bend.
  • the piezoelectric layer contracts, so that the substrate 1 bends up and down as shown in FIG. 2B.
  • the standing wave generated on the substrate 1 generates a rotational moment due to torsion of the beam portion 3 in the horizontal mirror portion 4 supported by the beam portion 3 to generate torsional vibration.
  • the mirror portion 4 is swung with a required amplitude.
  • the reflected light (laser beam) can be scanned by irradiating the mirror part 4 with laser light L in a state where the mirror part 4 is swung with a predetermined amplitude with the beam part 3 as a twist axis. It has become.
  • each vibration source 6 is provided on the opposite side of the substrate 1 and is driven by the same driving source (not shown) with a driving voltage of the same phase. Thereby, a drive source and a control circuit can be simplified. Further, since not only sinusoidal driving but also rectangular wave driving is possible, the control operation can be simplified.
  • Each vibration source 6 may be provided on the same side of the substrate 6 and may be driven by applying a driving voltage whose phase is reversed by a different driving source.
  • any one of a piezoelectric body, a magnetostrictive body, and a permanent magnet body may be directly formed in a film shape on the substrate.
  • film formation methods include aerosol deposition (AD), vacuum deposition, sputtering, and chemical vapor deposition (CVD). Vapor Deposition), thin film formation technology such as sol-gel method, and any of piezoelectric, magnetostrictive, or permanent magnet bodies are directly formed in the form of a film on the substrate. Can be provided.
  • FIG. 3B shows the result of the transient response characteristic analysis of the optical scanning device described above.
  • FIG. 3B shows the relationship between the time change and the displacement in the direction perpendicular to the surface of the substrate 1 (hereinafter referred to as “vertical direction”) at the position of the center point M of the mirror unit 4 (see FIG. 3A).
  • the substrate 1 bends in opposite directions on both sides of the beam portion 3, but since the beam portion 3 is at the symmetrical axis position, the center point M is very little irregularly changed in the vertical direction.
  • FIG. 7B it can be seen that the low frequency components are greatly reduced and the amplitude itself is also reduced.
  • the hole 7 is formed in the vicinity of both side fixed ends (supports 5) of the substrate 1 in an axial symmetry.
  • a hole 1 is formed in the vicinity of the end portion of the substrate 1, and the support portion 5 is supported in the entire short direction of the substrate.
  • a hole 7 is formed at the end of the substrate 1, and the support 5 is supported at three locations by a substrate connecting portion 8 narrower than the substrate 1 in the short direction of the substrate.
  • the connection between the substrate 1 and both side fixed ends (support portions 5) may be connected by a single (or plural) substrate connecting portion 8.
  • a single (or plural) substrate connecting portion 8 since the flexibility of the substrate 1 is increased, the entire substrate on both sides of the beam portion 3 is easily bent by the operation of the vibration source 6, and a larger amplitude of the mirror portion 4 can be realized.
  • the mirror unit 4 may be a mirror-finished substrate 1 when a metal plate is used for the substrate 1.
  • a thin film is formed on the mirror portion 4 by a thin film forming technique such as vacuum deposition, sputtering, or CVD (chemical vapor deposition).
  • a mirror reflection material may be separately attached to the mirror unit 4.
  • the material for forming the thin film is selected from gold (Au), silicon dioxide (SiO 2 ), aluminum (Al), or magnesium fluoride (MgF 2 ), or a combination of two or more materials.
  • a thin film that improves reflection performance can be formed.
  • a thin film is formed on the mirror-finished silicon (Si) or alumina titanium carbide (Al 2 O 3 -TiC) ceramic by the above-mentioned thin film forming technique. May be formed.
  • the thickness of the substrate considering the flatness of the mirror in operation and the mirror size required for application to a projector device, etc., silicon (Si), stainless steel (SUS304, etc.), or even carbon Assuming a substrate with nanotubes grown on the material, a thickness of at least 10 ⁇ m or more is desirable. Further, when a piezoelectric element that is the vibration source 6 is provided, it is necessary to connect a wiring for applying a driving voltage.
  • the flexible cable 9 is linearly provided from the both-side support part 5 which is a fixed end with respect to the vibration source 6 provided on the opposite surface side in the symmetrical position with the beam part 3 of the substrate 1 as the symmetry axis. Yes.
  • the flexible wiring portion 9 is formed by laminating a conductive layer 9a such as gold plating, copper plating, or organic EL layer in an insulating layer 9b such as a polyimide material.
  • a conductive layer 9a such as gold plating, copper plating, or organic EL layer
  • an insulating layer 9b such as a polyimide material.
  • connection reliability of 9a is required. Therefore, it is intended to maintain the connection reliability of the conductive layer 9a by forming the wiring path by bending rather than linearly so that stress concentration does not easily occur at a specific location even if the substrate 1 is bent.
  • wiring connection may be made to the vibration source 6 in an L shape along both longitudinal ends of the substrate 1 at a point-paired position with respect to the center point M of the mirror unit 4.
  • each vibration source 6 may be connected to the crank shape.
  • the flexible wiring portion 9 may be formed in a cable shape in advance, and may be fixed to the substrate surface, or may be integrally formed by forming a pattern on the substrate.
  • the wiring connection mode may be a specification in which the vibration source and the power supply unit are directly connected by wiring.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

 ミラー部の中心位置の上下方向の変位が小さく、駆動周波数以外の振動成分の影響を受けにくく、レーザー光の走査精度が高い光走査装置を提供する。  基板1は、ミラー部4を支持する梁部3を軸対称として長手方向両端部が各々支持部5に固定されている。

Description

光走査装置
 本発明は、光源より照射された光ビームを揺動するミラー部で反射して走査を行う光走査装置に関する。
 光源より照射されたレーザー光等の光ビームを走査する光走査装置は、バーコードリーダ、レーザープリンタ、ヘッドマウントディスプレー等の光学機器、あるいは赤外線カメラ等撮像装置の光取り入れ装置として用いられている。
 例えば、図7Aにおいて、支持部材51に片持ち支持されたステンレス基板やシリコン基板などの基板52の自由端側に開口部53が形成され、当該開口部53内に梁部54により両側が連結されたミラー部55が設けられている。ミラー部55は鏡面仕上げされているか、反射膜が形成されているか、ミラーが貼付けられている。
 また、基板52に圧電体、磁歪体、または永久磁石のいずれかによる薄膜よりなる振動源56を設け、例えば圧電体の場合、図示しない駆動源より正電圧を印加すると延びが発生し、負電圧を印加すると縮みが発生するため、基板52に撓みが発生する。この基板52の上下方向の撓みに対して梁部54にねじれ振動が発生してミラー部55が揺動する。
 このミラー部55と梁部54との共振周波数付近で駆動周波数を維持して、振動するミラー部55によりレーザー光を反射することで光走査する。これによって、MEMS(Micro Electro Mechanical System)を用いて製造された微小ミラーを揺動させる光走査装置より製造コストがかからず、小型の振動源でミラー部に大きな振動を発生させるようになっている(特許文献1)。
特開2006-293116号公報
 上述した光走査装置の起動時の過渡応答特性解析をした結果を図7Bのグラフ図に示す。図7Bは、時間変化と、ミラー部55の中心点Mの位置(図7A参照)における基板52の面に対して鉛直な方向(以下「上下方向」という)の変位との関係を示す。このグラフ図から、時間変化にともなって、中心点Mが上下方向に不規則に変位していることが分かる。
 また、図7Bの結果を分析すると少なくとも2つ以上の周波数成分が含まれていることがわかる。一つは駆動周波数に相当する高周波数成分の正弦波であり、その他は前記高周波数成分よりも低い周波数の振動である。これら少なくとも2つ以上の周波数成分が重畳されて中心点Mは不規則な変位となっている。このため、ミラー部55で反射されたレーザー光の位置は、中心点Mが上下方向に不規則に変位することにより、設計値に対し微小に変化してしまう。このように、複数の周波数成分が含まれる原因としては基板52に片持ち梁構造の自由端が存在する為、高次の周波数で駆動したときに低次の振動モードの影響を受け易いことが原因であると考えられる。また、中心点Mの上下方向に変位する振幅は小さいほうが望ましい。
 この結果、この光走査装置をレーザービームプリンタ用スキャナに用いた場合、駆動周波数3kHz以上の高速走査が要求されるレーザー光の走査範囲や走査速度が安定しないか若しくは走査精度が低下するという不具合が想定される。
 本発明は、ミラー部の中心位置の上下方向の変位が小さく、駆動周波数以外の振動成分の影響を受けにくくレーザー光の走査精度が高い光走査装置を提供することを目的とする。
 基板に形成された開口部内に両側を梁部により支持されたミラー部が形成され、前記基板上に設けられた振動源を作動させて当該基板を撓ませることにより前記梁部を揺動軸として前記ミラー部を揺動させながら照射光を反射することで走査する光走査装置であって、前記基板は、前記ミラー部を支持する前記梁部を軸対称として長手方向両端部が支持部に各々固定されていることを特徴とする。
 また、前記梁部を中心として軸対称となる前記基板上に前記振動源が各々配置され、各振動源に交番電圧を印加して前記梁部を中心として前記基板を両側で反対方向に撓ませる
動作を交互に繰り返すことにより前記ミラー部を所定の振幅で揺動させることを特徴とする。
 また、前記各振動源は、前記基板の反対面側に設けられ、同一の駆動源から同相の交番電圧が印加されて駆動されることを特徴とする。
 また、前記各振動源は、前記基板の同一面側に設けられ、異なる駆動源によって位相が反転した交番電圧が印加されて駆動されることを特徴とする。
 また、前記基板の両側固定端付近には、抜き孔部が前記梁部を中心として軸対称となる位置に各々形成されていることを特徴とする。
 また、前記基板と両側固定端との連結は当該基板より幅狭な単数又は複数の基板連結部により連結されていることを特徴とする。
発明の効果
 基板は、ミラー部を支持する梁部を軸対称として長手方向両端部が各々支持部に固定されているので、基板上に設けられた振動源を作動させると梁部を揺動軸として両側の基板を撓ませてミラー部を揺動させることができる。
 また、梁部によって軸対称となる基板上に振動源が各々配置され、梁部を中心として基板を両側で反対方向に撓ませる動作を交互に繰り返すことによりミラー部を所要の振幅で高速で揺動させることができる。このとき、梁部の両側で基板が反対方向に撓むが対称軸位置にあるミラー部の中心点は変位しない。したがって、振動源の駆動電圧を変えてミラー部を揺動させてもミラー部の中心点の上下方向の変位は小さく駆動周波数以外の振動成分の影響を受けにくいので、基板の撓みにより安定した定在波を形成して一定の振幅でミラー部を振動させることができる。また、フィードバック制御を行なうにあたっては過渡応答が安定するので、制御性が向上する。
 また、各振動源は、基板の反対面側に設けられ、同一の駆動源から同相の駆動電圧が印加されて駆動されることにより、同一の駆動源により各振動源を作動することができるため、駆動源を簡略化することができる。また、正弦波駆動のみならず矩形パルス駆動も可能になるので、制御動作も簡略化することができる。
 また、各振動源は、基板の同一面側に設けられ、異なる駆動源によって位相が反転した駆動電圧が印加されて加振されるようにしてもよい。この場合には、駆動源は個別に必要となるが、梁部を対称軸として両側の基板を反対方向に撓ませてミラー部を揺動させることができる。
 また、基板の両側固定端付近には、抜き孔部が梁部を中心として軸対称となる位置に各々形成されていると、梁部の両側の基板部を振動源の作動により撓ませ易くすることができ、ミラー部の振幅をかせぐことができる。
 また、基板と両側固定端との連結は基板より幅狭な単数又は複数の基板連結部により連結されていると、基板の可撓性が高まるため、梁部の両側の基板全体を振動源の作動により撓ませ易くなりミラー部のより大きな振幅を実現可能になる。
図1Aおよび図1Bは、光学走査装置の平面図及び垂直断面図である。 図2Aおよび図2Bは、光学走査装置の動作状態を示す説明図及び斜視図である。 図3Aおよび図3Bは、光学走査装置の平面図及びミラー部中心点の時間変位を示すグラフ図である。 図4A~図4Cは、基板と固定端との接続構成を示す平面図である。 図5A~図5Cは、基板の配線例を示す平面図、部分断面図及び部分拡大断面図である。 図6Aおよび図6Bは、他例に係る基板配線例を示す平面図である。 図7Aおよび図7Bは、従来の光学走査装置の平面図及びミラー部中心点の時間変位を示すグラフ図である。
 以下、本発明に係る光学走査装置の実施形態について図面を参照して説明する。
本実施例では、レーザービームプリンタ用に用いられる光走査装置(スキャナー)を例示して説明するものとする。
 図1を参照して光走査装置の概略構成について説明する。
 基板1は金属板(ステンレススチール;SUS304)若しくはシリコン基板(Si)などの矩形基板が好適に用いられる。基板1の長手方向中央部には開口部(貫通孔)2が設けられている。この開口部2の中心部に梁部3が形成されて中央部にミラー部4が一体に支持されている。梁部3は、基板1の対称軸となる位置に形成されている。基板1は、ミラー部4を支持する梁部3を軸対称として長手方向両端部が各々支持部5に固定されている。
 また、基板1上であって梁部3によって軸対称となる位置に振動源6が各々配置されている。本実施例では、振動源6が基板1の振動の腹部へ形成された図を示したが、振動の節部でも良い。さらに、振動源6として圧電素子(PZT;チタン酸ジルコン酸鉛)が用いられている。
 ここで、ミラー部4の振動原理について具体的に説明すると、たとえば圧電素子の表層側電極にプラスの電圧を印加すると圧電層が延びるため、図2Aに示すように基板1は上下に凸となるように撓む。また、圧電素子の表層側電極にマイナスの電圧を印加すると圧電層は縮むため、図2Bに示すように基板1は上下に凹となるように撓む。このとき、基板1に発生した定在波は、梁部3により支持された水平状態にあるミラー部4に、梁部3の捻れによる回転モーメントを発生させて、捻れ振動を生じさせる。
 また、各振動源6に交番電圧を印加して梁部3の両側の基板1を反対方向に撓ませる動作を交互に繰り返すことによりミラー部4を所要の振幅で揺動させる。上記梁部3を捻れ軸としてミラー部4を所定の振幅で揺動させた状態でミラー部4へレーザー光Lを光照射することで、反射光(レーザービーム)を走査することができるようになっている。
 本実施例は、各振動源6が、基板1の反対面側に設けられ、図示しない同一の駆動源から同相の駆動電圧で各々駆動される。これにより、駆動源や制御回路を簡略化することができる。また、正弦波駆動のみならず矩形波駆動も可能であるので、制御動作も簡略化することができる。
 尚、各振動源6は、基板6の同一面側に設けられ、異なる駆動源によって位相が反転した駆動電圧が印加されて駆動されるようにしてもよい。
 また、振動源6としては、圧電素子のほかに、圧電体、磁歪体又は永久磁石体のいずれかが基板上に膜状に直接形成されていてもよい。成膜法としては、例えばエアロゾルデポジション法(AD法)、真空蒸着法、スパッタリング法や化学的気相成長法(CVD: Chemical
Vapor  Deposition)、ゾル-ゲル法などの薄膜形成技術を用いて、圧電体、磁歪体又は永久磁石体のいずれかが基板上に膜状に直接形成されていると、低電圧駆動で低消費電力の光走査装置を提供できる。
 磁歪体や永久磁石体を用いる場合、外部から印加する交番磁界は、上記磁歪膜、永久磁石膜が形成された基板部近傍に設けられたコイルに交流電流を流すことで交番磁界を発生させる。尚、磁歪膜や永久磁石膜で基板に形成する場合、基板材料は非磁性材料である方が、より効率的に撓みを発生することができる。
 上述した光学走査装置の過渡応答特性解析をした結果を、図3Bに示す。図3Bは、時間変化と、ミラー部4の中心点Mの位置(図3A参照)における基板1の面に対して鉛直な方向(以下、“上下方向”とする)の変位との関係を示す。
 図3Bにおいて、梁部3の両側で基板1が反対方向に撓むが、梁部3が対称軸位置にあるため中心点Mは上下方向へ不規則な変化が非常に小さい。図7Bと比較しても低周波数成分が大幅に低減し、振幅自体も小さくなっていることが分かる。したがって、振動源6の駆動電圧を変えてミラー部4を揺動させても揺動軸の中心点Mの上下方向の変位が小さく駆動周波数以外の振動成分の影響を受けにくいので、駆動周波数に相当する高周波数成分の正弦波に非常に近い安定した定在波を形成して一定の振幅でミラー部4を振動させることができる。また、フィードバック制御を行なうにあたって過渡応答が安定し、制御性が向上する。
 また、図7Bと比較すると低周波数成分が無く、設計上極めて有利であることがわかる。
 また、基板1の両側を支持部5に固定したことにより基板1の所期の撓み量が得られないことも想定される。そこで、図4ABにおいて、基板1の両側固定端(支持部5)付近には、抜き孔部7が軸対称に形成されている。図4Aは、基板1に端部近傍に抜き孔部7が形成されており、支持部5とは基板短手方向全体で支持されている。また図4Bは、基板1の端部に抜き孔部7が形成されており、支持部5とは基板短手方向で基板1より幅狭な基板連結部8によって3箇所で支持されている。このように、基板1の両側固定端付近に、抜き孔部7が軸対称に形成されているので、梁部3の両側の基板部を振動源6の作動により撓ませ易くすることができ、ミラー部4の振幅をかせぐことができる。
 また、図4Cにおいて、基板1と両側固定端(支持部5)との接続は単数(又は複数)の基板連結部8により連結されていてもよい。この場合には、基板1の可撓性が高まるため、梁部3の両側の基板全体を振動源6の作動により撓ませ易くなりミラー部4のより大きな振幅を実現可能になる。この場合、基板連結部8の長手方向延長線上に振動源6を設けることにより振動伝達性が良く、梁部3の両側で均一な基板1の撓みによる定在波を形成するうえで好ましい。
 尚、ミラー部4は、基板1に金属板を使用する場合には鏡面仕上げされた基板1を用いると良い。金属板以外の基板や、金属板においてもより高い反射性能が要求され場合には、真空蒸着、スパッタリング、CVD(化学的気相成長法)等の薄膜形成技術により、ミラー部4へ薄膜を形成するか、或いはミラー部4へ別途ミラー用反射材料を貼付けてもよい。
 また、薄膜を形成する材料には、金(Au)、二酸化ケイ素(SiO2)、アルミニウム(Al)、あるいはフッ化マグネシウム(MgF2)から1つを選択、或いは2つ以上の材料を組み合わせ、さらに前記薄膜成形技術による同一層(=単層)、或いは2層以上の多層構成を適度な膜厚に制御することによって、反射性能を向上する薄膜が形成できる。あるいは、ミラー部4へ別途ミラー用反射材を貼付ける材料には、鏡面仕上げしたシリコン(Si)またはアルミナチタンカーバイト(Al2O3-TiC)のセラミック等へ、前記薄膜成形技術にて薄膜を形成しても良い。
 また、基板1の厚みに関しては、動作中のミラーの平坦性やプロジェクターデバイスなどへの応用で要求されるミラーサイズを考慮し、シリコン(Si)、ステンレススチール(SUS304等)等の、或いはさらにカーボンナノチューブを前記材料へ成長させた基板を想定すると、少なくとも10μm以上の厚みが望ましい。
 また、振動源6である圧電素子を設けた場合に、駆動電圧を印加するための配線接続する必要がある。この基板配線例を図5及び図6を参照して説明する。
 図5ABにおいて、基板1の梁部3を対称軸として対称位置に反対面側に設けられた振動源6に対して、固定端である両側支持部5から直線的にフレキシブルケーブル9が設けられている。フレキシブル配線部9は、図5Cに示すようにポリイミド材などの絶縁層9bに、金めっき,銅めっき,有機EL層などの導電層9aが挟み込まれて積層されたものが用いられる。
 また、図6ABにおいて、基板1が梁部3を対称軸として両側に設けられた振動源6によって撓むことを考慮すると、基板上に貼付けられたフレキシブル配線部9も撓むことから、導電層9aの接続信頼性が求められる。よって、基板1が撓んでも特定個所に応力集中がおこり難いように配線路を直線的ではなく曲げて形成することにより、導電層9aの接続信頼性を維持しようとするものである。
 例えば、図6Aに示すように、ミラー部4の中心点Mに対して点対状となる位置に基板1の長手方向両端に沿ってL字状に振動源6に各々配線接続してもよいし、図6Bに示すようにクランク形状に各振動源6各々配線接続するようにしてもよい。
 尚、図4A~Cにおいて、基板1に抜き孔部7が形成され、基板連結部8が形成される場合には、抜き孔部7を回避した基板面若しくは基板連結部8を利用して配線接続することが望ましい。また、フレキシブル配線部9は、予めケーブル状に形成されたものを基板面に固着してもよいし、基板上にパターン形成して一体につくり込んでもよい。
 また、図示しないが、配線接続の態様については振動源と電源部を直接配線接続する仕様であっても良い。

Claims (6)

  1.  基板に形成された開口部内に両側を梁部により支持されたミラー部が形成され、前記基板上に設けられた振動源を作動させて当該基板を撓ませることにより前記梁部を揺動軸として前記ミラー部を揺動させながら照射光を反射することで走査する光走査装置であって、
     前記基板は、前記ミラー部を支持する前記梁部を軸対称として長手方向両端部が支持部に各々固定されていることを特徴とする光走査装置。
  2.  前記梁部を中心として軸対称となる前記基板上に前記振動源が各々配置され、各振動源に交番電圧を印加して前記梁部を中心として前記基板を両側で反対方向に撓ませる動作を交互に繰り返すことにより前記ミラー部を所定の振幅で揺動させる請求項1記載の光走査装置。
  3.  前記各振動源は、前記基板の反対面側に設けられ、同一の駆動源から同相の交番電圧が印加されて駆動される請求項1又は2記載の光走査装置。
  4.  前記各振動源は、前記基板の同一面側に設けられ、異なる駆動源によって位相が反転した交番電圧が印加されて駆動される請求項1又は2記載の光走査装置。
  5.  前記基板の両側固定端付近には、抜き孔部が前記梁部を中心として軸対称となる位置に各々形成されている請求項1乃至4のいずれか1項記載の光走査装置。
  6.  前記基板と両側固定端との連結は当該基板より幅狭な単数又は複数の基板連結部により連結されている請求項1乃至5のいずれか1項記載の光走査装置。
PCT/JP2009/068469 2008-10-28 2009-10-28 光走査装置 WO2010050495A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-276904 2008-10-28
JP2008276904A JP2010107572A (ja) 2008-10-28 2008-10-28 光走査装置

Publications (1)

Publication Number Publication Date
WO2010050495A1 true WO2010050495A1 (ja) 2010-05-06

Family

ID=42128855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068469 WO2010050495A1 (ja) 2008-10-28 2009-10-28 光走査装置

Country Status (2)

Country Link
JP (1) JP2010107572A (ja)
WO (1) WO2010050495A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450463B2 (en) 2015-09-22 2019-10-22 Dystar Colours Distribution Gmbh Mixtures of fibre-reactive dyes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358536B2 (ja) * 2010-08-27 2013-12-04 Necトーキン株式会社 光走査素子及びその製造方法
JP5494388B2 (ja) * 2010-09-24 2014-05-14 ブラザー工業株式会社 2次元光走査装置、画像投影装置
JP5850245B2 (ja) * 2012-03-26 2016-02-03 ブラザー工業株式会社 光スキャナ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199682A (ja) * 2005-12-27 2007-08-09 Konica Minolta Holdings Inc 光偏向器および光ビーム走査装置
WO2008038545A1 (fr) * 2006-09-28 2008-04-03 Brother Kogyo Kabushiki Kaisha Élément de balayage optique, dispositif de balayage optique, dispositif d'affichage du balayage optique et dispositif d'affichage du balayage rétinien
JP2008111881A (ja) * 2006-10-27 2008-05-15 Seiko Epson Corp 光学デバイス、光スキャナおよび画像形成装置
JP2008193890A (ja) * 2007-01-10 2008-08-21 Seiko Epson Corp アクチュエータ、光スキャナおよび画像形成装置
JP2009003165A (ja) * 2007-06-21 2009-01-08 Konica Minolta Opto Inc マイクロスキャナ及びそれを備えた光走査装置。
JP2009002978A (ja) * 2007-06-19 2009-01-08 Konica Minolta Opto Inc マイクロスキャナ及びそれを備えた光走査装置。

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199682A (ja) * 2005-12-27 2007-08-09 Konica Minolta Holdings Inc 光偏向器および光ビーム走査装置
WO2008038545A1 (fr) * 2006-09-28 2008-04-03 Brother Kogyo Kabushiki Kaisha Élément de balayage optique, dispositif de balayage optique, dispositif d'affichage du balayage optique et dispositif d'affichage du balayage rétinien
JP2008111881A (ja) * 2006-10-27 2008-05-15 Seiko Epson Corp 光学デバイス、光スキャナおよび画像形成装置
JP2008193890A (ja) * 2007-01-10 2008-08-21 Seiko Epson Corp アクチュエータ、光スキャナおよび画像形成装置
JP2009002978A (ja) * 2007-06-19 2009-01-08 Konica Minolta Opto Inc マイクロスキャナ及びそれを備えた光走査装置。
JP2009003165A (ja) * 2007-06-21 2009-01-08 Konica Minolta Opto Inc マイクロスキャナ及びそれを備えた光走査装置。

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450463B2 (en) 2015-09-22 2019-10-22 Dystar Colours Distribution Gmbh Mixtures of fibre-reactive dyes

Also Published As

Publication number Publication date
JP2010107572A (ja) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5229704B2 (ja) 光走査装置
JP4691704B2 (ja) 光走査装置
JP5446122B2 (ja) ミアンダ形振動子およびこれを用いた光学反射素子
JP5728823B2 (ja) 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP4092283B2 (ja) 2次元光スキャナ及び光学装置
JP6278130B2 (ja) 微小光学電気機械デバイスおよびその製造方法
JP2010026069A (ja) 振動ミラー素子
JP2008020701A (ja) 2次元光スキャナ、それを用いた光学装置および2次元光スキャナの製造方法
JP2005128147A (ja) 光偏向器及び光学装置
JP2010148265A (ja) ミアンダ形振動子およびこれを用いた光学反射素子
JP2012042666A (ja) 光偏向器、光走査装置、画像形成装置及び画像投影装置
WO2010050495A1 (ja) 光走査装置
JP2009258210A (ja) 光学反射素子
JP4569932B1 (ja) 光走査装置の組み立て方法
JP2009265560A (ja) 光学反射素子
JP2009258339A (ja) 光学反射素子
JP2009210955A (ja) 光スキャナ
JP5045470B2 (ja) 光学反射素子
JP2012163671A (ja) 光走査装置
JP4620789B1 (ja) 光走査装置
JP2011169927A (ja) 光走査装置
JP5239382B2 (ja) 光学反射素子
JP2007295731A (ja) アクチュエータ
JP2009217093A (ja) 光学反射素子
WO2021193669A1 (ja) 光学反射素子、および光学反射システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823605

Country of ref document: EP

Kind code of ref document: A1