WO2010047109A1 - ポリオルガノシロキサン組成物およびその硬化体 - Google Patents

ポリオルガノシロキサン組成物およびその硬化体 Download PDF

Info

Publication number
WO2010047109A1
WO2010047109A1 PCT/JP2009/005533 JP2009005533W WO2010047109A1 WO 2010047109 A1 WO2010047109 A1 WO 2010047109A1 JP 2009005533 W JP2009005533 W JP 2009005533W WO 2010047109 A1 WO2010047109 A1 WO 2010047109A1
Authority
WO
WIPO (PCT)
Prior art keywords
hours
solution
stirring
pdms
polyorganosiloxane
Prior art date
Application number
PCT/JP2009/005533
Other languages
English (en)
French (fr)
Inventor
中村修平
長広明
芦田恭典
村上泰
清水航
Original Assignee
国立大学法人三重大学
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人三重大学, 国立大学法人信州大学 filed Critical 国立大学法人三重大学
Priority to JP2010534696A priority Critical patent/JP5555956B2/ja
Priority to EP09821809.2A priority patent/EP2343341B1/en
Priority to US13/124,492 priority patent/US8455593B2/en
Publication of WO2010047109A1 publication Critical patent/WO2010047109A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/14Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing two or more elements other than carbon, oxygen, nitrogen, sulfur and silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds

Definitions

  • the present invention relates to a polyorganosiloxane composition and a cured product thereof.
  • polyorganosiloxane compositions have been used for adhesives and sealing materials because they exhibit excellent weather resistance and durability when cured.
  • a cured product of a polyorganosiloxane composition tends to require higher strength.
  • a polyorganosiloxane composition in which a filler made of an inorganic or organic compound is mixed is known (see Patent Document 1).
  • the cured product of the conventional polyorganosiloxane composition has the following problems.
  • the polyorganosiloxane composition disclosed in Patent Document 1 requires a step of mixing a filler during the production thereof.
  • the filler must be surface treated to uniformly disperse the filler in the cured product, or fine particles with a narrower particle size distribution must be used in order to achieve high strength. It was difficult to obtain a cured product.
  • Patent Document 2 since the polyorganosiloxane composition disclosed in Patent Document 2 uses a compound having a bisphenol A skeleton known as a kind of environmental hormone, it is highly likely to lead to environmental pollution.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a polyorganosiloxane composition that can obtain a cured product having high strength and has a small influence on the environment, and the cured product thereof. To do.
  • the inventors added a filler by mixing titanium alkoxide and an ⁇ -hydroxycarbonyl compound or hydroxycarboxylic acid ester into polyorganosiloxane.
  • the present inventors have succeeded in producing a polyorganosiloxane composition and a cured product thereof in which the strength of the cured product is increased without reducing the substances that may adversely affect the environment as much as possible.
  • the present invention (A) a polyorganosiloxane in which at least one terminal in one molecule is silanol-modified, (B) 0.01 to 2 moles of titanium alkoxide with respect to 1 mole of the polyorganosiloxane; (C) 0.01-2 mol ⁇ -hydroxycarbonyl compound or 0.01-2 mol hydroxycarboxylic acid ester with respect to 1 mol of the polyorganosiloxane; It is a polyorganosiloxane composition characterized by including.
  • the present invention also relates to a polyorganosiloxane composition in which 0.01 to 2 mol of hydroxycarboxylic acid ester is converted to 0.01 to 0.4 mol of malic acid ester.
  • the present invention is a polyorganosiloxane composition in which a hydroxycarboxylic acid ester is a malic acid ester, a lactic acid ester or a tartaric acid ester.
  • the present invention is a polyorganosiloxane composition in which an ⁇ -hydroxycarbonyl compound is hydroxyacetone.
  • the present invention is a polyorganosiloxane composition in which titanium alkoxide is particularly titanium tetraethoxide, titanium tetraisopropoxide or titanium tetrabutoxide.
  • the present invention also includes polyorganosiloxane, titanium alkoxide, and ⁇ -hydroxycarbonyl compound in a molar ratio of 1: 1: 0.5, and the average molecular weight (Mw) by mass fraction is
  • the polyorganosiloxane composition is 8000 or more.
  • the present invention is also a polyorganosiloxane composition in which the above titanium alkoxide is particularly titanium tetraethoxide, titanium tetraisopropoxide or titanium tetrabutoxide.
  • the present invention also includes polyorganosiloxane, titanium alkoxide, and hydroxycarboxylic acid ester in a molar ratio of 1: 1: 0.1, and an average molecular weight (Mw) by mass fraction of 5000.
  • the polyorganosiloxane composition as described above.
  • the present invention is also a polyorganosiloxane composition in which the above titanium alkoxide is titanium tetraethoxide.
  • the present invention is also a polyorganosiloxane composition containing polyorganosiloxane, titanium alkoxide, and hydroxycarboxylic acid ester in a molar ratio of 1: 0.05: 0.05.
  • the present invention is a polyorganosiloxane composition in which the above hydroxycarboxylic acid ester is in particular malic acid ester, lactic acid ester or tartaric acid ester.
  • the present invention also provides a cured polyorganosiloxane composition obtained by curing any of the above-mentioned polyorganosiloxane compositions.
  • a cured product having high strength can be obtained, and a polyorganosiloxane composition having a small influence on the environment and a cured product thereof can be obtained.
  • FIG. 1 is a diagram showing changes in molecular weight distribution with the passage of stirring time.
  • FIG. 2 is a diagram showing changes in molecular weight distribution with the elapse of the stirring time.
  • FIG. 3 is a diagram showing a change in FT-IR with the elapse of the stirring time.
  • FIG. 4 is a diagram showing changes in FT-IR with the elapse of the stirring time.
  • FIG. 5 is a diagram showing a change in molecular weight distribution with the elapse of the stirring time.
  • FIG. 6 is a diagram showing a change in molecular weight distribution with the elapse of the stirring time.
  • FIG. 7 is a diagram showing changes in FT-IR with the elapse of the stirring time.
  • FIG. 1 is a diagram showing changes in molecular weight distribution with the passage of stirring time.
  • FIG. 2 is a diagram showing changes in molecular weight distribution with the elapse of the stirring time.
  • FIG. 3 is a diagram showing a change in FT
  • FIG. 8 is a diagram showing a change in FT-IR with the elapse of the stirring time.
  • FIG. 9 is a plan view of one aluminum plate used for the adhesion performance test, and clearly shows the end adhesion region.
  • FIG. 10 is a side view of the test piece in a state where the polyorganosiloxane composition is sandwiched between the end adhesive regions of two aluminum plates and cured.
  • FIG. 11 is a conceptual diagram showing the test status of the tensile test.
  • FIG. 12 is a diagram showing the elastic modulus of various test pieces.
  • FIG. 13 is a diagram showing the strength at break of various test pieces.
  • FIG. 14 is a diagram showing elongation at break of various test pieces.
  • FIG. 15 is a diagram showing the adhesive strength of various test pieces.
  • FIG. 16 is a diagram showing the elastic modulus of various test pieces.
  • FIG. 17 is a diagram showing the strength at break of various test pieces.
  • FIG. 18 is a diagram showing elongation at break of various test pieces.
  • FIG. 19 is a diagram showing the adhesive strength of various test pieces.
  • FIG. 20 is a diagram showing changes in the molecular weight distribution of a solution prepared under various conditions in the PDMS-TTE system used for comparison
  • FIG. 20B is a diagram showing changes in FT-IR.
  • FIG. 21 is a graph showing changes in molecular weight distribution of a solution prepared by adding the conditions when the stirring time is increased or the temperature at standing is increased in the PDMS-TTE system used for comparison (A) and FT-IR. It is a figure (B) showing change of.
  • FIG. 22 is a graph showing changes in molecular weight distribution of a solution prepared by adding the conditions when the standing time was increased or the standing temperature was raised in the PDMS-TTE system used for comparison (A) and FT-IR. It is a figure (B) showing change of.
  • FIG. 23 is a diagram showing changes in molecular weight distribution of a solution prepared under various conditions in the PDMS-TTE-MA system (A) and a diagram showing changes in FT-IR (B).
  • FIG. 24 is a diagram showing changes in the molecular weight distribution of a solution prepared under various conditions in the PDMS-TTE-MADb system (A) and a diagram showing changes in FT-IR (B).
  • FIG. 23 is a diagram showing changes in molecular weight distribution of a solution prepared under various conditions in the PDMS-TTE-MA system (A) and a diagram showing changes in FT-IR (B).
  • FIG. 24 is a diagram showing changes in the molecular weight distribution of a solution prepared
  • FIG. 25 is a diagram showing changes in the molecular weight distribution of solutions prepared under various conditions in the PDMS-TTE-EL system (A) and a diagram showing changes in FT-IR (B).
  • FIG. 26 is a diagram showing changes in the molecular weight distribution of a solution prepared under various conditions in the PDMS-TTE-TAdE system (A) and a diagram showing changes in FT-IR (B).
  • 27A and 27B are a diagram showing changes in molecular weight distribution of a solution prepared under various conditions in the PDMS-TTnB-MA system (A) and a diagram showing changes in FT-IR (B).
  • 28A and 28B are a diagram showing changes in molecular weight distribution of a solution prepared under various conditions in the PDMS-TTIP-MA system (A) and a diagram showing changes in FT-IR (B).
  • the polyorganosiloxane composition according to this embodiment is (A) a polyorganosiloxane in which at least one terminal in one molecule is silanol-modified (terminal silanol-modified polyorganosiloxane); (B) 0.01 to 2 moles of titanium alkoxide with respect to 1 mole of the polyorganosiloxane; (C) 0.01 to 2 mol of ⁇ -hydroxycarbonyl compound or 0.01 to 2 mol of hydroxycarboxylic acid ester is contained per 1 mol of the polyorganosiloxane.
  • the “composition” means a product in a state before curing, such as a solution or a gel-like product.
  • Terminal silanol-modified polyorganosiloxane The terminal silanol-modified polyorganosiloxane that can be used in this embodiment is represented by the following general formula (1).
  • R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl or aryl-substituted carbon atom having 6 to 10 carbon atoms. It is a hydrogen group.
  • Examples of the linear or branched alkyl group having 1 to 20 carbon atoms include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, pentyl, neopentyl, and hexyl.
  • Heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and the like can be given as preferred examples.
  • suitable cycloalkyl groups having 4 to 10 carbon atoms include functional groups such as cyclopentyl and cyclohexyl.
  • aryl group or aryl-substituted hydrocarbon group having 6 to 10 carbon atoms include phenyl, toluyl, xylyl, ethylphenyl, benzyl, phenethyl and the like.
  • a particularly preferred terminal silanol-modified polyorganosiloxane is a both-end silanol-modified polydimethylsiloxane.
  • the viscosity of the terminal silanol-modified polyorganosiloxane at 23 ° C. is 10 to 100,000 mPa ⁇ s, preferably 20 to 50,000 mPa ⁇ s, more preferably 30 to 10,000 mPa ⁇ s.
  • titanium alkoxide examples include titanium tetraethoxide, titanium tetrapropoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium tetraisobutoxide, titanium tetraisopropenyl oxide, and the like. Moreover, these oligomers can also be used. Particularly preferred examples of the titanium alkoxide are titanium tetraethoxide, titanium tetraisopropoxide, or titanium tetrabutoxide.
  • the titanium alkoxide is preferably contained in the composition in the range of 0.01 to 2 mol with respect to 1 mol of polyorganosiloxane. When there is too little titanium alkoxide, it will become difficult to harden
  • ⁇ -hydroxycarbonyl compound or hydroxycarboxylic acid ester examples include hydroxyacetone, 2-hydroxy-2-methyl-3-butanone (acetoin), 3-hydroxy-3-methyl-2-butanone, 2-hydroxy-1,2-diphenylethanone ( (Benzoin) etc. can be illustrated.
  • the hydroxycarboxylic acid ester is a product obtained by an ester reaction between a hydroxycarboxylic acid having 3 to 6 carbon atoms and an alcohol having 1 to 20 carbon atoms.
  • Examples of the hydroxycarboxylic acid include monocarboxylic acids such as lactic acid and glyceric acid, dicarboxylic acids such as malic acid and tartaric acid, and tricarboxylic acids such as citric acid.
  • Examples of the alcohol include methyl alcohol, ethyl alcohol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, i-butyl alcohol, ter-butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, Examples thereof include aliphatic saturated alcohols such as decyl alcohol, lauryl alcohol, myristyl alcohol, palmityl alcohol, and stearyl alcohol.
  • hydroxyacetone is particularly preferable.
  • Hydroxyacetone has a structure in which one CH 3 of acetone is substituted with CH 2 OH.
  • the hydroxycarboxylic acid ester include malic acid ester, lactic acid ester, tartaric acid ester, citric acid ester, glycol monoester, glycerin monoester, glycerin diester, and ricinoleic acid ester.
  • malic acid ester, lactic acid ester, and tartaric acid ester are preferable, and malic acid ester is more preferable among them.
  • a malic acid dialkyl ester is particularly preferable.
  • malic acid dialkyl ester examples include malic acid dimethyl ester, malic acid diethyl ester, malic acid dipropyl ester, malic acid dibutyl ester, malic acid dihexyl ester, acetyl malic acid dioctyl ester, malic acid monoethyl monooctyl ester and the like. Can be mentioned. Among these, malic acid diethyl ester and malic acid dibutyl ester are particularly preferable.
  • the ⁇ -hydroxycarbonyl compound or hydroxycarboxylic acid ester is preferably contained in the composition in an amount of 0.01 to 2 mol, particularly 0.01 to 0.00 mol, based on 1 mol of the terminal silanol-modified polyorganosiloxane. It is preferably contained in the composition in the range of 4 mol, more preferably in the composition in the range of 0.02 to 0.1 mol.
  • Mw means an average value of molecular weight by mass fraction ((sum of M i 2 ⁇ N i ) / (sum of M i ⁇ N i )).
  • Mn refers to a value obtained by dividing the total weight by the number of molecules ((sum of M i ⁇ N i) / (sum of N i)).
  • Mw / Mn is referred to as a molecular weight distribution index, and is a value that serves as a measure of the spread of the molecular weight distribution.
  • the molecular weight distribution index (Mw / Mn) can be changed depending on the temperature of the polyorganosiloxane composition and / or the holding time at the temperature. Mw / Mn tends to increase as the temperature increases or as the time for holding at a certain temperature increases.
  • Terminal silanol-modified polyorganosiloxane, titanium alkoxide, ⁇ -hydroxycarbonyl compound or hydroxycarboxylic acid ester are charged into a container at a predetermined molar ratio, and stirred at a predetermined temperature in the range of 30 to 120 ° C.
  • atmosphere of stirring either a sealed atmosphere or an open atmosphere can be selected.
  • nitrogen gas or argon gas is preferably flowed.
  • the desired Mw, Mn, and Mw / Mn polyorganosiloxane composition can be obtained by adjusting the temperature and stirring time and measuring both the Mw and Mn values of the sample sampled during stirring.
  • PDMS Polydimethylsiloxane: PDMS, X-21-5841 manufactured by Shin-Etsu Chemical Co., Ltd., hereinafter simply referred to as PDMS
  • titanium tetra- N-butoxide Tianium Tetra n-Butoxide: TTnB, manufactured by Kanto Chemical Co., Inc.
  • HA hydroxyacetone
  • the HA-based solution was placed in a sealed atmosphere with a dry nitrogen gas flowing in a glass container, inserted with a stirring rod with a propeller, immersed in an oil bath maintained at 30 ° C., stirred for 24 hours, and then raised to 60 ° C. Stir for 24 hours. Thereafter, the stirring rod was taken out while flowing dry nitrogen gas, the stirring bar was put in the glass container, and then the glass container was sealed with dry nitrogen gas. The glass container was transferred to another magnetic stirrer. Since the magnetic stirrer was at room temperature, the glass container was placed, and then the stirring bar was rotated and the temperature was further raised to 100 ° C. and stirred for 24 hours.
  • a sample obtained by firing a solution using a tin-based catalyst was also produced.
  • the tin-based catalyst dibutyltin dilaurate (manufactured by Tokyo Chemical Industry Co., Ltd., C 32 H 64 O 4 Sn) was used (hereinafter simply referred to as Sn-based catalyst).
  • Sn-based catalyst dibutyltin dilaurate (manufactured by Tokyo Chemical Industry Co., Ltd., C 32 H 64 O 4 Sn) was used (hereinafter simply referred to as Sn-based catalyst).
  • the conditions for preparing the solution using the Sn-based catalyst are as follows. In a glass container with a lid (capacity: 200 ml), PDMS 40 g, TTnB 13.612 g, and Sn-based catalyst 0.4 g (corresponding to 1 wt% with respect to PDMS) were put in that order, and the lid was closed.
  • a stirring rod with a propeller was inserted while flowing dry nitrogen gas through a glass container, immersed in an oil bath maintained at 30 ° C. and stirred for 24 hours, then raised to 60 ° C. and stirred for 24 hours.
  • the stirring bar was taken out while flowing dry nitrogen gas, the stirring bar was put in the glass container, and then the glass container was sealed with dry nitrogen gas.
  • the glass container was transferred to a magnetic stirrer. Since the magnet stirrer was at room temperature, it was stirred at 100 ° C. for 24 hours while rotating the stirring bar in a sealed state. Then, it hold
  • FIG. 1, and FIG. 2 show changes in Mw, Mn, and Mw / Mn with the passage of the stirring time of the HA-based solution and the comparative solution 1, and their GPC measurement results.
  • FIGS. 3 and 4 show changes in absorption spectra by a Fourier transform infrared spectroscopic analyzer (hereinafter referred to as “FT-IR”) as the stirring time of the HA-based solution and the comparative solution 1 elapses.
  • FT-IR Fourier transform infrared spectroscopic analyzer
  • “Close” and “open” in Table 1 and FIGS. 1 to 4 mean stirring in a sealed atmosphere and stirring in an open atmosphere in which dry nitrogen gas is circulated, respectively.
  • the MA-based solution was immersed in an oil bath maintained at 30 ° C. while flowing dry nitrogen gas through a glass container, immersed in an oil bath maintained at 30 ° C., and stirred for 48 hours.
  • the stirring bar was taken out while flowing dry nitrogen gas, the stirring bar was put in the glass container, and then the glass container was sealed with dry nitrogen gas.
  • the glass container was transferred to another magnetic stirrer. Since the magnetic stirrer was at room temperature, the glass container was placed, and then the stirring bar was rotated, the temperature was raised to 100 ° C., and the mixture was stirred in a sealed state for 48 hours, and then dried nitrogen gas was passed for 17 hours.
  • sampling was performed in the middle of stirring, and the above values were measured.
  • a mixture of PDMS and TTE not containing MA (this was referred to as “Comparative Solution 2”) was prepared and stirred under the same conditions as the MA-based solution. Sampling was performed immediately after completion, and both Mw and Mn values of each sample were measured. For the measurement of Mw and Mn of each sample, the same measuring equipment as in the case of the HA-based solution was used.
  • FIG. 5 and FIG. 6 show the changes in Mw, Mn, and Mw / Mn of the samples with different stirring conditions for the MA-based solution and the comparative solution 2, and the GPC measurement results thereof.
  • “Close” in Table 2 means stirring in a sealed atmosphere.
  • 7 and 8 show changes in absorption spectra by FT-IR as the stirring time of the MA-based solution and the comparative solution 2 elapses.
  • “Close” and “open” in Table 2 and FIGS. 5 to 8 mean stirring in a sealed atmosphere and stirring in an open atmosphere in which dry nitrogen gas is circulated, respectively.
  • HA sample 1 was inserted into a glass container with a dry nitrogen gas in a sealed atmosphere, and a stirring rod with a propeller was inserted, immersed in an oil bath maintained at 30 ° C., stirred for 24 hours, and then raised to 60 ° C. Stir for 24 hours.
  • the stirring bar was taken out while flowing dry nitrogen gas, the stirring bar was put in the glass container, and then the glass container was sealed with dry nitrogen gas.
  • the glass container was transferred to another magnetic stirrer. Since the magnetic stirrer was at room temperature, after the glass container was placed, the stirring bar was rotated, the temperature was further raised to 100 ° C., stirred for 24 hours, and then held at 100 ° C. for 68 hours.
  • HA sample 2 was inserted in a glass container with dry nitrogen gas flowing in a sealed atmosphere, and a stirring rod with a propeller was inserted, immersed in an oil bath maintained at 30 ° C., stirred for 24 hours, and then heated to 60 ° C. The resulting mixture was stirred for 24 hours.
  • the stirring bar was taken out while flowing dry nitrogen gas, the stirring bar was put in the glass container, and then the glass container was sealed with dry nitrogen gas.
  • the glass container was transferred to another magnetic stirrer.
  • the magnetic stirrer Since the magnetic stirrer is at room temperature, after the glass container is placed, the stirring bar is rotated, the temperature is further raised to 100 ° C., and the mixture is stirred for 24 hours. Stir for 52 hours.
  • the viscosity, Mw, and Mw / Mn of HA sample 1 immediately before the completion of stirring were 4585 mPa ⁇ s, 18688, and 1.83, respectively.
  • the viscosity is a value measured at 30 ° C. Subsequent viscosity measurements were also made at the same temperature.
  • HA0.5-1 This stirred solution is referred to as “HA0.5-1.”
  • the viscosity, Mw, and Mw / Mn of the HA sample 2 immediately before the end of stirring were 359.7 mPa ⁇ s, 8633, and 1.74, respectively.
  • This stirred solution is referred to as “HA0.5-2”.
  • a sample obtained by firing a solution using a tin-based catalyst was also produced.
  • the tin-based catalyst dibutyltin dilaurate (manufactured by Tokyo Chemical Industry Co., Ltd., C 32 H 64 O 4 Sn) was used (hereinafter simply referred to as Sn-based catalyst).
  • Sn-based catalyst dibutyltin dilaurate (manufactured by Tokyo Chemical Industry Co., Ltd., C 32 H 64 O 4 Sn) was used (hereinafter simply referred to as Sn-based catalyst).
  • the conditions for preparing the solution using the Sn-based catalyst are as follows. In a glass container with a lid (capacity: 200 ml), PDMS 40 g, TTnB 13.612 g, and Sn-based catalyst 0.4 g (corresponding to 1 wt% with respect to PDMS) were put in that order, and the lid was closed.
  • a stirring rod with a propeller was inserted while flowing dry nitrogen gas through a glass container, immersed in an oil bath maintained at 30 ° C. and stirred for 24 hours, then raised to 60 ° C. and stirred for 24 hours.
  • the stirring bar was taken out while flowing dry nitrogen gas, the stirring bar was put in the glass container, and then the glass container was sealed with dry nitrogen gas.
  • the glass container was transferred to a magnetic stirrer. Since the magnet stirrer was at room temperature, it was stirred at 100 ° C. for 24 hours while rotating the stirring bar in a sealed state. Then, it hold
  • the viscosity, Mw, and Mw / Mn of the solution after stirring using the Sn-based catalyst were 2417 mPa ⁇ s, 4663, and 1.39, respectively.
  • This solution is hereinafter referred to as “Sn-1”.
  • the production conditions of the cured body were the same as those using HA.
  • Table 3 shows a cured product obtained by curing HA0.5-1 (HA0.5-1 cured product), a cured product obtained by curing HA0.5-2 (HA0.5-2 cured product), and Sn-1.
  • the tensile property evaluation result of the cured product (Sn-1 cured product) is shown.
  • FIGS. 9 to 11 are diagrams for explaining a method for evaluating adhesive performance.
  • Two aluminum plates having a width of 20 mm, a length of 50 mm, and a thickness of 2 mm were prepared. As shown in FIG. 9, two tapes made of polyimide were applied so as to cover the end adhesion region (width 20 mm ⁇ length 20 mm, area: 400 mm 2 ) of each aluminum (thickness of the two layers: about 240 ⁇ m). ). HA0.5-1 was applied to the end adhesion regions of both aluminum plates, and pre-baked at 60 ° C. for 30 minutes in a thermostatic chamber. After pre-baking, the aluminum plate coated with HA0.5-1 was taken out of the thermostatic bath, and both end bonded regions were overlapped with each other. Thereafter, temperature 30 ° C., humidity 65% R.D.
  • test pieces in a form sandwiched between two aluminum plates were prepared in the same manner as described above.
  • the both ends of the test piece were pulled in opposite directions, and the adhesive force was determined based on the tension when the end bonded region was broken.
  • the measurement of the adhesive force was carried out by a tensile shear method using an autograph (AGS-J, SHIMADZU) at a tensile speed of 5.0 mm / min. Thereafter, the adhesive strength measurement conditions were the same unless otherwise specified.
  • the adhesive force [N / mm 2 ] was calculated by dividing the tensile force [N] by the adhesive area [mm 2 ].
  • Table 4 shows the adhesion performance evaluation results.
  • HA sample 3 inserts a stirring rod with a propeller while flowing dry nitrogen gas through the glass container in a sealed atmosphere, It was immersed in an oil bath maintained at 60 ° C. and stirred for 24 hours. Thereafter, the stirring rod was taken out while flowing dry nitrogen gas, and the stirring bar was put in the glass container, and then the glass container was sealed with dry nitrogen gas. After raising to 100 ° C. and stirring for 72 hours, the mixture was held at 100 ° C. for 92.5 hours. Meanwhile, the mixture was stirred in an open atmosphere in which dry nitrogen gas was passed for 80 hours, and stirred in a sealed state for 12.5 hours.
  • the HA sample 4 was stirred for 24 hours in a sealed atmosphere while flowing dry nitrogen gas through a glass container, inserting a stirring rod with a propeller, immersed in an oil bath maintained at 60 ° C.
  • the stirring bar was taken out while flowing dry nitrogen gas, the stirring bar was put in the glass container, and then the glass container was sealed with dry nitrogen gas.
  • the glass container was transferred to another magnetic stirrer. Since the magnet stirrer is at room temperature, after the glass container is placed, the stirring bar is rotated, the temperature is raised to 100 ° C. and stirred for 120 hours, and then the atmosphere is changed to 100 ° C. under an open atmosphere in which dry nitrogen gas is passed. Stir for 97 hours.
  • the viscosity, Mw, and Mw / Mn of the HA sample 3 immediately before the completion of stirring were 2908.5 mPa ⁇ s, 19748, and 1.85, respectively.
  • This stirred solution is referred to as “HA0.5-TTnB-72”.
  • the viscosity, Mw, and Mw / Mn of HA sample 4 immediately before the end of stirring were 10085 mPa ⁇ s, 22976, and 1.84, respectively.
  • This stirred solution is referred to as “HA0.5-TTnB-120”.
  • the stirring bar was taken out while flowing dry nitrogen gas and stirred.
  • the child was placed in the glass container, and then the glass container was sealed with dry nitrogen gas.
  • the glass container was transferred to another magnetic stirrer. Since the magnetic stirrer is at room temperature, after the glass container is placed, the stirring bar is rotated, the temperature is raised to 100 ° C. and the mixture is stirred for 72 hours, and then the atmosphere is changed to 100 ° C. under an open atmosphere in which dry nitrogen gas is passed. Stir for 16 hours. Since HA sample 5 solidified last, the viscosity could not be measured.
  • the Mw and Mw / Mn of the HA sample 5 were 9940 and 1.78, respectively. Since this sample is not suitable for the production of a cured body, the subsequent production of the cured body and evaluation of its characteristics were not performed.
  • TTIP-HA system PDMS 50 g, titanium tetraisopropoxide: TTIP (Kanto Chemical Co., Ltd.) in a glass container with a lid (capacity: 200 ml) in a glove box in a dry nitrogen gas flow. Co., Ltd. (14.211 g) and HA (1.853 g) were put in that order, and a stirrer was put there and the lid was closed (in molar ratio, PDMS: TTIP: HA 1: 1: 0.5). The product was designated as “HA sample 6.” Next, the glass container with the lid closed outside the glove box was taken out, and the HA sample 6 was propeller while flowing dry nitrogen gas through the glass container in a sealed atmosphere.
  • a stirrer with a stick was inserted, and the mixture was immersed in an oil bath maintained at 60 ° C. and stirred for 120 hours. Then, the stirring bar was taken out and the stirring bar was placed in the glass container, and then the glass container was sealed with dry nitrogen gas, and the glass container was transferred to a magnetic stirrer. After placing the glass container, the temperature was raised to 100 ° C. while stirring the stirring bar, and the mixture was stirred for 48 hours, then changed to an open atmosphere in which dry nitrogen gas was passed, and stirred for 18 hours at 100 ° C.
  • TTnB-Sn system comparative material
  • a sample obtained by firing a solution using an Sn-based catalyst was also prepared.
  • the conditions for preparing the solution using the Sn-based catalyst are as follows. In a glove box with dry nitrogen gas flowing, in a glass container with a lid (capacity: 200 ml), PDMS 40 g, TTnB 13.612 g, Sn catalyst 1.2 g (corresponding to 3 wt% with respect to PDMS) in that order. Put the lid closed.
  • Figures 12 to 14 show the tensile property evaluation results of various test pieces. 12 shows the elastic modulus of each test piece, FIG. 13 shows the strength at break of each test piece, and FIG. 14 shows the elongation at break of each test piece.
  • “TTnB 72h 96h” indicates a test piece cut out from a cured product obtained by firing the above-mentioned solution “HA0.5-TTnB-72” under the conditions of 60 ° C.-96 hours.
  • “TTnB 72h 168h” is a test piece cut out from a cured product obtained by firing a solution “HA0.5-TTnB-72” at 60 ° C. for 168 hours
  • “TTnB 120h 96h” is a solution.
  • a test piece cut out from a cured product obtained by firing at 60 ° C. for 168 hours was fired with the solution “HA0.5-TTIP-48” for 60 ° C. for 96 hours for “TTIP 48h 96h”.
  • test piece cut out from the cured body obtained by baking the solution “Sn-TTnB” under the conditions of 60 ° C.-96 hours for the “tin 3 parts by weight 96 h” "Tin 3 parts by weight 168h” respectively indicate test pieces cut out from a cured product obtained by firing the solution "Sn-TTnB” at 60 ° C for 168 hours.
  • any of the cured bodies using HA had higher breaking strength than the cured body using the Sn-based catalyst.
  • the one using TTIP as the titanium alkoxide has a larger elastic modulus than the one using TTnB, and It was also found that the elongation at break was small.
  • Table 5 and FIG. 15 show the adhesion performance evaluation results.
  • “TTnB 72h 96h” indicates an adhesive hardened body obtained by firing the above-mentioned solution “HA0.5-TTnB-72” under conditions of 60 ° C. and 96 hours.
  • “TTnB 72h 168h” is an adhesive cured body obtained by firing the solution “HA0.5-TTnB-72” at 60 ° C. for 168 hours
  • “TTnB 120h 96h” is the solution “HA0.5-TTnB-120”.
  • “TTnB 120h 168h” is an adhesive cured body obtained by firing the solution "HA0.5-TTnB-120” at 60 ° C for 168 hours.
  • TTIP 48h 96h is an adhesive cured body obtained by baking the solution “HA0.5-TTIP-48” at 60 ° C. for 96 hours
  • TTIP 48h 168h is a solution “HA0.5-TTIP-48” at 60 ° C. -Bonded hardened body fired under the condition of -168 hours
  • Tin 3 parts by mass TTnB 96h is a solution “Sn-TTnB” of 60 ° C-96 hours
  • the adhesive cured product was calcined in matter
  • "tin 3 parts by TTnB 168h” is an adhesive cured product was baked under the conditions of 60 ° C. -168 hours a solution "Sn-TTnB", respectively.
  • Two sets of the contents were prepared and were designated as “HA sample 8” and “HA sample 9”, respectively.
  • three glass containers with the lid closed outside the glove box were taken out.
  • the HA sample 7 was stirred for 24 hours by inserting a stirring rod with a propeller while flowing dry nitrogen gas through a glass container in a sealed atmosphere.
  • the stirring bar was taken out while flowing dry nitrogen gas, the stirring bar was put in the glass container, and then the glass container was sealed with dry nitrogen gas.
  • the glass container was transferred to another magnetic stirrer. Since the magnetic stirrer is at room temperature, after the glass container is placed, the stirring bar is rotated, the temperature is increased to 100 ° C. and the mixture is stirred for 48 hours, and then the atmosphere is changed to an open atmosphere in which dry nitrogen gas is passed. Hold for 92.5 hours. Meanwhile, the mixture was stirred in an open atmosphere in which dry nitrogen gas was passed for 76.5 hours, and stirred in a sealed state for 16 hours.
  • HA sample 8 was stirred at 60 ° C. for 24 hours in a sealed atmosphere, further raised to 100 ° C. and stirred for 48 hours, then changed to an open atmosphere in which nitrogen gas was passed, and stirred at 100 ° C. for 66 hours. .
  • the HA sample 9 was stirred at 60 ° C. for 72 hours in a sealed atmosphere, changed to an open atmosphere in which dry nitrogen gas was passed, and stirred at 60 ° C. for 88 hours.
  • the viscosity, Mw and Mw / Mn of the HA sample 7 immediately before the end of stirring were 4453.7 mPa ⁇ s, 32622 and 1.69, respectively.
  • This stirred solution is referred to as “HA1-TTnB-100”.
  • the viscosity, Mw, and Mw / Mn of the HA sample 8 immediately before the completion of stirring were 10005 mPa ⁇ s, 16977, and 1.88, respectively.
  • This stirred solution is referred to as “HA0.5-TTnB-100”.
  • the viscosity, Mw, and Mw / Mn of the HA sample 9 immediately before the completion of stirring were 1023333.3 mPa ⁇ s, 3090, and 1.42, respectively.
  • This stirred solution is referred to as “HA0.5-TTnB-60”.
  • the same apparatus as in Experiment 1 was used for measuring the viscosity and measuring Mw and the like.
  • Table 6 shows a cured product obtained by curing HA1-TTnB-100 (HA-TTnB-100 cured product), a cured product obtained by curing HA0.5-TTnB-100 (HA0.5-TTnB-100 cured product), and The results of tensile property evaluation of a cured product obtained by curing HA0.5-TTnB-60 (HA0.5-TTnB-60 cured product) are shown.
  • Table 7 shows the adhesion performance evaluation results.
  • the cured product obtained by curing a solution having a molar ratio of 0.5 of HA is superior to the cured product obtained by curing a solution having a molar ratio of HA of 1.0. all right. Further, in any of the cured bodies, the longer the main firing time (that is, the one fired for 96 hours) was excellent in the adhesion performance. Furthermore, when two kinds of cured products obtained by curing a solution having a molar ratio of 0.5 of HA are compared with each other, a cured product obtained by curing a solution stirred at 60 ° C. has a solution stirred at 100 ° C. The adhesive performance was superior to the cured product.
  • a stirring rod with a propeller was inserted while flowing dry nitrogen gas through the glass container, and the mixture was immersed in an oil bath maintained at 60 ° C. and stirred for 24 hours. Thereafter, the stirring rod was taken out while flowing dry nitrogen gas, the stirring bar was put in the glass container, and then the glass container was sealed with dry nitrogen gas.
  • the glass container was transferred to a magnetic stirrer. Since the magnetic stirrer was at room temperature, the glass container was placed, then the temperature was raised to 100 ° C. while rotating the stirrer and the mixture was stirred for 48 hours, followed by flowing dry nitrogen gas and stirring for 14 hours.
  • the viscosity, Mw, and Mw / Mn at 30 ° C. of the MA sample prepared in this way were 492.8 mPa ⁇ s, 5569, and 1.44, respectively.
  • Table 8 and FIGS. 16 to 18 show the tensile property evaluation results of the cured body obtained by curing the MA-based sample (MA-based sample cured body) and the Sn-1 cured body.
  • 16 shows the elastic modulus of each test piece
  • FIG. 17 shows the strength at break of each test piece
  • FIG. 18 shows the elongation at break of each test piece.
  • TTE-MA 60 ° C. 48 h calcination indicates a MA-based sample cured body
  • Tin 1 part by mass 60 ° C. 48 h calcination indicates a Sn-1 cured body.
  • Adhesive performance evaluation The adhesive performance of the MA-based sample was evaluated using the same evaluation method as described above based on the above-described FIGS. The main calcination was performed under the condition of maintaining the temperature at 60 ° C. for 96 hours. As a comparison, Sn-1 used in Experiment 1 was also evaluated under the same conditions as the MA-based sample.
  • FIG. 19 shows the adhesion performance evaluation results.
  • TTE-MA 60 ° C. 96 h calcination indicates an adhesive hardened body obtained by firing “MA-based sample” under the conditions of 60 ° C.-96 hours.
  • 1 part by weight of tin, baking at 60 ° C. for 96 hours indicates an adhesive cured body obtained by baking “Sn-1” at 60 ° C. for 96 hours.
  • the adhesive strength of Sn-1 was 0.1523 N / mm 2
  • the adhesive strength of the MA-based sample was 0.23 N / mm 2 .
  • a sample (PDMS-TTE system) was also evaluated in which PDMS 10 g and TTE 0.114 g were heated and stirred under the above-mentioned conditions without developing MA, developed in a petri dish, and allowed to stand for a predetermined time. Furthermore, in the PDMS-TTE system, in order to investigate the effect of the heating temperature and the stirring time in the screw tube, after stirring for 2 hours in the screw tube and subsequently stirring for 70 hours, Thereafter, the sample after heating to 100 ° C. and stirring at 100 ° C. for 48 hours and the sample after further heating to 150 ° C. and stirring at 150 ° C. for 48 hours were evaluated. Moreover, in order to investigate the effect when the conditions after development on the petri dish were changed, not only 25 ° C. but also two conditions of 100 ° C. and 150 ° C. were adopted as the temperature after development on the petri dish.
  • FIG. 20 shows a PDMS-TTE system used for comparison, a solution after stirring in a screw tube at a temperature of 60 ° C. for 2 hours (60 ° C. close 2 h), and the solution after stirring is developed in a petri dish at a temperature of 25 ° C. for 48 hours.
  • Diagram (A) showing changes in molecular weight distribution of the solution after standing (25 ° C., RH50, 48 h) and the solution after stirring in a petri dish and leaving the solution at a temperature of 25 ° C.-168 hours (25 ° C., RH50, 168 h)
  • FIG. 21 shows a solution after stirring in a screw tube at a temperature of 60 ° C. for 2 hours (60 ° C. close 2 h) and a solution after stirring in a screw tube at a temperature of 60 ° C. for 72 hours in the PDMS-TTE system used for comparison (60 Change in the molecular weight distribution of the solution after stirring at 100 ° C. for 48 hours in a screw tube (100 ° C. close for 48 hours) and the solution after stirring at 150 ° C. for 48 hours in a screw tube (150 ° C. close for 48 hours). It is a figure (B) which shows the figure (A) to show, and the change of an infrared absorption spectrum.
  • FIG. 22 shows a solution obtained after stirring in a screw tube at a temperature of 60 ° C. for 2 hours (60 ° C. close 2 h) in the PDMS-TTE system used for comparison, and the solution after stirring was developed in a petri dish at a temperature of 25 ° C.-336.
  • FIG. 22 shows a solution obtained after stirring in a screw tube at a temperature of 60 ° C. for 2 hours (60 ° C. close 2 h) in the PDMS-TTE system used for comparison, and the solution after stirring was developed in a petri dish at a temperature of 25 ° C.-336.
  • 3A is a diagram showing a change in molecular weight distribution of a solution (150 ° C., 336 h) after being left at a temperature of 150 ° C. for 336 hours, and a diagram showing a change in an infrared absorption spectrum.
  • FIG. 23 shows a PDMS-TTE-MA system, a solution after stirring in a screw tube at a temperature of 60 ° C. for 2 hours (60 ° C. close 2 h), the solution after stirring developed in a petri dish and left at a temperature of 25 ° C. for 48 hours.
  • the diagram (A) and red showing the change in the molecular weight distribution of the later solution (25 ° C RH50 48h) and the solution after stirring in a petri dish and allowed to stand at a temperature of 25 ° C-168 hours (25 ° C RH50 168h)
  • It is a figure (B) which shows the change of an external absorption spectrum.
  • FIG. 24 shows a PDMS-TTE-MADb system, a solution after stirring in a screw tube at a temperature of 60 ° C. for 2 hours (60 ° C. close 2 h), the stirred solution developed in a petri dish and left at a temperature of 25 ° C. for 48 hours.
  • the diagram (A) and red showing the change in the molecular weight distribution of the later solution (25 ° C RH50 48h) and the solution after stirring in a petri dish and allowed to stand at a temperature of 25 ° C-168 hours (25 ° C RH50 168h)
  • It is a figure (B) which shows the change of an external absorption spectrum.
  • the result was almost the same as that of the PDMS-TTE-MA system as shown in FIG. That is, when the stirred solution was spread on a petri dish and allowed to stand at a temperature of 25 ° C. for a long time up to 168 hours, PDMS was polymerized. Thus, even in the case of the PDMS-TTE-MADb system, it is considered that MADb functions effectively for use as a low-temperature curing type adhesive.
  • FIG. 25 shows a solution after stirring in a screw tube at a temperature of 60 ° C. for 2 hours in a PDMS-TTE-EL system (60 ° C. close 2 h), and the stirred solution was developed in a petri dish and allowed to stand at a temperature of 25 ° C. for 48 hours.
  • the diagram (A) and red showing the change in the molecular weight distribution of the later solution (25 ° C RH50 48h) and the solution after stirring in a petri dish and allowed to stand at a temperature of 25 ° C-168 hours (25 ° C RH50 168h)
  • the polymerisation of PDMS has progressed when left at 25 ° C. for 48 hours, and the degree of polymerisation is higher than that left for 168 hours. There was no big difference. From this result, the PDMS-TTE-EL system is polymerized in a shorter time at room temperature than the above-mentioned PDMS-TTE-MA system and PDMS-TTE-MADb system. It can be used as an adhesive.
  • ethyl tartrate L-(+)-diethyl tartrate: TAdE, Tokyo Chemical Industry Co., Ltd.
  • the amount of TAdE added was 0.103 g
  • PDMS: TTE: TAdE was set to 1: 0.05: 0.05 in a molar ratio.
  • the conditions for the standing time to be extended to 336 hours at a temperature of 25 ° C. after the petri dish development were also adopted as the conditions for stirring and standing after the petri dish development.
  • FIG. 26 shows a PDMS-TTE-TAdE system, a solution after stirring in a screw tube at a temperature of 60 ° C. for 2 hours (60 ° C. close 2 h), the stirred solution developed in a petri dish and left at a temperature of 25 ° C. for 48 hours.
  • the polymerization of PDMS has not progressed much at the stage where it is allowed to stand at 25 ° C. for 48 hours. The result was that the polymerization was progressing slowly. From this result, although the PDMS-TTE-TAdE system is polymerized at room temperature in contrast to the PDMS-TTE-EL system described above, the speed is considered to be relatively slow.
  • the amount of TTnB added was 0.170 g, and PDMS: TTnB: MA was 1: 0.05: 0.05 in a molar ratio.
  • Each condition of stirring and leaving after petri dish development was the same as the PDMS-TTE-MA system.
  • FIG. 27 shows a PDMS-TTnB-MA system, a solution after stirring in a screw tube at a temperature of 60 ° C. for 2 hours (60 ° C. close 2 h), the stirred solution developed in a petri dish and left at a temperature of 25 ° C. for 48 hours.
  • the diagram (A) and red showing the change in the molecular weight distribution of the later solution (25 ° C RH50 48h) and the solution after stirring in a petri dish and allowed to stand at a temperature of 25 ° C-168 hours (25 ° C RH50 168h)
  • It is a figure (B) which shows the change of an external absorption spectrum.
  • the PDMS-TTnB-MA system As shown in FIG. 27, when the stirred solution is developed in a petri dish and allowed to stand at a temperature of 25 ° C. up to 168 hours, the PDMS polymerization can be achieved. As a result, a polymerized state close to that of PDMS-TTE-MA was observed. In the case of the PDMS-TTnB-MA system, as in the PDMS-TTE-MA system, the PDMS polymerizes when left at room temperature (25 ° C.) for a long time without being heated to a high temperature, and the MA is a low temperature curing type. It is thought that it contributes to the use as an adhesive.
  • the addition amount of TTIP was 0.142 g, and PDMS: TTIP: MA was set to 1: 0.05: 0.05 in a molar ratio.
  • FIG. 28 shows a PDMS-TTIP-MA system, a solution after stirring in a screw tube at a temperature of 60 ° C. for 2 hours (60 ° C. close 2 h), the solution after stirring developed in a petri dish and left at a temperature of 25 ° C. for 48 hours.
  • the diagram (A) and red showing the change in the molecular weight distribution of the later solution (25 ° C RH50 48h) and the solution after stirring in a petri dish and allowed to stand at a temperature of 25 ° C-168 hours (25 ° C RH50 168h)
  • It is a figure (B) which shows the change of an external absorption spectrum.
  • the polymerization of PDMS has progressed when left at 25 ° C. for 48 hours, and the degree of polymerization is higher than that left for 168 hours. There was no big difference. From this result, the PDMS-TTIP-MA system is polymerized in a shorter time at room temperature than the aforementioned PDMS-TTE-MA system and PDMS-TTnB-MA system, and as a low-temperature curing type adhesive. It is thought that it contributes to the use of.
  • the polyorganosiloxane composition of the present invention can be used as, for example, a low-temperature curable silicone adhesive.

Abstract

 【課題】  強度が高い硬化体を得ることができ、かつ環境に与える影響の小さなポリオルガノシロキサン組成物およびその硬化体を提供する。  【解決手段】  本発明は、(A)1分子中の少なくとも一方の末端がシラノール変性したポリオルガノシロキサンと、(B)上記ポリオルガノシロキサン1モルに対して0.01~2モルのチタニウムアルコキシドと、(C)上記ポリオルガノシロキサン1モルに対して0.01~2モルのα-ヒドロキシカルボニル化合物若しくは0.01~2モルのヒドロキシカルボン酸エステルとを含むポリオルガノシロキサン組成物およびその硬化体である。

Description

ポリオルガノシロキサン組成物およびその硬化体
 本発明は、ポリオルガノシロキサン組成物およびその硬化体に関する。
 従来から、ポリオルガノシロキサン組成物は、硬化した際に優れた耐候性および耐久性を発揮するので、接着剤やシーリング材に用いられている。近年では、ポリオルガノシロキサン組成物の硬化物は、より高い強度を要求される傾向にある。この要求に応えるべく、例えば、ポリオルガノシロキサン組成物中に無機あるいは有機化合物から成る充填材を混合させたものが知られている(特許文献1を参照)。
 また、接着の対象となる材料も広がる傾向にあり、従来から接着が難しいポリブチレンテレフタレート、ハイインパクトポリスチロール、アクリル樹脂等に対しても良好に接着可能なポリオルガノシロキサン組成物として、ポリオルガノシロキサン、Si原子に結合した加水分解基を2個以上有するシラン化合物、およびビニル基含有ビスフェノールAとオルガノオキシ基を有するSi化合物との付加反応生成物とから成る組成物も知られている(特許文献2を参照)。
特開平9-118827号公報(特許請求の範囲) 特開2000-265062号公報(特許請求の範囲)
 しかし、上記従来のポリオルガノシロキサン組成物の硬化物には、次のような問題がある。特許文献1に開示されたポリオルガノシロキサン組成物は、その製造の際に充填材を混合する工程を必要とする。また、充填材を硬化物中において均一に分散させるために充填材の表面処理を施し、あるいは、高い強度を実現するためにより微細でかつ粒度分布の狭い微粒子を用いなければならず、高強度の硬化物を得るのが困難であった。
 また、特許文献2に開示されたポリオルガノシロキサン組成物は、環境ホルモンの一種として知られるビスフェノールA骨格を有する化合物を用いているため、環境汚染につながる可能性が高い。
 本発明は、かかる問題に鑑みてなされたものであって、強度が高い硬化体を得ることができ、かつ環境に与える影響の小さなポリオルガノシロキサン組成物およびその硬化体を提供することを目的とする。
 上記目的を達成するために、本発明者らは、鋭意研究を重ねた結果、ポリオルガノシロキサンに、チタニウムアルコキシドと、α-ヒドロキシカルボニル化合物若しくはヒドロキシカルボン酸エステルを混合することにより、充填材を添加することなく硬化物の強度を高め、かつ環境に悪影響を与える危険性のある物質をできるだけ低減させたポリオルガノシロキサン組成物およびその硬化体を製造することに成功した。
 すなわち、本発明は、
 (A)1分子中の少なくとも一方の末端がシラノール変性したポリオルガノシロキサンと、
 (B)上記ポリオルガノシロキサン1モルに対して0.01~2モルのチタニウムアルコキシドと、
 (C)上記ポリオルガノシロキサン1モルに対して0.01~2モルのα-ヒドロキシカルボニル化合物若しくは0.01~2モルのヒドロキシカルボン酸エステルと、
を含むことを特徴とするポリオルガノシロキサン組成物である。
 また、本発明は、0.01~2モルのヒドロキシカルボン酸エステルを、特に0.01~0.4モルのリンゴ酸エステルとしたポリオルガノシロキサン組成物である。
 また、本発明は、ヒドロキシカルボン酸エステルを、リンゴ酸エステル、乳酸エステルまたは酒石酸エステルとしたポリオルガノシロキサン組成物である。
 また、本発明は、α-ヒドロキシカルボニル化合物を、ヒドロキシアセトンとしたポリオルガノシロキサン組成物である。
 また、本発明は、チタニウムアルコキシドを、特にチタニウムテトラエトキシド、チタニウムテトライソプロポキシドまたはチタニウムテトラブトキシドとしたポリオルガノシロキサン組成物である。
 また、本発明は、ポリオルガノシロキサンと、チタニウムアルコキシドと、α-ヒドロキシカルボニル化合物とをモル比にて1:1:0.5の割合で含み、質量分率による分子量の平均値(Mw)が8000以上としたポリオルガノシロキサン組成物である。
 また、本発明は、上記のチタニウムアルコキシドを、特にチタニウムテトラエトキシド、チタニウムテトライソプロポキシドまたはチタニウムテトラブトキシドとしたポリオルガノシロキサン組成物である。
 また、本発明は、ポリオルガノシロキサンと、チタニウムアルコキシドと、ヒドロキシカルボン酸エステルとをモル比にて1:1:0.1の割合で含み、質量分率による分子量の平均値(Mw)が5000以上としたポリオルガノシロキサン組成物である。
 また、本発明は、上記のチタニウムアルコキシドをチタニウムテトラエトキシドとしたポリオルガノシロキサン組成物である。
 また、本発明は、ポリオルガノシロキサンと、チタニウムアルコキシドと、ヒドロキシカルボン酸エステルとをモル比にて1:0.05:0.05の割合で含むポリオルガノシロキサン組成物である。
 また、本発明は、上記のヒドロキシカルボン酸エステルを、特にリンゴ酸エステル、乳酸エステルまたは酒石酸エステルとしたポリオルガノシロキサン組成物である。
 また、本発明は、上述のいずれかのポリオルガノシロキサン組成物を硬化したポリオルガノシロキサン組成物硬化体である。
 本発明によれば、強度が高い硬化体を得ることができ、かつ環境に与える影響の小さなポリオルガノシロキサン組成物およびその硬化体を得ることができる。
図1は、攪拌時間の経過に伴う分子量分布の変化を示す図である。 図2は、攪拌時間の経過に伴う分子量分布の変化を示す図である。 図3は、攪拌時間の経過に伴うFT-IRの変化を示す図である。 図4は、攪拌時間の経過に伴うFT-IRの変化を示す図である。 図5は、攪拌時間の経過に伴う分子量分布の変化を示す図である。 図6は、攪拌時間の経過に伴う分子量分布の変化を示す図である。 図7は、攪拌時間の経過に伴うFT-IRの変化を示す図である。 図8は、攪拌時間の経過に伴うFT-IRの変化を示す図である。 図9は、接着性能試験に用いる一方のアルミニウム板の平面図であって、端部接着領域を明示した図である。 図10は、2枚のアルミニウム板の各端部接着領域にポリオルガノシロキサン組成物を挟んで硬化させた状態の試験片の側面図である。 図11は、引張試験の試験状況を示す概念図である。 図12は、各種試験片の弾性率を示す図である。 図13は、各種試験片の破断点強度を示す図である。 図14は、各種試験片の破断点伸びを示す図である。 図15は、各種試験片の接着強度を示す図である。 図16は、各種試験片の弾性率を示す図である。 図17は、各種試験片の破断点強度を示す図である。 図18は、各種試験片の破断点伸びを示す図である。 図19は、各種試験片の接着強度を示す図である。 図20は、比較に用いたPDMS-TTE系において各種条件で作製した溶液の分子量分布の変化を示す図(A)およびFT-IRの変化を示す図(B)である。 図21は、比較に用いたPDMS-TTE系において攪拌時間を長くしあるいは放置時の温度を上げた場合の条件を加えて作製した溶液の分子量分布の変化を示す図(A)およびFT-IRの変化を示す図(B)である。 図22は、比較に用いたPDMS-TTE系において放置時間を長くしあるいは放置時の温度を上げた場合の条件を加えて作製した溶液の分子量分布の変化を示す図(A)およびFT-IRの変化を示す図(B)である。 図23は、PDMS-TTE-MA系において、各種条件で作製した溶液の分子量分布の変化を示す図(A)およびFT-IRの変化を示す図(B)である。 図24は、PDMS-TTE-MADb系において、各種条件で作製した溶液の分子量分布の変化を示す図(A)およびFT-IRの変化を示す図(B)である。 図25は、PDMS-TTE-EL系において、各種条件で作製した溶液の分子量分布の変化を示す図(A)およびFT-IRの変化を示す図(B)である。 図26は、PDMS-TTE-TAdE系において、各種条件で作製した溶液の分子量分布の変化を示す図(A)およびFT-IRの変化を示す図(B)である。 図27は、PDMS-TTnB-MA系において、各種条件で作製した溶液の分子量分布の変化を示す図(A)およびFT-IRの変化を示す図(B)である。 図28は、PDMS-TTIP-MA系において、各種条件で作製した溶液の分子量分布の変化を示す図(A)およびFT-IRの変化を示す図(B)である。
 次に、本発明のポリオルガノシロキサン組成物およびその硬化体の好適な実施の形態について説明する。
 この実施の形態に係るポリオルガノシロキサン組成物は、
(A)1分子中の少なくとも一方の末端がシラノール変性したポリオルガノシロキサン(末端シラノール変性ポリオルガノシロキサン)と、
(B)上記ポリオルガノシロキサン1モルに対して0.01~2モルのチタニウムアルコキシドと、
(C)上記ポリオルガノシロキサン1モルに対して0.01~2モルのα-ヒドロキシカルボニル化合物若しくは0.01~2モルのヒドロキシカルボン酸エステルを含む。ここで、「組成物」とは、溶液、ゲル状物などの硬化前の状態の物を意味する。以下、上記(A)、(B)および(C)について説明する。
(1.末端シラノール変性ポリオルガノシロキサン)
 この実施の形態で使用可能な末端シラノール変性ポリオルガノシロキサンは、次の一般式(1)で表わされる。この式中、RおよびRは、それぞれ独立に炭素数1~20の直鎖若しくは分岐鎖のアルキル基、炭素数4~10のシクロアルキル基または炭素数6~10のアリール若しくはアリール置換炭化水素基である。上記炭素数1~20の直鎖若しくは分岐鎖アルキル基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、ペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシルなどの各官能基を好適な例としてあげることができる。また、炭素数4~10のシクロアルキル基としては、シクロペンチル、シクロヘキシルなどの各官能基を好適な例としてあげることができる。さらに、炭素数6~10のアリール基若しくはアリール置換炭化水素基としては、フェニル、トルイル、キシリル、エチルフェニル、ベンジル、フェネチルなどの各官能基を好適な例としてあげることができる。特に好ましい末端シラノール変性ポリオルガノシロキサンは、両末端シラノール変性ポリジメチルシロキサンである。
Figure JPOXMLDOC01-appb-C000001
  末端シラノール変性ポリオルガノシロキサンの23℃における粘度は、10~100,000mPa・s、好ましくは20~50,000mPa・s、さらに好ましくは30~10,000mPa・sである。
(2.チタニウムアルコキシド)
 チタニウムアルコキシドとしては、チタニウムテトラエトキシド、チタニウムテトラプロポキシド、チタニウムテトライソプロポキシド、チタニウムテトラブトキシド、チタニウムテトライソブトキシド、チタニウムテトライソプロペニルオキシドなどが挙げられる。また、これらのオリゴマーも使用することが出来る。チタニウムアルコキシドの特に好ましい例は、チタニウムテトラエトキシド、チタニウムテトライソプロポキシド、またはチタニウムテトラブトキシドである。
 チタニウムアルコキシドは、1モルのポリオルガノシロキサンに対して、0.01~2モルの範囲で組成物中に含まれるのが好ましい。チタニウムアルコキシドが少なすぎると、硬化しにくくなり、多すぎると、硬くなり、弾性を失いやすい。チタニウムアルコキシドは、ポリオルガノシロキサンと同モル存在するのが、より好ましい。
(3.α-ヒドロキシカルボニル化合物若しくはヒドロキシカルボン酸エステル)
 α-ヒドロキシカルボニル化合物としては、ヒドロキシアセトン、2-ヒドロキシ-2-メチル-3-ブタノン(アセトイン)、3-ヒドロキシ-3-メチル-2-ブタノン、2-ヒドロキシ-1,2-ジフェニルエタノン(ベンゾイン)などを例示できる。ヒドロキシカルボン酸エステルは、炭素数3~6のヒドロキシカルボン酸と炭素数1~20のアルコールとのエステル反応による生成物である。ヒドロキシカルボン酸としては、乳酸、グリセリン酸等のモノカルボン酸、リンゴ酸、酒石酸等のジカルボン酸、クエン酸等のトリカルボン酸を例示できる。アルコールとしては、メチルアルコール、エチルアルコール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、i-ブチルアルコール、ter-ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ラウリルアルコール、ミリスチルアルコール、パルミチルアルコール、ステアリルアルコール等の脂肪族飽和アルコールを例示できる。
 上記のα-ヒドロキシカルボニル化合物としては、特に、ヒドロキシアセトンが好ましい。ヒドロキシアセトンは、アセトンの一つのCHをCHOHに置換した構造を持つ。上記のヒドロキシカルボン酸エステルとしては、例えば、リンゴ酸エステル、乳酸エステル、酒石酸エステル、クエン酸エステル、グリコールモノエステル、グリセリンモノエステル、グリセリンジエステル、リシノール酸エステルを挙げることができる。特に、リンゴ酸エステル、乳酸エステル、酒石酸エステルが好ましく、その中でもさらに、リンゴ酸エステルが好ましい。リンゴ酸エステルとしては、特に、リンゴ酸ジアルキルエステルが好ましい。リンゴ酸ジアルキルエステルとしては、例えば、リンゴ酸ジメチルエステル、リンゴ酸ジエチルエステル、リンゴ酸ジプロピルエステル、リンゴ酸ジブチルエステル、リンゴ酸ジヘキシルエステル、アセチルリンゴ酸ジオクチルエステル、リンゴ酸モノエチルモノオクチルエステルなどが挙げられる。その中でも、特に、リンゴ酸ジエチルエステルおよびリンゴ酸ジブチルエステルが好ましい。
 α-ヒドロキシカルボニル化合物またはヒドロキシカルボン酸エステルは、1モルの末端シラノール変性ポリオルガノシロキサンに対して0.01~2モルの範囲で組成物中に含まれるのが好ましく、特に0.01~0.4モルの範囲で組成物中に含まれるのが好ましく、さらに好ましくは、0.02~0.1モルの範囲で組成物中に含まれる。
 次に、ポリオルガノシロキサンと、チタニウムアルコキシドと、α-ヒドロキシカルボニル化合物若しくはヒドロキシカルボン酸エステルの一例であるリンゴ酸エステルとを含むポリオルガノシロキサン組成物の好適な特性について説明する。
 分子量Mの分子がN個存在する場合において、Mwとは、質量分率による分子量の平均値((M ・Nの総和)/(M・Nの総和))をいい、Mnとは、全質量を分子数で除した値((M・Nの総和)/(Nの総和))をいう。Mw/Mnは、分子量分布指数といい、分子量分布の広がりの目安となる値である。
 分子量分布指数(Mw/Mn)は、ポリオルガノシロキサン組成物の温度および/またはその温度に保持する時間に依存して変化させることができる。温度が高いほど、あるいはある温度に保持する時間が長いほど、Mw/Mnが大きくなる傾向がある。
 次に、ポリオルガノシロキサン組成物の製造方法について説明する。
 末端シラノール変性ポリオルガノシロキサンと、チタニウムアルコキシドと、α-ヒドロキシカルボニル化合物若しくはヒドロキシカルボン酸エステルとを所定モル比で容器内に投入して、30~120℃の範囲内の所定温度にて攪拌する。攪拌の雰囲気は、密閉雰囲気あるいは開放雰囲気のいずれかを選択することができる。また、開放雰囲気にて攪拌を行う場合には、窒素ガスあるいはアルゴンガス等を流して行うのが好ましい。温度と攪拌時間を調整し、攪拌途中でサンプリングした試料のMwおよびMnの両値を測定することにより、所望のMw、MnおよびMw/Mnのポリオルガノシロキサン組成物を得ることができる。
1.MwおよびMnの調整実験
(1)ヒドロキシアセトンを用いた溶液の評価
 乾燥窒素ガスを流して空気を乾燥窒素ガスで置換した状態のグローブボックス内にて、蓋付きガラス容器(容量:200mlのセパラブルフラスコ)中に、30℃における粘度が34mPa・sの両末端シラノール変性ポリジメチルシロキサン(Polydimethylsiloxane: PDMS、信越化学工業株式会社製X-21-5841、以後、単に、PDMSという)40g、チタニウムテトラ-n-ブトキシド(Titanium Tetra n-Butoxide: TTnB、関東化学株式会社製)13.612g、ヒドロキシアセトン(HA:和光純薬株式会社製)1.482gの順に入れ、該ガラス容器の蓋を閉めた(モル比にて、PDMS:TTnB:HA=1:1:0.5)。この内容物を「HA系溶液」とした。次に、グローブボックス外に蓋を閉めた状態のガラス容器を取り出した。HA系溶液は、密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、30℃に保持されたオイルバスに浸し24時間攪拌した後、60℃に上げて24時間攪拌した。その後、乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れ、その後乾燥窒素ガスにて該ガラス容器を封じた。該ガラス容器を別のマグネットスターラーへ移した。該マグネットスターラーは室温であるため、該ガラス容器を載せてから、撹拌子を回転させながら、さらに100℃に上げて24時間攪拌した。その後100℃で68時間保持した。その間55.5時間、乾燥窒素ガスを流した開放雰囲気で攪拌し、12.5時間密閉状態で攪拌した。以後、特筆しない限りプロペラ撹拌棒の回転速度は100rpmである。HA系溶液の攪拌時間の経過に伴うMw、Mn、Mw/Mnおよび粘度の変化を調べるため、攪拌の途中でサンプリングして、上記各値の測定に供した。MwおよびMnの測定には、GPC(東ソー株式会社製、HLC-8220GPC)を用い、「東ソー製GPCサポートプログラムver05.00」を用いて、波形分離した後のデータを用いた。以後、特筆しない限り、後述のMwおよびMnについても、上記と同じ装置を用いて測定し、上記と同じプログラムを用いてデータ処理した。粘度の測定には、粘度測定装置(東機産業株式会社製、VISCOMETER RE-85)を用いた。粘度の単位はすべてmPa・sである。以後、特筆しない限り、粘度は上記と同じ装置を用いて測定した。
 HAを用いた硬化体との比較のため、錫系触媒を用いた溶液を焼成した試料も作製した。錫系触媒には、ジラウリン酸ジブチル錫(東京化成工業株式会社製、C32644Sn)を用いた(以後、単に、Sn系触媒という)。Sn系触媒を用いた溶液の作製条件は次の通りである。蓋付きガラス容器(容量:200ml)に、PDMS40g、TTnB13.612g、Sn系触媒0.4g(PDMSに対して1wt%相当)をその順に入れ、蓋を閉めた。密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、30℃に保持されたオイルバスに浸し24時間攪拌した後、60℃に上げて24時間攪拌した。乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れ、その後乾燥窒素ガスにて該ガラス容器を封じた。該ガラス容器をマグネットスターラーへ移した。該マグネットスターラーは室温であるため、密閉状態で撹拌子を回転させながら、100℃で24時間攪拌した。その後、100℃で72.5時間保持した。その間60.5時間、乾燥窒素ガスを流した開放雰囲気で攪拌し、12時間密閉状態で攪拌した。その後に密閉雰囲気に変えて100℃で12時間攪拌した。この溶液を、以後、「Sn-1」という。硬化体の作製条件は、HAを用いたものと同じ条件とした。
Figure JPOXMLDOC01-appb-T000001
 表1、図1、および図2に、HA系溶液および比較溶液1の攪拌時間の経過に伴うMw、MnおよびMw/Mnの変化と、それらのGPC測定結果を示す。また、図3、図4に、HA系溶液および比較溶液1の攪拌時間の経過に伴うフーリエ変換赤外線分光分析装置(以後「FT-IR」という)による吸収スペクトルの変化を示す。表1および図1~図4中の「close」および「open」は、それぞれ、密封雰囲気下での攪拌および乾燥窒素ガスを流通した開放雰囲気下での攪拌を意味する。
(2)DL-リンゴ酸ジエチルエステルを用いた溶液の評価
 乾燥窒素ガスを流した状態のグローブボックス内にて、蓋付きガラス容器(容量:200ml)中に、PDMS40g、チタニウムテトラエトキシド(Tetraethoxytitanium: TTE、メルク社製)9.13g、DL-リンゴ酸ジエチルエステル(DL-malicacid diethyl ester: MA、東京化成工業株式会社製)1.52gを入れて、蓋を閉めた(モル比にて、PDMS:TTE:MA=1:1:0.2)。この内容物を「MA系溶液」とした。次に、グローブボックス外に蓋を閉めた状態のガラス容器を取り出した。MA系溶液は、密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、30℃に保持されたオイルバスに浸し、60℃に上げて48時間攪拌した。乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れ、その後乾燥窒素ガスにて該ガラス容器を封じた。該ガラス容器を別のマグネットスターラーへ移した。該マグネットスターラーは室温であるため、該ガラス容器を載せてから、撹拌子を回転させながら、100℃に上げて密閉状態で48時間攪拌し、その後乾燥窒素ガスを流して17時間攪拌した。MA系溶液の攪拌時間の経過に伴うMw、Mn、Mw/Mnおよび粘度の変化を調べるため、攪拌の途中でサンプリングして、上記各値の測定に供した。
 MA系溶液との比較のため、MAを含まないPDMSとTTEの混合物(これを、「比較溶液2」とした。)を用意し、MA系溶液と同じ条件下で攪拌し、攪拌途中および攪拌終了直後にサンプリングし、各サンプルのMwおよびMnの両値を測定した。各サンプルのMwおよびMnの測定には、HA系溶液の場合と同じ測定機器を用いた。
Figure JPOXMLDOC01-appb-T000002
 表2、図5および図6に、MA系溶液および比較溶液2の攪拌条件を変えた各サンプルのMw、MnおよびMw/Mnの変化と、それらのGPC測定結果を示す。表2中の「close」は、密封雰囲気下での攪拌を意味する。また、図7、図8に、MA系溶液および比較溶液2の攪拌時間の経過に伴うFT-IRによる吸収スペクトルの変化を示す。表2および図5~図8中の「close」および「open」は、それぞれ、密封雰囲気下での攪拌および乾燥窒素ガスを流通した開放雰囲気下での攪拌を意味する。
2.実験1:ヒドロキシアセトンを用いた硬化体と錫系触媒を用いた硬化体の特性評価
(1)各硬化体の作製方法
 乾燥窒素ガスを流した状態のグローブボックス内にて、蓋付きガラス容器(容量:200ml)中に、PDMS40g、TTnB13.612g、HA1.482gの順に入れ、蓋を閉めた(モル比にて、PDMS:TTnB:HA=1:1:0.5)。この内容物を2セット用意し、それぞれ「HA試料1」および「HA試料2」とした。次に、グローブボックス外に蓋を閉めた状態の2個のガラス容器を取り出した。
 HA試料1は、密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、30℃に保持されたオイルバスに浸し24時間攪拌した後、60℃に上げて24時間攪拌した。乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れ、その後乾燥窒素ガスにて該ガラス容器を封じた。該ガラス容器を別のマグネットスターラーへ移した。該マグネットスターラーは室温であるため、該ガラス容器を載せてから、撹拌子を回転させながら、さらに100℃に上げて24時間攪拌後、100℃で68時間保持した。その間55.5時間、乾燥窒素ガスを流した開放雰囲気で攪拌し、12.5時間密閉状態で攪拌した。一方、HA試料2は、密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、30℃に保持されたオイルバスに浸し24時間攪拌した後、60℃に上げて24時間攪拌した。乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れ、その後乾燥窒素ガスにて該ガラス容器を封じた。該ガラス容器を別のマグネットスターラーへ移した。該マグネットスターラーは室温であるため、該ガラス容器を載せてから、撹拌子を回転させながら、さらに100℃に上げて24時間攪拌後、乾燥窒素ガスを流した開放雰囲気下に変えて100℃で52時間撹拌した。HA試料1の攪拌終了直前の粘度、MwおよびMw/Mnは、それぞれ、4585mPa・s、18688および1.83であった。粘度は、30℃にて測定した値である。以後の粘度測定も同じ温度で行った。この攪拌後の溶液を「HA0.5-1」という。一方、HA試料2の攪拌終了直前の粘度、MwおよびMw/Mnは、それぞれ、359.7mPa・s、8633および1.74であった。この攪拌後の溶液を「HA0.5-2」という。
 次に、攪拌後の2種溶液を、それぞれ、内径95mmのポリテトラフルオロエチレン(PTFE)製のシャーレに展開し、当該シャーレを温度30℃、湿度65%R.H.の雰囲気に24時間静置してから、60℃の恒温槽(ETTAS OFW-300、AS ONE株式会社製)に48時間入れ、室温まで自然冷却した。冷却後、各シャーレから、各シート状硬化体(95mm径×1.3mm厚)を取り出した。
 HAを用いた硬化体との比較のため、錫系触媒を用いた溶液を焼成した試料も作製した。錫系触媒には、ジラウリン酸ジブチル錫(東京化成工業株式会社製、C32644Sn)を用いた(以後、単に、Sn系触媒という)。Sn系触媒を用いた溶液の作製条件は次の通りである。蓋付きガラス容器(容量:200ml)に、PDMS40g、TTnB13.612g、Sn系触媒0.4g(PDMSに対して1wt%相当)をその順に入れ、蓋を閉めた。密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、30℃に保持されたオイルバスに浸し24時間攪拌した後、60℃に上げて24時間攪拌した。乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れ、その後乾燥窒素ガスにて該ガラス容器を封じた。該ガラス容器をマグネットスターラーへ移した。該マグネットスターラーは室温であるため、密閉状態で撹拌子を回転させながら、100℃で24時間攪拌した。その後、100℃で72.5時間保持した。その間60.5時間、乾燥窒素ガスを流した開放雰囲気で攪拌し、12時間密閉状態で攪拌した。その後に密閉雰囲気に変えて100℃で12時間攪拌した。Sn系触媒を用いた攪拌後の溶液の粘度、MwおよびMw/Mnは、それぞれ、2417mPa・s、4663および1.39であった。この溶液を、以後、「Sn-1」という。硬化体の作製条件は、HAを用いたものと同じ条件とした。
(2)引張特性評価
 各シート状硬化体をダンベルで打ち抜き、引張試験用の試験片を作製し、オートグラフ(AGS-J:SHIMADZU)を用いてJISK6251に従って引張試験を行った。引張速度は500mm/minとした。以後、引張特性評価時の引張速度は、全て同一速度とした。
Figure JPOXMLDOC01-appb-T000003
 表3に、HA0.5-1を硬化させた硬化体(HA0.5-1硬化体)、HA0.5-2を硬化させた硬化体(HA0.5-2硬化体)およびSn-1を硬化させた硬化体(Sn-1硬化体)の引張特性評価結果を示す。
 表3に示すように、HAを用いた硬化体は、Sn系触媒を用いた硬化体と比べて、破断点強度および破断点伸びに優れていることがわかった。また、HAを用いた2種硬化体を比較すると、弾性率、破断点強度および破断点伸びのいずれについてもほぼ同等の特性であった。
(3)接着性能評価
 図9~図11に、接着性能評価の方法を説明するための図を示す。
 幅20mm×長さ50mm×厚さ2mmのアルミニウム板を2枚用意した。図9に示すように、各アルミニウムの端部接着領域(幅20mm×長さ20mm、面積:400mm)を覆うように、ポリイミド製のテープを二枚重ねで貼り付けた(二枚重ねの厚さ:約240μm)。両方のアルミニウム板の端部接着領域にHA0.5-1を塗布し、恒温槽内にて60℃で30分間の仮焼成を行った。仮焼成後、HA0.5-1を塗布したアルミニウム板を恒温槽から取り出して、両端部接着領域をお互いに重ねた。その後、温度30℃、湿度65%R.H.中に24時間放置した。その後、60℃にて48時間と96時間の2通りの焼成時間にて本焼成を行った。これにより、図10に示す状態の試験片の作製を完了した。HA0.5-2およびSn-1についても、上述と同様に2枚のアルミニウム板に挟んだ形態の試験片を作製した。
 次に、図11に示すように、試験片の両端を反対方向に引っ張り、端部接着領域が破断したときの張力に基づき、接着力を求めた。接着力の測定は、オートグラフ(AGS-J, SHIMADZU)を用いて、5.0mm/minの引張速度で引張りせん断方式により実施した。以後、接着力の測定の条件は、特に言及しない限り同じ条件とした。また、接着力[N/mm2]は、引張力[N]を接着面積[mm2]で除して算出した。
Figure JPOXMLDOC01-appb-T000004
 表4に、接着性能評価結果を示す。
 表4から明らかなように、HAを用いた硬化体(HA硬化体)とSn系触媒を用いた硬化体(Sn硬化体)を比較すると、HA硬化体の方が接着性能に優れることがわかった。また、いずれの硬化体も、本焼成時間が長い方(すなわち、96時間の焼成したもの)が接着性能に優れていた。さらに、2種類のHA硬化体の中で比較すると、同じ焼成時間の場合、Mwが大きい方(すなわち、HA0.5-1硬化体の方)が接着性能に優れていた。
3.実験2:チタニウムアルコキシドの種類を変えて作製した硬化体の特性評価
(1)各硬化体の作製方法
 (1.a)TTnB-HA系
 乾燥窒素ガスを流した状態のグローブボックス内にて、蓋付きガラス容器(容量:200ml)中に、PDMS50g、TTnB17.015g、HA1.853gをその順に入れ、蓋を閉めた(モル比にて、PDMS:TTnB:HA=1:1:0.5)。この内容物を2セット用意し、それぞれ「HA試料3」および「HA試料4」とした。次に、グローブボックス外に蓋を閉めた状態の2個のガラス容器を取り出し、HA試料3は、密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、60℃に保持されたオイルバスに浸し24時間攪拌した。その後、乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れた後、乾燥窒素ガスにて該ガラス容器を封じた。100℃に上げて72時間攪拌した後、100℃で92.5時間保持した。その間80時間、乾燥窒素ガスを流した開放雰囲気で攪拌し、12.5時間密閉状態で攪拌した。
 一方、HA試料4は、密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、60℃に保持されたオイルバスに浸し24時間攪拌した。乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れ、その後乾燥窒素ガスにて該ガラス容器を封じた。該ガラス容器を別のマグネットスターラーへ移した。該マグネットスターラーは室温であるため、該ガラス容器を載せてから、撹拌子を回転させながら、100℃に上げて120時間攪拌した後、乾燥窒素ガスを流した開放雰囲気下に変えて100℃で97時間攪拌した。HA試料3の攪拌終了直前の粘度、MwおよびMw/Mnは、それぞれ、2908.5mPa・s、19748および1.85であった。この攪拌後の溶液を「HA0.5-TTnB-72」という。一方、HA試料4の攪拌終了直前の粘度、MwおよびMw/Mnは、それぞれ、10085mPa・s、22976および1.84であった。この攪拌後の溶液を「HA0.5-TTnB-120」という。
 次に、攪拌後の2種溶液を、それぞれ、実験1で用いたものと同型のシャーレに展開し、当該シャーレを温度30℃、湿度65%R.H.の雰囲気に24時間静置してから、60℃の恒温槽(実験1で使用したものと同じ恒温槽)に96時間および168時間入れ、室温まで自然冷却した。冷却後、各シャーレから、各シート状硬化体(95mm径×1.3mm厚)を取り出した。
(1.b)TTE-HA系
 乾燥窒素ガスを流した状態のグローブボックス内にて、蓋付きガラス容器(容量:200ml)中に、PDMS50g、TTE11.4075g、HA1.853gをその順に入れ、蓋を閉めた(モル比にて、PDMS:TTE:HA=1:1:0.5)。この内容物を「HA試料5」とした。次に、グローブボックス外に蓋を閉めた状態のガラス容器を取り出し、60℃に保持されたオイルバスに浸した。HA試料5は、密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、60℃で48時間攪拌後、乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れ、その後乾燥窒素ガスにて該ガラス容器を封じた。該ガラス容器を別のマグネットスターラーへ移した。該マグネットスターラーは室温であるため、該ガラス容器を載せてから、撹拌子を回転させながら、100℃に上げて72時間攪拌した後、乾燥窒素ガスを流した開放雰囲気下に変えて100℃で16時間攪拌した。HA試料5は、最後に固化したため、粘度の測定はできなかった。当該HA試料5のMwおよびMw/Mnは、それぞれ、9940および1.78であった。なお、このサンプルについては、硬化体の作製には適さないので、以後の硬化体の作製およびその特性評価を行わなかった。
(1.c)TTIP-HA系
 乾燥窒素ガスを流した状態のグローブボックス内にて、蓋付きガラス容器(容量:200ml)中に、PDMS50g、チタニウムテトライソプロポキシド(Titanium tetraisopropoxide: TTIP(関東化学株式会社製)14.211g、HA1.853gをその順に入れ、そこに攪拌子を入れて蓋を閉めた(モル比にて、PDMS:TTIP:HA=1:1:0.5)。この内容物を「HA試料6」とした。次に、グローブボックス外に蓋を閉めた状態のガラス容器を取り出した。HA試料6は、密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、60℃に保持されたオイルバスに浸し120時間攪拌した。乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れ、その後、乾燥窒素ガスにて該ガラス容器を封じた。該ガラス容器をマグネットスターラーへ移した。該マグネットスターラーは室温であるため、該ガラス容器を載せてから、撹拌子を回転させながら、100℃に上げて48時間攪拌した後、乾燥窒素ガスを流した開放雰囲気下に変えて100℃で18時間攪拌した。HA試料6の攪拌終了直前の粘度、MwおよびMw/Mnは、それぞれ、1985.3mPa・s、6602および1.54であった。この攪拌後の溶液を「HA0.5-TTIP-48」という。
 次に、攪拌後の溶液を、実験1で用いたものと同型のシャーレに展開し、当該シャーレを温度30℃、湿度65%R.H.の雰囲気に24時間静置してから、60℃の恒温槽(実験1で用いた恒温槽)に96時間および168時間入れ、室温まで自然冷却した。冷却後、各シャーレから、各シート状硬化体(95mm径×1.3mm厚)を取り出した。
(1.d)TTnB-Sn系(比較材)
 HAを用いた上記硬化体との比較のため、Sn系触媒を用いた溶液を焼成した試料も作製した。Sn系触媒を用いた溶液の作製条件は次の通りである。乾燥窒素ガスを流した状態のグローブボックス内にて、蓋付きガラス容器(容量:200ml)中に、PDMS40g、TTnB13.612g、Sn系触媒1.2g(PDMSに対して3wt%相当)をその順に入れ、蓋を閉めた。密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、60℃に保持されたオイルバスに浸し、24時間攪拌した。Sn系触媒を用いた攪拌後の溶液の粘度、MwおよびMw/Mnは、それぞれ19.2mPa・s、2956および1.51であった。この溶液を、以後、「Sn-TTnB」という。硬化体の作製条件は、HAを用いたものと同じ条件とした。
(2)引張特性評価
 各シート状硬化体をダンベルで打ち抜き、引張試験用の試験片を作製し、オートグラフ(AGS-J:SHIMADZU)を用いてJISK6251に従って引張試験を行った。
 図12~図14に、各種試験片の引張特性評価結果を示す。図12は各試験片の弾性率を、図13は各試験片の破断点強度を、図14は各試験片の破断点伸びを、それぞれ示す。これらの図中、「TTnB 72h 96h」は、上述の溶液「HA0.5-TTnB-72」を60℃-96時間の条件で焼成して得られた硬化体から切り出した試験片を示す。同様に、「TTnB 72h 168h」は溶液「HA0.5-TTnB-72」を60℃-168時間の条件で焼成して得られた硬化体から切り出した試験片を、「TTnB 120h 96h」は溶液「HA0.5-TTnB-120」を60℃-96時間の条件で焼成して得られた硬化体から切り出した試験片を、「TTnB 120h 168h」は溶液「HA0.5-TTnB-120」を60℃-168時間の条件で焼成して得られた硬化体から切り出した試験片を、「TTIP 48h 96h」は溶液「HA0.5-TTIP-48」を60℃-96時間の条件で焼成して得られた硬化体から切り出した試験片を、「TTIP 48h 168h」は溶液「HA0.5-TTIP-48」を60℃-168時間の条件で焼成して得られた硬化体から切り出した試験片を、「錫 3重量部 96h」は溶液「Sn-TTnB」を60℃-96時間の条件で焼成して得られた硬化体から切り出した試験片を、「錫 3重量部 168h」は溶液「Sn-TTnB」を60℃-168時間の条件で焼成して得られた硬化体から切り出した試験片を、それぞれ示す。
 図13に示すように、HAを用いたいずれの硬化体も、Sn系触媒を用いた硬化体よりも破断点強度が高かった。また、HAを用いた各種硬化体の中で比較すると、図12および図14に示すように、チタニウムアルコキシドとしてTTIPを用いたものは、TTnBを用いたものに比べて、弾性率が大きく、かつ破断点伸びが小さいこともわかった。
(3)接着性能評価
 TTnB-HA系、TTIP-HA系およびTTnB-Sn系の各種溶液を、前述の図9~図11に基づく前述と同じ評価方法を用いて、その接着性能を評価した。本焼成は、温度60℃で96時間および168時間の2通りの時間で行った。
Figure JPOXMLDOC01-appb-T000005
 表5および図15に、接着性能評価結果を示す。図15において、「TTnB 72h 96h」は、上述の溶液「HA0.5-TTnB-72」を60℃-96時間の条件で焼成した接着硬化体を示す。同様に、「TTnB 72h 168h」は溶液「HA0.5-TTnB-72」を60℃-168時間の条件で焼成した接着硬化体を、「TTnB 120h 96h」は溶液「HA0.5-TTnB-120」を60℃-96時間の条件で焼成した接着硬化体を、「TTnB 120h 168h」は溶液「HA0.5-TTnB-120」を60℃-168時間の条件で焼成した接着硬化体を、「TTIP 48h 96h」は溶液「HA0.5-TTIP-48」を60℃-96時間の条件で焼成した接着硬化体を、「TTIP 48h 168h」は溶液「HA0.5-TTIP-48」を60℃-168時間の条件で焼成した接着硬化体を、「錫 3質量部 TTnB 96h」は溶液「Sn-TTnB」を60℃-96時間の条件で焼成した接着硬化体を、「錫 3質量部 TTnB 168h」は溶液「Sn-TTnB」を60℃-168時間の条件で焼成した接着硬化体を、それぞれ示す。
 表5から明らかなように、HAを用いた硬化体(HA硬化体)とSn系触媒を用いた硬化体(Sn硬化体)を比較すると、HA硬化体の方が接着性能に優れることがわかった。また、いずれの硬化体も、本焼成時間が長い方(すなわち、168時間の焼成したもの)が接着性能に優れていた。さらに、各種HA硬化体の中で比較すると、チタニウムアルコキシドにTTIPを用いた方が接着性能に優れていた。
4.実験3:ヒドロキシアセトンの添加量および攪拌温度が硬化体に与える効果の検討
(1)各硬化体の作製方法
 乾燥窒素ガスを流した状態のグローブボックス内にて、蓋付きガラス容器(容量:200ml)中に、PDMS50g、TTnB17.015g、HA3.706gの順に入れ、そこに攪拌子を入れて蓋を閉めた(モル比にて、PDMS:TTnB:HA=1:1:1)。この内容物を「HA試料7」とした。また、同様の手順にて、PDMS50g、TTnB17.015g、HA1.853gの順に入れ、蓋を閉めた(モル比にて、PDMS:TTnB:HA=1:1:0.5)。この内容物を2セット用意し、それぞれ「HA試料8」および「HA試料9」とした。次に、グローブボックス外に蓋を閉めた状態の3個のガラス容器を取り出した。HA試料7は、密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、24時間攪拌した。乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れ、その後乾燥窒素ガスにて該ガラス容器を封じた。該ガラス容器を別のマグネットスターラーへ移した。該マグネットスターラーは室温であるため、該ガラス容器を載せてから、撹拌子を回転させながら、100℃に上げて48時間攪拌後、乾燥窒素ガスを流した開放雰囲気下に変えて、100℃で92.5時間保持した。その間76.5時間、乾燥窒素ガスを流した開放雰囲気で攪拌し、16時間密閉状態で攪拌した。
 一方、HA試料8は、密封雰囲気下において、60℃で24時間攪拌し、さらに100℃に上げて48時間攪拌後、窒素ガスを流した開放雰囲気下に変えて、100℃で66時間攪拌した。HA試料9は、密封雰囲気下において、60℃で72時間攪拌し、乾燥窒素ガスを流した開放雰囲気下に変えて、60℃のままで88時間攪拌した。
 HA試料7の攪拌終了直前の粘度、MwおよびMw/Mnは、それぞれ、4453.7mPa・s、32622および1.69であった。この攪拌後の溶液を「HA1-TTnB-100」という。HA試料8の攪拌終了直前の粘度、MwおよびMw/Mnは、それぞれ、10095mPa・s、16977および1.88であった。この攪拌後の溶液を「HA0.5-TTnB-100」という。さらに、HA試料9の攪拌終了直前の粘度、MwおよびMw/Mnは、それぞれ、102333.3mPa・s、3090および1.42であった。この攪拌後の溶液を「HA0.5-TTnB-60」という。粘度の測定およびMw等の測定には、実験1と同じ装置を用いた。
 次に、攪拌後の3種溶液を、それぞれ、実験1で用いたものと同型のシャーレに展開した。その後、105℃の恒温槽(実験1で用いたものと同一の恒温槽)に48時間入れ、室温まで自然冷却した。冷却後、各シャーレから、各シート状硬化体(95mm径×1.3mm厚)を取り出した。外観上、HA0.5-TTnB-60の硬化体は、赤ワインのような色であり、他の2種の硬化体の色(薄い黄色)と異なっていた。
(2)引張特性評価
 各シート状硬化体をダンベルで打ち抜き、引張試験用の試験片を作製し、オートグラフ(AGS-J:SHIMADZU)を用いてJISK6251に従って引張試験を行った。
Figure JPOXMLDOC01-appb-T000006
 表6に、HA1-TTnB-100を硬化させた硬化体(HA-TTnB-100硬化体)、HA0.5-TTnB-100を硬化させた硬化体(HA0.5-TTnB-100硬化体)およびHA0.5-TTnB-60を硬化させた硬化体(HA0.5-TTnB-60硬化体)の引張特性評価結果を示す。
 表6に示すように、HAのモル比が0.5の方が、弾性率および破断点強度に優れていた。逆に、HAが多いと破断点伸びが極めて大きくなることがわかった。また、HAのモル比が0.5の2種硬化体同士を比較すると、60℃で攪拌した溶液を硬化させた硬化体の方が、100℃で攪拌した溶液を硬化させた硬化体よりも、弾性率が大きく、かつ破断点伸びが小さいことがわかった。
(3)接着性能評価
 HA1-TTnB-100、HA0.5-TTnB-100およびHA0.5-TTnB-60の各種溶液を、前述の図1~3に基づく前述と同じ評価方法を用いて、その接着性能を評価した。本焼成は、温度105℃で48時間および96時間の2通りの時間で行った。
Figure JPOXMLDOC01-appb-T000007
 表7に、接着性能評価結果を示す。
 表7から明らかなように、HAのモル比0.5の溶液を硬化させた硬化体の方が、HAのモル比1.0の溶液を硬化させた硬化体よりも接着性能に優れることがわかった。また、いずれの硬化体も、本焼成時間が長い方(すなわち、96時間焼成したもの)が接着性能に優れていた。さらに、HAのモル比0.5の溶液を硬化させた2種の硬化体同士を比較すると、60℃にて攪拌した溶液を硬化させた硬化体の方が、100℃にて攪拌した溶液を硬化させた硬化体よりも接着性能に優れていた。
5.実験4:DL-リンゴ酸ジエチルエステルを用いた硬化体と錫系触媒を用いた硬化体の特性評価
(1)各硬化体の作製方法
 乾燥窒素ガスを流して空気を乾燥窒素ガスで置換したグローブボックス内にて、ガラス容器(容量:200mlのセパラブルフラスコ)中に、PDMS50g、TTE11.408g、MA0.95gを、その順に入れた(モル比にて、PDMS:TTE:MA=1:1:0.1)。この内容物を「MA系試料」とする。その後、該ガラス容器に蓋をし、グローブボックスから該ガラス容器を取り出した。密封雰囲気下において、ガラス容器に乾燥窒素ガスを流しながら、プロペラ付きの攪拌棒を挿入し、60℃に保持されたオイルバスに浸してから24時間撹拌後した。その後、乾燥窒素ガスを流しながら、撹拌棒を取り出し、撹拌子を該ガラス容器に入れ、その後乾燥窒素ガスにて該ガラス容器を封じた。該ガラス容器をマグネットスターラーへ移した。該マグネットスターラーは室温であるため、該ガラス容器を載せてから、撹拌子を回転させながら100℃に上げて48時間撹拌後、乾燥窒素ガスを流して14時間撹拌した。このように準備したMA系試料の30℃における粘度、MwおよびMw/Mnは、それぞれ、492.8mPa・s、5569、および1.44であった。
 上記MA系試料15gを実験1で用いたものと同型のシャーレに展開し、60℃の温度に保持された恒温槽に48時間入れて焼成した。その後、室温まで自然冷却した。冷却後、シャーレからシート状硬化体(95mm径×1.3mm厚)を取り出した。なお、MAを用いた上記硬化体との比較のため、実験1で用いたSn-1硬化体を評価に供した。
(2)引張特性評価
 各シート状硬化体をダンベルで打ち抜き、引張試験用の試験片を作製し、オートグラフ(AGS-J:SHIMADZU)を用いてJISK6251に従って引張試験を行った。
Figure JPOXMLDOC01-appb-T000008
 表8および図16~図18に、MA系試料を硬化させた硬化体(MA系試料硬化体)およびSn-1硬化体の引張特性評価結果を示す。図16は各試験片の弾性率を、図17は各試験片の破断点強度を、図18は各試験片の破断点伸びを、それぞれ示す。これらの図中、「TTE-MA 60℃ 48h 焼成」は、MA系試料硬化体を、「錫 1質量部 60℃ 48h 焼成」は、Sn-1硬化体を、それぞれ示す。
 表8および図16~図18に示すように、MA系試料硬化体は、Sn系試料硬化体と比べて、柔らかく伸びやすいが、同等の破断点強度を有することがわかった。
(3)接着性能評価
 MA系試料を、前述の図9~図11に基づく前述と同じ評価方法を用いて、その接着性能を評価した。本焼成は、温度60℃で96時間保持する条件で行った。比較として、実験1で用いたSn-1もMA系試料と同じ条件で評価した。
 図19に、接着性能評価結果を示す。図19において、「TTE-MA 60℃ 96h 焼成」は、「MA系試料」を60℃-96時間の条件で焼成した接着硬化体を示す。同様に、「錫 1質量部 60℃ 96h 焼成」は、「Sn-1」を60℃-96時間の条件で焼成した接着硬化体を示す。
 その結果、Sn-1の接着強度が0.1523N/mmであるのに対して、MA系試料の接着強度は、0.23N/mmであった。このように、MAを用いた溶液をアルミニウム板間に挟んで接着した方が、錫系触媒を用いた溶液をアルミニウム板間に挟んで接着するよりも、接着性能に優れることがわかった。
6.実験5:PDMSの高分子化への各種ヒドロキシカルボン酸エステルの添加効果
(1)PDMS-TTE-MA(モル比=1:0.05:0.05)系
 乾燥窒素ガスを流した状態のグローブボックス内にて、予めTTE0.114g(PDMS1モルに対して0.05モル相当)と、MA0.095g(PDMS1モルに対して0.05モル相当)とをスクリュー管の中で温度25℃、30分間攪拌したものを用意しておき、そこに、30℃における粘度が34mPa・sの両末端シラノール変性ポリジメチルシロキサン(Mw=1000のPDMS)10gを投入して、スクリュー管の蓋を閉めた。スクリュー管内の溶液の温度が60℃になるように加熱しながら、スターラーを用いて撹拌を行った。2時間撹拌後に、シャーレに3gを展開し、温度25℃、湿度50%プラスマイナス10%R.H.の雰囲気下に保たれたボックス内にて0~336時間の範囲内の所定時間放置し、溶液の変化をGPCおよびFT-IRを用いて評価した。
 比較として、MAを加えずに、PDMS10gとTTE0.114gを上記条件で加熱、攪拌してからシャーレに展開し、所定時間放置した試料(PDMS-TTE系)も評価した。さらに、PDMS-TTE系において、スクリュー管の中における加熱温度と攪拌時間の効果を調べるため、スクリュー管の中で2時間攪拌後、引き続き70時間攪拌して総時間72時間経過後の試料と、その後100℃に加温して100℃で48時間攪拌した後の試料と、さらに150℃に加温して150℃で48時間攪拌した後の試料についても評価した。また、シャーレに展開後の条件を変化させたときの効果を調べるため、シャーレに展開後の温度を、25℃のみならず、100℃および150℃の2条件も採用した。
 図20は、比較に用いたPDMS-TTE系において、スクリュー管内で温度60℃-2時間攪拌後の溶液(60℃ close 2h)、攪拌後の溶液をシャーレに展開して温度25℃-48時間放置した後の溶液(25℃ RH50 48h)および攪拌後の溶液をシャーレに展開して温度25℃-168時間放置した後の溶液(25℃ RH50 168h)の分子量分布の変化を示す図(A)および赤外吸収スペクトルの変化を示す図(B)である。
 図21は、同じく比較に用いたPDMS-TTE系において、スクリュー管内で温度60℃-2時間攪拌後の溶液(60℃ close 2h)、スクリュー管内で温度60℃-72時間攪拌後の溶液(60℃ close 72h)、スクリュー管内で温度100℃-48時間攪拌後の溶液(100℃ close 48h)およびスクリュー管内で温度150℃-48時間攪拌後の溶液(150℃ close 48h)の分子量分布の変化を示す図(A)および赤外吸収スペクトルの変化を示す図(B)である。
 図22は、同じく比較に用いたPDMS-TTE系において、スクリュー管内で温度60℃-2時間攪拌後の溶液(60℃ close 2h)、攪拌後の溶液をシャーレに展開して温度25℃-336時間放置した後の溶液(25℃ RH50 336h)、攪拌後の溶液をシャーレに展開して温度100℃-336時間放置した後の溶液(100℃ 336h)および攪拌後の溶液をシャーレに展開して温度150℃-336時間放置した後の溶液(150℃ 336h)の分子量分布の変化を示す図(A)および赤外吸収スペクトルの変化を示す図(B)である。
 図20に示すように、温度60℃で2時間攪拌後、温度25℃で長時間放置しても高分子化は見られず、FT-IRの結果からもSi-OH結合量がほぼ一定に維持された状態であった。また、図21および図22に示すように、60℃における攪拌時間を長くし、あるいはその後にシャーレに展開して100℃まで加温しても高分子化は見られなかったが、攪拌後に温度を150℃に上げると高分子化が見受けられた。このことは、FT-IRの結果においてSi-OH結合が減少していることからも明らかであった。したがって、PDMS-TTE系の場合には、150℃以上に加温しないとPDMSが高分子化しないと考えられる。
 図23は、PDMS-TTE-MA系において、スクリュー管内で温度60℃-2時間攪拌後の溶液(60℃ close 2h)、攪拌後の溶液をシャーレに展開して温度25℃-48時間放置した後の溶液(25℃ RH50 48h)および攪拌後の溶液をシャーレに展開して温度25℃-168時間放置した後の溶液(25℃ RH50 168h)の分子量分布の変化を示す図(A)および赤外吸収スペクトルの変化を示す図(B)である。
 一方、PDMS-TTE-MA系の場合には、図23に示すように、攪拌後の溶液をシャーレに展開して、温度25℃にて放置する時間を168時間まで長くすると、PDMSの高分子化が見られた。このように、PDMS-TTE-MA系の場合には、高温に加熱しなくても、室温(25℃)で長時間放置すればPDMSが高分子化することから、低温硬化型の接着剤としての用途に、MAが有効に機能するものと考えられる。
(2)PDMS-TTE-MADb(モル比=1:0.05:0.05)系
 上述のPDMS-TTE-MA系のMAの代わりにDL-リンゴ酸ジブチルエステル(DL-malicacid dibutyl ester: MADb、東京化成工業株式会社製)を用いた。MADbの添加量は、0.123gであり、モル比にてPDMS:TTE:MADbが1:0.05:0.05となるようにした。その他の攪拌、シャーレ展開後の放置の各条件は、PDMS-TTE-MA系と同一とした。
 図24は、PDMS-TTE-MADb系において、スクリュー管内で温度60℃-2時間攪拌後の溶液(60℃ close 2h)、攪拌後の溶液をシャーレに展開して温度25℃-48時間放置した後の溶液(25℃ RH50 48h)および攪拌後の溶液をシャーレに展開して温度25℃-168時間放置した後の溶液(25℃ RH50 168h)の分子量分布の変化を示す図(A)および赤外吸収スペクトルの変化を示す図(B)である。
 PDMS-TTE-MADb系の場合には、図24に示すように、PDMS-TTE-MA系とほぼ同じ結果となった。すなわち、攪拌後の溶液をシャーレに展開して、温度25℃にて放置する時間を168時間まで長くすると、PDMSの高分子化が見られた。このように、PDMS-TTE-MADb系の場合にも、低温硬化型の接着剤としての用途に、MADbが有効に機能するものと考えられる。
(3)PDMS-TTE-EL(モル比=1:0.05:0.05)系
 上述のPDMS-TTE-MA系のMAの代わりに乳酸エチル(Ethyl lactate: EL、東京化成工業株式会社製)を用いた。ELの添加量は、0.059gであり、モル比にてPDMS:TTE:ELが1:0.05:0.05となるようにした。その他の攪拌、シャーレ展開後の放置の各条件は、PDMS-TTE-MA系と同一とした。
 図25は、PDMS-TTE-EL系において、スクリュー管内で温度60℃-2時間攪拌後の溶液(60℃ close 2h)、攪拌後の溶液をシャーレに展開して温度25℃-48時間放置した後の溶液(25℃ RH50 48h)および攪拌後の溶液をシャーレに展開して温度25℃-168時間放置した後の溶液(25℃ RH50 168h)の分子量分布の変化を示す図(A)および赤外吸収スペクトルの変化を示す図(B)である。
 PDMS-TTE-EL系の場合には、図25に示すように、25℃で48時間放置した段階でPDMSの高分子化が進んでおり、168時間放置したものと比べて高分子化の程度に大きな差は見られなかった。この結果から、PDMS-TTE-EL系は、前述のPDMS-TTE-MA系およびPDMS-TTE-MADb系よりも、室温にて短時間で高分子化が進行し、ELの添加により低温硬化型の接着剤として利用可能になると考えられる。
(4)PDMS-TTE-TAdE(モル比=1:0.05:0.05)系
 上述のPDMS-TTE-MA系のMAの代わりに酒石酸エチル(L-(+)-diethyl tartarate: TAdE、東京化成工業株式会社製)を用いた。TAdEの添加量は、0.103gであり、モル比にてPDMS:TTE:TAdEが1:0.05:0.05となるようにした。攪拌、シャーレ展開後の放置の各条件には、PDMS-TTE-MA系と同一の条件に加え、シャーレ展開後に温度25℃で放置時間を336時間にまで延長した条件も採用した。
 図26は、PDMS-TTE-TAdE系において、スクリュー管内で温度60℃-2時間攪拌後の溶液(60℃ close 2h)、攪拌後の溶液をシャーレに展開して温度25℃-48時間放置した後の溶液(25℃ RH50 48h)、攪拌後の溶液をシャーレに展開して温度25℃-168時間放置した後の溶液(25℃ RH50 168h)および攪拌後の溶液をシャーレに展開して温度25℃-336時間放置した後の溶液(25℃ RH50 336h)の分子量分布の変化を示す図(A)および赤外吸収スペクトルの変化を示す図(B)である。
 PDMS-TTE-TAdE系の場合には、図26に示すように、25℃で48時間放置した段階ではPDMSの高分子化があまり進んでいないが、168時間放置、336時間放置になるにつれて、高分子化がゆっくりと進行している結果が得られた。この結果から、PDMS-TTE-TAdE系は、前述のPDMS-TTE-EL系と対照的に、室温で高分子化が進むものの、その速度は比較的遅いと考えられる。
(5)PDMS-TTnB-MA(モル比=1:0.05:0.05)系
 上述のPDMS-TTE-MA系のTTEの代わりにTTnBを用いた。TTnBの添加量は、0.170gであり、モル比にてPDMS:TTnB:MAが1:0.05:0.05となるようにした。攪拌、シャーレ展開後の放置の各条件は、PDMS-TTE-MA系と同一の条件とした。
 図27は、PDMS-TTnB-MA系において、スクリュー管内で温度60℃-2時間攪拌後の溶液(60℃ close 2h)、攪拌後の溶液をシャーレに展開して温度25℃-48時間放置した後の溶液(25℃ RH50 48h)および攪拌後の溶液をシャーレに展開して温度25℃-168時間放置した後の溶液(25℃ RH50 168h)の分子量分布の変化を示す図(A)および赤外吸収スペクトルの変化を示す図(B)である。
 PDMS-TTnB-MA系の場合には、図27に示すように、攪拌後の溶液をシャーレに展開して、温度25℃にて放置する時間を168時間まで長くすると、PDMSの高分子化が見られ、PDMS-TTE-MA系に近い高分子化状況が見られた。PDMS-TTnB-MA系の場合には、PDMS-TTE-MA系と同様、高温に加熱しなくても、室温(25℃)で長時間放置すればPDMSが高分子化し、MAは低温硬化型の接着剤としての用途に寄与するものと考えられる。
(6)PDMS-TTIP-MA(モル比=1:0.05:0.05)系
 上述のPDMS-TTE-MA系のTTEの代わりにTTIPを用いた。TTIPの添加量は、0.142gであり、モル比にてPDMS:TTIP:MAが1:0.05:0.05となるようにした。攪拌、シャーレ展開後の放置の各条件は、PDMS-TTE-MA系と同一の条件とした。
 図28は、PDMS-TTIP-MA系において、スクリュー管内で温度60℃-2時間攪拌後の溶液(60℃ close 2h)、攪拌後の溶液をシャーレに展開して温度25℃-48時間放置した後の溶液(25℃ RH50 48h)および攪拌後の溶液をシャーレに展開して温度25℃-168時間放置した後の溶液(25℃ RH50 168h)の分子量分布の変化を示す図(A)および赤外吸収スペクトルの変化を示す図(B)である。
 PDMS-TTIP-MA系の場合には、図28に示すように、25℃で48時間放置した段階でPDMSの高分子化が進んでおり、168時間放置したものと比べて高分子化の程度に大きな差は見られなかった。この結果から、PDMS-TTIP-MA系は、前述のPDMS-TTE-MA系およびPDMS-TTnB-MA系よりも、室温にて短時間で高分子化が進行し、低温硬化型の接着剤としての用途に寄与するものと考えられる。
 本発明のポリオルガノシロキサン組成物は、例えば、低温硬化可能なシリコーン接着剤として利用可能である。

Claims (13)

  1.  (A)1分子中の少なくとも一方の末端がシラノール変性したポリオルガノシロキサンと、
     (B)上記ポリオルガノシロキサン1モルに対して0.01~2モルのチタニウムアルコキシドと、
     (C)上記ポリオルガノシロキサン1モルに対して0.01~2モルのα-ヒドロキシカルボニル化合物若しくは0.01~2モルのヒドロキシカルボン酸エステルと、
    を含むことを特徴とするポリオルガノシロキサン組成物。
  2.  前記0.01~2モルのヒドロキシカルボン酸エステルは、特に、0.01~0.4モルのリンゴ酸エステルであることを特徴とする請求項1に記載のポリオルガノシロキサン組成物。
  3.  前記ヒドロキシカルボン酸エステルは、リンゴ酸エステル、乳酸エステルまたは酒石酸エステルであることを特徴とする請求項1に記載のポリオルガノシロキサン組成物。
  4.  前記α-ヒドロキシカルボニル化合物は、ヒドロキシアセトンであることを特徴とする請求項1に記載のポリオルガノシロキサン組成物。
  5.  前記チタニウムアルコキシドは、チタニウムテトラエトキシド、チタニウムテトライソプロポキシドまたはチタニウムテトラブトキシドであることを特徴とする請求項1に記載のポリオルガノシロキサン組成物。
  6.  前記ポリオルガノシロキサンと、前記チタニウムアルコキシドと、前記ヒドロキシアセトンとをモル比にて1:1:0.5の割合で含み、質量分率による分子量の平均値(Mw)が8000以上であることを特徴とする請求項1に記載のポリオルガノシロキサン組成物。
  7.  前記チタニウムアルコキシドは、チタニウムテトラエトキシド、チタニウムテトライソプロポキシドまたはチタニウムテトラブトキシドであることを特徴とする請求項6に記載のポリオルガノシロキサン組成物。
  8.  前記ポリオルガノシロキサンと、前記チタニウムアルコキシドと、前記ヒドロキシカルボン酸エステルとをモル比にて1:1:0.1の割合で含み、質量分率による分子量の平均値(Mw)が5000以上であることを特徴とする請求項1に記載のポリオルガノシロキサン組成物。
  9.  前記チタニウムアルコキシドは、チタニウムテトラエトキシドであることを特徴とする請求項8に記載のポリオルガノシロキサン組成物。
  10.  前記ポリオルガノシロキサンと、前記チタニウムアルコキシドと、前記ヒドロキシカルボン酸エステルとをモル比にて1:0.05:0.05の割合で含むことを特徴とする請求項1に記載のポリオルガノシロキサン組成物。
  11.  前記ヒドロキシカルボン酸エステルは、リンゴ酸エステル、乳酸エステルまたは酒石酸エステルであることを特徴とする請求項10に記載のポリオルガノシロキサン組成物。
  12.  請求項1、請求項3から請求項11のいずれか1項に記載のポリオルガノシロキサン組成物を硬化したポリオルガノシロキサン組成物硬化体。
  13.  請求項2に記載のポリオルガノシロキサン組成物を硬化したポリオルガノシロキサン組成物硬化体。
PCT/JP2009/005533 2008-10-23 2009-10-22 ポリオルガノシロキサン組成物およびその硬化体 WO2010047109A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010534696A JP5555956B2 (ja) 2008-10-23 2009-10-22 ポリオルガノシロキサン組成物およびその硬化体
EP09821809.2A EP2343341B1 (en) 2008-10-23 2009-10-22 Polyorganosiloxane composition and cured product thereof
US13/124,492 US8455593B2 (en) 2008-10-23 2009-10-22 Polyorganosiloxane composition and cured production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-273370 2008-10-23
JP2008273370 2008-10-23

Publications (1)

Publication Number Publication Date
WO2010047109A1 true WO2010047109A1 (ja) 2010-04-29

Family

ID=42119162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005533 WO2010047109A1 (ja) 2008-10-23 2009-10-22 ポリオルガノシロキサン組成物およびその硬化体

Country Status (4)

Country Link
US (1) US8455593B2 (ja)
EP (1) EP2343341B1 (ja)
JP (1) JP5555956B2 (ja)
WO (1) WO2010047109A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121111A (ja) * 2008-10-23 2010-06-03 Mie Univ ポリオルガノシロキサン組成物およびその硬化体
WO2010143357A1 (ja) * 2009-06-10 2010-12-16 国立大学法人信州大学 ポリオルガノシロキサン組成物およびその硬化体
WO2013124907A1 (ja) * 2012-02-23 2013-08-29 国立大学法人信州大学 シリコーン系接着剤組成物およびその硬化体
JP2013173879A (ja) * 2012-02-27 2013-09-05 Shinshu Univ シリコーンゴム組成物およびその製造方法ならびにシリコーンゴム
WO2013153773A1 (ja) * 2012-04-09 2013-10-17 国立大学法人三重大学 硬化性組成物およびそれを用いて硬化させた合成樹脂
KR20160048796A (ko) * 2013-08-30 2016-05-04 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. 하드마스크 및 충전 재료로서의 안정한 금속 화합물, 이들의 조성물 및 사용 방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011001962A1 (de) 2011-04-11 2012-10-11 Thyssenkrupp Uhde Gmbh Verfahren und Anlage zur biologischen Reinigung von Kokereiabwasser
JP5889568B2 (ja) 2011-08-11 2016-03-22 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 酸化タングステン膜形成用組成物およびそれを用いた酸化タングステン膜の製造法
US9315636B2 (en) 2012-12-07 2016-04-19 Az Electronic Materials (Luxembourg) S.A.R.L. Stable metal compounds, their compositions and methods
US9201305B2 (en) 2013-06-28 2015-12-01 Az Electronic Materials (Luxembourg) S.A.R.L. Spin-on compositions of soluble metal oxide carboxylates and methods of their use
US9418836B2 (en) 2014-01-14 2016-08-16 Az Electronic Materials (Luxembourg) S.A.R.L. Polyoxometalate and heteropolyoxometalate compositions and methods for their use
US9409793B2 (en) 2014-01-14 2016-08-09 Az Electronic Materials (Luxembourg) S.A.R.L. Spin coatable metallic hard mask compositions and processes thereof
US9499698B2 (en) * 2015-02-11 2016-11-22 Az Electronic Materials (Luxembourg)S.A.R.L. Metal hardmask composition and processes for forming fine patterns on semiconductor substrates
SG11202001741PA (en) 2017-09-06 2020-03-30 Merck Patent Gmbh Spin-on inorganic oxide containing composition useful as hard masks and filling materials with improved thermal stability
US20230407013A1 (en) * 2020-11-17 2023-12-21 Dow Silicones Corporation Titanium-based compounds and their applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118827A (ja) 1995-10-25 1997-05-06 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物の製造方法
JP2000109560A (ja) * 1998-08-04 2000-04-18 Jsr Corp 光硬化性組成物および硬化膜
JP2000265062A (ja) 1999-03-12 2000-09-26 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2002348380A (ja) * 2001-02-23 2002-12-04 Kose Corp 多孔質の酸化チタン・オルガノポリシロキサンハイブリッド粉体及び酸化チタン・シリカ複合体並びにそれらを配合した化粧料
JP2006336010A (ja) * 2005-05-02 2006-12-14 Jsr Corp シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2006348284A (ja) * 2005-05-20 2006-12-28 Jsr Corp シロキサン系縮合物およびその製造方法
JP2008120054A (ja) * 2006-11-16 2008-05-29 Suzuka Fuji Xerox Co Ltd 有機・無機ハイブリッド成形物の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361716B1 (en) * 2000-07-20 2002-03-26 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
JP3788911B2 (ja) * 2001-02-07 2006-06-21 信越化学工業株式会社 オルガノポリシロキサン組成物
JP5597859B2 (ja) * 2009-06-10 2014-10-01 国立大学法人三重大学 ポリオルガノシロキサン組成物およびその硬化体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118827A (ja) 1995-10-25 1997-05-06 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物の製造方法
JP2000109560A (ja) * 1998-08-04 2000-04-18 Jsr Corp 光硬化性組成物および硬化膜
JP2000265062A (ja) 1999-03-12 2000-09-26 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2002348380A (ja) * 2001-02-23 2002-12-04 Kose Corp 多孔質の酸化チタン・オルガノポリシロキサンハイブリッド粉体及び酸化チタン・シリカ複合体並びにそれらを配合した化粧料
JP2006336010A (ja) * 2005-05-02 2006-12-14 Jsr Corp シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2006348284A (ja) * 2005-05-20 2006-12-28 Jsr Corp シロキサン系縮合物およびその製造方法
JP2008120054A (ja) * 2006-11-16 2008-05-29 Suzuka Fuji Xerox Co Ltd 有機・無機ハイブリッド成形物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Dai 18 Kai Shuki Symposium Koen Yokoshu", 27 September 2005, pages: 272, XP008146973 *
See also references of EP2343341A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121111A (ja) * 2008-10-23 2010-06-03 Mie Univ ポリオルガノシロキサン組成物およびその硬化体
WO2010143357A1 (ja) * 2009-06-10 2010-12-16 国立大学法人信州大学 ポリオルガノシロキサン組成物およびその硬化体
WO2013124907A1 (ja) * 2012-02-23 2013-08-29 国立大学法人信州大学 シリコーン系接着剤組成物およびその硬化体
JP2013173879A (ja) * 2012-02-27 2013-09-05 Shinshu Univ シリコーンゴム組成物およびその製造方法ならびにシリコーンゴム
WO2013128497A1 (ja) * 2012-02-27 2013-09-06 国立大学法人信州大学 シリコーンゴム組成物およびその製造方法ならびにシリコーンゴム
WO2013153773A1 (ja) * 2012-04-09 2013-10-17 国立大学法人三重大学 硬化性組成物およびそれを用いて硬化させた合成樹脂
JPWO2013153773A1 (ja) * 2012-04-09 2015-12-17 国立大学法人三重大学 硬化性組成物およびそれを用いて硬化させた合成樹脂
US9376525B2 (en) 2012-04-09 2016-06-28 Mie University Curable composition, and cured synthetic resin using same
KR20160048796A (ko) * 2013-08-30 2016-05-04 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. 하드마스크 및 충전 재료로서의 안정한 금속 화합물, 이들의 조성물 및 사용 방법
JP2016537478A (ja) * 2013-08-30 2016-12-01 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ ハードマスクおよび充填材料として安定な金属化合物、その組成物、およびその使用方法
KR102132509B1 (ko) 2013-08-30 2020-07-10 리지필드 액퀴지션 하드마스크 및 충전 재료로서의 안정한 금속 화합물, 이들의 조성물 및 사용 방법

Also Published As

Publication number Publication date
EP2343341A4 (en) 2013-10-02
JP5555956B2 (ja) 2014-07-23
US8455593B2 (en) 2013-06-04
EP2343341B1 (en) 2014-08-27
JPWO2010047109A1 (ja) 2012-03-22
EP2343341A1 (en) 2011-07-13
US20110207864A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5555956B2 (ja) ポリオルガノシロキサン組成物およびその硬化体
US8440848B2 (en) Polyorganosiloxane composition, cured product of the composition, and method for producing the composition
JP5597859B2 (ja) ポリオルガノシロキサン組成物およびその硬化体
AU2012294839B2 (en) Filled silicone compositions, preparations and uses thereof
CN104968748A (zh) 烷氧基官能化有机聚硅氧烷树脂和聚合物及其相关形成方法
EP3031845B1 (en) Condensation-curable silicone resin composition
CN105829449A (zh) 多成分系室温固化性有机聚硅氧烷组合物和该组合物的固化物以及包括该固化物的成型物
CN108314990A (zh) 一种高强度耐高温硅酮密封胶及其制备方法
CN103045080A (zh) 缩合反应固化类型的有机硅剥离涂料组合物
PT1587889E (pt) Composição de revestimento de cura à temperatura ambiente
JP6293433B2 (ja) シリコーン樹脂組成物
WO1997035908A1 (fr) Composes de siloxane, procede de preparation de ceux-ci et composition liquide ou entrent ces composes
Rodzeń et al. Reactivity of the tin homolog of POSS, butylstannoxane dodecamer, in oxygen-induced crosslinking reactions with an organic polymer matrix: Study of long-time behavior
JP7444857B2 (ja) 室温硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物
JP7392514B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び物品
JP5429968B2 (ja) ポリオルガノシロキサン組成物およびその硬化体
EP3967730B1 (en) Room-temperature-vulcanizing organopolysiloxane composition, silicone rubber, and article
CN110678525A (zh) 用于涂覆的树脂组合物及含其固化产物作为涂层的涂覆膜
CN106604969B (zh) 通过缩合反应能够交联的有机聚硅氧烷组合物
JP2013147634A (ja) 光半導体封止用熱硬化性シリコーン樹脂組成物
JP2013129733A (ja) 光半導体封止用熱硬化性シリコーン樹脂組成物
JP5608909B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP7093663B2 (ja) 硬化性樹脂組成物、及びその製造方法
JP2018077165A (ja) オルガノポリシロキサン組成物の分散安定性評価方法
JP2017155123A (ja) コーティング剤、コーティング剤の製造方法及びコーティング膜の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010534696

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13124492

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009821809

Country of ref document: EP