WO2010049512A1 - Merocyanine zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren - Google Patents

Merocyanine zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren Download PDF

Info

Publication number
WO2010049512A1
WO2010049512A1 PCT/EP2009/064331 EP2009064331W WO2010049512A1 WO 2010049512 A1 WO2010049512 A1 WO 2010049512A1 EP 2009064331 W EP2009064331 W EP 2009064331W WO 2010049512 A1 WO2010049512 A1 WO 2010049512A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
alkylene
aryl
derivatives
component
Prior art date
Application number
PCT/EP2009/064331
Other languages
English (en)
French (fr)
Inventor
Helmut Reichelt
Jae Hyung Hwang
Rüdiger Sens
Jan SCHÖNEBOOM
Peter Erk
Ingmar Bruder
Antti Ojala
Frank WÜRTHNER
Klaus Meerholz
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP09741311A priority Critical patent/EP2347460A1/de
Priority to CN2009801433924A priority patent/CN102203972A/zh
Priority to US13/126,868 priority patent/US20110256422A1/en
Priority to JP2011533734A priority patent/JP2012507169A/ja
Publication of WO2010049512A1 publication Critical patent/WO2010049512A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/28Pyronines ; Xanthon, thioxanthon, selenoxanthan, telluroxanthon dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B19/00Oxazine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0066Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of a carbocyclic ring,(e.g. benzene, naphtalene, cyclohexene, cyclobutenene-quadratic acid)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B55/00Azomethine dyes
    • C09B55/002Monoazomethine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the use of mixtures containing as components
  • NR 110 2 wherein both R 110 together with the N-atom to which they are attached, can form a five- or six-membered saturated ring, or one of R 110 forms with the carbon atom of the benzene ring, which ⁇ -constantly to Carbon atom bearing the NR 110 2 group is a five- or six-membered saturated ring, SR 110 or OR 110 ,
  • L 1 is a divalent aryl or hetaryl radical
  • L 2 is a divalent, optionally mono- or poly-fused carbocycle or heterocycle, which on the one hand with B, on the other hand via the units X 100 and X 101 and the remaining part of the molecule with A in ⁇ -conjugation, or a grouping
  • R 100 is alkyl, C 1 -C 6 -alkylene-COO-alkyl, C 1 -C 6 -alkylene-O-CO-alkyl, C 1 -C 6 -alkylene-O-CO-O-alkyl, cyclylalkyl, arylalkyl or aryl
  • R 110 is H, alkyl, C 1 -C 6 -alkylene-COO-alkyl, C 1 -C 6 -alkylene-O-CO-alkyl, C 1 -C 6 -alkylene-O-CO-O-alkyl, cyclylalkyl, arylalkyl or aryl,
  • R 101 is alkyl, C 1 -C 6 -alkylene-COO-alkyl, C 1 -C 6 -alkylene-O-CO-alkyl, C 1 -C 6 -alkylene-O-CO-O-alkyl, cyclylalkyl, arylalkyl, aryl or hetaryl,
  • R 111 is H, alkyl, C 1 -C 6 -alkylene-COO-alkyl, C 1 -C 6 -alkylene-O-CO-alkyl, C 1 -C 6 -alkylene-O-CO-O-alkyl, cyclylalkyl, arylalkyl, aryl or hetaryl,
  • R 115 is H, alkyl, partially or perfluorinated alkyl, C 1 -C 6 -alkylene-COO-alkyl, C 1 -C 6 -alkylene-O-CO-alkyl, C 1 -C 6 -alkylene-O-CO-O-alkyl, cyclylalkyl, arylalkyl, Aryl, NHCO-R 100 or N (CO-R 100 ) 2 ,
  • R 118 is H, alkyl, C 1 -C 6 -alkylene-COO-alkyl, C 1 -C 6 -alkylene-O-CO-alkyl, C 1 -C 6 -alkylene-O-CO-O-alkyl, cycloalkyl, arylalkyl, aryl, OR 110 , SR 110 , hetaryl, halogen, NO 2 or
  • the carbon chains of the alkyl and cycloalkyl radicals may be interrupted by one or two non-adjacent oxygen atoms
  • the radicals R 115 and R 210 in formula IIIa together may form a fused benzene ring optionally substituted by R 118
  • the radical R 100 can form a benzannelation which is optionally substituted by R 118 to give this carbon atom and the abovementioned variables, if they occur more than once, may be identical or different from one another,
  • K2) one or more compounds which act accordingly as component K1) as electron acceptor or electron donor,
  • organic semiconductors based on low-molecular or polymeric materials will increasingly be used in addition to the classical inorganic semiconductors. These have many advantages over the classical inorganic semiconductors, for example a better substrate compatibility and better processability of the semiconductor components based on them.
  • Organic Electronics “focuses on the development of new materials and manufacturing processes for the fabrication of electronic devices based on organic semiconductor layers, such as organic field-effect transistors (OFET) and organic light-emitting diodes (OLEDs) eg for use in displays) and organic photovoltaics.
  • OFET organic field-effect transistors
  • OLED organic light-emitting diodes
  • Direct conversion of solar energy into electrical energy in solar cells relies on the internal photoeffect of a semiconductor material, i. the generation of electron-hole pairs by absorption of photons and the separation of the negative and positive charge carriers at a p-n junction or a Schottky contact.
  • the photovoltaic voltage thus generated can cause a photocurrent in an external circuit, through which the solar cell gives off its power.
  • the semiconductor can absorb only those photons that have an energy that is greater than its band gap.
  • the size of the semiconductor band gap thus determines the proportion of sunlight that can be converted into electrical energy.
  • organic solar cells will outperform the traditional silicon-based solar cells because of lower cost, lower weight, the ability to produce flexible and / or colored cells, better ability to fine tune the bandgap. There is thus a great need for organic semiconductors which are suitable for the production of organic solar cells.
  • organic solar cells In order to use solar energy as effectively as possible, organic solar cells usually consist of two absorbing materials with different electron affinity or different ionization behavior. One material then acts as a p-type conductor (electron donor), the other as an n-type conductor (electron acceptor).
  • the first organic solar cells consisted of a two-layer system of a copper phthalocyanine as the p-type conductor and PTCBI as the n-type conductor and showed an efficiency of 1%. In order to use as many as possible incident photons are relatively high
  • Layer thicknesses used eg 100 nm.
  • the excited state generated by the absorbed photons must be a pn junction ("pn-junction") to create a hole and an electron, which then flows to the anode and cathode.
  • pn-junction pn junction
  • organic semiconductors have only excited-state diffusion lengths of up to 10 nm. Even by the best known fabrication methods, the distance over which the excited state must be propagated can be reduced to a minimum of 10 to 30 nm.
  • the photoactive layer contains the acceptor and donor compound (s) as a bicontinuous phase.
  • the acceptor and donor compound s
  • photo-induced charge transfer from the excited state of the donor compound to the acceptor compound causes rapid charge separation compared with other relaxation processes, and the resulting holes and electrons are removed via the corresponding electrodes.
  • Between the electrodes and the photoactive layer are often other layers, such. Hole or electron transport layers, to increase the efficiency of such cells.
  • polymers such as polyvinylphenylenes or polythiophenes, or dyes from the class of phthalocyanines, z.
  • Zn or Vanadylphthalocyanin As Zn or Vanadylphthalocyanin, and used as acceptor fullerene and fullerene derivatives and various perylenes.
  • Photoactive layers of the donor / acceptor pairs Poly (3-hexyl-thiophene) (“P3HT”) / [6,6] -phenyl-C 6- i-butyl acid methyl ester (“PCBM”), poly (2 - Methoxy-5- (3,7-dimethyloctyloxy) -1, 4-phenylenevinylene) (“OCiCio-PPV”) / PCBM and Zn phthalocyanine / fulleren investigated.
  • Halogen refers to fluorine, chlorine, bromine and iodine, in particular fluorine and chlorine.
  • Alkyl is to be understood as meaning substituted or unsubstituted C 1 -C 20 -alkyl radicals. Preference is given to C 1 to C 10 -alkyl radicals, more preferably C 1 to C 6 -alkyl radicals.
  • the alkyl radicals can be both straight-chain and branched.
  • the alkyl radicals may be substituted by one or more substituents selected from the group consisting of C 1 -C 20 -alkoxy, halogen, preferably F, and C 6 -C 8 -aryl, which in turn may be substituted or unsubstituted.
  • Suitable aryl substituents as well as suitable alkoxy and halogen substituents are mentioned below.
  • suitable alkyl groups are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl and derivatives of the cited alkyl groups with C ⁇ -Cso-aryl, C 1 -C 20 -alkoxy and / or halogen, in particular F, substituted , for example CF3.
  • n-isomers of the radicals mentioned and branched isomers such as isopropyl, isobutyl, isopentyl, sec-butyl, tert-butyl, neopentyl, 3,3-dimethylbutyl, 3-ethylhexyl, etc. are included.
  • Preferred alkyl groups are methyl, ethyl, tert-butyl and CF3.
  • Cycloalkyl is to be understood as meaning substituted or unsubstituted C 3 -C 20 -alkyl radicals.
  • C3 to C10-alkyl radicals are preferred, particularly preferably C3 to C5-alkyl radicals.
  • the cycloalkyl radicals may carry one or more of the substituents mentioned with respect to the alkyl radicals.
  • Suitable cyclic alkyl groups which may likewise be unsubstituted or substituted by the radicals mentioned above with regard to the alkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl and cyclodecyl. If appropriate, these may also be polycyclic ring systems, such as decalinyl, norbornyl, bornanyl or adamantyl.
  • alkyl which is interrupted by one or two non-adjacent oxygen atoms is, for example, 3-methoxyethyl, 2- and 3-methoxy-propyl, 2-ethoxyethyl, 2- and 3-ethoxypropyl, 2-propoxyethyl, 2- and 3-propoxypropyl
  • 2-butoxyethyl, 2- and 3-butoxypropyl, 3,6-dioxaheptoyl and 3,6-dioxaoctyl is, for example, 3-methoxyethyl, 2- and 3-methoxy-propyl, 2-ethoxyethyl, 2- and 3-ethoxypropyl, 2-propoxyethyl, 2- and 3-propoxypropyl.
  • Suitable aryls are C ⁇ -Cso-aryl radicals derived from monocyclic, bicyclic or tricyclic aromatics which contain no ring heteroatoms. Unless they are monocyclic systems, the term aryl for the second ring also means the saturated form (perhydroform) or the partially unsaturated form (for example the dihydroform or tetrahydroformyl), provided the respective forms are known and stable , That is, in the present invention, the term aryl includes, for example, bicyclic or tricyclic radicals in which both both and all three radicals are aromatic, as well as bicyclic or tricyclic radicals in which only one ring is aromatic, and tricyclic radicals wherein two rings are aromatic.
  • aryl examples include: phenyl, naphthyl, indanyl, 1, 2-dihydronaphthenyl, 1, 4-dihydronaphthenyl, indenyl, anthracenyl, phenanthrenyl or 1, 2,3,4-tetrahydronaphthyl.
  • Particularly preferred are C ⁇ -Cio-aryl radicals, for example phenyl or naphthyl, very particularly preferably C ⁇ -aryl radicals, for example phenyl.
  • the aryl radicals may be unsubstituted or substituted by a plurality of further radicals. Suitable further radicals are selected from the group consisting of C 1 -C 20 -alkyl, C 6 -C 30 -aryl or substituents with donor or acceptor action, suitable substituents having donor or acceptor activity being:
  • Preferred substituents with donor or acceptor action are selected from the group consisting of:
  • Cr to C 2 o-alkoxy preferably CrC ⁇ -alkoxy, particularly preferably ethoxy or methoxy
  • C6-C 3 o-aryloxy preferably C ⁇ -Cio-aryloxy, most preferably phenyloxy
  • SiR 3 where the three radicals R are preferably each independently substituted or unsubstituted alkyl or substituted or unsubstituted phenyl, halogen radicals, preferably F, Cl, Br, more preferably F or Cl, most preferably F, halogenated Ci-C 2 o Alkyl radicals, preferably halogenated Ci-C ⁇ -alkyl radicals, most preferably fluorinated CrC ⁇ -alkyl radicals, for.
  • CF 3 CH 2 F, CHF 2 or C 2 F 5 ;
  • Amino preferably dimethylamino, diethylamino or diphenylamino;
  • OH pseudohalo radicals, preferably CN, SCN or OCN, more preferably CN, -C (O) OCrC 4 -alkyl, preferably -C (O) OMe, P (O) R 2 , preferably P (O) Ph 2 or SO 2 R 2 , preferably SO 2 Ph.
  • R in particular Ci-C 2 o alkyl or C6-C 3 O- aryl.
  • Ci-C 6 -alkylene-O-CO-alkyl and -C 6 - alkylene-0-COO-alkyl are derived from the above-described alkyl groups by binding to the moieties Ci-Ce Alkylene-COO, Ci-C 6 -alkylene-O-CO and CrC 6 - alkylene-O-CO-0, wherein the CrC ⁇ -alkylene units are preferably linear. In particular, C 2 -C 4 - alkylene units are suitable.
  • Arylalkyl in particular aryl-CrC 2 o-alkyl groups are mentioned. They are derived from the abovementioned alkyl and aryl groups by formal replacement of a hydrogen atom of the linear or branched alkyl chain by an aryl group. For example, may be mentioned as the preferred arylalkyl benzyl.
  • Hetaryl is to be understood as meaning unsubstituted or substituted heteroaryl radicals having from 5 to 30 ring atoms, which may be monocyclic, bicyclic or tricyclic, some of which can be derived from the abovementioned aryl in which at least one carbon atom in the aryl skeleton is replaced by a heteroatom is replaced.
  • Preferred heteroatoms are N, O and S.
  • the hetaryl radicals have 5 to 13 ring atoms.
  • the skeleton of the heteroaryl radicals is selected from systems such as pyridine and five-membered heteroaromatics such as thiophene, pyrrole, imidazole or furan.
  • backbones may optionally be fused with one or two six-membered aromatic radicals.
  • Suitable anellated heteroaromatics are carbazolyl, benzimidazolyl, benzofuryl, dibenzofuryl or dibenzothiophenyl.
  • the backbone may be substituted at one, several or all substitutable positions, suitable substituents being those already mentioned under the definition of C ⁇ -Cso-aryl.
  • the hetaryl radicals are preferably unsubstituted.
  • Suitable hetaryl radicals are, for example, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, thiophen-2-yl, thiophen-3-yl, pyrrol-2-yl, pyrrol-3-yl, furan -2-yl, furan-3-yl and imidazol-2-yl and the corresponding benzanell faced radicals, in particular carbazolyl, benzimidazolyl, benzofuryl, dibenzofuryl or dibenzothiophenyl.
  • the divalent aryl or hetaryl radicals of the definition of L 1 are derived from the abovementioned aryl and hetaryl radicals by the formal removal of a further hydrogen atom.
  • the component K1 can take over the role of the electron donor, and accordingly the component K2 assumes the role of the electron acceptor. Alternatively, however, the component K1 can also assume the role of the electron acceptor, and accordingly component K2 acts as an electron donor.
  • the way in which the respective component acts depends on the energy of the HOMO or LUMO of the component K1 in relation to the energy of the HOMO or LUMO of the component K2.
  • the compounds of component K1 are typically merocyanines, which usually appear as electron donors. In particular, this is the case if, as component K2, rylene or fullerene derivatives are used, which then generally act as electron acceptors. However, these roles can be reversed in a specific case.
  • component K2 can also obey the structural definition of component K1, so that a compound of the formula I, IIa, IIb, IIIa, INb, INc or Nie the role of the electron donor and another compound of the formula I, IIa, IIb, lilac, INb, INc, and can never assume the role of the electron acceptor.
  • Preferred compounds to be used according to the invention of the formulas I, IIa and / or IIb in component K1 are characterized in that L 2 denotes a group which is selected from the group
  • R 102 arylalkyl, aryl or hetaryl
  • R 112 is H, alkyl, C 1 -C 6 -alkylene-COO-alkyl, C 1 -C 6 -alkylene-O-CO-alkyl, C 1 -C 6 -alkylene-O-CO-O-alkyl, cycloalkyl, arylalkyl, aryl, OR 110 or SR 110 ,
  • R 113 is H, alkyl, C 1 -C 6 -alkylene-COO-alkyl, C 1 -C 6 -alkylene-O-CO-alkyl, C 1 -C 6 -alkylene-O-CO-O-alkyl, cycloalkyl, arylalkyl, aryl, hetaryl , NH-aryl, N (aryl) 2 , NHCO-R 100 or N (CO-R 100 ) 2 , R 114 is H, alkyl or partially or perfluorinated alkyl, C 1 -C 6 -alkylene-COO-alkyl, C 1 -C 6 -alkylene-O-CO-alkyl or C 1 -C 6 -alkylene-O-CO-O-alkyl,
  • R 116 is H, alkyl, C 1 -C 6 -alkylene-COO-alkyl, C 1 -C 6 -alkylene-O-CO-alkyl, C 1 -C 6 -alkylene-O-CO-O-alkyl, cycloalkyl, arylalkyl, aryl, CO 2 R 110 or CN
  • R 117 is H, alkyl, C 1 -C 6 -alkylene-COO-alkyl, C 1 -C 6 -alkylene-O-CO-alkyl, C 1 -C 6 -alkylene-O-CO-O-alkyl, cycloalkyl, arylalkyl, aryl, OR 110 , SR 110 halogen or hetaryl,
  • component K2 is one or more compounds selected from the group
  • polycyclic aromatic hydrocarbons and their derivatives in particular naphthalene and its derivatives, rylenes, in particular perylene, terrylene and quaterrylene, and their derivatives, Azene, in particular anthracene, tetracene, in particular rubrene, pentacene and derivatives thereof, pyrene and derivatives thereof,
  • thiophenes oligo-thiophenes, condensed / fused thiophenes, such as thienothiophene and bithienothiophene, and derivatives thereof,
  • mixtures which are characterized in that component K2 is one or more fullerenes and / or fullerene derivatives.
  • Q is C 1 -C 10 -alkylene
  • R is aryl or arylalkyl
  • Ci-Cio-Alkylen is in particular a linear chain - (CH2) m -, with m equal to 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 to understand.
  • R denotes a C 1 -C 4 -alkyl radical, in particular a methyl radical
  • Q denotes a propylene chain - (CH 2) 3
  • R represents an optionally substituted phenyl or 2 Thienyl stands.
  • the fullerene derivative is [6,6] -phenyl-C6i- butylklaremethylester ("PCBM").
  • fullerenes may be mentioned C ⁇ o, C70, C76, Cso, Cs2, Cs 4, Cs ⁇ , C90 and C94, in particular the C ⁇ o and C70.
  • An overview of fullerenes which can be used according to the invention is provided, for example, by the monograph by A. Hirsch, M. Brettreich, "Fullerenes: Chemistry and Reactions", Wiley-VCH, Weinheim 2005.
  • component K2 is a C60 fullerene of the formula k2
  • the mixtures to be used according to the invention are characterized in that component K1 is present in a proportion of 10 to 90% by mass, in particular 20 to 80% by mass, and component K2 in a proportion of 90 to 10% by mass, in particular 80% to 20% by mass, is present, wherein the proportions of the components K1 and K2, in each case based on the total mass of the components K1 and K2, supplement to 100% by mass.
  • a compound of formula IIa with a unit L 2 -00 is listed below by way of example:
  • a process for the preparation of photoactive layers which is characterized in that one or more of the compounds of the general formulas I, IIa, IIb, IIIa, IIIb, INb, INc, INd and / or or component K1, even taking into account their preferences, and one or more compounds of component K2, also taking into account their preferences, are deposited on a substrate simultaneously, successively or in alternating sequence by vacuum sublimation.
  • the method is characterized in that the component K1 in a proportion of 10 to 90% by mass, in particular 20 to 80% by mass, and the component K2 in a proportion of 90 to 10% by mass, in particular 80 to 20 mass -%, deposited on the substrate, wherein the proportions of the components K1 and K2, in each case based on the total mass of the components K1 and K2, supplement to 100 mass%.
  • organic solar cells and organic photodetectors which contain photoactive layers which have been prepared using the above-described mixtures containing components K1 and K2, or using the preferred embodiments of the mixtures also described above.
  • Organic solar cells are usually layered and usually comprise at least the following layers: electrode, photoactive layer and counter electrode. These layers are usually on a conventional substrate.
  • Suitable substrates are e.g. oxidic materials, such as glass, quartz, ceramics, SiO 2, etc., polymers, such as polyvinyl chloride, polyolefins, e.g. Polyethylene and polypropylene, polyesters, fluoropolymers, polyamides, polyurethanes, polyalkyl (meth) acrylates, polystyrene and mixtures and composites thereof, and combinations of the substrates listed above.
  • oxidic materials such as glass, quartz, ceramics, SiO 2, etc.
  • polymers such as polyvinyl chloride, polyolefins, e.g. Polyethylene and polypropylene, polyesters, fluoropolymers, polyamides, polyurethanes, polyalkyl (meth) acrylates, polystyrene and mixtures and composites thereof, and
  • Suitable materials for the one electrode are in particular metals, such as e.g. the alkali metals Li, Na, K, Rb and Cs, the alkaline earth metals Mg, Ca and Ba, Pt, Au, Ag, Cu, Al, In, metal alloys, e.g. based on Pt, Au, Ag, Cu, etc. and special Mg / Ag alloys, but also alkali metal fluorides, such as LiF, NaF, KF, RbF and CsF, and mixtures of alkali metal fluorides and alkali metals.
  • the electrode used is preferably a material that essentially reflects the incident light. These include, for example, metal films of Al, Ag, Au, In, Mg, Mg / Al, Ca, etc.
  • the counter electrode consists of a material substantially transparent to incident light, e.g. As ITO, doped ITO, ZnO, TiO 2, Cu, Ag, Au and Pt, the latter metals are present in correspondingly thin layers.
  • an electrode / counterelectrode should be regarded as "transparent” if at least 50% of the radiation intensity is transmitted in the wavelength range in which the photoactive layer absorbs radiation. In the case of several photoactive layers, an electrode / counterelectrode should be considered “transparent” if at least 50% of the radiation intensity is transmitted in the wavelength ranges in which the photoactive layers absorb radiation.
  • one or more further layers may be present in the organic solar cells and photodetectors according to the invention, for example electron transporting layers ("ETL”) and / or hole transporting layers (“HTL”) and / or or blocking layers, eg, exciton-blocking layers ("EBL", exciton blocking layers), which usually do not absorb the incident light, or else layers which serve as charge transport layers and at the same time improve contact with one or both electrodes of the solar cell .
  • ETL and HTL may also be doped to give pin-type cells as they are For example, in the publication by J. Drechsel et al., Thin Solid Films 451-452 (2004), 515-517.
  • organic solar cells are further e.g. in WO 2004/083958 A2, US 2005/0098726 A1 and US 2005/0224905 A1, to which reference is made in its entirety.
  • Photodetectors essentially have a structure analogous to organic solar cells, but they are operated with a suitable bias voltage, which generates a corresponding current flow as measurement response when radiation energy is applied.
  • the processing of the photoactive layers can be carried out from solution.
  • the components K1 and K2 can already be solved together, but also be present separately as a solution of the component K1 and solution of the component K2, wherein the
  • concentrations of components K1 and K2 are typically about a few g / l to tens of g / l of solvent.
  • Suitable solvents are all liquids which evaporate without residue and have sufficient solubility for the components K1 and K2.
  • suitable compounds here are aromatic compounds, such as benzene, toluene, xylene, mesitylene, chlorobenzene or dichlorobenzene, trialkylamines, nitrogen-containing heterocycles, N, N-disubstituted aliphatic carboxylic acid amides, such as dimethylformamide, diethylformamide, dimethylacetamide or dimethylbutyramide, N -Alkyllactams, such as N-methylpyrrolidone, linear and cyclic ketones, such as methyl ethyl ketone, cyclopentanone or cyclohexanone, cyclic ethers, such as tetrahydrofuran, or alcohols, such as methanol, ethanol, propanol, isopropanol or butanol.
  • aromatic compounds such as benzene, tolu
  • mixtures of the abovementioned solvents can also be used.
  • Suitable methods for applying the photoactive layers of the invention of the liquid phase are known in the art.
  • processing by means of spin coating is advantageous, since the thickness of the photoactive layer can be controlled in a simple manner by the amount and / or concentration of the solution used and the rotational speed and / or rotation time.
  • the processing of the solution is usually carried out at room temperature.
  • the components K1 and K2 are separated from the gas phase, in particular by vacuum sublimation.
  • the compounds of the formulas I, IIa, IIb, IIIa, INb, INc, INd and N can generally be purified by sublimation. can already derive starting parameters for the vapor deposition. Usually, temperatures between 100 and 200 ° C. are used for the deposition, but they can also be increased to a range of 300 to 400 ° C., depending on the stability of the compounds of components K1 and K2.
  • mixtures are also claimed which contain as components one or more of the compounds of general formulas I, IIa, IIb, IIIa, INb, INc, INd and / or Nie of component K1, also taking into account the preferences given , and one or more compounds of component K2, also taking into account their preferences listed.
  • the mixtures according to the invention are characterized in that the component K1 in a proportion of 10 to 90% by mass, in particular 20 to 80% by mass, and the component K2 in a proportion of 90 to 10% by mass, in particular 80 to 20% by mass, is present, wherein the proportions of the components K1 and K2, in each case based on the total mass of the components K1 and K2, supplement to 100% by mass.
  • the structure comprises the following layers:
  • Layer 1 1 is a transparent, conductive layer, for example ITO, FTO or ZnO, which is optionally pretreated, for example, with oxygen plasma, UV / ozone rinsing, etc.
  • this layer must be so thin that only little light absorption occurs, but on the other hand thick enough to ensure a satisfactory lateral charge transport within the layer.
  • the thickness of the layer is 20-200 nm and it is deposited on a substrate such as glass or a flexible polymer (for example PET).
  • Layer 12 consists of one or more HTLs with a high ionization potential (> 5.0 eV, preferably 5.5 eV).
  • This layer can either consist of organic material, such as poly (3,4-ethylenedioxythiophene) doped with poly (styrenesulfonate) (PEDOT-PSS), or, for example, of Ir-DPBIC (Tris-N, N'-diphenylbenzimidazol-2-ylidene).
  • organic material such as poly (3,4-ethylenedioxythiophene) doped with poly (styrenesulfonate) (PEDOT-PSS), or, for example, of Ir-DPBIC (Tris-N, N'-diphenylbenzimidazol-2-ylidene).
  • the layer thickness is 0-150 nm.
  • layer 12 is composed of organic material, it can be mixed with a p-type dopant whose LUMO energy is in the same or lower energy range as the HOMO of the HTL.
  • dopants are, for example, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4 TCNQ), WO 3 , MoO 3 , or the substances described in WO 2007/071450 A1.
  • Layer 13 consists of the electron donor. Usually, the layer should be so thick that it absorbs as much light as possible, but on the other hand, sufficiently thin, in order to be able to effectively dissipate the charges formed. As a rule, the thickness is 5-200 nm.
  • Layer 14 consists of the electron acceptor. Again, as for layer 13, the thickness should be sufficient to absorb as much light as possible, but on the other hand, the charges formed must be effectively dissipated. Usually, this layer also has a thickness of 5-200 nm.
  • Layer 15 is an EBL / ETL and should have a larger optical bandgap than the materials of layer 14 to reflect the exitons, yet still have sufficient electron transport properties.
  • Suitable compounds are 2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline (BCP), 4,7-diphenyl-1, 10-phenanthroline (Bphen), 1, 3-bis [2- (2, 2'-bipyridin-6-yl) 1, 3,4-oxadizo-5-yl] benzene (BPY-OXD), ZnO, TiO 2, etc.
  • BCP 2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline
  • Bphen 4,7-diphenyl-1, 10-phenanthroline (Bphen)
  • BPY-OXD 1, 3-bis [2- (2, 2'-bipyridin-6-yl) 1, 3,4-oxadizo-5-yl] benzene
  • ZnO TiO 2 etc.
  • this may
  • Suitable materials are Cs 2 CO 3 , pyronin B (PyB), described, for example, in WO 2003/070822 A2, Rodamine B, described, for example, in WO 2005/036667 A1, Cobaltocene and those in WO 2007 / 071450 A1 mentioned connections.
  • the layer thickness is usually 0-150 nm.
  • Layer 16 is made of a low work function material.
  • these are metals such as Ag, Al, Ca, Mg or their mixtures.
  • the layer thickness is usually 50-1000 nm and should be chosen sufficiently so that most of the light is reflected in the wavelength range of 350-1200 nm.
  • the usual pressures during the vapor deposition are between 10 " 4 and 10 " 9 mbar.
  • the deposition rate usually varies between 0.01 nm / second and 10 nm / second.
  • the temperature of the substrate during the deposition can be varied in a temperature range between -100 0 C and 200 0 C in order to influence the morphology of the corresponding layer targeted.
  • the deposition rate is usually between 0.1 nm / second and 2.0 nm / second.
  • an annealing at 60 0 C to 100 0 C for a few minutes to a few can Connect hours to achieve a more intimate contact of the layers.
  • a treatment with solvent vapor for example of toluene, xylene, chloroform, N-methylpyrrolidone, dimethylformamide, ethyl acetate, chlorobenzene and dichloromethane or other solvents for the appropriate duration can be made.
  • the structure comprises the following layers:
  • the layers 21 and 22 correspond to the layers 11 and 12 of structure A).
  • the layer 23 can be produced by co-evaporation or by solution processing with customary solvents - this has already been described above.
  • the proportion of the electron donor in both cases is preferably 10 to 90% by mass, in particular 20 to 80% by mass.
  • the proportion of electron acceptor is in addition to 100% by mass.
  • the layer must be so thick that enough light is absorbed, but still so thin that the charge carriers can be effectively dissipated.
  • the layer is 5 - 500 nm thick.
  • the ETL layer 24 may consist of one or more layers of low LUMO energy ( ⁇ 3.5 eV) materials.
  • These layers can either consist of organic compounds, such as C60 fullerene, BCP, Bphen or BPY-OXD, or of inorganic compounds, such as ZnO, OO2, etc., and are generally between 0 nm and 150 nm thick. In the case of organic layers, these may be mixed with the dopants already mentioned above.
  • Layers 25 and 26 correspond to layers 15 and 16 of structure A). Similarly, the deposition rates and aftertreatments correspond to those of structure A).
  • the structure comprises the following layers:
  • Tandem cells contain two or more subcells, which are usually connected in series, with recombination layers being arranged between the individual subcells.
  • Layer 31 corresponds to the structure of the aforementioned layers 1 1 and 21 of structure A) and B).
  • the layers 32 and 34 are individual subcells and correspond in function to individual cells as in structure A) and B) with the difference that they do not contain electrodes 11/16 and 21/26.
  • the subcells therefore consist of the layers 12 to 15 of the structure A) or 22 to 25 of the structure B).
  • the sub-cells can either contain all merocyanines as component K1 or K2 or a sub-cell contains one or more merocyanines and the remaining sub-cells contain combinations of other materials, such as C60-fullerene / Zn-phthalocyanine, oligothiophene (for example DCV5T) / C60-fullerene ( as described in WO 2006/092134 A1), or one of the sub-cells is a dye-sensitized solar cell (DSSC) or a polymer cell, such as in the combination
  • DSSC dye-sensitized solar cell
  • both cells of the structure A) and of the structure B) can be contained as subcells.
  • the combination of materials / subcells is chosen so that the light absorptions of the subcells do not overlap too much, but in total cover the spectrum of sunlight, which leads to an increase in the current efficiency.
  • considering optical interferences taking place in the cell it makes sense to place a subcell having absorption in the shorter wavelength range closer to the electrode 36 than a subcell having absorption in the longer wavelength range.
  • the recombination layer 33 causes the recombination of oppositely charged charge carriers in adjacent subcells.
  • Metal clusters for example of Ag or Au, can act as active constituents in the recombination layer, or the recombination layer consists of a combination of highly doped n- and p-conducting layers (as described, for example, in WO 2004/083958 A2).
  • layer thicknesses of 0.5 to 20 nm are usually set, and in the case of the combined doped layers, thicknesses of 5 to 150 nm are set.
  • Further subcells can be applied to the subcell 34, in which case further recombination layers, such as layer 33, must also be present.
  • the material for the electrode 36 depends on the polarity of the subcells. At normal polarity, the aforementioned low work function metals such as Ag, Al, Mg, and Ca are contemplated. In inverted polarity, high workfunction materials are commonly used, such as Au, Pt, PEDOT-PSS.
  • tandem cells which contain subcells connected in series
  • the sub-voltages add up, but the total current is limited by the sub-cell with the lowest current / current density. Therefore, the individual subcells should be optimized so that their individual current strengths / current densities have similar values.
  • the merocyanines also referred to as Mcy hereinafter
  • Mcy merocyanines
  • NPD from the company Alfa Aesar; once sublimated
  • the ITO was sputtered onto the glass substrate to a thickness of 140 nm.
  • the resistivity was 200 ⁇ cm and the roughness mean square (RMS) ⁇ 5 nm.
  • the substrate was treated with ozone for 20 minutes prior to deposition of the further layers under UV light.
  • Cells of structure A) and B) were prepared under high vacuum (pressure ⁇ 10 " 6 mbar).
  • the cell of structure A) (ITO / merocyanine / C60 / Bphen / Ag) was prepared by sequential deposition of the merocyanine and C60 on the ITO substrate. The deposition rate was 0.1 nm / second for both layers. The evaporation temperatures of the merocyanines are listed in Table 1. C60 was deposited at 400 ° C. After the Bphen layer had been applied, finally, a 100 nm thick Ag layer was vapor-deposited as a top electrode. The cell had an area of 0.031 cm 2 .
  • composition B ITO / (merocyanine: C60 - 1: 1 by weight) / C60 / Bphen / Ag
  • the merocyanine and the C60 were coevaporated and deposited on the ITO at the same deposition rate of 0.1 nm / Second applied, so that in the mixed active layer, a mass ratio of 1: 1 was present.
  • the Bphen and Ag layers were identical to the corresponding layers of structure A).
  • An AM 1.5 simulator from Solar Light Co. Inc. with xenon lamp (model 16S-150 V3) was used.
  • the UV range below 415 nm was filtered out and the current-voltage measurements were made at ambient conditions.
  • the intensity of the solar simulator was calibrated with a monocrystalline FZ solar cell (Fraunhofer ISE) and the deviation factor was determined to be almost 1.0.
  • Thickness thickness (mV) (mA / cm 2 ) (%)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Mischungen, welche enthalten als Komponenten K1) ein oder mehrere Merocyanine ausgewählt aus der Gruppe der Verbindungen der allgemeinen Formeln (I), (IIa), (IIb), (lIla), (IIIb), (IIIc), (IIId) und (IIIe) wie in der Beschreibung genauer definiert, als Elektronendonor bzw. Elektronenakzeptor, und als Komponente K2) ein oder mehrere Verbindungen, welche gegenüber Komponente K1) entsprechend als Elektronenakzeptor bzw. Elektronendonor wirken, zur Herstellung von photoaktiven Schichten für organische Solarzellen und organische Photodetektoren, ein Verfahren zur Herstellung von photoaktiven Schichten, entsprechende organische Solarzellen und organische Photodetektoren, sowie Mischungen, welche als Komponenten ein oder mehrere Verbindungen der allgemeinen Formeln (I), (IIa), (IIb), (lIla), (IIIb), (IIIc), (IIId) und (IIIe) und/oder (IIIe) der Komponente K1, wie in der Beschreibung genauer definiert, und ein oder mehrere Verbindungen der Komponente K2 enthalten.

Description

MEROCYANINE ZUR HERSTELLUNG VON PHOTOAKTIVEN SCHICHTEN FÜR ORGANISCHE SOLARZELLEN UND ORGANISCHE PHOTODETEKTOREN
Beschreibung
Die vorliegende Erfindung betrifft die Verwendung von Mischungen, enthaltend als Komponenten
K1 ) ein oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der allgemeinen Formeln
A-L1-X101=(L2)n=B (I)
Figure imgf000003_0001
und
Figure imgf000003_0002
Figure imgf000004_0001
und
Figure imgf000004_0002
als Elektronendonor bzw. Elektronenakzeptor, worin bedeuten
NR1102, wobei beide Reste R110 zusammen mit dem N-Atom, an welches sie gebunden sind, einen fünf- oder sechsgliedrigen gesättigten Ring bilden können, oder einer der Reste R110 bildet mit dem Kohlenstoffatom des Benzolringes, welches α-ständig zum Kohlenstoffatom ist, welches die NR1102-Gruppe trägt, einen fünf- oder sechsgliedrigen gesättigten Ring, SR110 oder OR110,
B O, S, N-CN, N-R110, C(CN)2, C(CO2R110)2, C(CN)COR110, C(CN)CO2R110, C(CN)CONR100 2 oder eine Gruppierung ausgewählt aus der Gruppe
Figure imgf000004_0003
und
Figure imgf000004_0004
(B-03) worin * im Fall der Verbindungen der Formeln I, IIa und IIb die Anbindung an L2, im Fall der Verbindungen der Formeln lila und INb die Anbindung an den restlichen Molekülteil bezeichnet,
L1 ein zweiwertiger Aryl- oder Hetaryl-Rest,
L2 ein zweiwertiger, gegebenenfalls ein- oder mehrfach anellierter Carbo- oder He- terocyclus, welcher einerseits mit B, andererseits über die Einheiten X100 bzw. X101 sowie dem restlichen Molekülteil mit A in π-Konjugation steht, oder eine Gruppierung
Figure imgf000005_0001
worin * und ** die Anbindung an die entsprechende Einheit X101 oder X100 einer- seits, und B andererseits bezeichnet,
n O oder i ,
X100 CH, N oder C(CN),
X101 CH, N, C(CN) oder X101 und L2 zusammen bilden eine Gruppierung
Figure imgf000005_0002
worin * und ** die Anbindung an die entsprechende Einheit L1 einerseits, und B andererseits bezeichnet,
X200 O, S, SO2 oder NR110,
X201 O, S, SO2, NR110 oder CR1112,
X202 zweimal H, O oder S,
R100 Alkyl, Ci-Ce-Alkylen-COO-Alkyl, d-Cβ-Alkylen-O-CO-Alkyl, CrC6- Alkylen-O-CO- O-Alkyl, Cylcloalkyl, Arylalkyl oder Aryl, R110 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, d-Ce-Alkylen-O-CO-Alkyl, CrC6- Alkylen-O- CO-O-Alkyl, Cylcloalkyl, Arylalkyl oder Aryl,
R101 Alkyl, d-Cβ-Alkylen-COO-Alkyl, d-Ce-Alkylen-O-CO-Alkyl, CrC6- Alkylen-O-CO- O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl oder Hetaryl,
R111 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, Ci-Cβ-Alkylen-O-CO-Alkyl, CrC6- Alkylen-O- CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl oder Hetaryl,
R115 H, Alkyl, teil- oder perfluoriertes Alkyl, d-Ce-Alkylen-COO-Alkyl, CrC6-Alkylen-O- CO-Alkyl, CrC6- Alkylen-O-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, NHCO-R100 oder N(CO-R100)2,
R118 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, Ci-Cβ-Alkylen-O-CO-Alkyl, CrC6- Alkylen-O- CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, OR110, SR110, Hetaryl, Halogen, NO2 oder
CN
R210 H oder CN,
R211 H, CN oder SCN,
wobei die Kohlenstoffketten der Alkyl- und Cylcloalkyl-Reste durch ein oder zwei nicht benachbarte Sauerstoffatome unterbrochen sein können, die Reste R115 und R210 in Formel lila zusammen einen anellierten, gegebenenfalls mit R118 sub- stituierten Benzolring bilden können, im Falle der Bedeutung CH für X100 in Formel INd der Rest R100 eine, gegebenenfalls mit R118 substituierte Benzanellierung zu dem diesem Kohlenstoffatom ausbilden kann und die zuvor genannten Variablen, sofern sie mehr als einmal auftreten, gleich oder voneinander verschieden sein können,
und
K2) ein oder mehrere Verbindungen, welche gegenüber Komponente K1) entsprechend als Elektronenakzeptor bzw. Elektronendonor wirken,
zur Herstellung von photoaktiven Schichten für organische Solarzellen und organische Photodetektoren, ein Verfahren zur Herstellung von photoaktiven Schichten, entsprechende organische Solarzellen und organische Photodetektoren, sowie Mischungen, welche als Komponenten ein oder mehrere Verbindungen der allgemeinen Formeln I, IIa, IIb, lila, INb, INc, INd und/oder Nie der Komponente K1 und ein oder mehrere Verbindungen der Komponente K2 enthalten. Es wird erwartet, dass zukünftig in vielen Bereichen der Elektronikindustrie neben den klassischen anorganischen Halbleitern zunehmend auch organische Halbleiter auf Basis von niedermolekularen oder polymeren Materialien eingesetzt werden. Diese weisen vielfach Vorteile gegenüber den klassischen anorganischen Halbleitern auf, bei- spielsweise eine bessere Substratkompatibilität und eine bessere Verarbeitbarkeit der auf ihnen basierenden Halbleiterbauteile. Sie erlauben die Verarbeitung auf flexiblen Substraten und ermöglichen es, ihre Grenzorbitalenergien mit den Methoden des Mo- lecular Modellings auf den jeweiligen Anwendungsbereich genau anzupassen. Die deutlich verringerten Kosten derartiger Bauteile haben dem Forschungsgebiet der or- ganischen Elektronik eine Renaissance gebracht. Die Organische Elektronik" beschäftigt sich schwerpunktmäßig mit der Entwicklung neuer Materialien und Fertigungsprozesse für die Herstellung elektronischer Bauelemente auf der Basis organischer Halbleiterschichten. Dazu zählen vor allem organische Feldeffekttransistoren (Organic Field-Effect Transistors, OFET) sowie organische Leuchtdioden (Organic Light Emitting Diodes, OLED; z.B. für den Einsatz in Displays) und die organische Photovoltaik.
Die Direktumwandlung von Solarenergie in elektrische Energie in Solarzellen beruht auf dem inneren Photoeffekt eines Halbleitermaterials, d.h. der Erzeugung von Elektron-Loch-Paaren durch Absorption von Photonen und der Trennung der negativen und positiven Ladungsträger an einem p-n-Übergang oder einem Schottky-Kontakt. Die so erzeugte Photospannung kann in einem äußeren Stromkreis einen Photostrom bewirken, durch den die Solarzelle ihre Leistung abgibt.
Vom Halbleiter können dabei nur solche Photonen absorbiert werden, die eine Energie aufweisen, die größer als seine Bandlücke ist. Die Größe der Halbleiterbandlücke bestimmt also den Anteil des Sonnenlichts, der in elektrische Energie umgewandelt werden kann. Es wird zukünftig erwartet, dass organische Solarzellen die klassischen Solarzellen auf Siliziumbasis aufgrund geringerer Kosten, eines geringeren Gewichts, der Möglichkeit zur Herstellung flexibler und/oder farbiger Zellen, der besseren Möglichkeit zur Feinabstimmung des Bandabstands übertreffen werden. Es besteht somit ein großer Bedarf an organischen Halbleitern, die sich zur Herstellung organischer Solarzellen eignen.
Um die Sonnenenergie möglichst effektiv zu nutzen bestehen organische Solarzellen normalerweise aus zwei absorbierenden Materialien mit unterschiedlicher Elektronenaffinität bzw. unterschiedlichem lonisationsverhalten. Das eine Material wirkt dann als p-Leiter (Elektronendonor), das andere als n-Leiter (Elektronenakzeptor). Die ersten organischen Solarzellen bestanden aus einem zweilagigen System aus einem Kupfer- Phthalocyanin als p-Leiter und PTCBI als n-Leiter und zeigten einen Wirkungsgrad von 1 %. Um möglichst alle auftreffenden Photonen zu nutzen, werden relativ hohe
Schichtdicken eingesetzt (z. B. 100 nm). Um Strom zu erzeugen, muss der durch die absorbierten Photonen erzeugte angeregte Zustand jedoch eine p-n-Grenzschicht ("p-n-junction") erreichen, um ein Loch und ein Elektron zu erzeugen, welches dann zur Anode und Kathode fließt. Die meisten organischen Halbleiter haben jedoch nur Diffusionslängen für den angeregten Zustand von bis zu 10 nm. Selbst durch die besten bisher bekannten Herstellverfahren kann die Distanz, über die der angeregte Zu- stand weitergeleitet werden muss, auf minimal 10 bis 30 nm verringert werden.
Neuere Entwicklungen in der organischen Photovoltaik gehen in die Richtung der sogenannten "Bulk-Heterojunction": die photoaktive Schicht enthält hierbei die Akzeptor- und Donorverbindung(en) als bikontinuierliche Phase. Durch photoinduzierten La- dungstransfer vom angeregten Zustand der Donorverbindung zur Akzeptorverbindung findet aufgrund der räumlichen Nähe der Verbindungen eine, verglichen mit anderen Relaxationsvorgängen, schnelle Ladungstrennung statt und die entstandenen Löcher und Elektronen werden über die entsprechende Elektroden abgeführt. Zwischen die Elektroden und die photoaktive Schicht werden oftmals weitere Schichten, wie z. B. Löcher- oder Elektronentransportschichten, aufgebracht, um die Effizienz solcher Zellen zu erhöhen.
Bislang werden als Donormaterialien in solchen Bulk-Heterojunction-Zellen meist Polymere, wie z. B. Polyvinylphenylene oder Polythiophene, oder Farbstoffe aus der Klas- se der Phthalocyanine, z. B. Zn- oder Vanadylphthalocyanin, und als Akzeptormaterialien Fulleren und Fulleren-Derivate sowie verschiedene Perylene verwendet. Intensiv wurden und werden photoaktive Schichten aus den Donor-/Akzeptor-Paaren Poly(3- hexyl-thiophen) ("P3HT")/ [6,6]-Phenyl-C6i-butylsäuremethylester ("PCBM"), Poly(2- methoxy-5-(3,7-dimethyloctyloxy)-1 ,4-phenylenvinylen) ("OCiCio-PPV")/PCBM und Zn- Phthalocyanin/Fulleren untersucht.
Aufgabe der vorliegenden Erfindung war es nun, weitere photoaktive Schichten zur Verwendung in elektronischen Bauelementen, insbesondere in organischen Solarzellen und organischen Photodetektoren, bereitzustellen, welche leicht herstellbar sind und für die Umwandlung von Lichtenergie in elektrische Energie in technischen Anwendungen einen ausreichenden Wirkungsgrad aufweisen.
Dementsprechend wurde die eingangs beschriebene Verwendung von Mischungen zur Herstellung von photoaktiven Schichten für organische Solarzellen und organische Photodetektoren gefunden.
Die Definitionen der vorstehend aufgeführten Variablen werden nachfolgend erläutert und sind wie nachfolgend zu verstehen.
Halogen bezeichnet Fluor, Chlor, Brom und lod, insbesondere Fluor und Chlor. Unter Alkyl sind substituierte oder unsubstituierte Ci-C2o-Alkylreste zu verstehen. Bevorzugt sind Cr bis Cio-Alkylreste, besonders bevorzugt d- bis Cβ-Alkylreste. Die Al- kylreste können sowohl geradkettig als auch verzweigt sein. Des Weiteren können die Alkylreste mit einem oder mehreren Substituenten ausgewählt aus der Gruppe beste- hend aus Ci-C2o-Alkoxy, Halogen, bevorzugt F, und Cβ-Cso-Aryl, das wiederum substituiert oder unsubstituiert sein kann, substituiert sein. Geeignete Arylsubstituenten sowie geeignete Alkoxy- und Halogensubstituenten sind nachstehend genannt. Beispiele für geeignete Alkylgruppen sind Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl und Octyl sowie mit Cβ-Cso-Aryl-, Ci-C2o-Alkoxy- und/oder Halogen, insbesondere F, substi- tuierte Derivate der genannten Alkylgruppen, zum Beispiel CF3. Dabei sind sowohl die n-lsomere der genannten Reste als auch verzweigte Isomere wie Isopropyl, Isobutyl, Isopentyl, sek-Butyl, tert-Butyl, Neopentyl, 3,3-Dimethylbutyl, 3-Ethylhexyl usw. mit umfasst. Bevorzugte Alkylgruppen sind Methyl, Ethyl, tert-Butyl und CF3.
Unter Cycloalkyl sind substituierte oder unsubstituierte C3-C2o-Alkylreste zu verstehen. Bevorzugt sind C3- bis Cio-Alkylreste, besonders bevorzugt C3- bis Cs-Alkylreste. Die Cycloalkylreste können einen oder mehrere der bezüglich der Alkylreste genannten Substituenten tragen. Beispiele für geeignete cyclische Alkylgruppen (Cycloalkylreste), die ebenfalls unsubstituiert oder mit den vorstehend bezüglich der Alkylgruppen ge- nannten Resten substituiert sein können, sind Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl und Cyclodecyl. Gegebenenfalls kann es sich auch um polycyclische Ringsysteme handeln, wie Decalinyl, Norbornyl, Borna- nyl oder Adamantyl.
Unter Alkyl, welches durch ein oder zwei nicht benachbarte Sauerstoffatome unterbrochen ist, ist beispielsweise 3-Methoxyethyl, 2- und 3-Methoxy-propyl, 2-Ethoxyethyl, 2- und 3-Ethoxypropyl, 2-Propoxyethyl, 2- und 3-Propoxypropyl, 2-Butoxyethyl, 2- und 3- Butoxypropyl, 3,6-Dioxaheptoyl und 3,6-Dioxaoctyl zu nennen.
Als Aryl sind Cβ-Cso-Arylreste geeignet, die von monocyclischen, bicyclischen oder tri- cyclischen Aromaten abgeleitet sind, die keine Ringheteroatome enthalten. Sofern es sich nicht um monocyclische Systeme handelt, ist bei der Bezeichnung Aryl für den zweiten Ring auch die gesättigte Form (Perhydroform) oder die teilweise ungesättigte Form (beispielsweise die Dihydroform oder Tetrahyroform), sofern die jeweiligen For- men bekannt und stabil sind, möglich. Das heißt, die Bezeichnung Aryl umfasst in der vorliegenden Erfindung beispielsweise auch bicyclische oder tricyclische Reste, in denen sowohl beide als auch alle drei Reste aromatisch sind, als auch bicyclische oder tricyclische Reste, in denen nur ein Ring aromatisch ist, sowie tricyclische Reste, worin zwei Ringe aromatisch sind. Beispiele für Aryl sind: Phenyl, Naphthyl, Indanyl, 1 ,2- Dihydronaphthenyl, 1 ,4-Dihydronaphthenyl, Indenyl, Anthracenyl, Phenanthrenyl oder 1 ,2,3,4-Tetrahydronaphthyl. Besonders bevorzugt sind Cβ-Cio-Arylreste, zum Beispiel Phenyl oder Naphthyl, ganz besonders bevorzugt Cβ-Arylreste, zum Beispiel Phenyl. Die Arylreste können unsubstituiert sein oder mit einem mehreren weiteren Resten substituiert sein. Geeignete weitere Reste sind ausgewählt aus der Gruppe bestehend aus Ci-C2o-Alkyl, C6-C3o-Aryl oder Substituenten mit Donor- oder Akzeptorwirkung, wobei geeignete Substituenten mit Donor- oder Akzeptorwirkung sind:
Ci-C2o-Alkoxy, C6-C3o-Aryloxy, Ci-C2o-Alkylthio, C6-C3o-Arylthio, Si(R)3, Halogenreste, halogenierten Ci-C2o-Alkylreste, Carbonyl (-CO(R)), Carbonylthio (- C = O (SR)), Car- bonyloxy (- C = 0(OR)), Oxycarbonyl (- OC = 0(R)), Thiocarbonyl (- SC = 0(R)), Ami- no (-NR2), OH, Pseudohalogenreste, Amido (- C = O (NR)), -N(R) C = O (R), Phospho- nat (- P(O) (OR)2, Phosphat (-OP(O) (OR)2), Phosphin (-PR2), Phosphinoxid (-P(O) R2), Sulfat (-OS(O)2OR), Sulfoxid (-S(O)R), Sulfonat (-S(O)2OR), Sulfonyl (-S(O)2R), Sulfonamid (-S(O)2NR2), NO2, Boronsäureester (-OB(OR)2), Imino (-C = NR2)), Boranreste, Stannanreste, Hydrazinreste, Hydrazonreste, Oximreste, Nitroso-Gruppen, Diazo- Gruppen, Vinylgruppen, (=Sulfonat) und Boronsäuregruppen, Sulfoximine, Alane, Germane, Boroxime und Borazine.
Bevorzugte Substituenten mit Donor- oder Akzeptorwirkung sind ausgewählt aus der Gruppe bestehend aus:
Cr bis C2o-Alkoxy, bevorzugt CrCβ-Alkoxy, besonders bevorzugt Ethoxy oder Metho- xy; C6-C3o-Aryloxy, bevorzugt Cβ-Cio-Aryloxy, besonders bevorzugt Phenyloxy; SiR3, wobei die drei Reste R bevorzugt unabhängig voneinander substituiertes oder unsub- stituiertes Alkyl oder substituiertes oder unsubstituiertes Phenyl bedeuten, Halogenresten, bevorzugt F, Cl, Br, besonders bevorzugt F oder Cl, ganz besonders bevorzugt F, halogenierten Ci-C2o-Alkylresten, bevorzugt halogenierten Ci-Cβ-Alkylresten, ganz besonders bevorzugt fluorierten CrCβ-Alkylresten, z. B. CF3, CH2F, CHF2 oder C2F5; A- mino, bevorzugt Dimethylamino, Diethylamino oder Diphenylamino; OH, Pseudohalo- genresten, bevorzugt CN, SCN oder OCN, besonders bevorzugt CN, -C(O)OCrC4- Alkyl, bevorzugt -C(O)OMe, P(O)R2, bevorzugt P(O)Ph2 oder SO2R2, bevorzugt SO2Ph.
R bedeutet in den zuvor genannten Gruppen insbesondere Ci-C2o-Alkyl oder C6-C3o- Aryl.
d-Ce-Alkylen-COO-Alkyl, Ci-C6-Alkylen-O-CO-Alkyl und CrC6- Alkylen-0-CO-O-Alkyl leiten sich von den zuvor beschriebenen Alkylresten durch Anbindung an die Gruppierungen Ci-Ce-Alkylen-COO, Ci-C6-Alkylen-O-CO und CrC6- Alkylen-O-CO-0 ab, worin die CrCβ-Alkylen-Einheiten vorzugsweise linear sind. Insbesondere kommen C2-C4- Alkylen-Einheiten in Betracht.
Unter Arylalkyl sind insbesondere Aryl-CrC2o-alkylgruppen zu nennen. Sie leiten sich von den zuvor aufgeführten Alkyl- und Arylgruppen durch formalen Ersatz eines Was- serstoffatoms der linearen oder verzweigten Alkylkette durch eine Arylgruppe ab. Beispielsweise sei als bevorzugte Arylalkylgruppe Benzyl genannt.
Unter Hetaryl sind unsubstituierte oder substituierte Heteroarylreste mit 5 bis 30 Ring- atomen, die monocyclisch, bicyclisch oder tricyclisch sein können, zu verstehen, die sich zum Teil vom vorstehend genannten Aryl ableiten lassen, in dem im Aryl- Grundgerüst mindestens ein Kohlenstoffatom durch ein Heteroatom ersetzt ist. Bevorzugte Heteroatome sind N, O und S. Besonders bevorzugt weisen die Hetarylreste 5 bis 13 Ringatome auf. Insbesondere bevorzugt ist das Grundgerüst der Heteroarylreste ausgewählt aus Systemen wie Pyridin und fünfgliedrigen Heteroaromaten wie Thi- ophen, Pyrrol, Imidazol oder Furan. Diese Grundgerüste können gegebenenfalls mit einem oder zwei sechsgliedrigen aromatischen Resten anelliert sein. Geeignete anel- lierte Heteroaromaten sind Carbazolyl, Benzimidazolyl, Benzofuryl, Dibenzofuryl oder Dibenzothiophenyl. Das Grundgerüst kann an einer, mehreren oder allen substituierba- ren Positionen substituiert sein, wobei geeignete Substituenten dieselben sind, die bereits unter der Definition von Cβ-Cso-Aryl genannt wurden. Bevorzugt sind die Hetarylreste jedoch unsubstituiert. Geeignete Hetarylreste sind zum Beispiel Pyridin-2-yl, Py- ridin-3-yl, Pyridin-4-yl, Thiophen-2-yl, Thiophen-3-yl, Pyrrol-2-yl, Pyrrol-3-yl, Furan-2-yl, Furan-3-yl und lmidazol-2-yl sowie die entsprechenden benzanellierten Reste, insbe- sondere Carbazolyl, Benzimidazolyl, Benzofuryl, Dibenzofuryl oder Dibenzothiophenyl.
Die zweiwertigen Aryl- oder Hetaryl-Reste der Definition von L1 leiten sich von den zuvor genannten Aryl- und Hetaryl-Resten durch die formale Entfernung eines weiteren Wasserstoffatoms ab.
In den photoaktiven Schichten kann die Komponente K1 die Rolle des Elektronendo- nors übernehmen, entsprechend kommt dann der Komponente K2 die Rolle des E- lektronenakzeptors zu. Alternativ kann aber auch die die Komponente K1 die Rolle des Elektronenakzeptors annehmen, entsprechend fungiert dann Komponente K2 als E- lektronendonor. In welcher Weise die jeweilige Komponente wirkt hängt von der Energie des HOMO bzw. LUMO der Komponente K1 im Verhältnis zur Energie des HOMO bzw. LUMO der Komponente K2 ab. Bei den Verbindungen der Komponente K1 handelt es sich typischerweise um Merocyanine, welche üblicherweise als Elektronendonoren in Erscheinung treten. Insbesondere ist dies der Fall, wenn als Komponente K2 Rylen- oder Fulleren-Derivate Verwendung finden, welche dann in der Regel als E- lektronenakzeptoren wirken. Diese Rollen können sich im konkreten Einzelfall jedoch vertauschen. Anzumerken ist auch, dass Komponente K2 ebenfalls der strukturellen Definition der Komponente K1 gehorchen kann, so dass eine Verbindung der Formel I, IIa, IIb, lila, INb, INc oder Nie die Rolle des Elektronendonors und eine andere Verbin- düng der Formel I, IIa, IIb, lila, INb, INc und Nie die Rolle des Elektronenakzeptors ü- bernehmen kann. Bevorzugte erfindungsgemäß zu verwendende Verbindungen der Formeln I, IIa und/oder IIb in Komponente K1 zeichnen sich dadurch aus, dass L2 eine Gruppierung bedeutet, die ausgewählt ist aus der Gruppe
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000013_0001
worin bedeuten
R102 Arylalkyl, Aryl oder Hetaryl,
R112 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, d-Cβ-Alkylen-O-CO-Alkyl, CrC6- Al- kylen-0-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, OR110 oder SR110,
R113 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, Ci-Ce-Alkylen-O-CO-Alkyl, CrC6- Al- kylen-0-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, Hetaryl, NH-Aryl, N(Aryl)2, NHCO-R100 oder N(CO-R100)2, R114 H, Alkyl oder teil- oder perfluoriertes Alkyl, d-Ce-Alkylen-COO-Alkyl, d- Ce-Alkylen-O-CO-Alkyl oder CrC6- Alkylen-O-CO-O-Alkyl,
R116 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, d-Ce-Alkylen-O-CO-Alkyl, CrC6- Alkylen-O-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, CO2R110 oder CN
R117 H, Alkyl, d-Ce-Alkylen-COO-Alkyl, d-Ce-Alkylen-O-CO-Alkyl, CrC6- Alkylen-O-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, OR110, SR110 Halogen oder Hetaryl,
R212 H, CN, CONR110 oder COR101,
und die übrigen Variablen die Bedeutung wie eingangs beschrieben be- sitzen, wobei die Kohlenstoff ketten der Alkyl- und Cylcloalkyl-Reste durch ein oder zwei nicht benachbarte Sauerstoffatome unterbrochen sein können und die zuvor sowie die eingangs genannten Variablen, sofern sie mehr als einmal auftreten, gleich oder voneinander verschieden sein können,
Weitere bevorzugt zu verwendenden Mischungen, auch unter Berücksichtigung der zuvor beschriebenen Bevorzugungen, zeichnen sich dadurch aus, dass es sich bei Komponente K2 um ein oder mehrere Verbindungen ausgewählt aus der Gruppe
a) Fullerene und Fullerenderivate,
b) polycyclische aromatische Kohlenwasserstoffe und deren Derivate, insbesondere Naphthalin und dessen Derivate, Rylene, insbesondere Perylen, Terrylen und Quaterrylen, und deren Derivate, Azene, insbesondere Anthrazen, Tetrazen, in besondere Rubren, Pentazen und deren Derivate, Pyren und dessen Derivate,
Coronen und Hexabenzocoronen und deren Derivate,
c) Chinone, Chinondimethane und Chinondiimine und deren Derivate,
d) Phthalocyanine und Subphthalocyanine und deren Derivate,
e) Porphyrine, Tetraazaporphyrine und Tetrabenzoporphyrine und deren Derivate,
f) Thiophene, oligo-Thiophene, kondensierte/anellierte Thiophene, wie Thienothi ophen und Bithienothiophen, und deren Derivate,
g) Thiadiazole und deren Derivate, h) Carbazole und Triarylamine und deren Derivate,
i) Indanthrone, Violanthrone und Flavanthone und deren Derivate und
j) Fulvalene, Tetrathiafulvalene und Tetraselenafulvalene und deren Derivate,
handelt.
Insbesondere finden erfindungsgemäße Verwendung, auch unter Berücksichtigung der zuvor beschriebenen Bevorzugungen, Mischungen, welche sich dadurch auszeichnen, dass es sich bei Komponente K2 um ein oder mehrere Fullerene und/oder Fulleren- Derivate handelt.
Als leicht zugängliche Fulleren-Derivate kommen insbesondere Verbindungen der all- gemeinen Formel k2
Figure imgf000015_0001
in Frage,
worin bedeuten
Q Ci-Cio-Alkylen,
R Aryl oder Arylalkyl
und
R Alkyl.
Zur Definition von Aryl, Arylalkyl und Alkyl wird auf das bereits zuvor Gesagte verwiesen.
Unter Ci-Cio-Alkylen ist insbesondere eine lineare Kette -(CH2)m-, mit m gleich 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10, zu verstehen. Insbesondere finden erfindungsgemäß solche Fulleren-Derivate Verwendung, in welchen R einen Ci-C4-Alkyl-, insbesondere einen Methylrest, bezeichnet, Q für eine Pro- pylen-Kette -(CH2)3- und R für ein gegebenenfalls substituiertes Phenyl oder 2-Thienyl steht. Vorzugsweise handelt es sich bei dem Fulleren-Derivat um [6,6]-Phenyl-C6i- butylsäuremethylester ("PCBM").
Besonders bevorzugt kommen zur Verwendung, auch unter Berücksichtigung der zuvor genannten Bevorzugungen, Mischungen, in welchen es sich bei Komponente K2 um ein oder mehrere Fullerene handelt.
Als mögliche Fullerene sind zu nennen Cβo, C70, C76, Cso, Cs2, Cs4, Csβ, C90 und C94, insbesondere das Cβo und C70. Einen Überblick über Fullerene, welche erfindungsgemäß verwendet werden können, liefert beispielsweise die Monografie von A. Hirsch, M. Brettreich, "Fullerenes: Chemistry and Reactions", Wiley-VCH, Weinheim 2005.
Insbesondere handelt es sich bei Komponente K2 um ein C60-Fulleren der Formel k2
Figure imgf000016_0001
Die erfindungsgemäß zu verwendenden Mischungen zeichnen sich dadurch aus, dass die Komponente K1 in einem Anteil von 10 bis 90 Massen-%, insbesondere 20 bis 80 Massen-%, und die Komponente K2 in einem Anteil von 90 bis 10 Massen-%, insbesondere 80 bis 20 Massen-%, vorliegt, wobei sich die Anteile der Komponenten K1 und K2, jeweils bezogen auf die Gesamtmasse der Komponenten K1 und K2, zu 100 Mas- sen-% ergänzen.
Herstellungsbedingt ist es im Einzelfall möglich, dass nicht eine explizit gezeigten Verbindungen der Formel I, IIa, IIb, lila oder INb, sondern eine dazu isomere Verbindung erhalten wird oder dass auch Mischungen von Isomeren erhalten werden. Erfindungs- gemäß sollen dementsprechend auch die isomeren Verbindungen der Formeln I, IIa, IIb, lila, INb und die Isomeren der entsprechenden bevorzugten sowie Mischungen von Isomeren umfasst sein.
Die Synthese der Verbindungen der allgemeinen Formeln I, IIa, IIb, lila, INb, INc, INd, und Nie sind dem Fachmann bekannt oder lassen sich in Anlehnung an bekannte Syntheseverfahren herstellen. Beispielsweise sind hinsichtlich entsprechender Synthesen die nachfolgenden Publikationen zu nennen:
DE 195 02 702 A1 , EP 416 434 A2, EP 509 302 A1 , EP 291 853 A2, US 5,147,845, US 5,703,238;
"ATOP Dyes. Optimization of a Multifunctional Merocyanine Chromophore for High Refractive Index Modulation in Photorefractive Materials", F. Würthner, S. Yao, J. Schilling, R. Wortmann, M. Redi- Abshiro, E. Mecher, F. Gallego-Gomez, K. Meerholz, J. Am. Chem. Soc. 2001 , 123, 2810 - 2814;
"Merocyaninfarbstoffe im Cyaninlimit: eine neue Chromophorklasse für photorefraktive Materialien; Merocyanine Dyes in the Cyanine Limit: A New Class of Chromophores for Photorefractive Materials", F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens , Angew. Chem. 1997, 109, 2933 - 2936; Angew. Chem. Int. Ed. Engl. 1997, 36, 2765 - 2768;
"Electrooptical Chromophores for Nonlinear Optical and Photorefractive Applications", S. Beckmann, K. -H. Etzbach, P. Krämer, K. Lukaszuk, R. Matschiner, A. J. Schmidt, P. Schuhmacher, R. Sens, G. Seybold, R. Wortmann, F. Würthner, Adv. Mater. 1999, 1 1 , 536 - 541 ;
"DMF in Acetic Anhydride: A Useful Reagent for Multiple- Component Syntheses of Merocyanine Dyes", F. Würthner , Synthesis 1999, 2103 - 21 13;
Ullmanns' Encyclopedia of industrial Chemistry, Vol. 16, 5tn Edition (Ed. B. Elvers, S. Hawkins, G. Schulz), VCH 1990 im Kapitel "Methine Dyes and Pigments", S. 487 - 535 von R. Raue (Bayer AG).
Beispiel für Einheiten L1 in den Verbindungen der allgemeinen Formel I sind:
Figure imgf000017_0001
(U-02) (U-03)
Figure imgf000017_0002
(U-06)
Figure imgf000017_0003
wobei (A) und (X101) die jeweilige Anbindung an A und X101 und RUS/R die Substitution entweder durch einen Rest R115 oder einen Rest R118 bezeichnet. Die Variablen besitzen hierbei die bereits zuvor genannte Bedeutung.
Nachfolgend seien exemplarisch erfindungsgemäß verwendbare Verbindungen der allgemeinen Fomel I gezeigt:
Figure imgf000018_0001
Figure imgf000019_0001
(L1-05/L2-03) (L1-05/L2-03)
(L1-01/L2-02) 3
Figure imgf000019_0002
Weitere Verbindungen der Formel I, in welchen die Einheit L2 fehlt (n = 0), sind nachfolgend gezeigt:
Figure imgf000020_0001
Nachfolgend seien exemplarisch erfindungsgemäß verwendbare Verbindungen der allgemeinen Fomel IIa gezeigt:
Figure imgf000020_0002
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Weitere Verbindungen der Formel IIa, in welchen die Einheit L2 fehlt (n = 0), sind nachfolgend gezeigt:
Figure imgf000023_0002
wobei in letzterer Verbindung eine Gruppierung B-01 enthalten ist.
Eine Verbindung der Formel IIa mit einer Einheit L2-00 ist nachfolgend exemplarisch aufgeführt:
Figure imgf000023_0003
Eine Verbindung der Formel IIb, in welcher die Einheit L2 fehlt (n = O), ist nachfolgend gezeigt:
Figure imgf000023_0004
Beispiele für Verbindungen der Formeln lila und INb sind:
Figure imgf000024_0001
Beispiele für Verbindungen der Formel INd sind:
Figure imgf000024_0002
Beispiele für Verbindungen der Formel Nie sind:
Figure imgf000024_0003
Figure imgf000025_0001
Weiter wird im Rahmen der vorliegenden Erfindung, unter anderem ein Verfahren zur Herstellung von photoaktiven Schichten beansprucht, welches dadurch gekennzeichnet ist, dass ein oder mehrere der eingangs gezeigten Verbindungen der allgemeinen Formeln I, IIa, IIb, lila, INb, INc, INd und/oder Nie der Komponente K1 , auch unter Be- rücksichtigung ihrer Bevorzugungen, und ein oder mehrere Verbindungen der Komponente K2, ebenfalls unter Berücksichtigung ihrer Bevorzugungen, gleichzeitig, nacheinander oder in alternierender Abfolge durch Vakuumsublimation auf einem Substrat abgeschieden werden.
Insbesondere zeichnet das Verfahren aus, dass sich die Komponente K1 in einem Anteil von 10 bis 90 Massen-%, insbesondere 20 bis 80 Massen-%, und die Komponente K2 in einem Anteil von 90 bis 10 Massen-%, insbesondere 80 bis 20 Massen-%, auf dem Substrat abgeschieden befindet, wobei sich die Anteile der Komponenten K1 und K2, jeweils bezogen auf die Gesamtmasse der Komponenten K1 und K2, zu 100 Mas- sen-% ergänzen.
Weiter werden im Rahmen der vorliegenden Erfindung organische Solarzellen und organische Photodetektoren beansprucht, welche photoaktive Schichten enthalten, die unter Verwendung der zuvor beschriebenen, die Komponenten K1 und K2 enthaltenden Mischungen, oder unter Verwendung der ebenfalls zuvor beschriebenen bevorzugten Ausführungsformen der Mischungen hergestellt worden sind.
Organische Solarzellen sind meist schichtförmig aufgebaut und umfassen in der Regel zumindest die folgenden Schichten: Elektrode, photoaktive Schicht und Gegenelektrode. Diese Schichten befinden sich in der Regel auf einem dafür üblichen Substrat. Geeignete Substrate sind z.B. oxidische Materialien, wie etwa Glas, Quarz, Keramik, Siθ2, etc., Polymere, wie etwa Polyvinylchlorid, Polyolefine, z.B. Polyethylen und Po- lypropylen, Polyester, Fluorpolymere, Polyamide, Polyurethane, Polyalkyl(meth)- acrylate, Polystyrol und Mischungen und Komposite davon, und Kombinationen der zuvor aufgeführten Substrate.
Als Materialien für die eine Elektrode eignen sich insbesondere Metalle, wie z.B. die Alkalimetalle Li, Na, K, Rb und Cs, die Erdalkalimetalle Mg, Ca und Ba, Pt, Au, Ag, Cu, AI, In, Metalllegierungen, z.B. auf Basis Pt, Au, Ag, Cu, etc. und spezielle Mg/Ag- Legierungen, des weiteren aber auch Alkalimetallfluoride, wie LiF, NaF, KF, RbF und CsF, und Mischungen aus Alkalimetallfluoriden und Alkalimetallen. Bevorzugt wird als Elektrode ein das einfallende Licht im Wesentlichen reflektierendes Material eingesetzt. Dazu zählen beispielsweise Metallfilme aus AI, Ag, Au, In, Mg, Mg/AI, Ca, etc.
Die Gegenelektrode besteht aus einem, gegenüber einfallendem Licht im Wesentlichen transparenten Material, z. B. ITO, dotiertes ITO, ZnO, TiÜ2, Cu, Ag, Au und Pt, wobei die letztgenannten Metalle in entsprechend dünnen Schichten vorliegen.
Als "transparent" soll hierbei eine Elektrode/Gegenelektrode angesehen werden, wenn mindestens 50 % der Strahlungsintensität in dem Wellenlängen-Bereich transmittiert wird, in welchem die photoaktive Schicht Strahlung absorbiert. Im Falle mehrerer photoaktiver Schichten soll eine Elektrode/Gegenelektrode als "transparent" angesehen werden, wenn mindestens 50 % der Strahlungsintensität in den Wellenlängen- Bereichen transmittiert wird, in welchen die photoaktiven Schichten Strahlung absorbieren.
Zusätzlich zur photoaktiven Schicht können eine oder mehrere weitere Schichten in den erfindungsgemäßen organischen Solarzellen und Photodetektoren vorhanden sein, z.B. Elektronen tranportierende Schichten ("ETL", electron tranporting layers) und/oder Löcher transportierende Schichten ("HTL", hole transporting layers) und/oder blockierende Schichten, z.B. Excitonen blockierende Schichten ("EBL", excition blo- cking layers), die üblicherweise das einfallende Licht nicht absorbieren, oder auch Schichten, welche als Ladungstransportschichten dienen und gleichzeitig die Kontak- tierung zu einer oder beiden Elektroden der Solarzelle verbessern. Die ETL und HTL können auch dotiert sein, so dass sich Zellen vom p-i-n-Typ ergeben, wie sie bei- spielsweise in der Publikation von J. Drechsel et al., Thin Solid Films 451 - 452 (2004), 515 - 517, beschrieben sind.
Der Aufbau organischer Solarzellen ist des weiteren z.B. in den Schriften WO 2004/083958 A2, US 2005/0098726 A1 und US 2005/0224905 A1 beschrieben, worauf hier in vollem Umfang Bezug genommen wird.
Photodetektoren besitzen im Wesentlichen einen zu organischen Solarzellen analogen Aufbau, sie werden jedoch mit geeigneter Vorspannung betrieben, welche bei Einwir- kung von Strahlungsenergie einen entsprechenden Stromfluss als Messantwort generiert.
Die Prozessierung der photoaktiven Schichten kann aus Lösung erfolgen. Hierbei können die Komponenten K1 und K2 bereits gemeinsam gelöst, aber auch separat als Lösung der Komponente K1 und Lösung der Komponente K2 vorliegen, wobei die
Vermischung der entsprechenden Lösungen in letzterem Fall kurz vor der Aufbringung auf die darunterliegende Schicht erfolgt. Die Konzentrationen der Komponenten K1 und K2 belaufen sich in der Regel auf etwa einige g/l bis einige zehn g/l Lösungsmittel.
Als Lösungsmittel eignen sich alle Flüssigkeiten, welche rückstandsfrei verdampfen und eine ausreichende Löslichkeit für die Komponenten K1 und K2 aufweisen. Hier kommen beispielsweise in Frage aromatische Verbindungen, wie etwa Benzol, Toluol, XyIoI, Mesitylen, Chlorbenzol oder Dichlorbenzol, Trialkylamine, stickstoffhaltige Hete- rocyclen, N,N-disubstituierte aliphatische Carbonsäureamide, wie etwa Dimethylfor- mamid, Diethylformamid, Dimethylacetamid oder Dimethylbutyramid, N-Alkyllactame, wie etwa N-Methylpyrrolidon, lineare und cyclische Ketone, wie etwa Methylethylketon, Cyclopentanon oder Cyclohexanon, cyclische Ether, wie etwa Tetrahydrofuran, oder Alkohole, wie etwa Methanol, Ethanol, Propanol, Isopropanol oder Butanol.
Desweiteren können auch Mischungen der vorgenannten Lösungsmittel Verwendung finden.
Geeignete Methoden zur Aufbringung der erfindungsgemäßen photoaktiven Schichten aus flüssiger Phase sind dem Fachmann bekannt. Vorteilhaft zeigt sich hier insbeson- dere die Prozessierung mittels Spin-Coating, da die Dicke der photoaktiven Schicht in einfacher Weise durch die Menge und/oder Konzentration der verwendeten Lösung sowie die Rotationsgeschwindigkeit und/oder Rotationsdauer gesteuert werden kann. Die Prozessierung der Lösung erfolgt in der Regel bei Raumtemperatur.
Vorzugsweise werden die Komponenten K1 und K2 aber aus der Gasphase, insbesondere durch Vakuumsublimation, abgeschieden. Da die Verbindungen der Formeln I, IIa, IIb, lila, INb, INc, INd und Nie in der Regel durch Sublimation gereinigt werden kön- nen, lassen sich daraus bereits Startparameter für die Gasphasenabscheidung ableiten. Üblicherweise werden für die Abscheidung Temperaturen zwischen 100 und 200 0C angewendet, sie können aber auch, je nach Stabilität der Verbindungen der Komponenten K1 und K2 auch bis in einen Bereich von 300 bis 400 0C erhöht werden.
Im Rahmen der vorliegenden Erfindung werden auch Mischungen beansprucht, welche als Komponenten ein oder mehrere der eingangs gezeigten Verbindungen der allgemeinen Formeln I, IIa, IIb, lila, INb, INc, INd und/oder Nie der Komponente K1 , auch unter Berücksichtigung der aufgeführten Bevorzugungen, und ein oder mehrere Ver- bindungen der Komponente K2, ebenfalls unter Berücksichtigung ihrer aufgeführten Bevorzugungen, enthalten.
Insbesondere zeichnen sich die erfindungsgemäßen Mischungen dadurch aus, dass die Komponente K1 in einem Anteil von 10 bis 90 Massen-%, insbesondere 20 bis 80 Massen-%, und die Komponente K2 in einem Anteil von 90 bis 10 Massen-%, insbesondere 80 bis 20 Massen-%, vorliegt, wobei sich die Anteile der Komponenten K1 und K2, jeweils bezogen auf die Gesamtmasse der Komponenten K1 und K2, zu 100 Mas- sen-% ergänzen.
Nachfolgend wird die Erfindung anhand der nicht als Einschränkung des Erfindungs- umfangs zu verstehenden Beispiele näher erläutert.
Beispiele:
Verwendete Verbindungen als Komponente K1 in den erfindungsgemäßen photoaktiven Schichten:
Verbindungen der allgemeinen Formel I:
Figure imgf000028_0001
Verbindungen der allgemeinen Formel IIa:
Figure imgf000029_0001
Aufbau der Solarzellen:
A) Zweischichtaufbau:
Der Aufbau umfasst folgende Schichten:
16 Metallelektrode (Kathode)
(15 optionale EBL und/oder ETL)
14 Elektronenakzeptor-Schicht 13 Elektronendonor-Schicht
(12 optionale HTL)
1 1 Transparente Elektrode (Anode)
Bei Schicht 1 1 handelt es sich um eine transparente, leitfähige Schicht, beispielsweise ITO, FTO oder ZnO, welche gegebenenfalls z.B. mit Sauerstoffplasma, UV/Ozon- Spülung etc. vorbehandelt ist. Diese Schicht muss einerseits so dünn sein, dass nur geringe Lichtabsorption auftritt, jedoch andererseits dick genug, um einen zufriedenstellenden lateralen Ladungstransport innerhalb der Schicht zu gewährleisten. Üblicherweise beträgt die Dicke der Schicht 20 - 200 nm und sie wird auf einem Substrat wie Glas oder einem flexiblen Polymer (beispielsweise PET) aufgebracht. Schicht 12 besteht aus einer oder mehreren HTLs mit einem hohen lonisierungspoten- tial (> 5,0 eV, vorzugsweise 5,5 eV). Diese Schicht kann entweder aus organischem Material bestehen, wie Poly(3,4-ethylendioxythiophen) mit Poly(styrolsulfonat)(PEDOT- PSS) dotiert, oder beispielsweise aus Ir-DPBIC (Tris-N,N'-Diphenylbenzimidazol-2- yliden-iridium(lll)), N,N'-Diphenyl-N,N'-bis (3-methylphenyl)-1 ,1 '-diphenyl-4, 4'-diamin (α-NPD) und/oder 2,2', 7, 7'-Tetrakis(N,N-di-p-methoxyphenylamin)-9,9'-spirobifluoren (spiro-MeOTAD), oder aus anorganischem Material, wie WO3, Moθ3, usw. Üblicherweise beträgt die Schichtdicke 0 - 150 nm. Für den Fall, dass Schicht 12 aus organischem Material aufgebaut ist, kann sie mit einem p-Dotierstoff versetzt werden, dessen LUMO-Energie im gleichen oder niedrigeren Energiebereich liegt wie das HOMO der HTL. Solche Dotierstoffe sind beispielsweise 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyano- quinodimethan (F4TCNQ), WO3, MoO3, oder die in der Schrift WO 2007/071450 A1 beschriebenen Substanzen.
Schicht 13 besteht aus dem Elektonendonor. Üblicherweise sollte die Schicht so dick sein, dass sie möglichst viel Licht absorbiert, andererseits aber ausreichend dünn, um die gebildeten Ladungen effektiv abführen zu können. In der Regel beträgt die Dicke 5 - 200 nm.
Schicht 14 besteht aus dem Elektronenakzeptor. Wie für Schicht 13 sollte auch hier die Dicke ausreichend sein, um so viel Licht wie möglich zu absorbieren, andererseits müssen jedoch die gebildeten Ladungen effektiv abgeleitet werden. Üblicherweise weist diese Schicht ebenfalls eine Dicke 5 - 200 nm auf.
Schicht 15 ist eine EBL/ETL und sollte eine größere optische Bandlücke aufweisen als die Materialien der Schicht 14, um die Exitonen zu reflektieren, trotzdem jedoch noch über ausreichende Elektronentransporteigenschaften verfügen. Geeignete Verbindungen sind 2,9-Dimethyl-4,7-diphenyl-1 ,10-phenanthrolin (BCP), 4,7-Diphenyl-1 ,10- phenanthrolin (Bphen), 1 ,3-Bis[2-(2,2'-bipyridin-6-yl)1 ,3,4-oxadizo-5-yl]benzol (BPY- OXD), ZnO,Tiθ2 etc. Für den Fall einer organischen Schicht kann diese mit einem n- Dotierstoff versehen werden, dessen HOMO ähnlich oder geringere Energie besitzt, als das LUMO der Elektonen transportierenden Schicht. Geeignete Materialien sind Cs2CO3, Pyronin B (PyB), beschrieben beispielsweise in der Schrift WO 2003/070822 A2, Rodamine B, beschrieben beispielsweise in der Schrift WO 2005/036667 A1 , Co- baltocen und die in der Schrift WO 2007/071450 A1 erwähnten Verbindungen. Die Schichtdicke beträgt üblicherweise 0 - 150 nm.
Schicht 16 (Kathode) besteht aus einem Material mit geringer Austrittsarbeit. Beispielsweise handelt es sich hier um Metalle wie Ag, AI, Ca, Mg oder deren Mischun- gen. Die Schichtdicke beträgt üblicherweise 50-1000 nm und sollte so ausreichend gewählt werden, dass das meiste Licht im Wellenlängenbereich von 350 - 1200 nm reflektiert wird. Die üblichen Drücke während der Gasphasenabscheidung liegen zwischen 10"4 und 10"9 mbar. Die Abscheidungsrate variiert in der Regel zwischen 0,01 nm/Sekunde und 10 nm/Sekunde. Die Temperatur des Substrats während der Abscheidung kann man in einem Temperaturbereich zwischen -100 0C und 200 0C variieren, um die Morphologie der entsprechenden Schicht gezielt zu beeinflussen. Die Abscheidungsrate liegt üblicherweise zwischen 0,1 nm/Sekunde und 2,0 nm/Sekunde.
Für die Abscheidung der Schichten kann ebenfalls das in WO 1999/025894 A1 beschriebene Verfahren eingesetzt werden.
Nach dem Abscheiden der aktiven Schicht (Schicht 13 und 14) oder nach dem Fertigstellen der gesamten Zelle, d.h. nach dem Abscheiden von Schicht 16, kann sich eine Temperung bei 60 0C bis 100 0C für die Dauer von wenigen Minuten bis hin zu einigen Stunden anschließen, um einen innigeren Kontakt der Schichten zu erreichen. Ebenso kann zu diesem Zweck eine Behandlung mit Lösungsmitteldampf , beispielsweise von Toluol, XyIoI, Chloroform, N-Methylpyrrolidon, Dimethylformamid, Ethylacetat, Chlorbenzol und Dichlormethan oder anderen Lösungsmitteln für die entsprechende Dauer vorgenommen werden.
B) Bulk-Heterojunction-(BHJ)-Aufbau:
Der Aufbau umfasst folgende Schichten:
26 Metallelektrode (Kathode) (25 optionale EBL und/oder ETL)
24 ETL
23 Elektronenakzeptor-Elektronendonor-Schicht
(22 optionale HTL)
21 Transparente Elektrode (Anode)
Die Schichten 21 und 22 entsprechen den Schichten 11 und 12 aus Aufbau A).
Die Schicht 23 kann durch gemeinsames Verdampfen oder durch Lösungsprozessie- rung mit üblichen Lösungsmitteln hergestellt werden - hierauf wurde bereits weiter o- ben eingegangen - hergestellt werden. Der Anteil des Elektronendonors beträgt in beiden Fällen vorzugsweisen 10 bis 90 Massen-%, insbesondere 20 bis 80 Massen-%. Der Anteil an Elektronenakzeptor ergibt sich ergänzend zu 100 Massen-%. Auch hier muss die Schicht so dick sein, dass ausreichend Licht absorbiert wird, jedoch immer noch so dünn, dass die Ladungsträger effektiv abgeführt werden können. Üblicherwei- se ist die Schicht 5 - 500 nm dick. Die ETL-Schicht 24 kann aus ein oder mehreren Schichten von Materialien mit einer geringen LUMO-Energie (<3,5 eV) bestehen. Diese Schichten können entweder aus organischen Verbindungen, wie C60-Fulleren, BCP, Bphen oder BPY-OXD, oder aus anorganischen Verbindungen, wie ZnO, ÜO2 etc. bestehen und sind in der Regel zwi- sehen 0 nm - 150 nm dick. Im Falle von organischen Schichten können diese mit den bereits oben erwähnten Dotierstoffen versetzt sein.
Die Schichten 25 und 26 entsprechen den Schichten 15 und 16 aus Aufbau A). Ebenso entsprechen die Abscheidungsraten und Nachbehandlungen denjenigen aus Aufbau A).
C) Tandemzelle
Der Aufbau umfasst folgende Schichten:
36 Metallelektrode (Kathode)
( zusätzliche Rekombinationsschichten und Subzellen)
34 2. Subzelle
33 Rekombinationsschicht 32 1. Subzelle
31 Transparente Elektrode (Anode)
Tandemzellen enthalten zwei oder mehrere Subzellen, die meist in Serie geschaltet sind, wobei zwischen den einzelnen Subzellen Rekombinationsschichten angeordnet sind.
Schicht 31 entspricht vom Aufbau den zuvor genannten Schichten 1 1 und 21 aus Aufbau A) und B).
Die Schichten 32 und 34 sind individuelle Subzellen und entsprechen in ihrer Funktion einzelnen Zellen wie unter Aufbau A) und B) mit dem Unterschied, dass sie keine E- lektroden 11/16 bzw. 21/26 enthalten. Die Subzellen bestehen daher aus den Schichten 12 bis 15 des Aufbaus A) bzw. 22 bis 25 des Aufbaus B).
Die Subzellen können als Komponente K1 bzw. K2 entweder alle Merocyanine enthalten oder eine Subzelle enthält ein oder mehrere Merocyanine und die übrigen Subzellen enthalten Kombinationen anderer Materialien, wie beispielsweise C60-Fulleren/Zn- Phthalocyanin, Oligothiophen (beispielsweise DCV5T)/C60-Fulleren (wie in WO 2006/092134 A1 beschrieben), oder eine der Subzellen ist eine Farbstoff-sensibilisierte Solarzelle (DSSC) oder eine Polymerzelle, wie beispielsweise in der Kombination
P3HT/PCBM. Desweiteren können sowohl Zellen vom Aufbau A) als auch vom Aufbau B) als Subzellen enthalten sein. In den genannten Fällen ist es am günstigsten, wenn die Kombination der Materialien/Subzellen so gewählt wird, dass die Lichtabsorptionen der Subzellen nicht zu stark überlappen, sondern in Summe das Spektrum des Sonnenlichts abdecken, was zu einer Erhöhung der Stromausbeute führt. Unter Berücksichtigung von optischen Interferenzen, welche in der Zelle stattfinden, ist es zudem sinnvoll, eine Subzelle mit Absorption im kürzeren Wellenlängenbereich näher an der Elektrode 36 zu platzieren, als eine Subzelle mit Absorption im längeren Wellenlängenbereich.
Durch die Rekombinationsschicht 33 wird die Rekombination entgegengesetzt gelade- nen Ladungsträger in benachbarten Subzellen bewirkt. Als wirksame Bestandteile in der Rekombinationsschicht können Metallcluster, beispielsweise aus Ag oder Au, wirken oder die Rekombinationsschicht besteht aus einer Kombination hochdotierter n- und p-leitenden Schichten (wie beispielsweise in WO 2004/083958 A2 beschrieben). Im Fall der Verwendung von Metallclustern werden üblicherweise Schichtdicken von 0,5 - 20 nm, im Fall der kombinierten dotierten Schichten Dicken von 5 - 150 nm eingestellt. Weitere Subzellen können auf die Subzelle 34 aufgebracht werden, wobei dann ebenfalls weitere Rekombinationsschichten, wie Schicht 33, vorhanden sein müssen.
Das Material für die Elektrode 36 hängt von der Polarität der Subzellen ab. Bei normaler Polarität kommen die bereits erwähnten Metalle mit geringer Austrittsarbeit, wie beispielsweise Ag, AI, Mg und Ca, in Betracht. Bei invertierter Polarität verwendet man üblicherweise Materialien mit hoher Austrittsarbeit, wie beispielsweise Au, Pt, PEDOT- PSS.
Bei Tandemzellen, welche in Serie geschaltete Subzellen enthalten, addieren sich die Teilspannungen, der Gesamtstrom ist aber durch die Subzelle mit der geringsten Stromstärke/Stromdichte limitiert. Daher sollten die einzelnen Subzellen so optimiert werden, dass deren individuellen Stromstärken/Stromdichten ähnliche Werte aufwei- sen.
Beispiele für Solarzellen:
Alle aufgeführten Solarzellen wurden gemäß den nachfolgenden Schritten hergestellt: Sublimation der Merocyanine:
Die eingangs aufgeführten Materialien wurden durch Zonensublimation gereinigt, wobei der Druck während der gesamten Sublimation unter 1 x10"5 mbar gehalten wurde. Die Ausbeuten der Sublimationsreinigung für jedes Material sind in Tabelle 2 gelistet. Materialien:
Die Merocyanine (im Folgenden auch als Mcy bezeichnet) wurden entweder wie aus der Synthese erhalten oder in nachgereinigtem Zustand, wie zuvor beschrieben, ver- wendet.
NPD: von der Fa. Alfa Aesar; einmal sublimiert
C60: von der Fa. Alfa Aesar; sublimierte Reinheit (+99.92%); ohne weitere Reinigung verwendet Bphen: von der Fa. Alfa Aesar; ohne weitere Reinigung verwendet
Vorbereitung des Substrats:
Das ITO wurde auf das Glassubstrat in einer Dicke von 140 nm aufgesputtert. Der spezifische Widerstand betrug 200 μΩcm und die mittlere Rauigkeit (RMS; roughness mean square) < 5 nm. Das Substrat wurde vor der Abscheidung der weiteren Schichten unter UV-Licht für 20 Minuten mit Ozon behandelt.
Herstellung der Zellen:
Zellen vom Aufbau A) und B) wurden im Hochvakuum (Druck < 10"6 mbar) präpariert.
Die Zelle vom Aufbau A) (ITO/Merocyanin/C60/Bphen/Ag) wurde durch zeitlich aufeinander folgende Abscheidung des Merocyanins und C60 auf das ITO-Substrat herge- stellt. Die Abscheidungsrate betrug für beide Schichten 0,1 nm/Sekunde. Die Verdampfungstemperaturen der Merocyanine sind in Tabelle 1 gelistet. C60 wurde bei 4000C abgeschieden. Nachdem die Bphen-Schicht aufgebracht worden war, wurde abschließend eine 100 nm dicke Ag-Schicht als Topelektrode aufgedampft. Die Zelle hatte eine Fläche von 0,031 cm2.
Für die Herstellung der Zellen vom Aufbau B) (ITO/(Merocyanin:C60 - gewichtsmäßig 1 :1 )/C60/Bphen/Ag) wurden das Merocyanin und das C60 gemeinsam verdampft und auf dem ITO mit derselben Abscheidungsrate von 0,1 nm/Sekunde aufgebracht, so dass in der gemischten aktiven Schicht ein Massenverhältnis von 1 :1 vorlag. Die Bphen- und Ag-Schicht waren identisch zu den entsprechend Schichten des Aufbaus A).
Die Daten einer Zelle mit BHJ-Schicht auf einer dotierten HTL (Schicht 22) sind in Tabelle 3 aufgeführt. NPD und F4-TCNQ wurden als HTL und Dotierstoff in einem Mas- sen-Verhältnnis von 20:1 aufgedampft. Die HTL-Schicht verbesserte die Spannung Voc bei Stromlosigkeit (oc: open circuit) und lieferte höhere Effizienzen. Messungen:
Verwendet wurde ein AM 1.5 Simulator der Fa. Solar Light Co. Inc. mit Xenonlampe (Modell 16S-150 V3). Der UV-Bereich unter 415 nm wurde ausgefiltert und die Strom- Spannungsmessungen wurden bei Umgebungsbedingungen durchgeführt. Die Intensität des Solarsimulators wurde mit einer monokristallinen FZ Solarzelle (Fraunhofer ISE) kalibriert und der Abweichungsfaktor zu nahezu 1 ,0 bestimmt.
Resultate der Solarzellen:
Tabelle 1. Ergebnisse mit den eingangs gezeigten Merocyaninen im Aufbau A). Die Verdampfungstemperaturen Tv sind ebenfalls aufgeführt.
Mcy Tv (0C) Mcy C60 Voc Jsc FF (%) Effizienz
(ID) Dicke Dicke (mV) (mA/cm2) (%)
(nm) (nm)
492 150 10 40 780 6,4 55 2,7
507 175 10 40 620 1,5 13 0,12
511 160 10 40 700 5,6 57 2,2
528 150 10 40 800 6,5 84 2,8
529 180 10 40 740 6,4 71 3,3
537 290 40 40 460 0,01 18 0,001
538 160 30 40 380 2,6 37 0,37
540 220 20 40 620 4,7 37 1,1
541 225 10 40 600 3,7 24 0,5
546 195 10 40 520 1,2 20 0,12
Tabelle 2. Ergebnisse mit den eingangs gezeigten Merocyaninen im Aufbau B). Die Verdampfungstemperaturen Tv sind ebenfalls aufgeführt.
ID Ausbeute BHJ C60 Voc Jsc FF (%) Effizienz
(%) Dicke Dicke (mV) (mA/cm2) (%)
(nm) (nm)
492 55 25 20 760 11,2 47 3,9
507 66 25 20 580 4,7 38 1,0
511 — 25 20 780 11,2 50 4,3
528 71 30 20 760 10,2 45 3,5
529 56 30 20 740 11,3 50 4,1
538 70 20 20 60 3,7 39 0,08
540 — 20 20 240 7,8 39 0,7
541 57 30 20 740 16,1 35 4,1
546 44 20 20 550 4,4 30 0,7 Tabelle 3: Ergebnis mit dem Mcy ID 492 : C60-BHJ-Aufbau auf einer HTL
Figure imgf000036_0001

Claims

Patentansprüche
1. Verwendung von Mischungen, enthaltend als Komponenten
K1 ) ein oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der allgemeinen Formeln
A-U-X101=(L2)n=B (I)
Figure imgf000037_0001
und
Figure imgf000037_0002
Figure imgf000038_0001
Figure imgf000038_0002
als Elektronendonor bzw. Elektronenakzeptor, worin bedeuten
NR1102, wobei beide Reste R110 zusammen mit dem N-Atom, an welches sie gebunden sind, einen fünf- oder sechsgliedrigen gesättigten Ring bilden können, oder einer der Reste R110 bildet mit dem Kohlenstoffatom des Benzolringes, welches α-ständig zum Kohlenstoffatom ist, welches die NR1102-Gruppe trägt, einen fünf- oder sechsgliedrigen gesättigten Ring, SR110 oder OR110,
O, S, N-CN, N-R110, C(CN)2, C(CO2R110)2, C(CN)COR110, C(CN)CO2R110,
C(CN)CONR100 2 oder eine Gruppierung ausgewählt aus der Gruppe
Figure imgf000038_0003
und
Figure imgf000038_0004
(B-03) worin * im Fall der Verbindungen der Formeln IJIa und IIb die Anbindung an L2, im Fall der Verbindungen der Formeln lila und INb die Anbindung an den restlichen Molekülteil bezeichnet,
L1 ein zweiwertiger Aryl- oder Hetaryl-Rest,
L2 ein zweiwertiger, gegebenenfalls ein- oder mehrfach anellierter Carbo- oder Heterocyclus, welcher einerseits mit B, andererseits über die Einheiten X100 bzw. X101 sowie dem restlichen Molekülteil mit A in π- Konjugation steht, oder eine Gruppierung
Figure imgf000039_0001
worin * und ** die Anbindung an die entsprechende Einheit X101 oder X100 einerseits, und B andererseits bezeichnet,
n O oder i ,
X100 CH, N oder C(CN),
X101 CH, N, C(CN) oder X101 und L2 zusammen bilden eine Gruppierung
Figure imgf000039_0002
worin * und ** die Anbindung an die entsprechende Einheit L1 einerseits, und B andererseits bezeichnet,
X200 O, S, SO2 oder NR110,
X201 O, S, SO2, NR110 oder CR111 2,
X202 zweimal H, O oder S,
R100 Alkyl, Ci-Ce-Alkylen-COO-Alkyl, d-Cβ-Alkylen-O-CO-Alkyl, CrC6- Alkylen-O-CO-O-Alkyl, Cylcloalkyl, Arylalkyl oder Aryl, R110 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, d-Ce-Alkylen-O-CO-Alkyl, CrC6- Al- kylen-O-CO-O-Alkyl, Cylcloalkyl, Arylalkyl oder Aryl,
R101 Alkyl, d-Cβ-Alkylen-COO-Alkyl, d-Ce-Alkylen-O-CO-Alkyl, CrC6- Alky- len-O-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl oder Hetaryl,
R111 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, Ci-Cβ-Alkylen-O-CO-Alkyl, CrC6- Al- kylen-O-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl oder Hetaryl,
R115 H, Alkyl, teil- oder perfluoriertes Alkyl, d-Cβ-Alkylen-COO-Alkyl, Ci-Cβ- Alkylen-O-CO-Alkyl, CrC6- Alkylen-O-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, NHCO-R100 oder N(CO-R100)2,
R118 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, d-Ce-Alkylen-O-CO-Alkyl, CrC6- Alkylen-O-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, OR110, SR110, Hetaryl, Halogen, NO2 oder CN
R210 H oder CN,
R211 H, CN oder SCN,
wobei die Kohlenstoffketten der Alkyl- und Cylcloalkyl-Reste durch ein oder zwei nicht benachbarte Sauerstoffatome unterbrochen sein kön- nen, die Reste R115 und R210 in Formel lila zusammen einen anellierten, gegebenenfalls mit R118 substituierten Benzolring bilden können, im Falle der Bedeutung CH für X100 in Formel INd der Rest R100 eine, gegebenenfalls mit R118 substituierte Benzanellierung zu dem diesem Kohlenstoffatom ausbilden kann und die zuvor genannten Variablen, sofern sie mehr als einmal auftreten, gleich oder voneinander verschieden sein können,
und
K2) ein oder mehrere Verbindungen, welche gegenüber Komponente K1 ) entsprechend als Elektronenakzeptor bzw. Elektronendonor wirken,
zur Herstellung von photoaktiven Schichten für organische Solarzellen und organische Photodetektoren.
2. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass in den Formeln I, IIa und IIb von Anspruch 1 L2 eine Gruppierung bedeutet ausgewählt aus der Gruppe
Figure imgf000041_0001
Figure imgf000042_0001
worin bedeuten
R102 Arylalkyl, Aryl oder Hetaryl,
R112 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, d-Cβ-Alkylen-O-CO-Alkyl, CrC6- Al- kylen-0-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, OR110 oder SR110,
R113 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, Ci-Ce-Alkylen-O-CO-Alkyl, CrC6- Al- kylen-0-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, Hetaryl, NH-Aryl, N(Aryl)2, NHCO-R100 oder N(CO-R100)2, R114 H, Alkyl oder teil- oder perfluoriertes Alkyl, d-Ce-Alkylen-COO-Alkyl, d- Ce-Alkylen-O-CO-Alkyl oder CrC6- Alkylen-O-CO-O-Alkyl,
R116 H, Alkyl, d-Cβ-Alkylen-COO-Alkyl, d-Ce-Alkylen-O-CO-Alkyl, CrC6- Alkylen-O-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, CO2R110 oder CN
R117 H, Alkyl, d-Ce-Alkylen-COO-Alkyl, d-Ce-Alkylen-O-CO-Alkyl, CrC6- Alkylen-O-CO-O-Alkyl, Cylcloalkyl, Arylalkyl, Aryl, OR110, SR110 Halogen oder Hetaryl,
R212 H, CN, CONR110 oder COR101,
und die übrigen Variablen die Bedeutung wie in Anspruch 1 besitzen, wobei die Kohlenstoffketten der Alkyl- und Cylcloalkyl-Reste durch ein oder zwei nicht benachbarte Sauerstoffatome unterbrochen sein können und die zuvor und in Anspruch 1 genannten Variablen, sofern sie mehr als einmal auftreten, gleich oder voneinander verschieden sein können.
Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei Komponente K2 um ein oder mehrere Verbindungen ausgewählt aus der Gruppe
a) Fullerene und Fullerenderivate,
b) polycyclische aromatische Kohlenwasserstoffe und deren Derivate, insbesondere Naphthalin und dessen Derivate, Rylene, insbesondere Perylen, Terrylen und Quaterrylen, und deren Derivate, Azene, insbesondere Anthrazen, Tetrazen, inbesondere Rubren, Pentazen und deren Derivate, Pyren und dessen Derivate, Coronen und Hexabenzocoronen und deren Derivate,
c) Chinone, Chinondimethane und Chinondiimine und deren Derivate,
d) Phthalocyanine und Subphthalocyanine und deren Derivate,
e) Porphyrine, Tetraazaporphyrine und Tetrabenzoporphyrine und deren Derivate,
f) Thiophene, oligo-Thiophene, kondensierte/anellierte Thiophene, wie Thienothi- ophen und Bithienothiophen, und deren Derivate,
g) Thiadiazole und deren Derivate, h) Carbazole und Triarylamine und deren Derivate,
i) Indanthrone, Violanthrone und Flavanthone und deren Derivate und
j) Fulvalene, Tetrathiafulvalene und Tetraselenafulvalene und deren Derivate,
handelt.
4. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei Komponente K2 um ein oder mehrere Fullerene und/oder Fulleren-Derivate handelt.
5. Verwendung nach einem Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei Komponente K2 um ein oder mehrere Fullerene handelt.
6. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei Komponente K2 um ein C60-Fulleren der Formel k2
Figure imgf000044_0001
handelt.
7. Verwendung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Komponente K1 in einem Anteil von 10 bis 90 Massen-%, insbesondere 20 bis 80 Massen-%, und die Komponente K2 in einem Anteil von
90 bis 10 Massen-%, insbesondere 80 bis 20 Massen-%, vorliegt, wobei sich die Anteile der Komponenten K1 und K2, jeweils bezogen auf die Gesamtmasse der Komponenten K1 und K2, zu 100 Massen-% ergänzen.
8. Verfahren zur Herstellung von photoaktiven Schichten, dadurch gekennzeichnet, dass ein oder mehrere Verbindungen der allgemeinen Formeln I, IIa, IIb, lila, INb INc, INd und/oder Nie der Komponente K1 gemäß Anspruch 1 oder 2 und ein oder mehrere Verbindungen der Komponente K2 gemäß Anspruch 3, 4, 5 oder 6 gleichzeitig, nacheinander oder in alternierender Abfolge durch Vakuumsublima- tion auf einem Substrat abgeschieden werden.
9. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Komponenten K1 und K2 nach ihrer Abscheidung in einem Verhältnis gemäß Anspruch 7 auf dem Substrat vorliegen.
10. Organische Solarzellen und organische Photodetektoren, enthaltend photoaktive Schichten, welche unter Verwendung von Mischungen gemäß einem oder meh- reren der Ansprüche 1 bis 6 hergestellt worden sind oder welche gemäß einem
Verfahren nach Anspruch 8 oder 9 erhältlich sind.
1 1. Mischungen, enthaltend als Komponenten ein oder mehrere Verbindungen der allgemeinen Formeln I, IIa, IIb, lila, INb, INc, INd und/oder Nie der Komponente K1 gemäß Anspruch 1 oder 2 und ein oder mehrere Verbindungen der Komponente
K2 gemäß Anspruch 3, 4, 5 oder 6.
12. Mischungen nach Anspruch 11 , dadurch gekennzeichnet, dass die Komponente K1 in einem Anteil von 10 bis 90 Massen-%, insbesondere 20 bis 80 Massen-%, und die Komponente K2 in einem Anteil von 90 bis 10 Massen-%, insbesondere
80 bis 20 Massen-%, vorliegt, wobei sich die Anteile der Komponenten K1 und K2, jeweils bezogen auf die Gesamtmasse der Komponenten K1 und K2, zu 100 Massen-% ergänzen.
PCT/EP2009/064331 2008-10-31 2009-10-30 Merocyanine zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren WO2010049512A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09741311A EP2347460A1 (de) 2008-10-31 2009-10-30 Merocyanine zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren
CN2009801433924A CN102203972A (zh) 2008-10-31 2009-10-30 用于制备有机太阳能电池和有机光电探测器用光活化层的部花青
US13/126,868 US20110256422A1 (en) 2008-10-31 2009-10-30 Merocyanines for producing photoactive layers for organic solar cells and organic photodetectors
JP2011533734A JP2012507169A (ja) 2008-10-31 2009-10-30 有機太陽電池用および有機光検出器用の光活性層を形成するためのメロシアニン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08168116.5 2008-10-31
EP08168116 2008-10-31

Publications (1)

Publication Number Publication Date
WO2010049512A1 true WO2010049512A1 (de) 2010-05-06

Family

ID=41279407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/064331 WO2010049512A1 (de) 2008-10-31 2009-10-30 Merocyanine zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren

Country Status (6)

Country Link
US (1) US20110256422A1 (de)
EP (1) EP2347460A1 (de)
JP (1) JP2012507169A (de)
KR (1) KR20110094279A (de)
CN (1) CN102203972A (de)
WO (1) WO2010049512A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130019937A1 (en) * 2011-07-22 2013-01-24 University Of Florida Research Foundation, Inc. Photovoltaic cell enhancement through uvo treatment
JP2013041995A (ja) * 2011-08-16 2013-02-28 Fujifilm Corp 光電変換素子およびその使用方法、撮像素子、光センサ
US8610893B2 (en) 2009-10-16 2013-12-17 Basf Se Marking agents having narrow bands
US9139908B2 (en) 2013-12-12 2015-09-22 The Boeing Company Gradient thin films
WO2016083914A1 (en) 2014-11-26 2016-06-02 Basf Se 4-oxoquinoline compounds
US9508944B2 (en) 2012-04-11 2016-11-29 The Boeing Company Composite organic-inorganic energy harvesting devices and methods
US10186664B2 (en) 2014-06-17 2019-01-22 Basf Se N-fluoroalkyl-substituted dibromonaphthalene diimides and their use as semiconductor
US10741762B2 (en) 2012-05-02 2020-08-11 Clap Co., Ltd. Method for the deposition of an organic material
US11355719B2 (en) 2012-07-02 2022-06-07 Heliatek Gmbh Transparent electrode for optoelectronic components

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549792B (zh) 2009-10-13 2015-11-25 巴斯夫欧洲公司 生产有机太阳能电池和有机光检测器用光活性层的混合物
WO2013171549A1 (en) * 2012-05-18 2013-11-21 Robert Bosch (Sea) Pte. Ltd. Organic tandem solar cell
AU2013285053A1 (en) * 2012-07-04 2015-01-15 Basf Se Organic dyes comprising hydrazone moiety and use in dye- sensitized solar cells thereof
KR102153871B1 (ko) 2012-10-09 2020-09-09 메르크 파텐트 게엠베하 전자 디바이스
TWI613833B (zh) * 2012-11-09 2018-02-01 Sony Corp 光電變換元件、固體攝像裝置及電子機器
CN104871336B (zh) * 2012-12-18 2017-08-08 默克专利有限公司 具有稠合环系的发光体
JP6185431B2 (ja) * 2014-06-23 2017-08-23 ソニーセミコンダクタソリューションズ株式会社 光電変換膜、固体撮像素子、および電子機器
KR102314133B1 (ko) * 2014-11-25 2021-10-15 삼성전자주식회사 유기 광전 소자용 화합물, 유기 광전 소자 및 이미지 센서
KR102285566B1 (ko) * 2017-06-20 2021-08-03 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자
JPWO2020218297A1 (de) * 2019-04-26 2020-10-29

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264048A (en) * 1991-02-04 1993-11-23 Ricoh Company, Ltd. Photoelectric conversion device
US6086637A (en) * 1996-11-23 2000-07-11 Basf Aktiengesellschaft Trifluormethylpyridone based indolenine methine dyes
US20030152827A1 (en) * 2000-07-27 2003-08-14 Masaaki Ikeda Dye-sensitized photoelectric transducer
JP2006086157A (ja) * 2004-09-14 2006-03-30 Fuji Photo Film Co Ltd 光電変換膜、光電変換素子、及び撮像素子、並びに、これらに電場を印加する方法
US20060071253A1 (en) * 2004-09-29 2006-04-06 Fuji Photo Film Co., Ltd. Photoelectric conversion device and imaging device
US20080035965A1 (en) * 2006-08-14 2008-02-14 Fujifilm Corporation Photoelectric conversion element and solid-state image pickup device
WO2009007340A1 (de) * 2007-07-10 2009-01-15 Basf Se Mischungen zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3928243A1 (de) * 1989-08-26 1991-02-28 Basf Ag Merocyaninartige thiazolfarbstoffe sowie ein verfahren zum thermischen transfer dieser farbstoffe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264048A (en) * 1991-02-04 1993-11-23 Ricoh Company, Ltd. Photoelectric conversion device
US6086637A (en) * 1996-11-23 2000-07-11 Basf Aktiengesellschaft Trifluormethylpyridone based indolenine methine dyes
US20030152827A1 (en) * 2000-07-27 2003-08-14 Masaaki Ikeda Dye-sensitized photoelectric transducer
JP2006086157A (ja) * 2004-09-14 2006-03-30 Fuji Photo Film Co Ltd 光電変換膜、光電変換素子、及び撮像素子、並びに、これらに電場を印加する方法
US20060071253A1 (en) * 2004-09-29 2006-04-06 Fuji Photo Film Co., Ltd. Photoelectric conversion device and imaging device
US20080035965A1 (en) * 2006-08-14 2008-02-14 Fujifilm Corporation Photoelectric conversion element and solid-state image pickup device
WO2009007340A1 (de) * 2007-07-10 2009-01-15 Basf Se Mischungen zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8610893B2 (en) 2009-10-16 2013-12-17 Basf Se Marking agents having narrow bands
US20130019937A1 (en) * 2011-07-22 2013-01-24 University Of Florida Research Foundation, Inc. Photovoltaic cell enhancement through uvo treatment
US10236460B2 (en) * 2011-07-22 2019-03-19 University Of Florida Research Foundation, Incorporated Photovoltaic cell enhancement through UVO treatment
US9412952B2 (en) 2011-08-16 2016-08-09 Fujifilm Corporation Photoelectric conversion element and method of using the same, image sensor, and optical sensor
JP2013041995A (ja) * 2011-08-16 2013-02-28 Fujifilm Corp 光電変換素子およびその使用方法、撮像素子、光センサ
US10347857B2 (en) 2012-04-11 2019-07-09 The Boeing Company Composite organic-inorganic energy harvesting devices and methods
US9508944B2 (en) 2012-04-11 2016-11-29 The Boeing Company Composite organic-inorganic energy harvesting devices and methods
US10741762B2 (en) 2012-05-02 2020-08-11 Clap Co., Ltd. Method for the deposition of an organic material
US11355719B2 (en) 2012-07-02 2022-06-07 Heliatek Gmbh Transparent electrode for optoelectronic components
US9139908B2 (en) 2013-12-12 2015-09-22 The Boeing Company Gradient thin films
US10186664B2 (en) 2014-06-17 2019-01-22 Basf Se N-fluoroalkyl-substituted dibromonaphthalene diimides and their use as semiconductor
WO2016083914A1 (en) 2014-11-26 2016-06-02 Basf Se 4-oxoquinoline compounds
US10522767B2 (en) 2014-11-26 2019-12-31 Basf Se 4-oxoquinoline compounds

Also Published As

Publication number Publication date
JP2012507169A (ja) 2012-03-22
KR20110094279A (ko) 2011-08-23
US20110256422A1 (en) 2011-10-20
EP2347460A1 (de) 2011-07-27
CN102203972A (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
WO2010049512A1 (de) Merocyanine zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren
EP2489084B1 (de) Mischungen zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren
EP2168181B1 (de) Mischungen zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren
DE102013106639B4 (de) Organisches, halbleitendes Bauelement
EP3050134B9 (de) Photoaktives, organisches material für optoelektronische bauelemente
JP6542217B2 (ja) ヘテロ接合型有機太陽電池用の新規吸収体
EP2329539A1 (de) Verwendung von dibenzotetraphenylperiflanthen in organischen solarzellen
EP2959520B1 (de) Optoelektronisches bauelement
EP2976794B1 (de) Photoaktives, organisches material für optoelektronische bauelemente
EP3044818B1 (de) Vorrichtung der organischen elektronik mit aktiver schicht
CN105051049A (zh) 用在太阳能电池中的第iv族金属的芳氧基酞菁
WO2016124694A1 (de) Lichtabsorber
WO2022042804A1 (de) Chemische verbindung, verwendung mindestens einer solchen chemischen verbindung in einem optoelektronischen bauelement, und optoelektronisches bauelement mit mindestens einer solchen chemischen verbindung
EP4271677A1 (de) Verbindung für ein optoelektronisches bauelement und optoelektronisches bauelement enthaltend die verbindung
DE102009022408A1 (de) Organische Solarzelle oder Photodetektor mit verbesserter Absorption
DE102022125417A1 (de) Chemische Verbindung, optoelektronisches Bauelement mit mindestens einer solchen chemischen Verbindung, und Verwendung mindestens einer solchen chemischen Verbindung in einem optoelektronischen Bauelement
WO2024002432A1 (de) Optoelektronisches bauelement mit einer als planar heterojunction ausgebildeten photoaktiven schicht
DE102022116410A1 (de) Organisches elektronisches Bauelement mit einer Akzeptorschicht und einer daran angeordneten Kaskade aus mindestens zwei in direktem Kontakt aufeinanderfolgenden Donorschichten
WO2021004585A1 (de) Organische verbindung, und optoelektronisches bauelement mit einer solchen organischen verbindung
DE102013110373A1 (de) Optoelektronisches Bauelement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143392.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09741311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011533734

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117010838

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009741311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13126868

Country of ref document: US