WO2010048770A1 - 按等边三角截面法结构的球阀座和球阀 - Google Patents

按等边三角截面法结构的球阀座和球阀 Download PDF

Info

Publication number
WO2010048770A1
WO2010048770A1 PCT/CN2009/000283 CN2009000283W WO2010048770A1 WO 2010048770 A1 WO2010048770 A1 WO 2010048770A1 CN 2009000283 W CN2009000283 W CN 2009000283W WO 2010048770 A1 WO2010048770 A1 WO 2010048770A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
seat
valve seat
sealing
ring
Prior art date
Application number
PCT/CN2009/000283
Other languages
English (en)
French (fr)
Inventor
徐长祥
杨茅
陈占基
Original Assignee
浙江华夏阀门有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华夏阀门有限公司 filed Critical 浙江华夏阀门有限公司
Priority to EP09822963A priority Critical patent/EP2365236A1/en
Priority to US13/126,495 priority patent/US8864105B2/en
Publication of WO2010048770A1 publication Critical patent/WO2010048770A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/06Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having spherical surfaces; Packings therefor
    • F16K5/0663Packings
    • F16K5/0668Single packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/08Details
    • F16K5/14Special arrangements for separating the sealing faces or for pressing them together
    • F16K5/20Special arrangements for separating the sealing faces or for pressing them together for plugs with spherical surfaces
    • F16K5/204Special arrangements for separating the sealing faces or for pressing them together for plugs with spherical surfaces with the plugs or parts of the plugs mechanically pressing the seals against the housing

Definitions

  • the invention is in the field of fluid power transmission and medium conveying engineering, and relates to a ball valve and a valve seat for use as a fluid switch and control. Background technique
  • valve seats such as polytetrafluoroethylene (PTFE)
  • PTFE polytetrafluoroethylene
  • the cross section of the ball valve seat is an equilateral triangle, which can minimize the material or size of the valve seat, thereby minimizing the influence of temperature changes on the reliability of the valve.
  • Ordinary ball terracotta has two places that cannot be closed or two are exposed in the transmission medium, and one is exposed to the medium channel.
  • the exposed surface of the channel is directly exposed to the medium compression in the channel, and the other is the exposed surface of the cavity exposed in the cavity between the valve body and the ball.
  • the ⁇ 3 ⁇ 4 exposed surface directly receives the medium compression in the cavity of the valve body. .
  • the surface is pressed at the same pressure as the middle chamber to relieve the floating ball valve from adding pressure to the ball and the downstream reading seat through the upstream valve seat end sealing surface to increase the load of the downstream valve seat and the valve operating torque; however, when the ball valve is opened to open quickly to open When the horizontal part of the valve seat just faces the central through hole of the ball and partially loses the surface support of the ball, if there is medium flowing along the sealing surface of the upstream valve seat end and the cylindrical groove, it is necessary to partially punch the valve seat into the ball. The valve seat is damaged; for this reason, the prior art has to increase the size of the valve seat section or the outer diameter and thickness of the valve seat to increase the strength of the valve seat, resulting in more surface of the valve seat being exposed in the prior art.
  • the floating ball valve is considered to be self-sealing according to the switch (to ensure that the mounting clamping force W 2 of the valve seat to the ball is not less than the medium force A e p on the exposed surface of the cavity), and the inherent eccentric rotation interference cannot be excluded. , the reliability of the switch seal cannot be guaranteed, and it will not work.
  • a e the area of the cavity in the cavity
  • any floating ball valve seat is an interference pulse amplifier.
  • the eccentric rotation force of the ball is the interference pulse input.
  • the force A c p of the medium on the ball cover surface is the interference pulse output, and the effect of the medium on the exposed surface of the cavity.
  • the force A e p is equivalent to the DC output of the pulse amplifier. The larger the A e p is, the more favorable the large output of the pulse signal is - in fact, the larger the A e p, the more it can prevent the thrust of the medium by the medium W.
  • the medium acting area of the seat be minimized (A e +A) without exceeding the allowable strength of the material. c ), in particular, reducing the area of the exposed area without any use, reducing the amplified output of the eccentric rotation interference signal in order to obtain a more reliable floating closing seal, rather than entanglement of the empirically determined valve seat anti-interference coefficient m value It can also be slightly less than 2.
  • the mounting force of the floating ball seat on the ball is only responsible for the minimum sealing stress y (related to the material and sealing contact structure) required for the valve seat without medium pressure; for a certain mode
  • the minimum sealing stress y of the valve seat is only related to the yield of the valve seat material, and can be understood as the stress when the material fills the uneven joint surface due to the yield flow,
  • the theoretical size should approximate the yield strength of the material, the actual size being only a large percentage of the yield strength of the material - since the actual contact area is only a large percentage of the calculated area of stress.
  • the floating ball valve can use a negligible mounting clamping force, or even a small thrust of the medium on the ball. It can replace the installation clamping force of the upstream valve seat on the ball, so that the switch ball is separated from the upstream valve seat, so that the working rotation binding force of the ball and the working load of the valve seat are derived from the medium-to-ball thrust W s on the downstream valve seat, Both the non-working rotational restraint force of the ball and the non-working load of the valve seat are derived from the mounting clamping force of the valve seat to the ball (which can be as small as negligible).
  • the axial ear ball valve has complicated structure, high manufacturing cost and difficult maintenance.
  • the original intention of replacing the floating ball valve with a shaft-mounted ball valve is to replace the downstream valve seat with a bearing to bear the thrust of the medium to the ball, so that the softer material can undertake the higher pressure switch sealing task, or the high pressure large size ball valve is not Seat material strength limit.
  • the additional effect of replacing the floating ball valve with a shaft-mounted ball valve is that the turning torque is small. Since the valve seat of the present invention can reduce the operating torque of the switching ball of the prior art floating ball valve by more than half, if the valve seat of the present invention can also improve the pressure resistance, it is not possible to be in a larger range. Replace expensive auger ball valves with inexpensive and reliable floating ball valves?
  • the triangular-section valve seat of the present invention can unify the metal valve seat valve of the floating ball valve and the non-metallic valve seat structure, and can construct a floating valve seat that does not use the 0-type sealing ring, it is not beautiful! Disclosure of invention
  • the technical problem to be solved by the present invention is to propose the principle and method of the ball valve seat structure, and propose a series of ideal ball wide seats.
  • Any ball-wide closing seal has an unavoidable eccentric rotation of the ball.
  • a s the medium acting area of the ball
  • Floating ball valve with insufficient anti-interference ability of the valve seat can only rely on the clamping force W 2 of the seat on the ball.
  • the thrust of the mass to the ball W s maintains the switch sealing of the ball. In fact, it is only a floating ball valve in the form of a structure floating like a ball.
  • the sealing contact is “microscopic line heel surface neutral contact” or micro silver tooth contact, that is, the line contact is followed by the surface contact and the surface contact is always in wired contact, the sealing contact is always the microscopic deformation necessary to provide the material by line contact.
  • the macroscopic strength necessary for stress and surface contact to ensure the material may never disappear with stress and protective line contact; if the seat seal is designed according to the "microscopic line heel surface contact" structure, no matter what non-metal or metal seat, The relative requirement is small to negligible mounting clamping force - because of the line contact where the contact area tends to zero, any small contact pressure can produce a contact stress that tends to infinity; that is, to lower the ball seat against the ball The clamping force is used to more effectively utilize the floating self-sealing of the floating ball or the floating seat. For high-strength material seats, especially metal seats, a "microscopic line heel midline contact" sealing structure should be used.
  • FIG. 1 and Figure 2 show a common floating ball threshold in the fully open and fully closed states.
  • the valve seat 02 is responsible for providing the mounting butt, the rotary support and the closing seal of the switch ball 03 in the valve body 01.
  • the threaded connection of the body end cap 05 and the valve body is responsible for providing the installation and fastening of the switch ball and the valve seat in the valve body.
  • the body seal 04 is responsible for providing the sealing of the valve body connection
  • the valve stem 06 is responsible for providing the rotation of the switch ball.
  • the valve stem seal assembly is responsible for providing the seal of the valve stem. Since the present invention only relates to the installation of the switch ball in the valve body by the valve seat of different cross-section, the rotational support and the closing seal, only some of the valve body 01 and the valve corresponding to FIG.
  • FIG. 2 A partial or partial enlarged view of the seat 02 and the switch ball 03 is sufficient to clearly express the various aspects of the present invention to those skilled in the art, including the clear expression of the floating seat arrangement in the fixed-axis ball valve.
  • Expression in the text, as used £ 'fixed seat refer to a common floating ball valve ball valve seat, is in fact slightly floating; used as” floating valve "refers to a fixed ball Min conventional ball seat, which is in fact The switch ball can also float slightly; the “projection” used refers to the projection on the relevant coordinate system plane or the relevant coordinate system axis defined by the central through hole axis of the switch ball; the "press (equal) triangle used)
  • the section method ", the (equilateral) triangle as the section feature, the section component and the section profile” and the “approaching (equilateral) triangle as the section profile” sometimes have the same meaning.
  • the section of the ordinary fixed valve seat 02 includes an intrinsic cross-sectional structure equilateral triangle ABC whose side AB is the ball seal surface of the seat (ie, AB). It is the black or the ball seal of the seal arc.
  • the side BC can be the end seal surface of the seat.
  • the cylindrical bearing surface determines the edge (that is, the cylindrical bus of the CA can be taken as the cylindrical busbar).
  • the ball seal is determined by the allowable load of the material seat.
  • the contour intersection C determines the bareness of the valve seat surface.
  • the slewing diameter D s (the ball diameter of the seat), Di (the inner diameter of the seat), and D.
  • the cross-section seal arc of the ball seat or the ball seal of the structural triangle ABC should be symmetrically at the end of the switch ball with a position difference of 90°.
  • the reference edge map A'B' defined by the small circle d' of the end face to ensure that the ball sealing surface AB of the valve seat can fully press on the surface of the switch ball to maintain the sealing shape when the switch ball is in the fully open and fully closed positions.
  • the present invention proposes a fixed valve seat for a floating ball valve having an equilateral triangle as a cross-section element (see FIG. 7a), which is characterized in that the side AB of the equilateral triangle structure ABC is a ball seal of the seat, and the side is BC.
  • the projection edge or the projection extension side rotation forming surface is the end sealing surface of the seat, the projection side of the side CA is rotated to form the surface of the column support surface, and the point C is the intersection of the contour line;
  • the ball seal is abbreviated as AB, that is, the valve seat
  • the section of the cross-section sealing arc is at an angle of 45° to the central through-hole axis of the ball, or the ball sealing surface of the valve seat can be prefabricated into a 90° cone that is coaxial with the valve seat and intersects the ball. Or prefabricating the arc surface of the ball cut out by the 90° cone; the position of the ball seal vertex and contour intersection is determined by the allowable strength of the valve seat material and the required seat anti-interference coefficient m.
  • the above-mentioned ordinary fixed valve seat with the equilateral triangle as the cross-section element and not the equilateral triangle as the cross-sectional contour mainly controls the orientation and length of the spherical seal of the valve seat structure triangle ABC and the surface dew of the valve seat.
  • the anti-interference coefficient m of the valve seat is designed to improve the sealing performance of the ordinary fixed seat switch, reduce the rotation torque of the ordinary fixed seat switch, and has the characteristics of simple structure and low manufacturing cost, but to solve the material of the valve seat. Exposed problems or creeping deformation or extrusion flow deformation problems caused by the appearance of the concrete cannot meet certain special application requirements, such as meeting the fire protection requirements of API 6D.
  • the fire ball valve refers to a ball valve that performs switch sealing in the normal environment by metal-non-metal contact between the switch ball and the valve seat, and a switch that seals the metal-metal contact between the switch ball and the valve body in a fire environment, that is, fire prevention
  • the ball valve requires a valve body sealing lip that is pressed during normal operation without clinging to the surface of the switch ball so that the non-metallic seat material material enters the metal-to-metal seal between the switch ball and the body immediately after burning. Therefore, in order to meet the fire protection requirements of the API 6D, the present invention proposes a fixed valve seat for a floating ball valve having an equilateral triangle as a cross-section component (see Fig.
  • the side AB of the equilateral triangle ABC of the cross-section structure is The ball of the seat is sealed, and the side of the BC is formed to be the end sealing surface of the seat.
  • the projection side of the side CA is rotated to form the column supporting surface of the seat, and the point C is the intersection of the contour line; the ball seals the meta-AB, that is, the valve
  • the block of the block seal arc is at an angle of 45° to the central through hole axis of the ball, or the ball seal face of the valve seat can be prefabricated into a 90° cone that is coaxial with the valve seat and intersects the ball.
  • the surface of the ball is prefabricated or pre-formed by the 90° cone; the position of the ball seal vertex and contour intersection is determined by the allowable strength of the valve seat material and the required seat anti-interference coefficient m.
  • the present invention proposes a fixed valve seat for a floating ball valve with an equilateral triangle as a cross-sectional profile (see FIG. 9a), characterized in that the fixed valve seat is matched.
  • the inner seal ring (abbreviated as inner ring) and the outer support ring (abbreviated as outer ring) are combined, the inner ring has an equilateral triangle ABC as a cross-sectional profile, and the side AB is a ball seal of the fixed valve seat, and its side
  • the rotating forming surface of the BC is an end sealing surface of the fixed valve seat, and the rotating forming surface of the side CA is a supported surface of the inner ring;
  • the outer ring has a trapezoidal cross section, and the cylindrical surface with a trapezoidal height as a bus bar is a fixed valve seat.
  • the cylinder surface is in clearance fit with the valve seat receiving hole on the valve body, and the tapered surface with the trapezoidal oblique waist as the busbar is the bearing surface to the inner ring; the switch ball is pressed against each other under the action of the medium pressure
  • the inner ring and the outer ring of the support are pressed against each other to be pressed against each other; the strength of the inner ring material is lower than the strength of the outer ring material.
  • the inner ring of the present invention uses two sides, and the single-ring valve seat only bears the pressure of the switch ball on one side. Therefore, it is not difficult to understand that the bearing capacity of the fixed valve seat with the equilateral triangle as the cross-sectional profile is a single-ring seat. 1.366 times.
  • the inner seal ring is pressed almost in the closed cavity, just like the hydraulic oil sealed in the cylinder, it is difficult to undergo compression deformation and it is difficult to crack the flow deformation or being squeezed, and there is no creep deformation.
  • the composite valve seat of the present invention ensures the use of a soft material excellent in sealing performance at a very high pressure limit, and achieves a longer life and higher reliability, with a higher load carrying capacity than the material itself.
  • the original end sealing surface, the projection side of the side CA is rotated to form a surface of the original column supporting surface; on the basis of the original valve seat formed by the rotation, according to the elastic deformation required to the valve seat, and at the same time part of the small cutting
  • the original cutting column bearing surface and the end sealing surface of the car cut the original column supporting surface into a stepped cylinder surface, and the cylinder and the end surface of the new car are intersected by the circle and the cutting amount is increased.
  • the height of the triangle leaves the apex C of the triangle, and if necessary, circumscribes an annular groove whose bottom surface is tangent to the intersecting circle and parallel to the spherical sealing cone; on the spherical sealing cone Two concave cones symmetrical with respect to their AB portions a serrated ring formed, the concave tapered surface parallel to the spherical sealing cone surface, and the difference is tangent to the switching spherical surface passing through the sawtooth ring top, that is, the sawtooth ring is 3 ⁇ 4 higher than the switching spherical surface; At least two serrated rings with a tooth height of 3 ⁇ 4 can be made on the most terminal sealing surface that is cut small and cut short.
  • the tooth tips of the sawtooth ring are all edges, the blade tip angle or the apex angle is about 90° ⁇ 120°, the tooth height is about 10 ⁇ 20 times the sealing surface roughness Ra value, and the pitch X s / tooth height is about 20 ⁇ 500 (corresponding to the wider surface roughness of the contour element and the contour element width X s / height of the narrower surface waviness of the contour element), ensuring that the deformed sealing edge is followed by a force-protecting surface that approximates a spherical surface or a plane, and the protective seal
  • the contact surface is always in wired contact, so the finished surface can be easily sealed without any grinding.
  • the tooth height 3 ⁇ 4 determines the amount of deformation of the line contact.
  • the pitch X s / tooth height determines the speed of the line heel or determines the degree of protection and protection of the line contact. For the same sealing surface, if the smaller pitch X s / tooth height value is taken, the number of teeth of the spreading force is large, and the speed of the single toothed heel surface is slow; if the larger value is used, the number of teeth of the spreading force is small.
  • the speed of the single-toothed heel is fast; although the speed of the single-toothed heel of the tooth is not the same, the speed of the total line heel may still be the same, or the total sealing effect may be substantially the same. If the speed of the line heel is not the same, the speed is fast, the sealing contact area is large, the contact stress is small, and the rotation resistance and the sealing are simultaneously lowered, and vice versa.
  • a hard-fixed valve seat for a floating ball valve having an equilateral triangle as a cross-section component is also proposed, which is characterized in that the valve seat cross-section is formed by the side of the equilateral triangle ABC. Sealing cone, side BC The rotating forming surface is the original end sealing surface of the seat, and the projection side of the side CA is rotated to form the original column supporting surface of the seat; on the original valve seat base formed by the rotation, according to the elastic deformation required to impart the valve seat, At the same time, part of the car is cut and the car is cut short.
  • the original column supporting surface and the end sealing surface make the original column supporting surface become a stepped cylinder surface, and the cylindrical and end faces of the new car intersect with each other.
  • the sealing cone surface has two sawtooth rings formed by concave concave tapered surfaces symmetric with respect to the AB portion thereof, the concave cutting cone faces parallel to the spherical sealing cone surface, and the difference is only with the switching spherical surface passing through the sawtooth ring top Tangent, that is, the sawtooth ring is 3 ⁇ 4 higher than the spherical surface of the switch; at least two serrated rings with a tooth height of Z t can be made on the most terminal sealing surface of the small cut and the short cut, if not , you need a softer shape that is equivalent to the shape and volume of the cut-out part.
  • the tooth tips of the serrated ring are all blades, the blade tip angle or the apex angle is about 90° ⁇ 120°, the tooth height is 3 ⁇ 4 is about 10 ⁇ 20 times, the sealing surface roughness R a value, the tooth 'distance X s / tooth height is about It is 20 ⁇ 500 (corresponding to the wide surface roughness of the contour element and the contour element width X s / height of the surface waviness with narrow contour elements), ensuring that the deformed sealing edge is followed by a force-protecting surface that approximates the spherical surface or plane.
  • the protective sealing surface is always in wired contact, so the sealing of the finished surface can be easily achieved without any grinding.
  • the tooth height determines the amount of deformation of the line contact.
  • the pitch X s / tooth height 3 ⁇ 4 determines the speed of the line heel or determines the degree of protection and protection of the line contact. For the same sealing surface, if the smaller pitch X s / tooth height value is taken, the number of teeth of the spreading force is large, and the speed of the single toothed heel surface is slow; if the larger value is used, the number of teeth of the spreading force is small.
  • the speed of the single-toothed heel is fast; although the speed of the single-toothed heel of the tooth is not the same, the speed of the total line heel may still be the same, or the total sealing effect may be substantially the same. If the speed of the line heel is not the same, the speed is fast, the sealing contact area is large, the contact stress is small, and the rotation resistance and the sealing are simultaneously lowered, and vice versa.
  • a hard-fixed valve seat for a floating ball valve having an equilateral triangle profile (see Figs. 9a and 9e) is also proposed, characterized in that the fixed valve seat is provided with a fitted inner seal ring (referred to as an inner ring) and an outer support.
  • the ring (referred to as the outer ring) is composed of two parts.
  • the inner ring has an equilateral triangle ABC as a cross-sectional contour, and the rotating surface of the side AB is a ball sealing cone surface of the fixed valve seat, and the rotating forming surface of the side BC is fixed.
  • the original end sealing surface of the valve seat, the rotating forming surface of the side CA is the original bearing surface of the inner ring;
  • the outer ring has a trapezoidal cross section, and the cylinder with the trapezoidal height as the busbar is the cylinder of the fixed valve seat and the valve
  • the valve seat receiving hole on the body is a clearance fit, and the tapered surface with the trapezoidal oblique waist as the bus bar is a bearing surface to the inner ring;
  • the switch ball is pressed under the pressure of the medium and simultaneously pressed into the inner support
  • the ring and the outer ring are pressed against each other to be pressed against each other;
  • the strength of the inner ring material is lower than the strength of the outer ring material; based on the original inner ring formed by the rotation, according to the elasticity imparted to the inner ring Deformation is required, and at the same time, some cars are cut and the car is cut short.
  • the original bearing surface and the end sealing surface form a cylinder surface and an end surface, and the cylinder and the end surface intersecting circle of the new vehicle are separated from the apex C of the triangle along the height of the triangle as the vehicle cutting amount increases. If necessary, further cut a circular groove whose bottom surface is tangent to the intersecting circle and parallel to the spherical sealing cone surface; on the spherical sealing cone surface, there are two cutting cones symmetrical with respect to the AB portion thereof a serrated ring formed by the face, the four-cut tapered surface being parallel to the spherical sealing cone surface, and the difference is tangent to the spherical surface of the switch passing through the top of the sawtooth ring > that is, the sawtooth ring is higher than the spherical surface of the switch; A serrated ring of at least two tooth heights may or may not be formed on the most terminal sealing surface that is cut small and cut short.
  • the tooth tips of the serrated ring are all blades, the blade tip angle or the apex angle is about 90° ⁇ ; L20°, the tooth height is about 10 ⁇ 20 times, the sealing surface roughness R a value, the pitch X s / the tooth height is about 3 ⁇ 4 It is 20 ⁇ 500 (corresponding to the wide surface roughness of the contour element and the contour element width X s / height of the surface waviness with narrow contour elements), ensuring that the deformed sealing edge is tight With a force-protecting surface that is close to the spherical or flat surface, the protective sealing contact surface is always in wired contact, so that the finished surface can be easily sealed without any grinding.
  • the tooth height 3 ⁇ 4 determines the amount of deformation of the line contact.
  • the pitch x s / tooth height z t determines the speed of the line heel or determines the degree of protection and protection of the line contact. For the same sealing surface, if the smaller pitch X s / tooth height value is taken, the number of teeth of the spreading force is large, and the speed of the single toothed heel surface is slow; if the larger value is taken, the number of teeth of the spreading force is small
  • the speed of the single-toothed heel is fast; although the speed of the single-toothed heel of the tooth is not the same, the speed of the total line heel may still be the same, or the total sealing effect may be substantially the same. If the speed of the line heel is not the same, the speed is fast, the sealing contact area is large, the contact stress is small, and the rotation resistance and the sealing are simultaneously lowered, and vice versa.
  • the prior art floating valve seat is composed of a seal ring 02a, a support ring 02b, a 0-type seal ring 02c and a preload spring 02d, and there is always a 0-type seal ring which is difficult to meet the temperature requirement, almost
  • the shaft ball fixed ball valve has no connection with the high temperature metal valve seat structure.
  • the working area of the front and rear media of the valve seat is equal (the medium working area is the medium sealing action area, the front medium acting area is the medium sealing action area), that is, the anti-interference coefficient of the valve seat m
  • a floating valve seat for a fixed ball valve having an equilateral triangle profile is proposed (see FIG. 11), characterized in that the valve seat is sealed by a seal ring, a support ring, and pressed.
  • the ring, the gasket and the preload spring are composed;
  • the sealing ring is a floating sealing element of the valve seat, and the equilateral triangle ABC is a cross-sectional profile, and the arc-turning surface of the side AB is a ball sealing surface of the valve seat,
  • the swivel forming surface of the side BC is the pressed surface of the seal ring, and the swivel forming surface of the side CA is the supported surface of the seal ring;
  • the support ring completes the same valve body end by the thread and the gasket
  • the medium can only indirectly press the sealing ring through the pressing ring; if there is no sealing between the pressing surface and the pressing surface, the medium can freely enter the contact surface. Directly press the seal ring. The medium directly presses the sealing ring, no friction loss, and the medium force is more efficient.
  • a hard floating valve seat for a fixed ball valve with an equilateral triangle as a cross-sectional profile is proposed (see FIGS. 11a and 11h), characterized in that the valve seat is The sealing ring, the support ring, the pressing ring, the sealing pad and the preload spring are composed; the sealing ring is a floating sealing element of the valve seat, and the equilateral triangle ABC is a cross-sectional profile, and the rotating forming surface of the side AB is a valve seat
  • the spherical sealing cone surface, the rotating forming surface of the side BC is the original compression surface of the sealing ring, and the rotating forming surface of the side CA is the original bearing surface of the sealing ring; the original sealing formed in the rotation
  • the ring according to the elastic deformation required to impart the sealing ring, at the same time, part of the car cutting is small and the car cutting is short.
  • the original pressed surface and the supported surface form a cylindrical surface and an end surface, and the new car is discharged.
  • the intersecting circle of the cylinder and the end face increases with the amount of cut and leaves the apex C of the triangle along the height of the triangle, and if necessary, re-car Forming an annular groove having a bottom surface tangential to the intersecting circle and parallel to the spherical sealing cone surface; and having two serrations formed by the concave tapered surface symmetrical with respect to the AB portion on the spherical sealing cone surface a ring, the concave tapered surface parallel to the spherical sealing cone surface, and the difference is 3 ⁇ 4 to be tangent to the switching spherical surface passing through the top of the molar ring, that is, the sawtooth ring is higher than the switching spherical surface; It is also possible to make at least two serrated rings with a tooth height of 3 ⁇ 4 on the final bearing surface that is short-cut and not required.
  • the tooth tips of the serrated ring are all blades, the blade tip angle or the apex angle is about 90° ⁇ 120°, and the tooth height is about 3 ⁇ 4: L0 ⁇ 20 times the sealing surface roughness value, the pitch Xs/tooth height is about 20 ⁇ 500 (corresponding to the wide surface roughness of the contour element and the contour width Xs height of the surface waviness of the contour element is 3 ⁇ 4), ensuring that the deformed sealing edge is followed by a force-protecting surface approaching the spherical surface or the plane, protecting the sealing contact
  • the wire is always in contact with the surface, so the sealing of the finished surface is easily achieved without any grinding.
  • the tooth height 3 ⁇ 4 determines the amount of deformation of the line contact.
  • the pitch x s / tooth height determines the speed of the line heel or determines the degree of protection and protection of the line contact. For the same sealing surface, if the smaller pitch X s / tooth height 3 ⁇ 4 value is taken, the number of teeth of the spreading force is large, and the speed of the single-toothed heel surface is slow; if a larger value is used, the number of teeth of the spreading force is Less, the speed of the single-toothed heel is faster; although the speed of the single-toothed heel of the tooth is not the same, the speed of the total line heel may still be the same, or the total sealing effect may still be general.
  • the support ring completes the fastening and sealing connection with the valve body end cover by the thread and the sealing pad, it is responsible for providing a sealing support to the supported surface; the preload spring is passed through the pressing ring, The seal ring applies an initial seal pressing force; the medium pressure may or may not apply a seal pressing force to the seal ring. If there is a seal between the pressing surface and the pressing surface, the medium can only indirectly press the sealing ring through the pressing ring; if there is no sealing between the pressing surface and the pressing surface, the medium can freely enter the contact surface. Directly press the seal ring. The medium directly presses the sealing ring, no friction loss, and the medium force is more efficient.
  • a floating seat with an equilateral triangle as a cross-sectional profile due to its dielectric sealing area
  • the floating valve seat with the equilateral triangle as the cross-sectional profile, the support ring is convenient to be made of a material suitable for the metal-metal seal, and is convenient to be installed and adjusted to achieve a contact-contact non-contact state with the switch ball. Therefore, the corresponding switch ball, In addition to being fixed by a shaft including a valve stem as a shaft, it can also be fixed by its support ring. If the switch ball corresponding to the floating seat is fixed by the support ring of the valve seat, the switch ball also needs to be slightly floated - the switch ball micro-week floats to the support ring of the downstream seat to achieve a seal, and the upstream seat floats the switch ball Achieve a secondary seal. Such a valve seat and a ball valve that float at the same time provide a more reliable switch seal and double break and discharge (DBB) requirements. Ball valves with such a seat and ball float are best suited for metal seat ball valves.
  • DBB double break and discharge
  • the ball valve seat Because the task of the ball valve seat is to complete the docking and sealing of the switch ball and the valve body, and the sealing cone surface or the sealing base surface of the ball valve seat to the switch ball is 45° with the installation and processing direction of the valve seat and the valve body, therefore, the ball There are at least three mutually angled surfaces in the sley: a sealing surface for the switch ball, a sealing surface for the ceramic body, and a force balance bearing surface for the valve body; if only these three surfaces are used, The ball seat of the ball is exposed without a surface and has a triangular cross section; If there is no surface exposed, the soft seat with excellent sealing performance can be as hard as the hydraulic oil compressed in the cylinder, which is difficult to compress and deform, and it is difficult to crack the flow or be squeezed.
  • the surface is bare and has an equilateral triangle as a cross section; therefore, the ball valve seat of the present invention having an equilateral triangle as a cross-sectional profile is the most ideal ball in an equilateral triangular cross-section structure.
  • the valve seat, the ball valve seat with the equilateral triangle as the cross-section component is a sub-optimal spherical ball seat that approximates the equilateral triangle section according to the equilateral triangle section structure.
  • the ball seat with the equilateral triangle as the cross-section element is an equilateral triangle.
  • the lowest-cost ideal spherical valve seat for the equilateral triangle section of the cross-section method is a sub-optimal spherical ball seat that approximates the equilateral triangle section according to the equilateral triangle section structure.
  • the micro-saw sealing structure with different pitch can be used to adjust the mounting force of the valve seat of different strength materials, and the outer diameter of the valve seat can be kept finely adjusted. Adjusting the installation compression of the seat of different strength materials sideways, and partially removing the elasticity and installation compression of the high-strength seat material at the rear of the valve seat, therefore, whether it is a non-metallic or metal seat, whether it is a floating ball valve Whether the fixed valve seat or the floating valve seat for the fixed ball valve can be constructed by the same structural triangle for various wide seats of the same size and different pressure levels.
  • the size of the body mounting structure of the various valve seats of the same size and the structural size of the associated switch ball can be unified, and the standardized production of the ball valve can be effectively promoted.
  • a 10 MPa class valve can be used with 33 MPa strength polytetrafluoroethylene (PTFE)
  • PTFE polytetrafluoroethylene
  • a 15 MPa class door can be used with 45 MPa strength polyoxymethylene.
  • POM polytetrafluoroethylene
  • 25MPa grade valves are available with 90MPa strength polyetheretherketone (PEEK)
  • 42NlPa grade valves are available with '207MPa strength poly(p-phenylene) (PPP).
  • the medium cannot automatically restore the sealing of the valve seat with the ball after the interference is eliminated, but the reliable preload spring automatically restores the sealing of the valve seat with the ball; for the anti-interference coefficient 111>
  • the floating seat of 1 as long as the preload spring can provide a little initial seal required for the bearing surface of the sealing ring, the medium can automatically restore the sealing of the valve seat with the ball after the interference is eliminated;
  • the floating ball that is in close contact with the valve seat is incapable of automatically recovering the seal with the fixed valve seat (can only float between the threshold seats forever), therefore, the fixed valve seat needs to have a larger anti-interference coefficient than the floating valve seat;
  • the anti-interference coefficient m can only be
  • the switch seal of the floating ball valve is not maintained by the seat clamping force of the valve seat or by the floating pressing force of the switch ball, it is impossible to rely on both at the same time, and even the anti-interference coefficient determines that it cannot be used one after the other. Function; If the mounting force of the valve seat is maintained by the valve seat, the valve closing seal will immediately fail after the valve seat material is worn or after the creeping deformation and extrusion flow deformation; however, the floating pressure of the switch ball is reduced.
  • the equilateral triangular cross-section structure method of the present invention ensures that the switch ball is maintained closed by its floating thrust. Sealed, therefore, the ball seat is constructed in an equilateral triangular section, which can make the life of the floating ball seat from "limited” to "infinite".
  • the service life of the floating ball seat should be “unlimited”, and the service life of the prior art floating ball seat, as shown in US20030111631 (typical form of floating ball valve), is very limited, therefore, it can be said that the prior art The floating ball valve is not a true floating ball valve.
  • the floating ball valve can be ensured by the medium-to-ball thrust without the installation clamping force of the valve seat on the ball, so that the seat-to-ball installation clamping force can be small.
  • the resistance of the ball is only from the single seat of the downstream seat.
  • the maximum value is the rotational friction resistance of the ball on the downstream seat at the limit pressure. If designed according to the prior art, the floating ball valve can only be opened and closed by the seat clamping force of the valve seat larger than the ultimate thrust of the medium to the ball. Therefore, the maximum operating torque is greater by the 3 ⁇ 4 seat pair.
  • the frictional resistance of the ball's mounting clamping couple is generated; therefore, simply speaking, the floating ball valve according to the equilateral triangular section structure, the maximum operating torque of the switching ball can be reduced by at least half of the maximum operating torque of the prior art.
  • the equilateral triangle is a spherical valve seat with a cross-sectional profile.
  • the valve seat can be closed to a considerable degree of compression. Just like the hydraulic oil is sealed in the cylinder, it is difficult to compress and deform, and it is difficult to crack the flow or deform. Broken", without creeping deformation, has a higher carrying capacity than the material itself. Therefore, the ball shackled by the equilateral triangle section ensures the use of soft materials with excellent sealing properties at very high pressure. Limit, and get longer life and higher reliability.
  • the limit operating torque of the floating ball valve can be greatly reduced and the allowable strength of the valve seat material can be greatly improved, so that an inexpensive and reliable floating ball valve can be substituted for the expensive in a larger range.
  • the axon is fixed to the ball.
  • the "microscopic line heel surface neutral contact" or micro-saw contact sealing structure can effectively provide the sealing stress necessary for the material to be supplied by the blade line contact, and the required stress required to ensure the material behind the blade can provide a seal at all times.
  • the required deformation is sufficient to ensure that the edge line is not crushed, which can improve the sealing performance of the valve seat to the switch ball and reduce the installation clamping force or pre-pressure of the valve seat to the ball, and reduce the operating torque.
  • the sealing structure suitable for high-strength materials is also suitable for the sealing structure of low-strength materials. For example, if the switch ball of the valve seat is prefabricated into a 90° cone surface with a sealing surface without pre-forming the spherical surface, the line contact can be satisfied initially.
  • the trapping strength of the cavity in the surface of the ball valve relative to the atmosphere is determined by the spring pressing force of the valve seat against the ball; the greater the mounting clamping force or the spring pressing force of the seat to ball
  • the trapping ability of the cavity of the ball valve relative to the atmosphere is stronger.
  • the trapping pressure of the cavity in the ball valve is a sign of the clamping degree of the seat on the ball; therefore, the mounting clamping force or spring pressure of the valve seat on the ball is reduced. Tight force is the fundamental means to solve the trapping pressure in the ball.
  • W 2 the seat-to-ball mounting clamping force
  • m(A e +Ac)p m-seat media de-sealing force
  • the strength of the clamping force ⁇ 2 requires at least l.lm times the rated medium pressure strength; likewise, the spring-loading force of the prior art floating valve seat also requires at least l.l times the rated medium pressure strength; therefore, no It is difficult to understand that the prior art ball valves are ball valves whose inner cavity can be trapped at least 1.1 times the rated working pressure.
  • ISO 14313/API 6D also has a margin to limit the trapping strength limit of the cavity in the ball valve to 1.33 times the rated working pressure. strength.
  • the ball valve seat of the present invention is designed according to the equilateral triangle section method, whether it is a fixed valve seat or a floating valve seat, it can ensure that the switch seal does not depend on the valve seat to clamp the ball or the spring is maintained, and the microscopic The line heel is in contact with the centerline.
  • the sealing structure ensures that the valve seat can be supplied with the required initial sealing stress with a small mounting clamping force or spring pressing force. Therefore, the seat is seated on the ball.
  • the strength of the clamping force and the spring-loading force of the floating seat to the ball can be very low - experimentally confirmed, it will hardly exceed the bar or 1/15 of the rated working pressure of the valve; that is, According to the ball valve of the present invention, the trapping pressure of the cavity relative to the atmosphere does not exceed 1/15 of the rated working pressure of the valve, and there is no need to consider the trapping pressure of the cavity in the ball valve.
  • the pressure relief requirement of the ISO 14313/API 6D for the cavity in the ball valve is superfluous; according to the pressure relief regulation of the ball valve in the ISO 14313/API 6D, it can be concluded that the prior art floating ball valve is only one A floating ball valve in the form of a ball-like floating structure; it can be said that any ball valve with a 1.1-time rated working pressure strength that is not leaking in the middle cavity is a prior art ball valve, and any ball valve whose center cavity is significantly lower than the rated working pressure is The ball valve of the present invention.
  • FIG. la and Figure 2a are the same common floating ball valve in the fully open and fully closed states, respectively.
  • the valve seat 02 is responsible for providing the mounting butt joint, the rotary support and the closing seal of the switch ball 03 in the valve body 01.
  • the threaded connection of 05 and the valve body is responsible for providing the installation and fastening of the switch ball and the valve seat in the valve body, and the body seal 04 is responsible for providing the sealing of the body connection, and the valve stem 06 is responsible for providing the rotation operation of the switch ball,
  • the stem seal assembly is responsible for providing the seal of the stem.
  • the valve seat 02 is a fixed valve seat having an equilateral triangle as a cross-sectional element in accordance with the present invention.
  • the present invention only relates to the installation of the switch ball in the valve body by the valve seat of different cross-section, the rotational support and the closing seal, it is only necessary to use some of the valve body 01 and the valve corresponding to FIG. 1 and FIG. 2a.
  • a partial or partial enlarged view of the seat 02 and the switch ball 03 is sufficient to clearly express the various aspects of the present invention to those skilled in the art, including the clear expression of the floating seat arrangement in the fixed-axis ball valve.
  • Figure lb is a partial cross-sectional view of AA of Figure la
  • 2b is a partial cross-sectional view of 8-8 of Figure 2a, which is used to fully demonstrate the full opening and closing of the ball valve in conjunction with Figures la and 2a, and to disclose the different sections of the ceramic in a spare partial view.
  • Seat structure The dashed line in Figure 2b is not the hidden structural line in Figure 2a, which is an undesired condition that occurs when the seat size exceeds the A'B" limit shown in Figure 6a.
  • Figure 3 corresponds to Figure 2b.
  • Figure 2b shows the seat 02 and the ball 03 when the valve is fully closed.
  • Figure 3 shows the seat 02 and the ball 03 at the moment of quick opening of the valve.
  • Figures 4a and 4b show the Y' portion of Figure 3.
  • the seat end sealing surface and the seat inner diameter in Figure 4a are determined by the point B of the equilateral triangle ABC of the cross-section structure.
  • the seat end sealing surface and the seat inner diameter in Figure 4b are equilateral triangles of the cross-section structure. ABC's AB extension point E is determined.
  • the valve seat 02 of Fig. 4a has no extension section BE.
  • the medium may enter the insufficiently pressed seat end sealing surface and squeeze the seat material into the through hole of the switch ball.
  • the valve seat is damaged; Figure 4b
  • the valve seat 02 has an extension BE, and the medium pressure on the extended section BE at the moment of quick opening of the valve prevents the medium from entering the sealing surface of the valve seat end without being squeezed into the through hole of the switch ball. .
  • Figure 5a is the valve seat 02 and the switch ball 03 taken out from Figure 2a
  • Figure 5b is a partial enlarged view of the Z of Figure 5a
  • W 2 seat-to-ball mounting clamping force ( Representing the valve body 01) in Fig. 2a
  • W s ball's floating sealing force (medium to ball thrust)
  • a s p ball medium acting area (diameter D s corresponding to circular area)
  • the sealing force between the switch ball and the valve seat is not w 2 or w s , or the switch seal of the floating ball is not the mounting force of the valve seat to the ball W 2 is the switch
  • the floating sealing force W s of the ball is realized, and it is impossible to function at the same time by both.
  • both must be (a thrust medium of the seat) medium to force the sealing seat by m times, i.e., 2, and W s must be equal to m(A e +A c )p, and the floating ball valve can achieve a reliable seal. Therefore, the design of the ball seat is based on the equilateral triangle design of the valve seat cross-section structure.
  • FIG. 9e is a cross-sectional partial view of the alternative ring of the inner seal ring of FIG. 9c, and the serrated ring of the end seal face of FIG. 9e is shown in FIG. 7d.
  • F the serrated ring edges a' and b' on the ball seal cone face AB of Fig. 9e are shown in a partial enlarged view of Fig. 7e.
  • Figure 9c shows that the cross section is suitable for low strength materials
  • Figure 9e shows that the cross section is suitable for high strength materials. It can be seen from Fig.
  • Figure 10 (corresponding to a partial enlarged view of X of Figure la) is a floating valve seat for a prior art auger fixed ball valve, wherein member 05a is another valve body end cap similar to that of Figure 05.
  • the prior art floating valve seat is composed of a seal ring 02a, a support ring 02b, a 0-type seal ring 02c and a preload spring 02d, and always has a 0-type seal ring which is difficult to meet high temperature requirements, which almost causes
  • Figure 11a (corresponding to a partial enlarged view of X of Figure la), is a floating valve seat 02 with an equilateral triangle as a cross-sectional profile according to the invention (by sealing ring 02a, support ring 02b, compression ring 02c, gasket 02d and pre-
  • the load spring 02e constitutes a partial docking view with the switch ball 03 and the valve body end cap 05a, wherein the valve body end cap 05a (shown in lib) is similar
  • the fastening and sealing connection with the floating valve seat member is completed by threads and gaskets, and the connection with the valve body is completed by another bolt group;
  • FIG. 11g are partial cross-sectional partial views of the support ring 02b, the gasket 02d, the preload spring 02e, the pressure ring 02c and the seal ring 02a taken out from Fig. 11a;
  • Fig. 11h is Fig. 11g
  • a partial cross-sectional view of the alternative ring of the seal ring, the sawtooth ring on the supported surface of Figure 11h is shown in exaggerated drawings m and F of Figure 7d, and the sawtooth ring edges a' and b' on the ball seal cone face AB of Figure 11h are seen.
  • Figure 7a and 7b show a fixed valve seat 02 with an equilateral triangle as the cross-section element.
  • the ball-tight 'cover is formed by the arc rotation of the side AB of the equilateral triangle ABC of the cross-section structure, and the column support surface is the cross section.
  • the projection edge CD of the edge CA of the structural equilateral triangle ABC is formed by the rotation of the edge, and the end sealing surface should be formed by the rotation of the projection edge CF' of the side BC of the equilateral triangle of the cross-section structure, but considering that the upstream valve seat is fast in the valve Special need to open the moment, specially formed by the extension side CF of the projection edge CF', the point F is the projection of the extension point E of AB; if not extended, as shown in the Y' partial enlarged view 4a of Fig.
  • the medium may enter the end sealing surface of the insufficiently pressed seat and squeeze the seat material into the through hole of the switch ball to cause damage to the valve seat; if extended, then the Y' part of Figure 3
  • the medium pressure on the BE section at the moment of quick opening of the valve prevents the medium from entering the end sealing surface of the seat without causing the squeeze valve seat to enter the through hole of the switch ball - the medium at this time can only pass through the point
  • the gap at B is squeezed into the middle cavity to tightly seat the valve seat
  • the remote pressure is pressed on the gangue. Therefore, the BE section can be called the pressure relay surface. As shown in Fig.
  • the increase of the pressure relay surface of the seat (the extension section BE of the AB) will increase the exposed area of the valve seat A ep and reduce the inner diameter of the seat, but subject to the limit, the sealing performance or the anti-interference coefficient of the seat Very small; the thickness of the seat through the end seal surface parallel movement (parallel movement of the CF segment) increases, and the sealing performance or anti-interference coefficient of the valve seat is not changed; therefore > although the seat pressure relay surface and thickness increase, the surface The equilateralness of the knotted triangle is changed, but the basic performance of the valve seat determined by the equilateral triangle of the original structure is not changed, but the processability and installation maintainability of the valve seat are improved.
  • the serrated rings formed by the concave tapered surface a"b'' which are symmetric with respect to the AB portion, and the concave tapered surface a"b" parallel ball sealing cone surface AB, and the difference Z t Tangential to the switching sphere 03 through the serrated ring edges a' and b' (see Figure 7e), ie relative to the switching sphere, the serrated ring edges a' and b' are 3 ⁇ 4 (concavely tapered a"b" and ball sealed
  • the linear distance between the tapered faces AB is only the form tooth height of the sawtooth ring.
  • At least two serrated rings with the contour edges m and F as the tooth edges can be found on the most terminal sealing surface mF with small cut and short cut.
  • tooth height 3 ⁇ 4 is about 10 ⁇ 20 times sealing surface roughness R a value
  • pitch X s / tooth height is about 20 ⁇ 500 (corresponding to the wider surface roughness and contour element of the contour element)
  • Surface waviness contour Width X s / height Z t) deformation of the sealing edge to ensure approximation of the force followed by a plane or a spherical surface of the protected, the protective sealing contact surface is always line contact, thus, can be easily achieved sealing of the finishing surface, without any Grinding process.
  • the number of Cmsq of the valve seat cut-off part is determined by the allowable margin of the strength of the seat end seal face and the column support face.
  • the width k of the ring groove is determined by the required elasticity, and the k value is often zero.
  • the rear part of the valve seat is equivalent to reducing the outer diameter D of the valve seat.
  • Figure 8a and 8b show a fixed valve seat 02 with an equilateral triangle as a cross-section.
  • the ball sealing surface is formed by the arc rotation of the side AB of the equilateral triangle ABC of the cross-section structure, and the end sealing surface is a cross-sectional structure.
  • the side of the equilateral triangle ABC is formed by the BC rotation, and the column supporting surface is formed by the rotation of the projection side CD of the side CA of the equilateral triangle ABC of the cross-sectional structure, and the ball seal meta-AB is at an angle of 45° with the central through-hole axis of the switch ball.
  • the ball sealing surface can be prefabricated into a 90° cone surface with AB as the busbar, and then automatically deformed into a spherical surface during operation. The installation compression can keep the outer diameter of the valve seat from increasing slightly and the side length of the equilateral triangle ABC is obtained. .
  • Figure 8C shows a hard-fixed valve seat 02 having an equilateral triangle as a cross-section component, which has a high material strength but the same original structural dimensions as the valve seat corresponding to the low-strength material of Figure 8b.
  • high-strength material seats such as polyparaphenylene (PPP) or metal seat
  • PPP polyparaphenylene
  • the concave tapered surface a"b" On the spherical sealing cone surface, there are two serrated rings formed by the concave tapered surface a"b" symmetric with respect to the AB portion thereof, the concave tapered surface a"b" parallel ball sealing cone surface AB, and the difference Z t is Tangent by the switch spherical surface 03 of the serrated ring edges a' and b' (see Figure 7e), ie relative to the spherical surface of the switch, the serrated ring edges a' and b' are 3 ⁇ 4 high (concave tangent a"b" and the ball seal cone
  • the linear distance between AB is only the form tooth height of the sawtooth ring).
  • At least the bottom end sealing surface with small cut and short cut can have at least two serrated rings with their contoured edges as the tooth edges, or no serrated ring; If there is no serrated ring, a soft gasket equivalent to the cut-off portion Cmsq is required; if there are more than two serrated rings, the tooth edge is the same as the contoured edge tooth on the most terminal sealing surface.
  • the end seal serrated rings m and F and the teeth of the switch ball seal serration rings a' and b': II are all blades, with a sharp edge angle or a cusp angle of about 90° to 120°.
  • tooth height 3 ⁇ 4 is about 10 ⁇ 20 times sealing surface roughness value, pitch) ( s / tooth height Z t is about 20 ⁇ 500 (corresponding to the wider surface roughness of the contour element and the narrow surface waviness of the contour element)
  • the contour element width X s / height ensures that the deformed sealing edge is followed by a force-protecting surface that is close to the plane or sphere, and the protective sealing contact surface is always in wired contact, so that the sealing of the finished surface can be easily achieved without Any grinding process.
  • the number of Cmsq of the valve seat cut-off part is determined by the allowable amount of strength of the seat end seal face and the column support face.
  • the width k of the ring groove is determined by the required elasticity, and the k value is often zero.
  • the rear part of the valve seat is cut off, which is equivalent to reducing the outer diameter D of the valve seat.
  • the anti-interference coefficient m value of the seat is determined by the required elasticity, and the k value is often zero.
  • Figures 9a to 9d show a faceted valve seat 02 with an equilateral triangle as a cross-sectional profile, which is composed of a combined inner seal ring (abbreviated as inner ring) 02a and outer support ring (abbreviated as outer ring) 02b.
  • the inner ring has an equilateral triangle ABC as a cross-sectional profile, and the arc-turning surface formed by the side AB is a ball sealing surface of the valve seat, and the rotating forming surface of the side BC is the end sealing surface of the valve seat, and the rotation of the side CA is formed.
  • the surface is the supported surface of the inner ring; the outer ring has a trapezoidal cross section, and the cylinder with the trapezoidal height D'E' as the busbar is the cylinder surface of the valve seat and is matched with the valve seat receiving hole DE on the valve body to
  • the trapezoidal oblique waist CA is the tapered surface of the busbar and is the bearing surface of the inner ring.
  • the inner ring is responsible for sealing, the outer ring is responsible for supporting, the inner ring material strength is lower than the outer ring material strength, the inner ring material strength is determined by the ball sealing load, and the outer ring material and wall thickness are designed to withstand the ultimate strength of the inner ring material as the medium pressure. .
  • the outer ring cylinder surface cooperates with the gap of the valve seat receiving hole on the valve body, so that the inner and outer end faces of the outer ring communicate with each other and the pressure equalizes the middle cavity dew exposure of the valve seat, and the outer ring is freely opposite to the inner ring. Slidingly press and support each other.
  • the ball seal Xuan AB is at an angle of 45° to the central through-hole axis of the switch ball.
  • the ball seal surface can be prefabricated into a 90° taper with AB as the busbar, and then automatically deformed into a spherical surface during operation. The installed compression can be kept outside the inner ring.
  • the edge length of the equilateral triangle ABC is obtained by invariably increasing the edge diameter.
  • the switch ball 03 under the action of the medium pressure, is simultaneously pressed against the inner ring and the outer ring supported by each other, so as to compete with each other for pressure, that is, the thrust of the medium to the switch ball
  • F s Fcosa+Fsinp
  • the total positive pressure of the inner and outer rings is F s /cosa
  • the positive pressure of the inner ring is only F
  • the inner ring of the present invention uses two sides, and the single-ring valve seat only bears the pressure of the switch ball on one side. Therefore, it is not difficult to understand that the bearing capacity of the sealing material of the double-ring valve seat of the present invention is 1.366 of the single-ring valve seat. Times.
  • the inner seal ring is pressed almost in the closed cavity, just like the hydraulic oil sealed in the cylinder, it is difficult to undergo compression deformation and it is difficult to crack the flow deformation or being squeezed, and there is no creep deformation. It has a higher load carrying capacity than the material itself, so a fixed seat with an equilateral triangle as a cross-section can ensure the use of soft materials with excellent sealing properties at very high pressure limits, and achieve longer life and more High reliability.
  • Figure 9e shows the inner ring 02a of a hard-fixed valve seat (Fig. 9a) having a cross-sectional profile of an equilateral triangle, which has a high material strength but the same original structural dimensions as the inner ring of the low-strength material corresponding to Figure 9c.
  • the end seal serration rings m and F and the tooth tips of the switch ball seal serration rings a' and b' are both edged, with a sharp edge angle or a cusp angle of about 90° to 120°.
  • the width k of the ring groove is determined by the required elasticity, and the k value is often zero.
  • the removal of the rear of the inner ring is equivalent to reducing the outer diameter D of the valve seat. Increase the m-value of the anti-interference coefficient of the valve seat.
  • the supported serrated rings m and F and the tooth tips of the switch ball seal serration rings a' and b' are both edges, with a sharp edge angle or a cusp angle of about 90° to 120°.
  • the width k of the annular groove is determined by the required elasticity, and the k value is often zero.
  • the elasticity of the sealing ring is moderate, the bending of the cross section of the sealing ring will effectively compensate the floating of the sealing ring, and the cutting of the rear portion of the sealing ring is equivalent to reducing the outer diameter D of the sealing ring.
  • the media sealing action area of the valve seat is reduced or the anti-interference coefficient m value of the valve seat is reduced, but the anti-interference coefficient m value of the valve seat is always greater than 1, because the cut-out point m never coincides with the point A.
  • all ball seats whether fixed or floating, whether it is a non-metallic seat or a metal seat, regardless of the cross-sectional shape, can be designed with an equilateral triangle of cross-section structure to make it as The surface is exposed and approximates the equilateral triangle with the ball seal as the side length.
  • Interference coefficient m Since m accurately corresponds to a 0 , and the related trade-off effects can compensate each other, the determined a G is substantially determined by m. The actual calculation is confirmed (the theoretical calculation can also be confirmed).
  • the CAD drawing determines the cross-sectional structure of the equilateral MBC's reference edge map A'B'.
  • the ball seals the meta-AB, which should be symmetrically at a position difference of 90 °
  • the ball end face and the end ball small circle d' are defined in the figure A'B' to ensure that the ball sealing surface AB of the valve seat can be fully opened when the switch ball is in the fully open and fully closed positions.
  • the sealing surface is maintained on the surface of the ball; when the sealing end A exceeds the tangent d' tangent of the end ball, the end face of the switch ball in the fully closed position (the dotted end face in Fig.
  • valve seat 2b enters the ball sealing surface of the seat.
  • the inside of the valve seat is deformed into the through hole of the ball; when the sealing end B exceeds the end of the ball, the inner diameter of the valve seat may be reduced, or the medium may be harmfully washed or deformed by the medium to the upstream seat. Or it may increase the ball coverage area A ep of the downstream ceramic seat (as shown in Figure 5b) to reduce the anti-interference ability of the valve seat; that is, the cross-sectional structure of the equilateral MBC reference edge map A'B' is controlled by the switch ball
  • the projection line segment of the face ball small circle d' and the projection circle and the diameter of the switch ball are determined together, which can be determined simply by CAD drawing.
  • the permit strength of the fixed seat material can be accurately determined:
  • the allowable strength of the valve seat material can be calculated simply by the anti-interference coefficient m of the valve seat and the ultimate medium pressure strength p.
  • the design practice proves that the fixed valve seat with the equilateral triangular cross-section structure according to the present invention is premised on avoiding unnecessary surface exposure. Therefore, the smaller the anti-interference coefficient m value, in addition to the low strength In addition to the applicable pressure of the seat material, the larger the switch ball, the larger the valve seat, the larger the valve body and the larger the switching operating torque, or even the 1.5 ⁇ ⁇ is very uneconomical; It is confirmed that the fixed seat of m-1.8 can also make the floating ball valve close the seal by the floating of the ball.
  • the fixed ball valve refers to a ball valve in which the switch ball is fixed on the valve body and cannot be floated, and the prior art fixed ball valve is fixed on the valve body by two coaxial ears including a valve stem as a shaft on the switch ball. Therefore, the shaft ear is fixed to the ball valve.
  • Double block & bleed valves are valves that close the sealing surface on both sides of the switch element in the closed position and allow the middle chamber to leak through the drain at the same time as the middle chamber.
  • the purpose of the venting is to sample or specially fill the medium in the pipeline, and the prior art double-break and bleed valves are large-sized axial fixed ball valves.
  • the floating ball valve in the form of insufficient anti-interference ability cannot rely on the floating of the medium to the ball, and can only achieve the switch sealing by the mounting of the two valve seats on the ball, then it is obvious that the floating ball valve in the form of a ball-like floating structure is actually A valve seat fixed ball valve, a valve seat fixed ball valve which can be used as a double break and a bleed valve, characterized in that the switch ball of the ball valve is not fixed by the shaft ear but by the wide seat on the valve body, and the structure is It seems that the ball can float, but within the entire working range of pressure, the ball can only be rotated in the seat and cannot be floated; the seat, as shown in Figures 7a and 8a, is in an equilateral triangular cross section.
  • the outer diameter D of the seat can be increased on the basis of maintaining the medium acting area A s of the ball (the circle area corresponding to the diameter D s ) and the ball covering area A c of the seat. .
  • the clamping force of the installation is 1.33p>mp>lp, which can ensure that the closed seal passes the 1.1 times rated pressure strength p test and ensures that the trapping strength of the seat cavity does not exceed the standard rated pressure of 1.33 times. Therefore, increase valve cavity trees exposed area of the substance 6 is to reduce the interference coefficients seat, reducing the pressure in the vent housing chamber (a e + a c) p and m a clamping force on the mounting seat of the ball (a e + a c ) The difference in size between p, to ensure that the trapping strength of the cavity in the valve seat does not exceed 1.33 times the rated working pressure of the valve, while reducing the floating sealing force of the ball medium and reducing the double-breaking of the valve seat on both sides of the switch ball.
  • valve seat fixed ball valve of the present invention is only suitable for providing a double-breaking and venting valve of a small size specification. There is no such technology as a double-breaking and venting ball valve, which has the characteristics of simple structure, reliability, convenient use and low cost.
  • the switch ball that is closed by sealing on the downstream valve seat can not automatically close the seal of the same seat after being intimately contacted with the valve seat after being disturbed (can only float between the valve seats forever);
  • the mounting of the seat on the clamping force to close the sealed switch ball, after being disturbed and peeling off the same seat, the opposite seat can immediately restore the intimate contact with the original seat after the interference disappears; therefore, compared with
  • the float ball seat that closes the seal by the floating of the medium on the ball requires a large anti-interference coefficient of the valve seat.
  • the seat of the ball is fixed by the two valve seats.
  • the anti-interference coefficient of the seat-fixing ball seat m 2 W 2 (the seat-to-ball mounting clamping force) / (A e2 + A c )p (seat
  • the valve seat of the present invention fixes the ball valve, and it is proved by the example that the prior art floating ball valve is often a floating ball valve in the form of a ball-like floating structure.
  • the valve seat fixed ball valve of the present invention is present in a large number of objective objects, as described in U.S. Patent No. 4,940,208 and U.S. Patent No. 4,815,700, the switch ball of the prior art floating ball valve is more or less floating with the pressure along the channel axis to the downstream sley. The seal is closed and there is no awareness that it is possible to be fixed by the valve seat so that it cannot be floated. Therefore, the prior art floating ball valve is not used as a double break and a bleed valve by the addition of the middle chamber drain.
  • valve seat from the floating ball valve to the axillary fixed ball valve and the valve seat fixed ball valve can be constructed by an equilateral triangular cross-section method or Develop the actual section and control and measure the basic performance of the valve by the parameter m (the anti-interference coefficient of the valve seat) approaching or deviating from the reference m-parameter seat parameter m.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Taps Or Cocks (AREA)
  • Multiple-Way Valves (AREA)

Description

按等边三角截面法结构的球阀座和球阀 技术领域
本发明属流体动力传递与介质输送工程领域, 涉及用作流体开关与控制的球阀及其 阀座。 背景技术
球阀, 是一个中央有个通孔的球作开关的阀门, 现时有浮动球阀和轴耳固定球阀两 种。 开关球, 经阀座密封对接在闽体中转动, 转动到通孔与通道口对准时为全通, 转动 到通孔与通道口成 90°时为全闭。 浮动球闹的开关球, 通过槽与操作阀杆相连, 在介质压 力作用下, 可相对阀杆或阀体浮动在下游阀座上实现关闭密封; 轴耳固定球阀的开关球, 通过包括阀杆作轴的轴耳固定在阀体上, 在介质压力作用下, 不可相对阀体浮动, 只能 通过上游阀座的浮动实现关闭密封; 因此, 浮动球阀的阀座可叫固定阀座, 轴耳固定球 阀的阀座可叫浮动阀座。
球闽座的任务是完成开关球与阀体的斜角对接和密封, 因此, 球阔座至少有也可只 有三个互成角度的表面: 一个对开关球的密封面、 一个对岡体的密封面和一个求阀体的 力平衡支承面。 如果只有这三个表面, 则意味着球阅座是无表面棵露的或封闭起来受压 的以三角形为截面的。
等边三角截面球阅座,其三面相等受力和不等受力面积(因回转半径差异)正好理想地 满足各面不等应力的需要: 应力稍大的球密封面正好满足其对球的动密封, 应力稍小的 体密封面正好满足其对体的静密封, 应力再稍小的支承面正好满足其在支承环上的滑动; 再者, 只有等边三角截面才能避免岡座出现小于 60°的弱尖角; 因此, 如果球阀座以三角 形为截面, 则应以等边三角形为截面。
高分子聚合物, 如聚四氟乙烯 (PTFE), 是最常用的阀座材料, 是典型的粘弹体, 既 有粘稠液体的粘性 (其应变滞后应力变化)又有固体的弹性 (其应变随应力成比例变化)。 阀 座材料的粘性,决定非密闭压缩状态下的阀座必然发生爬行变形 (密封应力松弛)或慢慢地 发生缝隙挤出流动变形, 引起密封失效。 因此, 如果将阀座材料视着有最高粘稠度的液 体, 则将阀座封闭起来压缩, 就象将液压油密闭在油缸中压缩一样, 只要泄漏缝隙足够 小, 既难于发生压缩变形又难于发生缝隙挤出流动变形或被挤 "破", 还无爬行余地, 乃 至其实际承载能力远高于其材料的许用承载能力。
一般来说, 用作阀座的高分子聚合物, 如聚四氟乙烯 (PTFE), 有着钢的 10余倍的热 胀冷缩温度系数。 因此, 阀座的用料越多或尺寸越大, 阀座相对阀体的热胀冷缩变化越 大, 越易引起密封失效。 也就是说, 取球阀座的截面为等边三角形, 可最大限度地减少 阀座的用料或尺寸, 进而可最大限度地降低温度变化对阀门可靠性的影响。
但是, 迄今为止, 人们既没有考虑釆用等边三角截面的阀座, 也没有考虑以等边三 角形为截面要素地设计或决定阀座尺寸, 更没有考虑将阀座尽可能地置于封闭腔中压缩。
普通球陶座有两处封闭不起来或有两处裸露于传输介质中, 一处是裸露于介质通道 中的通道棵露面一该裸露面直接接受通道中的介质压缩,另一处是裸露于阀体和球间空 腔的中腔棵露面 ~~ ¾棵露面直接接受阀体中腔中的介质压缩。
为避免通道稞露面上的介质压力将处在快打开瞬间的上游阀座局部挤入开关球的通 孔口中, US6948699专利提出, 在阀座的安装孔壁增加止口或 0形止环, 以把阀座锁在 其安装孔内。
为降低球阀座材料于中腔裸露面处的挤出流动变形, US3721425、 US4410165 和 US6969047专利提出, 在阀座的中腔裸露面上增加挤出阻尼挡环。
US2930576和 US4385747专利证明,现有技术普遍在阀座外圆柱表面上开几条轴向 通气槽, 使一旦进入上游阀座端密封面的介质能沿柱面槽通阀体中腔, 使端密封面与中 腔同压, 以解除浮动球阀通过上游阀座端密封面地对球和下游阅座附加压力而增加下游 阀座的载荷和阀门操作力矩; 但是, 当球阀开至快打开而来打开时, 阀座的水平部位正 好面对球的中央通孔口而局部失去球的表面支承, 如果此时有介质沿上游阀座端密封面 和柱面槽流通, 则势必将阀座局部冲入球口而致阀座损坏; 为此, 现有技术不得不增加 阀座截面的尺寸或阀座的外径和厚度以增加阀座强度, 结果导致现有技术更多的阀座表 面裸露。
总之, 现有技术一直没有意识到, 阀座的棵露面对浮动球阀的开关球的自动浮动有 影响, 而一直以为, 浮动球阀的开关球是无条件地随介质压力增加而自动浮向下游阀座 地加强开关密封的。
对于浮动球阀, 如图 5所示, As是球的介质作用面积 (直径 Ds对应的圆面积), p是 介质压强, Ws=Asp是球的浮动密封力 (介质对球的推力), W2是座对球的安装夹持力; 可 想而知, 当 ws w2时, 下游阀座与开关球间的作用力是 w2(此时的 ws至多是全部取代 上游阀座对球的安装夹持力 w2,并不增加开关球与下游阀座间的作用力), 当 ws>w2时, 下游阀座与开关球间的作用力是 ws而不是 w2(此时的 w2已被 ws全部取代)。也就是说, 对于浮动球阀, 开关球与阀座间的密封作用力不是 w2就是 ws, 或者说, 浮动球阀的开 关密封不是靠阀座对球的安装夹持力 W2就是靠开关球的浮动密封力 Ws实现, 不可能靠 二者同时起作用。 但无论哪个起作用, 根据美国 《ASME锅炉与压力容器法规 VIII卷 1 册附录 2》 的基本理念, 二者都必须是 m倍座的介质去密封力 (介质对座的推力), 即 W2 和 Ws都必须等于 m(Ae+Ac)p,浮动球阀才能实现可靠密封,其中 Ae=座的中腔棵露面积, Ac=座的球覆盖面积, Ae+AC=AU座的介质作用面积, m (座的密封维持系数) =密封作用力 / 去密封作用力。 可以说, 浮动球阀的开关球的浮动密封工作是有条件的。
如果按自密封考虑浮动球阀的开关密封, 则按美国《ASME锅炉与压力容器法规 VIII 卷 1册附录 2》的自密封理念, 需要阀座的密封维持系数:
m=[(W2-H)/Acp] > 0, 即只要 W2 > H=Aep (参见图 5),
其中 W2=座对球的安装夹持力
H=座的中腔裸露面上介质作用力 Aep
Acp=座的球覆盖面上介质作用力
Ae=座的中腔棵露面积 Ac-座的球覆盖面积 (包括接触面积和非接触面积 Aep)
p-介质压强
也就是说, 只要阀座对球的安装夹持力 W2不小于阀座中腔裸露面上的介质作用力 Aep, 浮动球阀就能靠球的浮动密封力而始终维持开关密封。
但是, 实际上, 当 W2 > Aep时, 浮动球阀却不一定能靠球的浮动维持开关密封。 例 如, 如图 5 所示, 当 Ws (介质对球的推力) =W2 (座对球的安装夹持力)时, 有 W2(=Ws=Asp)»Aep——因为无论如何设计都有 As (球的介质作用面积)》Ae (座的中腔稞露 面积), 已满足 W2-Asp»Aep; 然而, 此时剛好完全脱离上游阀座夹持的开关球, 在受到 不可避免和无力克服的偏心转动干扰时, 将再失去同下游阀座的关闭密封: 当脱离同上 游阀座亲密接触的开关球遇到偏心转动干扰时, 转动干扰力可部分或全部抵消球的浮动 密封力 5而致使开关球疏远下游阀座,使工作介质越来越不断浸入下游阀座的球覆盖环
Ac而输出一干扰作用力 AcP地推开关球离开下游阀座; 此时在中腔裸露环 Ae上的作用力 Aep越大, 越能阻止被 Ws替代的阀座对球的安装夹持力 W2的复活, 越有利干扰作用力 Acp瞬间将开关球再剥离下游阀座; 当开关球一旦同时脱离同上下游阀座的亲密接触, 无 论介质压强 p多高, 介质在开关球上的作用力都是平衡的, 乃至开关球只能在座间漂浮, 再也无力恢复同座的亲密接触, 甚至压强 p越高, 介质对座的推力 (Ae+Ac)p越大, 越有 利为开关球提供更充足的座间漂浮空间。 也就是说, 浮动球阀, 按开关自密封考虑 (保证 其阀座对球的安装夹持力 W2不小于其中腔棵露面上的介质作用力 Aep),不能排除其固有 的偏心转动干扰, 不能保证其开关密封的可靠性, 是行不通的。
由上述分析可知,座的中腔棵露面积 Ae和球覆盖面积 Ac明确涉及浮动球阀的开关球 的偏心转动干扰的放大输出, 但是, 按开关自密封考虑又明确把球覆盖面上的介质干扰 作用力 Acp从概念和关系式中抹去和甩掉了, 因此, 按开关自密封考虑浮动球岡, 根本 求不出抑制其偏心转动干扰与座的中腔裸露面积 Ae和球覆盖面积 Ac的关系。
如果不按自密封考虑浮动球阀的开关密封, 则按美囯 《ASME锅炉与压力容器法规 VIII卷 1册附录 2》 的非自密封理念, 需要阀座密封维持系数 (参见图 5):
m=Ws/Wu > 2
Figure imgf000005_0001
其中 Ws=Asp球的浮动密封力 (介质对球的推力)
Wu=(Ae+Ac)p座的介质去密封力 (介质对座的推力)
As=球的介质作用面积
Ae=座的中腔稞露面积
Ac-座的球覆盖面积 (包括接触面积和非接触面积 Aep)
Ae+AC=AU座的介质作用面积
p=介质压强, D。=座外径, Ds=座的球作用直径, Di=座内径 即只要保证:
WS >2WU (球的浮动密封力不小于 2倍座的介质去密封力), 或
As > 2(Ae+Ac) (球的介质作用面积不小于 2倍座的介质作用面积),就可保证浮动球阀 座在任何介质压力下受到冲击干扰时, 特別是在受到球的偏心转动冲击时, 都能维持关 闭密封。
其实, 任何浮动球阀座都是一个干扰脉冲放大器, 球的偏心转动作用力是干扰脉冲 输入, 介质在座的球覆盖面上的作用力 Acp是干扰脉冲输出, 介质在座中腔裸露面上的 作用力 Aep相当于脉冲放大器的直流输出 ~ Aep越大、 越有利于脉冲信号的大幅输出- ——实际上, Aep越大、 到时候越能阻止被介质对球的推力 Ws所替代的阀座对球的安装 夹持力 W2的 复活、 越有利干扰作用力 Acp 瞬间将开关球剥离阀座; 介质对座的推力 Wu=(Ae+Ac)p为介质的去密封或密封干扰作用力—— (Ae+Ac)p越大、越能撑大座间距离、 越有利球在座间漂浮 (不密封); 介质对球的推力 Ws=Asp为介质的密封作用力一" Asp越 大、 越有利开关球抵抗球的偏心转动干扰 (维持密封); 因此,
Figure imgf000006_0001
阀 座的固有特性指数 (阀座的抗干扰系数或密封维持系数)一 m值越大、座的抗干扰能力越 强; 如果阀座的抗干扰能力不足 (抗干扰系数 m值低), 则意味着球在下游阀座上的浮动 压力无法克服球的偏心转动干扰, 致使开关球只有靠两座的对夹安装力才能维持关闭密 封。 实际上, 这种球被阀座对夹安装得不能浮动的结构似球浮动的球阀, 应该叫阀座固 定球阀或形式浮动球阀。 如图 5 所示, 形式浮动球阀的开关密封工作条件是: W2>Ws=AsP=m(Ae+Ac)p,真浮动球闽的开关密封工作条件是: Ws=Asp=m(Ae+Ac)p>W2
由于现有技术远离上述球阀座的密封科学, 不能保证浮动球阀靠介质对球的推力 Ws 而只能无奈地简单靠阀座对球的安装夹持力 w2>ws实现开关密封, 因此, 在整个工作压 力范围内, 现有技术浮动球阀都是开关球被双阀座夹得不能浮动的形式浮动球阀。
对浮动球阀座而言, 由于其座的抗干扰系数 ^^ 。) (=球的介质作用面积 /座 的介质作用面积), 因此, 至关重要的是, 一定要在不超过材料的许用强度前提下, 尽可 能减少座的介质作用面积 (Ae+Ac)、 特别是减少其中无任何用处的棵露面积、 降低对偏心 转动干扰信号的放大输出以求获得更可靠的浮动关闭密封, 而不是纠缠由经验确定的阀 座的抗干扰系数 m值是否还可稍小于 2。
根据《ASME法规》的理念, 浮动球阀座对球的安装夹持力, 只负责提供无介质压力 时的阀座所需的最小密封应力 y (与材料和密封接触结构相关);对于某种模式的密封接触 结构而言, 阀座的最小密封应力 y就只与阀座材料的屈服强度 (yield)有关, 可以理解为材 料因屈服流动而填平补齐凸凹不平的结合面时的应力, 其理论大小应逼近材料的屈服强 度,其实际大小只是材料屈服强度的一个较大百分数——因为实际接触面积仅仅是应力计 算面积的一个较大百分数。 根据本发明的研究, 只要密封接触是 "微观线后跟面中线接 触" 或微观银齿接触, 即线接触后紧跟面接触、 面接触中始终有线接触, 则密封接触始 终是以线接触提供材料所必须的微观变形应力、 以面接触保证材料所必须的宏观强度或 许用应力、 保护线接触永不消失。 如果阀座密封按 "微观线后跟面中线接触" 结抅设计, 则无论什么非金属还是金属阀座,都相对要求小至可忽略不计的安装夹持力一因为对接 触面积趋于零的线接触, 任意小的接触 '压力就可产生趋于无穷大的接触应力。 也就是说, 如果不按自密封考虑和使用 "微观线后跟面中线接触" 密封结构, 则浮动球阀可使用小 至可忽略不计的安装夹持力, 乃至介质对球的一个较小的推力就可替代上游阀座对球的 安装夹持力, 使开关球脱离上游阀座, 使球的工作转动约束力和阀座的工作载荷均源自 下游阀座上的介质对球的推力 Ws, 球的非工作转动约束力和阀座非工作载荷均源自阀座 对球的安装夹持力 (可小至忽略不计)。
如 US7243900 (CN2713240) , US20030111631 、 US6948699 、 US4658847、 US4557461、 US4502663、 US4457491、 US4236691、 US4235418、 US2963263. US2945666 等专利所示, 现有技术对浮动球阀还一直停留在按自密封思维基础上, 既不考虑阀座的 介质作用面积、 特别是不考虑阀座棵露的介质作用面积对自密封的影响, 也不考虑阀座 对球的安装夹持力 w2与自密封的关系,导致现有技术浮动球阀座拥有相当的介质作用面 积 (Ae+Ac), 即拥有足够的偏心转动干扰放大条件, 致使现有技术浮动球阀仅是结构似球 浮动的形式浮动球岡, 只能靠阀座对球的安装夹持力 W2而不能靠球的浮动密封力 Asp实 现开关密封。 由于形式浮动球阀的开关密封工作条件是 W2>Ws=Asp, 因此, 为了通过标 准规定的 1.1倍额定工作压力的关闭密封测试,现有技术浮动球阀必须保证座对球的安装 夹持力 W2>l.lAspw, 其中 As=球的介质作用面积, pw=额定工作介质压强。 所以, 筒单 地说,迄今为止的浮动球阀的开关球的极限转动约束力矩至少是由双座力 2*l.lAspw产生 的, 不是由最大单座力 l.lAspw产生的。
综上所述, 对于浮动球阀, 通过运用 ASME法规理念的分析可知, 如果按开关自密 封考虑, 则无疑从理念到结构都不考虑其它因素对开关球的浮动影响, 自然不能排除普 遍存在的开关球的偏心转动干扰, 结果开关密封远离自密封优势, 无意识地完全废弃介 质对球的自然推力而另用额外的阀座对球的安装夹持力; 如果不按开关自密封考虑, 则 始终以减少阀座介质作用面或降低对偏心转动干扰信号的放大作用为前提, 结果开关密 封充分获得自密封优势, 用介质对球的自然推力充分取締多余的阀座对球的安装夹持力; 无疑, 对浮动球阀的开关密封行为的认识, 从现有技术的 "自密封"理念到本发明的 "非 自密封" 理念, 是 180°的大转向, 是一次思维革命, 自然引起结构革命, 当然, 结果是 令人难于置信的, 但是, 是可证实的: 产生开关球的最大转动约束力的力和阀座的最大 负载从至少 2*l.lAspw到至多 Aspw, 至少减少 1.1倍。
浮动球阀, 结构简单, 制造成本低, 易于维修; 相对而言, 轴耳面定球阀, 结构复 杂, 制造成本高, 难于维修。 用轴耳固定球阀替代浮动球阀的初衷是, 用轴承替代下游 阀座去承担介质对球的推力, 以使较软的材料可承担更高压力的开关密封任务, 或使高 压大规格球阀不受阀座材料强度限制。 用轴耳固定球阀替代浮动球阀的附加效果是转动 搡作力矩小。 由于本发明的阀座可以降低现有技术的浮动球阀的开关球的操作转矩一半 以上, 因此, 如果本发明的阀座还能提高抗压能力, 那岂不是可在更大的范围内, 用廉 价可靠的浮动球阀替代昂贵的轴耳固定球阀吗?
ISO 14313/API 6D规定,球闽(因开启或关闭而陷在阀体中腔内的介质会受热膨胀而 滋生高压)应有自动卸压装置, 保证陷在中腔内的介质压力不超过 1.33倍额定工作压力; 防火结构阀, 应按 ISO 10497 (API 6FA)通过防火检测。 为了满足标准规定的球阀中腔卸 压要求, US4557461、 US4385747、 US4236691 US3488033, GB2023773等专利提出 了一些复杂的卸压陶座结构; 为了通过标准规定的球阀的防火测试要求, W082/03898 专利提出了复杂的防火阀座结构。 如果本发明的封闭受压的三角截面间座能够自然达到 ISO 14313/API 6D规定的球阀中腔卸压要求和防火要求, 那岂不是可省去这些专用结构 阀吗?
金属阀座球阀, 是高温应用不可'缺少的阀门, 但是如 US4940208、 US4502663 , US4262688、 US4235418、 US4147327等专利所示, 浮动球阀的金属阀座结构, 与非金 属阀座结构,有着完全不同的结构;如 US7032880、 US4601308、 US4318420、 US3752178、 US3164362, US3269691等专利所示, 轴耳固定球阀的浮动阀座总成中始终有一个难达 高温要求的 0型密封圈, 几乎导致轴耳固定球阀与高温用金属阀座结构无缘。 如果本发 明的三角截面阀座, 能够把浮动球阀的金属阀座阀和非金属阀座结构统一起来, 又能够 结构出不用 0型密封圈的浮动阀座来, 那岂不美哉! 发明的公开
本发明要解决的技术问题是, 提出球阀座结构原理和方法, 并据之提出一系列理想 球阔座。
本发明提出的球间座结构原理和方法的要点是:
① 球阀座, 应尽可能是无表面裸露的并逼近以球密封玄为边长的等边三角形为截 面。
② 浮动球阀的开关球的浮动密封工作是有条件的, 如图 5 所示, 只有当
Ws=m(Ae+Ac)p>W2而且 m足够大时, 浮动球阀才能靠开关球的浮动实现可靠的关闭密 封,否则只能靠阀座对球的安装夹持力 W2 >其中 Ws=球的浮动密封力 (介质对球的推力), W2=座对球的安装夹持力, Ae=座的中腔棵露面积, Ac-座的球覆盖面积 (包括接触面积和 非接触面积 Aep), Ae+AC=AU座的介质作用面积, p=介质压强, m (座的密封维持系数或 抗千扰系数) =密封作用力 /去密封作用力。
③ 任何球阔的关闭密封都有不可避免的球的偏心转动干扰, 任何球阀座都是一个干 扰脉冲放大器并拥有一个固有的抗干扰系数 m; 如图 5所示, 浮动球阀座的抗干扰系数 m=Asp/(Ae+Ac)p=Ds 2/(D。2-Di2)决定阀座密封的抗干扰能力,其中 As=球的介质作用面积, Ae=座的中腔裸露面积, Ac-座的球覆盖面积 (包括接触面积和非接触面积 Aep), Ae+Ac=Au 座的介质作用面积, p=介质压强, Asp=球的浮动密封力 (介质对球的推力), (Ae+Ac)p= 座的介质去密封力 (介质对座的推力), D。=座外径, Ds=座的球作用直径, DF座内径; 阀 座的密封维持系数 m值越大, 结抅的抗干扰能力越强; 也就是说, 浮动球阀用固定阀座, 一定要以不超过材料的许用强度为前提, 尽可能减少介质作用面积 (Ae+Ac)、'特别是减少 其中无任何用处的裸露面积、 降低对偏心转动干扰信号的放大输出, 才能使浮动球阀的 开关密封更可靠。
④ 阀座抗干扰能力不足的浮动球阀, 只能靠罔座对球的安装夹持力 W2而不能靠介 质对球的推力 Ws维持球的开关密封性, 实际上, 仅仅是结构似球浮动的形式浮动球阀。
⑤ 只要密封接触是 "微观线后跟面中线接触" 或微观银齿接触, 即线接触后紧跟面 接触、 面接触中始终有线接触, 则密封接触始终是以线接触提供材料所必须的微观变形 应力、 以面接触保证材料所必须的宏观强度或许用应力、 保护线接触永不消失; 如果阀 座密封按 "微观线后跟面中线接触" 结构设计, 则无论什么非金属还是金属阀座, 都相 对要求小至可忽略不计的安装夹持力——因为对接触面积趋于零的线接触,任意小的接触 压力就可产生趋于无穷大的接触应力; 也就是说, 为了降低球阀座对球的安装夹持力而 更有效地利用浮动球或浮动座的浮动自密封性, 对于高强度材料阀座, 特别是金属阀座, 应当使用 "微观线后跟面中线接触" 密封结构。
图 1和图 2所示的是一个分别处在全开和全闭状态的普通浮动球阈, 由阀座 02负责 提供开关球 03在阀体 01中的安装对接、 转动支承和关闭密封, 由体端盖 05与阀体的螺 紋连接负责提供开关球和阀座在阀体中的安装紧固, 由体密封垫 04负责提供阀体连接的 密封,由阀杆 06负责提供开关球的转动搡作,由一套阀杆密封总成负责提供阀杆的密封。 由于本发明仅涉及用不同截面的阀座实现开关球在阀体中的安装对接、 转动支承及关闭 密封, 因此, 只需用一些与图 1和图 2相对应的仅涉及阀体 01、 阀座 02和开关球 03的 局部视图或局部放大视图, 就可足以对普通业内技术人员清楚表达本发明的各种技术方 案, 包括清楚表达轴耳固定球阀中的浮动阀座方案。 在文字表达中, 所用到的 £ '固定阀 座" 是指浮动球阀常用球阀座, 实际上是可微微浮动的; 所用到的 "浮动阀座" 是指固 定球阀常用球闽座, 实际上其开关球也可微微浮动; 所用到的 "投影" 是指在以开关球 中央通孔轴线为 X轴定义的相关坐标系面或相关坐标系轴上的投影; 所用到的 "按 (等边) 三角截面法"、 "以(等边)三角形为截面要素、 为截面成分和为截面轮廓" 和 "逼近以(等 边)三角形为截面轮廓" 有时意义相同。
如图 7a (图 la中的 X放大图)所示, 在普通固定阀座 02的截面中都包括一个固有的 截面结构等边三角形 ABC,其边 AB是座的球密封面决定边 (即 AB是密封弧所对的玄或是 座的球密封玄),其边 BC可是座的端密封面决定边 (即可取 BC的投'影 CP为截面的端密封 边), 其边 CA可是座的圆柱支承面决定边〔即可取 CA的投影 CD为座的柱面母线), 其球 密封玄长决定选用材料阀座的许用载荷, 其轮廓线交点 C决定阀座表面裸露程度, 其三 个顶点的回转直径 Ds (为座的球作用直径)、 Di (为座内径)和 D。(为座外径)决定阀座的抗干 扰系数 m=Ds 2/(D。2-Di2)或浮动球阀的可靠性。 其实, 一切球闽座, 无论它们的截面形状 或结构细节如何不同, 都可用一个等边三角形为截面基础来结构和发展, 并控制阀门的 基本性能, 所以, 本发明提出按等边三角截面法设计球阀座。
如图 6(图 la中的开关球 03及其座截面结抅三角形)所示,球阀座的截面密封弧或结 构三角形 ABC的球密封玄 AB, 应对称地在位置相差 90°的开关球端面和端面球小圆 d' 限定的基准边图 A'B'内, 以确保开关球在全开和全关位置时, 阀座的球密封面 AB都能全 压在开关球表面地维持密封形态; 当密封玄端 A超出端面球小圆 d'的切线 Β'Ά'时, 处在 全闭位置的开关球的端面(图 2b中的虛线端面)就会进入座的球密封面内而戳致阀座变形 地入球的通孔口内; 当密封玄端 B超出球端面限制时, 就可导致阀座内径缩小, 或是导 致介质对上游阔座的有害冲刷或挤压变形, 或是导致增加下游阀座的球覆盖面积 Aep (如 图 5b所示)而降低阀座的抗干扰能力。 由于无论球直径 d和端面球小圆 d'取大或取小, 始终都有: B'O'=B'O=r', 因此, 球阀座截面结构三角形 ABC的球密封玄 AB与开关球的 中央通孔轴线成 45°角。所以,本发明提出一种以等边三角形为截面要素的浮动球阀用固 定阀座 (参见图 7a), 其特征是岡座截面结构等边三角形 ABC的边 AB是座的球密封玄, 边 BC的投影边或投影延长边回转形成面是座的端密封面, 边 CA的投影边回转形成面是 座的柱支承面, 点 C是座轮廓线交点; 所述球密封玄 AB, 即阀座截面密封弧所对的玄, 与所述球的中央通孔轴线成 45°角,或阀座的球密封面可以预制成与阀座同轴的并与所述 球相截的 90°锥面或预制成所述 90°锥面截出来的所述球的弧面;所述球密封玄长和轮廓 线交点位置由阀座材料许用强度及需要的阀座抗干扰系数 m确定。
上述^以等边三角形为截面要素而不以等边三角形为截面轮廓的普通固定阀座, 主 要控制的是阀座结构三角形 ABC的球密封玄 AB的方位和长短以及阀座的表面棵露程度 或阀座的抗干扰系数 m, 旨在提高普通固定阀座开关的密封性, 降低普通固定阀座开关 的转动搡作力矩, 有结构简单、 制造成本低等特点, 但来解决阀座材料的裸露问题或经 棵露面的爬行变形或挤出流动变形问题, 无法满足某些特殊应用要求, 如满足 API 6D的 防火要求。防火球阀是指正常环境下靠开关球与阀座间的金属-非金属接触实施开关密封、 火灾环境下靠开关球与阀体间的金属 -金属接触实施开关密封的球阀, 也就是说, 防火球 阀需要一个正常工作中紧逼而又不紧贴开关球表面的阀体密封唇口, 以便非金属阀座材 料烧毁后立即进入开关球与闽体间的金属 -金属密封。所以,为了满足 API 6D的防火要求, 本发明提出一种以等边三角形为截面成分的浮动球阀用固定阀座 (参见图 8a), 其特征是 间座截面结构等边三角形 ABC的边 AB是座的球密封玄,边 BC回转形成面是座的端密封 面, 边 CA的投影边回转形成面是座的柱支承面, 点 C是座轮廓线交点; 所述球密封玄 AB, 即阀座截面密封弧所对的玄, 与所述球的中央通孔轴线成 45°角, 或阀座的球密封 面可以预制成与阀座同轴的并与所述球相截的 90°锥面或预制成所述 90°锥面截出来的 所述球的弧面; 所述球密封玄长和轮廓线交点位置由阀座材料许用强度及需要的阀座抗 干扰系数 m确定。
上述以等边三角形为截面成分的固定阀座仅仅避免了阀座的通道裸露, 并未避免阀 座的中腔棵露。 为同时避免球阀座的通道裸露和中腔裸露, 本发明提出一种以等边三角 形为截面轮廓的浮动球阀用固定阀座 (参见图 9a), 其特征是所述固定阀座由有配合的内 密封环 (简称内环)和外支承环 (简称外环)两件组合而成,所述内环以等边三角形 ABC为截 面轮廓,其边 AB是固定阀座的球密封玄,其边 BC的回转形成面是固定阀座的端密封面, 其边 CA的回转形成面是内环的受支承面; 所述外环的截面为梯形, 以梯形高为母线的柱 面是固定阀座的柱面并与阀体上的阀座接纳孔为间隙配合, 以梯形斜腰为母线的锥面是 对所述内环的支承面; 开关球, 在介质压力的作用下, 同时压在相互支承的所述内环和 外环上, 使其相互争抢相互保护地受压; 所述内环材料强度低于外环材料强度。 如图 9b 所示, 介质对开关球的推力 (nDs 2p/4=)Fs=Fcosa+FsinP (由内环承担 Fcosa, 由外环承担 Fsinp, 其中 F是内环面上受到的正压力, α=45°, β=15° 5 ρ是介质压强, Ds是座的球 作用直径),而内环和外环径向受到的总正压力为 Fs/cosa,内环径向受到的正压力仅为 F, 因此, 以等边三角形为截面轮廓的双环固定阀座的密封材料的承载能力是单环阀座材料 的:
(Fs/cosa)/F=l +sinp/cosa= 1.366倍。
实际上, 本发明的内环用两面、 而单环阀座只用一面承受开关球的压力, 因此, 不难理 解, 以等边三角形为截面轮廓的固定阀座的承载能力是单环阀座的 1.366倍。 加之, 内 密封环, 几乎在封闭腔中受压, 就象密闭在油缸中的液压油一样, 既难于发生压缩变形 又难于发生缝隙挤出流动变形或被挤 "破", 还无爬行变形, 拥有比材料本身的许用承载 能力更高的承载能力, 所以, 本发明的复合阀座可确保使用密封性能优异的软材料于很 髙压力极限, 并获得更长寿命和更高可靠性。
高压应用, 要求高强度非金属和金属材料阀座; 高温应用, 要求金属材枓阀座。 为 了提高高强度材料阀座、 特别是金属材料阀座对开关球的密封性和降低开关球的转动搡 作力矩,特提出一种以等边三角形为截面要素的浮动球阔用硬固定阀座 (参见图 7a和 7c), 其特征是阀座截面结抅等边三角形 ABC的边 AB的回转形成面是座的球密封锥面, 边 BC 的投影边或投影延长边回转形成面是座的原始端密封面,边 CA的投影边回转形成面是座 的原始柱支承面; 在所述回转形成的原始阀座基础上, 根据赋予所述阀座的弹性变形需 要, 同时部分车切小和车切短所述原始柱丈承面和端密封面地使所述原始柱支承面变成 一台阶柱面, 并使新车出的柱面和端面相贯圆随车切量加大而沿所述三角形的高离开所 述三角形的顶点 C,必要时再车切一个底面与所述相贯圆相切并平行于所述球密封锥面的 环形凹槽; 在所述球密封锥面上有两个相对其 AB部分对称的由凹切锥面形成的锯齿环, 所述凹切锥面平行所述球密封锥面、 并差 才与通过所述锯齿环顶的开关球面相切, 即 相对开关球面所述锯齿环高 ¾; 在所述车切小和车切短的最终端密封面上可制至少两个 齿高为 ¾的锯齿环也可不制, 如果不制, 则需要一个与切除部分形状和体积相当的软密 封垫。 锯齿环的齿顶皆为刃, 刃尖角或齿顶角约为 90°~120° , 齿高 约为 10~20倍密 封表面粗糙度 Ra值, 齿距 Xs/齿高 约为 20~500(对应轮廓元较宽的表面粗糙度和轮廓 元较窄的表面波紋度的轮廓元宽度 Xs/高度 ),确保变形密封刃后面紧跟一个逼近球面或 平面的受力保护面, 保护密封接触面中始终有线接触, 因此, 可轻松实现对精加工表面 的密封, 无需任何研磨加工。 齿高 ¾决定线接触的变形量, 齿距 Xs/齿高 决定线后跟面 的速度或决定对线接触的提供和保护程度。 对同一个密封面而言, 如果取较小的齿距 Xs/ 齿高 值, 则分摊力的齿数多, 单齿线后跟面的速度慢; 如果取较大值, 则分摊力的齿 数少, 单齿线后跟面的速度快; 虽然齿多齿少的单齿线后跟面的速度不一样, 但总的线 后跟面的速度有可能还是大体一样, 或总的密封效果有可能还是大体一样; 如果线后跟 面的速度不一样, 则速度快的, 密封接触面积大, 接触应力小, 致转动阻力和密封性同 时下降, 反之亦然。
还提出一种以等边三角形为截面成分的浮动球阀用硬固定阀座 (参见图 8a和 8c), 其 特征是阀座截面结抅等边三角形 ABC的边 AB的回转形成面是座的球密封锥面,边 BC的 回转形成面是座的原始端密封面, 边 CA的投影边回转形成面是座的原始柱支承面; 在所 述回转形成的原始阀座基 上, 根据赋予所述阀座的弹性变形需要, 同时部分车切小和 车切短所述原始柱支承面和端密封面地使所述原始柱支承面变成一台阶柱面, 并使新车 出的柱面和端面相贯圆随车切量加大而沿所述三角形的高离开所述三角形的顶点 C,必要 时再车切一个底面与所述相贯圆相切并平行于所述球密封锥面的环形凹槽; 在所述球密 封锥面上有两个相对其 AB部分对称的由凹切锥面形成的锯齿环,所述凹切锥面平行所述 球密封锥面、 并差 才与通过所述锯齿环顶的开关球面相切, 即相对开关球面所述锯齿 环高 ¾; 在所述车切小和车切短的最终端密封面上可制至少两个齿高为 Zt的锯齿环也可 不制, 如果不制, 则需要一个与切除部分形状和体积相当的软密封垫。 锯齿环的齿顶皆 为刃, 刃尖角或齿顶角约为 90°~120° , 齿高 ¾约为 10~20倍密封表面粗糙度 Ra值, 齿' 距 Xs/齿高 约为 20~500(对应轮廓元较宽的表面粗糙度和轮廓元较窄的表面波紋度的轮 廓元宽度 Xs/高度 ),确保变形密封刃后面紧跟一个逼近球面或平面的受力保护面,保护 密封接触面中始终有线接触, 因此, 可轻松实现对精加工表面的密封, 无需任何研磨加 工。齿高 决定线接触的变形量,齿距 Xs/齿高 ¾决定线后跟面的速度或决定对线接触的 提供和保护程度。 对同一个密封面而言, 如果取较小的齿距 Xs/齿高 值, 则分摊力的齿 数多, 单齿线后跟面的速度慢; 如果取较大值, 则分摊力的齿数少, 单齿线后跟面的速 度快; 虽然齿多齿少的单齿线后跟面的速度不一样, 但总的线后跟面的速度有可能还是 大体一样, 或总的密封效果有可能还是大体一样; 如果线后跟面的速度不一样, 则速度 快的, 密封接触面积大, 接触应力小, 致转动阻力和密封性同时下降, 反之亦然。
还提出一种以等边三角形为截面轮廓的浮动球阀用硬固定阀座 (参见图 9a和 9e),其 特征是所述固定阀座由有配合的内密封环(简称内环)和外支承环(简称外环)两件组合而 成, 所述内环以等边三角形 ABC为截面轮廓, 其边 AB的回转形成面是固定阀座的球密 封锥面, 边 BC的回转形成面是固定阀座的原始端密封面, 边 CA的回转形成面是内环的 原始受支承面; 所述外环的截面为梯形, 以梯形高为母线的柱面是固定阀座的柱面并与 阀体上的阀座接纳孔为间隙配合, 以梯形斜腰为母线的锥面是对所述内环的支承面; 开 关球, 在介质压力的作用下, 同时压在相旦支承的所迷内环和外环上, 使其相互争抢相 互保护地受压; 所述内环材料强度低于外环材料强度; 在所述回转形成的原始内环基础 上, 根据赋予所述内环的弹性变形需要, 同时部分车切小和车切短所述原始受支承面和 端密封面地形成一柱面和一端面, 并使新车出的柱面和端面相贯圆随车切量加大而沿所 述三角形的高离开所述三角形的顶点 C,必要时再车切一个底面与所述相贯圆相切并平行 于所述球密封锥面的环形凹槽;在所述球密封锥面上有两个相对其 AB部分对称的由 13切 锥面形成的锯齿环, 所述四切锥面平行所述球密封錐面、 并差 才与通过所述锯齿环顶 的开关球面相切> 即相对开关球面所述锯齿环高 ; 在所述车切小和车切短的最终端密 封面上可制至少两个齿高为 的锯齿环也可不制, 如果不制, 则需要一个与切除部分形 状和体积相当的软密封垫。 锯齿环的齿顶皆为刃, 刃尖角或齿顶角约为 90°〜; L20° , 齿高 约为 10~20倍密封表面粗糙度 Ra值, 齿距 Xs/齿高 ¾约为 20~500(对应轮廓元较宽的 表面粗糙度和轮廓元较窄的表面波紋度的轮廓元宽度 Xs/高度 ),确保变形密封刃后面紧 跟一个逼近球面或平面的受力保护面, 保护密封接触面中始终有线接触, 因此, 可轻松 实现对精加工表面的密封, 无需任何研磨加工。 齿高 ¾决定线接触的变形量, 齿距 xs/ 齿高 zt决定线后跟面的速度或决定对线接触的提供和保护程度。 对同一个密封面而言, 如果取较小的齿距 Xs/齿高 值, 则分摊力的齿数多, 单齿线后跟面的速度慢; 如果取较 大值, 则分摊力的齿数少, 单齿线后跟面的速度快; 虽然齿多齿少的单齿线后跟面的速 度不一样, 但总的线后跟面的速度有可能还是大体一样, 或总的密封效果有可能还是大 体一样; 如果线后跟面的速度不一样, 则速度快的, 密封接触面积大, 接触应力小, 致 转动阻力和密封性同时下降, 反之亦然。
如图 10所示, 现有技术的浮动阀座, 由密封环 02a、 支承环 02b、 0型密封环 02c 和预载弹簧 02d组成, 始终有一个难达髙温要求的 0型密封圈, 几乎导致轴耳固定球阀 与高温用金属阀座结构无缘。 对现有技术浮动岡座, 当介质压力大到一定程度时, 预载 弹簧 02d将失去对支承环 02b的作用; 在预载弹簧失去作用的介质压力下, 由于阀座的 介质密封作用面积始终等于阀座的介质去密封作用面积 Au=nD。2/4-nDi2/4,即阀座的前后 介质作用面积相等 (后介质作用面积为介质密封作用面积, 前介质作用面积为介质去密封 作用面积), 亦即阀座的抗干扰系数 m始终为 1, 因此, 上游阀座在受到干扰而脱离同开 关球的密封接触后, 又可被预载弹簧再推向开关球, 乃至导致浮动阀座和开关球在转动 操作时产生来回振动。 为避免操作振动, 只能使阀座的弹簧预载力大于极限介质密封作 用力 (等于提高阀座的抗干扰系数), 结果导致密封环和开关球始终受极限压力, 致使密封 材料的爬行变形最大化, 致使开关球的转动阻力始终最大化。
为改善球阀用浮动阀座的性能, 特提出一种以等边三角形为截面轮廓的固定球阀用 浮动阀座 (参见图 11), 其特征是所述阀座由密封环、 支承环、 压紧环、 密封垫和预载弹 簧组成; 所述密封环是阀座的浮动密封元, 以等边三角形 ABC为截面轮廓, 其边 AB所 对的弧回转形成面是阀座的球密封面, 其边 BC的回转形成面是所述密封环的受压紧面, 其边 CA的回转形成面是所述密封环的受支承面;所述支承环通过螺紋和所述密封垫完成 同阀体端盖的紧固和密封连接后, 负责对所述受支承面提供密封支承; 所述预载弹簧, 通过所述压紧环, 对所述密封环施加初始密封压紧力; 介质压力, 可通过也可不通过所 述压紧环, 对所述密封环施加密封压紧力。 如果受压紧面与压紧面间有密封性, 则介质 只能通过压紧环地间接压密封环; 如果受压紧面与压紧面间无密封性, 则介质可自由进 入接触面而直接压密封环。 介质直接压密封环, 无摩擦损失, 介质作用力效率更高。
为进一步突破轴耳固定球阀的高温和高压应用限制, 特再提出一种以等边三角形为 截面轮廓的固定球阀用硬浮动阀座 (参见图 11a和 llh),其特征是所述阀座由密封环、支 承环、 压紧环、 密封垫和预载弹簧组成; 所述密封环是阀座的浮动密封元, 以等边三角 形 ABC为截面轮廓, 其边 AB的回转形成面是阀座的球密封锥面, 其边 BC的回转形成面 是所述密封环的原始受压紧面, 其边 CA的回转形成面是所述密封环的原始受支承面; 在 所述回转形成的原始密封环的基础上, 根据赋予所述密封环的弹性变形需要, 同时部分 车切小和车切短所述原始受压紧面和受支承面地形成一柱面和一端面, 并使新车出的柱 面和端面相贯圆随车切量加大而沿所述三角形的高离开所述三角形的顶点 C,必要时再车 切一个底面与所述相贯圆相切并平行于所述球密封锥面的环形凹槽; 在所述球密封锥面 上有两个相对其 AB部分对称的由凹切锥面形成的锯齿环,所述凹切锥面平行所述球密封 锥面、 并差 ¾才与通过所述椐齿环顶的开关球面相切, 即相对开关球面所述锯齿环高 ; 在所述车切小和车切短的最终受支承面上可制至少两个齿高为 ¾的锯齿环也可不制, 如 果不制, 则需要一个与切除部分形状和体积相当的软密封垫。 锯齿环的齿顶皆为刃, 刃 尖角或齿顶角约为 90°~120°, 齿高 ¾约为: L0〜20倍密封表面粗糙度 值, 齿距 Xs/齿 高 约为 20~500(对应轮廓元较宽的表面粗糙度和轮廓元较窄的表面波紋度的轮廓元宽 度 Xs高度 ¾),确保变形密封刃后面紧跟一个逼近球面或平面的受力保护面,保护密封接 触面中始终有线接触, 因此, 可轻松实现对精加工表面的密封, 无需任何研磨加工。 齿 高 ¾决定线接触的变形量,齿距 xs/齿高 决定线后跟面的速度或决定对线接触的提供和 保护程度。 对同一个密封面而言, 如果取较小的齿距 Xs/齿高 ¾值, 则分摊力的齿数多, 单齿线后跟面的速度慢; 如果取较大值, 则分摊力的齿数少, 单齿线后跟面的速度快; 虽然齿多齿少的单齿线后跟面的速度不一样, 但总的线后跟面的速度有可能还是大体一 样, 或总的密封效果有可能还是大体一样; 如果线后跟面的速度不一样, 则速度快的, 密封接触面积大, 接触应力小, 致转动阻力和密封性同时下降, 反之亦然。 所述支承环 通过螺紋和所述密封垫完成同阀体端盖的紧固和密封连接后, 负责对所述受支承面提供 密封支承; 所述预载弹簧, 通过所述压紧环, 对所述密封环施加初始密封压紧力; 介质 压力, 可通过也可不通过所述压紧环, 对所述密封环施加密封压紧力。 如果受压紧面与 压紧面间有密封性, 则介质只能通过压紧环地间接压密封环; 如果受压紧面与压紧面间 无密封性, 则介质可自由进入接触面而直接压密封环。 介质直接压密封环, 无摩擦损失, 介质作用力效率更高。
如图 lla 所示, 以等边三角形为截面轮廓的浮动阀座, 由于其介质密封作用面积
Figure imgf000014_0001
其介质去密封作用面积 Au=nDu 2/4-nDi2/4, 即其阀座的抗干扰系数 =八5/ ^(0。2- 2)/(0^0 >1 (因为 D。>DU), 因此, 比图 10所示的现有技术的浮动阀 座, 不仅避免了 0形密封环的使用, 而且因有更高的抗干扰能力而可用较低的弹簧压紧 力, 既能降低开关球的操作转动力矩又不致引发操作振动。
以等边三角形为截面轮廓的浮动阀座, 其支承环既方便选用适合金属-金属密封的材 料制造又方便安装调整到同开关球达到似接触非接触的状态, 因此, 其对应的开关球, 除可通过包括阀杆作轴的轴耳来固定外, 还可通过其支承环来固定。 如果浮动岡座对应 的开关球通过阀座的支承环来固定,则开关球也需要微微浮动——开关球微徽浮向下游阀 座的支承环口实现一次密封, 上游阀座浮向开关球实现二次密封。 这样的阀座和开关球 同时浮动的球阀, 既可提供更可靠的开关密封性又可达到双断又泄 (DBB)要求。 这样的座 和球都浮动的球阀最适合提供金属阀座球阀。
由于球阀座的任务是要完成开关球与阀体的对接和密封, 而球阀座对开关球的密封 锥面或密封基面又与阀座和阀体的安装加工方向成 45° , 因此,球闳座至少有也可只有三 个互成角度的表面: 一个对开关球的密封面、 一个对陶体的密封面和一个求阀体的力平 衡支承面; 如果只有这三个表面, 则意朱着球阀座是无表面棵露的并以三角形为截面; 而如果无表面棵露, 则密封性能优异的软阀座, 可象密闭在油缸中压缩的液压油一样, 既难于发生压缩变形又难于发生缝隙挤出流动变形或被挤 "破 ", 还无爬行, 拥有比材料 本身的许用承载能力更高的承载能力, 可达到很高压力应用极限、 更长寿命和更高可靠 性; 而如果以等边三角为截面, 则三面相等受力和不等受力面积(因回转半径差异)正好理 想地满足各面不等应力的需要: 应力稍大的球密封面正好满足其对球的动密封, 应力稍 小的体密封面正好满足其对体的静密封, 应力再稍小的支承面正好满足其在支承环上的 滑动; 再者, 只有等边三角截面才能避免阀座出现薄弱尖角; 因此, 理论上, 球阀座应 尽可能是无表面裸露的并以等边三角形为截面; 所以, 本发明的以等边三角形为截面轮 廓的球阀座是按等边三角截面法结构的最理想的球阀座, 以等边三角形为截面成分的球 阀座是按等边三角截面法结构的逼近等边三角截面的次廉价理想球阀座, 以等边三角形 为截面要素的球阔座是按等边三角截面法结抅的次逼近等边三角截面的最廉价理想球阀 座。
由于可用不同强度的密封材料满足不同压力级别阀座的需要, 可用不同齿距的微观 鋸齿密封结构调整不同强度材料阀座的安装力, 还可保持阀座外径不变地微调截面结构 三角形边长地调整不同强度材料阀座的安装压缩量, 还可部分切除阀座后部地赋予高强 度阀座材料的弹性和安装压缩量, 因此, 无论是非金属还是金属阀座, 无论是浮动球阀 用固定阀座还是固定球阀用浮动阀座, 对于同尺寸规格和不同压力级别的各种阔座, 都 可用同一个结构三角形来结构。 所以, 按本发明的等边三角截面法结构球阀座, 可统一 同尺寸规格的各种阀座的体上安装结构尺寸和相关开关球的结构尺寸, 有效促进球阀的 标准化生产。例如,对于用等边三角截面法结构的抗干扰系数 m=2的单环球阀座, lOMPa 级的阀门可用 33MPa强度的聚四氟乙烯 (PTFE), 15MPa级的阏门可用 45MPa强度的聚 甲醛 (POM), 25MPa级的阀门可用 90MPa强度的聚醚醚酮 (PEEK), 42NlPa级的阀门可用' 207MPa强度的聚对苯 (PPP)。
特别指出, 对于抗干扰系数 m=l的浮动阀座, 在干扰消除后介质不能自动恢复阀座 同球的密封, 但可靠预载弹簧自动恢复阀座同球的密封; 对于抗干扰系数111>1的浮动阀 座, 只要预载弹簧能为密封环的受支承面提供一点所需的初始密封, 则在干扰消除后介 质就可自动恢复阀座同球的密封; 对于固定间座, 因干扰而剥离同阀座亲密接触的浮动 球无力自动恢复同固定阀座的密封 (只能永远漂浮在阈座间), 因此, 固定阀座需要比浮动 阀座具有更大的抗干扰系数; 理论计算证实, 现有技术浮动阀座的抗干扰系数 m只能是 1; 实际计算证实, 用抗干扰系数 m=2的固定阀座密封环作浮动阀座密封环, 其抗干扰 系数 m只能是 然而, 固定阀座的抗干扰系数是可按需指定的, 而介质通过开关球对 固定阀座产生的密封作用力又大于介质通过浮动座对开关球产生的密封作用力, 因此' 许用应力和抗干扰系数满足固定阀座要求的三角密封环 > 也能满足浮动阀座的要求。 所 以, 可用固定阀座的结构三角形, 结构同规格的浮动阀座, 统一浮动阀座和固定阀座的 基本结构。
由于浮动球阀的开关密封不是靠阀座对球的安装夹持力就是靠开关球的浮动压紧力 维持, 不可能靠二者同时起作用, 甚至抗干扰系数还决定其不能一先一后起作用; 而如 果靠阀座对球的安装夹持力维持, 则阀座材料磨损后或经稞露面爬行变形和挤出流动变 形后, 阀门的关闭密封将立即失效; 而如杲靠开关球的浮动压紧力维持, 则阀座材料的 磨损或经裸露面的爬行变形和挤出流动变形将不影响阀门的关闭密封; 再由于本发明的 等边三角截面结构法可确保开关球靠其浮动推力维持关闭密封, 因此, 按等边三角截面 法结构球阀座, 可使浮动球阀座的使用寿命从 "有限" 到 "无限"。 浮动球阀座的使用寿 命理应是 "无限" 的, 而现有技术的浮动球阀座的使用寿命, 如 US20030111631 (典型 的形式浮动球阀)所示, 是十分有限的, 因此, 可以说, 现有技术的浮动球阀不是真浮动 球阀。
由于按等边三角截面法结构固定阀座, 可确保浮动球阀靠介质对球的推力而不靠阀 座对球的安装夹持力实现开关密封, 因此, 座对球的安装夹持力可小至忽略不计, 乃至 关闭状态中的球始终浮压在下游阀座上, 球的转动阻力仅来自下游阀座单座, 最大值为 极限压力时的球在下游座上的压力对应的转动摩擦阻力; 如果按现有技术设计, 则浮动 球阀只能靠比介质对球的极限推力还大的阀座对球的安装夹持力实现开关密封, 因此, 最大操作转矩由更大的¾座对球的安装夹持力偶的摩擦阻力产生; 所以, 简单地说, 按 等边三角截面法结构浮动球阀, 开关球的最大操作力矩, 可至少比现有技术的最大操作 力矩降低一半。
由于以等边三角形为截面要素和截面成分设计的球阀座, 可以避免不必要的表面裸 露, 最大限度地避免阀座材料的爬行变形 (密封应力松弛) (蠕变)或挤出流动变形; 以等边 三角形为截面轮廓的球阀座, 可将阀座封闭到相当程度地压缩, 就象将液压油密闭在油 缸中压缩一样, 既难于发生压缩变形又难于发生缝隙挤出流动变形或被挤 "破", 还无爬 行变形, 拥有比材料本身的许用承载能力更高的承载能力; 因此, 按等边三角截面法结 抅的球闽座可确保使用密封性能优异的软材料于很高压力极限, 并获得更长寿命和更高 可靠性。
由于按等边三角截面法结构固定岡座, 可以大幅降低浮动球阀的极限操作力矩和大 幅提高阀座材料的许用强度, 因此, 可在更大的范围内, 用廉价可靠的浮动球阀替代昂 贵的轴耳固定球岡。
特别指出, "微观线后跟面中线接触" 或微观锯齿接触密封结构, 可有效以刃线接触 提供材料所必须的密封应力, 以刃后面接触保证材料所必须的许用应力, 既能始终提供 密封所需的足够变形又能始终确保刃线不至于被压坏, 既能提高阀座对开关球的密封性 又能降低阀座对球的安装夹持力或预压力、 降低操作转动力矩, 不仅适合做高强度材料 的密封结构也适合做低强度材料的密封结构,例如,将阀座的开关球用密封面预制成 90° 锥面而不预制成球面, 则可以线接触开始地满足低压密封要求、 以自动变形球面接触随 后地满足高压密封要求, 避免阀座无谓受压蠕变; 但是, 只有按等边三角截面法结构球 阀座, 才能确保其对球的安装夹持力和预压力可小到有线接触生存余地; 所以, 可以说, 球阀座的等边三角截面结构法与 "微观线后跟面中线接触" 结构法, 是相互文承和依赖 的。
在球阀的阀体中腔内, 因开启或关闭会陷入介质, 而陷在阀体中腔内的介质会受热 膨胀而滋生高压, 因此, ISO 14313/API 6D规定, 球阀中腔应有自动卸压装置, 保证中 腔相对大气的陷压强度不超过 1.33倍额定工作压力强度。 如图 5a所示, 浮动球阀中腔 相对大气 (即 Ws=0时)的陷压强度是由阀座对球的安装夹持力 W2的强度决定的,如图 10 和 1 la所示,面定球阀中腔相对大气(即端口通大气时)的陷压强度是由阀座对球的弹簧压 紧力强度决定的; 座对球的安装夹持力或弹簧压紧力强度越大, 球阀中腔相对大气的陷 压能力就越强, 或者说, 球阀中腔的陷压高低是座对球的安装夹紧程度标志; 因此, 降 低阀座对球的安装夹持力或弹簧压紧力是解决球阙中腔陷压的根本手段。
为维持现有技术浮动球阀的关闭密封, 如图 5所示, 需要 W2 (阀座对球的安装夹持 力) = m(Ae+Ac)p (m倍座的介质去密封力), 即需要 W2的强度等于 m倍介质压力强度 p, 而标准规定球阀的关闭密封必须通过 1.1侉额定工作压力强度测试, 因此, 为通过测试, 现有技术的面定阀座对球的安装夹持力 \^ 2的强度至少需要 l.lm倍额定介质压力强度; 同样, 现有技术浮动阀座对球的弹簧压紧力强度也至少需要 l.lm倍额定介质压力强度; 所以, 不难理解, 现有技术球阀都是中腔至少可陷 1.1倍额定工作压力强度的球阀, ISO 14313/API 6D也就有富余地规定球阀中腔相对大气的陷压强度极限为 1.33倍额定工作 压力强度。
由于本发明的球阀座是按等边三角截面法设计的, 无论是固定阀座还是浮动阀座, 都可确保开关密封不靠阀座对球的安装夹持或弹簧压紧维持, 而 "微观线后跟面中线接 触" 密封结构又能确保无论什么材料质的阀座都可用较小的安装夹持力或弹簧压紧力提 供所必需的初始密封应力, 因此, 面定阀座对球的安装夹持力强度和浮动阀座对球的弹 簧压紧力强度可以很低——实验证实, 几乎不会超出数巴 (Bar)或不超出阀门额定工作压 力强度的 1/15; 也就是说, 按本发明的球阀, 其中腔相对大气的陷压不会超出阀门额定 工作压力强度的 1/15, 根本无需考虑球阀中腔的陷压问题。
所以, 按照本发明, ISO 14313/API 6D关于球阀中腔的泄压要求是多余的; 根据 ISO 14313/API 6D关于球阀中腔的泄压规定可断定, 现有技术的浮动球阀只不过是一种 结构似球浮动的形式浮动球阀; 可以说,凡是中腔陷 1.1倍额定工作压力强度不泄的球阀 都是现有技术的球阀, 凡是中腔陷显著低于额定工作压力强度的球阀都是本发明的球阀。 附图的简要说明
图 la和图 2a是同一个分别处在全开和全闭状态的普通浮动球阀, 由阀座 02负责提 供开关球 03在阀体 01中的安装对接、 转动支承和关闭密封, 由体端盖 05与阀体的螺紋 连接负责提供开关球和阀座在阀体中的安装紧固, 由体密封垫 04负责提供^体连接的密 封, 由阀杆 06负责提供开关球的转动操作, 由一套阀杆密封总成负责提供阀杆的密封。 其中阀座 02是符合本发明的以等边三角形为截面要素的固定阀座。
由于本发明仅涉及用不同截面的阀座实现开关球在阀体中的安装对接、 转动支承及 关闭密封, 因此, 只需用一些与图 la和图 2a相对应的仅涉及阀体 01、 阀座 02和开关 球 03的局部视图或局部放大视图, 就可足以对普通业内技术人员清楚表达本发明的各种 技术方案, 包括清楚表达轴耳固定球阀中的浮动阀座方案。 为便于各视图的理解, 特在 相关视图中加注 "中腔" 作方位标志。
图 lb是图 la的 A-A局部剖面视图, 2b是图 2a的8-8局部剖面视图, 用于结合 图 la和图 2a充分展示球阀的全开和全闭, 以备用局部视图披露不同截面的陶座结构。 图 2b的虛线不是图 2a中的隐藏结构线,是指阀座尺寸超出图 6a所示的 A'B"界限时会出 现的不理想情况。
图 3与图 2b对应, 图 2b所示为阀门全闭时的座 02与球 03, 图 3所示为阀门快打 开瞬间的座 02与球 03, 图 4a和 4b是图 3的 Y'局部放大视图, 图 4a中的阀座端密封面 和阀座内径是由截面结构等边三角形 ABC的点 B决定的, 图 4b中的阀座端密封面和阀 座内径是由截面结构等边三角形 ABC的 AB延长点 E决定的。相对而言, 图 4a的阀座 02 无延长段 BE, 在阀快打开瞬间, 介质就有可能进入未充分压紧的岡座端密封面而将阀座 材料挤入开关球的通孔口内地致阀座损坏; 图 4b阀座 02有延长段 BE, 在阀快打开瞬间 的延长段 BE上的介质压力就会阻止介质进入阀座端密封面而不致挤阙座入开关球的通孔 口内。
图 5a是从图 2a中取出来的阀座 02和开关球 03,图 5b是图 5a的 Z局部放大视图, 图中 p-阀中介质压强, W2=座对球的安装夹持力 (代表图 2a中的阀体 01), Ws=球的浮 动密封力 (介质对球的推力) Asp, As=球的介质作用面积 (直径 Ds对应圆面积), Ae=座的 中腔裸露面积 (棵露环的流通面积), =座的球覆盖面积 (覆盖环的流通面积), Ds=座的球 作用直径, D。=座外径, 内径, De=座的通道裸露环流通面积 Aep对应直径; 其中, 被球覆盖的阀座流通面积 Ac是干扰拾起面积, 包括与球接触和不接触两部分, 与球接触 部分承担密封载荷但拾扰, 与球不接触部分 Aep既不承担密封载荷还拾扰, 应严格控制。
按照本发明, 如图 5b所示, 阀座直径 Ds、 D。和 Di及相关流通面积 As、 Ae和 Ac随截 面结构等边三角形的大小和方位而定, 并决定阀座对球的密封性或抗干扰系数:
介质对球的推力 /介质对座的推力)
Figure imgf000018_0001
=DS 2/(D0 2-Di2)。
如图 5a所示, 当 WS < W2时, 下游阀座与开关球间的作用力是 W2(此时的 Ws至多是全 部取代上游阀座对球的安装夹持力 W2, 并不增加开关球与下游阀座间的作用力), 当 ws>w2时,下游岡座与开关球间的作用力是 ws而不是 w2(此时的 w2巳被 ws全部取代)。 也就是说, 对于浮动球阀, 开关球与阀座间的密封作用力不是 w2就是 ws, 或者说, 浮 动球闹的开关密封不是靠阀座对球的安装夹持力 W2就是靠开关球的浮动密封力 Ws实现, 不可能靠二者同时起作用。 但无论哪个起作用, 根据美国 《ASME锅炉与压力容器法规 VIII卷 1册附录 2》的基本理念,二者都必须是 m倍座的介质去密封力 (介质对座的推力), 即 2和 Ws都必须等于 m(Ae+Ac)p, 浮动球阀才能实现可靠密封。 所以' 球阀座的设计 在于对阀座截面结构等边三角形设计。
图 6a和 6b是本发明的阀座截面结构等边三角形 ABC的设计说明图, 图 6b是图 6a 的 X'局部放大视图。 开关球 03的中央通孔直径 Dn是由相关阀门标准给定的, 开关球端 面球小圆直径 d'是根据球孔口强度参数 "孔口壁厚 /孔口直径" 由设计给定的, 可按 d'=1.04Dn给定; 在已知 d'后, 根据设计需要 m值的对应角 α0, 按 d=cT/s a0给定开关 球大圆直径 d——理论上 αο准确对应 m, 实际计算证明, m=2对应 ao=38° , m=1.8 应 a0=37°, m=1.5对应 a0=35.5°; 然后, 按线段 d'、 圆 d'和圆 d画图确定截面结抅等 边三角形 ABC的基准边图 Α'Β'; 最后, 根据图 Α'Β', 画图确定截面结构等边三角形 ABC 的边图 AB (使 AB与 A'B'平行对称地在 d圆上, 对应边长 a=0.9a')。 不难看出, 截面结构 等边三角形 ABC的方位角 α=45°是由直径为 d'的圆切线段 r'和圆半径 r'确定的。
图 7a (图 la的 X局部放大视图),是按本发明的以等边三角形为截面要素的固定阀座 02与开关球 03和阀体 01的局部对接视图, 图 7b是从图 7a中取出的固定阀座 02的截 面局部视图, 图 7c是图 7b示阀座的替代阀座的截面局部视图, 图 7d是图 7c的端密封 面上的锯齿环 m和 F的夸大画视图,图 7e是图 7c的球密封锥面 AB上的锯齿环刃 a'及 b' 的局部放大视图。 图 7b示截面适合于低强度材料, 图 7c示截面适合于高强度材料。
图 8a (对应图 la的 X局部放大视图),是按本发明的以等边三角形为截面成分的固定 阀座 02与开关球 03和阀体 01的局部对接视图, 图 8b是从图 8a中取出的固定阀座 02 的截面局部视图, 图 8c是图 8b示阀座的替代阀座的截面局部视图, 图 8c的端密封面上 的锯齿环见图 7d的夸大画 m和 F, 图 8c的球密封锥面 AB上的锯齿环刃 a'及 b'见图 7e 的局部放大视图。 图 8b示截面适合于低强度材料, 图 8c示截面适合于高强度材料。
图 9a(对应图 la的 X局部放大视图)和图 9b (对应图 2b的 Y局部放大视图), 是按本 发明的以等边三角形为截面轮廓的固定阀座 02(由有配合的内密封环 02a和外支承环 02b 组合而成)与开关球 03和阀体 01的局部对接视图, 图 9c是从图 9a和图 ¾中取出的内 密封环 02a的截面局部视图, 图 9d是从图 9a和图 9b中取出的外支承环 02b的截面局 部视图, 图 9e是图 9c示内密封环的替代环的截面局部视图, 图 9e的端密封面上的锯齿 环见图 7d的夸大画 m和 F, 图 9e的球密封锥面 AB上的锯齿环刃 a'及 b'见图 7e的局 部放大视图。 图 9c示截面适合于低强度材料, 图 9e示截面适合于高强度材料。 由图 9b 可知, 介质对开关球的推力 Fs=Fcosa+Fsinp (由内环承担 Fcosa, 由外环承担 Fsinp, 其 中 F是内环面上受到的正压力, α=45°, β=15°), 而内环和外环径向受到的总正压力为 Fs/cosa, 内环径向受到的正压力仅为 F, 因此, 相当于双环结构阀座的密封材料的承载 能力是单环间座材料的 (Fs/cosa)/F=L366倍。
图 10(对应图 la的 X局部放大视图), 是现有技术的轴耳固定球阀用浮动阀座,其中 件 05a是类似于图 la件 05的另一种阀体端盖。 如图 10所示, 现有技术的浮动阀座, 由 密封环 02a、支承环 02b、 0型密封环 02c和预载弹簧 02d组成,始终有一个难达高温要 求的 0型密封圈, 几乎导致轴耳固定球阀与高温用金属阀座结构无缘; 阀座的介质密封 作用面积始终等于阀座的介质去密封作用面积 Au=nD。2/4-nDi2/4, 即阀座的抗干扰系数 m=l , 导致预载弹簧的预载力必须大于极限压力的介质密封作用力才能避免操作引发的 密封环振动。
图 11a (对应图 la的 X局部放大视图), 是按本发明的以等边三角形为截面轮廓的浮 动阀座 02(由密封环 02a、 支承环 02b、 压紧环 02c、 密封垫 02d和预载弹簧 02e组成) 与开关球 03和阀体端盖 05a的局部对接视图,其中阀体端盖 05a (如图 lib所示)是类似 于图 la件 05的另一种阀体端盖, 通过螺紋和密封垫完成同浮动阀座俎件的紧固和密封 连接, 通过另外的螺栓组完成同阀体的连接; 图 lli:、 图 lld、 图 lle、 图 llf和图 llg 分剁是从图 lla中取出的支承环 02b、 密封垫 02d、 预载弹簧 02e、压紧环 02c和密封环 02a的截面局部视图; 图 llh是图 llg示密封环的替代环的截面局部视图, 图 llh的受 支承面上的锯齿环见图 7d的夸大画 m和 F, 图 llh的球密封锥面 AB上的锯齿环刃 a'及 b'见图 7e的局部放大视图。 与图 10的现有技术相比, 本发明的浮动阀座, 不仅结构避 免使用 0形密封圈, 而且还有大于 1的抗干扰系数而可用较低的弹簧压紧力, 既能降低 开关球的操作转动力矩又不致引发搡作振动; 获得大于 1 的抗干扰系数的原因在于结构 上, 现有技术的拾扰面积 Au中包括有只拾扰而不承担密封载荷的多余的中腔裸露面积 Aec (对应直径 De)。 实现本发明的最佳方式
图 7a和 7b所示的是以等边三角形为截面要素的固定阀座 02, 其球密'封面是截面结 构等边三角形 ABC的边 AB所对的弧回转形成的,其柱支承面是截面结构等边三角形 ABC 的边 CA的投影边 CD回转形成的,其端密封面,本来应当是截面结构等边三角形的边 BC 的投影边 CF'回转形成的, 但是考虑到上游阀座在阀快打开瞬间的特别需要, 特用投影边 CF'的延长边 CF回转形成, 点 F是 AB的延长点 E的投影; 如果不延长, 则如图 3的 Y' 局部放大视图 4a所示, 在阀快打开瞬同, 介质就有可能进入未充分压紧的座的端密封面 而将阀座材料挤入开关球的通孔口内地致阀座损坏; 如果延长, 则如图 3的 Y'局部放大 视图 4b所示, 在阀快打开瞬间的 BE段上的介质压力就会阻止介质进入座的端密封面而 不致挤阀座入开关球的通孔口内——此时的介质只能经点 B 处的缝隙挤入中腔而将阀座 紧紧地永远地压在岡体上, 因此, 可叫 BE段为座的压力中继面; 如图 4所示, 如果在靠 近点 B的开关球 03的端面球小圆缘上增加一道提前泄漏小口,则在阀快打开瞬间的介质 就可提前通过该泄漏小口进入中腔而一直维持阀座端密封, 此时甚至可以不用压力中继 面 BE。 阀座的球密封玄 AB与开关球的中央通孔轴线成 45°角, 阀座的球密封面可以预 制成以 AB为母线的 90°锥面、 然后在工作中自动变形为球面, 阀座的安装压缩余量可保 持阀座外径不变地微增等边三角形 ABC的边长获得。 为避免介质将阀座密封端面冲离阀 体而将处在阀快打开瞬间的阀座挤入开关球的通孔口内, 第一, 阀座的内径应稍大于阀 门通道直径, 即图 7中的 EF不得超出 GH; 第二, 可通过适当平行移动座密封端面 (即适 当平行移动图 7b中端面形成边 CF至虛线位置)地增加弱质材料阀座的厚度。座的压力中 继面 (AB的延长段 BE)的增加, 将增加阀座的通道裸露拾扰面积 Aep和减少阀座内径, 但 受极限限制, 对阀座的密封性能或抗干扰系数影响甚微; 阀座通过端密封面平行移动 (CF 段的平行移动)的厚度增加, 也未改变阀座的密封性能或抗干扰系数; 因此 > 虽然阀座压 力中继面和厚度的增加, 表面改变了结抅三角形的等边性, 但并未改变原始结构等边三 角形决定的阀座的基本性能, 但却改善了阀座的加工性和安装维护性。
图 7c所示的是以等边三角形为截面要素的硬固定罔座 02,其材料强度高,但其原始 结构尺寸与对应图 7b不加厚的低强度材料的阀座相同。 对于高强度材料阀座, 如聚对苯 (PPP)或金属材料阀座> 为了赋予其弹性和装配压缩量, 需要切短原始柱支承面 CD至 qD 或部分切小原始柱支承面 Cq至 ms,或切短原始端密封面 CF至 mF或部分切低原始端密 封面 Cm至 qs, 使原始柱支承面变成一台阶柱面, 并使新车出的柱面 ms和端面 qs的相 贯圆 s随车切量加大而沿截面结构三角形 ABC的高离开其顶点 C, 必要时再车切一个底 面与相贯圆相切并平行于球密封锥面 AB的环形凹槽 k。在球密封锥面上有两个相对其 AB 部分对称的由凹切锥面 a"b' '形成的锯齿环, 凹切锥面 a"b"平行球密封锥面 AB、 并差 Zt 才与通过锯齿环刃 a'及 b'的开关球面 03相切 (参见图 7e), 即相对开关球面,.锯齿环刃 a' 及 b'高 ¾ (凹切锥面 a"b"与球密封锥面 AB间的直线距离仅仅是锯齿环的形式齿高)。在车 切小和车切短的最终端密封面 mF上可至少有两个以其轮廓缘 m和 F为齿刃的锯齿环, 也可无锯齿环; 如果无锯齿环, 则需要一个与切除部分 Cmsq相当的软密封垫; 如果多 于两个锯齿环, 则其齿刃与齿刃 m及 F—样, 都在最终端密封面 mF上。 如图 7c、 7d和 7e所示, 端密封锯齿环 m和 F以及开关球密封锯齿环 a'和 b'的齿顶皆为刃, 刃尖角或齿 顶角约为 90°~120° , 齿高 ¾约为 10~20倍密封表面粗糙度 Ra值, 齿距 Xs/齿高 约为 20~500(对应轮廓元较宽的表面粗糙度和轮廓元较窄的表面波紋度的轮廓元宽度 Xs/高度 Zt), 确保变形密封刃后面紧跟一个逼近平面或球面的受力保护面, 保护密封接触面中始 终有线接触, 因此, 可轻松实现对精加工表面的密封, 无需任何研磨加工。 阀座切除部 分 Cmsq 的多少由阀座端密封面和柱支承面的强度许用富余量决定, 环形凹槽的宽度 k 由所需的弹性决定, k值常为零。 岡座的弹性及柱支承面与其孔的配合间隙适度时, 阀座 截面的弯曲将有效抑制间座端密封面的径向滑动。 阀座后部的切除, 相当于减少阀座的 外径 D。, 增加阀座的抗干扰系数 m值。
图 8a和 8b所示的是以等边三角形为截面成分的固定阀座 02, 其球密封面是截面结 构等边三角形 ABC的边 AB所对的弧回转形成的,其端密封面是截面结构等边三角形 ABC 的边 BC回转形成的, 其柱支承面是截面结构等边三角形 ABC的边 CA的投影边 CD回转 形成的,其球密封玄 AB与开关球的中央通孔轴线成 45°角,其球密封面可以预制成以 AB 为母线的 90°锥面、然后在工作中自动变形为球面,其安装压缩量可保持阀座外径不变地 微增等边三角形 ABC的边长获得。
图 8C所示的是以等边三角形为截面成分的硬固定阀座 02,其材料强度高,但其原始 结构尺寸与对应图 8b 的低强度材料的阀座相同。 对于高强度材料阀座, 如聚对苯 (PPP) 或金属材料阀座, 为了赋予其弹性和装配压缩量, 需要切短原始柱支承面 CD至 qD或部 分切小原始柱支承面 Cq至 ns, 或切短原始端密封面 CB或部分切低原始端密封面 Cm至 qs, 使原始柱支承面变成一台阶柱面, 并使新车出的柱面 ns和端面 qs的相贯圆 s随车 切量加大而沿截面结构三角形' ABC的高离开其顶点 C, 必要时再车切一个底面与相贯圆 相切并平行于球密封錐面 AB的环形凹槽 k。 在球密封锥面上有两个相对其 AB部分对称 的由凹切锥面 a"b"形成的锯齿环, 凹切锥面 a"b"平行球密封锥面 AB、 并差 Zt才与通过 锯齿环刃 a'及 b'的开关球面 03相切 (参见图 7e), 即相对开关球面, 锯齿环刃 a'及 b'高 ¾ (凹切锥面 a"b"与球密封锥面 AB间的直线距离仅仅是锯齿环的形式齿高)。 在车切小和 车切短的最终端密封面上可至少有两个以其轮廓缘为齿刃的锯齿环, 也可无锯齿环; 如 果无锯齿环, 则需要一个与切除部分 Cmsq 相当的软密封垫; 如果多于两个锯齿环, 则 其齿刃与轮廓缘齿一样, 都在最终端密封面上。 如图 8c、 7d和 7e所示, 端密封锯齿环 m和 F以及开关球密封锯齿环 a'和 b'的齿: II皆为刃,刃尖角或齿顶角约为 90°~120°,齿 高 ¾约为 10~20倍密封表面粗糙度 值,齿距) (s/齿高 Zt约为 20~500(对应轮廓元较宽 的表面粗糙度和轮廓元较窄的表面波紋度的轮廓元宽度 Xs/高度 ),确保变形密封刃后面 紧跟一个逼近平面或球面的受力保护面, 保护密封接触面中始终有线接触, 因此, 可轻 松实现对精加工表面的密封, 无需任何研磨加工。 阀座切除部分 Cmsq 的多少由阀座端 密封面和柱支承面的强度许用富余量决定, 环形凹槽的宽度 k由所需的弹性决定, k值常 为零。 阀座的弹性及柱支承面与其孔的配合间隙适度时, 阀座截面的弯曲将有效抑制阀 座端密封面的滑动。 阀座后部的切除, 相当于减少阀座的外径 D。, 增加阔座的抗干扰系 数 m值。
图 9a~9d所示的是以等边三角形为截面轮廓的面定阀座 02,由有配合的内密封环 (简 称内环 )02a和外支承环 (简称外环) 02b两件组合而成; 内环以等边三角形 ABC为截面轮 廓, 其边 AB所对的弧回转形成面是阀座的球密封面, 其边 BC的回转形成面是阀座的端 密封面, 边 CA的回转形成面是内环的受支承面; 外环的截面为梯形, 以梯形高 D'E'为母 线的柱面是阀座的柱面并与阀体上的阀座接纳孔 DE为间隙配合, 以梯形斜腰 CA为母线 的锥面是对内环的文承面。 内环负责密封, 外环负责支承, 内环材料强度低于外环材料 强度, 内环材料强度按球密封负荷确定, 外环材料和壁厚按承受以内环材料极限强度为 介质压力的管道设计。 外环柱面与阀体上的阀座接纳孔的间隙配合, 一使外环内、 外端 面介质相通而压力相等地减少阀座的中腔稞露作用, 二使外环相对内环可自由滑动地相 互压紧和支承。 球密封玄 AB与开关球的中央通孔轴线成 45°角, 球密封面可以预制成以 AB为母线的 90°锥面、 然后在工作中自动变形为球面, 安装压缩量可保持内环外缘直径 不变地微增等边三角形 ABC的边长获得。 开关球 03, 在介质压力的作用下, 同时压在相 互支承的内环和外环上, 使其相互争抢相互保护地受压, 即介质对开关球的推力 Fs=Fcosa+Fsinp (由内环承担 Fcosa,由外环承担 Fsinp,其中 F是内环面上受到的正压力, α=45° , β=15°), 于是内环和外环径向受到的总正压力为 Fs/cosa, 内环径向受到的正压 力仅为 F, 因此, 双环阀座的密封材料的承载能力是单环阀座材料的 (Fs/cosa)/F=1.366 倍。 实际上, 本发明的内环用两面、 而单环阀座只用一面承受开关球的压力, 因此, 不 难理解, 本发明的双环阀座的密封材料的承载能力是单环阀座的 1.366倍。 加之, 内密 封环, 几乎在封闭腔中受压, 就象密闭在油缸中的液压油一样, 既难于发生压缩变形又 难于发生缝隙挤出流动变形或被挤 "破", 还无爬行变形, 拥有比材料本身的许用承载能 力更高的承载能力, 所以, 以等边三角形为截面轮廓的固定阀座可确保使用密封性能优 异的软材料于很高压力极限, 并获得更长寿命和更高可靠性。
图 9e所示的是以等边三角形为截面轮廓的硬固定阀座(图 9a)的内环 02a, 其材料强 度高, 但其原始结构尺寸与对应图 9c的低强度材料的内环相同。 对于高强度材料内环, 如聚对苯 (PPP)或金属材料内环, 为了赋予其弹性和装配压缩量, 需要切短原始受支承面 CA至 qA或部分切小原始受支承面 Cq形成一柱面 ns,或切短原始端密封面 CB或部分切 低原始端密封面 Cm形成一端面 qs, 并使新车出的柱面 ns和端面 qs的相贯圆 s随车切 量加大而沿截面结构三角形 ABC的高离开其项点 C, 必要时再车切一个底面与相贯圆相 切并平行于球密封锥面 AB的环形凹槽 k。 在球密封锥面上有两个相对其 AB部分对称的 由凹切锥面 a"b' '形成的锯齿环, 凹切锥面 a"b' '平行球密封錐面 AB、 并差 Zt才与通过锯 齿环刃 a'及 b'的开关球面 03相切 (参见图 7e),即相对开关球面,锯齿环刃 a'及 b'高 Zt (凹 切錐面 a"b"与球密封锥面 AB间的直线距离仅仅是锯齿环的形式齿高)。 在车切小和车切 短的最终端密封面上可至少有两个以其轮廓缘为齿刃的锯齿环, 也可无鋸齿环; 如果无 锯齿环, 则需要一个与切除部分 Cmsq相当的软密封垫; 如果多于两个锯齿环, 则其齿 刃与轮廓缘齿一样, 都在最终端密封面上。 如图 9e、 7d和 7e所示, 端密封锯齿环 m和 F以及开关球密封锯齿环 a'和 b'的齿顶皆为刃, 刃尖角或齿顶角约为 90°~120° , 齿高 Zt 约为 10~20倍密封表面粗糙度 Ra值, 齿距 Xs/齿高 ¾约为 20~500(对应轮廓元较宽的表 面粗糙度和轮廓元较窄的表面波紋度的轮廓元宽度 Xs/高度 ),确保变形密封刃后面紧跟 一个逼近平面或球面的受力保护面, 保护密封接触面中始终有线接触, 因此, 可轻松实 现对精加工表面的密封, 无需任何研磨加工。 内环切除部分 Cmsq 的多少由其端密封面 和柱支承面的强度许用富余量决定, 环形凹槽的宽度 k由所需的弹性决定, k值常为零。 内环后部的切除, 相当于减少阀座的外径 D。, 增加阀座的抗干扰系数 m值。
图 lla~llg所示的是以等边三角形为截面轮廓的浮动阀座 02, 由密封环 02a、 支承 环 02b、 压紧环 02c、 密封垫 02d和预载弹簧 02e组成; 密封环以等边三角形 ABC为截 面轮廓, 其边 AB所对的弧回转形成面是阀座的球密封面, 其边 BC的回转形成面是密封 环的受压紧面, 其边 CA的回转形成面是密封环的受支承面; 支承环通过螺紋和密封垫完 成同阀体端盖 05a的紧固和密封连接后, 负责对受支承面提供密封支承; 预载弹簧, 通 过压紧环, 对密封环施加初始密封压紧力; 介质压力, 可通过也可不通过压紧环, 对密 封环施加密封压紧力。 如果受压紧面与压紧面间有密封性, 则介质只能通过压紧环地间 接压密封环; 如果受压紧面与压紧面间无密封性, 则介质可自由进入接触面而直接压密 封环。 介质直接压密封环, 无摩擦损失, 介质作用力效率更高。 密封环负责密封, 材料 强度低, 并按球密封负荷确定。 球密封玄 AB与开关球的中央通孔轴线成 45°角, 球密封 面可以预制成以 AB为母线的 90°锥面、 然后在工作中自动变形为球面, 安装压缩量可保 持密封环外缘直径不变地微增等边三角形 ABC的边长获得。 在支承环端面有扳手孔。
图 llh所示的是以等边三角形为截面轮廓的硬浮动阀座(图 lla)的密封环 02a,其材 料强度高, 但其原始结构尺寸与对应图 lig的低强度材料的密封环相同。 对于高强度材 料密封环, 如聚对苯 (PPP)或金属材料密封环, 为了赋予其弹性和装配压缩量, 需要切短 原始受支承面 CA至 mA或部分切小原始受支承面 Cm形成一柱面 qs,或切短原始受压紧 面 CB或部分切低原始受压紧面 Cq形成一端面 ns, 并使新车出的柱面 qs和端面 ns的相 贯圆 s随车切量加大而沿截面结构三角形 ABC的髙离开其顶点 C, 必要时再车切一个底 面与相贯圆相切并平行于球密封锥面 AB的环形凹槽 k。在球密封锥面上有两个相对其 AB 部分对称的由凹切锥面 a"b' '形成的锯齿环, 凹切锥面 a"b' '平行球密封锥面 AB、 并差 Zt 才与通过锯齿环刃 a'及 b'的开关球面 03相切 (参见图 7e), 即相对开关球面, 锯齿环刃 a' 及 b'高 (凹切锥面 a"b"与球密封锥面 AB间的直线距离仅仅是锯齿环的形式齿高)。在车 切小和车切短的最终受支承面上可至少有两个以其轮廓缘为齿刃的锯齿环, 也可无锯齿 环; 如果无锯齿环, 则需要一个与切除部分 Cmsq相当的软密封垫; 如果多于两个锯齿 环, 则其齿刃与轮廓缘齿一样, 都在最终受支承面上。 如图 llh、 7d和 7e所示, 受支承 锯齿环 m 和 F 以及开关球密封锯齿环 a'和 b'的齿顶皆为刃, 刃尖角或齿顶角约为 90°~120°,齿高 ¾约为 10~20倍密封表面粗糙度 值,齿距 Xs/齿高 ¾约为 20~500(对 应轮廓元较宽的表面粗糙度和轮廓元较窄的表面波紋度的轮廓元宽度 Xs/高度 Zt),确保变 形密封刃后面紧跟一个逼近平面或球面的受力保护面, 保护密封接触面中始终有线接触, 因此, 可轻松实现对精加工表面的密封, 无需任何研磨加工。 密封环切除部分 Cmsq 的 多少由其受支承面和受压紧面的强度许用富余量决定, 环形 槽的宽度 k 由所需的弹性 决定, k值常为零。密封环的弹性适度时,密封环截面的弯曲将有效补偿密封环的浮动性, 密封环后部的切除, 虽然相当于减少密封环外径 D。而减少阀座的介质密封作用面积或降 低阀座的抗干扰系数 m值,但阀座的抗干扰系数 m值还是永远大于 1, 因为切出点 m永 远不与点 A重合。
总起来说, 所有球阀座, 无论是固定阀座还是浮动阀座, 无论是非金属阀座还是金 属阀座, 无论什么截面形状, 都可用一个截面结构等边三角形来设计, 使其尽可能是无 表面棵露的并逼近以球密封玄为边长的等边三角形为截面。
抗干扰系数 m=2的 (DN25为例)的球阀座的截面结构等边 AABC的设计 (参见图 6):
1 已知开关球的通孔直径 Dn(=25mm) , 决定开关球的端面球小圆直径 df=1.04Dn(=26mm)
开关球的通孔直径是标准规定的, 如 DN25的开关球的中央通孔直径 Dn=25mm。 开 关球的孔口强度, 与 "孔口壁厚 /孔口直径"成正比, 因此, ^¾据实践经验, 可统一取 "孔 口壁厚 /孔口直径" =0.02, 这样, DN25的开关球的端面球小圆直径 cT=1.04Dn=26mm。
2根据 d'(=26mm), 决定开关球直径 d=d7sin38°(=42mm)
如图 6a所示, 知道开关球的端面球小圆直径 d'=26mm后, 再知道 α0就可依次确定 开关球直径 d=d'/sinac、阀座的截面结构等边 BC和抗干扰系数 m。由于 m准确对应 a0, 而相关取舍影响又可相互补偿, 因此, 确定的 aG实质是确定 m。 实际计算证实 (理论计算 也可证实), 取阀座结构等边 BC的边长 a=0.9a'时, m=2对应 a0=38° , m=1.8对应 α0=37° , m=1.5 对应 α0=35,5°。 因此, m=2 对应 d=26/sin38。=42mm (舍 0.23) , a'=4.94mm , a=4.5mm (进 0.054); m=1.8 对应 d=26/sin37°=43mm (舍 0.2) , a'=5.83mm , a=5.3mm (进 0.053) , m=1.5 对应 d=26/sin35.5°=45mm (进 0.23) , a'=7.59mm, a=6.8議 (舍 0.031)。
3根据 d'(=26mm)和 d=(=42mm), CAD画图确定截面结构等边 MBC的基准边图 A'B' 如图 6a所示,球密封玄 AB,应对称地在位置相差 90°的开关球端面和端面球小圆 d' 限定的图 A'B'内, 以确保开关球在全开和全关位置时, 阀座的球密封面 AB都能全压在开 关球表面地维持密封形态; 当密封玄端 A超出端面球小圆 d'切线时, 处在全闭位置的开 关球的端面(图 2b中的虛线端面)就会进入座的球密封面内而戳致阀座变形地入球的通孔 口内; 当密封玄端 B超出球端面限制时, 就可导致阀座内径缩小, 或是导致介质对上游 阀座的有害冲刷或挤压变形, 或是导致增加下游陶座的球覆盖面积 Aep (如图 5b所示)而 降低阀座的抗干扰能力; 也就是说, 截面结构等边 MBC的基准边图 A'B'是由开关球端面 球小圆 d'的投影线段和投影圆以及开关球直径 d共同决定的, 可简单由 CAD画图确定。 由于下面接着需要的以及最终需要的都是以图 A'B'为基础, 因此, 没必要追求复杂的公式 推导。 由于无论球直径 d和端面球小圆 cT取大或取小, 始终都有: BO'=B"0=r', 因此, 球阀座截面结构等边 BC的球密封玄 ΑΒ与开关球的中夹通孔轴线成 45°角。
4根据图 A'B', CAD画图确定截面结构等边 MBC的边图 AB
为了确保截面结抅等边 MBC的边长 3±δ都能在其界限 A'B'内, 因此, 需要相对 A'B' 对称地确定截面结构等边 MBC的边 AB: 首先在 A'B'线上对称画 a=0.9a'=4.5mm, 然后 将其平行移到开关球直径 d圆上。
5 CAD画截面结构等边 MBC, 并依据其三点回转直径计算验证 m-D D -D Z
如果 m>2, 则微增 BC的边长 a; 如果 m<2, 则微缩 MBC的边长 a。 若要一次 保证 m逼近 2, 就需要注意取值技巧: 如果取 d=d'/sin38°是舍, 则取 a=0.9a'时应适当 进, 反之亦然。 由于固定阀座的抗干扰系数 m=球的介质作用面积 As/座的介质作用面积 (Ae+Ac)(参 见图 9) , 即
Figure imgf000025_0001
, 而实际面积计算证明, Ae+Ac - Ac/cos45° 因此, Asp » J¾ mpAc, 即固定阀座的载荷强度=固定阀座材料许用强度 σ « j2 mpo 根据介质压力强度 p通过球对座产生的径向载荷 [(Fs/cosa)=(nDs 2p/4cosa)] 等于阀座材料的许用载荷 (nDaaa)条件 (参见图 6):
^~= nDaaa
4cosa 3
可精确求出固定阀座材料的许可强度:
Figure imgf000025_0002
实际许可强度计算证明, k « J5m。 所以, 对于按本发明的等边三角截面法设计的固定阀 座, 可简单由阀座的抗干扰系数 m和极限介质压力强度 p, 按 计算阀座材料的 许可强度。
设计实践证实, 按本发明的等边三角截面法结构的固定阀座, 是以充分避免不必要 的表面棵露为前提的, 因此, 其抗干扰系数 m值越小, 除可提髙低强度阀座材料的适用 压力外, 所伴随的是越大的开关球、 越大的阀座、 越大的阀体和越大的开关操作力矩, 乃至取 ΓΓ 1.5时巳显得十分不经济; 而试验证实, m-1.8的固定阀座还能使浮动球阀 靠球的浮动实现关闭密封, m=2的双环固定阀座还能保证聚四氟乙烯 (PTFE)阀座材料用 于 15MPa级压力时有富余, 所以, 固定阀座取 m=2既经济又可靠。 由于浮动阀座的载 荷低于同规格的固定阀座的载荷, 因此, 按同一个截面结构等边三角形结构的密封环既 可用于固定阀座, 也可用于浮动阀座; 只不过 m=2的密封环, 用于浮动阀座时, m=^", 但浮动阀座本身也只需 m>l。
以上披露的都是因不需要表面裸露而尽可能避免表面裸露的球阀座, 以下格外单独 披露需要一定表面裸露的阀座固定球阀座, 既不难理解, 也不易混淆。
固定球阀是指开关球固定在阀体上转动而不能浮动的球阀, 而现有技术的固定球阀 都是靠开关球上的包括阀杆作轴的两个同轴耳固定在阀体上的, 因而叫轴耳固定球阀。 双断又泄阀(double block & bleed valves)(DBB valves)是指处在关闭位的开关元的两侧 关闭密封面可相对中腔同时关断地允许中腔经排泄口外泄的阀门(外泄的目的是对管道内 介质取样或特别加注), 而现有技术的双断又泄球阀都是大规格的轴耳固定球阀。 既然抗 干扰能力不足的形式浮动球阀无法靠介质对球的浮动、 只能靠两阀座对球的安装对夹实 现开关密封, 那么, 显而易见, 这种结构似球浮动的形式浮动球阀, 实际就是一种阀座 固定球阀, 一种可用作双断又泄阀的阀座固定球阀, 其特征是所述球阀的开关球不是由 轴耳而是由阔座固定在阀体上的, 结构上似所述球可浮动, 但在整个压力工作范围内, 所述球被夹在所述座中只能转动而不能浮动; 所述座, 如图 7a和 8a所示, 在按等边三 角截面法结构好后, 可在维持所述球的介质作用面积 As (直径 Ds对应的圆面积)和所述座 的球覆盖面积 Ac不变的基础上, 加大所述座外径 D。地加大所述座的中腔裸露面积 , 使所述座的抗干扰系数
Figure imgf000026_0001
如图 5a所示, 阀座固定球阀的关闭密封工 作条件是 W2(座对球的安装对夹力) >Asp (介质对球的推力) =m(Ae+Ac)p, 因此, 如果在 m=2的基准等边三角截面的基础上, 保持 Ac (座的球覆盖面积) =AS/(2^ 0.35AS不变, 增大座外径地使座中腔棵露面积 0.40As<Ae<0.65As , 则有座的抗干扰系数 1.33>m=As/(Ae+Ac)=l/(0.75~l)>l或有座对球的安装夹持力强度 1.33p>mp>lp, 既能 保证关闭密封通过 1.1倍额定压力强度 p测试又能确保座中腔的陷压强度不超出标准规 定的 1.33倍额定压力强度。所以, 加大阀座中腔棵露面积 6的实质, 是降低阀座的抗干 扰系数、 降低座中腔泄压力 (Ae+Ac)p与座对球的安装夹持力 m(Ae+Ac)p间的大小差、 保 证阀座中腔的陷压强度不超过 1.33倍阀门额定工作压力, 同时相对减少球的介质浮动密 封力、 降低其对开关球两侧阀座的同时 "双断" 密封影响。 由于本发明的阀座固定球阀 的极限操作转动力矩是本发明的浮动球阀的搡作转动力矩的 2倍, 因此, 本发明的阀座 固定球阀只适合提供做小尺寸规格的双断又泄阀, 而现有技术正好没有这档用作双断又 泄阀的球阀, 有结构简单、 可靠、 使用方便、 成本低等特点。
需要特别指出, 由于靠浮动在下游阀座上实现关闭密封的开关球, 在受到干扰而剥 离同阀座亲密接触后, 无力自动恢复同阀座的密封 (只能永远在阀座间漂浮); 而靠座的安 装对夹力实现关闭密封的开关球, 在受到干扰而剥离同座亲密接触后, 其对面座可在干 扰消逝后使其立即恢复同原座的亲密接触; 因此, 相比之下, 靠介质对球的浮动实现关 闭密封的浮动球阀座需要较大的阀座抗干扰系数, 靠两阀座对球的安装对夹实现开关密 封的阀座固定球阀座需要较小的阀座抗干扰系数; 所以, 达到相同的关闭密封效果时, 阀座固定球阀座的抗干扰系数 m2=W2(座对球的安装夹持力 )/(Ae2+Ac)p (座的介质去密封 力)可以小于浮动球阀座的 ms=Ws (球的浮动密封力) /(Aes+Ac)p (座的介质去密封力);或者 说, 当阀座固定球阀的抗干扰系数 m2较小时, 不仅不影响其开关可靠性, 反而可缩小座 中腔泄压力 (Ae+Ac)p与座对球的安装夹持力 m(Ae+At)p间的大小差、 有效保证阀座既能 满足关闭密封要求又能满足中腔的陷压要求。 还需进一步指出, 因为在 W2=m2(Ae2+Ac)p 和 Ws=ms(Aes+Ac)p中, 虽然 m2<ms, 但 Ae2>Aes、 (Ae2+Ac)>(Aes+Ac), 所以, 虽然形式 浮动球阀中的 W2>WS、 真浮动球阀中的 W2<WS, 但形式浮动球阀中的 W2和真浮动球阀 中的 Ws还是相差无几的; 或者说, 如果简单笼统地说, 则形式浮动球阀的座对球的对夹 安装力大于真浮动球阀的球对座的浮动压力 > 如果确切地说, 则形式浮动球陶的座对球 的对夹安装力至少不小于真浮动球阀的球对座的浮动压力, 可以毫无疑问地说, 现有技 术的形式浮动球阀的球的极限操作转动力矩至少是本发明的真浮动球阀的 2倍。
可以说, 本发明的阀座固定球阀, 以实例证明, 现有技术的浮动球阀往往都是结构 似球浮动的形式浮动球阀。 虽然本发明的阀座固定球阀是现时大量客观存在的, 但是, 正如 US4940208和 US4815700专利所说, 现有技术浮动球阀的开关球或多或少都是随 压力沿通道轴线浮动至下游阓座实现关闭密封的, 根本没有意识到有可能会被阀座固定 得不可浮动, 因此, 现有技术浮动球阀没有被增加中腔排泄口地用作双断又泄阀。
综上所述, 从浮动球阀到轴耳固定球阀和阀座固定球阀的阀座, 无论是以等边三角形为 截面要素、 为截面成分或为截面轮廓, 都可用等边三角截面法来结构或发展实际截面, 并以座参数 m (阀座的抗干扰系数)逼近或脱离基准等边三角截面座参数 m的程度来控制 和衡量阀门的基本性能。

Claims

权利 要求
一种以等边三角形为截面要素的浮动球阀用固定阀座, 其特征是阀座截面结构等边三 角形 ABC的边 AB是座的球密封玄, 边 BC的投影边或投影延长边回转形成面是座的端密 封面, 边 CA的投影边回转形成面是座的柱支承面, 点 C是座轮廓线交点; 所述球密封玄 AB, 即阀座截面密封弧所对的玄, 与所迷球的中央通孔轴线成 45°角, 或阀座的球密封 面可以预制成与阀座同轴的并与所述球相截的 90°锥面或预制成所述 90°锥面截出来的 所迷球的弧面; 所述球密封玄长和轮廓线交点位置由阀座材料许用强度及需要的阀座 抗干扰系数 m确定。 一种以等边三角形为截面成分的浮动球阀用固定阀座, 其特征是阀座截面结构等边三 角形 ABC的边 AB是座的球密封玄, 边 BC回转形成面是座的端密封面, 边 CA的投影 边回转形成面是座的柱支承面, 点 C是座轮廓线交点; 所述球密封玄 AB, 即阀座截面 密封弧所对的玄, 与所述球的中央通孔轴线成 45°角, 或阀座的球密封面可以预制成 与阀座同轴的并与所述球相截的 90°锥面或预制成所述 90°锥面截出来的所述球的弧 面; 所述球密封玄长和轮廓线交点位置由阀座材料许用强度及需要的阀座抗干扰系数 m确定。 一种以等边三角形为截面轮廓的浮动球阀用固定阀座, 其特征是所述固定阀座由有配 合的内密封环 (简称内环)和外支承环 (简称外环)两件组合而成,所述内环以等边三角形 ABC为截面轮廓, 其边 AB是固定阀座的球密封玄, 其边 BC的回转形成面是固定阀座 的端密封面, 其边 CA 的回转形成面是内环的受支承面; 所述外环的截面为梯形, 以 梯形高为母线的柱面是固定阀座的柱面并与阀体上的阀座接纳孔为间隙配合, 以梯形 斜腰为母线的锥面是对所述内环的支承面; 开关球, 在介质压力的作用下, 同时压在 相互支承的所述内环和外环上, 使其相互争抢相互保护地受压; 所述内环材料强度低 于外环材料强度。 一种以等边三角形为截面要素的浮动球阀用硬固定阀座, 其特征是阀座截面结构等边 三角形 ABC的边 AB的回转形成面是座的球密封锥面, 边 BC的投影边或投影延长边 回转形成面是座的原始端密封面, 边 CA 的投影边回转形成面是座的原始柱支承面; 在所述回转形成的原始阀座基础上, 根据赋予所述阀座的弹性变形需要, 同时部分车 切小和车切短所述原始柱支承面和端密封面地使所述原始柱支承面变成一台阶柱面, 并使新车出的柱面和端面相贯圆随车切量加大而沿所述三角形的高离开所述三角形的 顶点 C, 必要时再车切一个底面与所述相贯圆相切并平行于所述球密封锥面的环形凹 槽; 在所述球密封锥面上有两个相对某 AB部分对称的由凹切锥面形成的锯齿环, 所 述凹切锥面平行所述球密封锥面、 并差 才与通过所述锯齿环顶的开关球面相切, 即 相对开关球面所述锯齿环高 ¾; 在所述车切小和车切短的最终端密封面上可制至少两 个齿高为 Zt的锯齿环也可不制, 如果不制, 则需要一个与切除部分形状和体积相当的 软密封垫。 ' 5一种以等边三角形为截面成分的浮动球阀用硬固定阀座, 其特征是阀座截.面结构等边 三角形 ABC的边 AB的回转形成面是座的球密封錐面, 边 BC的回转形成面是座的原 始端密封面, 边 CA 的投影边回转形成面是座的原始柱支承面; 在所述回转形成的原 始阀座基础上, 根据赋予所述阀座的弹性变形需要, 同时部分车切小和车切短所述原 始柱支承面和端密封面地使所述原始柱支承面变成一台阶柱面, 并使新车出的柱面和 端面相贯圆随车切量加大而沿所述三角形的高离开所述三角形的顶点 C, 必要时再车 切一个底面与所述相贯圆相切并平行于所述球密封锥面的环形凹槽; 在所述球密封锥 面上有两个相对其 AB部分对称的由凹切锥面形成的锯齿环, 所述凹切锥面平行所述 球密封锥面、 并差 才与通过所述锯齿环顶的开关球面相切, 即相对开关球面所述锯 齿环高 Zt; 在所述车切小和车切短的最终端密封面上可制至少两个齿高为 的锯齿环 也可不制, 如果不制, 则需要一个与切除部分形状和体积相当的软密封垫。
6 一种以等边三角形为截面轮廓的浮动球陶用硬固定阀座, 其特征是所述固定阀座由有 配合的内密封环 (简称内环)和外支承环 (简称外环)两件组合而成,所述内环以等边三角 形 ABC为截面轮廓, 其边 AB的回转形成面是固定阀座的球密封锥面, 边 BC的回转 形成面是固定阀座的原始端密封面, 边 CA的回转形成面是内环的原始受支承面; 所 述外环的截面为梯形, 以梯形高为母线的柱面是固定阀座的柱面并与阀体上的阀座接 纳孔为间隙配合, 以梯形斜腰为母线的锥面是对所述内环的支承面; 开关球, 在介质 压力的作用下, 同时压在相互支承的所述内环和外环上, 使其相互争抢相互保护地受 压; 所述内环材料强度低于外环材料强度; 在所述回转形成的原始内环基础上, 根据 赋予所述内环的弹性变形需要, 同时部分车切小和车切短所述原始受支承面和端密封 面地形成一柱面和一端面, 并使新车出的柱面和端面相贯圆随车切量加大而沿所述三 角形的高离开所述三角形的顶点 C, 必要时再车切一个底面与所述相贯圆相切并平行 于所述球密封锥面的环形 槽; 在所述球密封锥面上有两个相对其 AB部分对称的由 四切錐面形成的锯齿环, 所述凹切锥面平行所述球密封锥面、 并差 才与通过所述锯 齿环顶的开关球面相切, 即相对开关球面所述锯齿环高 Zt; 在所述车切小和车切短的 最终端密封面上可制至少两个齿髙为 ¾的锯齿环也可不制, 如果不制, 则需要一个与 切除部分形状和体积相当的软密封垫。 7 一种以等边三角形为截面轮廓的固定球阀用浮动阀座, 其特征是所述阀座由密封环、 支承环、 压紧环、 密封垫和预载弹黉组成; 所述密封环是岡座的浮动密封元, 以等边 三角形 ABC为截面轮廓, 其边 AB所对的弧回转形成面是阀座的球密封面, 其边 BC 的回转形成面是所述密封环的受压紧面, 其边 CA 的回转形成面是所述密封环的受支 承面; 所述支承环通过螺紋和所述密封垫完成同阀体端盖的紧固和密封连接后, 负责 对所述受支承面提供密封支承; 所述预载弹簧, 通过所述压紧环, 对所述密封环施加 初始密封压紧力; 介质压力, 可通过也可不通过所述压紧环, 对所述密封环施加密封 压紧力。
一种以等边三角形为截面轮廓的固定球阀用硬浮动阀座, 其特征是所述阀座由密封环 支承环、 压紧环、 密封垫和预载弹簧组成; 所述密封环是阀座的浮动密封元, 以等边 三角形 ABC为截面轮廓, 其边 AB的回转形成面是阀座的球密封锥面, 其边 BC的回 转形成面是所述密封环的原始受压紧面, 其边 CA的回转形成面是所述密封环的原始 受支承面; 在所述回转形成的原始密封环的基础上, 根据赋予所述密封环的弹性变形 需要,同时部分车切小和车切短所述原始受压紧面和受支承面地形成一柱面和一端面, 并使新车出的柱面和端面相贯圆随车切量加大而沿所述三角形的高离开所述三角形的 顶点 C, 必要时再车切一个底面与所述相贯圆相切并平行于所述球密封锥面的环形凹 槽; 在所述球密封锥面上有两个相对其 AB部分对称的由凹切锥面形成的锯齿环, 所 述凹切锥面平行所述球密封锥面、 并差 ¾才与通过所述锯齿环顶的开关球面相切, 即 相对开关球面所述银齿环高 在所述车切小和车切短的最终受支承面上可制至少两 个齿高为 ¾的锯齿环也可不制, 如果不制, 则需要一个与切除部分形状和体积相当的 软密封垫。
一种可用作双断又泄阀 (DBB valves)的阀座固定球阀, 其特征是所述球阀的开关球不是 由轴耳而是由阀座固定在陶体上的, 结构上似所述球可浮动, 但在整个压力工作范围 内, 所述球被夹在所述座中只能转动而不能浮动; 所述座, 在按等边三角截面法结构 好后, 可在维持所述球的介质作用面积 5和所述座的球覆盖面积 Ac不变的基础上, 加大所述座外径 D。地加大所述座的中腔裸露面积 Ae, 使所述座的抗干扰系数 m=As/(Ae+Ac)<1.330
PCT/CN2009/000283 2008-10-28 2009-03-17 按等边三角截面法结构的球阀座和球阀 WO2010048770A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09822963A EP2365236A1 (en) 2008-10-28 2009-03-17 Ball valve seat which is constructed by equilateral triangle sectioning method and ball valve including it
US13/126,495 US8864105B2 (en) 2008-10-28 2009-03-17 Ball valve seats and ball valves designed with equilateral triangle section methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810172828.X 2008-10-28
CN 200810172828 CN101398092B (zh) 2008-10-28 2008-10-28 按等边三角截面法结构的球阀座和球阀

Publications (1)

Publication Number Publication Date
WO2010048770A1 true WO2010048770A1 (zh) 2010-05-06

Family

ID=40516833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000283 WO2010048770A1 (zh) 2008-10-28 2009-03-17 按等边三角截面法结构的球阀座和球阀

Country Status (4)

Country Link
US (1) US8864105B2 (zh)
EP (1) EP2365236A1 (zh)
CN (1) CN101398092B (zh)
WO (1) WO2010048770A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299730A1 (en) * 2010-11-04 2013-11-14 Andrew Spencer Nicholson Valve seat for a ball valve
CN111230809A (zh) * 2020-03-20 2020-06-05 成都乘风阀门有限责任公司 一种平板闸阀的阀座上装工装及其上装方法
CN116717614A (zh) * 2023-08-08 2023-09-08 天津市玛特瑞科技有限公司 可剪切和密封的分离阀
US11933428B2 (en) 2019-06-24 2024-03-19 Onesubsea Ip Uk Limited Ball valve assembly

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120318525A1 (en) * 2011-06-15 2012-12-20 Baker Hughes Incorporated Tubular valving system, body and method of opening
CN102410381A (zh) * 2011-08-10 2012-04-11 重庆川仪特种阀门修造有限公司 煤化工用双向硬密封球阀
CN107532729B (zh) * 2015-05-13 2019-11-22 株式会社开滋 固定型球阀以及阀的密封构造和阀用填料
GB2555007A (en) * 2015-05-14 2018-04-18 Halliburton Energy Services Inc Ball and seat valve for high temperature and pressure applications
USD853531S1 (en) * 2017-09-10 2019-07-09 Ningbo Texoon Brassworks Co., Ltd Faucet valve body
CN108547950A (zh) * 2018-01-01 2018-09-18 保集团有限公司 三角形环的杆密封
WO2019139006A1 (ja) * 2018-01-10 2019-07-18 旭有機材株式会社 バタフライバルブ
CN108612875B (zh) * 2018-05-28 2023-09-29 南京航空航天大学 一种用于废金属破碎机的主被动结合的泄爆阀
US11946557B2 (en) 2020-02-14 2024-04-02 Crane Chempharma & Energy Corp. Valve with unobstructed flow path having increased flow coefficient
US11841089B2 (en) 2020-02-14 2023-12-12 Crane Chempharma & Energy Corp. Valve with unobstructed flow path having increased flow coefficient
US11953113B2 (en) * 2020-02-14 2024-04-09 Crane Chempharma & Energy Corp. Valve with unobstructed flow path having increased flow coefficient
WO2021240494A1 (en) * 2020-05-27 2021-12-02 Habonim Industrial Valves & Actuators Ltd. Bi-flow cryogenic firesafe floating ball valve
CN111623133B (zh) * 2020-06-30 2022-03-08 国家电网有限公司 一种带有弹性中心孔的球阀工作密封组件
CN112045374B (zh) * 2020-09-18 2022-01-04 项定洪 一种高强度阀体的制造工艺及其产品
US11460117B1 (en) * 2020-09-21 2022-10-04 Blue Origin Llc Ball valve with integral seal retraction
CN112212029A (zh) * 2020-10-28 2021-01-12 苏州特思克流体控制设备有限公司 一种耐高压的流体控制设备
US11971117B2 (en) * 2021-01-13 2024-04-30 Advanced Control Products, Llc Valve assemblies
WO2023094697A1 (en) 2021-11-29 2023-06-01 Saint-Gobain Performance Plastics L+S GMBH Valve and method of operating the same
US20240142015A1 (en) * 2022-10-26 2024-05-02 M & M Oil Tools, LLC Cartridge-type ball valve

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930576A (en) 1957-10-31 1960-03-29 Worcester Valve Co Inc Ball valve
US2945666A (en) 1958-02-14 1960-07-19 Jamesbury Corp Ball valve
US2963263A (en) 1958-05-21 1960-12-06 Worcester Valve Co Inc Ball valve seat ring
US3164362A (en) 1960-10-07 1965-01-05 Gen Dynamics Corp Trunnion mounted ball valves having spring biased seats
US3269691A (en) 1963-09-20 1966-08-30 Thiokol Chemical Corp Ball valve seal support
US3488033A (en) 1967-12-28 1970-01-06 Hills Mccanna Co Self-pressure relieving ball valve
US3721425A (en) 1970-08-26 1973-03-20 Saunders Valve Co Ltd Seat assembly for ball valves
US3752178A (en) 1972-05-15 1973-08-14 M & J Valve Co Valve construction
GB1401754A (en) * 1973-06-11 1975-07-30 Fip Formatura Inienzione Poli Ball valve
US4147327A (en) 1977-06-16 1979-04-03 Acf Industries, Incorporated Metallic seals for ball valve
GB2023773A (en) 1978-06-21 1980-01-03 Weir Pacific Valves Ltd Seats for rotary ball valves
US4235418A (en) 1978-07-20 1980-11-25 International Telephone And Telegraph Corporation Ball valve having metal seat rings
US4236691A (en) 1978-11-29 1980-12-02 Jamesbury Corporation Ball valve to relieve cavity pressure
US4262688A (en) 1979-05-25 1981-04-21 Acf Industries, Incorporated Metal seat assemblies for valves
US4318420A (en) 1979-10-04 1982-03-09 T. K. Valve Limited Ball valves
WO1982003898A1 (en) 1981-05-07 1982-11-11 Richards Cecil Graham Fire safe valve
US4385747A (en) 1982-01-07 1983-05-31 Worcester Controls Corporation Self-relieving seat and ball valve incorporating the same
US4410165A (en) 1982-02-16 1983-10-18 Whitey Co. Ball valve and seat assembly
FR2527730A1 (fr) * 1982-05-26 1983-12-02 Bellavoine Claude Robinet a boisseau spherique
US4457491A (en) 1982-12-09 1984-07-03 Egc Enterprises Incorp. Extreme-temperature sealing device and annular seal therefor
US4502663A (en) 1981-06-13 1985-03-05 Richard Huber Cock having a spherical plug
US4557461A (en) 1982-01-09 1985-12-10 Chikashi Gomi Valve seat
US4601308A (en) 1985-12-30 1986-07-22 Joy Manufacturing Company Ball valve with seat loading mechanism
US4658847A (en) 1985-07-09 1987-04-21 The Fluorocarbon Company Bimetallic C-ring seal
US4815700A (en) 1988-03-24 1989-03-28 Mohrfeld James W Ball valve with improved seals
EP0313717A1 (de) * 1987-10-29 1989-05-03 Burger-Armaturen GmbH Absperrhahn für eine Rohrleitung
US4940208A (en) 1989-01-10 1990-07-10 Kemp Development Corporation Ball valve
US20030111631A1 (en) 2001-06-08 2003-06-19 Frank Gosling Leakproof ball valve structure
CN2713240Y (zh) 2004-05-19 2005-07-27 浙江三花股份有限公司 一种球阀
US6948699B1 (en) 2001-10-05 2005-09-27 Keiser David B Retainer for a ball valve seat
US6969047B2 (en) 1999-11-23 2005-11-29 Swagelok Company Ball valve seat seal
US7032880B2 (en) 2004-03-22 2006-04-25 Valve Innnovations, L.L.C. Valve with pressure adaptable seat
CN1920363A (zh) * 2005-08-23 2007-02-28 浙江华夏阀门有限公司 球阀与三角套密封及梯形环密封
CN1967164A (zh) * 2005-11-14 2007-05-23 天津市津南区凯达电子有限公司 Ic卡水表的浮动式球阀
CN101187430A (zh) * 2007-07-25 2008-05-28 项石 增强阀座耐磨耐温性能自行补偿密封面磨损的球阀

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US293057A (en) 1884-02-05 millee
US778480A (en) * 1904-07-23 1904-12-27 Louis O Tafel Vending apparatus.
US2328390A (en) * 1941-09-18 1943-08-31 Fred C Nelson Piston and ring assembly
US3235272A (en) * 1963-04-22 1966-02-15 Continental Mfg Company Auxiliary, external, pressure seal for shank of plug valve
US3425663A (en) * 1966-06-28 1969-02-04 Hills Mccanna Co Ball valve assembly
CN101398093B (zh) * 2008-10-28 2012-03-21 浙江华夏阀门有限公司 双环杆肩密封与独立双重阀杆密封

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930576A (en) 1957-10-31 1960-03-29 Worcester Valve Co Inc Ball valve
US2945666A (en) 1958-02-14 1960-07-19 Jamesbury Corp Ball valve
US2963263A (en) 1958-05-21 1960-12-06 Worcester Valve Co Inc Ball valve seat ring
US3164362A (en) 1960-10-07 1965-01-05 Gen Dynamics Corp Trunnion mounted ball valves having spring biased seats
US3269691A (en) 1963-09-20 1966-08-30 Thiokol Chemical Corp Ball valve seal support
US3488033A (en) 1967-12-28 1970-01-06 Hills Mccanna Co Self-pressure relieving ball valve
US3721425A (en) 1970-08-26 1973-03-20 Saunders Valve Co Ltd Seat assembly for ball valves
US3752178A (en) 1972-05-15 1973-08-14 M & J Valve Co Valve construction
GB1401754A (en) * 1973-06-11 1975-07-30 Fip Formatura Inienzione Poli Ball valve
US4147327A (en) 1977-06-16 1979-04-03 Acf Industries, Incorporated Metallic seals for ball valve
GB2023773A (en) 1978-06-21 1980-01-03 Weir Pacific Valves Ltd Seats for rotary ball valves
US4235418A (en) 1978-07-20 1980-11-25 International Telephone And Telegraph Corporation Ball valve having metal seat rings
US4236691A (en) 1978-11-29 1980-12-02 Jamesbury Corporation Ball valve to relieve cavity pressure
US4262688A (en) 1979-05-25 1981-04-21 Acf Industries, Incorporated Metal seat assemblies for valves
US4318420A (en) 1979-10-04 1982-03-09 T. K. Valve Limited Ball valves
WO1982003898A1 (en) 1981-05-07 1982-11-11 Richards Cecil Graham Fire safe valve
US4502663A (en) 1981-06-13 1985-03-05 Richard Huber Cock having a spherical plug
US4385747A (en) 1982-01-07 1983-05-31 Worcester Controls Corporation Self-relieving seat and ball valve incorporating the same
US4557461A (en) 1982-01-09 1985-12-10 Chikashi Gomi Valve seat
US4410165A (en) 1982-02-16 1983-10-18 Whitey Co. Ball valve and seat assembly
FR2527730A1 (fr) * 1982-05-26 1983-12-02 Bellavoine Claude Robinet a boisseau spherique
US4457491A (en) 1982-12-09 1984-07-03 Egc Enterprises Incorp. Extreme-temperature sealing device and annular seal therefor
US4658847A (en) 1985-07-09 1987-04-21 The Fluorocarbon Company Bimetallic C-ring seal
US4601308A (en) 1985-12-30 1986-07-22 Joy Manufacturing Company Ball valve with seat loading mechanism
EP0313717A1 (de) * 1987-10-29 1989-05-03 Burger-Armaturen GmbH Absperrhahn für eine Rohrleitung
US4815700A (en) 1988-03-24 1989-03-28 Mohrfeld James W Ball valve with improved seals
US4940208A (en) 1989-01-10 1990-07-10 Kemp Development Corporation Ball valve
US6969047B2 (en) 1999-11-23 2005-11-29 Swagelok Company Ball valve seat seal
US20030111631A1 (en) 2001-06-08 2003-06-19 Frank Gosling Leakproof ball valve structure
US6948699B1 (en) 2001-10-05 2005-09-27 Keiser David B Retainer for a ball valve seat
US7032880B2 (en) 2004-03-22 2006-04-25 Valve Innnovations, L.L.C. Valve with pressure adaptable seat
CN2713240Y (zh) 2004-05-19 2005-07-27 浙江三花股份有限公司 一种球阀
US7243900B2 (en) 2004-05-19 2007-07-17 Zhejiang Sanhua Co., Ltd. Ball valve
CN1920363A (zh) * 2005-08-23 2007-02-28 浙江华夏阀门有限公司 球阀与三角套密封及梯形环密封
CN1967164A (zh) * 2005-11-14 2007-05-23 天津市津南区凯达电子有限公司 Ic卡水表的浮动式球阀
CN101187430A (zh) * 2007-07-25 2008-05-28 项石 增强阀座耐磨耐温性能自行补偿密封面磨损的球阀

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299730A1 (en) * 2010-11-04 2013-11-14 Andrew Spencer Nicholson Valve seat for a ball valve
US11933428B2 (en) 2019-06-24 2024-03-19 Onesubsea Ip Uk Limited Ball valve assembly
CN111230809A (zh) * 2020-03-20 2020-06-05 成都乘风阀门有限责任公司 一种平板闸阀的阀座上装工装及其上装方法
CN116717614A (zh) * 2023-08-08 2023-09-08 天津市玛特瑞科技有限公司 可剪切和密封的分离阀
CN116717614B (zh) * 2023-08-08 2023-10-03 天津市玛特瑞科技有限公司 可剪切和密封的分离阀

Also Published As

Publication number Publication date
EP2365236A1 (en) 2011-09-14
CN101398092A (zh) 2009-04-01
US20110260089A1 (en) 2011-10-27
CN101398092B (zh) 2012-01-25
US8864105B2 (en) 2014-10-21

Similar Documents

Publication Publication Date Title
WO2010048770A1 (zh) 按等边三角截面法结构的球阀座和球阀
US7559531B2 (en) Low torque ball valve with dynamic sealing
CN111022695B (zh) 一种高温石墨密封钛合金球阀
CN202561090U (zh) 高温耐磨剪切平板闸阀
CA2867326A1 (en) Angled delta ring seal for ball valve seat
CN104405933B (zh) 一种基于记忆合金弹性元件的低温双瓣式止回阀
US20110061750A1 (en) Check valve counterbalanced by flow to control opening and closing speed
CN110056669B (zh) 一种防胀裂型球阀
CN201021723Y (zh) 英巴排渣阀
CN209041630U (zh) 一种楔式超低温顶装球阀
CN104334946B (zh) 弯折销阀
EP3682148A1 (en) Floating ball valve with improved valve seat
CN101368633A (zh) 自动旋启式止回阀
CN111691848B (zh) 一种控制破碎粒度的全压暂堵结构与设计方法
CN2874154Y (zh) 球阀耐磨阀芯
CN204828735U (zh) 一种硬密封提升式闸塞阀
CN209100689U (zh) 一种变形球面偏心阀门
CN220435479U (zh) 一种防渗水球阀芯结构
CN209100657U (zh) 一种五维偏心阀门密封结构
CN207906486U (zh) 硬密封球阀
CN210510363U (zh) 一种耐磨偏心半球阀
CN205446795U (zh) 一种金属硬密封的球阀结构
CN206708394U (zh) 一种可降低阀轴对流体阻力的蝶阀
CN219570904U (zh) 一种新型的超高压闸阀
CN109114245A (zh) 一种变形球面偏心阀门

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009822963

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13126495

Country of ref document: US