WO2010049900A1 - Nanoparticules de statine - Google Patents

Nanoparticules de statine Download PDF

Info

Publication number
WO2010049900A1
WO2010049900A1 PCT/IB2009/054781 IB2009054781W WO2010049900A1 WO 2010049900 A1 WO2010049900 A1 WO 2010049900A1 IB 2009054781 W IB2009054781 W IB 2009054781W WO 2010049900 A1 WO2010049900 A1 WO 2010049900A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
nanoparticles
statin
formula
alkyl
Prior art date
Application number
PCT/IB2009/054781
Other languages
English (en)
Inventor
Patrick Couvreur
Didier Desmaele
Fatima Zouhiri
Harivardhan Reddy Lakkireddy
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to CA2742181A priority Critical patent/CA2742181A1/fr
Priority to US13/126,752 priority patent/US8748414B2/en
Priority to JP2011533903A priority patent/JP2012507503A/ja
Priority to EP09759783A priority patent/EP2355801A1/fr
Publication of WO2010049900A1 publication Critical patent/WO2010049900A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/26All rings being cycloaliphatic the ring system containing ten carbon atoms
    • C07C2602/28Hydrogenated naphthalenes

Definitions

  • the present invention aims at providing novel statin derivatives, in particular in a water-dispersible nanoparticulate form, compositions containing them and their therapeutic uses.
  • Statins belong to the therapeutic class of cholesterol-lowering drugs.
  • they lower LDL-cholesterol (for "Low Density Lipoprotein Cholesterol") and are particularly useful for treating or preventing certain cardiovascular diseases (Journal of the American Medical Association, 251, No.3, 351-374). (1984)).
  • LDL-cholesterol for "Low Density Lipoprotein Cholesterol”
  • LDL-cholesterol represents the type of lipids most responsible for the formation of atheroma plaques.
  • statins decrease the biosynthesis of cholesterol in the liver by inhibiting the enzyme HMG-CoA reductase which controls the limiting step in mevalonic cholesterol synthesis by transforming 3-hydroxy-3-methylglutaryl-coenzyme A in mevalonic acid, a precursor of sterols.
  • HMG-CoA reductase which controls the limiting step in mevalonic cholesterol synthesis by transforming 3-hydroxy-3-methylglutaryl-coenzyme A in mevalonic acid, a precursor of sterols.
  • statins is prescribed if LDL-cholesterol levels exceed 2.4 mmol / l in coronary patients.
  • statins can lower by 20 to 50%, the total cholesterol concentration, by 25 to 60%, the concentration of LDL cholesterol and by 15 to 30%, the concentration of triglycerides.
  • statins are often heavy and may for example manifest as hypersensitivity to one of the constituents of the drug, myopathy, which can sometimes lead to severe renal failure, progressive liver disease and / or or a prolonged elevation of transaminases (Armitage J., Lancet 2007; 370: 1781-1790). These effects are notably due to inadequate tissue and / or cell distribution. It is therefore necessary to adjust at best the dose and the mode of administration of the statins.
  • improving the bioavailability of active ingredients, intended to be administered orally is a major concern for galenists.
  • statins molecules
  • lipophilic poses real problems, due mainly to their low solubility in aqueous liquid pharmaceutical excipients, their propensity to precipitate or recrystallize in aqueous solution and their low solubility in liquids. gastrointestinal tract from which they must be absorbed.
  • bioavailability of an active ingredient is furthermore a function of its concentration in the gastrointestinal fluid, which itself depends on the release of the active ingredient.
  • concentration in the gastrointestinal fluid which itself depends on the release of the active ingredient.
  • the more lipophilic an active ingredient the less it tends to migrate into the digestive fluids.
  • the digestion of the oily ingredients of this type of formulation often has the advantage of solubilizing the active ingredient in mixed micelles consisting of bile salts and triglyceride lipolysis products of the digestible oil used.
  • the presence of surfactants can inhibit lipolysis, which requires the prior in vitro evaluation of the digestibility of the oils of a given formulation.
  • the present invention aims precisely to overcome the aforementioned drawbacks and to provide formulations adapted to statins.
  • the present invention relates to a complex formed of at least one statin molecule or derivative, covalently coupled to at least one hydrocarbon radical comprising at least 18 carbon atoms and containing at least one unit represented by the following formula:
  • the invention provides a complex as defined above, in which the hydrocarbon compound comprises from 18 to 40 carbon atoms, preferably from 18 to 32 carbon atoms.
  • the two entities forming the complex defined above are coupled by a covalent bond of the ester, ether, thioether, disulfide, phosphate or amide type and preferably ester.
  • Another object of the present invention is nanoparticles of a complex as described above.
  • the formulation of the therapeutic active agents considered according to the present invention in the form of nanoparticles according to the present invention constitutes an advantageous alternative with regard to already existing formulations, for several reasons.
  • the nanoparticulate state of the statins advantageously makes it possible to improve the tissue and / or cell distribution, making it possible in particular to overcome the side effects of statins and thus to adapt the modes and doses of administration as well as possible.
  • the average size of these nanoparticles varies from 30 to
  • 500 nm in particular 50 to 250 nm, or even 100 to 400 nm.
  • the present invention also relates to a process for the preparation of said nanoparticles comprising at least the dispersion of the complex according to the present invention, in at least one organic solvent, at a concentration which is sufficient, when the resulting mixture is added, to stir, to an aqueous phase, the instantaneous formation of nanoparticles of said complex in suspension in said aqueous phase, and, where appropriate, the isolation of said nanoparticles.
  • said method may further comprise a lyophilization step, particularly suitable for accessing solid forming.
  • a lyophilization step particularly suitable for accessing solid forming.
  • the present invention further relates to a lyophilizate comprising at least one complex and / or at least nanoparticles as described above.
  • the present invention aims at a complex and / or nanoparticles as defined above, optionally in the form of a lyophilizate as defined above, for the preparation of a pharmaceutical composition intended for the treatment and / or the prevention of hyperlipemia, hypercholesterolemia, and in particular for the treatment and / or prevention of cardiovascular diseases, obesity, dyslipidemia and / or the prevention of a cardio vascular accident e.
  • the subject of the present invention is a complex and / or nanoparticles, optionally in the form of a lyophilizate, as defined according to the present invention, for the treatment and / or prevention of hyperlipemia, hypercholesterolemia, and in particular for the treatment and / or prevention of cardiovascular disease, obesity, dyslipidemia and / or the prevention of a cardiovascular event.
  • cardiovascular diseases atherosclerosis (atheroma plaques), cerebral or stroke attacks or cardiac (infarction), arteritis of the lower limbs, coronary diseases such as angina (or angina of chest) or heart attacks such as myocardial infarction, ischemia, thromboses and thromboembolic diseases, diseases of the vessels, such as aneurysms, arteriopathy obliterans of the lower limbs, acute aortic dissection, pulmonary arterial hypertension, thromboembolic diseases, heart attacks, congenital heart disease.
  • Hypercholesterolemia usually results from disruption of cholesterol biosynthesis and / or is due to abnormal circulating cholesterol levels.
  • statins are also useful as adjuvants of current cancer therapies.
  • the subject of the present invention is also the complexes and / or nanoparticles according to the invention, optionally in the form of a lyophilisate, for the treatment and / or prevention of cancers, in particular of the lung, prostate, breast, pancreas , esophagus or colon or as adjuncts to current cancer therapies.
  • the present invention also extends to a pharmaceutical composition, in particular a medicament, comprising at least one complex and / or nanoparticles, said complexes and / or nanoparticles being optionally in the form of a lyophilizate, as described above, in association with at least one pharmaceutically acceptable carrier.
  • the present invention also relates to said composition for use as a medicament for the treatment and / or prevention of the aforementioned diseases and / or disorders.
  • a composition may be particularly useful as a medicament for the treatment and / or prevention of the aforementioned diseases and disorders in so-called "at risk" patients, that is to say in patients having a high blood pressure and with other cardiovascular risk factors such as smoking, overweight, a family history of heart disease or diabetes, including type II diabetes In fact, the presence of such risk factors in a patient increases his risk of occurrence cardiovascular events.
  • a compound or radical with a squalene or squalenoyl structure is a compound or radical comprising at least one 2-methyl-buta-2-ene unit, as defined above.
  • a compound or hydrocarbon radical with squalene or squalenoyl structure comprises at least 18 carbon atoms and containing at least one 2-methyl-buta-2-ene unit, like a squalene radical.
  • the term “compound” or “radical” with a squalene or squalenoyl structure is used as the case may be.
  • the term “compound” is more specifically intended to define a compound with a squalene or squalenoyl structure, which, when reacted with an active molecule, forms a complex, whereas the term “radical” defines more precisely the squalene or squalenoyl of the complex formed.
  • a hydrocarbon radical with a squalene structure may be represented by the following formula (I):
  • - mi 1, 2, 3, 4, 5 or 6;
  • n 2 0, 1, 2, 3, 4, 5 or 6; and represents the binding to the statin molecule or derivative, it being understood that when m 2 is 0, then mi is at least 2.
  • this compound or one of its derivatives can be represented by the compound of formula (Ibis):
  • Y represents a hydrogen atom or a group -L 2 -X 'in which X' represents a function of alcohol, carboxylic acid, thiol, phosphate, amine, carboxamide or ketone type and L 2 represents a single covalent bond or a group C 1 -C 4 alkylene; and mi and m 2 are as defined for the radical of formula (I).
  • the hydrocarbon radical comprises at least 18 carbon atoms, in particular from 18 to 40 carbon atoms and preferably from 18 to 32 carbon atoms.
  • a compound useful for the formation of a complex according to the present invention is squalene (also called spiracene or sirprene), which is an essential intermediate of cholesterol biosynthesis. Chemically, it is also called (E) 2, 6, 10, 15, 19, 23-Hexamethyl-2, 6, 10, 14, 18, 22-tetracosahexene) of the following formula:
  • mi 2, 3, 4, 5 or 6.
  • hydrocarbon compounds capable of forming a complex according to the present invention mention may be made more particularly of squalene acid and its derivatives such as 1, 1 ', 2-tris-norsqualenic acid, 1, 1', 2-tris-norsqualenamine, 1,1 ', 2-tris-norsqualenol, 1,1', 2-tris-norsqualethiol, squalenacetic acid, squalenylethanol, squalenylethanethiol, squalenylethylamine
  • a complex according to the present invention comprises at least one hydrocarbon radical represented by a radical of formula (I) as defined above.
  • a complex according to the present invention may contain at least one radical derived from a molecule of 1, Y, 2-tris-norsqualenic acid.
  • a complex according to the present invention comprises at least two hydrocarbon radicals as defined according to the present invention and in particular, represented by the compound of formula (I) above.
  • a hydrocarbon compound as defined above spontaneously shows, when it is placed in the presence of a polar medium and more particularly water, a compacted conformation.
  • statin molecule can indeed be only partially or totally in the compacted state in the nanoparticles formed.
  • At least one hydrocarbon radical mentioned above is covalently bound to a statin molecule.
  • the number of hydrocarbon derivative molecules capable of interacting with said molecule may be greater than 1.
  • statins or derivatives have in common a 4-hydroxy-6-oxo-2H-pyran system, which can also be in dihydroxy acid form which interacts with the active site of the HMG-CoA reductase enzyme involved in the synthesis of cholesterol and a lipophilic moiety presenting itself in particular as a polysubstituted hexahydronaphthalenic system but may also be replaced by a polysubstituted heteroaromatic system as in atorvastatin or fluvastatin.
  • statins are: simvastatin, lovastatin, pravastatin, atorvastatin, fluvastatin and rosuvastatin.
  • statins are generally of a lipophilic nature (WO 02/053131).
  • the lipophilicity of an active principle can be determined according to its partition coefficient (P) between octanol and water, which corresponds to the ratio of concentration of the active ingredient in octanol (C oct ) / concentration of the active principle in water (CEau).
  • statin or derivative is understood to mean a compound represented by the formula (IIa), (Hb) or (IIc) which follows:
  • Ra represents an aryl group, heteroaryl, optionally substituted with one or more group (s) R;
  • - R independently represents a hydroxyl group, a Ci-C 6 alkyl
  • Ci-C 6 an -0-C (O) Ci-C 6 alkyl, phenyl, -NRiR 2 group, a -C (O) NRiR 2, -C (O) OR3, said alkyl and phenyl groups being optionally substituted with one or more halogen atoms or with one or more hydroxyl groups;
  • R 1 and R 2 represent, independently of one another, a hydrogen atom, a C 1 -C 6 alkyl group, -SO 2 -C 1 -C 6 alkyl, a phenyl, said groups C 1 -C 6 alkyl and phenyl being optionally substituted with one or more halogen atoms or with one or more hydroxyl groups;
  • R3 represents a hydrogen atom, a Ci-C 6 alkyl optionally substituted by one or more halogen atoms or by one or more hydroxyl groups.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • a hydroxyl group an -OH group
  • an alkyl a saturated, linear or branched aliphatic group.
  • alkoxy an -O-alkyl radical where the alkyl group is as defined previously, for example methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert -butoxy;
  • an aryl group an aromatic group which may be partially unsaturated monocyclic or bicyclic comprising from 6 to 10 carbon atoms.
  • a unicycle mention may be made of phenyl.
  • naphthyl By way of example of a bicycle, there may be mentioned naphthyl, said naphthyl may be partially unsaturated, such as 1,2,6,7,8,8a-hexahydronaphthyl;
  • a heteroaryl group a said aryl group further comprising at least one heteroatom selected from nitrogen, sulfur or oxygen.
  • a monocycle mention may be made of furanyl, thiophenyl, thienyl, pyrrolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, thiadiazolyl, pyridinyl, pyrimidyl and pyrazinyl.
  • the compounds of general formula (IIa), (Hb) or (IIc) may comprise one or more asymmetric carbons. They can therefore exist as enantiomers or diastereoisomers. These enantiomers, diastereoisomers, as well as their mixtures, including the racemic mixtures, form part of the invention.
  • the compounds of the aforementioned formulas may exist in the form of bases or addition salts with acids. Such addition salts are part of the invention.
  • salts are advantageously prepared with pharmaceutically acceptable acids, but the salts of other acids that are useful, for example, for the purification or the separation of the compounds of the abovementioned formulas also form part of the invention.
  • the compounds of general formula (IIa), (Hb) or (IIc) may, in addition, be in the form of hydrates or solvates, namely in the form of associations or combinations with one or more water molecules or with a solvent. Such hydrates and solvates are also part of the invention.
  • statins of formula (IIa) that are suitable for the present invention, mention may be made, for example, of pravastatin and atorvastatin.
  • statins of formula (Hb) that are suitable for the present invention, mention may be made, for example, of simvastatin and lovastatin.
  • statins of formula (IIc) that are suitable for the present invention, mention may be made, for example, of fluvastatin and rosuvastatin.
  • a statin particularly suitable for the implementation of the present invention is represented by a compound of formula (IIa).
  • simvastatin simvastatin, lovastatin, pravastatin, atorvastatin, fluvastatin or rosuvastatin, and most particularly pravastatin.
  • the conjugation of a molecule of statin with a hydrocarbon derivative according to the invention, and more particularly with 1,1 ', 2-tris-norsqualenol, confers on the molecule of statin physico-chemical characteristics which are sufficient to confer on it ability to form particles by nanoprecipitation, particles whose size is compatible with any mode of administration, in particular intravenous and oral.
  • such conjugation leads to the formation of a complex or conjugate statin / hydrocarbon radical according to the present invention, that is to say an entity comprising a radical derived from a molecule of statin, bound covalently, to a hydrocarbon radical as defined above.
  • a complex or conjugate statin / hydrocarbon radical that is to say an entity comprising a radical derived from a molecule of statin, bound covalently, to a hydrocarbon radical as defined above.
  • the terms “complex” or “conjugate” will thus be used indifferently to designate such an entity.
  • the present invention relates to a complex characterized in that it has the ability to spontaneously organize in the state of nanoparticles when in the presence of an aqueous medium.
  • statin / hydrocarbon radical complex requires that the two entities of the complex carry functions capable of forming a covalent bond and / or a linker, as defined below. These functions may or may not be present on the two starting entities. In the negative, the 171st entity (s) of departure will have to undergo a modification, prior to the coupling reaction.
  • the hydrocarbon compound according to the invention is generally carrying a function capable of reacting with a function present on the molecule of said statin, so as to establish a covalent bond between the two entities, for example ester, ether , thioether, disulfide, phosphate or amide, thereby forming a covalent complex.
  • the terpene-containing hydrocarbon compound is 1,1 ', 2-tris-norsqualenol or a derivative thereof and in particular 1,1', 2-tris-norsqualenol bromoacetate.
  • the covalent link existing between the two types of molecules can be represented by a spacer or linker.
  • Such an arm may in particular be useful for increasing the strength of the statin / hydrocarbon radical interaction according to the invention or to facilitate the activation of the conjugate after its administration by the enzymes of the organism (esterases, cathepsins, for example ) and thus allow the controlled release of the statin molecule.
  • Such an arm makes it possible precisely to introduce, via each of the two ends of its skeleton, the appropriate functions, that is to say respectively possessing the expected reaction affinity, one for the function present on the derivative with hydrocarbon structure according to US Pat. invention and the other for the function present on the relevant statin molecule.
  • this linker also has at its skeleton a labile function, which is favorable later to the separation of the compound from hydrocarbon structure of the statin molecule considered. It may for example be a peptide motif recognizable by an enzyme.
  • linkage type patterns are well known to those skilled in the art and their implementation clearly falls within its competence.
  • the following terms mean:
  • saccharide unit a radical comprising at least one radical chosen from trioses (glyceraldehyde, dihydroxyacetone), tetroses (erythrose, threose, erythrulose), pentoses (arabinose, lyxose, ribose, deoxyribose, xylose, ribulose, xylulose), hexoses (allose, altrose, galactose, glucose, gulose, idose, mannose, talose, fructose, psicose, sorbose, tagatose, heptoses (mannoheptulose, sedoheptulose), octose (octolose, 2-keto-3-deoxy-manno-octonate), isonoses (sialose), and - "(poly) amino acid motif", a unit having at least one unit:
  • n is greater than or equal to 1
  • R ' represents a hydrogen atom, a C 1-6 alkyl group, optionally substituted by one or more hydroxyls, a C 1-6 alkoxy group.
  • a "covalent bond” preferably represents a covalent bond especially as specified above, but also covers a covalent bond represented by a linker as defined above.
  • the covalent complex according to the present invention can be represented by the compound of formula (III) which follows:
  • X represents a single covalent bond or a function of ester, ether, thioether, disulfide, phosphate or amide type
  • Li and L 2 represent, independently of each other, a single covalent bond or a C 1 -C 4 alkylene group
  • Ra is as defined for the compound of formula (IIa) (Hb) or (IIc); and mi and m 2 are as defined above for the compound of formula (I); and
  • Ci-C 4 alkylene group a divalent alkyl group may include 1 to 4 carbon atoms.
  • the present invention relates more particularly to a complex, represented by the compound of formula (HIa) or (HIb) which follows:
  • mi and m 2 are as defined for the compound of formula (I) and L 2 is as defined for the compound of formula (III).
  • An object of the present invention is therefore a complex according to the invention, which can be represented by formulas (III), (HIa) or (HIb), as defined above.
  • reaction necessary for the establishment of at least one covalent bond between at least one molecule of said statin and at least one hydrocarbon-based radical according to the present invention can be carried out according to standard conditions and its realization therefore clearly falls within the knowledge of the skilled person.
  • the bond between the statin and the hydrocarbon radical is produced by nucleophilic substitution with 1,1 ', 2-tris-nor-squalenyl bromoacetate.
  • This reaction is generally carried out in solution in a polar solvent in the presence and in excess of at least one hydrocarbon compound considered according to the present invention with respect to the statin molecule implemented according to the invention, for example at the rate of two equivalents. , according to the standard conditions required to make the two specific functions carried by each of the two entities interact.
  • each of the groups to be reacted carries functions capable of reacting with each other such that by for example a carboxyl function with a hydroxyl function to form an ester bond or an amino function with a carboxyl function to form an amide bond.
  • the statin molecule on the one hand, and the hydrocarbon compound on the other hand are modified prior to the coupling reaction in order to provide them with the appropriate function to give them the reactivity necessary for the formation of a covalent bond between them.
  • each of the two molecules is modified in order to establish an amide or ester bond between them.
  • a hydrocarbon compound starting for the synthesis of a complex according to the invention is a squalene derivative, such as, for example, 1, 1 ', 2-tris-norsqualenol, as illustrated in step 1.1 of Example 1 Nanoparticles according to the invention
  • the covalent coupling of at least one molecule of statin considered according to the invention with at least one hydrocarbon compound according to the invention is such as to confer on the molecule of statin thus complexed, an ability to organize under a compacted form in a polar solvent medium, thus leading to the formation of nanoparticles.
  • the nanoparticles thus obtained have an average size ranging from 30 to 500 nm, and in particular from 50 to 250 nm, or even from 100 to 400 nm, measured by light scattering using the Coulter ® nanosizer. N4MD, Coulter Electronics, Hialeah, USA.
  • An object of the invention is nanoparticles according to the invention, the mean size of which varies from 30 to 500 nm, in particular from 50 to 250 nm, or even from 100 to 400 nm.
  • Another object of the present invention relates to 4- (N) - squalenoylpravastatin nanoparticles. Obtaining such nanoparticles is illustrated in Example 2.
  • the nanoparticles according to the present invention are particularly advantageous for administration intended for the oral route.
  • nanoparticles from the complex described above can be carried out according to conventional techniques insofar as they involve bringing into the presence of a complex with an aqueous medium under conditions conducive to its agglomeration in the state of nanoparticles. It may in particular be methods known as nanoprecipitation or emulsion / solvent evaporation.
  • the nanoparticles according to the present invention can preferably be obtained in the following manner.
  • a statin / hydrocarbon compound complex is formed, by coupling at least one hydrocarbon compound according to the invention to at least one statin molecule according to the invention, as described above.
  • Said complex obtained is then dispersed in at least one organic solvent (for example an alcohol such as ethanol or acetone) at a concentration of sufficient to obtain, during the addition of the resulting mixture, with stirring, and generally at drip, with an aqueous phase, the instantaneous formation of nanoparticles according to the invention in suspension in said aqueous phase. If necessary, the nanoparticles are isolated according to the techniques well known to those skilled in the art.
  • organic solvent for example an alcohol such as ethanol or acetone
  • the reaction can generally be carried out at room temperature. Whatever it is, the reaction temperature must not affect the activity of the statin molecule under consideration.
  • the process for preparing the nanoparticles according to the invention is particularly advantageous insofar as it does not necessarily require the presence of surfactants, but may nevertheless be necessary in the case, for example, where the use of pravastatin.
  • surfactants generally advantageously devoid of any toxicity
  • This type of surfactant can also provide access to even smaller sizes during the formation of nanoparticles.
  • polyoxyethylene-polyoxypropylene copolymers, phospholipid derivatives and lipophilic derivatives of polyethylene glycol may be mentioned.
  • polyethylene glycol As the lipophilic derivative of polyethylene glycol, mention may be made, for example, of polyethylene glycol cholesterol and polyethylene glycol squalene.
  • polyoxyethylene-polyoxypropylene block copolymers there may be mentioned polyoxyethylene-polyoxypropylene-polyoxyethylene triblock copolymers, also called poloxamers ® , pluronics ® or synperonics and which are sold in particular by the company BASF.
  • poloxamines which consist of hydrophobic segments (based on polyoxypropylene), hydrophilic segments (based on polyoxyethylene) and a central portion derived from the ethylene diamine unit can also be used.
  • the nanoparticles according to the invention are of course capable of carrying on the surface a multitude of reactive functions, such as hydroxyl functions or amine for example. It is therefore conceivable to fix these functions all kinds of molecules, including covalent bonds.
  • marker-type molecules compounds capable of providing a targeting function, as well as any compound capable of conferring on them characteristics. specific pharmacokinetics.
  • lipophilic derivatives of polyethylene glycol such as, for example, the polyethylene glycol / cholesterol conjugate, polyethylene glycol-phosphatidylethanolamine or better still polyethylene glycol / squalene.
  • the polyethylene glycol / squalene conjugate is associated, in this case, with the nanoparticles according to the invention, and thus leads to the formation of coated nanoparticles. on the surface of polyethylene glycol.
  • the polyethylene glycol / squalene conjugate advantageously acts during the process of forming the nanoparticles according to the invention as a surfactant because of its amphiphilic behavior and thus stabilizes the colloidal solution, thus reducing the size of the nanoparticles formed. .
  • a surface coating based on such compounds and in particular polyethylene glycol or the polyethylene glycol / cholesterol conjugate or the polyethylene glycol / squalene conjugate is in fact advantageous for conferring increased vascular remanence because of a significant reduction in the capture of nanoparticles by hepatic macrophages.
  • the nanoparticles according to the invention are formulated in the form of an aqueous dispersion.
  • this aqueous dispersion contains less than 5% by weight, or even less than 2% by weight and more particularly is devoid of surfactant or the like such as, for example, polyethylene glycols, polyglycerol and their derivatives, such as esters for example.
  • surfactant or the like such as, for example, polyethylene glycols, polyglycerol and their derivatives, such as esters for example.
  • this aqueous dispersion contains less than 5% by weight, or even less than 2% by weight of C 2 to C 4 alcohol such as, for example, ethanol.
  • the formulation in an aqueous medium of the statin in question using squalenic acid in the form of water-dispersible nanoparticles makes it possible advantageously to to obtain a suspension of nanoparticles with no other additive than the 5% dextrose necessary to obtain the isotonicity of the injectable suspension.
  • the nanoparticles according to the invention are in the form of lyophilisate.
  • the present invention also relates to the use of at least one nanoparticle according to the invention in pharmaceutical compositions.
  • Another aspect of the invention therefore relates to a pharmaceutical composition
  • a pharmaceutical composition comprising at least, as an active ingredient, a complex according to the present invention, in particular in the form of nanoparticles.
  • the complexes according to the present invention can be associated with at least one pharmaceutically acceptable vehicle.
  • the complexes and / or nanoparticles When used in dispersion in an aqueous solution, they can be combined with sequestering or chelating agent excipients, antioxidant, pH modifying agents and / or buffering agents.
  • the pharmaceutical compositions according to the invention may contain preserving agents, wetting agents, solubilizing agents and coloring agents.
  • statins may contain other assets that may benefit from therapeutic benefit, in addition to the effect of statins.
  • active substances that can be combined with the complexes and / or nanoparticles according to the present invention, mention may be made in particular of active agents intended to reduce arterial hypertension, such as antihypertensives or hypotensives or other compounds with lipid-lowering activity.
  • diuretics such as thiazides, diuretics of Henle's loop such as furozemide, anti-aldosterones, or ⁇ -blockers such as acebutolol, atenolol, betaxolol, bisoprolol, esmolol, metoprolol, nebivolol, nadolol, oxprenolol, propranolol, pindolol, sotalol, carvedilol, labetalol, levobunolol, timolol, angiotensin converting enzyme inhibitors ( IECA, IEC) such as benazepril, captopril, cilazapril, enalapril, fosinopril, imidapril, lisinopril, moexipril, perindopril, quinapril, ramipril,
  • the complexes and / or nanoparticles according to the present invention can be administered by any conventional route. However, as previously stated, given the small size of their particles, they can be administered in the form of an aqueous suspension intravenously and therefore compatible with vascular microcirculation. For obvious reasons, the quantities of the complex and / or nanoparticle according to the invention that may be used may vary significantly depending on the mode of use and the route chosen for their administration.
  • Infrared spectra are obtained by measurement on a solid or a pure liquid using a Fourier spectrometer (Transform Bruker Vector ® 22). Only significant absorptions are noted. Optical rotations were measured using a Perkin-Elmer ® 241, at a wavelength of 589 nm.
  • the 1 H and 13 C NMR spectra were recorded using a Bruker ARX ® 400 spectrometer (at 400 MHz and 100 MHz, respectively for 1 H and 13 C) or Bruker Avance ® 300 (at 300 MHz and 75 MHz, respectively for 1 H and 13 C). Mass spectra were recorded using a Bruker Esquire-LC ® instrument.
  • Step 1.1 (4 J E, 8 J E, 12 J E, 16 J E) -4,8,13,17,21-Pentamethyldocosa-4,8,12,16,20-pentaen-1-ol:
  • Squalene aldehyde is reduced to squalenol.
  • 1.15 g (3 mmol) of squalene aldehyde dissolved in 6 mL of ethanol are added, at 0 ° C., in small portions to 106 mg (0.9 equiv., 2.7 mmol) of sodium borohydride.
  • the mixture is stirred under nitrogen at room temperature for 15 min, then the reaction mixture is neutralized with a solution of 2N HCl. Then, the solvent is distilled under reduced pressure.
  • Step 1.2 Bromoacetate (4 J , 8 J E, 12 J E, 16 J E) -4,8,13,17,21-pentamethyldocosa-4,8,12,16,20-pentaen-1-yl. 500 mg (1.3 mmol) of squalenol dissolved in 6 ml of anhydrous CH 2 Cl 2 are added, 216 mg (1.55 equiv., 2.01 mmol) of bromoacetic acid and a few mg of DMAP. The mixture is cooled to 0 ° C., then 317 mg (1.5 equiv, 1.95 mmol) of DCC dissolved in 2 ml of CH 2 Cl 2 are added in small portions.
  • Step 1.3 2-Oxo-2 - ⁇ [(4E, 8E, 12E, 16E) -4,8,13,17,21-pentamethyldocosa-
  • the nanoparticles are obtained by the precipitation / solvent evaporation method, by analogy with the method described in Fessi H. et al, Int. J. Pharm., 55; 1989, R1-R4.
  • SQpravastatin 4 mg are dissolved in 0.5 mL of ethanol in a pillbox.
  • 2 mg of SQ-PEG is dissolved in 0.2 ml of acetone and 0.1 ml of ethanol, in the order mentioned.
  • the two solutions are then mixed and the solution obtained is added dropwise, with stirring (500 rpm) to 1 ml of a 5% aqueous dextrose solution.
  • the precipitation of the nanoparticles is immediate.
  • the vial containing the SQpravastatin solution is rinsed and the rinse solution added to the nanoparticle suspension.
  • the suspension of nanoparticles is transferred to a calibrated flask and concentrated under reduced pressure in a rotary evaporator (50-100 mbar at 20 ° C. for 10 min and then at 37 ° C. for approximately 3-5 minutes) to a weight of from 0.8 to 0.degree. 9 g.
  • the solution is then supplemented to 1 g using either a 5% dextrose solution or sterile water.
  • the size of the nanoparticles obtained, measured with a Malvern nanosizer (Zetasizer) is 146 nm.
  • the nanoparticles have an average size, compatible with any mode of administration, as well as a good stability in aqueous solution.
  • the polydispersity index was determined according to the methods well known to those skilled in the art (for example, by analogy with the method described in Couvreur et al., Nanoletters, Vol 6, No. 1, pages 2544-2548). , 2006).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Child & Adolescent Psychology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention concerne un complexe formé d'au moins une molécule de statine ou dérivé, couplée de manière covalente à au moins un radical hydrocarboné comprenant au moins 18 atomes de carbone et contenant au moins une unité 2-méthyl- buta-2-ène, des nanoparticules d'un tel complexe et leur procédé de préparation, ledit complexe et/ou lesdites nanoparticules étant éventuellement sous forme de lyophilisât. La présente invention vise aussi une composition pharmaceutique comprenant au moins un complexe et/ou des nanoparticules tels que définis précédemment. Elle vise enfin ledit complexe et/ou lesdites nanoparticules pour le traitement et/ou la prévention d'hyperlipémie, d'hypercholestérolémie.

Description

Nanoparticules de statine
La présente invention vise à proposer de nouveaux dérivés de statine, en particulier sous une forme nanoparticulaire hydrodispersible, des compositions les contenant et leurs utilisations thérapeutiques. Les statines appartiennent à la classe thérapeutique des hypocholestérolémiants. Elles abaissent en particulier le LDL-cholestérol (pour « Low Density Lipoprotein Cholestérol ») et sont, à ce titre, particulièrement utiles pour traiter ou prévenir certaines maladies cardiovasculaires {Journal of the American Médical Association, 251, No.3, 351-374 (1984)). En effet, de très nombreuses études médicales ont fait apparaître que le dosage du LDL-Cholestérol était le mieux corrélé à la survenue d'accidents cardiovasculaires. En outre, le LDL-cholestérol représente le type de lipides le plus responsable de la formation de plaques d'athérome.
Plus précisément, les statines diminuent la biosynthèse du cholestérol au niveau du foie en inhibant l'enzyme HMG-CoA réductase qui contrôle l'étape limitante de la synthèse du cholestérol par voie mévalonique en transformant le 3-hydroxy-3- méthylglutaryl-coenzyme A en acide mévalonique, précurseur des stérols. On prescrit l'usage de statines si le taux de LDL-cholestérol dépasse 2,4 mmol/1 chez des patients coronariens.
Le traitement médicamenteux des maladies cardiovasculaires a ainsi été bouleversé par l'arrivée des statines dont l'effet sur la baisse du taux de cholestérol sanguin est souvent spectaculaire. En effet, les statines peuvent faire baisser de 20 à 50 %, la concentration de cholestérol total, de 25 à 60 %, la concentration du LDL-cholestérol et de 15 à 30 %, la concentration des triglycérides.
Toutefois, les contre-indications et effets secondaires des statines sont souvent lourds et peuvent par exemple se manifester par une hypersensibilité à l'un des constituants du médicament, une myopathie, pouvant parfois conduire à une insuffisance rénale sévère, une affection hépatique évolutive et/ou une élévation prolongée des transaminases (Armitage J., Lancet 2007 ; 370 :1781-1790). Ces effets sont notamment dus à une distribution tissulaire et /ou cellulaire inadéquate. II est donc nécessaire d'ajuster au mieux la dose et le mode d'administration des statines. Dans l'industrie pharmaceutique, l'amélioration de la biodisponibilité de principes actifs, destinés à être administrés par voie orale est une grande préoccupation pour les galénistes.
En particulier, la formulation de statines, molécules, généralement lipophiles, pose de réels problèmes, dus principalement à leur faible solubilité dans les excipients pharmaceutiques liquides aqueux, à leur propension à précipiter ou recristalliser en solution aqueuse et à leur faible solubilité dans les liquides du tractus gastro-intestinal à partir desquels ils doivent être absorbés.
La biodisponibilité d'un principe actif est en outre fonction de sa concentration dans le fluide gastro -intestinal, celle-ci dépendant elle-même de la libération du principe actif. En particulier, plus un principe actif est lipophile, moins il a tendance à migrer dans les fluides digestifs.
Afin d'augmenter la biodisponibilité des principes actifs lipophiles, il a été envisagé dans WO 95/24893 de les formuler à l'aide d'huiles digestibles et de tensioactifs hydrophiles et lipophiles. Ce type de formulation permet de maintenir le principe actif en solution durant son passage dans le tractus digestif et ce jusqu'à son absorption intestinale.
La digestion des ingrédients huileux de ce type de formulations présente souvent l'avantage de solubiliser le principe actif au sein de micelles mixtes constituées de sels biliaires et de produits de la lipolyse des triglycérides de l'huile digestible utilisée. Toutefois, la présence de tensioactifs peut inhiber la lipolyse, ce qui nécessite l'évaluation préalable in vitro de la digestibilité des huiles d'une formulation donnée.
D'autre part, les quantités d'huiles digestibles qu'il faut parfois utiliser pour éviter la recristallisation du principe actif in vivo sont trop importantes pour permettre la fabrication d'une capsule commercialisable. La présente invention vise précisément à pallier aux inconvénients précités et à fournir des formulations adaptées aux statines.
Les inventeurs de la présente invention ont mis en évidence qu'il s'avérait possible de formuler les statines à l'état de nanoparticules en suspension dans un milieu aqueux et de tailles réduites, notamment compatibles pour une administration par voie injectable ou orale, sous réserve de les coupler de manière covalente à au moins un radical hydrocarboné de nature squalénique. Ainsi, la présente invention concerne selon un premier aspect, un complexe formé d'au moins une molécule de statine ou dérivé, couplée de manière covalente à au moins un radical hydrocarboné comprenant au moins 18 atomes de carbone et contenant au moins une unité figurée par la formule qui suit :
Figure imgf000004_0001
encore appelée 2-méthyl-buta-2-ène.
Selon un autre objet, l'invention vise un complexe tel que défini précédemment, dans lequel le composé hydrocarboné comprend de 18 à 40 atomes de carbone, de préférence de 18 à 32 atomes de carbone.
Avantageusement, les deux entités formant le complexe défini précédemment sont couplées par une liaison covalente de type ester, éther, thioéther, disulfure, phosphate ou amide et de préférence ester.
Un autre objet de la présente invention vise des nanoparticules d'un complexe tel que décrit précédemment.
Certes, WO 2006/090029 et Couvreur et al, Nano Lett. 2006, 6, pp. 2544-25 48, décrivent déjà l'aptitude d'une molécule contenant au moins un radical hydrocarboné tel que défini précédemment, tel que par exemple le squalène, à former spontanément des nanoparticules d'une centaine de nanomètres en milieu aqueux, lorsqu'il est couplé de manière covalente à un dérivé nucléosidique tel que la gemcitabine. Toutefois, pour des raisons évidentes, la gemcitabine est très différente des dérivés considérés selon l'invention.
Il est également connu que l'administration de squalène, en tant que tel, conduit à sa concentration après administration orale ou intraveineuse, dans les LDL et VLDL (pour « very Io w density lipoprotein ») (Strandberg et al, J Lipid Research, 31, 1637, 1999 et H. Relas et al, J Lipid Research, 42, 988, 2001).
Comme indiqué précédemment, la formulation des actifs thérapeutiques considérés selon la présente invention, à l'état de nanoparticules conformes à la présente invention constitue une alternative avantageuse au regard des formulations déjà existantes, à plusieurs titres. Tout d'abord, l'état nanoparticulaire des statines permet avantageusement d'améliorer la distribution tissulaire et/ou cellulaire, permettant notamment de s'affranchir des effets secondaires des statines et ainsi d'adapter au mieux les modes et doses d'administration. Avantageusement, la taille moyenne de ces nanoparticules varie de 30 à
500 nm, en particulier de 50 à 250 nm, voire de 100 à 400 nm.
La présente invention concerne également un procédé de préparation desdites nanoparticules comprenant au moins la dispersion du complexe selon la présente invention, dans au moins un solvant organique, à une concentration suffisante pour obtenir, lors de l'ajout du mélange résultant, sous agitation, à une phase aqueuse, la formation instantanée de nanoparticules dudit complexe en suspension dans ladite phase aqueuse, et, le cas échéant, l'isolement desdites nanoparticules.
Avantageusement, ledit procédé peut comprendre en outre une étape de lyophilisation, particulièrement adaptée pour accéder à une mise en forme solide. Ainsi, la présente invention concerne en outre un lyophilisât comprenant au moins un complexe et/ou au moins des nanoparticules tels que décrits précédemment.
Selon un autre objet, la présente invention vise un complexe et/ou des nanoparticules tels que définis précédemment, éventuellement sous la forme d'un lyophilisât tel que défini précédemment, pour la préparation d'une composition pharmaceutique destinée au traitement et/ou à la prévention d'hyperlipémie, d'hypercholestérolémie, et en particulier destinée au traitement et/ou à la prévention de maladies cardiovasculaires, d'obésité, de dyslipidémie et/ou à la prévention d'un accident cardio vasculair e .
En d'autres termes, la présente invention a pour objet un complexe et/ou des nanoparticules, éventuellement sous forme de lyophilisât, tels que définis selon la présente invention, pour le traitement et/ou la prévention d'hyperlipémie, d'hypercholestérolémie, et en particulier pour le traitement et/ou la prévention de maladies cardiovasculaires, d'obésité, de dyslipidémie et/ou la prévention d'un accident cardiovasculaire.
On entend par « maladies cardio-vasculaires », l'athérosclérose (plaques d'athérome), attaques cérébrales ou accident vasculaire cérébral ou cardiaques (infarctus), artérite des membres inférieurs, les maladies des coronaires telles que l'angor (ou angine de poitrine) ou encore les infarctus tels que l'infarctus du myocarde, les ischémies, les thromboses et maladies thrombo-emboliques, les maladies des vaisseaux, telles que les anévrismes, l'artériopathie oblitérante des membres inférieurs, la dissection aortique aiguë, l'hypertension artérielle pulmonaire, les maladies thrombo-emboliques, les crises cardiaques, la cardiopathie congénitale. L'hypercholestérolémie résulte généralement d'un dérèglement de la biosynthèse du cholestérol et/ou est due à un taux de cholestérol circulant anormal.
Par ailleurs, il a récemment été démontré le rôle préventif des statines sur la survenue de cancers de localisations variées (cancers du poumon, de la prostate, du sein, du pancréas, de l'œsophage ou du côlon) dans Médecine Thérapeutique, Corcos L. et al., Vol. 13, n° 1, 22-9, janvier-février 2007. Les statines s'avèrent en outre utiles en tant qu'adjuvants des thérapies anticancéreuses actuelles.
Ainsi, la présente invention a également pour objet les complexe et/ou nanoparticules selon l'invention, éventuellement sous forme de lyophilisât, pour le traitement et/ou la prévention de cancers, notamment du poumon, de la prostate, du sein, du pancréas, de l'œsophage ou du côlon ou en tant qu'adjuvants des thérapies anticancéreuses actuelles.
La présente invention s'étend également à une composition pharmaceutique, en particulier un médicament, comprenant au moins un complexe et/ou des nanoparticules, lesdits complexes et/ou nanoparticules étant éventuellement sous forme d'un lyophilisât, tels que décrits précédemment, en association avec au moins un véhicule pharmaceutique acceptable.
La présente invention vise également ladite composition pour son utilisation comme médicament pour le traitement et/ou la prévention des maladies et/ou troubles précités. Une telle composition peut s'avérer tout particulièrement utile comme médicament pour le traitement et/ou la prévention des maladies et troubles précités chez des patients dits « à risque », c'est-à-dire chez des patients ayant une pression sanguine élevée et présentant d'autres facteurs de risque cardiovasculaires comme le tabagisme, une surcharge pondérale, un antécédent familial de maladie cardiaque ou un diabète, notamment un diabète de type IL En effet, la présence de tels facteurs de risque chez un patient augmente son risque de survenue d'accidents cardiovasculaires. Composé ou radical hydrocarboné à structure squalénique
Au sens de la présente invention, un composé ou radical à structure squalénique ou squalénoyle, est un composé ou radical comprenant au moins une unité 2-méthyl-buta- 2-ène, telle que définie précédemment.
Plus précisément, un composé ou radical hydrocarboné à structure squalénique ou squalénoyle comprend au moins 18 atomes de carbone et contenant au moins une unité 2-méthyl-buta-2-ène, à l'image d'un radical squalène.
Il est à noter que dans la présente invention, on parle selon le cas de « composé » ou « radical » à structure squalénique ou squalénoyle. Le terme « composé » s'attache plus précisément à définir un composé à structure squalénique ou squalénoyle, qui, lorsqu'il réagit avec une molécule d'actif forme un complexe, alors que le terme « radical » définit plus précisément la partie squalénique ou squalénoyle du complexe formé.
Au sens de la présente invention, un radical hydrocarboné à structure squalénique peut être figuré par la formule (I) qui suit :
Figure imgf000007_0001
dans laquelle :
- mi = 1, 2, 3, 4, 5 ou 6 ;
- m2 = 0, 1, 2, 3, 4, 5 ou 6 ; et
Figure imgf000007_0002
représente la liaison vers la molécule de statine ou dérivé, étant entendu que lorsque m2 représente 0, alors mi représente au moins 2.
Plus précisément, lorsque l'on parle du composé squalénoyle ou l'un de ses dérivés, entité de départ ayant servi au couplage, ce composé ou l'un de ses dérivés peut être figuré par le composé de formule (Ibis) :
Figure imgf000007_0003
dans laquelle : Y représente un atome d'hydrogène ou un groupe -L2-X' dans lequel X' représente une fonction de type alcool, acide carboxylique, thiol, phosphate, aminé, carboxamide ou cétone et L2 représente une liaison covalente simple ou un groupe Ci -C4 alkylène ; et mi et m2 sont tels que définis pour le radical de formule (I).
Le radical hydrocarboné comprend au moins 18 atomes de carbone, en particulier de 18 à 40 atomes de carbone et de préférence de 18 à 32 atomes de carbone.
Plus précisément, un composé utile pour la formation d'un complexe selon la présente invention est le squalène (encore appelé spiracène ou sirprène), qui est un intermédiaire essentiel de la biosynthèse du cholestérol. Chimiquement, il est encore appelé (E) 2, 6, 10, 15, 19, 23-Hexaméthyl-2, 6, 10, 14, 18, 22-tétracosahexène) de formule qui suit :
Figure imgf000008_0001
Selon un mode de réalisation préféré de l'invention, le dérivé squalénique présent dans un complexe selon la présente invention est un radical de formule (I) dans laquelle mi = 1 et m2 = 2.
Avantageusement, le dit complexe est un radical de formule (I) dans laquelle mi = 1 et m2 = 3.
Selon un mode de réalisation préféré de la présente invention, le dérivé squalénique présent dans un complexe selon la présente invention est un radical de formule (V) qui suit, correspondant à un radical de formule (I) précédent dans lequel m2 = 0 :
Figure imgf000008_0002
(I1)
Dans ce cas, mi = 2, 3, 4, 5 ou 6.
A titre illustratif de composés hydrocarbonés aptes à former un complexe selon la présente invention, on peut plus particulièrement citer l'acide squalénique et ses dérivés tel que l'acide 1, 1 ', 2-tris-norsqualénique, la 1, 1 ', 2-tris-norsqualénamine, le 1, 1 ', 2-tris-norsqualénol, le 1, 1 ', 2-tris-norsqualéthiol, l'acide squalénacétique, le squalényléthanol le squalényléthanethiol, la squalényléthylamine Un complexe selon la présente invention comprend au moins un radical hydrocarboné figuré par un radical de formule (I) tel que défini précédemment.
En particulier, un complexe selon la présente invention pourra contenir au moins un radical issu d'une molécule d'acide 1, Y, 2-tris-norsqualénique. Alternativement, un complexe selon la présente invention comprend au moins deux radicaux hydrocarbonés tels que définis selon la présente invention et en particulier, figurés par le composé de formule (I) précité.
Comme les inventeurs l'ont constaté, un composé hydrocarboné tel que défini précédemment, manifeste spontanément, lorsqu'il est mis en présence d'un milieu polaire et plus particulièrement l'eau, une conformation compactée.
De manière inattendue, les inventeurs ont constaté que cette aptitude demeure lorsqu'un tel radical est associé et notamment lié de manière covalente à une molécule de statine ou l'un de ses dérivés. Il s'en suit la génération d'une architecture compactée à l'état de nanoparticules dans laquelle figurent au moins en partie une entité molécule de statine et au moins un radical hydro carboné.
La molécule de statine peut en effet n'être qu'en partie ou en totalité à l'état compacté dans les nanoparticules formées.
Généralement au moins un radical hydrocarboné précité est lié de manière covalente à une molécule de statine. Toutefois, le nombre de molécules de dérivé hydrocarboné susceptible d'interagir avec ladite molécule peut être supérieur à 1.
Statine
Structurellement, les statines ou dérivés ont en commun un système 4-hydroxy-6-oxo-2H-pyrane, qui peut aussi se présenter sous forme dihydroxyacide qui interagit avec le site actif de la HMG-CoA réductase, enzyme impliquée dans la synthèse du cholestérol et une partie lipophile se présentant notamment comme un système hexahydronaphtalénique polysubstitué mais peut aussi être remplacé par un système hétéroaromatique polysubstitué comme dans l'atorvastatine ou la fluvastatine.
Les principales statines connues sont : simvastatine, lovastatine, pravastatine, atorvastatine, fluvastatine et rosuvastatine.
Ces statines sont généralement de nature lipophile (WO 02/053131). Par exemple, la simvastatine possède un log P = 4,68 et la lovastatine un log P = 4,04. La lipophilie d'un principe actif peut être déterminée en fonction de son coefficient de partage (P) entre l'octanol et l'eau qui correspond au rapport concentration du principe actif dans l'octanol (Coct)/concentration du principe actif dans l'eau (CEau).
Lorsque le rapport P est supérieur à 1, cela signifie que Coct est supérieure à CEau, et que par conséquent le principe actif est lipophile (log P > 0). On peut donc en déduire que plus le log P d'un principe actif est élevé et plus celui-ci présente un caractère lipophile prononcé.
Plus précisément, au sens de la présente invention, on entend par statine ou dérivé, un composé figuré par la formule (lia), (Hb) ou (Ile) qui suit :
Figure imgf000010_0001
Figure imgf000010_0002
Mc
dans lesquelles :
- Ra représente un groupe aryle, hétéroaryle, éventuellement substitué par un ou plusieurs groupe(s) R ;
- R représente indépendamment un groupe hydroxyle, un groupe Ci-C6 alkyle,
Ci-C6 alkoxy, un groupe -0-C(O)Ci-C6 alkyle, un phényle, un groupe -NRiR2, un groupe -C(O)NRiR2, un groupe -C(O)OR3, lesdits groupes alkyle et phényle étant éventuellement substitués par un ou plusieurs atomes d'halogène ou par un ou plusieurs groupes hydroxyle ;
- Ri et R2 représentent, indépendamment l'un de l'autre, un atome d'hydrogène, un groupe Ci-C6 alkyle, -SO2-Ci-C6 alkyle, un phényle, lesdits groupes C1-C6 alkyle et phényle étant éventuellement substitués par un ou plusieurs atomes d'halogène ou par un ou plusieurs groupes hydroxyles ;
- R3 représente un atome d'hydrogène, un Ci-C6 alkyle éventuellement substitué par un ou plusieurs atomes d'halogènes ou par un ou plusieurs groupes hydroxyles.
Au sens de la présente invention, on entend par :
- un atome d'halogène : un atome de fluor, un atome de chlore, un atome de brome ou un atome d'iode ;
- un groupe hydroxyle : un groupe -OH ; - un alkyle : un groupe aliphatique saturé, linéaire ou ramifié. A titre d'exemple on peut citer le méthyle, l'éthyle, le propyle, l'isopropyle, le butyle, l'isobutyle, le sec-butyle, le ter-butyle ;
- un alcoxy : un radical -O-alkyle où le groupe alkyle est tel que défini précédemment, par exemple le méthoxy, l'éthoxy, le propoxy, l'isopropoxy, le butoxy, l'isobutoxy, le sec-butoxy, le tert-butoxy ;
- un groupe aryle : un groupe aromatique pouvant être partiellement insaturé monocyclique ou bicyclique comprenant de 6 à 10 atomes de carbone. A titre d'exemple de monocycle on peut citer le phényle. A titre d'exemple de bicycle, on peut citer le naphtyle, ledit naphtyle pouvant être partiellement insaturé, tel que le 1,2,6,7,8,8a- hexahydronaphtyle ;
- un groupe hétéroaryle : un groupe aryle précité comprenant en outre au moins un hétéroatome choisi parmi un azote, un soufre ou un oxygène. A titre d'exemple de monocycle on peut citer le furanyl, le thiophényle, le thiényle, le pyrrolyle, le thiazolyle, l'imidazolyle, le pyrazolyle, l'isoxazolyle, le thiadiazolyle, le pyridinyle, le pyrimidyle, le pyrazinyle. A titre d'exemple de bicycle, on peut citer l'indolyle, l'isoindolyle, l'indolizinyle, le benzofuranyle, le benzimidazolyle, la quinolyle, l'isoquinolyle, le phtalazyle.
Les composés de formule générale (lia), (Hb) ou (Ile) peuvent comporter un ou plusieurs carbones asymétriques. Ils peuvent donc exister sous forme d'énantiomères ou de diastéréoisomères. Ces énantiomères, diastéréoisomères, ainsi que leurs mélanges, y compris les mélanges racémiques, font partie de l'invention. Les composés de formules précités peuvent exister à l'état de bases ou de sels d'addition à des acides. De tels sels d'addition font partie de l'invention.
Ces sels sont avantageusement préparés avec des acides pharmaceutiquement acceptables, mais les sels d'autres acides utiles, par exemple, pour la purification ou la séparation des composés de formules précitées font également partie de l'invention.
Les composés de formule générale (lia), (Hb) ou (Ile) peuvent, en outre, se trouver sous forme d'hydrates ou de solvates, à savoir sous forme d'associations ou de combinaisons avec une ou plusieurs molécules d'eau ou avec un solvant. De tels hydrates et solvates font également partie de l'invention. Parmi les statines de formule (lia) convenant à la présente invention, on peut citer par exemple, la pravastatine et l'atorvastatine.
Parmi les statines de formule (Hb) convenant à la présente invention, on peut citer par exemple, la simvastatine et la lovastatine.
Parmi les statines de formule (Ile) convenant à la présente invention, on peut citer par exemple, la fluvastatine et la rosuvastatine.
Une statine convenant tout particulièrement à la mise en œuvre de la présente invention est représentée par un composé de formule (lia).
Avantageusement, selon la présente invention, on peut mettre en œuvre dans les complexes et/ou nanoparticules selon l'invention la simvastatine, la lovastatine, la pravastatine, l'atorvastatine, la fluvastatine ou la rosuvastatine et tout particulièrement, la pravastatine.
Complexe radical hydrocarboné/statine
La conjugaison d'une molécule de statine avec un dérivé hydrocarboné conforme à l'invention, et plus particulièrement avec le 1,1 ',2-tris-norsqualénol, confère à la molécule de statine des caractéristiques physico-chimiques suffisantes pour lui conférer une aptitude à former des particules par nanoprécipitation, particules dont la taille s'avère compatible avec tout mode d'administration, en particulier intraveineux et oral.
Au sens de la présente invention, une telle conjugaison conduit à la formation d'un complexe ou conjugué statine/radical hydrocarboné selon la présente invention, c'est- à-dire une entité comportant un radical issu d'une molécule de statine, lié de manière covalente, à un radical hydrocarboné tel que défini précédemment. Au sens de la présente invention, on utilisera donc indifféremment les termes « complexe » ou « conjugué » pour désigner une telle entité.
Ainsi, la présente invention concerne un complexe caractérisé en ce qu'il possède l'aptitude à s'organiser spontanément à l'état de nanoparticules lorsqu'il est en présence d'un milieu aqueux.
La formation du complexe statine/radical hydrocarboné selon l'invention nécessite que les deux entités du complexe portent des fonctions susceptibles de former une liaison covalente et/ou un bras de liaison, tels que définis ci-dessous. Ces fonctions peuvent ou non être présentes sur les deux entités de départ. Dans la négative, 171e s entité(s) de départ devra/devront subir une modification, préalablement à la réaction de couplage.
Plus précisément, le composé hydrocarboné selon l'invention est généralement porteur d'une fonction susceptible de réagir avec une fonction présente sur la molécule de statine considérée, de manière à établir un lien covalent entre les deux entités, par exemple de type ester, éther, thioéther, disulfure, phosphate ou amide, formant ainsi un complexe covalent.
Avantageusement, il peut s'agir d'une fonction ester. Auquel cas, le composé hydrocarboné à structure terpénique est le 1,1 ',2-tris-norsqualénol ou l'un de ses dérivés et en particulier le bromoacétate de 1,1 ',2-tris-norsqualénol. Selon une variante de réalisation, le lien covalent existant entre les deux types de molécules peut être figuré par un espaceur ou encore bras de liaison. Un tel bras peut notamment s'avérer utile pour augmenter la force de l'interaction statine/radical hydrocarboné selon l'invention ou encore pour faciliter l'activation du conjugué après son administration par les enzymes de l'organisme (estérases, cathepsines par exemple) et permettre ainsi la libération contrôlée de la molécule de statine.
Un tel bras permet précisément d'introduire via chacune des deux extrémités de son squelette les fonctions adéquates, c'est-à-dire possédant respectivement l'affinité réactionnelle attendue, l'une pour la fonction présente sur le dérivé à structure hydrocarbonée selon l'invention et l'autre pour la fonction présente sur la molécule de statine considérée.
On peut également envisager que ce bras de liaison possède en outre au niveau de son squelette une fonction labile, propice ultérieurement à la séparation du composé à structure hydrocarbonée de la molécule de statine considérée. Il peut par exemple s'agir d'un motif peptidique reconnaissable par une enzyme.
Les motifs de type bras de liaison sont bien connus de l'homme de l'art et leur mise en œuvre relève clairement de ses compétences. A titre représentatif des bras de liaison envisageables selon l'invention, on peut notamment citer les chaînes alkylène telles que définies précédemment, les motifs (poly)aminoacides, polyols, saccharidiques, et polyéthylèneglycol (polyétheroxides). Au sens de la présente invention on entend par :
- « motif saccharidique », un radical comprenant au moins un radical choisi parmi les trioses (glycéraldéhyde, dihydroxyacétone), tétroses (érythrose, thréose, érythrulose), pentoses (arabinose, lyxose, ribose, désoxyribose, xylose, ribulose, xylulose), hexoses (allose, altrose, galactose, glucose, gulose, idose, mannose, talose, fructose, psicose, sorbose, tagatose, heptoses (mannoheptulose, sedoheptulose), octose (octolose, 2-céto-3-désoxy-manno-octonate), isonoses (sialose), et - « motif (poly)aminoacide », un motif ayant au moins une unité :
Figure imgf000014_0001
dans laquelle n est supérieur ou égal à 1, et R' représente un atome d'hydrogène, un groupe Ci_6 alkyle, éventuellement substitué par un ou plusieurs hydroxyles, un Ci_6 alcoxy.
Ainsi, au sens de la présente invention, un « lien covalent » figure de préférence une liaison covalente notamment telle que précisée ci-dessus, mais couvre également un lien covalent figuré par un bras de liaison tel que défini précédemment.
Ainsi, le complexe covalent selon la présente invention peut être figuré par le composé de formule (III) qui suit :
Figure imgf000014_0002
(III)
dans laquelle - X représente une liaison covalente simple ou une fonction de type ester, éther, thioéther, disulfure, phosphate ou amide ;
- Li et L2 représentent indépendamment l'un de l'autre une liaison covalente simple ou un groupe Ci -C4 alkylène et ;
- Ra est tel que défini pour le composé de formule (lia) (Hb) ou (Ile) ; et mi et m2 sont tels que définis précédemment pour le composé de formule (I) ; et
- '' représente la présence éventuelle d'un centre d'insaturation.
Au sens de la présente invention, on entend par un groupe Ci-C4 alkylène, un groupe alkyle divalent pouvant comprendre de 1 à 4 atomes de carbone. A titre d'exemple, on peut citer le méthylène, le propylène, l'isopropylène, le butylène.
La présente invention concerne plus particulièrement un complexe, figuré par le composé de formule (HIa) ou (HIb) qui suit :
Figure imgf000015_0001
lia)
Figure imgf000015_0002
dans lesquelles mi et m2 sont tels que définis pour le composé de formule (I) et L2 est tel que défini pour le composé de formule (III). En particulier, on met en œuvre selon la présente invention un complexe de formule (HIa) ou (HIb), de préférence le complexe de formule (HIa).
Un objet de la présente invention vise donc un complexe conforme à l'invention, pouvant être figuré par les formules (III), (HIa) ou (HIb), telles que définies précédemment.
Procédé de préparation du complexe
La réaction nécessaire à l'établissement d'au moins une liaison covalente entre au moins une molécule de statine considérée et au moins un radical hydrocarboné conformes à la présente invention, peut être effectuée selon des conditions standards et sa réalisation relève donc clairement des connaissances de l'homme de l'art.
Plus particulièrement la liaison entre la statine et le radical hydrocarboné est réalisée par substitution nucléophile avec le bromoacétate de 1,1',2-tris-nor-squalényle. Cette réaction est généralement réalisée en solution dans un solvant polaire en présence et en excès d'au moins un composé hydrocarboné considéré selon la présente invention par rapport à la molécule de statine mise en œuvre selon l'invention, par exemple à raison de deux équivalents, selon les conditions standards requises pour faire interagir les deux fonctions spécifiques portées par chacune des deux entités.
Comme indiqué précédemment, l'établissement de la liaison covalente entre les deux entités à considérer selon l'invention, nécessite, le cas échéant, que chacun des groupements devant réagir porte des fonctions aptes à réagir l'une avec l'autre telles que par exemple une fonction carboxyle avec une fonction hydroxyle pour former une liaison ester ou encore une fonction aminé avec une fonction carboxyle pour former une liaison amide. Ainsi, si nécessaire, l'une ou les deux entités, la molécule de statine d'une part, et le composé hydrocarboné d'autre part, sont modifiées préalablement à la réaction de couplage afin de leur procurer la fonction adéquate pour leur conférer la réactivité nécessaire à la formation d'une liaison covalente entre elles. De préférence, chacune des deux molécules est modifiée afin d'établir une liaison amide ou esters entre elles. De préférence, un composé hydrocarboné de départ pour la synthèse d'un complexe selon l'invention est un dérivé squalénique, tel que par exemple le 1, 1 ', 2-tris-norsqualénol, tel qu'illustré à l'étape 1.1 de l'exemple 1. Nanoparticules selon l'invention
Comme précisé précédemment, le couplage covalent d'au moins une molécule de statine considérée selon l'invention avec au moins un composé hydrocarboné selon l'invention est de nature à conférer à la molécule de statine ainsi complexée, une aptitude à s'organiser sous une forme compactée dans un milieu solvant polaire, conduisant ainsi à la formation de nanoparticules.
D'une manière générale, les nanoparticules ainsi obtenues possèdent une taille moyenne variant de 30 à 500 nm, et en particulier de 50 à 250 nm, voire de 100 à 400 nm mesurée par diffusion de la lumière à l'aide du nanosizer Coulter® N4MD, Coulter Electronics, Hialeah, USA.
Un objet de l'invention vise des nanoparticules conformes à l'invention dont la taille moyenne varie de 30 à 500 nm, en particulier de 50 à 250 nm, voire de 100 à 400 nm.
Un autre objet de la présente invention concerne des nanoparticules de 4-(N)- squalénoylpravastatine. L'obtention de telles nanoparticules est illustrée en exemple 2.
Avantageusement, les nanoparticules selon la présente invention, en particulier sous la forme de lyophilisât, sont particulièrement avantageuses pour une administration destinée à la voie orale.
Procédé de préparation des nanoparticules
La formation de nanoparticules à partir du complexe décrit précédemment peut être réalisée selon des techniques conventionnelles dans la mesure où elles impliquent la mise en présence d'un complexe avec un milieu aqueux dans des conditions propices à son agglomération à l'état de nanoparticules. Il peut notamment s'agir de méthodes dites de nanoprécipitation ou émulsion/évaporation de solvant.
Les nanoparticules selon la présente invention peuvent de préférence être obtenues de la façon suivante.
Préliminairement, on forme un complexe statine/composé hydrocarboné, par couplage d'au moins un composé hydrocarboné selon l'invention à au moins une molécule de statine selon l'invention, tel que décrit précédemment.
Ledit complexe obtenu est ensuite dispersé dans au moins un solvant organique (par exemple un alcool comme l'éthanol, ou l'acétone) à une concentration suffisante pour obtenir, lors de l'ajout du mélange résultant, sous agitation, et généralement au goutte-à-goutte, à une phase aqueuse, la formation instantanée de nanoparticules selon l'invention en suspension dans ladite phase aqueuse. Le cas échéant, on procède à l'isolement desdites nanoparticules selon les techniques bien connues par l'homme du métier.
La réaction peut généralement être réalisée à température ambiante. Quelle qu'elle soit, la température de réaction ne doit pas affecter l'activité de la molécule de statine considérée. Le procédé de préparation des nanoparticules selon l'invention est particulièrement avantageux dans la mesure où il ne requiert pas obligatoirement la présence de tensioactifs, mais peut néanmoins s'avérer nécessaire dans le cas, par exemple, où l'on met en œuvre de la pravastatine.
Cette propriété est particulièrement appréciable dans la mesure où un grand nombre de tensioactifs ne s'avèrent pas compatibles avec une application in vivo.
Toutefois, il est entendu que l'usage de tensioactifs, généralement avantageusement dénués de toute toxicité, est envisageable dans le cadre de l'invention. Ce type de tensioactifs peut par ailleurs permettre d'accéder à des tailles encore plus réduites lors de la formation de nanoparticules. A titre illustratif et non limitatif de ce type de tensioactifs susceptibles d'être utilisés dans la présente invention, on peut notamment citer des copolymères de polyoxyéthylène-polyoxypropylène, des dérivés phospholipidiques et des dérivés lipophiles du polyéthylène glycol.
Comme dérivé lipophile du polyéthylène glycol, on peut mentionner par exemple le polyéthylène glycol cholestérol, le polyéthylène glycol squalène. Comme exemple de copolymères bloc polyoxyéthylène-polyoxypropylène, on peut particulièrement citer les copolymères triblocs polyoxyéthylène- polyoxypropylène- polyoxyéthylène, encore appelés poloxamères®, pluronics® ou synperonics et qui sont commercialisés, notamment, par la société BASF.
Apparentés à ces familles de copolymères, les poloxamines, qui sont constituées de segments hydrophobes (à base de polyoxypropylène), de segments hydrophiles (à base de polyoxyéthylène) et d'une partie centrale dérivant du motif éthylène diamine peuvent également être employés.
Les nanoparticules selon l'invention sont bien entendu susceptibles de porter en surface une multitude de fonctions réactives, à l'image des fonctions hydroxyle ou aminé par exemple. Il est donc envisageable de fixer à ces fonctions toutes sortes de molécules, notamment par des liaisons covalentes.
A titre illustratif et non limitatif de ce type de molécules susceptibles d'être associées aux nanoparticules, on peut notamment citer les molécules de type marqueur, les composés susceptibles d'assurer une fonction de ciblage, ainsi que tout composé apte à leur conférer des caractéristiques pharmacocinétiques particulières. En ce qui concerne ce dernier aspect, on peut ainsi envisager de fixer en surface de ces nanoparticules des dérivés lipophiles du polyéthylène glycol, comme par exemple le conjugué polyéthylène glycol/cholestérol, le polyéthylène glycol-phosphatidyléthano lamine ou mieux encore le polyéthylène glycol/squalène. En effet, compte-tenu de l'affinité naturelle des résidus de squalène entre eux, le conjugué polyéthylène glycol/squalène s'associe, en l'espèce, avec les nanoparticules selon l'invention, et conduit ainsi à la formation de nanoparticules revêtues en surface de polyéthylène glycol. Par ailleurs, et comme mentionné précédemment, le conjugué polyéthylène glycol/squalène agit avantageusement lors du processus de formation des nanoparticules selon l'invention, comme tensioactif du fait de son comportement amphiphile et stabilise donc la solution colloïdale, réduisant ainsi la taille des nanoparticules formées. Un enrobage de surface à base de tels composés et en particulier le polyéthylène glycol ou le conjugué polyéthylène glycol /cholestérol ou le conjugué polyethylèneglycol/squalène, est en effet avantageux pour conférer une rémanence vasculaire accrue en raison d'une réduction significative de la capture des nanoparticules par les macrophages hépatiques.
Selon un mode de réalisation avantageux, les nanoparticules selon l'invention sont formulées à l'état de dispersion aqueuse.
Selon un autre mode de réalisation particulier, cette dispersion aqueuse contient moins de 5 % en poids, voire moins de 2 % en poids et plus particulièrement est dénuée de tensioactif ou analogue tels que par exemple les polyéthylène glycols, le polyglycérol et leurs dérivés, tels les esters par exemple.
Selon un autre mode de réalisation avantageux, cette dispersion aqueuse contient moins de 5 % en poids, voire moins de 2 % en poids en alcool en C2 à C4 tel que par exemple l'éthanol.
Ainsi, la formulation en milieu aqueux de la statine considéré à l'aide de l'acide squalénique à l'état de nanoparticules hydrodispersibles permet, avantageusement, d'obtenir une suspension de nanoparticules sans autre additif que le dextrose 5 % nécessaire pour obtenir l'isotonie de la suspension injectable.
Selon un autre mode de réalisation avantageux, les nanoparticules selon l'invention sont sous forme de lyophilisât. Comme indiqué précédemment, la présente invention vise également l'utilisation d'au moins une nanoparticule selon l'invention dans des compositions pharmaceutiques.
Un autre aspect de l'invention concerne donc une composition pharmaceutique comprenant au moins, au titre de matière active, un complexe conforme à la présente invention notamment sous la forme de nanoparticules. Les complexes conformes à la présente invention peuvent y être associés avec au moins un véhicule pharmaceutiquement acceptable.
A titre d'exemples de formulations pharmaceutiques compatibles avec les compositions selon l'invention, on peut notamment citer : - les injections ou perfusions intraveineuses ; les solutions salines ou d'eau purifiée ; les compositions pour inhalation ; les capsules, dragées, cachets et sirops incorporant notamment à titre de véhicule, de l'eau, du phosphate de calcium, des sucres, tels que lactose, dextrose ou mannitol, du talc, de l'acide stéarique, de l'amidon, du bicarbonate de sodium et/ou de la gélatine.
Lorsque les complexes et/ou nanoparticules sont utilisés en dispersion dans une solution aqueuse, ils peuvent être associés à des excipients de type agent séquestrant ou chélatant, antioxydant, agents modifiant le pH et/ou agents tampons. Outre les composés précités, les compositions pharmaceutiques selon l'invention peuvent contenir des agents de type conservateurs, des agents mouillants, des agents solubilisants et des agents de coloration.
Elle peut cependant contenir d'autres actifs dont il peut être bénéfique de tirer profit sur le plan thérapeutique, conjointement à l'effet des statines. A titre représentatif de ces matières actives susceptibles d'être combinées aux complexes et/ou nanoparticules conformes à la présente invention, on peut notamment citer les actifs destinés à réduire l'hypertension artérielle, comme les antihypertenseurs ou hypotenseurs ou encore d'autres composés à activité hypolipémiante. On compte parmi eux les diurétiques, tels que les thiazidiques, les diurétiques de l'anse de Henlé comme par exemple le furozémide, les anti-aldostérones, ou encore les β-bloquants tels que l'acébutolol, l'aténolol, le bétaxolol, le bisoprolol, l'esmolol, le métoprolol, le nébivolol, le nadolol, l'oxprénolol, le propranolol, le pindolol, le sotalol, le carvédilol, le labétalol, le lévobunolol, le timolol, les inhibiteurs de l'enzyme de conversion (IECA, IEC) tels que benazepril, captopril, cilazapril, enalapril, fosinopril, imidapril, lisinopril, moexipril, perindopril, quinapril, ramipril, spirapril, trandolapril, les antagonistes des récepteurs de l'angiotensine II tels que le candésartan, candésartan cilexétil, éprosartan, irbésartan, losartan et son sel potassique, olmésartan, olmésartan médoxomil, telmisartan, valsartan, les inhibiteurs calciques tels que l'amlodipine, le gallopamil, le vérapamil, l'amlodipine, le barnidipine, la félodipine, l'isradipine, le lacidipine, le lercanidipine, la nicardipine, la nifédipine, la nimodipine, la nisoldipine, la nitrendipine, le diltiazem, les antihypertenseurs centraux, les alpha-stimulants tels que la prazosine, la térazosine, l'alfuzosine, la doxazosine, la tamsulosine, les alpha-bloquants périphériques, les vasodilatateurs.
On peut également citer d'autres agents hypolipémiants choisis parmi: fénofïbrate, bézafîbrate, cipofîbrate, colestipol, ézétimibe, tiadénol, gemfïbrozil, acides gras oméga-3 poly- insaturés, triglycérides d'acides oméga-3, benfluorex, alpha-tocophérol (vitamine E), colestyramine. Les complexes et/ou nanoparticules conformes à la présente invention peuvent être administrés par toutes les voies conventionnelles. Toutefois, comme précisé précédemment, compte tenu de la faible taille de leurs particules, ils sont administrables sous la forme d'une suspension aqueuse par voie intraveineuse et donc compatibles avec la microcirculation vasculaire. Pour des raisons évidentes, les quantités en complexe et/ou nanoparticule selon l'invention susceptibles d'être mis en œuvre sont susceptibles de varier signifïcativement selon le mode d'utilisation et la voie retenue pour leur administration.
En revanche, pour une administration topique, on peut envisager de formuler au moins un complexe et/ou nanoparticule conforme(s) à la présente invention à raison de 0,1 à 10 % en poids, voire plus, par rapport au poids total de la formulation pharmaceutique considérée. Les exemples qui suivent illustrent la présente invention sans pour autant y être limitée.
Les spectres infrarouges sont obtenus par mesure sur un solide ou un liquide pur en utilisant un spectromètre de Fourier (Transform Bruker Vector® 22). Seules les absorptions significatives sont relevées. Les rotations optiques ont été mesurées à l'aide d'un polarimètre Perkin-Elmer® 241, à une longueur d'onde de 589 nm. Les spectres RMN 1H et 13C ont été enregistrés en utilisant un spectromètre Bruker ARX® 400 (à 400 MHz et 100 MHz, respectivement pour 1H et 13C) ou Bruker Avance® 300 (à 300 MHz et 75 MHz, respectivement pour 1H et 13C). Les spectres de masse ont été enregistrés en utilisant un appareil Bruker Esquire-LC®. L'analyse de chromatographie sur couche mince a été réalisée sur des plaques de silice 6OF254 (couche de 0,25 mm). La colonne de chromatographie a été réalisée sur gel de silice 60 (Merck, 230-400 mesh ASTM). Toutes les réactions mettant en œuvre des composés sensibles à l'air ou à l'eau ont été conduites sous atmosphère d'azote. IPD = Indice de Polydispersité
Exemple 1 : Préparation du complexe (7V)-squalénoylpravastatine (SQprava)
Etape 1.1 : (4JE,8JE,12JE,16JE)-4,8,13,17,21-Pentaméthyldocosa-4,8,12,16,20- pentaen-1-ol :
L'aldéhyde squalénique est réduit en squalénol. Pour ce faire, à 1,15 g (3 mmol) d'aldéhyde squalénique dissous dans 6 mL d'éthanol sont ajoutés, à 0 0C, par petites portions 106 mg (0,9 équiv., 2,7 mmol) de borohydrure de sodium. Le mélange est agité sous atmosphère d'azote à température ambiante pendant 15 min, puis le mélange réactionnel est neutralisé à l'aide d'une solution de HCl 2N. Ensuite, le solvant est distillé sous pression réduite. Le résidu est dissous dans 10 mL d'eau et extrait par l'acétate d'éthyle (3 fois 20 mL) et les phases organiques réunies sont lavées par une solution aqueuse saturée en NaCl (10 mL), séchées sur MgSO4, puis le solvant est distillé sous pression réduite pour conduire à une huile jaune pâle. IR (pur, cm"1) v: 3060-2840, 1667 (faible), 1445, 1381.
RMN 1H (300 MHz, CDCl3) δ: 5,16-5,09 (m, 5H), 3,62 (t, J= 6,4, 2H), 2,13- 1,94 (m, 21H), 1,61 (s, 3H), 1,53 (s, 15H). MS (APCI+, MeOH), m/z(%) : 387 ([M+ H]+ (100)).
Etape 1.2. : Bromoacétate de (4JE,8JE,12JE,16JE)-4,8,13,17,21- pentaméthyldocosa-4,8,12,16,20-pentaen-l-yl. A 500 mg (1,3 mmol) de squalénol dissous dans 6 mL de CH2Cl2 anhydre sont ajoutés, 216 mg (1,55 équiv., 2,01 mmol) d'acide bromoacétique et quelques mg de DMAP. Le mélange est refroidi à 0 0C, puis on ajoute par petites portions, 317 mg (1,5 équiv., 1,95 mmol) de DCC dissous dans 2 mL de CH2Cl2. Après addition totale le mélange est agité sous atmosphère d'azote à température ambiante pendant 18 h puis filtré sur célite. Le filtrat est concentré sous pression réduite. Le résidu est chromatographié sur gel de silice à l'aide d'un mélange AcOEt/Cyclohexane : 1/4 pour donner 55 mg d'une huile incolore
IR (pur, cm"1) v: 2960-2850, 1737, 1668 (faible), 1450, 1382, 1276, 1381 RMN 1H (300 MHz, CDCl3) δ: 5,18-5,07 (m, 5H), 4,14 (t, J = 6,4, 2H), 3,82 (s, 2H), 2,16-1,98 (m, 18H), 1,81-1,71 (m, 2H), 1,68 (s, 3H), 1,53 (s, 15H); 13C (75 MHz, CDCl3) δ: 167,2 (C), 135,0 (C), 134,8 (2C), 133,2 (C), 131,2 (C), 125,3 (CH), 124,4 (2 CH), 124,2 (2 CH), 65,9 (CH2), 39,7 (2 CH2), 39,6 (CH2), 35,5 (CH2), 28,2 (2 CH2), 28,7 (CH2), 26,6 (CH2), 26,5 (2 CH2), 25,6 (CH2), 25,6 (CH3), 17,6 (CH3), 16,0 (3 CH3), 15,8 (CH3).
Etape 1.3: 2-Oxo-2-{[(4E,8E,12E,16E)-4,8,13,17,21-pentamethyldocosa-
4,8,12,16,20-pentaen-l-yl]oxy}ethyl (3R,5R)-3,5-dihydroxy-7-((lS,2S,6R,8S,8aR)-6- hydroxy-2-methyl-8-{[(2S)-2-methylbutanoyl]oxy}-l,2,6,7,8,8a-hexahydronaphthalen- l-yl)heptanoate A 50 mg (0,11 mmol) de pravastatine dissous dans 0,4 mL de DMSO anhydre sont ajoutés 111 mg (2 équiv., 0,22 mmol) de bromoacétate de squalényle. Le mélange est chauffé sous atmosphère d'azote à 40 0C pendant 5 h, puis le solvant est distillé sous pression réduite. Le résidu est chromatographié sur gel de silice à l'aide d'un mélange AcOEt/Cyclohexane : 1/1 pour donner 55 mg de pravastatine- S Q sous la forme d'un solide blanc amorphe.
[α]D = 77,7 (c = 2,4, CHCl3) ;
IR(PUr5Cm^)V: 3500-3200, 2924, 1728, 1448, 1375, 1264, 1182, 1151. RMN 1H (CDCl3, 400 MHz) δ : 5,99 (d, J = 9,7 Hz, IH, H-4), 5,89 (dd, J = 9,7 ; 6,0 Hz, IH, H-3), 5,56 (s, IH, H-5), 5,42 (s, IH, H-8), 5,20-5,05 (m, 5H, HC=C(Me)), 4,72 (d, J = 15,8 Hz, IH, OCH2OCO), 4,61 (d, J = 15,8 Hz, IH, OCH2OCO), 4,46-4,36 (m, IH, H-6), 4,38-4,22 (m, IH, H-3'), 4,15 (t, J= 6,9 Hz, 2H, OCH2CH2CH2C(Me)), 3,91 (s large, 1 H, OH), 3,83-3,78 (m, IH, H-5'), 3,53 (s large, 1 H, OH), 2,65-2,55 (m, 3H, 2H- 2', H-I), 2,46-2,35 (m, IH, H-2), 2,35-2,28 (m, 2H, HC(Me)(Et)CO2), 2,12-1,92 (m, 18 Η, =C(Me)CH2CH2), 1,75 (quint, J = 8,0 Hz, 2H, OCH2CH2CH2C(Me)), 1,68 (s, 3H, =C(CH3)2), 1,69-1,50 (m, 21H, 5 =C(CH3), H-7, H-4', 1 H CH3CH2CH(Me)CO2, 1 H 6'), 1,49-1,35 (m, 2 H, 1 H CH3CH2CH(Me)CO2, 1 H-7'), 1,16 (m, IH, 1 H-6'), 1,11 (d, J = 6,8 Hz, 3H, (CH3)(Et)CHCO2), 0,90 (d, J = 7,6 Hz, 3H, C-2(CH3)), 0,88 (d, J = 7,6 Hz, 3H, (CH3)(CH2CH3)CHCO2) ;
RMN 13C (CDCl3, 100 MHz) δ : 176,3 (CO), 171,3 (CO), 168,3 (CO), 136,1 (CH), 135,6 (C), 135,1 (C), 134,9 (2C), 133,3 (C), 131,2 (C), 127,3 (CH), 125,9 (CH), 125,4 (CH), 124,4 (2CH), 124,3 (2CH), 72,2 (CH), 69,5 (CH), 69,2 (CH), 65,6 (CH2), 65,1 (CH), 60,6 (CH2), 42,35 (CH2), 42,30 (CH2), 41,6 (CH), 39,7 (CH2), 39,6 (CH2), 37,7 (CH), 36,8 (CH2), 36,6 (CH), 35,6 (CH2), 34,6 (CH2), 30,9 (CH), 28,3 (2CH2), 26,8 (CH2), 26,65 (3CH2), 26,60 (2CH2), 25,7 (CH3), 23,8 (CH2), 16,8 (CH3), 16,0 (4CH3), 15,8 (CH3), 13,6 (CH3), 11,8 (CH3) ;
MS (ESI+, MeOH, DMSO), m/z(%) : 874 ([M+ Na]+ (100)).
Exemple 2 : Préparation de nanoparticules de pravastatine
Préparation des nanoparticules constituées de 4-(N)-saualénoylpravastatine
Les nanoparticules sont obtenues par la méthode précipitation/évaporation de solvant, par analogie avec la méthode décrite dans Fessi H. et al, Int. J. Pharm., 55 ; 1989, R1-R4.
4 mg de SQpravastatin sont dissous dans 0,5 mL d'éthanol dans un pilulier. Dans un autre flacon on dissout 2 mg de SQ-PEG dans 0,2 mL de l'acétone et 0,1 mL d'éthanol, dans l'ordre mentionné. Les deux solutions sont alors mélangés et la solution obtenue est ajoutée goutte à goutte, sous agitation (500 tr / min) à 1 mL d'une solution aqueuse à 5 % dextrose. La précipitation des nanoparticules est immédiate. Le flacon contenant la solution de SQpravastatin est rincé et la solution de rinçage ajoutée à la suspension de nanoparticules. Après 2 ou 3 minutes d'agitation, la suspension de nanoparticules est transférée dans un ballon taré et concentrée sous pression réduite au rotavapor (50-100 mbar à 20 0C pendant 10 min puis à 37 0C pendant environ 3-5 minutes) jusqu'à un poids de à 0,8 - 0,9 g. La solution est alors complétée jusqu'à 1 g en utilisant soit une solution de à 5 % de dextrose soit de l'eau stérile. La taille des nanoparticules l'obtenues, mesurée avec un nanosizer de Malvern (Zetasizer) est de 146 nm.
Les nanoparticules ont une taille moyenne, compatible avec tout mode d'administration, ainsi qu'une une bonne stabilité en solution aqueuse.
Elles possèdent un indice de polydispersité de 0,08.
L'indice de polydispersité a été déterminé selon les méthodes bien connues de l'homme du métier (par exemple, par analogie avec la méthode décrite dans Couvreur et al ., Nanoletters, vol. 6, n°l 1, pages 2544-2548, 2006).

Claims

REVENDICATIONS
1. Complexe formé d'au moins une molécule de statine ou dérivé, couplée de manière covalente à au moins un radical hydrocarboné comprenant au moins 18 atomes de carbone et contenant au moins une unité figurée par la formule qui suit :
Figure imgf000026_0001
2. Complexe selon la revendication précédente, dans lequel le composé hydrocarboné comprend de 18 à 40 atomes de carbone, de préférence de 18 à 32 atomes de carbone.
3. Complexe selon l'une quelconque des revendications précédentes, dans lequel le radical hydrocarboné est figuré par le radical de formule (I) qui suit :
Figure imgf000026_0002
dans laquelle : mi = 1, 2, 3, 4, 5 ou 6 ; - m2 = 0, 1, 2, 3, 4, 5 ou 6; et
représente la liaison vers la molécule de statine ou dérivé, étant entendu que lorsque m2 représente 0 alors mi représente au moins 2.
4. Complexe selon l'une quelconque des revendications précédentes, dans lequel le radical hydrocarboné est le radical de formule (I) dans lequel mi représente 1 et m2 représente 2.
5. Complexe selon l'une quelconque des revendications précédentes, dans lequel la molécule de statine ou dérivé comprend un système 4-hydroxy-6-oxo-2H-pyrane ou sa forme dihydroxyacide et une partie lipophile se présentant notamment comme un système hexahydronaphtalénique polysubstitué ou hétéroaromatique polysubstitué.
6. Complexe selon l'une quelconque des revendications précédentes, dans lequel la molécule, dérivée de statine est figurée par la formule (lia), (Hb) ou (Ile) qui suit :
Figure imgf000027_0001
Figure imgf000027_0002
Mc
dans lesquelles :
- Ra représente un groupe aryle, hétéroaryle, éventuellement substitué par un ou plusieurs groupe(s) R ;
- R représente indépendamment un groupe hydroxyle, un groupe Ci-C6 alkyle,
Ci-C6 alkoxy, un groupe -0-C(O)Ci-C6 alkyle, un phényle, un groupe -NRiR2, un groupe -C(O)NRiR2, un groupe -C(O)OR3, lesdits groupes alkyle et phényle étant éventuellement substitués par un ou plusieurs atomes d'halogène ou par un ou plusieurs groupes hydroxyle ;
- Ri et R2 représentent, indépendamment l'un de l'autre, un atome d'hydrogène, un groupe Ci-C6 alkyle, un -SO2-Ci-C6 alkyle, un phényle, lesdits groupes Ci-C6 alkyle et phényle étant éventuellement substitués par un ou plusieurs atomes d'halogène ou par un ou plusieurs groupes hydroxyles ;
- R3 représente un atome d'hydrogène, un Ci-C6 alkyle éventuellement substitué par un ou plusieurs atomes d'halogènes ou par un ou plusieurs groupes hydroxyles ; à l'état de base ou de sel d'addition à un acide, ainsi qu'à l'état d'hydrate ou de solvate, ainsi que ses énantiomères, diastéréosomères, et leur mélange.
7. Complexe selon l'une quelconque des revendications précédentes, dans lequel la molécule, dérivée de statine, est choisie parmi l'atorvastine, la lovastatine, la simvastatine, la pravastatine, la fluvastatine et la rosuvastatine.
8. Complexe selon l'une quelconque des revendications précédentes, dans lequel les deux entités formant ledit complexe sont couplés par une liaison covalente de type ester, éther, thioéther, disulfure, phosphate ou amide.
9. Complexe selon l'une quelconque des revendications précédentes, figuré par le composé de formule (III) qui suit :
Figure imgf000028_0001
(III) dans laquelle
- X représente une liaison covalente simple ou une fonction de type ester, éther, thioéther, disulfure, phosphate ou amide ; - Li et L2 représentent indépendamment l'un de l'autre une liaison covalente simple ou un groupe Ci -C4 alkylène et ;
- Ra est tel que défini pour le composé de formule (lia) (Hb) ou (Ile) ; et mi et m2 sont tels que définis pour le composé de formule (I) ; et
- '' représente la présence éventuelle d'un centre d' insaturation ; à l'état de base ou de sel d'addition à un acide, ainsi qu'à l'état d'hydrate ou de solvate, ainsi que ses énantiomères, diastéréosomères, et leur mélange.
10. Complexe selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il possède l'aptitude à s'organiser spontanément à l'état de nanoparticules lorsqu'il est en présence d'un milieu aqueux.
11. Nanoparticules d'un complexe tel que décrit selon l'une quelconque des revendications 1 à 10.
12. Nanoparticules selon la revendication précédente dont la taille moyenne varie de 30 à 500 nm, en particulier de 50 à 250 nm, voire de 100 à 400 nm.
13. Nanoparticules selon l'une quelconque des revendications 11 ou 12, de A- (N)-squalénoylpravastatine.
14. Procédé de préparation de nanoparticules selon l'une quelconque des revendications 11 à 13, caractérisé en ce qu'il comprend au moins : la dispersion d'un complexe selon l'une quelconque des revendications 1 à 10, dans au moins un solvant organique, à une concentration suffisante pour obtenir, lors de l'ajout du mélange résultant, sous agitation, à une phase aqueuse, la formation instantanée de nanoparticules dudit complexe en suspension dans ladite phase aqueuse, et - le cas échéant, l'isolement desdites nanoparticules.
15. Procédé de préparation selon la revendication précédente comprenant en outre une étape de lyophilisation.
16. Lyophilisât comprenant au moins un complexe tel que défini selon l'une des revendications 1 à 10 et/ou au moins des nanoparticules telles que définies selon l'une des revendications 11 à 13.
17. Composition pharmaceutique comprenant au moins un complexe tel que défini selon l'une des revendications 1 à 10 et/ou au moins des nanoparticules telles que définies selon l'une des revendications 11 à 13, ledit complexe et/ou lesdites nanoparticules étant éventuellement sous forme d'un lyophilisât tel que défini selon la revendication 16, en association avec au moins un véhicule pharmaceutique acceptable.
18. Complexe tel que défini selon l'une des revendications 1 à 10 et/ou nanoparticules telles que définies selon l'une des revendications 11 à 13, ledit complexe et/ou lesdites nanoparticules étant éventuellement sous forme d'un lyophilisât tel que défini selon la revendication 16, pour le traitement et/ou la prévention d'hyperlipémie, d'hypercholestérolémie, et en particulier pour le traitement et/ou la prévention de maladies cardiovasculaires, d'obésité, de dyslipidémie.
PCT/IB2009/054781 2008-10-29 2009-10-28 Nanoparticules de statine WO2010049900A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2742181A CA2742181A1 (fr) 2008-10-29 2009-10-28 Nanoparticules de statine
US13/126,752 US8748414B2 (en) 2008-10-29 2009-10-28 Statin nanoparticles
JP2011533903A JP2012507503A (ja) 2008-10-29 2009-10-28 スタチンナノ粒子
EP09759783A EP2355801A1 (fr) 2008-10-29 2009-10-28 Nanoparticules de statine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0857356A FR2937537A1 (fr) 2008-10-29 2008-10-29 Nanoparticules de statine
FR0857356 2008-10-29

Publications (1)

Publication Number Publication Date
WO2010049900A1 true WO2010049900A1 (fr) 2010-05-06

Family

ID=40616616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/054781 WO2010049900A1 (fr) 2008-10-29 2009-10-28 Nanoparticules de statine

Country Status (6)

Country Link
US (1) US8748414B2 (fr)
EP (1) EP2355801A1 (fr)
JP (1) JP2012507503A (fr)
CA (1) CA2742181A1 (fr)
FR (1) FR2937537A1 (fr)
WO (1) WO2010049900A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136294A1 (fr) 2012-03-16 2013-09-19 Centre National De La Recherche Scientifique Complexes de vitamine c
FR3110427A1 (fr) 2020-05-20 2021-11-26 Laboratoires Eriger Conjugué terpenique de couplage

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931152B1 (fr) * 2008-05-16 2010-07-30 Centre Nat Rech Scient Nouveau systeme de transfert d'acide nucleique
FR2937549B1 (fr) * 2008-10-29 2011-04-01 Centre Nat Rech Scient Nanoparticules de derives beta-lactamine
AU2013256362A1 (en) * 2012-05-01 2014-11-13 Catabasis Pharmaceuticals, Inc. Fatty acid conjugates of statin and FXR agonists: compositions and methods of use
EP2742955A1 (fr) 2012-12-12 2014-06-18 Centre National De La Recherche Scientifique Nanoparticules à base de bioconjugué de GAG

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2073193A (en) * 1980-03-31 1981-10-14 Sankyo Co Inhibitors of Cholesterol Biosynthesis, their Preparation and Use
WO1997020835A1 (fr) * 1995-12-05 1997-06-12 Harbor Branch Oceanographic Institution, Inc. Composes de discodermolide et compositions pharmaceutiques contenant ces composes, a utiliser dans la therapie du cancer
WO2003103640A1 (fr) * 2002-06-10 2003-12-18 Elan Pharma International, Ltd Formulations nanoparticulaires comprenant des derives d'un inhibiteur de la hmg coa-reductase (≤statines≥), nouvelles combinaisons associees et production de ces compositions pharmaceutiques
US20060013882A1 (en) * 2002-05-15 2006-01-19 Rutgers, The State University Tri-block copolymers for nanosphere-based drug delivery
WO2006090029A1 (fr) * 2004-06-30 2006-08-31 Centre National De La Recherche Scientifique Nanoparticules de derives de la gemcitabine
US20070237827A1 (en) * 2005-01-04 2007-10-11 Hsing-Wen Sung Nanoparticles for drug delivery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9405304D0 (en) 1994-03-16 1994-04-27 Scherer Ltd R P Delivery systems for hydrophobic drugs
US6726911B1 (en) 1999-03-09 2004-04-27 Ganomycin Biologically active compounds of Ganoderma pfeifferi DSM 13239
FR2818905A1 (fr) 2000-12-28 2002-07-05 Cll Pharma Compositions pharmaceutiques colloidales micellaires renfermant un principe actif lipophile
US7026472B2 (en) 2002-05-06 2006-04-11 University Of South Florida Methods for preventing and treating cancer using N-thiolated β-lactam compounds and analogs thereof
US20090004277A1 (en) 2004-05-18 2009-01-01 Franchini Miriam K Nanoparticle dispersion containing lactam compound
US7846920B2 (en) 2006-09-13 2010-12-07 University Of South Florida Heterosubstituted N-thiolated beta-lactam compounds and methods of use
FR2924024B1 (fr) 2007-11-27 2012-08-17 Centre Nat Rech Scient Nanoparticules d'actifs therapeutiques de faible solubilite aqueuse
FR2931152B1 (fr) 2008-05-16 2010-07-30 Centre Nat Rech Scient Nouveau systeme de transfert d'acide nucleique
FR2937549B1 (fr) 2008-10-29 2011-04-01 Centre Nat Rech Scient Nanoparticules de derives beta-lactamine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2073193A (en) * 1980-03-31 1981-10-14 Sankyo Co Inhibitors of Cholesterol Biosynthesis, their Preparation and Use
WO1997020835A1 (fr) * 1995-12-05 1997-06-12 Harbor Branch Oceanographic Institution, Inc. Composes de discodermolide et compositions pharmaceutiques contenant ces composes, a utiliser dans la therapie du cancer
US20060013882A1 (en) * 2002-05-15 2006-01-19 Rutgers, The State University Tri-block copolymers for nanosphere-based drug delivery
WO2003103640A1 (fr) * 2002-06-10 2003-12-18 Elan Pharma International, Ltd Formulations nanoparticulaires comprenant des derives d'un inhibiteur de la hmg coa-reductase (≤statines≥), nouvelles combinaisons associees et production de ces compositions pharmaceutiques
WO2006090029A1 (fr) * 2004-06-30 2006-08-31 Centre National De La Recherche Scientifique Nanoparticules de derives de la gemcitabine
US20070237827A1 (en) * 2005-01-04 2007-10-11 Hsing-Wen Sung Nanoparticles for drug delivery

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BHATT A ET AL: "Accumulation of an E,E,E-Triene by the Monensin-Producing Polyketide Synthase when Oxidative Cyclization is Blocked", ANGEWANDTE CHEMIE, vol. 117, no. 43, 4 November 2005 (2005-11-04), pages 7237 - 7240, XP002528559, ISSN: 0044-8249 *
COUVREUR PATRICK ET AL: "Squalenoyl nanomedicines as potential therapeutics", NANO LETTERS, vol. 6, no. 11, 1 November 2006 (2006-11-01), pages 2544 - 2548, XP002489419, ISSN: 1530-6984 *
DATE ET AL: "Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 329, no. 1-2, 20 December 2006 (2006-12-20), pages 166 - 172, XP005809188, ISSN: 0378-5173 *
DIXIT R P ET AL: "Formulation and in vivo evaluation of self-nanoemulsifying granules for oral delivery of a combination of ezetimibe and simvastatin", DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, vol. 34, no. 12, 1 January 2008 (2008-01-01), pages 1285 - 1296, XP009117110, ISSN: 0363-9045 *
GUNASEKERA S P ET AL: "Five new discodermolide analogues from the marine sponge discodermia species", JOURNAL OF NATURAL PRODUCTS, vol. 65, 1 January 2002 (2002-01-01), pages 1643 - 1648, XP003007586, ISSN: 0163-3864 *
KANG BOK KI ET AL: "Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs.", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 274, no. 1-2, 15 April 2004 (2004-04-15), pages 65 - 73, XP009117164, ISSN: 0378-5173 *
SURESH G ET AL: "Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles", AAPS PHARMSCITECH, vol. 8, no. 1, 23 March 2007 (2007-03-23), pages E162 - E170, XP009117188, ISSN: 1530-9932 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136294A1 (fr) 2012-03-16 2013-09-19 Centre National De La Recherche Scientifique Complexes de vitamine c
JP2015516944A (ja) * 2012-03-16 2015-06-18 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク ビタミンc複合体
US9295630B2 (en) 2012-03-16 2016-03-29 Centre National De La Recherche Scientifique Vitamin C complexes
FR3110427A1 (fr) 2020-05-20 2021-11-26 Laboratoires Eriger Conjugué terpenique de couplage
WO2021240099A1 (fr) 2020-05-20 2021-12-02 Laboratoires Eriger Conjugue terpenique de couplage

Also Published As

Publication number Publication date
EP2355801A1 (fr) 2011-08-17
CA2742181A1 (fr) 2010-05-06
JP2012507503A (ja) 2012-03-29
FR2937537A1 (fr) 2010-04-30
US20110269830A1 (en) 2011-11-03
US8748414B2 (en) 2014-06-10

Similar Documents

Publication Publication Date Title
EP2055711B1 (fr) Utilisation de l'acide squalénique pour la formulation d'un principe actif à l'état de nanoparticules
CN106715456B (zh) 定向淋巴的前药
FI119474B (fi) Ei-steroidisten tulehduksenvastaisten karboksyylihappojen estereitä ja amideja, joita voidaan käyttää antioksidantteina, 5-lipoksigenaasi-inhibiittoreina ja ei-steroidisina tulehduksenvastaisina tuotteina
WO2010049900A1 (fr) Nanoparticules de statine
TWI355934B (en) Pharmaceutical composition for treatment or prophy
EP2355800A1 (fr) Nanoparticules de derives beta-lactamine
EP0087378A2 (fr) Ethers-oximes d'alcoylaminoalcools comme médicaments, produits nouveaux et procédés pour leur préparation
EP1212313B1 (fr) Derives de 7-carboxy-flavones, procede de preparation et application en therapeutique
JP3974397B2 (ja) デクルシノール(Decursinol)またはその誘導体からなる鎮痛剤
EP1664012A1 (fr) Derives de tocopherol a longue chaine hydroxylee utiles comme neurotrophiques
WO2001036437A1 (fr) DERIVES DE β-D-5-THIOXYLOSE, PROCEDE DE PREPARATION ET UTILISATION EN THERAPEUTIQUE
EP2825531B1 (fr) Conjugués de vitamine c
FR3122827A1 (fr) Prodrogue nucléolipidique antioxydante, composition pharmaceutique pour son administration et leurs utilisations thérapeutiques
WO2012093227A1 (fr) Promédicaments pour une délivrance au niveau du foie d'une statine
FR3104946A1 (fr) Formulation d’un dendrimère anti-inflammatoire pour le traitement de psoriasis
FR3124946A1 (fr) Nouveaux composés dérivés des schweinfurthines G, E, F
TW201930261A (zh) 光學活性之反式蝦紅素衍生物或其鹽、及含有該等化合物之組合物
ES2359435T3 (es) Ácido 2,3,4,5-tetrahidroxi-6-sulfooxihexanoico y sus sales metálicas para uso médico.
EP3157903A1 (fr) Utilisation d'un nouveau compose 3-aryl-4-catechol-pyrrole-n-propanol et ses derives pour le traitement du cancer et des pathologies associees a une angiogenese excessive
JP2005306829A (ja) 低比重リポタンパクの酸化変性防止剤および抗アテローム性動脈硬化剤
CA2780627A1 (fr) Nouveaux derives de mannopyranoside ayant une activite anticancereuse
WO2003002586A1 (fr) Derives de [4-(4-cyanobenzoyl)phenyl]glycofuranoside, utilisation en tant que medicament, procede d'obtention et compositions pharmaceutiques les contenant
WO2003002585A1 (fr) Derives de [4-(4-cyanobenzoyl)phenyl]glycopyranoside, utilisation en tant que medicament, procede d'obtention et compositions
FR2920991A1 (fr) Composition a base de diacerheine pour le traitement de l'arthrose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09759783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2742181

Country of ref document: CA

Ref document number: 2011533903

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009759783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009759783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13126752

Country of ref document: US