WO2010050221A1 - 無線通信装置および無線通信方法 - Google Patents

無線通信装置および無線通信方法 Download PDF

Info

Publication number
WO2010050221A1
WO2010050221A1 PCT/JP2009/005751 JP2009005751W WO2010050221A1 WO 2010050221 A1 WO2010050221 A1 WO 2010050221A1 JP 2009005751 W JP2009005751 W JP 2009005751W WO 2010050221 A1 WO2010050221 A1 WO 2010050221A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
multiplexing
information signal
multiplexing method
signal
Prior art date
Application number
PCT/JP2009/005751
Other languages
English (en)
French (fr)
Inventor
佳彦 小川
昭彦 西尾
大地 今村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/126,366 priority Critical patent/US8654692B2/en
Priority to JP2010535680A priority patent/JP5361902B2/ja
Publication of WO2010050221A1 publication Critical patent/WO2010050221A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a wireless communication apparatus and a wireless communication method applied to a wireless communication system in which single carrier transmission and multi-cluster transmission are mixed.
  • FIG. 1A shows how frequency resources are allocated for single carrier transmission.
  • Single carrier transmission has a characteristic that CM (Cubic Metric) is small. Therefore, in single carrier transmission, the backoff of the power amplifier for transmitting the transmission signal without distortion can be reduced, and the maximum transmittable power can be increased, so that cell coverage can be expanded.
  • CM Cubic Metric
  • FIG. 1B shows how frequency resources are allocated in multi-cluster transmission.
  • LTE-Advanced 3rd Generation Partnership Project Long Term Evolution-Advanced: hereinafter abbreviated as LTE-Advanced
  • FIG. 1B shows how frequency resources are allocated in multi-cluster transmission.
  • data signals are assigned to nonconsecutive clusters.
  • a cluster refers to a plurality of carrier groups in frequency resource allocation.
  • FIG. 1B is an example of multi-cluster transmission with two clusters.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • a control information signal to be multiplexed with a data signal there is a response signal such as ACK / NACK for a data signal transmitted on the downlink, but it is not limited to this.
  • Time multiplex (see Figure 2)
  • the control information signal is transmitted using the same frequency resource as the data signal.
  • time multiplexing is applied to the LTE uplink, low CM can be maintained since single carrier transmission is performed.
  • frequency resources for allocating control information signals (hereinafter referred to as “control information resources”) are prepared on frequencies different from frequency resources for assigning data signals (hereinafter referred to as “data resources”). ing.
  • control information resources are prepared on PUCCH (Physical Uplink Control CHannel) present at both ends of the system band. Therefore, when the control information signal is allocated to the data resource by time multiplexing, the utilization efficiency of the data resource is reduced.
  • PUCCH Physical Uplink Control CHannel
  • Frequency multiplexing (see Figure 3) In frequency multiplexing, control information signals are allocated to control information resources different from data resources and transmitted. Therefore, in frequency multiplexing, it is possible to avoid a decrease in utilization efficiency of data resources. However, when frequency multiplexing is applied to the LTE uplink, transmission of data signals and control information signals is multi-cluster transmission, so CM increases compared to single carrier transmission.
  • An object of the present invention is to provide a wireless communication apparatus and a wireless communication method for improving data resource utilization efficiency while suppressing an increase in CM of transmission signals in a wireless communication system in which single carrier transmission and multi-cluster transmission are mixed. is there.
  • the wireless communication apparatus is a wireless communication apparatus on the transmission side applied to a wireless communication system in which single carrier transmission and multi-cluster transmission are mixed, and based on the number of carrier groups used for data signal transmission.
  • a determination unit that determines a multiplexing method of the data signal and the control information signal; and a multiplexing unit that multiplexes the data signal and the control information signal based on the multiplexing method to generate a multiplexed signal.
  • transmitting means for transmitting the multiplexed signal to the wireless communication apparatus on the receiving side.
  • the wireless communication apparatus is a wireless communication apparatus on the receiving side applied to a wireless communication system in which single carrier transmission and multi-cluster transmission are mixed, and based on the number of carrier groups used for transmission of data signals.
  • a configuration comprising: determination means for determining a multiplexing method of the data signal and the control information signal; and notification means for notifying the information of the number of the carrier groups to the radio communication apparatus on the transmission side.
  • the wireless communication method according to the present invention is a wireless communication method applied to a wireless communication system in which single carrier transmission and multi-cluster transmission are mixed, which is based on the number of carrier groups used for transmitting a data signal.
  • a multiplexing method of the signal and the control information signal is determined, and the data signal and the control information signal are multiplexed based on the multiplexing method to generate a multiplexed signal, and the multiplexed signal is received on the side of wireless communication I sent it to the device.
  • the present invention in a wireless communication system in which single carrier transmission and multi-cluster transmission are mixed, it is possible to improve data resource utilization efficiency while suppressing an increase in CM of transmission signals.
  • Block diagram showing an essential configuration of a terminal according to Embodiment 1 Flow chart showing process flow of base station and terminal
  • a diagram showing an example of resource allocation when [multiplex method # 3] in Embodiment 1 is used The figure which shows another example of resource allocation at the time of using [multiplex method # 3] in Embodiment 1.
  • Block diagram showing the main configuration of a terminal according to Embodiment 2 of the present invention The figure which shows an example of resource allocation at the time of using [multiplex method # 1] in Embodiment 2.
  • a figure showing an example of resource allocation in a fifth embodiment of the present invention Diagram showing the relationship between transmit bandwidth and transmit power margin Diagram showing the relationship between transmit bandwidth and transmit power margin Block diagram showing the main configuration of a base station according to Embodiment 6 of the present invention
  • FIG. 36 illustrates an example of resource allocation in the sixth embodiment Block diagram showing a main configuration of a terminal according to Embodiment 6
  • FIG. 36 shows another example of resource allocation in the seventh embodiment.
  • FIG. 4 shows the case where the control information signal is frequency multiplexed (FDM) to the data signal (characteristic # 1) and the case where the control information signal is time multiplexed (TDM) to the data signal (multi-cluster transmission of the data signal)
  • FDM frequency multiplexed
  • TDM time multiplexed
  • the CM is larger as the number of clusters is larger, regardless of whether the method of multiplexing the data signal and the control information signal is frequency multiplexing or time multiplexing.
  • the amount of increase or decrease in CM accompanying the increase in the number of clusters is smaller than the amount of increase in CM in time multiplexing. That is, as the number of clusters is smaller, the difference between CM in frequency multiplexing and CM in time multiplexing is larger, and as the number of clusters is larger, the difference between CM in frequency multiplexing and CM in time multiplexing is smaller.
  • CM characteristics as described above, and a method of multiplexing data signals and control information signals is determined / decided based on the number of clusters.
  • FIG. 5 shows a main part configuration of a base station apparatus (hereinafter, abbreviated as “base station”) 100 according to the present embodiment.
  • a CRC (Cyclic Redundancy Check) unit 101 performs CRC coding on transmission data and control information to generate CRC coded data.
  • the CRC unit 101 outputs the generated CRC encoded data to the encoding unit 102.
  • Encoding section 102 encodes the CRC encoded data input from CRC section 101 to generate encoded data, and outputs the generated encoded data to modulation section 103.
  • Modulating section 103 modulates the encoded data input from encoding section 102 to generate a modulated signal, and outputs the generated modulated signal to transmission RF (Radio Frequency) section 104.
  • RF Radio Frequency
  • Transmission RF section 104 performs transmission processing such as D / A conversion, up conversion, amplification, etc. on the modulated signal input from modulation section 103, and transmits the transmission signal after transmission processing from antenna 105 to each terminal device (hereinafter referred to as “ Wirelessly transmit to a terminal).
  • Reception RF section 106 performs reception processing such as down conversion and A / D conversion on the signal from each terminal received via antenna 105, and outputs the reception signal after reception processing to separation section 107.
  • the separation unit 107 separates the reception signal input from the reception RF unit 106 into a reference signal and a data signal. Then, separation section 107 outputs the reference signal to DFT (Discrete Fourier transform) section 108, and outputs the data signal to DFT section 113.
  • DFT Discrete Fourier transform
  • the DFT unit 108 performs DFT processing on the reference signal input from the separation unit 107, and converts the time domain into a frequency domain signal. Then, DFT section 108 outputs the converted reference signal in the frequency domain to demapping section 109.
  • Demapping section 109 extracts the reference signal of the portion corresponding to the transmission band of each terminal from the reference signal of the frequency domain input from DFT section 108. Then, the demapping unit 109 outputs the extracted reference signals to the estimation unit 110.
  • the estimation unit 110 estimates the estimated value of the frequency fluctuation of the propagation path (the frequency response of the propagation path) and the estimated value of the reception quality based on the reference signal input from the demapping unit 109. Then, estimation section 110 outputs the estimated value of frequency fluctuation in the propagation path to frequency domain equalization section 115, and outputs the estimated value of reception quality to scheduling section 111.
  • Scheduling section 111 performs resource scheduling of each terminal based on the estimated value of reception quality input from estimation section 110. Also, the scheduling unit 111 outputs the number of clusters to the multiplexing method determination unit 112 as information on the multiplexing method. Further, scheduling section 111 outputs a control information signal including uplink and downlink scheduling information and the like to CRC section 101.
  • Multiplexing method determination unit 112 stores the number of clusters input from scheduling unit 111, and when reception RF unit 106 receives a data signal corresponding to the number of clusters, the control information signal and the data are determined based on the number of clusters. Determine how to multiplex with the signal. The determination method of the multiplexing method determination unit 112 will be described later. The multiplexing method determination unit 112 outputs information on the determined multiplexing method to the demapping unit 114.
  • the DFT unit 113 performs DFT processing on the data signal input from the separation unit 107, and converts the time domain into a frequency domain signal. Then, the DFT 113 unit outputs the converted data signal in the frequency domain to the demapping unit 114.
  • Demapping section 114 extracts a portion corresponding to each transmission band of the data signal and control information signal of each terminal based on the information on the multiplexing method input from multiplexing method determination section 112. Then, the demapping unit 114 outputs the extracted data signal and control information signal to the frequency domain equalization unit 115.
  • the frequency domain equalization unit 115 performs equalization processing on the data signal input from the demapping unit 114 using the estimated value of the frequency fluctuation of the propagation path input from the estimation unit 110. Then, frequency domain equalization section 115 outputs the data signal after the equalization processing to combining section 116.
  • the combining unit 116 combines data signals after equalization processing divided into a plurality of clusters based on the number of clusters input from the scheduling unit 111 and outputs the combined data signal to an Inverse Fast Fourier Transform (IFFT) unit 117.
  • IFFT Inverse Fast Fourier Transform
  • the IFFT unit 117 performs an IFFT process on the equalized data signal input from the combining unit 116 to convert it into a time domain data signal. Then, the IFFT unit 117 outputs the data signal in the time domain to the demodulation unit 118.
  • Demodulation section 118 subjects the data signal in the time domain input from IFFT section 117 to demodulation processing to obtain a demodulated signal, and outputs the demodulated signal to decoding section 119.
  • Decoding section 119 applies decoding processing to the demodulated signal input from demodulation section 118 to obtain a decoded bit string, and outputs the decoded bit string to error detection section 120.
  • the error detection unit 120 performs error detection on the decoded bit sequence input from the decoding unit 119.
  • the error detection unit 120 performs error detection using, for example, a CRC.
  • FIG. 6 shows the main configuration of terminal 200 according to the present embodiment.
  • the reception RF unit 202 performs reception processing such as down conversion and A / D conversion on the signal from the base station received via the antenna 201, acquires a reception signal, and outputs the reception signal to the demodulation unit 203.
  • Demodulation section 203 performs equalization processing and demodulation processing on the received signal to obtain a demodulated signal, and outputs the demodulated signal to decoding section 204.
  • Decoding section 204 performs decoding processing on the demodulated signal input from demodulation section 203, acquires decoded data, and outputs the decoded data to error detection section 205.
  • the error detection unit 205 performs error detection on the decoded data. For error detection, for example, a CRC is used. Then, the error detection unit 205 determines the presence or absence of a decoding error as a result of the error detection, and outputs the determination result to the control information generation unit 206. Further, when there is no decoding error, the error detection unit 205 extracts information on the number of clusters of uplink data signals from the decoded data, and outputs information on the number of clusters to the multiplexing method determination unit 207 and the division unit 212. The decoded data for the signal is output as received data.
  • error detection for example, a CRC is used. Then, the error detection unit 205 determines the presence or absence of a decoding error as a result of the error detection, and outputs the determination result to the control information generation unit 206. Further, when there is no decoding error, the error detection unit 205 extracts information on the number of clusters of uplink data signals from the decoded data, and outputs information
  • the control information generation unit 206 generates a NACK signal as a response signal when there is a decoding error, and generates an ACK signal as a response signal when there is no decoding error.
  • the control information generation unit 206 outputs a control information signal including a response signal to the assignment unit 213.
  • the multiplexing method determination unit 207 determines the multiplexing method of the control information signal and the data signal based on the number of clusters of uplink data signals input from the error detection unit 205. The determination method of the multiplexing method determination unit 207 will be described later. The multiplexing method determination unit 207 outputs information on the determined multiplexing method to the allocation unit 213.
  • the CRC unit 208 performs CRC coding on the transmission data to generate CRC coded data, and outputs the generated CRC coded data to the coding unit 209.
  • Encoding section 209 encodes the CRC encoded data input from CRC section 208 to generate encoded data, and outputs the generated encoded data to modulation section 210.
  • Modulating section 210 modulates the encoded data input from encoding section 209 to generate a data signal, and outputs the generated data signal to DFT section 211.
  • the DFT unit 211 performs DFT processing on the data signal input from the modulation unit 210, converts the time domain into a data signal in the frequency domain, and outputs the data signal in the frequency domain to the dividing unit 212.
  • the dividing unit 212 divides the data signal in the frequency domain input from the DFT unit 211 into a plurality of clusters according to the number of clusters of uplink data signals, and transmits the divided data signal in the frequency domain to the allocating unit 213. Output.
  • the assignment unit 213 assigns the data signal in the frequency domain input from the division unit 212 and the control information signal input from the control information generation unit 206 to resources based on the multiplexing method determined by the multiplexing method determination unit 207.
  • the assignment unit 213 outputs the data signal and control information signal after resource assignment to the IFFT unit 214.
  • the IFFT unit 214 performs IFFT processing on the data signal and control information signal after resource allocation, converts it into a time domain signal, and outputs the time domain signal to the multiplexing unit 215.
  • the multiplexing unit 215 time-multiplexes the reference signal and the time domain signal input from the IFFT unit 214 to generate a multiplexed signal, and outputs the generated multiplexed signal to the transmission RF unit 216.
  • the transmission RF unit 216 performs transmission processing such as D / A conversion, up conversion, amplification and the like on the multiplexed signal input from the multiplexing unit 215, and wirelessly transmits the transmission signal after transmission processing from the antenna 201 to the base station.
  • the base station first performs resource scheduling of the terminal based on the channel quality such as the reception quality of the channel between the base station and the terminal and the resource utilization status of the channel. Scheduling involves setting the number of clusters.
  • the number of clusters is the number of multiple carrier groups to which data signals are allocated in the uplink.
  • the base station transmits, on the downlink, a control information signal including a data signal and information on the set number of clusters to the terminal.
  • the terminal determines the multiplexing method of the data signal and the control information signal based on the number of clusters included in the downlink control information signal, and multiplexes the data signal and the control information signal using the determined multiplexing method. And transmit to the base station.
  • the base station determines the multiplexing method of the data signal and the control information signal based on the previously determined number of clusters, using the same method as the terminal.
  • the base station extracts the data signal and the control information signal from the received signal based on the determined multiplexing method.
  • Multiplex method # 1 The control information signal is divided into a first control information signal and a second control information signal, the multiplexing method of the data signal and the first control information signal is time multiplexing, and the multiplexing method of the data signal and the second control information signal is The frequency multiplexing is performed, and the ratio of the second control information signal to the first control information signal is increased as the number of clusters increases.
  • time multiplexing and frequency multiplexing are mixed to multiplex the data signal and the control information signal.
  • X% of the control information signal is a first control information signal
  • (100-X)% of the control information signal is a second control information signal.
  • X% is time-multiplexed
  • (100-X)% is frequency-multiplexed.
  • the multiplexing method determination unit 207 of the terminal divides the control information signal into the first control information signal and the second control information signal, and sets the multiplexing method of the data signal and the first control information signal as time multiplexing.
  • the multiplexing method of the data signal and the second control information signal is made frequency multiplexing, and the ratio of the second control information signal to the first control information signal is increased as the number of clusters is larger.
  • FIG. 8 shows how resources are allocated when [multiplex method # 1] is used.
  • the control information signal is divided into a first control information signal and a second control information signal, and the first control information signal is time-multiplexed with the data signal, and the second control information signal is multiplexed.
  • the ratio of the second control information signal to the first control information signal is larger as the number of clusters is larger, as in the multiplexing method determination unit 207.
  • a threshold Th1 is provided for the number of clusters, and the multiplexing method is determined based on the result of the threshold determination between the number of clusters and the threshold Th1. Specifically, when the number of clusters is less than Th1, 100% of the control information signal is time-multiplexed with the data signal, and when the number of clusters is Th1 or more, 100% of the control information signal is data And frequency multiplexing.
  • the multiplexing method is switched between single carrier transmission (1 cluster number) and multi cluster transmission (2 cluster number or more). That is, in the case of single carrier transmission, the data signal and the control information signal are time-multiplexed, and in the case of multi-cluster transmission, the data signal and the control information signal are frequency-multiplexed.
  • the terminal multiplexing method determination unit 207 sets the multiplexing method to time multiplexing when the number of clusters is less than the threshold Th1, and sets the multiplexing method to frequency multiplexing when the number of clusters is equal to or more than the threshold Th1.
  • FIG. 9 shows how resources are allocated when [multiplex method # 2] is used.
  • CM is larger in multi-cluster transmission than single carrier transmission. Therefore, by setting the threshold value Th1 to 2, in single carrier transmission, all control information signals are time-multiplexed with data signals, so that low CM can be maintained. Therefore, in the wireless communication system in which single carrier transmission and multi cluster transmission are mixed by using [multiplex method # 2], low CM characteristic which is an advantage of single carrier transmission, and contradictory multi cluster It can be coordinated with the utilization efficiency of data resources, which is an advantage of transmission.
  • the multiplexing method determining unit 112 of the base station determines that the multiplexing method is time multiplexing when the number of clusters is less than the threshold Th1, and the multiplexing method is frequency multiplexing when the number of clusters is the threshold Th1 or more Do.
  • the multiplexing method is determined based on the margin of the transmission power of the terminal.
  • the margin of the transmission power a difference between the maximum transmission power of the terminal and the transmission power in data transmission using the number of clusters instructed by the base station can be mentioned.
  • the multiplexing method is determined based on the result of the threshold determination with the margin of the transmission power and the threshold value Th2.
  • Multiplexing method # 3 will be described using FIG. In FIG. 10, the horizontal axis indicates the number of clusters transmitting data signals, and the vertical axis indicates the margin of transmission power.
  • the multiplexing method is time-multiplexed when the margin of transmission power ⁇ Th2, and the multiplexing method is frequency-multiplexed when the margin of transmission power ⁇ Th2.
  • the threshold determination may be performed using a threshold value Th2 set according to the number of clusters transmitting uplink data signals. For example, as the number of clusters is larger, a smaller threshold value Th2 may be used.
  • the relationship between the margin of transmission power and the threshold value Th2 according to the number of clusters is shown in FIG. Also in this case, as in FIG. 10, the multiplexing method is time-multiplexed when the margin of transmission power ⁇ Th2, and the multiplexing method is frequency-multiplexed when the margin of transmission power ⁇ Th2.
  • the multiplexing method determination unit 207 of the terminal sets the multiplexing method to be time multiplexing when the margin of the transmission power is less than the threshold Th2, and frequency multiplexing the multiplexing method if the margin of the transmission power is the threshold Th2 or more. I assume.
  • the multiplexing method determining unit 112 of the base station sets the multiplexing method to time multiplexing when the margin of the transmission power is less than the threshold Th2, and when the margin of the transmission power is the threshold Th2 or more.
  • the multiplexing method is frequency multiplexing.
  • Multiplex method # 4 The multiplexing method is determined based on the result of the threshold determination of the number of clusters and the threshold Th1, and the result of the threshold determination of the transmit power margin and the threshold Th2. [Multiplexing method # 4] will be described using FIG. 12 and FIG.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 207 set the multiplexing method to frequency multiplexing as in [multiplex method # 2]. .
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 207 perform threshold determination with the transmit power margin and the threshold Th2, and the transmit power margin is at least the threshold Th2.
  • the multiplexing method is determined / determined as frequency multiplexing, and when it is less than the threshold Th2, the multiplexing method is time multiplexed.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 207 determine / determine the multiplexing method of the data signal and the control information signal based on the number of clusters. For example, the multiplexing method determination unit 207 divides the control information signal into the first control information signal and the second control information signal, multiplexes the data signal with the first control information signal as time multiplexing, and transmits the data signal and the second control information signal. The method of multiplexing with the two control information signals is frequency-multiplexed, and the ratio of the second control information signal to the first control information signal is increased as the number of clusters increases.
  • the control information signal is divided into a first control information signal and a second control information signal, the first control information signal is time-multiplexed with the data signal, and the second control information signal is When frequency multiplexing with a data signal is performed, it is assumed that the ratio of the second control information signal to the first control information signal is larger as the number of clusters is larger, as in the multiplexing method determination unit 207.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 207 time multiplex 100% of the control information signal with the data signal when the number of clusters is less than Th1, and when the number of clusters is Th1 or more, 100% of the control information signal is frequency-multiplexed with the data signal.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 207 determine / determine the multiplexing method based on the threshold determination result of the transmission power margin and the threshold value Th2. At this time, when the threshold value Th2 of a smaller value is used as the number of clusters is larger, frequency multiplexing is used to improve the decrease in resource utilization efficiency for terminals where the influence of the increase in CM due to frequency multiplexing is small. In accordance with the communication status of the terminal, the multiplexing method can be set flexibly.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 207 determine the multiplexing method based on the result of the threshold determination of the number of clusters and the threshold Th1, and the result of the threshold determination of the transmit power margin and the threshold Th2. Do. For example, when the number of clusters is equal to or larger than the threshold Th1, the multiplexing method determination unit 112 and the multiplexing method determination unit 207 set the multiplexing method as frequency multiplexing. On the other hand, when the number of clusters is less than the threshold Th1 and the margin of the transmission power is equal to or more than the threshold Th2, the multiplexing method determination unit 112 and the multiplexing method determination unit 207 set the multiplexing method as frequency multiplexing. When the number of clusters is less than the threshold Th1 and the margin of the transmission power is less than the threshold Th2, the multiplexing method determination unit 112 and the multiplexing method determination unit 207 set the multiplexing method as time multiplexing.
  • a component carrier refers to a frequency band operated independently in LTE-Advanced
  • the number of component carriers refers to the number of component carriers in a wireless communication system.
  • LTE-Advanced multiple component carriers are supported. It is considered that each component carrier (for example, 20 MHz) is independently operated in a configuration similar to LTE, and multiplexing of data signals and control information signals is performed independently on each component carrier.
  • the method of determining the multiplexing method in multiplexing method determination section 112 is different from that of the first embodiment.
  • the determination method of the multiplexing method in the multiplexing method determination unit 112 in the present embodiment will be described later.
  • FIG. 14 shows a main configuration of a terminal according to the present embodiment.
  • the terminal 300 in FIG. 14 includes a multiplexing method determination unit 301 in place of the multiplexing method determination unit 207 in the terminal 200 in FIG.
  • the terminal 300 in FIG. 14 includes a plurality of coding / modulation units 302 for each component carrier, divides the transmission data and outputs the divided transmission data to the coding / modulation units 302, and the coding / modulation units 302.
  • a combining unit 304 that combines a plurality of time domain signals output from the.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 301 determine / determine the multiplexing method based on the number of component carriers transmitting uplink data signals.
  • the control information signal is divided into a first control information signal and a second control information signal, the multiplexing method of the data signal and the first control information signal is time multiplexing, and the multiplexing method of the data signal and the second control information signal is The frequency multiplexing is performed, and the ratio of the second control information signal to the first control information signal is increased as the number of component carriers is increased.
  • both time multiplexing and frequency multiplexing are mixed to multiplex data signals and control information.
  • X% of the control information signal is a first control information signal
  • (100-X)% of the control information signal is a second control information signal.
  • X% is time-multiplexed
  • (100-X)% is frequency-multiplexed.
  • the multiplexing method determination unit 301 of the terminal divides the control information signal into the first control information signal and the second control information signal, and sets the multiplexing method of the data signal and the first control information signal as time multiplexing.
  • the multiplexing method of the data signal and the second control information signal is frequency multiplexing, and the ratio of the second control information signal to the first control information signal is increased as the number of component carriers is larger.
  • FIG. 15 shows resource allocation when [multiplex method # 1] is used.
  • the control information signal is divided into a first control information signal and a second control information signal, and the first control information signal is time-multiplexed with the data signal, and the second control information signal is multiplexed.
  • the ratio of the second control information signal to the first control information signal is larger as the number of component carriers is larger, as in the multiplexing method determination unit 301.
  • a threshold Th11 is provided for the number of component carriers, and the multiplexing method is determined based on the result of the threshold determination between the threshold Th11 and the number of component carriers. Specifically, when the number of component carriers is less than Th11, 100% of the control information signal is time-multiplexed with the data signal, and when the number of component carriers is Th11 or more, 100% of the control information signal is Frequency multiplex with data signal.
  • FIG. 16 shows how resources are allocated when [multiplex method # 2] is used.
  • the number of non-consecutive carrier groups to which data signals are allocated increases.
  • the number of non-continuous carrier groups is always 2 or more, which makes it difficult to maintain low CM. Therefore, when the number of component carriers is 1 and low CM can be expected by single carrier transmission by setting threshold Th11 to 2, the data signal and the control information signal are time-multiplexed and the number of component carriers is 2 or more.
  • the number of component carriers is 1 and low CM
  • the multiplexing method determining unit 112 of the base station sets the multiplexing method to be time multiplexing when the number of component carriers is less than the threshold Th11, and the multiplexing method to be frequency when the number of component carriers is the threshold Th11 or more. Make it multiple.
  • the multiplexing method is determined based on the margin of the transmission power of the terminal.
  • the margin of the transmission power includes the difference between the maximum transmission power of the terminal and the transmission power in data transmission using the number of component carriers instructed by the base station.
  • the multiplexing method is determined based on the result of the threshold determination with the margin of the transmission power and the threshold Th12.
  • the [multiplex method # 3] will be described with reference to FIG. In FIG. 17, the horizontal axis indicates the number of component carriers transmitting the data signal, and the vertical axis indicates the margin of transmission power.
  • the multiplexing method is time-multiplexed when the margin of transmission power ⁇ Th12, and the multiplexing method is frequency-multiplexed when the margin of transmission power ⁇ Th12.
  • the threshold determination may be performed using a threshold Th12 set according to the number of component carriers transmitting uplink data signals. For example, as the number of component carriers is larger, the smaller threshold Th12 may be used.
  • the relationship between the margin of transmission power and the threshold Th12 according to the number of component carriers is shown in FIG. Also in this case, as in FIG. 17, the multiplexing method is frequency multiplexed when transmission power margin ⁇ Th12, time multiplexing is performed when transmission power margin ⁇ Th12, and the multiplexing method is transmission power margin ⁇ Th12. Is frequency multiplexed.
  • the multiplexing method determination unit 301 of the terminal sets the multiplexing method to be time multiplexing when the margin of the transmission power is less than the threshold Th12, and frequency multiplexing the multiplexing method when the margin of the transmission power is the threshold Th12 or more. I assume.
  • the multiplexing method determining unit 112 of the base station sets the multiplexing method to be time multiplexing when the margin of the transmission power is less than the threshold Th12, and when the margin of the transmission power is the threshold Th12 or more.
  • the multiplexing method is frequency multiplexing.
  • Multiplex method # 4 The multiplexing method is determined based on the result of the threshold determination of the number of clusters and the threshold Th11, and the result of the threshold determination of the transmit power margin and the threshold Th12. [Multiplexing method # 4] will be described using FIG. 19 and FIG.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 301 set the multiplexing method to frequency multiplexing as in [multiplex method # 2]. Determine / determine.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 301 perform threshold determination with the transmit power margin and the threshold Th12, and the transmit power margin is the threshold Th12.
  • the multiplexing method is determined / determined as frequency multiplexing, and if less than the threshold Th12, the multiplexing method is determined / determined as time multiplexing.
  • multiplexing method determination unit 301 divides the control information signal into the first control information signal and the second control information signal, and multiplexes the data signal and the first control information signal. Is time-multiplexed, the method of multiplexing the data signal and the second control information signal is frequency-multiplexed, and the ratio of the second control information signal to the first control information signal is increased as the number of component carriers is increased.
  • the control information signal is divided into a first control information signal and a second control information signal, the first control information signal is time-multiplexed with the data signal, and the second control information signal is When frequency multiplexing with a data signal is performed, it is assumed that the ratio of the second control information signal to the first control information signal is larger as the number of component carriers is larger, as in the multiplexing method determination unit 301.
  • multiplexing method determination unit 112 and multiplexing method determination unit 301 time-multiplex 100% of the control information signal with the data signal, and the number of component carriers is Th11 or more. , Frequency multiplex 100% of the control information signal with the data signal.
  • the data signal and the control information signal are time-multiplexed, and it is difficult to maintain low CM when the number of component carriers is 2 or more.
  • the data resource utilization efficiency can be improved by frequency multiplexing the data signal and the control information signal.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 301 determine / determine the multiplexing method based on the threshold determination result of the transmission power margin and the threshold value Th12. For example, when using a threshold value Th12 of a smaller value as the number of component carriers is larger, frequency multiplexing is used to improve the decrease in resource utilization efficiency for terminals where the influence of the increase in CM due to frequency multiplexing is small. In accordance with the communication status of the terminal, the multiplexing method can be set flexibly.
  • multiplexing method determination section 112 and multiplexing method determination section 301 perform multiplexing method based on the result of threshold value determination of the number of component carriers and threshold value Th11 and the result of threshold value determination of transmit power margin and threshold value Th12. decide. For example, when the number of component carriers is equal to or greater than the threshold Th11, the multiplexing method determination unit 112 and the multiplexing method determination unit 301 set the multiplexing method to be frequency multiplexing. On the other hand, when the number of component carriers is less than the threshold Th11 and the margin of the transmission power is equal to or more than the threshold Th12, the multiplexing method determination unit 112 and the multiplexing method determination unit 301 set the multiplexing method as frequency multiplexing. When the number of component carriers is less than the threshold Th11 and the margin of transmission power is less than the threshold Th12, the multiplexing method determination unit 112 and the multiplexing method determination unit 301 set the multiplexing method to time multiplexing.
  • the second embodiment has described the multiplexing method in the case where data signals are transmitted on each component carrier.
  • a method of multiplexing a data signal with a control information signal will be described in the case where there is a component carrier that transmits only the control information signal among a plurality of component carriers.
  • the multiplexing method of the control information signal and the data signal in all the component carriers is frequency multiplexing.
  • the second embodiment differs from the second embodiment in the determination method of the multiplexing method in the multiplexing method determination unit 112.
  • Multiplexing method determination section 112 determines the presence or absence of a component carrier for transmitting only a control information signal among a plurality of component carriers based on the information on each component carrier input from scheduling section 111. . Then, when there is at least one component carrier that transmits only the control information signal among the plurality of component carriers, the multiplexing method determination unit 112 frequency multiplexes the multiplexing method of the control information signal and the data signal in all the component carriers. It is determined that
  • FIG. 21 shows a main configuration of a terminal according to the present embodiment.
  • the terminal 300a of FIG. 21 includes a dividing unit 303a and a multiplexing method determining unit 301a instead of the dividing unit 303 and the multiplexing method determining unit 301 in the terminal 300 of FIG.
  • the division unit 303a outputs, to the multiplexing method determination unit 301a, information on whether or not transmission data has been allocated to each component carrier.
  • the multiplexing method determination unit 301a determines the presence or absence of a component carrier for transmitting only the control information signal among the plurality of component carriers using information on whether transmission data is allocated to each component carrier. Then, when there is at least one component carrier that transmits only the control information signal among the plurality of component carriers, the multiplexing method determination unit 301a uses the frequency multiplexing method of the control information signal and the data signal in all the component carriers. Make it multiple.
  • the control information signal and the data signal in all the component carriers are frequency-multiplexed.
  • FIG. 22 shows an example in which only the control information signal is transmitted in component carrier # 1 and both the data signal and the control information signal are transmitted in component carrier # 2 when the number of component carriers is two. .
  • the second embodiment has described the case of determining / determining the multiplexing method of the data signal and the control information signal based on the number of component carriers used for transmitting the data signal.
  • FIG. If only the control information signal is transmitted, as in component carrier # 1, the control information signal will be transmitted using the control information resource.
  • the data signal and control information signal are time-multiplexed in component carrier # 2
  • the data signal and control information signal of component carrier # 2 and the control information signal of component carrier # 1 are multi-cluster. It will be sent. Therefore, even if the data signal and the control information signal are time-multiplexed in component carrier # 2, it is difficult to maintain a low CM.
  • multiplexing method determination unit 112 and multiplexing method determination unit 301a combine the control information signal and the data signal in all the component carriers.
  • the multiplexing method of is frequency multiplexing. As shown in FIG. 22, when component carrier # 1 and component carrier # 2 are regarded as one group, multi-cluster transmission is performed, and therefore, when there is even one component carrier that transmits only the control information signal, the multiplexing method is used.
  • the frequency multiplexing makes it possible to improve the utilization efficiency of resources while suppressing the increase in CM.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 301a multiplex the data signal and the control information signal based on the presence or absence of the component carrier transmitting only the control information signal among the plurality of component carriers. Determine / determine the method. Specifically, when there is at least one component carrier that transmits only the control information signal among the plurality of component carriers, multiplexing method determination unit 112 and multiplexing method determination unit 301a The multiplexing method with the data signal is frequency multiplexing. This makes it possible to improve resource utilization efficiency while suppressing the increase in CM.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 301a determine / determine the multiplexing method based on the presence or absence of the component carrier transmitting only the control information signal
  • Component carriers that transmit only control information signals may be counted as component carriers that transmit data signals, and when the number of component carriers is two or more, the multiplexing method may be frequency multiplexing.
  • Embodiment 4 In this embodiment, the case where the present invention is applied to MIMO (Multi Input Multi Output) communication will be described.
  • MIMO communication a plurality of streams are multiplexed to form a data signal, and each data signal is transmitted (multi-antenna transmission) from a plurality of antennas.
  • multi-antenna transmission there is a characteristic that CM is larger as the number of multiplexed streams making up a data signal transmitted from each antenna is larger. Therefore, in the present embodiment, in a terminal performing multi-antenna transmission, a method of multiplexing data signals and control information signals based on the number of stream multiplexes constituting data signals transmitted from each antenna among a plurality of antennas is described. Determine / determine.
  • the method of determining the multiplexing method in multiplexing method determination section 112 is different from that of the first embodiment.
  • the determination method of the multiplexing method in the multiplexing method determination unit 112 in the present embodiment will be described later.
  • FIG. 23 shows a main configuration of a terminal according to the present embodiment.
  • the terminal 400 of FIG. 23 includes a multiplexing method determination unit 401 in place of the multiplexing method determination unit 301 of the terminal 300 of FIG. 14, and includes a plurality of antennas 201, a plurality of encoding / modulation units 402, and precoding. And a unit 403.
  • the precoding unit 403 performs precoding on a plurality of streams output from the plurality of encoding / modulation units 402. Specifically, the precoding unit 403 weights and multiplexes the plurality of streams output from the plurality of coding / modulation units 402, and generates a data signal. The precoding unit 403 outputs the data signal to each antenna 201.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 401 determine / determine the multiplexing method based on the number of multiplexed streams making up the data signal transmitted from each antenna 201. At this time, the larger the number of multiplexed streams, the larger the number of non-consecutive carrier groups to which data signals are allocated.
  • the control information signal is divided into a first control information signal and a second control information signal, the multiplexing method of the data signal and the first control information signal is time multiplexing, and the multiplexing method of the data signal and the second control information signal is The frequency multiplexing is performed, and the ratio of the second control information signal to the first control information signal is increased as the number of stream multiplexes constituting the data signal transmitted from each antenna is larger.
  • control information resources are secured in advance, as in PUCCH in LTE, if data signals and control information signals are time-multiplexed without using control information resources, the utilization efficiency of data resources may decrease. , Can maintain low CM.
  • the data signal and the control information signal are multiplexed by mixing time multiplexing and frequency multiplexing.
  • X% of the control information signal is a first control information signal
  • (100-X)% of the control information signal is a second control information signal.
  • X% is time-multiplexed
  • (100-X)% is frequency-multiplexed.
  • the multiplexing method determination unit 401 of the terminal divides the control information signal into the first control information signal and the second control information signal, and sets the multiplexing method of the data signal and the first control information signal as time multiplexing.
  • the multiplexing method of the data signal and the second control information signal is made frequency multiplexing, and the ratio of the second control information signal to the first control information signal is increased as the number of multiplexed streams is larger.
  • FIG. 24 shows resource allocation when [multiplex method # 1] is used.
  • the control information signal is divided into a first control information signal and a second control information signal, and the first control information signal is time-multiplexed with the data signal, and the second control information signal is multiplexed.
  • the ratio of the second control information signal to the first control information signal is larger as the number of multiplexed streams is larger, as in the multiplexing method determination unit 401.
  • Multiplex method # 2 A threshold is provided for the number of multiplexed streams, and the multiplexing method is determined based on the threshold determination result of the threshold Th21 and the number of clusters. Specifically, when the stream multiplex number is less than Th21, 100% of the control information signal is time-multiplexed with the data signal, and when the stream multiplex number is Th21 or more, 100% of the control information signal is Frequency multiplex with data signal.
  • FIG. 25 shows resource allocation when [multiplex method # 2] is used.
  • the number of non-consecutive carrier groups to which data signals are allocated increases.
  • the number of non-consecutive carrier groups is always 2 or more, which makes it difficult to maintain low CM. Therefore, if the stream multiplexing number is 1 and low CM can be expected by single carrier transmission by setting the threshold Th21 to 2, the data signal and the control information signal are time-multiplexed, and the number of stream multiplexing becomes 2 or more. In the case where it is difficult to maintain a low CM, it is possible to improve the utilization efficiency of data resources by frequency multiplexing the data signal and the control information signal.
  • the multiplexing method determination unit 112 of the base station sets the multiplexing method to be time multiplexing when the number of multiplexed streams is less than the threshold Th21 and sets the frequency to be multiplexed when the number of stream multiplexing is greater than or equal to the threshold Th21. Make it multiple.
  • the multiplexing method is determined based on the margin of the transmission power of the terminal.
  • the margin of the transmission power includes the difference between the maximum transmission power of the terminal and the transmission power in data transmission using the number of stream multiplexes instructed by the base station.
  • the multiplexing method is determined based on the result of the threshold determination with the margin of the transmission power and the threshold value Th22.
  • the multiplexing method is time-multiplexed when the margin of transmission power ⁇ Th22, and the multiplexing method is frequency-multiplexed when the margin of transmission power ⁇ Th22.
  • the communication state of the terminal with the margin of the transmission power and the threshold value Th22 may be determined using the threshold value Th22 set according to the number of multiplexed streams. For example, as the number of multiplexed streams is larger, a smaller threshold value Th22 may be used.
  • the multiplexing method determination unit 401 of the terminal sets the multiplexing method to be time multiplexing when the margin of the transmission power is less than the threshold Th22, and frequency multiplexing the multiplexing method if the margin of the transmission power is the threshold Th22 or more. I assume.
  • the multiplexing method determining unit 112 of the base station sets the multiplexing method to be time multiplexing when the margin of the transmission power is less than the threshold Th22, and when the margin of the transmission power is the threshold Th22 or more.
  • the multiplexing method is frequency multiplexing.
  • Multiplex method # 4 The multiplexing method is determined based on the result of the threshold determination of the stream multiplexing number and the threshold Th21 and the result of the threshold determination of the transmit power margin and the threshold Th22.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 401 perform threshold determination on the transmit power margin and the threshold Th22, and the transmit power margin is the threshold Th22.
  • the multiplexing method is determined / determined as frequency multiplexing, and if less than the threshold Th22, the multiplexing method is determined / determined as time multiplexing.
  • multiplexing method determination unit 401 divides the control information signal into the first control information signal and the second control information signal, and multiplexes the data signal and the first control information signal. Is time-multiplexed, the method of multiplexing the data signal and the second control information signal is frequency-multiplexed, and the ratio of the second control information signal to the first control information signal is increased as the number of stream multiplexes increases.
  • the control information signal is divided into a first control information signal and a second control information signal, the first control information signal is time-multiplexed with the data signal, and the second control information signal is When frequency multiplexing with a data signal is performed, it is assumed that the ratio of the second control information signal to the first control information signal is larger as the number of multiplexed streams is larger, as in the multiplexing method determination unit 401.
  • multiplexing method determination section 112 and time multiplexing of 100% of the control information signal with the data signal and the number of multiplexed streams is Th21 or more.
  • Frequency multiplex 100% of the control information signal with the data signal when low multiplexing can be expected by single carrier transmission when the number of multiplexed streams is 1, the data signal and control information signal are time-multiplexed, the number of multiplexed streams becomes 2 or more, and low CM can be maintained. In difficult cases, data resource utilization efficiency can be improved by frequency multiplexing the data signal and the control information signal.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 401 determine / determine the multiplexing method based on the determination result of the transmission power margin and the threshold value Th22. For example, when using a threshold value Th22 of a smaller value as the number of multiplexed streams is larger, frequency multiplexing is used to improve the reduction in resource utilization efficiency for terminals where the influence of the increase in CM due to frequency multiplexing is small. In accordance with the communication status of the terminal, the multiplexing method can be set flexibly.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 401 perform multiplexing method based on the result of threshold determination of the stream multiplexing number and the threshold value Th21 and the result of threshold determination of the transmit power margin and the threshold value Th22. decide. For example, in the case where the number of multiplexed streams is equal to or greater than the threshold Th21, the multiplexing method determination unit 112 and the multiplexing method determination unit 401 set the multiplexing method as frequency multiplexing.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 401 set the multiplexing method to frequency multiplexing.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 401 set the multiplexing method to time multiplexing.
  • multi-cluster transmission has been described as an example, the present invention is not limited to this, and N ⁇ SC-FDMA Chunk Specific DFT transmission, Clustered SC-FDMA, or multi-carrier transmission such as OFDMA etc.
  • the invention may be applied.
  • OFDM transmission has a characteristic that CM hardly changes even if the number of clusters increases. Therefore, CM changes rapidly at the time of switching between single carrier transmission and OFDM transmission, and by applying the present invention, the same effect as multi-cluster transmission can be obtained.
  • control information signal includes the response signal such as an ACK / NACK signal as an example, but the control information signal is characterized in that higher reliability than the data signal is required. If it is, it is not restricted to response signals, such as an ACK / NACK signal.
  • the control information signal may be replaced with feedback information such as CQI.
  • control information resource in uplink may be allocated corresponding to downlink CCE. Further, the present invention may be applied to downlink as well as uplink.
  • frequency multiplexing may be preferentially performed as the number of bits increases. For example, when an ACK / NACK signal and CQI exist as control information signals, CQIs with a large number of bits may be preferentially frequency-multiplexed.
  • the threshold is given to the margin of the transmission power to perform the threshold determination.
  • another control information signal can be used to determine whether the transmission power of the terminal has a margin.
  • a threshold may be set to perform threshold determination. For example, the larger the propagation loss, the larger the required transmission power, and the smaller the difference from the maximum transmission power (there is no margin for the transmission power). Therefore, threshold determination of the propagation loss and the threshold may be performed.
  • the propagation loss tends to increase as the position of the terminal moves away from the base station, and there is no margin in transmission power. Therefore, threshold determination may be performed between the position of the terminal and a threshold.
  • PHR Power Headroom
  • the multiplexing method may be determined based on the result of the threshold determination of PHR and the threshold.
  • PHR is the remaining capacity (power that can be increased) of the transmission power of the terminal, and is generally information transmitted from the terminal to the base station. Both the terminal and the base station share the PHR.
  • the channel quality of the terminal such as a CQI (Channel Quality Indicator) may be used as the margin of the transmission power, and a threshold may be provided for the CQI to perform threshold determination. The better the line quality, the more transmission power is available.
  • the margin of the transmission power a difference between the maximum transmission power of the terminal and the transmission power at the time of single carrier transmission may be used.
  • the base station may freely select the multiplexing method and notify the terminal of the multiplexing method.
  • the terminal may determine / determine the multiplexing method according to the transmission method of the terminal notified from the base station. For example, when the number of component carriers is two or more, the multiplexing method is frequency multiplexing, and when the number of component carriers is one, the multiplexing method is determined / decided depending on whether single carrier transmission or multicarrier transmission. May be Specifically, if the number of components is 1 and single carrier transmission, the multiplexing method is time multiplexing, and if the number of components is 1 and multi cluster transmission, the multiplexing method is frequency multiplexing. Do.
  • characteristics of single carrier transmission of the data signal such as MIMO transmission in which a plurality of streams of data signals are combined by each transmission antenna.
  • MIMO transmission in which a plurality of streams of data signals are combined by each transmission antenna.
  • MIMO transmissions that can maintain single carrier transmission on each antenna.
  • CM is significantly increased by frequency multiplexing the data signal and the control information signal.
  • the multiplexing method is selected from time multiplexing or frequency multiplexing, and When the number of signal streams is large, the multiplexing method is always frequency multiplexed, which has another effect of improving the reception quality of the control information signal. The point that can improve the reception quality of the control information signal will be described below.
  • the control information signal is important information and should improve reception quality more than the data signal.
  • the method of multiplexing the data signal and the control information signal is time multiplexing, interstream interference on the control information signal increases as the number of streams of the data signal increases, and the reception quality of the control information signal decreases.
  • the method of multiplexing the data signal and the control information signal is frequency multiplexing, the control information signal is allocated to a resource prepared against inter-stream interference prepared in advance. From this, even in the case of using MIMO transmission capable of maintaining single carrier transmission, the reception quality of the control information signal is improved by frequency multiplexing the data signal and the control information signal as the number of streams of the data signal increases. can do.
  • the base station is considered to semi-statically notify information of multiplexing method (time multiplexing or frequency multiplexing) of data signal and control information signal by higher layer signaling (Higher Layer Signaling).
  • semi-static notification is information notified at a time interval longer than control information (for example, PDCCH: notification using Physical Downlink Control Channel) notified for each resource allocation scheduling of each terminal.
  • control information for example, notification using PDCCH
  • control information to be notified for each scheduling of resource allocation of each terminal is taken as a dynamic notification.
  • the method of transmitting data signals is not considered.
  • the CM value is significantly different depending on the multiplexing method of the data signal and the control information signal, and therefore the data signal and the control information are determined according to the conditions of each terminal It is necessary to switch the method of multiplexing with the signal (time multiplexing or frequency multiplexing).
  • the data signal is allocated to the non-continuous band, the difference between the CM in frequency multiplexing and the CM in time multiplexing is small, and the CM is not changed dramatically by the time multiplexing method. Therefore, when the data signal is allocated to the non-continuous band, it is preferable to improve the utilization efficiency of data resources by frequency multiplexing the data signal and the control information signal without considering the increase of the CM value.
  • the margin of the transmission power is the difference between the maximum transmission power of the terminal and the transmission power used when transmitting the data signal and the control information signal.
  • the margin of the transmission power depends on the reception quality or the propagation loss. For example, a terminal or the like far from the base station has a large propagation loss and poor reception quality, so it is necessary to increase the transmission power used when transmitting the data signal and the control information signal. In this case, the difference between the transmission power and the maximum transmission power of the terminal becomes smaller, and the margin of the transmission power becomes smaller.
  • the margin of the transmission power depends on the reception quality or the propagation loss and can be obtained from the reception quality or the propagation loss and the like.
  • the multiplexing method of the data signal and the control information signal when the multiplexing method of the data signal and the control information signal is notified semi-statically, when the data signal is allocated to the continuous band, the multiplexing method notified semi-statically When the data signal and the control information signal are multiplexed, and the data signal is allocated to the non-continuous band, the data signal and the control information signal are always frequency multiplexed regardless of the semistatic notification.
  • the second embodiment differs from the first embodiment in the scheduling method in scheduling section 111 and in the determination method of multiplexing method in multiplexing method determination section 112.
  • Scheduling section 111 performs selection of a multiplexing method of data signals and control information signals of each terminal and scheduling of resources of each terminal based on the estimation value of reception quality input from estimation section 110. Then, the scheduling unit 111 performs CRC processing on a control information signal including scheduling information (information on transmission method of data signal and control information signal) dynamically notified on uplink and downlink, and information on multiplexing method notified semi-statically. Output to 101.
  • the multiplexing method of the data signal and the control information signal is set semi-statically. For example, the multiplexing method is set to time multiplexing for terminals with poor reception quality, and the multiplexing method is set to frequency multiplexing for terminals with good reception quality. Also, based on the estimated value (or propagation loss etc.) of the reception quality input from estimation section 110, the resource of the data signal of each terminal is scheduled. At this time, if the data signal uses continuous band allocation, the data signal and control information signal are multiplexed using frequency multiplexing according to the multiplexing method set semi-statically, and when the data signal uses non-continuous band allocation Perform scheduling.
  • the information on the multiplexing method and the scheduling information set here are output to the CRC unit 101 and the multiplexing method determination unit 112 as control information.
  • Information on the multiplexing method is notified semi-statically and scheduling information is dynamically notified to the terminal as control information.
  • Multiplexing method determination section 112 determines the data signal and control information signal based on information on the multiplexing method (time multiplexing or frequency multiplexing) of the data signal and control information signal input from scheduling section 111 and the data signal transmission method. And determining the mapping position of the data signal and the control information signal.
  • the multiplexing method used in the received signal according to the multiplexing method (multiplexing method of the data signal to be notified semi-statically and the control information signal) set semi-statically by the scheduling unit 111 To judge.
  • the multiplexing method determination unit 112 is used in the received signal regardless of the multiplexing method of the data signal and the control information signal set semi-statically by the scheduling unit 111.
  • the multiplexing method is uniquely determined in frequency multiplexing.
  • the multiplexing method determination unit 112 outputs the information on the multiplexing method determined in this manner to the demapping unit 114.
  • the method of determining the multiplexing method in multiplexing method determination section 207 differs from that of the first embodiment.
  • the multiplexing method determination unit 207 is a method of multiplexing the data signal and the control information signal included in the control information input from the error detection unit 205 (notification of a semistatic multiplexing method), and information on a data signal transmission method ( Based on the scheduling information etc.), the multiplexing method of the data signal and the control information signal is determined.
  • the multiplexing method determination unit 207 determines the multiplexing method according to the multiplexing method of the data signal and the control information signal notified semi-statically. That is, when the data signal is allocated to continuous bands, multiplexing method determination section 207 determines the multiplexing method semi-statically notified from base station 100 as the multiplexing method actually used.
  • the multiplexing method determination unit 207 uses the transmission of the data signal and the control information signal regardless of the multiplexing method of the semi-statically notified data signal and the control information signal.
  • the multiplexing method is uniquely determined to be frequency multiplexing.
  • multiplexing method determination section 207 uniquely determines the multiplexing method as frequency multiplexing regardless of the multiplexing method of the data signal and control information signal notified semi-statically. This can improve the resource utilization efficiency of the data signal while reducing the increase in CM.
  • the multiplexing method determination unit 207 outputs the information on the multiplexing method determined in this way to the allocation unit 213.
  • FIG. 26 shows an example of resource allocation in the present embodiment.
  • FIG. 26 shows the relationship between the multiplexing method of the data signal and control information signal set and notified semi-statically, the transmission method of the data signal, and the multiplexing method of the data signal and control information signal actually used for the transmission signal. Show.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 207 multiplex the data signal and control information signal set and notified semi-statically, and transmit the data signal. To determine / determine how to multiplex the data signal and the control information signal. That is, when the data signal is allocated to the continuous band, the multiplexing method determination unit 112 and the multiplexing method determination unit 207 multiplex the multiplexing method according to the multiplexing method of the data signal and the control information signal which the base station 100 semi-statically sets and notifies.
  • the multiplexing method determination unit 112 and the multiplexing method determination unit 207 always set the multiplexing method of the data signal and the control information signal to frequency multiplexing uniquely. This can improve resource utilization efficiency of the data signal when the data signal is non-continuous band allocated.
  • the base station is considered to semi-statically notify information of multiplexing method (time multiplexing or frequency multiplexing) of data signal and control information signal by higher layer signaling (Higher Layer Signaling). There is.
  • the transmission bandwidth allocated to each terminal (hereinafter abbreviated as “transmission bandwidth”) is dynamically allocated according to the status of the terminal. Therefore, information on transmission bandwidth is dynamically notified from the base station to the terminal. Therefore, when the multiplexing method of the data signal and the control information signal is notified semi-statically by higher layer signaling, the control information allocated in advance is different because the switching timing of the multiplexing method and the switching timing of the transmission bandwidth are different.
  • resources of signals can be used, resources of control signals may be wasted, for example, consuming resources of data signals as control information signals.
  • the transmission bandwidth (transmission bandwidth) allocated to each terminal and the allowance of transmission power.
  • the horizontal axis indicates the transmission bandwidth
  • the vertical axis indicates the margin of the transmission power of the terminal.
  • the transmission bandwidth is dynamically changed according to the conditions of each terminal (data transmission amount, reception quality, etc.).
  • the margin of the transmission power corresponds to the transmission bandwidth of each terminal. Dependent.
  • the transmission bandwidth is dynamically notified and the multiplexing method is semistatically notified, even though such a causal relationship exists between the transmission power margin and the transmission bandwidth.
  • the switching timing between the switching method of the multiplexing method and the switching timing between the transmission bandwidths may be different, and the resource of the control information signal may be wasted as follows.
  • a transmission band based on the case where the base station determines that the multiplexing method of the data signal and the control information signal is time multiplexing based on a certain transmission bandwidth. While time multiplexing is optimal for the width, frequency multiplexing may be optimal for transmission bandwidths smaller than the reference transmission bandwidth (see FIG. 28). Therefore, with a transmission bandwidth smaller than the reference transmission bandwidth, time multiplexing will be used despite the fact that frequency multiplexing is optimal, and resources of data signals are consumed for control information signals, and control information signals Resources are wasted.
  • the multiplexing method is switched based on the transmission bandwidth related to the margin of transmission power.
  • FIG. 29 shows a main part configuration of a base station according to the present embodiment.
  • the base station 500 of FIG. 29 includes a scheduling unit 501 and a multiplexing method determination unit 502 in place of the scheduling unit 111 and the multiplexing method determination unit 112 in the base station 100 of FIG. 5.
  • Scheduling section 501 calculates the margin of transmission power from the information (or propagation loss etc.) related to the reception quality inputted from estimation section 110, and based on the margin of transmission power obtained, a plurality of candidates are selected. , A certain threshold is selected as threshold Th31. This threshold Th31 is changed to semi static.
  • a plurality of candidates shared by the base station and the terminal station are prepared as a threshold of transmission bandwidth (or the number of RBs (Resource Block)) for switching the multiplexing method of data signal and control information signal.
  • the threshold value is selected, and the selected threshold value is set to the threshold value Th31.
  • the threshold value Th31 is used to switch the multiplexing method of the data signal and the control information signal in the multiplexing method determination unit 502 described later.
  • the multiplexing method determination unit 502 determines that the multiplexing method is time multiplexing when the transmission bandwidth is the threshold Th31 or more, and the multiplexing method is frequency multiplexing when the transmission bandwidth is less than the threshold Th31. It is determined that
  • the scheduling unit 501 increases the possibility of selecting a larger value as the threshold value Th31 among the plurality of candidates of the threshold value Th31 and selecting frequency multiplexing as the margin of the transmission power is larger.
  • the scheduling unit 501 sets the smaller value of the plurality of candidates for the threshold Th31 as the margin of the transmission power decreases. It is selected as Th31 to increase the possibility of selecting time multiplexing.
  • Scheduling section 501 may select threshold value Th31 from a plurality of candidates in accordance with the reception quality, propagation loss, the positional relationship between the base station and the terminal, etc., instead of the margin of transmission power. Specifically, the scheduling unit 501 may select a larger value among the plurality of candidates as the threshold value Th31 as the reception quality is better, the propagation loss is smaller, or the position is closer.
  • scheduling section 501 performs scheduling to allocate the transmission band of each terminal using the information related to the reception quality input from estimation section 110.
  • the data signal and the control information signal are time-multiplexed when the transmission bandwidth of the data signal is the threshold Th31 or more, and the data signal and the control information signal are frequency-multiplexed when the transmission bandwidth of the data signal is less than the threshold Th31.
  • scheduling resources of the control information signal are time-multiplexed when the transmission bandwidth of the data signal is the threshold Th31 or more, and the data signal and the control information signal are frequency-multiplexed when the transmission bandwidth of the data signal is less than the threshold Th31.
  • the scheduling unit 501 uses, as control information, information to be notified of the selected threshold Th31 semi-statically, information to be notified dynamically about the transmission band including information on the number of clusters (for example, uplink scheduling information) It is output to the multiplexing method determination unit 502. Then, the information on the threshold value Th31 and the information related to the transmission band (scheduling information) are notified to the terminal as control information.
  • the plurality of candidates for switching the multiplexing method may be limited values such as only even number of RBs or only odd number of RBs. Thereby, the amount of signaling notified by the base station 500 can be reduced.
  • Multiplexing method determination unit 502 receives as input threshold Th31 selected in scheduling unit 501 and information on the transmission band, determines that the multiplexing method is frequency multiplexing if the transmission bandwidth is less than Th31, and multiplexes the transmission bandwidth at or above Th31. Is determined as time multiplexing, and the mapped resource of the data signal and the control information signal is determined.
  • FIG. 30 shows the correspondence between the transmission bandwidth, the threshold value Th31, and the multiplexing method.
  • the multiplexing method determination unit 502 outputs, to the demapping unit 114, information on the resource to which the determined data signal and control information signal are mapped.
  • FIG. 31 shows a main part configuration of a terminal according to the present embodiment.
  • symbol is attached
  • the terminal 600 in FIG. 31 includes an error detection unit 601 and a multiplexing method determination unit 602 in place of the error detection unit 205 and the multiplexing method determination unit 207 with respect to the terminal 200 in FIG.
  • the error detection unit 601 performs error detection on the decoded data. For error detection, for example, a CRC is used. Then, the error detection unit 601 determines the presence or absence of a decoding error as a result of the error detection, and outputs the determination result to the control information generation unit 206. Further, when there is no decoding error, error detection section 601 extracts threshold Th31 and information on the transmission method of the data signal from the decoded data, and outputs the extracted information to multiplexing method determination section 602 and division section 212. , Decoded data for the data signal is output as received data.
  • error detection for example, a CRC is used. Then, the error detection unit 601 determines the presence or absence of a decoding error as a result of the error detection, and outputs the determination result to the control information generation unit 206. Further, when there is no decoding error, error detection section 601 extracts threshold Th31 and information on the transmission method of the data signal from the decoded data, and outputs the extracted information to multiple
  • the multiplexing method determination unit 602 determines the multiplexing method of the data signal and the control information signal based on the threshold Th31 input from the error detection unit 601 and the information on the transmission band including the information on the number of clusters.
  • the multiplexing method determination unit 602 extracts information on the transmission band including the information on the threshold Th31 and the number of clusters included in the control information.
  • the threshold value Th31 indicates a switching point of the transmission bandwidth for switching the multiplexing method of the data signal and the control information signal.
  • multiplexing method determination section 602 determines that the multiplexing method of the data signal and the control information signal is frequency multiplexing, and transmission indicated by the information on transmission band When the bandwidth is Th31 or more, the multiplexing method of the data signal and the control information signal is determined as time multiplexing.
  • the scheduling unit 501 selects, as the threshold Th31, a larger value among the plurality of candidates for the threshold Th31 as the margin of the transmission power increases, and as the margin of the transmission power decreases, the scheduling unit 501 selects a plurality of thresholds Th31. Among the candidates of, the smaller value is selected as the threshold Th31.
  • the margin of transmission power is large, the rate at which the multiplexing method is determined to be frequency multiplexing in the multiplexing method determination unit 602 is high, and it is possible to improve the reduction in resource utilization efficiency.
  • the rate at which the multiplexing method is determined to be time multiplexing becomes high in the multiplexing method determination unit 602, and it is possible to avoid the deterioration of the reception quality.
  • the method of multiplexing the data signal and the control information signal is switched based on the magnitude relationship between the transmission bandwidth notified to each terminal dynamically and the threshold notified semi-statically. Then, a plurality of candidates (thresholds) are prepared as transmission bandwidths for switching the multiplexing method of the data signal and the control information signal, and one of these candidates is selected and notified semi-statically.
  • the scheduling unit 501 selects a threshold Th31 indicating a switching point of the transmission bandwidth for switching the multiplexing method of the data signal and the control information signal from the plurality of candidates based on the margin of the transmission power. Specifically, the larger the margin of the transmission power, the larger the value among the plurality of candidates is selected as the threshold value Th31. Then, when the transmission bandwidth is less than Th31, multiplexing method determination unit 502 and multiplexing method determination unit 602 determine / determine that the multiplexing method of the data signal and the control information signal is frequency multiplexing. On the other hand, when the transmission bandwidth is Th31 or more, the multiplexing method determination unit 502 and the multiplexing method determination unit 602 determine / determine the multiplexing method of the data signal and the control information signal as time multiplexing.
  • the scheduling unit 501 can increase the rate at which the data signal and the control information signal become time multiplexed as the margin of the transmission power increases.
  • the threshold value Th31 is set to a larger value as the margin of the transmission power is larger, the rate at which the multiplexing method becomes frequency multiplexing increases, and it is possible to improve the reduction in resource utilization efficiency.
  • the threshold value Th31 is set to a smaller value as the margin of the transmission power is smaller, it is possible to increase the rate at which the method of multiplexing the data signal and the control information signal becomes time-multiplexed. In this case, since the CM is lowered by using time multiplexing, there is room to increase the transmission power, and a decrease in reception quality can be avoided by increasing the transmission power.
  • time multiplexing or frequency multiplexing can be switched according to the margin (or transmission bandwidth) of transmission power.
  • margin or transmission bandwidth
  • the transmission bandwidth is narrow as in the prior art (for example, when the bandwidth for the terminal to transmit data signals is 1 RB), most of the time resources for transmitting data signals can be obtained by using time multiplexing. Since it is replaced by a time resource for transmitting a control information signal, resource utilization efficiency of the data signal is degraded.
  • the ratio of using frequency multiplexing becomes high.
  • frequency multiplexing since the control information signal is transmitted on a resource allocated beforehand, only the data signal can be transmitted on the resource allocated for transmitting the data signal, and the resource utilization efficiency of the data signal is improved. Can.
  • multiplexing method determination unit 502 and multiplexing method determination unit 602 determine / determine the multiplexing method on the assumption that the relationship between the transmission bandwidth of the data signal and threshold value Th31 is constant regardless of the data signal transmission method. The case was described. In this embodiment, the case where the relationship between the transmission bandwidth of the data signal and the threshold value Th31 differs between continuous band allocation and non-consecutive band allocation of the data signal will be described.
  • Data signal transmission methods include continuous band allocation in which data signals are allocated to one cluster, and non-consecutive band allocation in which data signals are allocated to a plurality of clusters.
  • the transmission method is dynamically switched for each scheduling, such as continuous band allocation if allocated to only one cluster in scheduling and non-consecutive allocation if allocated to multiple clusters.
  • continuous band allocation and non-consecutive band allocation since the switching point of the optimal multiplexing method is different, setting the switching point of the same multiplexing method may not select the optimal multiplexing method.
  • the method of multiplexing data signals and control information signals is determined using threshold Th32 [RB] in non-continuous band allocation that is uniquely determined from threshold Th31. decide.
  • the configuration of the main part of the base station according to the present embodiment is the same as that of Embodiment 6, so description will be omitted.
  • This embodiment differs from the sixth embodiment in the determination method of the multiplexing method in scheduling section 501 and multiplexing method determination section 502.
  • the multiplexing method determination unit 502 uses the threshold Th31 for switching the multiplexing method of the data signal and the control information signal, and the threshold Th32 associated with the threshold Th31, and the multiplexing method of the data signal and the control information signal is time It is determined whether multiplexing or frequency multiplexing is performed, and the resource to which the data signal and control information signal are mapped is determined.
  • the scheduling unit 501 calculates the margin of transmission power from the reception quality (or propagation loss etc.), and selects a threshold for continuous band allocation from among a plurality of candidates as the threshold Th31 based on the calculated margin of transmission power. Do. Furthermore, the scheduling unit 501 obtains and sets Th32 from the threshold Th31 as a threshold for non-consecutive band allocation.
  • non-continuous band allocation when the reception quality is reduced, if continuous band allocation is switched, continuous band allocation with a low CM value is used, and the transmission power margin becomes high. If the transmission power margin is high, the transmission power for transmitting the data signal can be increased, and the reception quality can be improved. Therefore, in non-contiguous band allocation, it is not necessary to make time multiplexing easy to select, but it is preferable to use resources of data signals effectively by frequency multiplexing. From this, in non-consecutive band allocation, switching to continuous band allocation may be performed when reception quality decreases, and therefore, it is not necessary to lower the switching point of the multiplexing method.
  • the scheduling unit 501 determines whether the reception quality is high or low based on the information related to the reception quality input from the estimation unit 110.
  • the threshold Th31 in continuous band allocation is set to a lower value than the threshold Th32 in non-consecutive band allocation.
  • scheduling section 501 determines threshold value Th31 in accordance with terminal conditions (reception quality or data transmission amount, etc.), and based on threshold value Th31, threshold value Th32 in non-continuous band allocation satisfies Th32> Th31.
  • These thresholds Th31 and Th32 are set as thresholds for switching the multiplexing method of the data signal and the control information signal. Note that the information on whether the reception quality is high or low (or the information on the relationship between Th32 and Th31) and the information on the threshold Th31 are semi-statically notified to the terminal station.
  • FIG. 32 is a diagram illustrating the relationship between the threshold Th31, the threshold Th32, and the multiplexing method in a situation where the reception quality is low.
  • CM when reception quality falls, if it switches from non-continuous band allocation to continuous band allocation, CM can be suppressed low and the allowance of transmission power will become high. If the margin of the transmission power becomes high, the transmission power for transmitting the data signal can be increased, and the reception quality can be improved. Therefore, it is not assumed at all to improve the transmission power margin by switching from frequency multiplexing to time multiplexing when the reception quality decreases and there is no margin for transmission power, and from discontinuous band allocation to continuous band allocation Non-contiguous band allocation need not assume time multiplexing if switching power supply improves the margin of transmission power.
  • the threshold value Th32 for switching the multiplexing method may be infinite.
  • FIG. 33 shows the relationship between the threshold value Th31, the threshold value Th32 (infinity) and the multiplexing method in this case.
  • the reception quality is high
  • the data signal and the control information signal are frequency-multiplexed even when the data signal is continuous band allocated.
  • Control information signals can be allocated to predetermined control information resources by frequency multiplexing, and resources for data signals do not need to be allocated for control information signals, so resources for data signals can be used effectively and throughput can be improved.
  • the switching point of the multiplexing method of the data signal and the control information signal that is, the threshold value Th31 be high to make it easy to select frequency multiplexing.
  • the switching point may be raised, but in non-consecutive band allocation, CM is larger than continuous band allocation. Therefore, in the same transmission bandwidth, the allowance of transmission power in non-consecutive band allocation is lower than in continuous band allocation. Therefore, in the situation where the reception quality is high and the data signal is non-consecutive band allocated, the threshold Th32 smaller than the threshold Th31 is used as the switching point. This makes it difficult to select frequency multiplexing in non-contiguous band allocation, so that CM degradation can be suppressed.
  • the scheduling unit 501 determines whether the reception quality is high or low based on the information related to the reception quality input from the estimation unit 110.
  • the threshold Th31 in continuous band allocation is set to a higher value than the threshold Th32 in non-consecutive band allocation.
  • scheduling section 501 determines threshold value Th31 in accordance with terminal conditions (reception quality or data transmission amount, etc.), and based on threshold value Th31, threshold value Th32 in non-continuous band allocation satisfies Th32 ⁇ Th31. Uniquely determined to meet.
  • These thresholds Th31 and Th32 are set as thresholds for switching the multiplexing method of the data signal and the control information signal. Note that the information on whether the reception quality is high or low (or the information on the relationship between Th32 and Th31) and the information on the threshold Th31 are semi-statically notified to the terminal station.
  • FIG. 34 is a diagram showing the relationship between the threshold Th31, the threshold Th32, and the multiplexing method in a situation where the reception quality is high.
  • the scheduling unit 501 sets the threshold Th31 based on the transmission bandwidth and the reception quality, and sets the threshold Th32 based on the set threshold Th31 and the reception quality.
  • the scheduling unit 501 uses the information related to the reception quality input from the estimation unit 110 to switch the method of multiplexing the data signal and the control information signal (Th31, Th32) Setting and scheduling of allocating the transmission band of each terminal.
  • the data signal and the control information signal are time-multiplexed if the transmission bandwidth is the threshold Th31 or more in continuous band allocation of the data signal, and if the transmission bandwidth of the data signal is less than the threshold Th31, the frequency of the data signal and the control information signal is The multiplexing unit 501 schedules the data signal and the control information signal.
  • the data signal and the control information signal are time-multiplexed when the transmission bandwidth is the threshold Th32 or more and the transmission bandwidth of the data signal is less than the threshold Th32, and the data signal and the control information signal are frequency-multiplexed.
  • the scheduling unit 501 schedules data signals and control information signals.
  • the scheduling unit 501 then outputs the information on the threshold Th31 set here (and information on the relationship between Th31 and Th32), information on the transmission band and transmission method (for example, scheduling information) to the CRC unit 101, and the threshold Th31 and the threshold Information of threshold Th32 determined from Th31, information on transmission band and transmission method (for example, scheduling information) is output to the multiplexing method determination unit 502.
  • the multiplexing method determination unit 502 determines that the multiplexing method is frequency multiplexing when the transmission bandwidth is less than Th31, and determines the multiplexing method as time multiplexing when the transmission bandwidth is Th31 or more. Do. On the other hand, when the data signal is non-consecutive band allocation, the multiplexing method determination unit 502 determines that the multiplexing method is frequency multiplexing when the transmission bandwidth is less than Th32, and determines the multiplexing method as time multiplexing when the transmission bandwidth is Th32 or more. Then, the resource to which the data signal and the control information signal are mapped is determined.
  • the main part configuration of the terminal according to the present embodiment is the same as that of the sixth embodiment, so the description will be omitted.
  • This embodiment differs from the sixth embodiment in the determination method of the multiplexing method in the error detection unit 601 and the multiplexing method determination unit 602.
  • the error detection unit 601 performs error detection on the decoded data. For error detection, for example, a CRC is used. Then, the error detection unit 601 determines the presence or absence of a decoding error as a result of the error detection, and outputs the determination result to the control information generation unit 206. In addition, when there is no decoding error, the error detection unit 601 extracts threshold Th31 (and information related to the relationship between Th31 and Th32), the transmission band of the data signal and the transmission method from the decoded data, It generates information on Th32, outputs the information to the multiplexing method determination unit 602 and the division unit 212, and outputs the decoded data for the data signal as received data.
  • Th31 threshold and information related to the relationship between Th31 and Th32
  • Multiplexing method determination unit 602 performs switching uniquely determined from information on transmission bandwidth and transmission method input from error detection unit 601, information on switching threshold Th31, and threshold Th31 (and information on the relationship between Th31 and Th32). It is determined whether the multiplexing method of the data signal and the control information signal is time multiplexing or frequency multiplexing using the threshold value Th 32 of
  • the multiplexing method determination unit 602 determines that the multiplexing method is frequency multiplexing when the transmission bandwidth is less than Th31, and when the transmission bandwidth is Th31 or more, the multiplexing method is Determine in time multiplex.
  • the multiplexing method determination unit 602 determines the multiplexing method as frequency multiplexing when the transmission bandwidth is less than Th32, and time multiplexing when the transmission bandwidth is Th32 or more. Decide on.
  • base station 500 and terminal 600 share the relationship between threshold value Th31 and threshold value Th32.
  • the threshold Th31 in continuous band allocation is set to a value lower than the threshold Th32 in non-consecutive band allocation.
  • the scheduling unit 501 sets a threshold value Th32, which is a switching point for non-consecutive band allocation, so as to satisfy Th31 ⁇ Th32.
  • the threshold Th31 in continuous band allocation is set to a value higher than the threshold Th32 in non-consecutive band allocation.
  • the scheduling unit 501 sets a threshold value Th32, which is a switching point in the case of non-contiguous band allocation, so as to satisfy Th31> Th32. This makes it difficult to select frequency multiplexing in non-contiguous band allocation, so that CM degradation can be suppressed.
  • reception quality has been described in a high range and a low range
  • the invention is not limited to this, and switching may be performed with different reception quality, only the method in the range with high reception quality, and only the method in the range with low reception quality You may use only one of them.
  • the scheduling unit 501 sets the threshold value Th31 for switching the multiplexing method of the data signal and the control information signal semi-statically. Therefore, due to the time variation of the propagation path, the set threshold Th31 may not be the optimal threshold until the next update. As a result, the reception quality is extremely deteriorated, and although time multiplexing is suitable, the same frequency multiplexing as in setting is used, and the error rate of the data signal may increase. Therefore, in the case where the time variation of the propagation path is severe, the time multiplexing described using FIG. 32 is selected as a method of multiplexing the data signal and the control information signal on the assumption that the reception quality is extremely degraded. It is preferable to place emphasis on reception quality by using an easy method.
  • the base station 500 and the terminal 600 share the relationship between the threshold Th31 and the threshold Th32, and the base station 500 and the terminal 600 have been described as uniquely setting the threshold Th32 from the threshold Th31.
  • the threshold value Th32 set by the base station 500 may be notified to the terminal 600 by signaling.
  • the present invention is applicable to a technique for changing the multiplexing method of data signals and control information signals depending on whether data signals are allocated in continuous band or non-consecutive band. Furthermore, the present invention can be applied to a technique for changing the multiplexing method of the data signal and the control information signal according to the number of clusters of the data signal.
  • the antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily refer to one physical antenna, but may refer to an array antenna or the like configured of a plurality of antennas.
  • 3GPP LTE it is not defined how many physical antennas an antenna port is configured, but is defined as a minimum unit in which a base station can transmit different reference signals.
  • the antenna port may be defined as the smallest unit by which the weighting of the precoding vector is multiplied.
  • the present invention has been described taking hardware as an example, but the present invention can also be realized by software.
  • each functional block employed in the description of the aforementioned embodiment may typically be implemented as an LSI constituted by an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include some or all. Although an LSI is used here, it may be called an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • a programmable field programmable gate array FPGA
  • a reconfigurable processor may be used which can reconfigure connection and setting of circuit cells in the LSI.
  • a wireless communication apparatus and a wireless communication method according to the present invention can improve data resource utilization efficiency while suppressing an increase in CM of transmission signals in a wireless communication system in which single carrier transmission and multi-cluster transmission coexist. , And as a wireless communication terminal and a wireless communication apparatus in LTE-Advanced.

Abstract

 シングルキャリア送信およびマルチクラスタ送信が混在する無線通信システムにおいて、送信信号のCMの増加を抑えつつ、データリソース利用効率を改善することができる無線通信装置を開示する。この装置において、多重方法決定部(207)は、制御情報信号を第1制御情報信号と第2制御情報信号とに分割し、データ信号と第1制御情報信号との多重方法を時間多重とし、データ信号と第2制御情報信号との多重方法を周波数多重とし、クラスタ数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合を大きくする。

Description

無線通信装置および無線通信方法
 本発明は、シングルキャリア送信とマルチクラスタ送信とが混在する無線通信システムに適用される無線通信装置および無線通信方法に関する。
 3GPP LTE(3rd Generation Partnership Project Long Term Evolution:以下、LTEと省略する)の上り回線では、連続する帯域にデータ信号を割り当てるシングルキャリア送信が採択された。図1Aに、シングルキャリア送信の周波数リソース割り当ての様子を示す。シングルキャリア送信は、CM(Cubic Metric)が小さいという特性を有する。そのため、シングルキャリア送信では、送信信号を歪みなく送信するための電力増幅器のバックオフを小さくすることができ、送信可能な最大電力を大きくすることができるため、セルカバレッジを広げることができる。
 また、LTEの発展形である3GPP LTE-Advanced(3rd Generation Partnership Project Long Term Evolution-Advanced:以下、LTE-Advancedと省略する)では、上り回線において、マルチクラスタ送信の採用が検討されている。図1Bに、マルチクラスタ送信の周波数リソース割り当ての様子を示す。図1Bに示されるように、マルチクラスタ送信では、非連続の複数のクラスタにデータ信号が割り当てられる。ここで、クラスタとは、周波数リソース割り当てにおける複数のキャリア群(carrier group)をいう。図1Bは、クラスタ数が2のマルチクラスタ送信の例である。
 図1Bに示すように、マルチクラスタ送信では、非連続のキャリア群にデータ信号が割り当てられるため、シングルキャリア送信と比較して周波数ダイバーシチ利得を改善することができる。一方、マルチクラスタ送信では、シングルキャリア送信と比較してCMが増加する。
 LTE-Advancedでは、上り回線において、シングルキャリア送信とマルチキャリア送信とを切り替える送信方法が検討されている。
 LTEおよびLTE-Advancedでは、上り回線において、データ信号と制御情報信号とを同時に送信する場合が発生する。この場合、データ信号と制御情報信号とを多重して送信する必要がある。データ信号と制御情報信号との多重方法としては、時間多重(TDM:Time Division Multiplexing)および周波数多重(FDM:Frequency Division Multiplexing)の2種類の方法がある。
 以下、LTE上り回線において、データ信号と制御情報信号との多重方法として、時間多重および周波数多重を適用する場合について説明する。なお、データ信号と多重される制御情報信号としては、下り回線で送信されるデータ信号に対するACK/NACK等の応答信号があるが、これに限定されるものではない。
 [1]時間多重(図2参照)
 時間多重では、制御情報信号は、データ信号と同じ周波数リソースが用いられて送信される。LTE上り回線に時間多重を適用すると、シングルキャリア送信となるため低CMを維持することができる。しかし、LTE上り回線では、制御情報信号を割り当てるための周波数リソース(以下「制御情報リソース」という)が、データ信号を割り当てるための周波数リソース(以下「データリソース」という)とは異なる周波数に用意されている。具体的には、LTE上り回線では、システム帯域の両端に存在するPUCCH(Physical Uplink Control CHannel)上に制御情報リソースが用意されている。したがって、時間多重により、制御情報信号をデータリソースに割り当てると、データリソースの利用効率が低下する。
 [2]周波数多重(図3参照)
 周波数多重では、制御情報信号は、データリソースとは異なる制御情報リソースに割り当てられて送信される。そのため、周波数多重では、データリソースの利用効率の低下を回避することができる。しかし、LTE上り回線に周波数多重を適用すると、データ信号および制御情報信号の送信がマルチクラスタ送信となるため、シングルキャリア送信と比較してCMが増加する。
 そのため、LTE上り回線では、低CMのシングルキャリア送信が可能となる時間多重が採択された(非特許文献1参照)。
5.2.2.6 TS36.212 v8.3.0 "3GPP TSG RAN; Evolved Universal Terrestrial Radio Access(E-UTRA);Multiplexing and channel coding" 3GPP TSG RAN WG1 #56, R1-090611, "Concurrent PUSCH and PUCCH Transmissions", Athens, Greece, February 9-13, 2009.
 しかしながら、マルチクラスタ送信において、シングルキャリア送信と同様に、データ信号と制御情報信号とを時間多重しても、上記送信方法の相違により、必ずしも、低CMを維持することができるとは限らない。
 本発明の目的は、シングルキャリア送信およびマルチクラスタ送信が混在する無線通信システムにおいて、送信信号のCMの増加を抑えつつ、データリソース利用効率を改善する無線通信装置および無線通信方法を提供することである。
 本発明の無線通信装置は、シングルキャリア送信とマルチクラスタ送信とが混在する無線通信システムに適用される送信側の無線通信装置であって、データ信号の送信に用いられるキャリア群の数に基づいて、前記データ信号と、制御情報信号との多重方法を決定する決定手段と、前記多重方法に基づいて、前記データ信号と、前記制御情報信号とを多重して多重信号を生成する多重手段と、前記多重信号を受信側の無線通信装置へ送信する送信手段と、を具備する構成を採る。
 本発明の無線通信装置は、シングルキャリア送信とマルチクラスタ送信とが混在する無線通信システムに適用される受信側の無線通信装置であって、データ信号の送信に用いられるキャリア群の数に基づいて、前記データ信号と、制御情報信号との多重方法を判定する判定手段と、前記キャリア群の数の情報を送信側の無線通信装置に通知する通知手段と、を具備する構成を採る。
 本発明の無線通信方法は、シングルキャリア送信とマルチクラスタ送信とが混在する無線通信システムに適用される無線通信方法であって、データ信号の送信に用いられるキャリア群の数に基づいて、前記データ信号と、制御情報信号との多重方法を決定し、前記多重方法に基づいて、前記データ信号と、前記制御情報信号とを多重して多重信号を生成し、前記多重信号を受信側の無線通信装置へ送信する、ようにした。
 本発明によれば、シングルキャリア送信およびマルチクラスタ送信が混在する無線通信システムにおいて、送信信号のCMの増加を抑えつつ、データリソース利用効率を改善することができる。
シングルキャリア送信の周波数リソース割り当ての様子を示す図 マルチクラスタ送信の周波数リソース割り当ての様子を示す図 時間多重を説明するための図 周波数多重を説明するための図 クラスタ数とCMとの関係の一例を示す図 本発明の実施の形態1に係る基地局の要部構成を示すブロック図 実施の形態1に係る端末の要部構成を示すブロック図 基地局および端末の処理の流れを示すフロー図 実施の形態1における[多重方法#1]を用いた場合のリソース割り当ての一例を示す図 実施の形態1における[多重方法#2]を用いた場合のリソース割り当ての一例を示す図 実施の形態1における[多重方法#3]を用いた場合のリソース割り当ての一例を示す図 実施の形態1における[多重方法#3]を用いた場合のリソース割り当ての別の例を示す図 実施の形態1における[多重方法#4]を用いた場合のリソース割り当ての別の例を示す図 実施の形態1における[多重方法#4]を用いた場合のリソース割り当ての別の例を示す図 本発明の実施の形態2に係る端末の要部構成を示すブロック図 実施の形態2における[多重方法#1]を用いた場合のリソース割り当ての一例を示す図 実施の形態2における[多重方法#2]を用いた場合のリソース割り当ての一例を示す図 実施の形態2における[多重方法#3]を用いた場合のリソース割り当ての一例を示す図 実施の形態2における[多重方法#3]を用いた場合のリソース割り当ての別の例を示す図 実施の形態2における[多重方法#4]を用いた場合のリソース割り当ての別の例を示す図 実施の形態2における[多重方法#4]を用いた場合のリソース割り当ての別の例を示す図 本発明の実施の形態3に係る端末の要部構成を示すブロック図 実施の形態3に係る効果を説明するための図 本発明の実施の形態4に係る端末の要部構成を示すブロック図 実施の形態4における[多重方法#1]を用いた場合のリソース割り当ての一例を示す図 実施の形態4における[多重方法#2]を用いた場合のリソース割り当ての一例を示す図 本発明の実施の形態5におけるリソース割り当ての一例を示す図 送信帯域幅と送信電力の余裕度との関係を示す図 送信帯域幅と送信電力の余裕度との関係を示す図 本発明の実施の形態6に係る基地局の要部構成を示すブロック図 実施の形態6におけるリソース割り当ての一例を示す図 実施の形態6に係る端末の要部構成を示すブロック図 本発明の実施の形態7におけるリソース割り当ての一例を示す図 実施の形態7におけるリソース割り当ての別の一例を示す図 実施の形態7におけるリソース割り当てのさらに別の一例を示す図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (実施の形態1)
 図4は、データ信号をマルチクラスタ送信する場合において、データ信号に制御情報信号を周波数多重(FDM)する場合(特性#1)と、データ信号に制御情報信号を時間多重(TDM)する場合(特性#2)における、クラスタ数とCMとの関係の一例を示している。
 図4から分かるように、データ信号と制御情報信号との多重方法が、周波数多重、時間多重のいずれの場合も、クラスタ数が大きいほどCMが大きくなっている。ただし、周波数多重の場合には、クラスタ数が小さい場合においても、CMが大きいので、クラスタ数の増加に伴うCMの増減量は、時間多重の場合のCMの増加量に比べ小さい。すなわち、クラスタ数が小さいほど、周波数多重におけるCMと時間多重におけるCMとの差が大きく、クラスタ数が大きくなるほど、周波数多重におけるCMと時間多重におけるCMとの差が小さくなっている。
 本実施の形態では、上記のようなCM特性に着目し、クラスタ数に基づいて、データ信号と制御情報信号との多重方法を判定/決定する。
 図5に、本実施の形態に係る基地局装置(以下、「基地局」と省略する)100の要部構成を示す。
 CRC(Cyclic Redundancy Check)部101は、送信データおよび制御情報に対しCRC符号化を行ってCRC符号化データを生成する。CRC部101は、生成したCRC符号化データを符号化部102に出力する。
 符号化部102は、CRC部101から入力されるCRC符号化データに対し符号化を行って符号化データを生成し、生成した符号化データを変調部103に出力する。
 変調部103は、符号化部102から入力される符号化データを変調して変調信号を生成し、生成した変調信号を送信RF(Radio Frequency)部104に出力する。
 送信RF部104は、変調部103から入力される変調信号に、D/A変換、アップコンバート、増幅等の送信処理を施し、送信処理後の送信信号をアンテナ105から各端末装置(以下、「端末」と省略する)へ無線送信する。
 受信RF部106は、アンテナ105を介して受信した各端末からの信号にダウンコンバート、A/D変換等の受信処理を施し、受信処理後の受信信号を分離部107に出力する。
 分離部107は、受信RF部106から入力される受信信号を参照信号とデータ信号とに分離する。そして、分離部107は、参照信号をDFT(Discrete Fourier transform)部108に出力し、データ信号をDFT部113に出力する。
 DFT部108は、分離部107から入力される参照信号にDFT処理を施し、時間領域から周波数領域の信号に変換する。そして、DFT部108は、変換後の周波数領域の参照信号をデマッピング部109に出力する。
 デマッピング部109は、DFT部108から入力される周波数領域の参照信号から各端末の送信帯域に対応する部分の参照信号を抽出する。そして、デマッピング部109は、抽出した各参照信号を推定部110に出力する。
 推定部110は、デマッピング部109から入力される参照信号に基づいて、伝搬路の周波数変動(伝搬路の周波数応答)の推定値および受信品質の推定値を推定する。そして、推定部110は、伝搬路の周波数変動の推定値を周波数領域等化部115に出力し、受信品質の推定値をスケジューリング部111に出力する。
 スケジューリング部111は、推定部110から入力される受信品質の推定値に基づいて、各端末のリソースのスケジューリングを行う。また、スケジューリング部111は、多重方法に関する情報として、クラスタ数を多重方法判定部112に出力する。また、スケジューリング部111は、上り回線および下り回線のスケジューリング情報等を含む制御情報信号をCRC部101に出力する。
 多重方法判定部112は、スケジューリング部111から入力されるクラスタ数を記憶し、受信RF部106が、このクラスタ数に対応するデータ信号を受信した場合に、クラスタ数に基づいて制御情報信号とデータ信号との多重方法を判定する。多重方法判定部112での判定方法については、後述する。多重方法判定部112は、判定した多重方法に関する情報をデマッピング部114に出力する。
 DFT部113は、分離部107から入力されるデータ信号にDFT処理を施し、時間領域から周波数領域の信号に変換する。そして、DFT113部は、変換後の周波数領域のデータ信号をデマッピング部114に出力する。
 デマッピング部114は、多重方法判定部112から入力される多重方法に関する情報に基づいて、各端末のデータ信号および制御情報信号のそれぞれの送信帯域に対応する部分を抽出する。そして、デマッピング部114は、抽出したデータ信号および制御情報信号を周波数領域等化部115に出力する。
 周波数領域等化部115は、推定部110から入力される伝搬路の周波数変動の推定値を用いて、デマッピング部114から入力されるデータ信号に等化処理を施す。そして、周波数領域等化部115は、等化処理後のデータ信号を結合部116に出力する。
 結合部116は、スケジューリング部111から入力されるクラスタ数に基づいて、複数のクラスタに分割された等化処理後のデータ信号を結合してIFFT(Inverse Fast Fourier Transform)部117に出力する。
 IFFT部117は、結合部116から入力される等化処理後のデータ信号にIFFT処理を施し、時間領域のデータ信号に変換する。そして、IFFT部117は、時間領域のデータ信号を復調部118に出力する。
 復調部118は、IFFT部117から入力される時間領域のデータ信号に復調処理を施し、復調信号を取得し、復調信号を復号部119に出力する。
 復号部119は、復調部118から入力される復調信号に復号処理を施し、復号ビット列を取得し、復号ビット列を誤り検出部120に出力する。
 誤り検出部120は、復号部119から入力される復号ビット列に対して誤り検出を行う。誤り検出部120は、例えば、CRCを用いて誤り検出を行う。
 図6に、本実施の形態に係る端末200の要部構成を示す。
 受信RF部202は、アンテナ201を介して受信した基地局からの信号にダウンコンバート、A/D変換等の受信処理を施し、受信信号を取得し、受信信号を復調部203に出力する。
 復調部203は、受信信号に等化処理および復調処理を施し、復調信号を取得し、復調信号を復号部204に出力する。
 復号部204は、復調部203から入力される復調信号に復号処理を施し、復号データを取得し、復号データを誤り検出部205に出力する。
 誤り検出部205は、復号データに対して誤り検出を実行する。誤り検出としては、例えば、CRCを用いる。そして、誤り検出部205は、誤り検出の結果として、復号誤りの有無を判定し、判定結果を制御情報生成部206に出力する。また、誤り検出部205は、復号誤りがない場合、復号データから上り回線のデータ信号のクラスタ数の情報を抽出し、クラスタ数の情報を多重方法決定部207および分割部212に出力し、データ信号に対する復号データを受信データとして出力する。
 制御情報生成部206は、復号誤りがある場合、応答信号としてNACK信号を生成し、復号誤りがない場合、応答信号としてACK信号を生成する。制御情報生成部206は、応答信号を含む制御情報信号を、割当部213に出力する。
 多重方法決定部207は、誤り検出部205から入力された上り回線のデータ信号のクラスタ数に基づいて、制御情報信号とデータ信号との多重方法を決定する。なお、多重方法決定部207での決定方法については、後述する。多重方法決定部207は、決定した多重方法に関する情報を割当部213に出力する。
 CRC部208は、送信データに対してCRC符号化を行ってCRC符号化データを生成し、生成したCRC符号化データを符号化部209に出力する。
 符号化部209は、CRC部208から入力されるCRC符号化データに対して符号化を行って符号化データを生成し、生成した符号化データを変調部210に出力する。
 変調部210は、符号化部209から入力される符号化データを変調してデータ信号を生成し、生成したデータ信号をDFT部211に出力する。
 DFT部211では、変調部210から入力されるデータ信号にDFT処理を施し、時間領域から周波数領域のデータ信号に変換し、周波数領域のデータ信号を分割部212に出力する。
 分割部212は、上り回線のデータ信号のクラスタ数に応じて、DFT部211から入力される周波数領域のデータ信号を複数のクラスタに分割し、分割後の周波数領域のデータ信号を割当部213に出力する。
 割当部213は、多重方法決定部207によって決定された多重方法に基づいて、分割部212から入力される周波数領域のデータ信号および制御情報生成部206から入力される制御情報信号をリソースに割り当てる。割当部213は、リソース割り当て後のデータ信号および制御情報信号をIFFT部214に出力する。
 IFFT部214は、リソース割り当て後のデータ信号および制御情報信号にIFFT処理を施し、時間領域の信号に変換し、時間領域の信号を多重化部215に出力する。
 多重化部215は、参照信号とIFFT部214から入力される時間領域の信号とを時間多重し、多重信号を生成し、生成した多重信号を送信RF部216に出力する。
 送信RF部216は、多重化部215から入力される多重信号にD/A変換、アップコンバート、増幅等の送信処理を施し、送信処理後の送信信号をアンテナ201から基地局へ無線送信する。
 以下、上述のように構成された基地局および端末の処理の流れについて図7に示すフロー図を用いて説明する。
 基地局は、まず、基地局と端末との間の伝搬路の受信品質、伝搬路のリソース利用状況等の伝搬路状況に基づいて、端末のリソースのスケジューリングを行う。スケジューリングには、クラスタ数の設定が含まれる。クラスタ数は、上り回線においてデータ信号が割り当てられる複数のキャリア群の数である。
 基地局は、下り回線で、データ信号および設定したクラスタ数の情報が含まれる制御情報信号を端末に送信する。
 端末は、下り回線の制御情報信号に含まれるクラスタ数に基づいて、データ信号と制御情報信号との多重方法を決定し、決定した多重方法を用いて、データ信号と制御情報信号とを多重して基地局に送信する。
 そして、基地局では、先に決定したクラスタ数に基づいて、端末と同様の方法を用いて、データ信号と制御情報信号との多重方法を判定する。基地局は、判定した多重方法に基づいて、受信信号からデータ信号および制御情報信号を抽出する。
 次に、多重方法判定部112および多重方法決定部207での多重方法の判定/決定方法について説明する。
 [多重方法#1]
 制御情報信号を第1制御情報信号と第2制御情報信号とに分割し、データ信号と第1制御情報信号との多重方法を時間多重とし、データ信号と第2制御情報信号との多重方法を周波数多重とし、クラスタ数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合を大きくする。
 具体的には、(1)データ信号を送信するクラスタ数が小さい場合には、データ信号と制御情報信号とを全て時間多重する。すなわち、制御情報信号の100%を第1制御情報信号とし、制御情報信号の0%を第2制御情報信号とする。LTEにおけるPUCCHように、制御情報リソースが予め確保されているような場合には、制御情報リソースを用いずに、データ信号と制御情報信号とを時間多重すると、データリソースの利用効率は低下するものの、低CMを維持することができる。
 (2)クラスタ数が中程度である場合には、時間多重と周波数多重とを混在させて、データ信号と制御情報信号とを多重する。例えば、制御情報信号のX%を第1制御情報信号とし、制御情報信号の(100-X)%を第2制御情報信号とする。このようにして、制御情報信号のうち、X%のみを時間多重し、(100-X)%を周波数多重する。
 また、(3)クラスタ数が大きい場合には、データ信号に制御情報信号の全てを周波数多重する。すなわち、制御情報信号の0%を第1制御情報信号とし、制御情報信号の100%を第2制御情報信号とする。クラスタ数が大きい場合には、もともとのデータ信号のCMが大きく、データ信号に制御情報信号を周波数多重しても、CMが急激に増加するわけではないので、データ信号と制御情報信号とを周波数多重することにより、データリソースの利用効率を改善することができる。
 このようにして、端末の多重方法決定部207は、制御情報信号を第1制御情報信号と第2制御情報信号とに分割し、データ信号と第1制御情報信号との多重方法を時間多重とし、データ信号と第2制御情報信号との多重方法を周波数多重とし、クラスタ数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合を大きくする。
 図8に、[多重方法#1]を用いた場合のリソース割り当ての様子を示す。
 基地局の多重方法判定部112は、制御情報信号は、第1制御情報信号と第2制御情報信号とに分割され、第1制御情報信号は、データ信号と時間多重され、第2制御情報信号は、データ信号と周波数多重される場合に、多重方法決定部207と同様に、クラスタの数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合が大きいとする。
 [多重方法#2]
 クラスタ数に閾値Th1を設け、クラスタ数と閾値Th1との閾値判定結果に基づいて、多重方法を決定する。具体的には、クラスタ数がTh1未満の場合には、制御情報信号の100%を、データ信号と時間多重し、クラスタ数がTh1以上の場合には、制御情報信号の100%を、データ信号と周波数多重する。
 ここで、閾値Th1を2に設定すると、シングルキャリア送信(クラスタ数1)とマルチクラスタ送信(クラスタ数2以上)とで、多重方法が切り替わることになる。すなわち、シングルキャリア送信の場合には、データ信号と制御情報信号とが時間多重され、マルチクラスタ送信の場合には、データ信号と制御情報信号とが周波数多重される。
 このようにして、端末の多重方法決定部207は、クラスタ数が閾値Th1未満の場合、多重方法を時間多重とし、クラスタ数が閾値Th1以上の場合、多重方法を周波数多重とする。
 図9に、[多重方法#2]を用いた場合のリソース割り当ての様子を示す。
 上述したように、シングルキャリア送信に比べ、マルチクラスタ送信では、CMが大きい。したがって、閾値Th1を2に設定することにより、シングルキャリア送信では、全ての制御情報信号がデータ信号と時間多重されるようになるので、低CMを維持することができる。したがって、[多重方法#2]を用いることにより、シングルキャリア送信とマルチクラスタ送信とが混在するような無線通信システムにおいて、シングルキャリア送信の利点である低CM特性と、これと相反する、マルチクラスタ送信の利点であるデータリソースの利用効率との調整を図ることができる。
 基地局の多重方法判定部112は、多重方法決定部207と同様に、クラスタ数が閾値Th1未満の場合、多重方法を時間多重とし、クラスタ数が閾値Th1以上の場合、多重方法を周波数多重とする。
 [多重方法#3]
 端末の送信電力の余裕度に基づいて、多重方法を決定する。ここで、送信電力の余裕度として、端末の最大送信電力と、基地局が指示するクラスタ数を用いたデータ送信における送信電力との差などが挙げられる。
 送信電力の余裕度と閾値Th2との閾値判定の結果に基づいて、多重方法を決定する。図10を用いて、[多重方法#3]について説明する。図10において、横軸はデータ信号を送信するクラスタ数を示し、縦軸は、送信電力の余裕度を示す。
 図10に示す例では、送信電力の余裕度<Th2では多重方法を時間多重とし、送信電力の余裕度≧Th2では多重方法を周波数多重とする。
 なお、上り回線のデータ信号を送信するクラスタ数に応じて設定される閾値Th2を用いて、閾値判定をするようにしてもよい。例えば、クラスタ数が大きいほど、小さい閾値Th2を用いるようにしてもよい。送信電力の余裕度とクラスタ数に応じた閾値Th2との関係を図11に示す。この場合も、図10と同様に、送信電力の余裕度<Th2では多重方法を時間多重とし、送信電力の余裕度≧Th2では多重方法を周波数多重とする。
 このようにして、端末の多重方法決定部207は、送信電力の余裕度が閾値Th2未満の場合、多重方法を時間多重とし、送信電力の余裕度が閾値Th2以上の場合、多重方法を周波数多重とする。
 基地局の多重方法判定部112は、多重方法決定部207と同様に、送信電力の余裕度が閾値Th2未満の場合、多重方法を時間多重とし、送信電力の余裕度が閾値Th2以上の場合、多重方法を周波数多重とする。
 [多重方法#4]
 クラスタ数と閾値Th1との閾値判定結果、および、送信電力の余裕度と閾値Th2との閾値判定の結果に基づいて、多重方法を決定する。図12および図13を用いて、[多重方法#4]について説明する。
 図12および図13に示すように、クラスタ数が閾値Th1以上の場合では、[多重方法#2]と同様に、多重方法判定部112および多重方法決定部207は、多重方法を周波数多重とする。一方、クラスタ数が閾値Th1未満の場合には、多重方法判定部112および多重方法決定部207は、送信電力の余裕度と閾値Th2との閾値判定を行い、送信電力の余裕度が閾値Th2以上の場合、多重方法を周波数多重と判定/決定し、閾値Th2未満の場合、多重方法を時間多重とする。
 以上のように、本実施の形態では、多重方法判定部112および多重方法決定部207は、クラスタ数に基づいて、データ信号と制御情報信号との多重方法を判定/決定する。例えば、多重方法決定部207は、制御情報信号を第1制御情報信号と第2制御情報信号とに分割し、データ信号と第1制御情報信号との多重方法を時間多重とし、データ信号と第2制御情報信号との多重方法を周波数多重とし、クラスタ数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合を大きくする。また、多重方法判定部112は、制御情報信号が、第1制御情報信号と第2制御情報信号とに分割され、第1制御情報信号は、データ信号と時間多重され、第2制御情報信号は、データ信号と周波数多重される場合に、多重方法決定部207と同様に、クラスタの数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合が大きいとする。
 また、多重方法判定部112および多重方法決定部207は、クラスタ数がTh1未満の場合には、制御情報信号の100%を、データ信号と時間多重し、クラスタ数がTh1以上の場合には、制御情報信号の100%を、データ信号と周波数多重する。これにより、シングルキャリア送信とマルチクラスタ送信とが混在するような無線通信システムにおいて、シングルキャリア送信の利点である低CM特性と、これと相反する、マルチクラスタ送信の利点であるデータリソースの利用効率との調整を図ることができる。
 また、多重方法判定部112および多重方法決定部207は、送信電力の余裕度と閾値Th2との閾値判定結果に基づいて、多重方法を判定/決定する。このとき、クラスタ数が大きいほど小さい値の閾値Th2を用いる場合には、周波数多重によるCMの増加量の影響が小さい端末に対しては、周波数多重を用いて、リソースの利用効率の低下を改善することができ、端末の通信状況に応じて、多重方法を柔軟に設定することができる。
 また、多重方法判定部112および多重方法決定部207は、クラスタ数と閾値Th1との閾値判定結果、および、送信電力の余裕度と閾値Th2との閾値判定の結果に基づいて、多重方法を決定する。例えば、クラスタ数が閾値Th1以上の場合では、多重方法判定部112および多重方法決定部207は、多重方法を周波数多重とする。一方、クラスタ数が閾値Th1未満で、かつ、送信電力の余裕度が閾値Th2以上の場合、多重方法判定部112および多重方法決定部207は、多重方法を周波数多重とする。また、クラスタ数が閾値Th1未満で、かつ、送信電力の余裕度が閾値Th2未満の場合、多重方法判定部112および多重方法決定部207は、多重方法を時間多重とする。
 (実施の形態2)
 本実施の形態1では、クラスタ数に基づいて、データ信号と制御情報信号との多重方法を判定/決定する場合について説明した。本実施の形態では、上り回線のデータ信号を送信するコンポーネントキャリア数に基づいて、データ信号と制御情報信号との多重方法を判定/決定する場合について説明する。ここで、コンポーネントキャリアとは、LTE-Advancedにおいて、独立に運用される周波数帯をいい、コンポーネントキャリア数は、無線通信システム内におけるコンポーネントキャリアの数をいう。LTE-Advancedでは、複数のコンポーネントキャリアがサポートされる。各コンポーネントキャリア(例えば20MHz)は、LTE同様の構成で独立に運用されることが検討されており、データ信号と制御情報信号との多重は、各コンポーネントキャリアで独立に行われる。
 本実施の形態に係る基地局の要部構成は、実施の形態1と同様であるため、説明を省略する。実施の形態1とは、多重方法判定部112での多重方法の判定方法が異なる。本実施の形態における多重方法判定部112での多重方法の判定方法については、後述する。
 図14に、本実施の形態に係る端末の要部構成を示す。なお、図14の端末300において、図6と共通の構成部分には共通の符号を付して説明を省略する。図14の端末300は、図6の端末200に対し、多重方法決定部207に代えて、多重方法決定部301を備える。また、図14の端末300は、コンポーネントキャリアごとに符号化・変調部302を複数備え、送信データを分割して符号化・変調部302に出力する分割部303、及び、符号化・変調部302から出力される複数の時間領域の信号を合成する合成部304を備える。
 本実施の形態に係る多重方法判定部112および多重方法決定部301は、上り回線のデータ信号を送信するコンポーネントキャリア数に基づいて、多重方法を判定/決定する。
 以下、多重方法判定部112および多重方法決定部301での多重方法の判定/決定方法について説明する。
 [多重方法#1]
 制御情報信号を第1制御情報信号と第2制御情報信号とに分割し、データ信号と第1制御情報信号との多重方法を時間多重とし、データ信号と第2制御情報信号との多重方法を周波数多重とし、コンポーネントキャリア数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合を大きくする。
 具体的には、(1)データ信号を送信するコンポーネントキャリア数が小さい場合には、データ信号と制御情報信号とを全て時間多重する。すなわち、制御情報信号の100%を第1制御情報信号とし、制御情報信号の0%を第2制御情報信号とする。
 (2)コンポーネントキャリア数が中程度である場合には、時間多重と周波数多重とを混在させて、データ信号と制御情報とを多重する。例えば、制御情報信号のX%を第1制御情報信号とし、制御情報信号の(100-X)%を第2制御情報信号とする。このようにして、制御情報信号のうち、X%のみを時間多重し、(100-X)%を周波数多重する。
 また、(3)コンポーネントキャリア数が大きい場合には、データ信号に制御情報信号全てを周波数多重する。すなわち、制御情報信号の0%を第1制御情報信号とし、制御情報信号の100%を第2制御情報信号とする。
 このようにして、端末の多重方法決定部301は、制御情報信号を第1制御情報信号と第2制御情報信号とに分割し、データ信号と第1制御情報信号との多重方法を時間多重とし、データ信号と第2制御情報信号との多重方法を周波数多重とし、コンポーネントキャリア数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合を大きくする。
 図15に、[多重方法#1]を用いた場合のリソース割り当ての様子を示す。
 基地局の多重方法判定部112は、制御情報信号は、第1制御情報信号と第2制御情報信号とに分割され、第1制御情報信号は、データ信号と時間多重され、第2制御情報信号は、データ信号と周波数多重される場合に、多重方法決定部301と同様に、コンポーネントキャリア数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合が大きいとする。
 [多重方法#2]
 コンポーネントキャリア数に閾値Th11を設け、閾値Th11とコンポーネントキャリア数との閾値判定結果に基づいて、多重方法を決定する。具体的には、コンポーネントキャリア数がTh11未満の場合には、制御情報信号の100%を、データ信号と時間多重し、コンポーネントキャリア数がTh11以上の場合には、制御情報信号の100%を、データ信号と周波数多重する。
 図16に、[多重方法#2]を用いた場合のリソース割り当ての様子を示す。
 コンポーネントキャリア数が増えると、データ信号が割り当てられる非連続のキャリア群の数が増える。特にコンポーネントキャリア数が1から2に増えると、非連続のキャリア群の数が常に2以上となるため、低CMを維持することが困難となる。したがって、閾値Th11を2に設定することにより、コンポーネントキャリア数が1でシングルキャリア送信により低CMが期待できる場合には、データ信号と制御情報信号とを時間多重し、コンポーネントキャリア数が2以上で低CMが維持することが困難な場合には、データ信号と制御情報信号とを周波数多重することにより、データリソースの利用効率を改善することができる。
 基地局の多重方法判定部112は、多重方法決定部301と同様に、コンポーネントキャリア数が閾値未満Th11の場合、多重方法を時間多重とし、コンポーネントキャリア数が閾値Th11以上の場合、多重方法を周波数多重とする。
 [多重方法#3]
 端末の送信電力の余裕度に基づいて、多重方法を決定する。ここで、送信電力の余裕度として、端末の最大送信電力と、基地局が指示するコンポーネントキャリア数を用いたデータ送信における送信電力との差などが挙げられる。
 送信電力の余裕度と閾値Th12との閾値判定の結果に基づいて、多重方法を決定する。図17を用いて、[多重方法#3]について説明する。図17において、横軸はデータ信号を送信するコンポーネントキャリア数を示し、縦軸は、送信電力の余裕度を示す。
 図17に示す例では、送信電力の余裕度<Th12では多重方法を時間多重とし、送信電力の余裕度≧Th12では多重方法を周波数多重とする。
 なお、上り回線のデータ信号を送信するコンポーネントキャリア数に応じて設定される閾値Th12を用いて、閾値判定をするようにしてもよい。例えば、コンポーネントキャリア数が大きいほど、小さい閾値Th12を用いるようにしてもよい。送信電力の余裕度とコンポーネントキャリア数に応じた閾値Th12との関係を図18に示す。この場合も、図17と同様に、送信電力の余裕度≧Th12では多重方法を周波数多重とし、送信電力の余裕度<Th12では多重方法を時間多重とし、送信電力の余裕度≧Th12では多重方法を周波数多重とする。
 このようにして、端末の多重方法決定部301は、送信電力の余裕度が閾値Th12未満の場合、多重方法を時間多重とし、送信電力の余裕度が閾値Th12以上の場合、多重方法を周波数多重とする。
 基地局の多重方法判定部112は、多重方法決定部301と同様に、送信電力の余裕度が閾値Th12未満の場合、多重方法を時間多重とし、送信電力の余裕度が閾値Th12以上の場合、多重方法を周波数多重とする。
 [多重方法#4]
 クラスタ数と閾値Th11との閾値判定結果、および、送信電力の余裕度と閾値Th12との閾値判定の結果に基づいて、多重方法を決定する。図19および図20を用いて、[多重方法#4]について説明する。
 図19および図20に示すように、コンポーネントキャリア数が閾値Th11以上の場合では、[多重方法#2]と同様に、多重方法判定部112および多重方法決定部301は、多重方法を周波数多重と判定/決定する。一方、コンポーネントキャリア数が閾値Th11未満の場合には、多重方法判定部112および多重方法決定部301は、送信電力の余裕度と閾値Th12との閾値判定を行い、送信電力の余裕度が閾値Th12以上の場合、多重方法を周波数多重と判定/決定し、閾値Th12未満の場合、多重方法を時間多重と判定/決定する。
 以上のように、本実施の形態では、多重方法決定部301は、制御情報信号を第1制御情報信号と第2制御情報信号とに分割し、データ信号と第1制御情報信号との多重方法を時間多重とし、データ信号と第2制御情報信号との多重方法を周波数多重とし、コンポーネントキャリア数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合を大きくする。また、多重方法判定部112は、制御情報信号が、第1制御情報信号と第2制御情報信号とに分割され、第1制御情報信号は、データ信号と時間多重され、第2制御情報信号は、データ信号と周波数多重される場合に、多重方法決定部301と同様に、コンポーネントキャリア数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合が大きいとする。
 また、多重方法判定部112および多重方法決定部301は、コンポーネントキャリア数がTh11未満の場合には、制御情報信号の100%を、データ信号と時間多重し、コンポーネントキャリア数がTh11以上の場合には、制御情報信号の100%を、データ信号と周波数多重する。これにより、コンポーネントキャリア数が1でシングルキャリア送信により低CMが期待できる場合には、データ信号と制御情報信号を時間多重し、コンポーネントキャリア数が2以上で低CMが維持することが困難な場合には、データ信号と制御情報信号とを周波数多重することにより、データリソースの利用効率を改善することができる。
 また、多重方法判定部112および多重方法決定部301は、送信電力の余裕度と閾値Th12との閾値判定結果に基づいて、多重方法を判定/決定する。例えば、コンポーネントキャリア数が大きいほど小さい値の閾値Th12を用いる場合には、周波数多重によるCMの増加量の影響が小さい端末に対しては、周波数多重を用いて、リソースの利用効率の低下を改善することができ、端末の通信状況に応じて、多重方法を柔軟に設定することができる。
 また、多重方法判定部112および多重方法決定部301は、コンポーネントキャリア数と閾値Th11との閾値判定結果、および、送信電力の余裕度と閾値Th12との閾値判定の結果に基づいて、多重方法を決定する。例えば、コンポーネントキャリア数が閾値Th11以上の場合では、多重方法判定部112および多重方法決定部301は、多重方法を周波数多重とする。一方、コンポーネントキャリア数が閾値Th11未満で、かつ、送信電力の余裕度が閾値Th12以上の場合、多重方法判定部112および多重方法決定部301は、多重方法を周波数多重とする。また、コンポーネントキャリア数が閾値Th11未満で、かつ、送信電力の余裕度が閾値Th12未満の場合、多重方法判定部112および多重方法決定部301は、多重方法を時間多重とする。
 (実施の形態3)
 実施の形態2では、各コンポーネントキャリアにおいて、データ信号が送信される場合における多重方法について説明した。本実施の形態では、複数のコンポーネントキャリアのうち、制御情報信号のみを送信するコンポーネントキャリアがある場合における、データ信号を制御情報信号との多重方法について説明する。
 本実施の形態では、制御情報信号のみを送信するコンポーネントキャリアが1つでもある場合、全てのコンポーネントキャリアにおける制御情報信号とデータ信号との多重方法を周波数多重とする。
 本実施の形態に係る基地局の要部構成は、実施の形態2と同様であるため説明を省略する。実施の形態2とは、多重方法判定部112での多重方法の判定方法が異なる。
 本実施の形態に係る多重方法判定部112は、スケジューリング部111から入力される各コンポーネントキャリアに関する情報に基づいて、複数のコンポーネントキャリアのうち、制御情報信号のみを送信するコンポーネントキャリアの有無を判定する。そして、多重方法判定部112は、複数のコンポーネントキャリアのうち、制御情報信号のみを送信するコンポーネントキャリアが1つでもある場合、全てのコンポーネントキャリアにおける制御情報信号とデータ信号との多重方法を周波数多重と判定する。
 図21に、本実施の形態に係る端末の要部構成を示す。図21において、図14と共通の構成部分には共通の符号を付してその説明を省略する。図21の端末300aは、図14の端末300に対し、分割部303および多重方法決定部301に代え、分割部303aおよび多重方法決定部301aを備える。
 分割部303aは、送信データを各コンポーネントキャリアに割り当てたか否かに関する情報を、多重方法決定部301aに出力する。
 多重方法決定部301aは、各コンポーネントキャリアに送信データが割り当てたか否かに関する情報を用いて、複数のコンポーネントキャリアのうち、制御情報信号のみを送信するコンポーネントキャリアの有無を判定する。そして、多重方法決定部301aは、複数のコンポーネントキャリアのうち、制御情報信号のみを送信するコンポーネントキャリアが1つでもある場合、全てのコンポーネントキャリアにおける制御情報信号とデータ信号との多重方法を、周波数多重とする。
 このように、本実施の形態では、複数のコンポーネントキャリアのうち、制御情報信号のみを送信するコンポーネントキャリアが1つでもある場合、全てのコンポーネントキャリアにおける制御情報信号とデータ信号とを周波数多重する。
 本実施の形態における効果について、図22を用いて説明する。図22は、コンポーネントキャリア数が2の場合に、コンポーネントキャリア#1では、制御情報信号のみが送信され、コンポーネントキャリア#2では、データ信号と制御情報信号の双方が送信される場合の例である。
 実施の形態2では、データ信号の送信に用いられるコンポーネントキャリア数に基づいて、データ信号と制御情報信号との多重方法を判定/決定する場合について説明したが、無線通信システム内において、図22のコンポーネントキャリア#1のように、制御情報信号のみが送信される場合、制御情報信号は、制御情報リソースを用いて送信されることになる。この結果、コンポーネントキャリア#2において、データ信号と制御情報信号とを時間多重した場合においても、コンポーネントキャリア#2のデータ信号および制御情報信号と、コンポーネントキャリア#1の制御情報信号とは、マルチクラスタ送信されることになる。したがって、コンポーネントキャリア#2において、データ信号と制御情報信号とを時間多重にしても、低CMを維持することが困難となる。そこで、多重方法判定部112および多重方法決定部301aは、複数のコンポーネントキャリアのうち、制御情報信号のみを送信するコンポーネントキャリアが1つでもある場合、全てのコンポーネントキャリアにおける制御情報信号とデータ信号との多重方法を、周波数多重とする。図22に示すように、コンポーネントキャリア#1およびコンポーネントキャリア#2を1つのまとまりと見た場合、マルチクラスタ送信となるので、制御情報信号のみを送信するコンポーネントキャリアが1つでもある場合、多重方法を、周波数多重とすることにより、CMの増加量を抑えつつ、リソースの利用効率を改善することができるようになる。
 以上のように、多重方法判定部112および多重方法決定部301aは、複数のコンポーネントキャリアのうち、制御情報信号のみを送信するコンポーネントキャリアの有無に基づいて、データ信号と、制御情報信号との多重方法を判定/決定する。具体的には、多重方法判定部112および多重方法決定部301aは、複数のコンポーネントキャリアのうち、制御情報信号のみを送信するコンポーネントキャリアが1つでもある場合、全てのコンポーネントキャリアにおける制御情報信号とデータ信号との多重方法を、周波数多重とする。これにより、CMの増加量を抑えつつ、リソースの利用効率を改善することができるようになる。
 なお、以上の説明では、多重方法判定部112および多重方法決定部301aが、制御情報信号のみを送信するコンポーネントキャリアの有無に基づいて、多重方法を判定/決定する場合を例に説明したが、制御情報信号のみを送信するコンポーネントキャリアを、データ信号を送信するコンポーネントキャリアとしてカウントし、コンポーネントキャリア数が2以上では、多重方法を周波数多重とするとしてもよい。
 (実施の形態4)
 本実施の形態では、MIMO(Multi Input Multi Output)通信に本発明を適用する場合について説明する。MIMO通信では、複数のストリームを多重してデータ信号を形成し、複数のアンテナから各データ信号を送信(マルチアンテナ送信)する。マルチアンテナ送信では、各アンテナから送信されるデータ信号を構成するストリーム多重数が大きいほど、CMが大きいという特性がある。そこで、本実施の形態では、マルチアンテナ送信する端末において、複数のアンテナのうち、各アンテナから送信されるデータ信号を構成するストリーム多重数に基づいて、データ信号と制御情報信号との多重方法を判定/決定する。
 本実施の形態に係る基地局の要部構成は、実施の形態1と同様であるため、説明を省略する。実施の形態1とは、多重方法判定部112での多重方法の判定方法が異なる。本実施の形態における多重方法判定部112での多重方法の判定方法については、後述する。
 図23に、本実施の形態に係る端末の要部構成を示す。なお、図23の端末400において、図14と共通の構成部分には共通の符号を付して説明を省略する。図23の端末400は、図14の端末300に対し、多重方法決定部301に代えて、多重方法決定部401を備え、複数のアンテナ201と、複数の符号化・変調部402と、プリコーディング部403とを備える。
 プリコーディング部403は、複数の符号化・変調部402から出力される複数のストリームに対しプリコーディングを行う。具体的には、プリコーディング部403は、複数の符号化・変調部402から出力される複数のストリームに重み付けをして多重し、データ信号を生成する。プリコーディング部403は、データ信号を各アンテナ201に出力する。
 本実施の形態に係る多重方法判定部112および多重方法決定部401は、各アンテナ201から送信されるデータ信号を構成するストリーム多重数に基づいて、多重方法を判定/決定する。このとき、ストリーム多重数が大きいほど、データ信号が割り当てられる非連続のキャリア群の数が大きい。
 以下、多重方法判定部112および多重方法決定部401での多重方法の判定/決定方法について説明する。
 [多重方法#1]
 制御情報信号を第1制御情報信号と第2制御情報信号とに分割し、データ信号と第1制御情報信号との多重方法を時間多重とし、データ信号と第2制御情報信号との多重方法を周波数多重とし、各アンテナから送信されるデータ信号を構成するストリーム多重数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合を大きくする。
 具体的には、(1)ストリーム多重数が小さい場合には、データ信号と制御情報信号とを全て時間多重する。すなわち、制御情報信号の100%を第1制御情報信号とし、制御情報信号の0%を第2制御情報信号とする。LTEのPUCCHように、制御情報リソースが予め確保されているような場合には、制御情報リソースを用いずに、データ信号と制御情報信号とを時間多重すると、データリソースの利用効率は低下するものの、低CMを維持することができる。
 (2)ストリーム多重数が中程度である場合には、時間多重と周波数多重とを混在させて、データ信号と制御情報信号とを多重する。例えば、制御情報信号のX%を第1制御情報信号とし、制御情報信号の(100-X)%を第2制御情報信号とする。このようにして、制御情報信号のうち、X%のみを時間多重し、(100-X)%を周波数多重する。
 また、(3)ストリーム多重数が大きい場合には、データ信号に制御情報信号の全てを周波数多重する。すなわち、制御情報信号の0%を第1制御情報信号とし、制御情報信号の100%を第2制御情報信号とする。ストリーム多重数が多い場合には、もともとのデータ信号のCMが大きいので、データ信号に制御情報信号を周波数多重しても、CMが急激に大きくなるわけではなく、データ信号と周波数多重心とを周波数多重することにより、データリソースの利用効率を改善することができる。
 このようにして、端末の多重方法決定部401は、制御情報信号を第1制御情報信号と第2制御情報信号とに分割し、データ信号と第1制御情報信号との多重方法を時間多重とし、データ信号と第2制御情報信号との多重方法を周波数多重とし、ストリーム多重数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合を大きくする。
 図24に、[多重方法#1]を用いた場合のリソース割り当ての様子を示す。
 基地局の多重方法判定部112は、制御情報信号は、第1制御情報信号と第2制御情報信号とに分割され、第1制御情報信号は、データ信号と時間多重され、第2制御情報信号は、データ信号と周波数多重される場合に、多重方法決定部401と同様に、ストリーム多重数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合が大きいとする。
 [多重方法#2]
 ストリーム多重数に閾値を設け、閾値Th21とクラスタ数との閾値判定結果に基づいて、多重方法を決定する。具体的には、ストリーム多重数がTh21未満の場合には、制御情報信号の100%を、データ信号と時間多重し、ストリーム多重数がTh21以上の場合には、制御情報信号の100%を、データ信号と周波数多重する。
 図25に、[多重方法#2]を用いた場合のリソース割り当ての様子を示す。
 ストリーム多重数が増えると、データ信号が割り当てられる非連続のキャリア群の数が増える。特にストリーム多重数が1から2に増えると、非連続のキャリア群の数が常に2以上となってしまうため、低CMを維持することが困難となる。したがって、閾値Th21を2に設定することにより、ストリーム多重数が1でシングルキャリア送信により低CMが期待できる場合には、データ信号と制御情報信号を時間多重し、ストリーム多重数が2以上となって、低CMが維持することが困難な場合には、データ信号と制御情報信号とを周波数多重することにより、データリソースの利用効率を改善することができる。
 基地局の多重方法判定部112は、多重方法決定部401と同様に、ストリーム多重数が閾値Th21未満の場合、多重方法を時間多重とし、ストリーム多重数が閾値Th21以上の場合、多重方法を周波数多重とする。
 [多重方法#3]
 端末の送信電力の余裕度に基づいて、多重方法を決定する。ここで、送信電力の余裕度として、端末の最大送信電力と、基地局が指示するストリーム多重数を用いたデータ送信における送信電力との差などが挙げられる。
 送信電力の余裕度と閾値Th22との閾値判定の結果に基づいて、多重方法を決定する。
 例えば、送信電力の余裕度<Th22では多重方法を時間多重とし、送信電力の余裕度≧Th22では多重方法を周波数多重とする。
 なお、ストリーム多重数に応じて設定される閾値Th22を用いて、送信電力の余裕度の端末の通信状況と閾値Th22とを閾値判定をするようにしてもよい。例えば、ストリーム多重数が大きいほど、値が小さい閾値Th22を用いるようにしてもよい。
 このようにして、端末の多重方法決定部401は、送信電力の余裕度が閾値Th22未満の場合、多重方法を時間多重とし、送信電力の余裕度が閾値Th22以上の場合、多重方法を周波数多重とする。
 基地局の多重方法判定部112は、多重方法決定部401と同様に、送信電力の余裕度が閾値Th22未満の場合、多重方法を時間多重とし、送信電力の余裕度が閾値Th22以上の場合、多重方法を周波数多重とする。
 [多重方法#4]
 ストリーム多重数と閾値Th21との閾値判定結果、および、送信電力の余裕度と閾値Th22との閾値判定の結果に基づいて、多重方法を決定する。
 例えば、ストリーム多重数が閾値Th21以上の場合では、データ信号と制御情報信号との多重方法を周波数多重と判定/決定する。一方、ストリーム多重数が閾値Th21未満の場合には、多重方法判定部112および多重方法決定部401は、送信電力の余裕度と閾値Th22との閾値判定を行い、送信電力の余裕度が閾値Th22以上の場合、多重方法を周波数多重と判定/決定し、閾値Th22未満の場合、多重方法を時間多重と判定/決定する。
 以上のように、本実施の形態では、多重方法決定部401は、制御情報信号を第1制御情報信号と第2制御情報信号とに分割し、データ信号と第1制御情報信号との多重方法を時間多重とし、データ信号と第2制御情報信号との多重方法を周波数多重とし、ストリーム多重数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合を大きくする。また、多重方法判定部112は、制御情報信号が、第1制御情報信号と第2制御情報信号とに分割され、第1制御情報信号は、データ信号と時間多重され、第2制御情報信号は、データ信号と周波数多重される場合に、多重方法決定部401と同様に、ストリーム多重数が大きいほど、第1制御情報信号に対する第2制御情報信号の割合が大きいとする。
 また、多重方法判定部112および多重方法決定部401は、ストリーム多重数がTh21未満の場合には、制御情報信号の100%を、データ信号と時間多重し、ストリーム多重数がTh21以上の場合には、制御情報信号の100%を、データ信号と周波数多重する。これにより、ストリーム多重数が1でシングルキャリア送信により低CMが期待できる場合には、データ信号と制御情報信号を時間多重し、ストリーム多重数が2以上となって、低CMが維持することが困難な場合には、データ信号と制御情報信号とを周波数多重することにより、データリソースの利用効率を改善することができる。
 また、多重方法判定部112および多重方法決定部401は、送信電力の余裕度と閾値Th22との閾値判定結果に基づいて、多重方法を判定/決定する。例えば、ストリーム多重数が大きいほど小さい値の閾値Th22を用いる場合には、周波数多重によるCMの増加量の影響が小さい端末に対しては、周波数多重を用いて、リソースの利用効率の低下を改善することができ、端末の通信状況に応じて、多重方法を柔軟に設定することができる。
 また、多重方法判定部112および多重方法決定部401は、ストリーム多重数と閾値Th21との閾値判定結果、および、送信電力の余裕度と閾値Th22との閾値判定の結果に基づいて、多重方法を決定する。例えば、ストリーム多重数が閾値Th21以上の場合では、多重方法判定部112および多重方法決定部401は、多重方法を周波数多重とする。一方、ストリーム多重数が閾値Th21未満で、かつ、送信電力の余裕度が閾値Th22以上の場合、多重方法判定部112および多重方法決定部401は、多重方法を周波数多重とする。また、ストリーム多重数が閾値Th21未満で、かつ、送信電力の余裕度が閾値Th22未満の場合、多重方法判定部112および多重方法決定部401は、多重方法を時間多重とする。
 なお、以上の説明では、マルチクラスタ送信を例に説明したが、これに限定するものではなく、N×SC-FDMA Chunk Specific DFT送信、Clustered SC-FDMA、または、OFDMA等のマルチキャリア送信に本発明を適用してもよい。例えば、OFDM送信は、クラスタ数が増加してもCMがほぼ変化しないとう特性をもつ。そのため、シングルキャリア送信とOFDM送信とが切り替わる時点でCMが急激に変化するので、本発明を適用することにより、マルチクラスタ送信と同様の効果を得ることができる。
 また、以上の説明では、制御情報信号が、ACK/NACK信号等の応答信号を含む場合を例に説明したが、制御情報信号は、データ信号よりも高い信頼性が求められるという特徴をもつものであれば、ACK/NACK信号等の応答信号に限られない。例えば、制御情報信号を、CQI等のフィードバック情報と置き換えてもよい。
 また、上り回線における制御情報リソースは、下り回線CCEに対応して割り当てられるとしてもよい。また、上り回線に限らず、本発明を下り回線で適用してもよい。
 また、複数の制御情報信号が存在する場合、ビット数が多いほど優先的に周波数多重とするようにしてもよい。例えば、制御情報信号としてACK/NACK信号及びCQIが存在する場合、ビット数が多いCQIを優先的に周波数多重するようにしてもよい。
 また、以上の説明では、送信電力の余裕度に対し閾値を設け閾値判定をする場合について説明したが、端末の送信電力に余裕があるか否かを判断することができる他の制御情報信号に閾値を設け閾値判定を行ってもよい。例えば、伝搬ロスが大きいほど必要な送信電力が大きくなり、最大送信電力との差が小さくなる(送信電力に余裕がなくなる)ため、伝播ロスと閾値との閾値判定を行ってもよい。また、端末の位置が基地局から遠ざかるほど伝搬ロスが大きくなる傾向があり、送信電力に余裕がなくなるため、端末の位置と閾値との閾値判定を行ってもよい。
 また、送信電力の余裕度として、PHR(Power Headroom)を用い、PHRと閾値との閾値判定の結果に基づいて、多重方法を決定するとしてもよい。ここで、PHRは、端末の送信電力の余力(増加可能な電力)であり、一般に端末から基地局に送信される情報である。端末および基地局はともにPHRを共有する。また、送信電力の余裕度として、CQI(Channel Quality Indicator)等の端末の回線品質を用い、CQIに対し閾値を設け閾値判定をするようにしてもよい。回線品質が良好なほど、送信電力に余裕がある。また、送信電力の余裕度として、端末の最大送信電力とシングルキャリア送信時における送信電力との差等を用いるようにしてもよい。
 また、送信電力の余裕度に閾値を設ける代わりに、基地局が自由に多重方法を選択し、多重方法を端末に通知するとしてもよい。
 また、端末は、基地局から通知される端末の送信方法に応じて多重方法を判定/決定するようにしてもよい。例えば、コンポーネントキャリア数が2以上の場合には、多重方法を周波数多重とし、コンポーネントキャリア数が1の場合には、シングルキャリア送信かマルチキャリア送信かに応じて多重方法を判定/決定するようにしてもよい。具体的には、コンポーネント数が1で、かつ、シングルキャリア送信の場合には、多重方法を時間多重とし、コンポーネント数が1で、かつ、マルチクラスタ送信の場合には、多重方法を周波数多重とする。
 なお、本実施の形態では、シングルキャリア送信を用いるデータ信号の送信を想定し、各送信アンテナでデータ信号の複数のストリームが合成されるMIMO送信のような場合、データ信号のシングルキャリア送信の特性が崩れることに着目した。すなわち、データ信号のストリーム数が1つである場合はデータ信号がシングルキャリア特性を有しており、データ信号に制御情報信号を周波数多重するとシングルキャリア特性が崩れるためCMが大幅に増加する。一方、データ信号のストリーム数が複数である場合は既にシングルキャリア特性を有しておらず、データ信号に制御情報信号を周波数多重してもCMの増加が少ない。そのため、データ信号のストリーム数が1つである(少ない)場合はCMの増加を考慮して時間多重または周波数多重から選択するようにし、データ信号のストリーム数が複数である(多い)場合はCMの増加が少ないため常に周波数多重にするとした。
 しかしながら、各アンテナでシングルキャリア送信を維持できるMIMO送信がある。例えば、各アンテナからシングルキャリア送信を用いてデータ信号を送信し、それらを伝搬路で空間多重させる方法である。この場合には、データ信号のストリーム数が複数であるので、データ信号と制御情報信号とを周波数多重することによりCMが大幅に増加してしまう。ただし、シングルキャリア送信を維持できるMIMO送信を用いる場合であっても、本実施の形態で説明したように、データ信号のストリーム数が少ない場合は時間多重または周波数多重から多重方法を選択し、データ信号のストリーム数が多い場合は常に多重方法を周波数多重とすることで、制御情報信号の受信品質を改善できるという別の効果がある。制御情報信号の受信品質を改善できる点について以下に捕捉説明する。
 制御情報信号は、重要な情報であり、データ信号よりも受信品質を高めるべきである。データ信号と制御情報信号との多重方法が時間多重の場合、データ信号のストリーム数が増加するに従い制御情報信号に対するストリーム間干渉が増加し、制御情報信号の受信品質が低下する。一方、データ信号と制御情報信号との多重方法が周波数多重の場合、制御情報信号は予め用意されたストリーム間干渉に強いリソースに割り当てられるため、ストリーム数の増加による受信品質の劣化が少ない。このことより、シングルキャリア送信を維持できるMIMO送信を用いる場合においても、データ信号のストリーム数が増加するに従い、データ信号と制御情報信号とを周波数多重することにより、制御情報信号の受信品質を改善することができる。
 (実施の形態5)
 非特許文献2では、データ信号と制御情報信号との多重方法(時間多重または周波数多重)の情報を、上位レイヤシグナリング(Higher Layer Signaling)により基地局から端末にセミスタティックに通知する検討がなされている。ここで、セミスタティックな通知とは各端末のリソース割当のスケジューリング毎に通知する制御情報(例えば、PDCCH:Physical Downlink Control Channelを用いる通知)よりも長い時間間隔で通知される情報とする。また、各端末のリソース割当のスケジューリング毎に通知する制御情報(例えば、PDCCHを用いる通知)をダイナミックな通知とする。
 しかしながら、上記の上位レイヤシグナリングで切り替える方法ではデータ信号の送信方法が考慮されていない。データ信号が連続な帯域に割り当てられる場合には、データ信号と制御情報信号との多重方法によってCM値が大幅に異なるため、各端末の状況(送信電力の余裕度など)によってデータ信号と制御情報信号との多重方法(時間多重または周波数多重)を切り替える必要がある。一方で、データ信号が非連続な帯域に割り当てられる場合には、周波数多重におけるCMと時間多重におけるCMとの差が小さく、時間多重方法によりCMが劇的に変わるわけではない。したがって、データ信号が非連続な帯域に割り当てられる場合には、CM値の増加を考えずにデータ信号と制御情報信号とを周波数多重することにより、データリソースの利用効率を改善する方が好ましい。
 なお、ここで、送信電力の余裕度とは、端末の最大送信電力と、データ信号および制御情報信号を送信する際に用いる送信電力との差とする。この送信電力の余裕度は、受信品質または伝搬ロス等に依存する。例えば、基地局から遠い端末等は、伝搬ロスが大きく受信品質が悪いため、データ信号および制御情報信号を送信する際に用いる送信電力を高くする必要がある。この場合、送信電力と端末の最大送信電力との差は小さくなり、送信電力の余裕度が小さくなる。このように、送信電力の余裕度は、受信品質または伝搬ロス等に依存し、受信品質または伝搬ロス等からも求めることができる。
 そこで、本実施の形態では、データ信号と制御情報信号との多重方法がセミスタティックに通知される場合に、データ信号が連続する帯域に割り当てられる場合には、セミスタティックに通知される多重方法に従って、データ信号と制御情報信号とを多重し、データ信号が非連続な帯域に割り当てられる場合には、セミスタティック通知に関係なく常にデータ信号と制御情報信号とを周波数多重する。
 以下、クラスタ数が少ない場合を連続帯域割当とし、クラスタ数が多い場合を非連続帯域割当として説明する。
 本実施の形態に係る基地局の要部構成は、実施の形態1と同様であるため、説明を省略する。実施の形態1とは、スケジューリング部111でのスケジューリング方法、及び、多重方法判定部112での多重方法の判定方法が異なる。
 スケジューリング部111は、推定部110から入力される受信品質の推定値に基づいて、各端末のデータ信号と制御情報信号との多重方法の選択、および、各端末のリソースのスケジューリングを行う。そして、スケジューリング部111は、上り回線および下り回線のダイナミックに通知するスケジューリング情報(データ信号および制御情報信号の送信方法に関する情報)、セミスタティックに通知する多重方法に関する情報を含む制御情報信号をCRC部101に出力する。
 詳細には、推定部110から入力される受信品質の推定値(または伝搬ロス等)に基づいて、データ信号と制御情報信号との多重方法をセミスタティックに設定する。例えば、受信品質が悪い端末には多重方法を時間多重とし、受信品質が良い端末には多重方法を周波数多重として設定する。また、推定部110から入力される受信品質の推定値(または伝搬ロス等)に基づいて、各端末のデータ信号のリソースをスケジューリングする。このとき、データ信号が連続帯域割当を用いる場合はセミスタティックに設定した多重方法に従い、データ信号が非連続帯域割当を用いる場合は常に周波数多重を用いてデータ信号と制御情報信号とを多重するとしてスケジューリングを行う。そして、ここで設定された多重方法に関する情報およびスケジューリング情報は、制御情報としてCRC部101及び多重方法判定部112に出力される。多重方法に関する情報はセミスタティックに、スケジューリング情報はダイナミックに制御情報として端末に通知される。
 多重方法判定部112は、スケジューリング部111から入力されるデータ信号と制御情報信号との多重方法(時間多重か周波数多重)およびデータ信号の送信方法に関する情報に基づいて、データ信号と制御情報信号との多重方法を判定し、データ信号と制御情報信号のマッピング位置を判定する。
 データ信号が連続帯域割当される場合、スケジューリング部111でセミスタティックに設定された多重方法(セミスタティックに通知するデータ信号と制御情報信号との多重方法)に従って、受信信号で用いられている多重方法を判断する。
 一方、データ信号が非連続帯域割当される場合、多重方法判定部112は、スケジューリング部111でセミスタティックに設定されたデータ信号と制御情報信号との多重方法に関わらず、受信信号で用いられている多重方法を周波数多重に一意に判定する。
 多重方法判定部112は、このようにして判定した多重方法に関する情報をデマッピング部114に出力する。
 本実施の形態に係る端末の要部構成は、実施の形態1と同様であるため、説明を省略する。実施の形態1とは、多重方法決定部207での多重方法の判定方法が異なる。
 多重方法決定部207は、誤り検出部205から入力された制御情報に含まれるデータ信号と制御情報信号との多重方法(セミスタティックな多重方法の通知)、及び、データ信号の送信方法に関する情報(スケジューリング情報など)に基づいて、データ信号と制御情報信号との多重方法を決定する。
 具体的には、データ信号が連続帯域割当される場合、多重方法決定部207は、セミスタティックに通知されたデータ信号と制御情報信号との多重方法に従って多重方法を決定する。すなわち、データ信号が連続帯域割当される場合、多重方法決定部207は、基地局100からセミスタティックに通知される多重方法を、実際に用いられた多重方法と決定する。
 一方、データ信号が非連続帯域割当される場合、多重方法決定部207は、セミスタティックに通知されたデータ信号と制御情報信号との多重方法に関わらず、データ信号と制御情報信号の送信に用いる多重方法を周波数多重に一意に決定する。
 データ信号が非連続帯域割当される場合には、データ信号と制御情報信号とを周波数多重しても、CMの増加量は小さい。したがって、データ信号が非連続帯域割当される場合、多重方法決定部207は、セミスタティックに通知されたデータ信号と制御情報信号との多重方法に関わらず、多重方法を一意に周波数多重に決定することにより、CMの増加を少なくしつつデータ信号のリソース利用効率を改善することができる。
 多重方法決定部207は、このようにして決定した多重方法に関する情報を割当部213に出力する。
 図26に、本実施の形態におけるリソース割当の一例を示す。図26は、セミスタティックに設定及び通知されたデータ信号と制御情報信号との多重方法と、データ信号の送信方法と、実際に送信信号に用いるデータ信号と制御情報信号との多重方法の関係を示す。
 以上のように、本実施の形態では、多重方法判定部112および多重方法決定部207は、セミスタティックに設定及び通知されたデータ信号と制御情報信号との多重方法、及び、データ信号の送信方法に基づいて、データ信号と制御情報信号との多重方法を判定/決定する。つまり、多重方法判定部112および多重方法決定部207は、データ信号が連続帯域割当される場合、基地局100がセミスタティックに設定及び通知するデータ信号と制御情報信号との多重方法に従って多重方法を設定する。一方、データ信号が非連続帯域割当される場合、多重方法判定部112および多重方法決定部207は、データ信号と制御情報信号との多重方法を常に一意に周波数多重に設定する。これにより、データ信号が非連続帯域割当される場合、データ信号のリソース利用効率を改善することができる。
 (実施の形態6)
 非特許文献2では、データ信号と制御情報信号との多重方法(時間多重または周波数多重)の情報を、上位レイヤシグナリング(Higher Layer Signaling)により基地局から端末にセミスタティックに通知する検討がなされている。
 これに対し、各端末に割り当てられる送信帯域幅(以下「送信帯域幅」と略記する)は、端末の状況によってダイナミックに割り当てられる。そのため、送信帯域幅の情報は、基地局から端末にダイナミックに通知される。したがって、データ信号と制御情報信号との多重方法が、上位レイヤシグナリングでセミスタティックに通知される場合、多重方法の切り替えタイミングと送信帯域幅の切り替えタイミングとが異なるために、予め割り当てられた制御情報信号のリソースを用いることができるにも関わらずデータ信号のリソースを制御情報信号に消費するなど制御情報信号のリソースに無駄が生じる場合がある。
 詳細には、各端末に割り当てられる送信帯域幅(送信帯域幅)と送信電力の余裕度との間には、図27に示すような因果関係がある。図27において横軸が送信帯域幅を示し、縦軸は端末の送信電力の余裕度を示している。LTE-Advancedでは、送信帯域幅は、各端末の状況(データ送信量や受信品質など)によりダイナミックに変更される。
 図27に示すように、送信帯域幅が小さいほど送信電力の余裕度は大きく、送信帯域幅が大きいほど送信電力の余裕度は小さくなるため、送信電力の余裕度は各端末の送信帯域幅に依存する。
 このような因果関係が送信電力の余裕度と送信帯域幅との間にあるにも関わらず、送信帯域幅はダイナミックに通知され、多重方法はセミスタティックに通知される。この場合、多重方法の切り替えタイミングと送信帯域幅との切り替えタイミングとが異なり、制御情報信号のリソースに下記のような無駄が生じることがある。
 例えば、一定の損失(伝搬ロス)がある伝搬路において、ある送信帯域幅を基準として、基地局がデータ信号と制御情報信号との多重方法を時間多重と決定した場合に、基準とした送信帯域幅では時間多重が最適であるのに対し、基準とした送信帯域幅より小さい送信帯域幅では周波数多重が最適となることがある(図28参照)。そのため、基準とした送信帯域幅より小さい送信帯域幅では、周波数多重が最適であるにも関わらず、時間多重が用いられることになり、データ信号のリソースが制御情報信号に消費され、制御情報信号のリソースに無駄が生じる。
 そこで、本実施の形態では、送信電力の余裕度が送信帯域幅に依存することに着目し、送信電力の余裕度に関連する送信帯域幅に基づいて、多重方法を切り替える。
 図29は、本実施の形態に係る基地局の要部構成を示す。なお、図29の基地局500において、図5と共通の構成部分には共通の符号を付して説明を省略する。図29の基地局500は、図5の基地局100に対し、スケジューリング部111及び多重方法判定部112に代えて、スケジューリング部501及び多重方法判定部502を備える。
 スケジューリング部501は、推定部110から入力される受信品質に関連する情報(または伝搬ロス等)から送信電力の余裕度を算出し、得られた送信電力の余裕度に基づいて、複数の候補から、ある閾値を閾値Th31として選択する。この閾値Th31はセミスタティックに変更する。
 詳細には、データ信号と制御情報信号との多重方法を切り替える送信帯域幅(またはRB(Resource Block)数)の閾値として基地局と端末局で共有する複数の候補を用意しておき、その中からある閾値を選択し、選択した閾値を閾値Th31に設定する。閾値Th31は、後述する多重方法判定部502において、データ信号と制御情報信号との多重方法を切り替えるために用いられる。なお、後述するように、多重方法判定部502は、送信帯域幅が閾値Th31以上では、多重方法が時間多重であると判定し、送信帯域幅が閾値Th31未満では、多重方法が周波数多重であると判定する。
 上述したように、端末の送信電力の余裕度が大きいほど、周波数多重を用いてCMが増加しても、CMの増加量による影響が小さい。そこで、スケジューリング部501は、送信電力の余裕度が大きいほど、閾値Th31の複数の候補のうち、大きな値を閾値Th31として選択して周波数多重を選択する可能性を高める。
 一方、端末の送信電力の余裕度が小さいほど、CMの増加量による影響が大きいので、スケジューリング部501は、送信電力の余裕度が小さいほど、閾値Th31の複数の候補のうち、小さな値を閾値Th31として選択して時間多重を選択する可能性を高める。
 なお、スケジューリング部501は、送信電力の余裕度に代えて、受信品質、伝搬ロス、基地局と端末の位置関係等に応じて、複数の候補から閾値Th31を選択してもよい。具体的には、スケジューリング部501は、受信品質が良好なほど、伝搬ロスが少ないほど、または、位置が近いほど、複数の候補のうち、大きな値を閾値Th31に選択するようにしてもよい。
 また、スケジューリング部501は、推定部110から入力される受信品質に関連する情報を用いて、各端末の送信帯域を割り当てるスケジューリングを行う。このとき、データ信号の送信帯域幅が閾値Th31以上ではデータ信号と制御情報信号を時間多重し、データ信号の送信帯域幅が閾値Th31未満ではデータ信号と制御情報信号を周波数多重して、データ信号と制御情報信号のリソースをスケジューリングする。
 そして、スケジューリング部501は、選択した閾値Th31のセミスタティックに通知する情報、クラスタ数に関する情報を含む送信帯域に関するダイナミックに通知する情報(たとえば、上り回線のスケジューリング情報)を制御情報としてCRC部101及び多重方法判定部502に出力する。そして、これらの閾値Th31の情報、送信帯域に関連する情報(スケジューリング情報)は、制御情報として端末に通知される。
 なお、多重方法を切り替える複数の候補は、偶数のRB数のみ、または、奇数のRB数のみなど限定された値であってもよい。これにより、基地局500が通知するシグナリング量を軽減することができる。
 多重方法判定部502は、スケジューリング部501において選択された閾値Th31および送信帯域に関する情報を入力とし、送信帯域幅がTh31未満では多重方法を周波数多重と判定し、送信帯域幅がTh31以上では多重方法を時間多重と判定し、データ信号と制御情報信号のマッピングされているリソースを判断する。図30に、送信帯域幅、閾値Th31及び多重方法との対応を示す。
 多重方法判定部502は、判定したデータ信号と制御情報信号のマッピングされているリソースに関する情報をデマッピング部114に出力する。
 図31は、本実施の形態に係る端末の要部構成を示す。なお、図31の端末600において、図6と共通の構成部分には共通の符号を付して説明を省略する。図31の端末600は、図6の端末200に対し、誤り検出部205および多重方法決定部207に代えて、誤り検出部601および多重方法決定部602を備える。
 誤り検出部601は、復号データに対して誤り検出を実行する。誤り検出としては、例えば、CRCを用いる。そして、誤り検出部601は、誤り検出の結果として、復号誤りの有無を判定し、判定結果を制御情報生成部206に出力する。また、誤り検出部601は、復号誤りがない場合、復号データから、閾値Th31、及び、データ信号の送信方法に関する情報を抽出し、抽出した情報を多重方法決定部602および分割部212に出力し、データ信号に対する復号データを受信データとして出力する。
 多重方法決定部602は、誤り検出部601から入力された閾値Th31、及び、クラスタ数に関する情報を含む送信帯域に関する情報に基づいて、データ信号と制御情報信号との多重方法を判定する。
 先ず、多重方法決定部602は、制御情報に含まれる閾値Th31とクラスタ数に関する情報を含む送信帯域に関する情報を抽出する。ここで、閾値Th31は、データ信号と制御情報信号との多重方法を切り替える送信帯域幅の切替点を示している。
 そして、多重方法決定部602は、送信帯域に関する情報で指示される送信帯域幅がTh31未満ではデータ信号と制御情報信号との多重方法を周波数多重と決定し、送信帯域に関する情報で指示される送信帯域幅がTh31以上ではデータ信号と制御情報信号との多重方法を時間多重と決定する。
 上述したように、スケジューリング部501は、送信電力の余裕度が大きいほど、閾値Th31の複数の候補のうち、大きな値を閾値Th31として選択し、送信電力の余裕度が小さいほど、閾値Th31の複数の候補のうち、小さな値を閾値Th31として選択する。これにより、送信電力の余裕度が大きい場合には、多重方法決定部602において、多重方法が周波数多重と決定される割合が高くなり、リソースの利用効率の低下を改善することができる。また、送信電力の余裕度が小さい場合には、多重方法決定部602において、多重方法が時間多重と決定される割合が高くなり、受信品質の低下を回避することができる。
 以上のように、本実施の形態では、各端末のダイナミックに通知される送信帯域幅とセミスタティックに通知される閾値との大小関係に基づいてデータ信号と制御情報信号との多重方法を切り替えるために、データ信号と制御情報信号との多重方法を切り替える送信帯域幅として複数候補(閾値)を用意し、これらの候補の中から1つを選択してセミスタティックに通知する。
 スケジューリング部501は、送信電力の余裕度に基づいて、複数の候補から、データ信号と制御情報信号との多重方法を切り替える送信帯域幅の切替点を示す閾値Th31を選択する。具体的には、送信電力の余裕度が大きいほど、複数の候補のうち大きな値を閾値Th31として選択する。そして、多重方法判定部502および多重方法決定部602は、送信帯域幅がTh31未満ではデータ信号と制御情報信号との多重方法を周波数多重と判定/決定する。一方、送信帯域幅がTh31以上では、多重方法判定部502および多重方法決定部602は、データ信号と制御情報信号との多重方法を時間多重と判定/決定する。
 これにより、送信電力の余裕度が大きいほどCMの増加による影響が少ないため、スケジューリング部501は送信電力の余裕度が大きいほどデータ信号と制御情報信号とが時間多重となる割合を増やすことができる。一方で、送信電力の余裕度が大きいほど、閾値Th31を大きい値に設定することにより、多重方法が周波数多重となる割合が増え、リソースの利用効率の低下を改善することができる。
 また、送信電力の余裕度が小さいほど、閾値Th31を小さい値に設定することで、データ信号と制御情報信号との多重方法が時間多重となる割合を増やすことができる。この場合、時間多重を用いることでCMが低くなるため、送信電力を増加させる余地ができ、送信電力を増加させることで受信品質の低下を回避することができる。
 このように、本実施の形態では、送信電力の余裕度(または送信帯域幅)に応じて、時間多重または周波数多重を切り替えることができる。換言すると、送信電力に余裕がある場合は、周波数多重とすることによりデータ信号のリソースを有効利用でき、送信電力に余裕がない場合は時間多重とすることによりCMを低くすることができる。
 特に、従来のように送信帯域幅が狭い場合(例えば、端末がデータ信号を送信する帯域幅が1RBである場合)に時間多重を用いると、データ信号を送信するための時間リソースの大部分が制御情報信号を送信するための時間リソースに置き換えられてしまうため、データ信号のリソース利用効率が劣化する。
 しかしながら、本実施の形態では、送信電力に余裕があり、送信帯域幅が狭い場合に、周波数多重が用いられる割合が高くなる。周波数多重では制御情報信号が予め割り当てられたリソースで送信されるため、データ信号を送信するために割り当てられたリソースではデータ信号のみを送信することができ、データ信号のリソース利用効率を改善することができる。
 なお、上記では送信帯域幅を連続帯域と想定して説明したが、非連続帯域で割り当てられた帯域の合計を送信帯域幅として捉えてもよい。
 (実施の形態7)
 実施の形態6では、多重方法判定部502および多重方法決定部602は、データ信号の送信帯域幅と閾値Th31との関係がデータ信号の送信方法に関わらず一定であるとして多重方法を判定/決定する場合について説明した。本実施の形態では、データ信号の送信帯域幅と閾値Th31との関係がデータ信号の連続帯域割当と非連続帯域割当で異なる場合について説明する。
 データ信号の送信方法には、データ信号を1つのクラスタに割り当てる連続帯域割当と、データ信号を複数のクラスタに割り当てる非連続帯域割当とがある。例えば、LTE-Advancedでは、スケジューリングで1つのクラスタのみに割り当てれば連続帯域割当、複数のクラスタに割り当てれば非連続割当というように、スケジューリングごとに送信方法がダイナミックに切り替えられる。これらの連続帯域割当、非連続帯域割当では最適な多重方法の切替点が異なるため、同じ多重方法の切替点を設定すると最適な多重方法が選択されない可能性がある。
 そこで、本実施の形態では、連続帯域割当における閾値Th31に加え、閾値Th31から一意に定まる非連続帯域割当における閾値Th32[RB]を用いて、データ信号と制御情報信号との多重方法を判定/決定する。
 本実施の形態に係る基地局の要部構成は、実施の形態6と同様であるため、説明を省略する。実施の形態6とは、スケジューリング部501および多重方法判定部502での多重方法の決定方法が異なる。
 多重方法判定部502は、データ信号と制御情報信号との多重方法を切り替える閾値Th31、及び、当該閾値Th31に対応付けられた閾値Th32を用いて、データ信号と制御情報信号との多重方法が時間多重か周波数多重かを判定し、データ信号と制御情報信号がマッピングされるリソースを判断する。
 スケジューリング部501は、受信品質(または伝搬ロス等)から送信電力の余裕度を算出し、算出した送信電力の余裕度に基づいて、複数の候補からある連続帯域割当用の閾値を閾値Th31として選択する。さらに、スケジューリング部501は、非連続帯域割当用の閾値としてTh32を上記閾値Th31から求めて設定する。
 以下に、閾値Th31と閾値Th32との関係について説明する。
 [1]受信品質が低い場合
 受信品質が低い状況では、データ信号が連続帯域割当される場合、データ信号と制御情報信号とを時間多重することが好ましい。これにより、CMが低くなり、送信電力の余裕度が高くなるため、送信電力を高めることができ、受信品質を改善することができる。
 これを実現するために、連続帯域割当ではデータ信号と制御情報信号との多重方法の切替点、すなわち閾値Th31を低くし、時間多重が選択されやすくすることが好ましい。
 一方、非連続帯域割当では受信品質が低下した際に連続帯域割当に切り替えれば、CM値が低い連続帯域割当を利用することになり、送信電力余裕度が高くなる。送信電力余裕度が高くなれば、データ信号を送信する送信電力を増加させることができ、受信品質を改善できる。そのため、非連続帯域割当では時間多重が選択されやすくする必要はなく、それよりも周波数多重することでデータ信号のリソースを有効利用することが好ましい。このことより、非連続帯域割当では受信品質が低下した際に連続帯域割当に切り替えればよいため、多重方法の切替点を低くする必要はない。
 すなわち、スケジューリング部501は、推定部110から入力される受信品質に関連する情報を元にして受信品質が高いか低いかを判断する。受信品質が低い場合は、連続帯域割当での閾値Th31を非連続帯域割当での閾値Th32と比較して低い値に設定する。具体的には、スケジューリング部501は、閾値Th31を端末の状況(受信品質またはデータ送信量など)に応じて決定し、この閾値Th31を元に非連続帯域割当での閾値Th32がTh32>Th31を満たすように一意に決定される。これらの閾値Th31、Th32をデータ信号と制御情報信号との多重方法を切り替える閾値として設定する。なお、受信品質が高いか低いかに関する情報(もしくはTh32とTh31の関係に関する情報)および閾値Th31に関する情報はセミスタティックに端末局に通知される。
 図32は、受信品質が低い状況における閾値Th31、閾値Th32及び多重方法の関係を示す図である。
 なお、受信品質が低下した際に、非連続帯域割当から連続帯域割当に切り替えれば、CMを低く抑えることができ、送信電力の余裕度が高くなる。送信電力の余裕度が高くなれば、データ信号を送信する送信電力を増加させることができ、受信品質を改善できる。したがって、受信品質が低下して送信電力の余裕度がない場合に、周波数多重から時間多重に切り替えることにより送信電余裕度を改善することを全く想定せず、非連続帯域割当から連続帯域割当に切り替えることにより送信電力の余裕度を改善するならば、非連続帯域割当では、時間多重を想定する必要がない。すなわち、非連続帯域割当では、受信品質が低下した際に、連続帯域割当に切り替えればよいため、多重方法の切替点を低くする必要がない。つまり、非連続帯域割当で送信電力に余裕がない場合には、多重方法を常に連続帯域割当に切り替えることを想定して、多重方法を切り替える閾値Th32を無限大としてもよい。
 すなわち、連続帯域割当では送信帯域幅がTh31未満では周波数多重とし、送信帯域幅がTh31以上では時間多重とし、非連続帯域割当では常に周波数多重とする。図33に、この場合の閾値Th31、閾値Th32(無限大)及び多重方法との関係を示す。
 [2]受信品質が高い場合
 受信品質が高い状況では、受信品質の改善よりスループットが重視されるため、データ信号が連続帯域割当される場合においても、データ信号と制御情報信号とを周波数多重することがよい。周波数多重により制御情報信号を予め決められた制御情報リソースに割り当てることができ、データ信号のリソースを制御情報信号に対し割り当てる必要がなくなるため、データ信号のリソースを有効利用でき、スループットを改善することができる。これを実現するためには、連続帯域割当ではデータ信号と制御情報信号との多重方法の切替点、すなわち閾値Th31を高くして、周波数多重が選択されやすくすることが好ましい。
 なお、非連続帯域割当の場合も、連続帯域割当の場合と同様に、切替点を高くしてよいが、非連続帯域割当では、連続帯域割当よりもCMが大きい。そのため、同一送信帯域幅では、連続帯域割当に比べ非連続帯域割当での送信電力の余裕度が低い。そこで、受信品質が高い状況で、データ信号が非連続帯域割当られる場合には、閾値Th31より小さい閾値Th32を切替点に用いることにする。これにより、非連続帯域割当において、周波数多重が選択されにくくなるため、CMの劣化を抑えることができる。
 すなわち、スケジューリング部501は、推定部110から入力される受信品質に関連する情報を元にして受信品質が高いか低いかを判断する。受信品質が高い場合は、連続帯域割当での閾値Th31を非連続帯域割当での閾値Th32と比較して高い値に設定する。具体的には、スケジューリング部501は、閾値Th31を端末の状況(受信品質またはデータ送信量など)に応じて決定し、この閾値Th31を元に非連続帯域割当での閾値Th32がTh32<Th31を満たすように一意に決定される。これらの閾値Th31、Th32をデータ信号と制御情報信号との多重方法を切り替える閾値として設定する。なお、受信品質が高いか低いかに関する情報(もしくはTh32とTh31の関係に関する情報)および閾値Th31に関する情報はセミスタティックに端末局に通知される。
 図34は、受信品質が高い状況における閾値Th31、閾値Th32及び多重方法の関係を示す図である。
 このようにして、スケジューリング部501は、送信帯域幅および受信品質に基づいて閾値Th31を設定し、設定した閾値Th31及び受信品質に基づいて、閾値Th32を設定する。
 上記スケジューリング部501の動作を整理すると、スケジューリング部501は、推定部110から入力される受信品質に関連する情報を用いて、データ信号と制御情報信号との多重方法を切り替える閾値(Th31、Th32)の設定、および、各端末の送信帯域を割り当てるスケジューリングを行う。このとき、データ信号の連続帯域割当で送信帯域幅が閾値Th31以上ではデータ信号と制御情報信号とを時間多重し、データ信号の送信帯域幅が閾値Th31未満ではデータ信号と制御情報信号とを周波数多重して、スケジューリング部501は、データ信号と制御情報信号をスケジューリングする。データ信号の非連続帯域割当で送信帯域幅が閾値Th32以上ではデータ信号と制御情報信号を時間多重し、データ信号の送信帯域幅が閾値Th32未満ではデータ信号と制御情報信号を周波数多重して、スケジューリング部501は、データ信号と制御情報信号をスケジューリングする。
 そして、スケジューリング部501は、ここで設定した閾値Th31の情報(およびTh31とTh32の関係に関する情報)、送信帯域や送信方法に関する情報(たとえばスケジューリング情報)をCRC部101に出力し、閾値Th31および閾値Th31から決まる閾値Th32の情報、送信帯域や送信方法に関する情報(たとえばスケジューリング情報)を多重方法判定部502に出力する。
 また、多重方法判定部502は、データ信号が連続帯域割当される場合、送信帯域幅がTh31未満では、多重方法を周波数多重と判定し、送信帯域幅がTh31以上では多重方法を時間多重と判定する。一方、データ信号が非連続帯域割当される場合、多重方法判定部502は、送信帯域幅がTh32未満では多重方法を周波数多重と判定し、送信帯域幅がTh32以上では多重方法を時間多重と判定してデータ信号と制御情報信号のマッピングされるリソースを判定する。
 本実施の形態に係る端末の要部構成は、実施の形態6と同様であるため、説明を省略する。実施の形態6とは、誤り検出部601および多重方法決定部602での多重方法の決定方法が異なる。
 誤り検出部601は、復号データに対して誤り検出を実行する。誤り検出としては、例えば、CRCを用いる。そして、誤り検出部601は、誤り検出の結果として、復号誤りの有無を判定し、判定結果を制御情報生成部206に出力する。また、誤り検出部601は、復号誤りがない場合、復号データから、閾値Th31(およびTh31とTh32の関係に関する情報)、データ信号の送信帯域や送信方法に関する情報を抽出するとともに、閾値Th31から閾値Th32に関する情報を生成し、これらの情報を多重方法決定部602および分割部212に出力し、データ信号に対する復号データを受信データとして出力する。
 多重方法決定部602は、誤り検出部601から入力される送信帯域幅や送信方法に関する情報、切り替えの閾値Th31に関する情報、および、閾値Th31(およびTh31とTh32の関係に関する情報)から一意に求まる切り替えの閾値Th32を用いて、データ信号と制御情報信号との多重方法を時間多重か周波数多重かを決定する。
 具体的には、多重方法決定部602は、データ信号が連続帯域割当される場合、送信帯域幅がTh31未満では、多重方法を周波数多重に決定し、送信帯域幅がTh31以上では、多重方法を時間多重に決定する。一方、データ信号が非連続帯域割当される場合、多重方法決定部602は、送信帯域幅がTh32未満では、多重方法を周波数多重に決定し、送信帯域幅がTh32以上では、多重方法を時間多重に決定する。
 なお、閾値Th31と閾値Th32との関係は、基地局500と端末600とで共有しているものとする。
 以上のように、本実施の形態では、受信品質が低い範囲では、連続帯域割当での閾値Th31を非連続帯域割当での閾値Th32より低い値に設定する。これにより、時間多重が用いられる割合が高まり、受信品質を改善することができる。さらに、スケジューリング部501は、非連続帯域割当の場合の切替点である閾値Th32を、Th31<Th32を満たすように設定する。これにより、非連続帯域割当においても、送信帯域幅が同一の連続帯域割当と同程度の受信品質を得ることができるようになる。
 また、受信品質が高い範囲では、連続帯域割当での閾値Th31を非連続帯域割当での閾値Th32より高い値に設定する。これにより、周波数多重が用いられる割合が高まり、データ信号のリソース利用効率を改善することができる。さらに、スケジューリング部501は、非連続帯域割当の場合の切替点である閾値Th32を、Th31>Th32を満たすように設定する。これにより、非連続帯域割当において、周波数多重が選択されにくくなるため、CMの劣化を抑えることができる。
 なお、受信品質が高い範囲と低い範囲で説明したが、これに限定せず、受信品質と異なるもので切り替えてもよいし、受信品質が高い範囲の方法のみ、受信品質が低い範囲の方法のみのどちらか一方のみを利用してもよい。
 なお、スケジューリング部501は、データ信号と制御情報信号との多重方法を切り替える閾値Th31を、セミスタティックに設定する。そのため、伝搬路の時変動により、次回更新までの間に、設定した閾値Th31が最適な閾値でなくなる場合がある。この結果、受信品質が極端に劣化し、時間多重が適するにも関わらず、設定時と同じ周波数多重を用いることになり、データ信号の誤り率が増加する場合がある。そこで、伝搬路の時変動が激しい場合には、受信品質が極端に劣化する場合を想定して、データ信号と制御情報信号との多重方法として、図32を用いて説明した時間多重が選択されやすい方法を用いることにより、受信品質を重視することが好ましい。
 また、以上の説明では、基地局500および端末600が、閾値Th31と閾値Th32との関係を共有し、基地局500および端末600は、閾値Th32を閾値Th31から一意に設定するとして説明したが、基地局500が設定した閾値Th32をシグナリングにより端末600に通知するようにしてもよい。
 なお、本発明は、データ信号が連続帯域割当されるか非連続帯域割当されるかに応じて、データ信号と制御情報信号との多重方法を変更する技術に適用可能である。さらには、データ信号のクラスタ数に応じてデータ信号と制御情報信号との多重方法を変更する技術に適用可能である。
 また、上記実施の形態ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。
 アンテナポートとは、1本または複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。
 例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2008年10月30日出願の特願2008-280340及び2009年8月7日出願の特願2009-184702に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明にかかる無線通信装置および無線通信方法は、シングルキャリア送信およびマルチクラスタ送信が混在する無線通信システムにおいて、送信信号のCMの増加を抑えつつ、データリソース利用効率を改善することができ、例えば、LTE-Advancedにおける無線通信端末および無線通信装置等として有用である。
 100,500 基地局装置
 101,208 CRC部
 102,209 符号化部
 103,210 変調部
 104,216 送信RF部
 105,201 アンテナ
 106,202 受信RF部
 107 分離部
 108,113,211 DFT部
 109,114 デマッピング部
 110 推定部
 111,501 スケジューリング部
 112,502 多重方法判定部
 115 周波数領域等化部
 116 結合部
 117,214 IFFT部
 118,203 復調部
 119,204 復号部
 120,205,601 誤り検出部
 200,300,300a,400,600 端末装置
 206 制御情報生成部
 207,301,301a,401,602 多重方法決定部
 212,303,303a 分割部
 213 割当部
 215 多重化部
 302,402 符号化・変調部
 304 合成部
 403 プリコーディング部

Claims (14)

  1.  シングルキャリア送信とマルチクラスタ送信とが混在する無線通信システムに適用される送信側の無線通信装置であって、
     データ信号の送信に用いられるキャリア群の数に基づいて、前記データ信号と、制御情報信号との多重方法を決定する決定手段と、
     前記多重方法に基づいて、前記データ信号と、前記制御情報信号とを多重して多重信号を生成する多重手段と、
     前記多重信号を受信側の無線通信装置へ送信する送信手段と、
     を具備する送信側の無線通信装置。
  2.  前記決定手段は、
     前記制御情報信号を第1制御情報信号と第2の制御情報信号とに分割し、前記データ信号と前記第1制御情報信号との前記多重方法を時間多重とし、前記データ信号と前記第2の制御情報信号との前記多重方法を周波数多重とし、
     前記キャリア群の数が大きいほど、前記第1制御情報信号に対する前記第2の制御情報信号の割合を大きくする、
     請求項1に記載の送信側の無線通信装置。
  3.  前記決定手段は、
     前記キャリア群の数が第1の閾値未満の場合、前記多重方法を時間多重とし、前記キャリア群の数が前記第1の閾値以上の場合、前記多重方法を周波数多重とする、
     請求項1に記載の送信側の無線通信装置。
  4.  前記決定手段は、
     前記キャリア群の数が第1の閾値以上の場合、前記多重方法を周波数多重とし、
     前記キャリア群の数が前記第1の閾値未満で、かつ、送信電力の余裕度が第2の閾値未満の場合、前記多重方法を時間多重とし、
     前記キャリア群の数が前記第1の閾値未満で、かつ、前記送信電力の余裕度が前記第2の閾値以上の場合、前記多重方法を周波数多重とする、
     請求項1に記載の送信側の無線通信装置。
  5.  前記送信電力の余裕度は、PHRまたは回線品質である、
     請求項4に記載の送信側の無線通信装置。
  6.  前記第2の閾値は、前記キャリア群の数が大きいほど小さい、
     請求項5に記載の送信側の無線通信装置。
  7.  前記キャリア群の数は、前記マルチクラスタ送信におけるクラスタ数である、
     請求項1に記載の送信側の無線通信装置。
  8.  前記キャリア群の数は、前記無線通信システムにおけるコンポーネントキャリア数である、
     請求項1に記載の送信側の無線通信装置。
  9.  シングルキャリア送信とマルチクラスタ送信とが混在する無線通信システムに適用される受信側の無線通信装置であって、
     データ信号の送信に用いられるキャリア群の数に基づいて、前記データ信号と、制御情報信号との多重方法を判定する判定手段と、
     前記キャリア群の数の情報を送信側の無線通信装置に通知する通知手段と、
     を具備する受信側の無線通信装置。
  10.  前記制御情報信号は、第1制御情報信号と第2の制御情報信号とに分割され、前記第1制御情報信号は、前記データ信号と時間多重され、前記第2の制御情報信号は、前記データ信号と周波数多重され、
     前記判定手段は、
     前記キャリア群の数が大きいほど、前記第1制御情報信号に対する前記第2制御情報信号の割合が大きいと判定する、
     請求項9に記載の受信側の無線通信装置。
  11.  前記判定手段は、
     前記キャリア群の数が第1の閾値未満の場合、前記多重方法を時間多重とし、前記キャリア群の数が前記第1の閾値以上の場合、前記多重方法を周波数多重とする、
     請求項9に記載の受信側の無線通信装置。
  12.  前記判定手段は、
     前記キャリア群の数が第1の閾値未満の場合、前記多重方法を時間多重とし、
     前記キャリア群の数が前記第1の閾値未満で、かつ、送信電力の余裕度が第2の閾値未満の場合、前記多重方法を時間多重とし、
     前記キャリア群の数が前記第1の閾値未満で、かつ、前記送信電力の余裕度が前記第2の閾値以上の場合、前記多重方法を周波数多重とする、
     請求項9に記載の受信側の無線通信装置。
  13.  前記送信電力の余裕度は、PHRまたは回線品質である、
     請求項12に記載の受信側の無線通信装置。
  14.  シングルキャリア送信とマルチクラスタ送信とが混在する無線通信システムに適用される無線通信方法であって、
     データ信号の送信に用いられるキャリア群の数に基づいて、前記データ信号と、制御情報信号との多重方法を決定し、
     前記多重方法に基づいて、前記データ信号と、前記制御情報信号とを多重して多重信号を生成し、
     前記多重信号を受信側の無線通信装置へ送信する、
     無線通信方法。
     
PCT/JP2009/005751 2008-10-30 2009-10-29 無線通信装置および無線通信方法 WO2010050221A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/126,366 US8654692B2 (en) 2008-10-30 2009-10-29 Wireless communication apparatus and wireless communication method
JP2010535680A JP5361902B2 (ja) 2008-10-30 2009-10-29 無線通信装置および無線通信方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008280340 2008-10-30
JP2008-280340 2008-10-30
JP2009-184702 2009-08-07
JP2009184702 2009-08-07

Publications (1)

Publication Number Publication Date
WO2010050221A1 true WO2010050221A1 (ja) 2010-05-06

Family

ID=42128592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005751 WO2010050221A1 (ja) 2008-10-30 2009-10-29 無線通信装置および無線通信方法

Country Status (3)

Country Link
US (1) US8654692B2 (ja)
JP (1) JP5361902B2 (ja)
WO (1) WO2010050221A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032726A1 (ja) * 2010-09-07 2012-03-15 パナソニック株式会社 基地局、端末、送信方法、及び受信方法
WO2013061992A1 (ja) * 2011-10-27 2013-05-02 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
JP2017509213A (ja) * 2014-01-22 2017-03-30 華為技術有限公司Huawei Technologies Co.,Ltd. 情報処理装置、ネットワークノード、および情報処理方法
JP2017529738A (ja) * 2014-07-31 2017-10-05 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無認可無線周波数スペクトル帯域を通じたアップリンク制御チャネルの送信

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948154B2 (en) * 2010-02-10 2015-02-03 Qualcomm Incorporated Method and apparatus for sending and receiving a low-complexity transmission in a wireless communication system
JP2013143575A (ja) * 2012-01-06 2013-07-22 Fujitsu Mobile Communications Ltd 無線通信端末装置及び無線通信端末装置制御方法
US9497747B2 (en) 2012-06-22 2016-11-15 Qualcomm Incorporated Data transmission in carrier aggregation with different carrier configurations
EP3143819B1 (en) * 2014-05-15 2020-10-07 Telefonaktiebolaget LM Ericsson (publ) Assignment of component carriers in dual connectivity operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529527A (ja) * 2001-01-19 2004-09-24 ブロードストーム テレコミュニケーションズ, インコーポレイテッド 時分割多重化およびキャリア選択ローディングを伴うマルチキャリア通信
JP2007036627A (ja) * 2005-07-26 2007-02-08 Sharp Corp 制御情報グループ化制御装置、制御情報通知制御装置、無線機、およびマルチキャリア無線通信システムおよび制御情報グループ化制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065609B2 (ja) * 2006-03-20 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動局および伝搬路測定用信号の送信制御方法
KR101220560B1 (ko) * 2006-03-24 2013-01-18 삼성전자주식회사 동기식 고속 패킷 데이터 서비스와 직교 주파수 분할 다중시스템을 동시에 지원하는 이동통신시스템에서 제어채널을효율적으로 운용하는 송수신 장치 및 방법
JP2008017195A (ja) * 2006-07-06 2008-01-24 Sharp Corp マルチバンド無線通信システム、移動局装置およびランダムアクセス方法
WO2009150177A2 (en) * 2008-06-11 2009-12-17 Nokia Siemens Networks Oy Local area optimized uplink control channel
EP2316246A2 (en) * 2008-08-15 2011-05-04 Nokia Siemens Networks OY Backward compatible physical uplink control channel resource mapping
KR101587680B1 (ko) * 2008-10-20 2016-01-21 인터디지탈 패튼 홀딩스, 인크 반송파 집적 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529527A (ja) * 2001-01-19 2004-09-24 ブロードストーム テレコミュニケーションズ, インコーポレイテッド 時分割多重化およびキャリア選択ローディングを伴うマルチキャリア通信
JP2007036627A (ja) * 2005-07-26 2007-02-08 Sharp Corp 制御情報グループ化制御装置、制御情報通知制御装置、無線機、およびマルチキャリア無線通信システムおよび制御情報グループ化制御方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10743300B2 (en) 2010-09-07 2020-08-11 Sun Patent Trust Communication apparatus and communication reception method
CN103081386A (zh) * 2010-09-07 2013-05-01 松下电器产业株式会社 基站、终端、发送方法及接收方法
US9119196B2 (en) 2010-09-07 2015-08-25 Panasonic Intellectual Property Corporation Of America Base station, terminal, transmission method, and reception method
CN103081386B (zh) * 2010-09-07 2015-11-25 松下电器(美国)知识产权公司 一种基站和终端
US9596678B2 (en) 2010-09-07 2017-03-14 Sun Patent Trust Communication apparatus and communication reception method
US11871432B2 (en) 2010-09-07 2024-01-09 Sun Patent Trust Communication apparatus and communication reception method
US11490377B2 (en) 2010-09-07 2022-11-01 Sun Patent Trust Communication apparatus and communication reception method
WO2012032726A1 (ja) * 2010-09-07 2012-03-15 パナソニック株式会社 基地局、端末、送信方法、及び受信方法
US10117237B2 (en) 2010-09-07 2018-10-30 Sun Patent Trust Communication apparatus and communication reception method
WO2013061992A1 (ja) * 2011-10-27 2013-05-02 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
US9912508B2 (en) 2014-01-22 2018-03-06 Huawei Technologies Co., Ltd. Information processing apparatus, network node, and information processing method
JP2017509213A (ja) * 2014-01-22 2017-03-30 華為技術有限公司Huawei Technologies Co.,Ltd. 情報処理装置、ネットワークノード、および情報処理方法
US10673596B2 (en) 2014-07-31 2020-06-02 Qualcomm Incorporated Transmission of uplink control channels over an unlicensed radio frequency spectrum band
US10728008B2 (en) 2014-07-31 2020-07-28 Qualcomm Incorporated Transmission of uplink control channels over an unlicensed radio frequency spectrum band
JP2020039141A (ja) * 2014-07-31 2020-03-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無認可無線周波数スペクトル帯域を通じたアップリンク制御チャネルの送信
JP2017529738A (ja) * 2014-07-31 2017-10-05 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無認可無線周波数スペクトル帯域を通じたアップリンク制御チャネルの送信

Also Published As

Publication number Publication date
JPWO2010050221A1 (ja) 2012-03-29
US8654692B2 (en) 2014-02-18
JP5361902B2 (ja) 2013-12-04
US20110205973A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
US10925043B2 (en) Multiplexing large payloads of control information from user equipments
JP6456514B2 (ja) 基地局、端末、受信方法及び送信方法
US11689986B2 (en) Terminal and communication method thereof
JP5361902B2 (ja) 無線通信装置および無線通信方法
JP5767740B2 (ja) 通信装置、制御情報受信方法、及び集積回路
US8824396B2 (en) Overhead reduction for multi-carrier transmission systems
CN111133812A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2010146867A1 (ja) 無線送信装置及び送信電力制御方法
JP6153014B6 (ja) 基地局装置、通信方法及び集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823334

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535680

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13126366

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823334

Country of ref document: EP

Kind code of ref document: A1